

 [image: Second Edition.]

 Rails: Up and Running

Bruce A. Tate

Lance Carlson

Curt Hibbs

Curt Hibbs

Editor
Mike Loukides

Copyright © 2008 Bruce Tate, Curt Hibbs, and Lance Carlson

O’Reilly books may be purchased for educational, business, or sales
 promotional use. Online editions are also available for most titles
 (http://safari.oreilly.com). For more information,
 contact our corporate/institutional sales department: (800) 998-9938 or
 corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo
 are registered trademarks of O’Reilly Media, Inc. Rails: Up and
 Running, Second Edition, the image of an ibex, and related
 trade dress are trademarks of O’Reilly Media, Inc.
Many of the designations used by manufacturers and sellers to
 distinguish their products are claimed as trademarks. Where those
 designations appear in this book, and O’Reilly Media, Inc., was aware of a
 trademark claim, the designations have been printed in caps or initial
 caps.
Java™ is a trademark of Sun Microsystems,
 Inc.

While every precaution has been taken in the preparation of this
 book, the publisher and authors assume no responsibility for errors or
 omissions, or for damages resulting from the use of the information
 contained herein.

[image:]

O'Reilly Media

SPECIAL OFFER: Upgrade this ebook with O’Reilly

Click here for more information on this offer!
Please note that upgrade offers are not available from sample content.

A Note Regarding Supplemental Files

Supplemental files and examples for this book can be found at http://examples.oreilly.com/9780596522018/. Please use a standard desktop web browser to access these files, as they may not be accessible from all ereader devices.
All code files or examples referenced in the book will be available online. For physical books that ship with an accompanying disc, whenever possible, we’ve posted all CD/DVD content. Note that while we provide as much of the media content as we are able via free download, we are sometimes limited by licensing restrictions. Please direct any questions or concerns to booktech@oreilly.com.

Preface

The Rails phenomenon is sweeping through our industry with reckless
 disregard for established programming languages, long-standing conventions,
 or commercial support. You can get a whole lot of information about Rails
 from articles on the Web, excellent books, and even formal course work.
 However, there’s something missing: how does an established programmer—armed
 with nothing more than a little Ruby knowledge—go just beyond the basics and
 be productive in Rails?
With Rails: Up and Running, Second Edition, we
 are not going to reiterate the reference manual or replace Google. Instead,
 we’ll strive to give you the big picture of how Rails applications hold
 together and tell you where to go for the information that we don’t cover in
 the chapters. We’ll take you just beneath the covers of Active Record, the
 Rails framework that gives Ruby objects a database backing. You’ll get just
 deep enough to understand the “magic” features that perplex most Rails
 newbies. By understanding the big picture, you’ll be able to make better use
 of the best reference manuals to fill in the details.
We won’t try to make you digest a whole lot of words. Rather, we’ll
 give you the theory in the context of an end-to-end application. We’ll walk
 you through the creation of a simple project—one that is a little more
 demanding than a blog or shopping cart, but with a simple enough structure
 that a Rails beginner will be able to quickly understand what’s going on. In
 short, we’re going to let the code do the talking, and we’ll augment that
 code where you’ll need some help to understand exactly what’s going
 on.
We’re not going to try to cover each new feature. Instead, we’ll show
 you the ones we see as the backbone, forming the most important elements to
 understand. We will also cover the new migrations and REST features in some
 detail because various older books don’t cover those features in too much
 detail.
In short, we’re not trying to build a comprehensive Rails
 library—we’re going to give you the foundation you need to get up and
 running.
Who Should Read This Book?

Rails: Up and Running, Second Edition, is for
 experienced developers who are new to Rails and possibly to Ruby. To use
 this book, you don’t have to be a strong Ruby programmer; we do expect you
 to be a programmer, though. You should know enough about your chosen
 platform to be able to write programs, install software, run scripts using
 the system console, edit files, use a database, and understand how basic
 web applications work.

Conventions Used in This Book

The following typographic conventions are used in this book:
	Plain text
	Indicates menu titles, menu options, menu buttons, and
 keyboard accelerators (such as Alt and Ctrl).

	Italic
	Indicates emphasis, new terms, URLs, email addresses,
 filenames, file extensions, pathnames, directories, and Unix
 utilities.

	Constant width
	Indicates commands, the contents of files, and the output from
 commands.

	Constant width
 bold
	Shows commands or other text that should be typed literally by
 the user.

	 Constant width
 italic
	Shows text that should be replaced with user-supplied
 values.

Tip
This icon signifies a tip, suggestion, or general note.

Warning
This icon indicates a warning or caution.

Using Code Examples

This book is here to help you get your job done. In general, you may
 use the code in this book in your programs and documentation. You do not
 need to contact us for permission unless you’re reproducing a significant
 portion of the code. For example, writing a program that uses several
 chunks of code from this book does not require permission. Selling or
 distributing a CD-ROM of examples from O’Reilly books
 does require permission. Answering a question by
 citing this book and quoting example code does not require permission.
 Incorporating a significant amount of example code from this book into
 your product’s documentation does require
 permission.
You can get sample code at the main page for Rails: Up and
 Running, Second Edition: http://www.oreilly.com/catalog/9780596522001. You will find
 a ZIP file that contains the sample project as it exists after each
 chapter, with each instance of the sample application numbered by chapter.
 If you want to skip a chapter, just download the right ZIP file.
We appreciate, but do not require, attribution. An attribution
 usually includes the title, author, publisher, and ISBN. For example:
 “Rails: Up and Running by Bruce A. Tate, Curt Hibbs,
 and Lance Carlson. Copyright 2009 Bruce A. Tate, Lance Carlson, and Curt
 Hibbs, 978-0-596-52200-1.”
If you feel that your use of code examples falls outside fair use or
 the permission given here, feel free to contact us at
 permissions@oreilly.com.

Platforms

Rails is cross-platform, but Unix and Windows shells behave
 differently. For consistency, we use Mac OS X version 10.5.2 throughout
 this book. You can easily run the examples on the Unix or Windows
 operating systems as well. You’ll see a few minor differences:
	You can specify paths with the forward slash (/) or backslash
 (\) character on Windows. We’ll try to be consistent and use the
 forward slash to specify all paths.

	To run the various Ruby scripts that make up Rails on Windows,
 you need to explicitly type ruby.
 On Unix environments, you don’t. We will remind you a few times early
 in the book. If you’re running Unix, and you are instructed to type
 the command ruby script/server,
 feel free to omit the ruby.

	To run a process in a separate shell on Windows, precede the
 command with start. On Unix and Mac
 OS X, append an ampersand (&) character to run the command in the
 background.

Safari® Books Online

Note
When you see a Safari® Books Online icon on the cover of your
 favorite technology book, that means the book is available online
 through the O’Reilly Network Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s a virtual
 library that lets you easily search thousands of top tech books, cut and
 paste code samples, download chapters, and find quick answers when you
 need the most accurate, current information. Try it for free at http://safari.oreilly.com.

How to Contact Us

We have tested and verified the information in this book and in the
 source code to the best of our ability, but given the amount of text and
 the rapid evolution of technology, you may find that features have changed
 or that we have made mistakes. If so, please notify us by writing
 to:
	O’Reilly Media, Inc.
	1005 Gravenstein Highway North
	Sebastopol, CA 95472
	800-998-9938 (in the United States or Canada)
	707-829-0515 (international or local)
	707-829-0104 (fax)

You can also send messages electronically. To be put on the mailing
 list or request a catalog, send email to:
	info@oreilly.com

To ask technical questions or comment on the book, send email
 to:
	bookquestions@oreilly.com

As mentioned in the earlier section, we have a website for this book
 where you can find code, errata (previously reported errors and
 corrections available for public view), and other book information. You
 can access this website at:
	http://www.oreilly.com/catalog/9780596522001

For more information about this book and others, see the O’Reilly
 website:
	http://www.oreilly.com

Acknowledgments

Writing a book is a demanding exercise, taking passion, commitment,
 and persistence. The authors on the cover get all of the glory (and
 possibly the blame). Many people contribute to a book. We’d like to
 mention the people who made writing this book such a fulfilling
 experience.
Collectively, Bruce, Lance, and Curt would like to thank the
 outstanding team of reviewers who provided so many great comments,
 including David Mabelle, Mauro Cicio, Brooke Hedrick, Faisal Jawdat, Shane
 Claussen, Leo de Blaauw, Anne Bowman, Seth Havermann, Dave Hastings, and
 Randy Hanford. We’d also like to thank David Geary for fleshing out some
 of the early ideas in Photo Share.
Rails: Up and Running, Second Edition, would be
 nothing without the excellent contributions of the core Rails team. We
 would like to thank David Heinemeier Hansson (the creator of Rails),
 Florian Weber, Jamis Buck, Jeremy Kemper, Leon Breedt, Marcel Molina Jr.,
 Michael Koziarski, Nicholas Seckar, Sam Stephenson, Scott Barron, Thomas
 Fuchs, and Tobias Luetke. Ruby is a fantastic language, and we would like
 to thank the many who made it so. We throw out specific thanks to Yukihiro
 Matsumoto (a.k.a. “Matz”), the creator of Ruby, and to Dave Thomas and
 Andy Hunt, without whom Ruby might have remained virtually unknown outside
 of Japan.
Bruce would like to specifically thank Curt for stepping into this
 project after it seemed that it was dead. Also, thanks to those at AutoGas
 who were so instrumental in trying this technology within the context of a
 real production application—especially the core development team,
 including Mathew Varghese, Karl Hoenshel, Cheri Byerley, Chris Gindorf,
 and Colby Blaisdell. Their collective experience shaped this book more
 than you will ever know. Thanks to my Dutch friend Leo, again, for being
 such a supportive influence on this book, though you’re mostly a
 Java™ developer. You have had more influence on me
 than you might expect. More than anyone else, I would like to thank my
 family. Kayla and Julia, you are the sparks in my soul that keep the
 creative fires burning. Maggie, you are my inspiration, and I love you
 more than I can ever say.
Lance would like to thank Bruce Tate for giving him the opportunity
 to help write the second edition of this book. I would also like to
 personally thank the rails core team and Matz for ending his PHP career.
 Also, I’d like to thank Wayne Seguin who was the best boss ever. Thanks
 goes to all of those I worked with at Engine Yard for seeing my potential
 despite my age. Respect and thanks go to Joe O’ Brien, Jim Weirich and
 Stuart Halloway for emphasizing TDD and bringing me to enlightenment.
 Last, but not least, I’d like to thank my girlfriend Alison who stuck with
 me when I wasn't making any money and made me realize my true value as a
 web developer and entrepreneur.
Curt would like to thank his wife, Wasana, for letting him disappear
 behind his computer screen late into the night (and sometimes into the
 following day) without complaint. I would also like to thank my friends at
 O’Reilly for giving me a forum to spread the word about the incredible
 productivity advantages of Rails. Specifically, I’d like to thank
 chromatic for publishing my ONLamp.com articles, and Mike Loukides for not
 giving up when I kept telling him I didn’t want to write a book.

Chapter 1. Zero to Sixty: Introducing Rails

When we wrote the first version of this book, Rails was just starting
 to ramp up as a framework. Now, the exploding web development platform is
 working its way into the mainstream. Companies like Twitter have bet on
 Rails and won big, and others have tried Rails and crashed hard. You should
 be comfortable that you’re entering this ecosystem not as a pioneer, but as
 part of a much greater wave that’s sweeping through the whole computing
 profession. If you read the first edition, you’ll notice that we’re not
 selling the framework quite so hard. In all honesty, we don’t have to. Let’s
 lay the basic foundation so we can get to work.
Rails is a framework for building database-backed web
 applications. Based on the Ruby programming language, Rails is best for
 applications that need to be developed quickly without sacrificing a clean
 structure that can also be well-maintained. Ruby is interpreted, but it’s
 fast enough to attack websites with all but the most demanding performance
 characteristics. And it’s tremendously popular. That popularity means you
 can find what you need to build projects in Rails.
Since the first edition of this book was released, the Rails core team
 released milestone versions 1.1, 1.2, 2.0, and now 2.1. Today, you can find
 excellent hosting from dozens of vendors depending on how much management
 you’re willing to do. And technical officers like me (Bruce Tate) are
 bringing Rails into the enterprise to run our core businesses. The Rails
 framework has since led to rapid investment in the Ruby programming
 language, too, including evolving implementations on the Java Virtual
 Machine, the Microsoft Common Language Runtime, and two emerging Ruby
 virtual machines. Rails is also redefining web development frameworks in
 other languages as well. Java, PHP, Python, Lisp, Groovy, and Perl each have
 more than one Rails-like framework. The Rails convention-based approach is
 overtaking standard configuration-based approaches just about
 everywhere.
In this book, we will walk you through everything you need to get a
 simple application up and running. We promise to move slowly enough that you
 can absorb the concepts, but quickly enough so that you will have a working
 application after following along for a few hours. Let’s get started.
Putting Rails into Action

We’re going to blow through installation quickly because
 installation details can change with Rails itself and the individual
 platforms that support it. The best place to go, regardless of your
 platform, is the Rails wiki at http://wiki.rubyonrails.org/rails/pages/GettingStartedWithRails.
 We’ll give you a condensed version here: you’ll install Ruby, Rails, and
 then your database. First, install Ruby. If you’re running OS X, chances are
 good that Ruby is already there, but older versions will need an upgrade.
 If you’re running Windows, there are some good one-click installers that
 you can use such as the Ruby one-click installer at http://rubyinstaller.rubyforge.org. For now, just install
 Ruby, and we’ll walk you through the rest.
Once you’ve installed Ruby, you could manually install all
 of the components for Rails, but Ruby has a packaging and deployment
 feature named gems. The gem installer accesses a central repository and
 downloads an application unit, called a gem, and all its dependencies. If
 you haven’t done so, install Rails with this command:[1]
sudo gem install rails --include-dependencies -v 2.1
The command for installing Ruby components on all platforms is the
 same: gem install. The permissions
 required will vary from platform to platform. On OS X, sudo elevates your permissions for this command
 to superuser status. You’ll want to omit the sudo
 portion of this command on Windows. If things go well, you’ll see a list
 of a bunch of different gems fly by. These are Rails and all of the
 dependencies that Rails requires. That’s it—Rails is installed. There’s
 one caveat: you also need to install the database support for your given
 database. In this book, we’re going to use SQLite, but you can use any
 database engine supported by Rails. On Unix, chances are SQLite is already
 installed. On Windows, you’ll need to pull down the SQLite DLL and
 command-line client. For more details, go to http://wiki.rubyonrails.com/rails/pages/HowtoUseSQLite.
 With Ruby, Rails, and a database, you’re ready to create a project:
>rails chapter-1
 create
 create app/controllers
 create app/helpers
 create app/models
 create app/views/layouts
 create config/environments
 create components
 create db
 create doc
 create lib

...
 create test/functional
 create test/integration
 create test/unit
 create vendor
...
 create app/controllers/application.rb
 create app/helpers/application_helper.rb
 create test/test_helper.rb
 create config/database.yml
...
MVC and Model2
In the mid-1970s, the MVC (model-view-controller) strategy
 evolved in the Smalltalk community to reduce coupling between business
 logic and presentation logic. With MVC, you put your business logic into
 separate domain objects and isolate your presentation logic in a view,
 which presents data from domain objects. The controller manages
 navigation between views, processes user input, and marshals the correct
 domain objects between the model and view. Good programmers have used
 MVC ever since, implementing MVC applications using frameworks written
 in many different languages, including Ruby.
Web developers use a subtly different variant as MVC called
 Model2. Model2 uses the same principles of MVC, but
 tailors them for stateless web applications. In Model2 applications, a
 browser calls a controller via web standards. The controller invokes the
 model layer to do business functions such as getting database data, and
 then makes model objects available to the view for display. Next, the
 controller calls the view layer, which renders a view. This view is
 typically a web page, but might also be an XML form or some other type
 of view. The framework then returns the web page to the user. In the
 Rails community, when someone says MVC, they’re referring to the Model2
 variant.
Model2 has been tremendously successful through the years. Many
 different frameworks across dozens of programming languages use it. In
 the Java community, Struts is the most common Model2 framework. In
 Python, the flagship web development frameworks called Zope and Django
 both use Model2. You can read more about the model-view-controller
 strategy at http://en.wikipedia.org/wiki/Model-view-controller.

We truncated the list, but you get the picture. Rails creates
 folders that you’ll use to hold the model, view, and controller portions
 of your application code, different kinds of test cases, database
 configuration, and third-party libraries that you might choose to install
 later. All Rails projects will use this same organization with a few
 slight variations. You’ll run just about all of your Rails scripts from
 your new project directory. Go to your project directory with cd chapter-1. In the next section, we’ll take a
 look at the organization of your project in more detail.

[1] If you want to code along with us, make sure you’ve installed
 Ruby and gems. Appendix A contains detailed
 installation instructions.

Organization

The directories created during installation provide a place
 for your application code, scripts to help you manage and build your
 application, and many other goodies. Later, we’ll examine the most
 interesting directories in greater detail. For now, let’s take a quick
 pass through the directory tree in the project we created:
	app
	This directory has your Rails application. You’ll
 spend most of your development time working on files in this
 directory. app has subdirectories that hold the
 view (views and helpers),
 controller (controllers), and the backend
 business logic (models).

	config
	This directory contains the small amount of
 configuration code that your application will need. Your database
 configuration will go in database.yml. Common
 environmental configuration,
 such as the configuration of any mail server your application needs,
 will go in environment.rb. Rules for your URLs
 that route incoming web requests go in
 routes.rb. You can also specifically tailor the
 behavior of the three Rails environments for test
 (environments/test.rb), development
 (environments/development.rb), and production
 (environments/production.rb) with files found
 in the environments directory.

	db
	Your Rails application will have model objects that
 access relational database tables. Files that describe the schema
 (schema.rb) go in this directory.
 Migrations, Ruby scripts that make it easy to
 code changes in your database schema, go in the
 db/migrations directory.

	doc
	Ruby has a framework, called
 RubyDoc, that can automatically generate
 documentation for code you create. You can assist
 RubyDoc with comments in your code. This
 directory holds all the RubyDoc-generated Rails
 and application documentation.

	lib
	You’ll put common Rails libraries here, unless they
 explicitly belong elsewhere (such as vendor libraries). For example,
 common authentication libraries might go in this directory.

	log
	Error logs go here. Rails creates scripts that help
 you manage various error logs. You’ll find separate logs for the
 server (server.log) and each Rails environment
 (development.log,
 test.log, and
 production.log).

	public
	Like the public directory for a
 web server, this directory has web files that don’t change, such as
 JavaScript files (public/javascripts), graphics
 (public/images), stylesheets
 (public/stylesheets), and HTML files
 (public). Some Rails caching solutions also
 create .html files that go in the
 public directory.

	script
	This directory holds scripts to launch and manage the
 various tools that you’ll use with Rails. For example, there are
 scripts to generate (generate) and delete
 (destroy)
 code and launch the web server (server). Other
 scripts launch a console (console) for managing
 your application and debugging or installing and removing plug-ins
 (plugin). You’ll learn much more about using
 many of these scripts throughout this book.

	test
	The tests you write and those Rails creates for you
 all go here. You’ll see a subdirectory for mocks
 (mocks), unit tests
 (unit), integration tests
 (integration), fixtures
 (fixtures), and functional tests
 (functional). We’ll cover a brief introduction
 to testing in Chapter 7.

	tmp
	Rails uses this directory to hold temporary files for
 intermediate processing.

	vendor
	Libraries provided by third-party vendors (such as
 security libraries, plug-ins, or database utilities beyond the basic
 Rails distribution) go here.

Except for minor changes between releases, every Rails project will
 have the same structure, with the same naming conventions. This
 consistency gives you a tremendous advantage; you can quickly move between
 Rails projects without relearning the project’s organization. The Rails
 framework itself also relies on this consistency because the different
 Rails frameworks will often discover files solely on naming conventions
 and directory structure.

The Web Server

Now that we’ve got a project, let’s start the web server. If
 you haven’t already done so, type cd chapter-1 to
 switch to your project directory. Use the
 script/server script to start an instance of the Mongrel server configured for development. If you’re running Windows, each
 time you see a command that’s prefaced with the script directory, preface
 the call instead with ruby, using
 forward or backward slashes. If you’re using most other platforms, you can
 omit the ruby keyword. From here on
 out, we’ll skip the ruby part of the
 command. Type script/server now:
$ script/server

=> Booting Mongrel (use 'script/server webrick' to force WEBrick)
=> Rails application starting on http://0.0.0.0:3000
=> Call with -d to detach
=> Ctrl-C to shutdown server
** Starting Mongrel listening at 0.0.0.0:3000
** Starting Rails with development environment...
** Rails loaded.
** Loading any Rails specific GemPlugins
** Signals ready. TERM => stop. USR2 => restart. INT => stop (no restart).
** Rails signals registered. HUP => reload (without restart). It might not work well.
** Mongrel 1.1.1 available at 0.0.0.0:3000
** Use CTRL-C to stop.
Notice these details:
	The server started on port 3000. You can change the port number
 and other startup details with command-line options. See the sidebar
 “Configuring the
 Server” for more configuration options.

	We started an instance of Mongrel, the default web server. You
 can configure Rails to start many kinds of web servers.

	Ruby will also let you use a backward slash as a path delimiter
 on the command line, but on Unix, you must use the forward slash. Some
 prefer the backslash on Windows because it allows you to use the tab
 completion feature in the MS-DOS command prompt.

Configuring the Server
If you need to, you can configure the port, the directory
 for public files, and other server features with command-line options.
 You can see the options by adding the --help switch. Here are the default options
 for Rails 2.0:
> script/server --help
=> Booting Mongrel (use 'script/server webrick' to force WEBrick)
Usage: server [options]
 -p, --port=port Runs Rails on the specified port.
 Default: 3000
 -b, --binding=ip Binds Rails to the specified ip.
 Default: 0.0.0.0
 -d, --daemon Make server run as a Daemon.
 -u, --debugger Enable ruby-debugging for the server.
 -e, --environment=name Specifies the environment to run this server
 under (test/development/production).
 Default: development

 -h, --help Show this help message.
You won’t need to customize this script directly. The command-line
 switches should give you everything you need.

Point your browser to http://localhost:3000/.
 You’ll see the Rails welcome screen pictured in Figure 1-1. Don’t worry about the details of the
 request yet; for now, know that Rails is running and working
 correctly.
[image: The Rails welcome screen]

Figure 1-1. The Rails welcome screen

So far, you’ve already set up the build environment, typed a few
 words, and verified that the server is running. In the development
 environment, you’ll normally leave the server up, rebooting only to make
 major configuration changes for things such as new gems or a changed
 database configuration.
Choosing a Server

Rails will run on many different web servers. Most of your
 development will be done using Mongrel, but you’ll probably want to run
 production code on one of the alternative servers. Let’s look briefly at
 the available servers.
Apache

Although WEBrick is the most convenient choice, it’s not
 the most scalable or flexible. The Apache web server is the most
 widely deployed web server in the world. You can choose from an
 incredible array of plug-ins to run dozens of programming languages or
 serve other kinds of dynamic content. Apache scales well, with
 outstanding caching plug-ins and good support for load balancers
 (machines that efficiently spread requests across multiple web
 servers). If you’re looking for a safe solution, look no further than
 the Apache web server.

nginx

Apache is a good general-purpose web server, but it’s
 not the most specialized one. nginx has replaced lighttpd in the Rails
 community as the lightweight web server that’s built for one thing:
 speed. It serves static content such as HTML web pages and images very
 quickly, and it supports applications through Mongrel and Mongrel
 Cluster. nginx does not have nearly as many flexible plug-ins or the
 marketing clout of the Apache web server, but if you’re looking for a
 specialized server to serve static content and Rails applications
 quickly, nginx could be your answer. It’s fairly young, but it has a
 great reputation for speed among Rails enthusiasts.

Mongrel

Although Apache and lighttpd are very fast and scalable production servers,
 configuring them to serve your Rails application can sometimes be
 challenging, and it is never as simple as WEBrick. Mongrel changes all
 of that. Mongrel combines the advantages of WEBrick (because it’s
 written in Ruby) and nginx (because it’s written for speed and
 clusters well). This combination could make Mongrel an excellent
 choice for development and production. You can quickly cluster Mongrel
 with MongrelCluster. Be careful, though—Mongrel does not serve static
 content very quickly. For demanding deployments, you’ll want to combine
 Mongrel with one of the web servers mentioned above, likely Apache or
 nginx.

WEBrick

WEBrick, once the default development server for Rails, is
 written entirely in Ruby. It supports the standards you’ll need—HTTP
 for communications, HTML for web pages, and ERb for embedding Ruby
 code into web pages for dynamic content. WEBrick is generally not used
 anymore, even in pure development mode. Mongrel has taken its
 place.

Other web servers

Theoretically, any web server that supports CGI can serve a Rails application. Unfortunately, CGI with
 Rails is dead slow, so it is really not suitable for production.
 However, if you are running in a specialized environment that has its
 own web server, you can probably get it to serve your Rails
 application using the FastCGI or SCGI interfaces. Do a web search first, because it’s
 very likely that someone else has already done it and posted
 instructions. For example, if you must deploy your Rails application
 on Microsoft’s IIS, you will find that many developers have done this
 already. You’ll probably see other web servers rapidly move to support
 Rails. You can also find plenty of information on lighttpd with
 FastCGI. Deploying Rails applications is far beyond the scope of this
 book.
Now that your server is up, it’s time to write some code. We’ll
 focus on simple controllers and views in the rest of this
 chapter.

Creating a Controller

You’ve seen that Rails organizes applications into pieces
 with a model, view, and controller. We’ll start with the controller. Use
 the generate script to create a controller. In Chapter 2, we’ll talk more about the generator for
 controllers. For now, we’ll specify the type of object to create first and
 then the name of the new controller. Type:
$ ruby script/generate controller greeting
 exists app/controllers/
 exists app/helpers/
 create app/views/greeting
 exists test/functional/
 create app/controllers/greeting_controller.rb
 create test/functional/greeting_controller_test.rb
 create app/helpers/greeting_helper.rb
You might not have expected to see so much activity. Rails created
 your expected controller: greeting_controller.rb. But
 you also got a few other files as well:
	application.rb
	There is not yet a controller for the whole
 application, so Rails created this one. It will come in handy later
 as a place to anchor application-wide concerns, such as
 security.

	views/greeting
	Rails knows that controllers render views, so it
 created a directory called
 views/greeting.

	greeting_controller_test.rb
	Rails also created a test for your new controller
 because most Rails developers build automated unit tests to make it
 easy to build in and maintain quality.

	greeting_helper.rb
	Rails helpers provide a convenient place to set
 repetitive or complicated code that might otherwise reside in your
 views. By separating this code, you can keep your views clean and
 simple.

Rails creators built the framework to first solve their own
 problems. As a result, you see plenty of practical experience in the
 framework. The generators are a great example of that practical experience
 in action. You get a combination of all the application files that you’ll
 need to build the controller.
Mapping params

Let’s discuss what has happened so far. When the web
 server calls Rails, the router matches a URL to the route. Before
 invoking a controller, Rails builds a hash of params based on the chosen route. The router
 also adds any additional URL parameters to the params hash. You can easily see what’s in
 the params hash by directly rendering some text. Add the following code
 to app/controllers/greeting_controller.rb to see
 the params:
class GreetingController < ApplicationController

 def index
 end

 def show
 render :text => params.inspect
 end
end
Now, point your browser to
 http://localhost:3000/greeting/show. You should see
 the text {"action"=>"show",
 "controller"=>"greeting"}. The Rails router set the
 action and controller keys. Try a more complicated URL,
 as shown in Example 1-1.
Example 1-1. Rails builds a hash from a URL
For URL: http://localhost:3000/greeting/show/1?key=value&another_key=value
The hash is: {"action"=>"show",
 "id"=>"1",
 "controller"=>"greeting",
 "another_key"=>"value",
 "key"=>"value"}

Much of the time, in Rails, you’re dealing with URLs that
 amount to nothing more than a bunch of key/value pairs. On the URL,
 these are query strings. In Ruby, they’re a hash. Don’t let these hashes
 be a mystery. The routes table found in
 config/routes.rb will tell you exactly how Rails
 will carve the URL into a convenient list of parameters. You’ll see much
 more in the next chapter, but for now, it’s time to build a view.

Building a View

You now have a controller that renders text, but this design
 can take you only so far. Ideally, you’d like to separate the HTML in the
 view from your business logic in your controllers and models. The sloppy
 design is easy enough to fix. If you want to follow Rails MVC conventions,
 you should render text in a separate view instead of from your controller. Instead
 of the render command in the greeting controller, you can render the text in
 a Rails view. As with many web frameworks, Rails can use a template
 strategy for the view. A template is simply an HTML page with Ruby code mixed in. A Ruby
 engine called ERb interprets the template on the
 server, adding dynamic content to your page. That page will usually be
 written in HTML, but you can design templates for XML pages or email,
 too.
Documentation
Unlike many open source (http://opensource.org) projects, Rails has excellent
 documentation. You can find it all at http://api.rubyonrails.com. You’ll find overviews,
 tutorials, and even movies. You can always find the API document for the
 latest version of Rails at the site, with a full set of documents for
 every class in the Rails API. You can also find it with your Rails
 installation.
The excellent Rails documentation is not an accident. Like Java,
 Ruby comes with a utility called RubyDoc that generates documentation
 from source code and comments that you provide within the source code.
 When you install Ruby Gems, it also installs the documentation for the
 gem. Figure 1-2 shows the documentation
 for a controller.

[image: Rails documentation for the controller]

Figure 1-2. Rails documentation for the controller

With Rails, you can generate an empty view and some helpers
 that the view will need along with your controller. Type the script/destroy controller greeting command to
 destroy the previous controller:
 $ ruby script/destroy controller greeting

 rm app/helpers/greeting_helper.rb
 rm test/functional/greeting_controller_test.rb
 rm app/controllers/greeting_controller.rb
 rmdir test/functional
 notempty test
 rmdir app/views/greeting
 notempty app/views
 notempty app
 notempty app/helpers
 notempty app
 notempty app/controllers
 notempty app
Next, type script/generate controller
 greeting index to generate a controller with the index action and index
 view:
 $ ruby script/generate controller greeting index

 exists app/controllers/
 exists app/helpers/
 create app/views/greeting
 create test/functional/
 create app/controllers/greeting_controller.rb
 create test/functional/greeting_controller_test.rb
 create app/helpers/greeting_helper.rb
 create app/views/greeting/index.html.erb
See also Figure 1-3.
[image: Rails documentation for the controller]

Figure 1-3. Rails documentation for the controller

The generator created the view,
 index.html.erb, with helper and test files. From the
 output, you can see that the generator created a few directories, a
 controller called greeting_controller.rb, a helper called
 greeting_helper.rb, and a test called
 greeting_controller_test.rb. Take a
 look at the new index method in
 controller, called app/controllers/greeting_controller.rb:
class GreetingController < ApplicationController

 def index
 end
end
This controller example uses Action
 Pack, the Rails framework responsible for implementing the view
 and controller parts of Rails. Unlike most MVC frameworks, your index method didn’t specify
 a view. If your controller doesn’t explicitly call render, Rails uses naming conventions to decide
 which view to render. The controller’s name determines the view’s
 directory, and the action name determines the name of the view. An action
 is a method on a controller. In this case, Action Pack fires the view in
 app/views/greeting/index.html.erb. You didn’t have to
 edit any XML files or type any additional code to wire the controller to
 the view. You just allowed Rails to provide consistent naming conventions
 and infer your intent from there.
Now, edit the view. You’ll find this data:
<h1>Greeting#index</h1>
<p>Find me in app/views/greeting/index.html.erb</p>
Point your browser to
 http://localhost:3000/greetings/index to see the
 previous message in HTML. Rails tells you where to find the file, should
 you ever render an unimplemented view. This empty file awaits an
 implementation.

Tying Controller Data to the View

In MVC, the view needs to render any data the controller
 provides. That data may come from model logic, the session, or any other
 source. Regardless of where the data comes from, in Rails, instance
 variables in the controller are available to the view. Let’s try setting a
 variable called @welcome_message in the
 controller:
class GreetingController < ApplicationController
 def index
 @welcome_message = "Welcome to your first Rails application"
 end
end
Now, display the new message in the view by adding a Ruby expression
 between the <%= and %> tags. Rails renders the value of the
 expression within these tags, just as if the value of the expression had
 been printed in place. Here’s a view that prints your welcome message as a
 level one heading:
<h1><%= @welcome_message %></h1>
Reload. You'll see the output from the view, with the message you
 created in the index method. In Example 1-1, you rendered your view within the
 controller. Here, you built an HTML.ERB template.
 Your HTML tags provided static structure and style, and your Ruby code
 provided dynamic content—in this case, a variable set within the
 controller. That’s MVC.
Expressions and Scriptlets

When you’re embedding Ruby code within a view template,
 you’ve got two options. Scriptlets are Ruby code
 placed between the <% and %> tags. Scriptlets run Ruby code without
 printing the results. You will often use a scriptlet to loop through the
 elements of a Ruby array, for example. Expressions
 are Ruby expressions placed between the <%= and %> tags. An expression presents the
 value returned by the Ruby code. You will use an
 expression to place the result of any Ruby code in a web page, just as
 if you’d printed the code there.
You can experiment with the interaction between the controller and
 view. We’ve changed the controller and view for
 greeting to show a few examples of expressions and
 scriptlets in action. First, we’ll set a few values in the
 controller:
class GreetingController < ApplicationController
 def index
 @age=8
 @table={"headings" => ["addend", "addend", "sum"],
 "body" => [[1, 1, 2], [1, 2, 3], [1, 3, 4]]
 }
 end
end
Next, here’s the views/index.html.erb view
 showing expressions and scriptlets, both of which interact with values
 set in the controller:
<h1>Simple expression</h1>
<p>Tommy is <%= @age %> years old.</p>
Now, display the value of the instance variable @age, which was set in the controller:
<h1>Iteration using scriptlets</h1>
<% for i in 1..5 %>
 <p>Heading number <%= i %> </p>
<% end %>
Iterate with a scriptlet and show the current count with an
 expression:
<h1>A simple table</h1>

<table>
 <tr>
 <% @table["headings"].each do |head| %>
 <td>
 <%= head %>
 </td>
 <% end %>
 </tr>

 <% @table["body"].each do |row| %>
 <tr>
 <% row.each do |col| %>
 <td>
 <%= col %>
 </td>
 <% end %>
 </tr>
 <% end %>

</table>
Finally, use both techniques to display the contents of @table.
You’ll get the results shown in Figure 1-4.
[image: Results of embedded scriptlets and expressions]

Figure 1-4. Results of embedded scriptlets and expressions

End of sample

 To search for additional titles please go to

 http://search.overdrive.com.

OEBPS/httpatomoreillycomsourceoreillyimages213005.png
Tablephotos

Table files

ol | col2

name | photo_id

(lass: Photo Class: File
has_one: file Attibutes:
Attributes: id
id 3
coh ol

col2

photo_id

OEBPS/httpatomoreillycomsourceoreillyimages212993.png
Table people

id | name | email | camera | type

null Person
null Person
Photographer

Photographer

(lass: Person Class: Photographer < Person
Attributes: Attributes:

id id

name name

email email

camera (is nil) camera

type “Person” type“Person”

OEBPS/httpatomoreillycomsourceoreillyimages212967.png
Ruby on Rails: Welcome aboard

Welcome aboard

You're riding Ruby on Rails!

About your application’s environment

Getting started
Here's how to get rolling:

Use script/generate to create your
models and controllers

To see all available options, run it without parameters.

Set up a default route and remove or
rename this file

Routes are set u

config/routes.rb.

Join the ca

Ruby on R:
Official weblo|
i
Browse th
document:

Rails API
Ruby standar
Ruby core

T

OEBPS/httpatomoreillycomsourceoreillyimages212997.png
Table slides

Table slideshows

col2 | ... | slideshow_id id | o3 | cold

Class: Person
belongs._to: slideshow

Mtributes:

Class: Slideshow
Attributes:

id

id

ol

l3

ol

ol

slideshow_id

OEBPS/httpatomoreillycomsourceoreillyimages213046.png.jpg
(Lo J (eI (1@ e rocaivost3000/categores/3/ea & Bar Googe)

Photos Categories ~ Slideshows

Editing category

OEBPS/httpatomoreillycomsourceoreillyimages213051.png.jpg
L@ oo ocaorcaonoisideshons OQr cooge)

Categories ~ Slideshows

Listing slideshows

Name
Interesting Pictures Show Edit Destroy

New slideshow

OEBPS/httpatomoreillycomsourceoreillyimages213034.png.jpg
800 Photos: index

<> [&[]]+] O htp://localhost:3000/photos Q- Google

Photos Cateqories ~ Slideshows

Listing photos

B

train.jpg delete me
) L |lighthouse.jpg delete me
g

gargoyle.jog delete me

cat.jpg delete me

OEBPS/httpatomoreillycomsourceoreillyimages213089.png.jpg
Photos: edit
e || &

+ | @ hup://localhost:3000/slideshows/1/edit ~(Q- Google

Photos Categories

Slideshows

Edi

ng slideshow

Slideshow Photos | Unused Photos

Play this slideshow

Filter "Unused Photos" on this Category
Al 2

Attributes
Name

Interesting Pictures

rag and drop photos between the two
lists to add and remove photos from the
slideshow. Drag photos within the slideshow
to rearrange their order.

£

OEBPS/httpatomoreillycomsourceoreillyimages212976.png
®e00 http://localhost:3000/greeting

<> @ http://localhost:3000/greeting g(Q- Google

Welcome to your first Rails Application

OEBPS/httpatomoreillycomsourceoreillyimages212989.png
Table: photos

id

filename

(lass: Photo
Attributes:

id

filename

OEBPS/httpatomoreillycomsourceoreillyimages212972.png
Rails Framework Documentation

¢ | | | + | @hup://apirubyonrails.org/ ~(Q- Google

actionmeller/CHANGE Path: README
poyomaliel e Modified: Sun Dec 16 19:00:02 -0600 2007

‘ActonControler:
‘ActonControler:
ActonControler:
ActonControler:
ActonControler:
ActonControler:
ActonControler
‘ActionControler:: Assi | Rails Is a web-application and persistence framework that
ncantrolle: includes everything needed to create database-backed web-
applications according to the Model-View-Control pattern of
separation. This pattern splits the view (also called the

" (Actvesupport: D1 presentation) into "dumb” templates that are primarily
+ (ActiveSupport::Tir responsible for inserting pre-built data in between HTML tags.
B e The model contains the "smart" domain objects (such as
<& lacionvews: el Account, Product, Person, Post) that holds all the business logic
(ActiveSupport: and knows how to persist themselves to a database. The
Gatsz o) controller handles the incoming requests (such as Save New
(hcivesupport Account, Update Product, Show Post) by manipulating the
e model and directing data to the view.
(Actefecorts 1 1 In Rails, the model is handied by what's called an object- Y
(Acttvasugpurt:: relational mapping layer entitled Active Record. This layer 3

Ralls:: GemDepe.

OEBPS/httpatomoreillycomsourceoreillyimages213018.png
Table categories

name | parent_id

Class: Gateqory
{ ass: Gategoyy

{ dass: Gategary
acts_as_tree

Attributes:
id

name

parent
children(]

OEBPS/httpatomoreillycomsourceoreillyimages213055.png.jpg
00 Photos
<[>][] [&] [] @ nup://iocainost:3000/slideshows @ A(Q- Google

index

Photos Categories ~ Slideshows

Interesting Pictures (9 slides)

New slideshow

OEBPS/httpatomoreillycomsourceoreillyimages212958.jpg
Lightning Fast Web Development

Up and Running

. Bruce A.Tate,
O’REILLY*® Lance Carlson & Curt Hibbs

OEBPS/httpatomoreillycomsourceoreillyimages213084.png.jpg
000 Photos: edit
¢ | |5 | + | @htp://localhost:3000/slideshows/ 1/edit ~(Q- Google)
Photos Categories Slideshows
Editing slideshow
Slideshow Photos Unused Photos
Play this slideshow
1. Attributes
Name
Interesting Picures
2
g Hint: Drag and drop photos between
the two lists to add and remove
photos from the slideshow. Drag
photos within the siideshow to
a rearrange their order.
s

R

OEBPS/httpatomoreillycomsourceoreillyimages213067.png.jpg
Photos: edit

| «|» | e |[5&]|+]| @nup://localhost:3000/slideshows/1/edit Q- Google

Photos Categories ~Slideshows

Editing slideshow

Play this slideshow

Name
Interesting Pictures

5 teresting Pict

2.

3

e

N

OEBPS/httpatomoreillycomsourceoreillyimages213093.png
CO code coverage information
Generated on Tue Jun 24 03:33:55 -0400 2008 with rcov 0.8.1.2

Name Total lines Lines of code Total coverage Code coverage

TOTAL 606 160 7.0y CEEE .7y
[Library/Ruby/Site/1.8/rubygems/dependency_list.rb 165 108 sy M 2500 CoEE—
‘app/controllers/application.rb 10 4 100.0v N 100.0v S

ntroll ries_controller. s R T ————
2pp/controllers/photos_controller.rb 7 64 100.0v D 100.0v [
‘app/controllers/slides controller.rb 0 60 gs.on [T go.0n

ntrollers/slideshows controller.r! 119 R]
app/helpers/application_helper.rb 3 2| 100.00 EEEEEEEEN 100.0v NN
app/helpers/categories_helper.rb 2 2 100.0v SN 100.0v IS
‘app/helpers/photos_helper.rb 2 2| 100.0v N 1000 EEES—
2pp/helpers/siides_helper.rb 2 2 100.0 S 100.0v
app/helpers/slideshows_helper.rb s 5| 100.0v NN 100.0v S
‘app/models/category.rb 26 P I ——
2pp/models/person. 7 7 100.0 1000 E—
2pp/models/photo.rb f 9 100.0v (S 100.0v
‘app/models/slide.rb B 5| 100.0v N 1000 S
2pp/models/slideshow.rb 1 9 100.0v B 100.0v

Generated using the rcov code coverage analysis tool for Ruby version 0.8.1.2.

wae ’:‘_'}"y‘ W3C cee,

OEBPS/httpatomoreillycomsourceoreillyimages213026.png.jpg
000 Photos:
>l

how

+ | @ hutp://localhost:3000/photos/9 A(Q- Google

Filename: baskets.jpg

Thumbnail: baskets_t.jpg

Description: My exercise for the day

Edit | Back

OEBPS/httpatomoreillycomsourceoreillyimages213114.png
categories_products

ategory_id
product

OEBPS/oreilly_large.gif
O’REILLY

OEBPS/httpatomoreillycomsourceoreillyimages213106.png
S
LT ratae Standodtrror.new“Tmald corencys s{order.payent_currency)” wles oder.paynent.currency o= “USE" [
[t 8 ontr.sotus = “Cogletad # ot rocess pnciog orcers
Joremipein ety
Sims £ st it
S T et crate prcessarery
e Pty ot
r] ittty
St e -

S
o

rescan cxceptton = exc
ere_ns = sprineCTremsaction (poromsCstan A} Ervr: S{ex.essone))

5 ardr
erde Sa_arror - 1
order rrar < .m0

R
rotse e
e

render croting o> troe
B

PAYPALSTOLIRL = “ntgs://ntos/ . eyl conscg-insvebicr”
PRPALIOOTIT 1o » S darstyTonen

v
begin
e et

48 ens 15 0 gt withot any dte, shom o mesizge
il

rardr tamplte = ‘oeyoal /.t dota”
et

OEBPS/httpatomoreillycomsourceoreillyimages213010.png
categories - photos

Gategory_id

photo_id

categories

name

photos

filename

Class: Gategory
has_many: photos

Atributes:

Class: Photos

Atributes:

has_many: categories

id

all

wl2

photos[]

ategaries]]

OEBPS/httpatomoreillycomsourceoreillyimages212984.png
(ategories

Photos

Slides

Slideshows

OEBPS/httpatomoreillycomsourceoreillyimages213001.png
Table slideshows

Table slides

id

B | col4

l2 | ... | slideshow_id

Class: Slide
(lass: Slideshow belongs_to: slideshow
Attributes: Attributes:
id id
l3 ol

ol

wl2

slideshow_id

OEBPS/httpatomoreillycomsourceoreillyimages212980.png
Simple expression

Torany is 8 years ald.

Iteration using scriptlets

Heding acber
eing ucber 2
eing ncber 3
SE——
Heding e

A simple table

addend addend sum
o 2
12 3

1 4 4

OEBPS/httpatomoreillycomsourceoreillyimages213022.png
(CHITPReguest),

Web Server

0.0

Ruby on Rals

Ty
—

Static Resources
(images,ss,etc)
)

Controller Class

Action method 1
Action method 2

Partal
Template

()

View
Template

N

Layout
Template

N

OEBPS/httpatomoreillycomsourceoreillyimages213030.png
Listing photos

train.jpg delete me

lighthouse.jpg delete me

gargoyle.jog delete me

catjpg delete me

OEBPS/httpatomoreillycomsourceoreillyimages213110.png
authors authorships

id int
author_id | int
book_id | int

OEBPS/httpatomoreillycomsourceoreillyimages213119.png
line_items

i it

oderid | int

Customers. addresses

id int id it
name sting astomer_id | it

OEBPS/httpatomoreillycomsourceoreillyimages213098.png
i

3

OEBPS/httpatomoreillycomsourceoreillyimages213014.png
Table slides

Table slideshows

pasition | photo_id

slideshow_id

id | name

Class: Side
belongs_to: ldeshow
acts_as_list

Attributes:
[
posiion
photo_id
slideshow

Class: Sideshow
has_many: sides,
“order=>position

Attributes:

OEBPS/httpatomoreillycomsourceoreillyimages213042.png.jpg
600 Photos: index
i <> I [Ix I it Iemw //localhost:3000/ categories Iav Google i

Photos Cateqories ~ Slideshows

Listing categories

Name
Al Edit Destroy
All:Animals Edit Destroy

All:People:Family Edit Destroy
All:People:Friends Edit Destroy

All:People Edit Destroy
All:Places Edit Destroy
All:Things Edit Destroy

New category

OEBPS/httpatomoreillycomsourceoreillyimages213080.png.jpg
Photos: edit

¢ | (53] | + | @ hup://localhost:3000/slideshows/ 1 /edit ~(Q- Google)

Photos Categories ~Slideshows

Editing slideshow

Slideshow Photos |~ Unused Photos
Play this slideshow

1 Attributes
Name
nteresting Pctures
2
Hint: Drag and drop photos between
2 the two lists to add and remove photos
from the slideshow. Drag photos
within the slideshow to rearrange their
order.
4

L

OEBPS/httpatomoreillycomsourceoreillyimages213072.png.jpg
Photos: edit
e || &

+ | @ hup://localhost:3000/slideshows/ 1 /edi

~(Q- Google
Photos Categories Slideshows
Editing slideshow
Play this siideshow
Name
Tneresting Picures

E

OEBPS/httpatomoreillycomsourceoreillyimages213076.png.jpg
000 Photos: edit

¢ | [53] [+ | @ hup://localhost:3000/slideshows/1/edit ~(Q- Google

Photos Categories Slideshows
Editing slideshow
Slideshow Photos Unused Photos
Play this slideshow
1. Attributes
Name
Tneresting Picures
p
g Hint: Drag and drop photos between
the two lists to add and remove
photos from the slideshow. Drag
photos within the siideshow to
o rearrange their order.
s

9

OEBPS/httpatomoreillycomsourceoreillyimages213059.png.jpg
Photos: index

¢ [&] [+] @ hup:/localhost3000/slideshows O ~(Q- Google)

Photos Categories ~Slideshows

New slideshow

Interesting Pictures (9 slides)

OEBPS/httpatomoreillycomsourceoreillyimages213038.png.jpg
800 Photos: index
[+] @ http://localhost:3000/photos

Q- Google

Photos Cateqories ~ Slideshows

Listing photos

[S

- train.jpg delete me

~ M | |lighthouse.jpg delete me

ﬁ' iariuile ke

OEBPS/httpatomoreillycomsourceoreillyimages213063.png.jpg
000 Photos: show

[4[> |[e][] [+ @ nup:;localhost:3000/slideshows/1 © ~(Q- Google)

Photos Categories ~ Slideshows

Name: Interesting Pictures

Edit | Back

OEBPS/httpatomoreillycomsourceoreillyimages213102.png
066

X

Locomotive

-
0 [

Run stop Info _ Preferences
Name Port v

© myApp 3000]
multistageform 3001 (=]

© authenticator 3002 B
newapp 3003 =]
test 3004

(¢ - Run at Locomotive Launch)

