

 [image: First Edition]

 RESTful .NET

Jon Flanders

Editor
John Osborn

Copyright © 2008 Jon Flanders

O’Reilly books may be purchased for educational, business, or sales
 promotional use. Online editions are also available for most titles
 (http://safari.oreilly.com). For more information,
 contact our corporate/institutional sales department: (800) 998-9938 or
 corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo
 are registered trademarks of O’Reilly Media, Inc.
 RESTful .NET, the image of an
 electric catfish, and related trade dress are trademarks of O’Reilly
 Media, Inc.
.NET is a registered trademark of Microsoft Corporation.
Many of the designations used by manufacturers and sellers to
 distinguish their products are claimed as trademarks. Where those
 designations appear in this book, and O’Reilly Media, Inc. was aware of a
 trademark claim, the designations have been printed in caps or initial
 caps.

While every precaution has been taken in the preparation of this
 book, the publisher and author assume no responsibility for errors or
 omissions, or for damages resulting from the use of the information
 contained herein.

[image:]

O'Reilly Media

SPECIAL OFFER: Upgrade this ebook with O’Reilly

Click here for more information on this offer!
Please note that upgrade offers are not available from sample content.

Foreword

David Chappell & Associates Chappell
Chappell & Associates

I’m an RPC guy in my bones. I spent years of my life working with
 various remote procedure call technologies, so when SOAP came along, it
 seemed like the obvious next step on this path. To me, web services meant
 SOAP, period.
Then REST appeared.
When the RESTful approach first hit the scene, I wrote a short article
 describing it. At the end, I noted SOAP’s broad support, then closed with
 this:
Still, even though SOAP is already quite well established, the ideas
 embodied in REST are worth understanding. Web services are still new, and
 REST makes a remarkably interesting contribution to the technology.

For a SOAP guy in 2002, I thought I was being quite open-minded. The
 REST fans didn’t see it this way. My inbox sizzled with mail telling me that
 I was stupid for not immediately seeing REST’s innate superiority over the
 pure evil that was SOAP.
My response was to completely ignore REST for the next several years.
 I didn’t write about it, I didn’t speak about it, and I wouldn’t even take
 questions on the topic during talks on web services. I was convinced that
 REST was the religion of a small band of fanatics, and rude ones at that.
 The common appellation for a REST fan—RESTafarian—seemed very appropriate to me,
 derived as it was from the name of an actual religion. These people were
 true believers, and I couldn’t share their faith.
Yet REST was too cool to ignore forever. Once you get your mind around
 the approach (which doesn’t take long—it’s simple), REST’s beauty is
 evident. More important, REST’s utility is also evident. While SOAP and the
 WS-* protocols still have a significant role, REST is useful in many, many
 situations. To one degree or another, we’re all RESTafarians now.
There’s no better evidence of this than Microsoft’s embrace of REST in
 Windows Communication Foundation (WCF). While it’s wrong to view this as
 marking the end of SOAP, WCF’s REST support is a big endorsement from what
 was once the strongest bunch of SOAP advocates. Developers now have a single
 foundation on which to build all kinds of web services.
But while REST is simple, WCF is not. To really understand and exploit
 this part of WCF requires a knowledgeable and experienced guide. I don’t
 know anybody who’s better suited to this role than Jon Flanders. Along with
 being one of the smartest people I know, and one of the most capable
 developers, Jon is first-rate at explaining complicated things.
Even to a long-time RPC guy like me, it’s clear that RESTful services
 will be a big part of the future. This book is the best introduction I’ve
 seen to creating and using these services with WCF. If you’re a WCF
 developer looking to enter the RESTful world, this book is for you.

Preface

I’ve been working with the Web throughout my entire software
 engineering career. I started out writing ASP pages and COM components. I
 then moved into the world of .NET with ASP.NET and ASMX web services.
In 2004, I got involved with BizTalk Server, which pushed me even more
 into the world of services and XML. I worked with Windows Communication
 Foundation (WCF) in its early beta stages, before its release in 2007. At
 that time, the Microsoft world of services was focused on service-oriented
 architecture (SOA), SOAP, and the WS-* specifications as the preferred
 methods for building services.
Had I been paying attention, I would have noticed that in 2000 a man
 named Roy Fielding had written a doctoral dissertation describing the
 architecture of the Web. By 2000, the Web had arguably become the world’s
 biggest and most scalable distributed application platform. In his
 dissertation, Fielding examined this platform and distilled from it an
 architectural style based on the factors that led to its success. He named
 this architecture REST and suggested it as a way of building not only
 websites, but also web services.
REST is an architecture that uses the strengths of the Web to build
 services. It proposes a set of constraints that simplifies development and
 encourages more scalable designs.
Developers (the majority of whom were outside the Microsoft world)
 began to adopt this set of architectural constraints shortly after it was
 proposed (although, to be fair, there were a few inside the Microsoft camp
 who jumped on the REST technology). Many toolkits embraced REST as the major
 driver for building applications and services, especially Ruby on Rails,
 which soared in popularity.
Although WCF isn’t tied to SOAP and WS-*, the majority of its
 programming model was initially geared toward building those kinds of
 services. The WCF channel model actually did have support for building
 services using REST, but the WCF programming model lacked explicit support
 for doing so.
In 2007, a Microsoft program manager named Steve Maine spearheaded an
 effort to build a REST programming model on top of the WCF infrastructure.
 This model was released with WCF 3.5 in early 2008.
It was around that time that I read RESTful Web
 Services by Leonard Richardson and Sam Ruby (O’Reilly). After
 reading and digesting that book, I finally, truly “got it.” The “it” that I
 got wasn’t about the technological details, since I understood that part
 pretty well even before reading the book. The “it” was why people are so
 enthusiastic about REST. These people are often referred to as RESTafarians,
 and I now consider myself one of them.
To me, a RESTafarian isn’t someone who is religious and argumentative
 about REST on web forums and blogs (or someone who sends nasty emails to
 smart people like David Chappell). A RESTafarian is someone who really knows
 the REST architecture and knows when to apply it in building services. A
 RESTafarian is someone who understands that using REST’s architectural
 constraints to build services provides a big advantage over RPC-type
 technology for a large number of systems.
I confess, I am indeed now a RESTafarian. I’ll admit it openly and
 freely. I think using REST should be the first choice when building
 services, and that RPC should be chosen only if the system requires some
 particular feature exclusive to RPC technology (like SOAP and WS-*).
After coming to this conclusion, I knew I needed to write this book. I
 think that all developers deserve to have the tools they need to build
 highly scalable, loosely coupled services using REST techniques. Hopefully
 this book will help you learn the ways of REST and how to apply them when
 developing applications and services using .NET and WCF.
Who This Book Is For

This book is written for .NET developers who are familiar with WCF
 and REST and who want to learn about using the REST programming model in
 WCF 3.5.
This book does not teach the fundamentals of WCF. If you aren’t
 familiar with WCF, I highly recommend you read Learning
 WCF by Michele Leroux Bustamante (O’Reilly). Also, while this
 book does provide some background on REST (in Chapter 1), the book does not focus on the basics of REST.
 For that, I recommend reading RESTful Web Services,
 followed by Roy Fielding’s dissertation, available at http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm.
This book is intended to be a companion to both of the books listed
 above. The samples in this book are all in C#. All of the samples are
 available on this book’s website at http://www.rest-ful.net/book in both C# and VB.NET.

How This Book Is Organized

The main chapters of this book are all about WCF 3.5, and the
 appendixes cover the new features of the WCF 3.5 SP1 upgrade.
	Chapter 1, REST Basics
	Chapter 1 is an introduction to the basic
 concepts of REST. Again, this book is not intended to be a “learn
 everything about REST” book. This chapter is a gentle introduction
 to the concepts of REST. From this chapter you should get the basic
 ideas of REST, including how resources are identified by unique URIs
 and how to interact with those resources using the uniform interface
 of HTTP.

	Chapter 2, WCF RESTful Programming Model
	This chapter introduces the WCF channel and programming
 models. The purpose of this chapter is to get you oriented in terms
 of how WCF processes messages and uses those messages to call
 methods on your services. This chapter should give you a good idea
 of the plumbing that was added in WCF 3.5 to support this new
 programming model. It introduces the bindings and hosting
 infrastructure for building RESTful services as well as the
 UriTemplate class, which is used to map resource
 URIs onto your methods.

	Chapter 3, Programming Read-Only Services
	GET is arguably the most important of the
 verbs in the HTTP uniform interface. For a high percentage of
 services, most or all of the functionality is to return read-only
 data. This chapter will introduce you to the
 WebGetAttribute, which is the mechanism for
 building resources that return read-only representations.

	Chapter 4, Programming Read/Write Services
	WCF supports the remainder of the uniform interface
 (POST, PUT, and
 DELETE) through the
 WebInvokeAttribute. Combined with the
 UriTemplate class, this attribute will enable you
 to build a complete RESTful service that supports the whole uniform
 interface.

	Chapter 5, Hosting WCF RESTful Services
	Although this book isn’t about WCF in general, one of the key
 decisions any WCF developer will make is how and where to host
 services. The RESTful programming model influences that decision,
 since it is based on HTTP. This chapter will examine special
 considerations for hosting this type of endpoint.

	Chapter 6, Programming Feeds
	One of the most interesting and exciting features enabled by
 the RESTful programming model of WCF is the ability to work with
 feeds. Feeds today are not your father’s feeds. Feeds have
 historically been used (if any technology less than 10 years old can
 have real history) for publishing web logs (blogs), small technical
 articles, and the like. Feeds have expanded to include news and
 other kinds of website data, and are now quickly moving into the
 Enterprise. Feed readers are built into every modern browser, so
 they can provide a powerful way to expose corporate data. In this
 chapter, I’ll show you how to build and consume feeds using the WCF
 feed programming model.

	Chapter 7, Programming Ajax and Silverlight Clients
	Many people see RESTful services as being useful only for
 exposing data to Ajax-based applications such as mashups, but REST
 does have reach beyond this type of application. In this chapter,
 we’ll examine WCF 3.5’s ability to return data as XML- or
 JSON-encoded results, as well as the integration between WCF and
 ASP.NET Ajax.

	Chapter 8, Securing REST Endpoints
	Despite the fact that anti-REST forces often point to a lack
 of security as a drawback of REST, this is a false argument. RESTful
 services take advantage of the Web, and the Web has tried-and-true
 security features.
In this chapter, we’ll examine the WCF settings for enabling
 security and for creating an endpoint that is highly secure.

	Chapter 9, Using Workflow to Deliver REST Services
	Another new piece of functionality in .NET 3.5 is the ability
 to use Windows Workflow Foundation (WF) workflows to implement and
 consume services. The RESTful programming model can be used on top
 of this facility.
This chapter focuses on both stateless and stateful workflow
 models for implementing RESTful services.

	Chapter 10, Consuming RESTful XML Services Using
 WCF
	WCF is used as much for building service clients as it is for
 building services themselves. The same is true of the RESTful
 programming model. In this chapter, we’ll take a RESTful service,
 SQL Server Data Services (which is a cloud-based storage system),
 and decompose it into a WCF service contract that can invoke the
 service through the WCF programming model.

	Chapter 11, Working with HTTP
	Most RESTful implementations use HTTP as the application
 protocol. In this chapter, I’ll talk about how to interact between
 the WCF programming model and the HTTP request and response
 messages. Also, we’ll look at a couple of slightly more advanced
 HTTP features and how to use them with your RESTful services in
 WCF.

	Appendix A
	WCF 3.5 SP1 was released just as this book was being
 finalized. Appendix A discusses the SP1
 improvements and contains a list of new features found in the
 upgrade, including the new UriTemplate syntax and
 the new support for AtomPub.

	Appendix B
	.NET 3.5 SP1 includes ADO.NET Data Services (codename
 Astoria), which provides you with the ability
 to use a prebuilt WCF service contract to expose a data-backed
 object model through AtomPub. This appendix shows you how to use
 ADO.NET Data Services and discusses why you might choose to use it
 instead of writing your own custom RESTful service endpoints.

	Appendix C
	ADO.NET Data Services will use any data-backed object model to
 expose an AtomPub service, but is optimized for use with the ADO.NET
 Entity Framework (EF). Although EF doesn’t have anything to do with
 RESTful services, I have included this appendix to demonstrate
 how you can use EF to implement the types of services that are
 explained in Appendix B.

What You Need to Use This Book

To run the samples provided throughout this book, you need to have
 Visual Studio 2008 (any version) installed. If you want to work with the
 code in the appendixes, you will require .NET 3.5 SP1, Visual Studio 2008
 SP1, and SQL Server Express or above.

Conventions Used in This Book

The following typographical conventions are used in this
 book:
	Plain text
	Indicates menu titles, menu options, menu buttons, and
 keyboard accelerators (such as Alt and Ctrl).

	Italic
	Indicates new terms, URLs, email addresses, filenames, file
 extensions, pathnames, directories, and Unix utilities.

	Constant width
	Indicates commands, options, switches, variables, attributes,
 keys, functions, types, classes, namespaces, methods, modules,
 properties, parameters, values, objects, events, event handlers, XML
 tags, HTML tags, macros, the contents of files, or the output from
 commands.

	Constant width bold
	Shows commands or other text that should be typed literally by
 the user.

	Constant width italic
	Shows text that should be replaced with user-supplied
 values.

Note
This icon signifies a tip, suggestion, or general note.

Warning
This icon indicates a warning or caution.

Using Code Examples

This book is here to help you get your job done. In general, you may
 use the code in this book in your programs and documentation. You do not
 need to contact us for permission unless you’re reproducing a significant
 portion of the code. For example, writing a program that uses several
 chunks of code from this book does not require permission. Selling or
 distributing a CD-ROM of examples from O’Reilly books
 does require permission. Answering a question by
 citing this book and quoting example code does not require permission.
 Incorporating a significant amount of example code from this book into
 your product’s documentation does require
 permission.
We appreciate, but do not require, attribution. An attribution
 usually includes the title, author, publisher, and ISBN. For example:
 “RESTful .NET by Jon Flanders. Copyright 2009 Jon
 Flanders, 978-0-596-51920-9.”
If you feel your use of code examples falls outside fair use or the
 permission given above, feel free to contact us at
 permissions@oreilly.com.

How to Contact the Author

Feel free to look at this book’s web page at http://www.rest-ful.net/book. You can also email me at
 jon.flanders@gmail.com.

Comments and Questions

Please address comments and questions concerning this book to the
 publisher:
	O’Reilly Media, Inc.
	1005 Gravenstein Highway North
	Sebastopol, CA 95472
	800-998-9938 (in the United States or Canada)
	707-829-0515 (international or local)
	707-829-0104 (fax)

We have a web page for this book, where we list errata, examples,
 and any additional information. You can access this page at:
	http://www.oreilly.com/catalog/9780596519209

To comment or ask technical questions about this book, send email
 to:
	bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers,
 and the O’Reilly Network, see our
 website at:
	http://www.oreilly.com

Acknowledgments

There are a number of people I’d like to thank for helping to make
 this book possible.
I’d like to thank John Osborn, my editor at O’Reilly, for helping me
 to write this book and, of course, for putting up with the delays.
Thanks to David Chappell for writing an incredible Foreword. David
 is one of the smartest people I run into in my travels, and is also one of
 the nicest and most sincere. Thanks David.
I want to thank all of the technical reviewers: Aaron Lerch, Dare
 Obasanjo, Aaron Skonnard, Drew Miller, Matt Milner, Michele Bustamante,
 Julia Lerman, Dominick Baier, Sam Gentile, Dave Chappell, Brian Noyes,
 Steve Resnick, and Matthew Fowle. If you think part of the book is good,
 the reviewers deserve credit. If there is any part of the book that you
 don’t like, the fault is exclusively my own.
I also want to thank some people at Microsoft: Steven Maine for
 pushing to get this programming model into WCF, and Don Box for being the
 person who helped to get my career started.
The people who deserve the most thanks are members of my family. I
 want to thank my wife Shannon Ahern for enabling me to do the things I
 love to do, through her love and support (and also for being an incredible
 technical editor—if there are any spelling or grammar mistakes in this
 book, they were introduced after her editing pass). I also need to thank
 our children: Christian, Raiden, Austin, Parker, and Catherine for putting
 up with long hours of writing, and having to quiet their normal level of
 enthusiasm to give me an environment in which to work.

Chapter 1. REST Basics

Representational State Transfer (REST) is an architectural style first
 laid out in the dissertation of a man named Roy Fielding at the University
 of California Irvine, just a few miles from Monterey Park, CA, where I live
 (not that it matters—it’s just a fun fact for me).
REST is a set of constraints based on the architectural style of the
 World Wide Web. Writing this book in 2008, I don’t need to go into much
 detail about the success of the Web; it is a ubiquitous system for
 hypermedia and applications built on hypermedia. In this chapter, we’ll
 examine the basics of the REST architecture and its constraints, which are
 based on resource design and uniform interface interaction. This chapter is
 an introduction to the concepts of REST, and the remainder of the book will
 concentrate on applying those concepts to building RESTful services using
 Windows Communication Foundation (WCF).
Architecture of the World Wide Web

The success of the Web can be attributed in part to luck and timing, but some
 of the credit for its success can be attributed to its architecture. The
 architecture of the Web is based on a few fundamental principles that have
 taken it from its small beginnings to the large mass of information and
 functionality that exists today. These principles include:
	Addressable resources

	Standard resource formats

	A uniform interface for interacting with those resources

	Statelessness in the interaction between clients and
 services

	Hyperlinking to enable navigation between resources

Everything on the Web is addressable. Uniform Resource Identifiers (URIs) are used to define the
 locations of particular resources. Resources can be things like HTML documents, images, or
 other media types. Addressability is one of the important parts of the Web’s
 success. How easy is it for us to find things on the Web based on partial
 knowledge of URIs? How many advertisements or commercials have a URI
 placed prominently for our consumption? The fact that you can take a URI
 from an advertisement, type it into a browser, and have the browser return
 the information you wanted is
 actually pretty amazing.
Part of the power of the Web stems from the fact that the resources
 on the Web are standard media types. This makes it possible for vendors to
 build new web browsers (a.k.a. user agents)
 without having to ask any particular company or authority
 for permission. It means that programs and users can access a web server’s
 resources using any modern operating system and browser. There are
 certainly some real issues here in terms of the way different browsers
 interpret resources, but clearly those issues haven’t done much to stop the ubiquity of
 the Web.
Based on HTTP (Hypertext Transfer Protocol), the uniform interface of the Web also plays into this openness and
 interoperability. HTTP is an open and well-known protocol that defines a
 standard way for user agents to interact with both resources and the
 servers that produce the resources. These interactions are based on the
 verbs (or methods) that accompany each HTTP request.
GET is probably the most commonly used and well-known verb, and
 its name is descriptive of its effect. A GET for a
 particular URI returns a copy of the resource that URI represents. One of
 the most important features of GET requests is that the
 result of a GET can be cached. Caching
 GET requests also contributes to the scalability of the
 Web. Another feature of GET requests is that they are
 considered safe, because according to the HTTP specification,
 GET should not cause any side effects—that is,
 GET should never cause a change to a resource.
 Certainly, a resource might change between two GET
 requests, but that should be an independent action on the part of the
 service.
Note
Some site maintainers fail on this part of the uniform interface
 and use GET requests from a user agent to change a
 resource. These are incorrect implementations, and those individuals
 should have their web programming licenses revoked.

POST, which indicates a request to create a new resource, is
 probably the next most commonly used verb, and there are a whole host of
 others that we will examine later in this chapter and throughout this
 book.
HTTP and the Web were designed to be stateless.
 A stateless service is one that can process an incoming
 request based solely on the request itself. The concept of per-client
 state on the server isn’t part of the design of HTTP or the Web.
Session State
Vendors have attempted to implement state management techniques on
 top of the Web. In a typical scenario, a user’s browser stores a small
 piece of data known as a cookie. The data contained
 in the cookie is presented to the server on each subsequent request.
 Using server-side session management techniques, information contained
 in the cookie or a unique URI can be mapped to a set of name-value pairs
 on the server and thus associated with a particular user
 agent.
If the cookie contains all of the required state information, its
 usage can be considered RESTful since the request itself still contains
 all the information the server requires to process it (it doesn’t
 require an external store or server-side data structure).
Some implementations attempt to maintain stateful sessions for the
 scalability of an application. The architectural constraints of the Web
 are goals to strive for, and sometimes there are good reasons to use
 techniques that conflict with these constraints. Per-client sessions are
 useful because they greatly simplify the programming model for building
 websites or web services, but when you adopt them you are limiting your
 ability to scale your application.

If a request from a particular user agent contains all of the state
 necessary to retrieve (or create) a resource, that request can be handled
 by any server in a farm of servers, thus creating a scalable, robust
 environment.
Statelessness also improves visibility into web applications. If a request
 contains everything needed for the
 server to make a proper reply, the request also contains all the data
 needed to track and report on that request. There is no need to go to some
 data source with some key and try to recreate the data that was used as
 part of a request in order to determine what went right, or what went
 wrong (this wouldn’t be ideal anyway, since that data may have changed in
 the meantime). Statelessness increases a web application’s manageability
 because the entire state of each request is contained in the request
 itself.
Hyperlinking between resources is also an important part of the Web’s
 success. The fact that one resource can link to another, enabling the user
 agent (often through its human driver, but sometimes not) to navigate
 between related resources, makes the Web interconnected in a very
 significant way.
The Web is the world’s largest, most scalable, and most
 interoperable distributed application. The success of the Web and the
 scalability of its architecture have led many people to want to build
 applications or services on top of it.

SOAP

Many individuals and organizations have tried to build on the
 success and scalability of the Web by describing architectures and
 creating toolkits for building services. Services are endpoints that can be consumed
 programmatically rather than by a person sitting at a computer driving an
 application like a web browser. The two main approaches used in these
 attempts have been either the SOAP protocol or the architectural style of
 REST.
Note
While a chapter on the subtle differences between protocols such
 as REST and POX (Plain Old XML over HTTP) might make for an interesting
 read, this chapter is more specifically focused on the architectural
 differences between REST and its main competitor, SOAP.

SOAP, which at one point in its history stood for Simple Object
 Access Protocol (before its acronym status was revoked in the 1.2 version
 of its specification), is what many developers think of when they hear the
 term web service. SOAP was born out of a coordinated
 attempt by many large vendors to create a standard around a programmatic
 Web.
In many ways, SOAP doesn’t follow the architecture of the Web at
 all. Although there are bindings for using SOAP over HTTP, many aspects of
 SOAP are at odds with the architecture of the Web.
Rather than focusing on URIs (which is the way of the Web), SOAP
 focuses on actions, which
 are essentially a thin veneer over a method call (although of course a
 SOAP client can’t assume a one-to-one relation between an action and a
 method call). In this and many other ways, SOAP is an interoperable
 cross-platform remote procedure call (RPC) system. SOAP-based services
 almost always have only one URI and many different actions. In some ways,
 actions are like the HTTP uniform interface, except that every single SOAP
 service creates new actions; this is about as un-uniform and variable as
 you can get.
When used over HTTP, SOAP limits itself to one part of the Web’s uniform interface:
 POST. This creates a limitation because results, even those that
 are read-only, can’t be safely cached. In many SOAP services, most actions
 should really use GET as the verb because they simply
 return read-only data. Because SOAP doesn’t use GET, SOAP results cannot be cached because the infrastructure of the Web only supports
 caching responses to GET requests. To be honest, you
 can’t really call a SOAP-based service a web service
 since SOAP intentionally ignores much of the architecture of the Web. The
 term “SOAP service” is probably a more accurate description.
When confronted with the fact that SOAP doesn’t follow the
 architecture of the Web, SOAP proponents will often point out that SOAP
 was designed to be used over many different protocols, not just HTTP.
 Because it is meant to be generic and used over many different protocols,
 SOAP can’t take advantage of many of the Web’s features since many of
 those features are particular to HTTP.

REST

REST is an architectural style for building services. This style is
 based on the architecture of the Web, a fact that creates a fairly sharp
 contrast between REST and SOAP. While SOAP goes out of its way to make
 itself protocol-independent, REST embraces the Web and HTTP. Although it’s certainly possible to use some or all of
 the principles of REST over other protocols, many of its benefits are
 greatest when used over HTTP.
Another significant contrast is that SOAP isn’t an architectural
 style at all. SOAP is a specification that sets out the technical details
 on how two endpoints can interact in terms of the message representation,
 and it doesn’t offer any architectural guidance or constraints. In
 contrast, REST services are built to follow the specific constraints of
 the REST architectural style.
Note
Services that follow this style are known as
 RESTful. Note that these architectural constraints
 are more what you’d call “guidelines” than actual rules. Some services
 will use all of these constraints, and some will use only some of the
 constraints.
In their book RESTful Web Services
 (O’Reilly), Leonard Richardson and Sam Ruby lay out something they call
 the Resource Oriented Architecture (ROA), which is a stricter set of
 rules for determining whether a service is really RESTful.

While SOAP services are based on a service-specific set of actions
 and a single URI, RESTful services model the interaction with user agents
 based on resources. Each resource is represented by a unique URI, and the
 user agent uses the uniform interface of HTTP to interact with a resource
 via that URI. Put another way, REST services are more concerned with nouns
 (e.g., resources) than verbs (e.g., HTTP methods or SOAP actions) since
 the design of a service is about the URIs rather than a custom
 interface.
Resources and URIs

The first thing to do when designing a RESTful service is to
 determine which resources you are going to expose. A
 resource is any information that you want to make available to others,
 such as:
	All the movies playing in or near your zip code

	The current price of a particular stock

	All the photos Jon took on June 1, 2008

	A list of all the products your company sells

As you can see, some resources are static, like pictures taken on
 a particular day in the past, and some resources are dynamic, like the
 movies playing in or near a particular zip code. Many resources are
 dynamic in nature, so having an addressable set of resources for your service doesn’t mean
 that you know all the particular resource instances when you sit down to
 design your service. A resource is a conceptual mapping to a particular
 entity or entity set that you want your service to be able to work
 with.
When designing a RESTful service, you will identify the resources
 that your service will expose and use. Once you’ve identified the
 resources you’ll map them to URIs.
URI design

One of the things I like most about RESTful services is the fact
 that all resources are uniquely identified by a URI. The capability to
 retrieve a resource via a unique address is one of the big reasons the
 Web has been so successful.
Additionally, the use of RESTful services builds on our existing
 experience in using the Web. Nothing is more satisfying than using a
 website that has nicely designed URIs (yes, websites can be as RESTful
 as web services can). The utility of well-designed URIs is fairly
 self-evident. You can appreciate this if, like me, you have “hacked” a
 URI on a website to find a particular resource, even if the page you
 started with had no hyperlink to that resource.
An excellent example of a website that employs this resource-URI
 association is Flickr (http://www.flickr.com).
 Flickr allows you to store, view, and share photos on the Web. Here
 are a few of the resources that Flickr exposes for me:
	All Jon’s photos

	All Jon’s photos from a particular date

	All Jon’s photos in a named set

	All Jon’s photos with a particular tag

Here are the corresponding URIs for those resources:
	http://www.flickr.com/photos/jonflanders

	http://www.flickr.com/photos/jonflanders/archives/date-posted/2008/06/05/

	http://www.flickr.com/photos/jonflanders/sets/72157605450493091/

	http://www.flickr.com/photos/jonflanders/tags/rest/

I think these are pretty good URIs (although I’d prefer it if I
 could put in the name of a set rather than using Flickr’s identifier
 for a named set). This URI design allows me to find easily whichever
 resources (photos) I want to see. For example, if I wanted to see all
 of my photos taken on January 1, 2008, I would request the resource at
 http://www.flickr.com/photos/jonflanders/archives/date-taken/2008/06/05/.
I mention Flickr in a book ostensibly about services, even
 though Flickr is a website, to emphasize two points. First, good URI
 design is important, as it can greatly increase the usability of a
 website (and therefore a RESTful service as well). Second, our human
 experience in using the Web can help us in designing and using RESTful
 services, which is one of the points in my “Why REST matters to me”
 list.
Note
The ironic thing about Flickr’s very RESTful URI design is
 that its programmatic API (which Flickr claims is based on REST)
 isn’t very RESTful at all from a URI point of view.
Flickr uses a design that is often referred to as a REST-RPC
 hybrid because it uses GET even when it modifies
 a resource. Flickr doesn’t rely on the uniform interface to define
 interactions with resources; it basically adds an action to the
 Query string of GET requests.

The idea behind REST is to design your URIs in a way that makes
 logical sense based on your resource set. The URIs should, if
 possible, make sense to any user looking at them. If they make sense
 to a user looking at the URIs, they will make sense to the program
 that consumes the URIs programmatically. When designing the
 associations between resources and URIs, it may be useful to map them
 as if you were designing a browsable website. Even if the URIs will
 never be entered into a browser, this type of mapping will be useful
 for the person or persons writing the code to consume your service.
 Human-readable URIs are not strictly required for a service to be
 considered RESTful; they are just generally helpful when testing and
 debugging.

Uniform Interface

In REST, resources are identified by a unique URI. This is one of the
 constraints of the REST architectural style. Another constraint limits
 how a user agent interacts with your resources. User agents only
 interact with resources using the prescribed HTTP verbs. The main verbs
 are what we call the uniform interface. The verb that is used in a
 request to a particular URI indicates to the service what the user agent
 would like to do. When using the REST architectural style we do not make
 up our own verbs, we use the verbs prescribed by the HTTP standard.
The four main verbs of the uniform interface are
 GET, POST, PUT,
 and DELETE. Recall that GET is the verb that tells the service that the
 user agent wishes to get a read-only representation of a resource.
 DELETE indicates that a client wishes to delete a resource.
 POST indicates the desire to create a new resource.
 PUT is typically used for modifying an existing resource. If,
 however, the user agent has the knowledge to specify the URI for the new
 resource, PUT is used for resource creation. See
 Figure 1-1.
[image: Uniform interface]

Figure 1-1. Uniform interface

What is the advantage of the uniform interface of REST over any
 other service creation architecture? Why is it a useful
 constraint?
One reason that the uniform interface is so useful is that it
 frees us from having to create a new interface every time a new service
 is created. Creating an interface for a service endpoint is the
 equivalent of creating a new API, and can be hard work. Even when the
 API has limited scope, it can be hard work. Whole books and research
 papers are written on the correct approach to creating a reusable API.
 Doing it properly is not a trivial exercise.
On a related note, when consuming REST-based services, you don’t
 have to learn a new API every time you want to use a new service.
 Instead, you have to determine the URIs and the format of the resources
 (more on this later in this chapter), as well as which parts of the
 uniform interface the URIs will allow you to use. In some ways, once you
 learn how to build and use one RESTful service, you’ve learned how to
 build and use them all.
Another benefit of the uniform interface is the comfort you can
 take from the fact that GET is always safe, and the
 knowledge that the rest of the uniform interface’s verbs other than
 POST are idempotent.
Note
Idempotent means that the effect of doing
 something more than once will be the same as the effect of doing it
 only once.

You can call GET on a service or resource as
 many times as you want with no side effects. You can update a resource
 over and over with no ill effects. Deleting a resource that has already
 been deleted is a no-op. The only unsafe verb continues to be
 POST, and because the effect of
 POST is undefined by the HTTP specification, you’ll
 need to decide when implementing a service what the exact effect of
 POST should be (see Chapter 4 for more
 information about writing read/write services with REST).
Note
POST is unsafe because there aren’t any rules
 about what will happen when you do a POST. The
 service can really do anything when a POST request
 comes in, and the resource could be radically changed.

As well as being safe, GET also allows
 caching (see Chapter 11 for more
 information about caching and its benefits). In order to scale, a
 service has to be able to cache, and SOAP services, no matter what you
 do with them, cannot be safely cached, even when the action is one that
 is essentially read-only. This is because SOAP always uses
 POST, which can’t be cached at any level.
Another important point about the uniform interface is that not
 every single resource has to implement the entire uniform interface. In
 fact, in many cases the only part of the uniform interface you’ll
 implement on a resource is GET. If a resource already
 exists, and will not be created, modified, or deleted by the user agent,
 the only job of the RESTful service will be to return that resource in
 response to a GET request.
Hopefully you’re beginning to see the architectural constraints of
 REST to take shape. The constraints comprise a checklist for building a
 RESTful service. First, you decide what your resources are. Then you map
 those resources to URIs. For each of those URIs you determine which
 media type, or representation, you are going to accept and
 return.

Resource Representations

REST has no architectural constraints on physical
 representations of resources. This makes sense considering the varied
 needs of applications and users on the Web. A RESTful service’s resource
 type is technically known as its media type. The media type is
 always returned in an HTTP response as one of the HTTP headers (Content-Type).
The media type for your resources is variable, but there are a few
 pretty popular and commonly used ones.
XML

XML is probably the most popular format for representation of
 resources. It’s a well-known format, and there are libraries for
 processing XML on every mainstream platform. The formal media type for
 XML is application/xml (it used to be text/xml, but that media type
 has been deprecated).
When choosing XML as your data format, one of the things you’ll
 decide is whether to use a custom XML schema or one of the XML formats
 that has been standardized across applications.

RSS/Atom

Feeds are a popular beast on the Web today; they are usually
 associated with what are called feed readers, and with a
 particular kind of web application known as a web log (or just blog for
 short). Blogs (and other types of data exposed as feeds) syndicate
 (broadcast) their data, and feed readers consume that syndicated
 data.
The two XML schemas that are used for feed syndication are
 Really Simple Syndication (RSS) and the Atom Syndication Format. Atom
 is the more recent standard and seems to be winning the hearts and
 minds of most developers and companies. It is accompanied by the
 Atom Publishing Protocol (commonly known as APP or
 AtomPub), which is more than just a format specification, but is an
 additional set of constraints built on top of REST architecture.
 AtomPub dictates the media types for a service, as well as the
 required uniform interface implementation for content publishing.
 AtomPub has grown to be used in many different applications besides
 classic content publishing like blogs.
See Chapter 6 for more information
 about feeds, and Chapter 11 for an example
 of the usage of Atom in a nonBlog blog scenario.
The media type for RSS is application/rss+xml. Atom’s is
 application/atom+xml.

XHTML

Extensible Hypertext Markup Language (XHTML) is an HTML media type
 that is also valid XML. HTML is the media type (text/html) that has
 driven the human-readable Web for many years. HTML can be challenging
 to parse if you’ve ever tried it, since the rules about tags, closing
 tags, attributes, and so on are all very loose. XML, on the other
 hand, has a very strict set of format requirements. XHTML
 (application/xhtml+xml) is the merger of HTML and XML. It is primarily
 intended for display by a browser, but is easily parsed by an XML
 library. It is also fairly commonly used in programmatically
 accessible services. Some services are written to return XHTML to both
 browser and programmatic user agents.

JSON

JavaScript Object Notation (JSON) is a media type
 (application/json) that is a text-based resource format for
 representing programmatic data types. It’s a very simple and basic
 network data representation for objects.
Although often associated with the JavaScript language, JSON is
 actually used as a media type in many different programming languages
 and environments.
One of JSON’s selling points is its ease of use from JavaScript
 and Ajax-type browser-based applications. Another selling point is the
 size of the representation over the network. As a media type, XML
 tends to be much larger than the compact, terse format of JSON. Many
 services now return JSON exclusively, regardless of the media type
 requested by the user agent, even when the user agent isn’t an AJAX
 application in the browser. Chapter 7 covers more about
 JSON as a media type.

Other media types

The four media types discussed in this section are not
 exhaustive. There are many other media types such as binary media
 types and images. When building a RESTful service, you have great
 latitude to choose your media type based on the particular application
 you are building. If you aren’t sure about which media type to use,
 try viewing some microformats at http://www.microformats.org/. Microformats are
 standardized media types based on common usage and behaviors. The
 nice thing about choosing a microformat as your media type is that it
 will be more well known than an XML schema that you create on your
 own, since tools and libraries may already exist to aid you in working
 with those formats.

Implementing a Simple RESTful Service Example

To help you understand the concepts introduced in this chapter,
 let’s walk through an example that employs the basic steps of designing a
 RESTful service. For this example, we will use an easy-to-understand
 domain: a membership system that stores information about its
 users.
Resources

This user system will expose the following set of
 resources:
	All users

	A particular user delineated by the user’s unique
 identifier

This is a fairly simple set of resources, but it actually turns
 out that many real-life services include only a handful of resources. Of
 course, because a resource is a conceptual entity, there will likely be
 near infinite URIs based on those resources.

URIs and Uniform Interface

For our example service, I’m going to start with the relative
 segments of the URIs, and I’m going to use a simple template syntax
 (curly braces {}) to indicate parts of the URI that will be replaced by
 context-specific variables (such as user ID). Table 1-1 contains a listing of the
 different URIs and the parts of the uniform interface we will implement
 for each URI.
Table 1-1. User service example URIs
	URI
	Method
	Description
	Output
	Input

	/users/
	GET
	Returns a representation of all users in the
 system
	users collection
	n/a

	/users
	POST
	Creates a new user in the system, expects a representation
 of the user in the HTTP body
	user
	user (without the user_id
 specified)

	/users/{user_id}
	GET
	Returns the
 representation of a particular user, based on the user’s
 identifier in the system
	user
	n/a

	/users/{user_id}
	PUT
	Modifies a user resource
	user
	user

	/users/{user_id}
	DELETE
	Deletes a user from the system
	user
	user

This service has a small surface area, but you can see that it
 implements all the parts of the uniform interface for the user
 resource.
PUT or POST for Creation?
Note that in our example, the URI for creating a user is
 different from the URI for getting a user. In this case, the URI for
 creating the user acts as a factory because it represents all
 users.
Whether you use the same or different URIs for creating and
 getting resources will depend partially on the design of your system.
 If our example service allowed the users of the service to specify the
 identifier for a new user, the URI for PUT and GET would be the same
 (/user/{user_id}). For
 resource creation the user agent would use PUT
 instead of POST because that is the expected
 RESTful semantic when the user knows the URI of the new
 resource.
In our example, we do not allow the user agent to determine the
 identifier for a user. Rather, we will create that identifier
 ourselves (perhaps it’s an identity column in my database table that
 represents users) and return it as part of the response. For this
 reason, we will stick with POST for resource creation.

Representations

If we were working with a hierarchy or linked data for the
 users, XHTML would be a good choice for resource representation,
 since it would allow us to link to related data. However, our example
 domain will not contain these types of links, so we will use a simpler
 custom XML format.
Notice that I’m using the term custom XML format
 instead of custom XML schema. XML schemas are
 another media type altogether. They are XML documents that provide
 constraints on the format of other XML media type instances. XML schemas
 are very important in the SOAP world; you might say they are essential,
 but they are optional in a RESTful service. If you want to create XML
 schemas for your representations and provide them to your consuming user
 agents, that’s fine. Nothing in the set of REST architectural
 constraints mandates it or forbids it.
Having metadata like XML schemas and Web Service Description Language (WSDL) is one of the
 features of SOAP services that people find very useful. The lack of such
 metadata in RESTful services is somewhat troubling to people who come
 from that world. In Chapter 9 we’ll examine the
 options for building up the client’s API for consuming a service that
 doesn’t expose a schema.

Interaction

Now that we have the basis for our RESTful service example, let’s
 examine the interaction that will occur between the user agent and the service.
If the service is deployed at the host example.com, the first interaction
 (assuming there are no users yet) will be a POST to
 the /users URI to create a new user (see Figure 1-2).
[image: Using POST to create a resource]

Figure 1-2. Using POST to create a resource

The user agent will send an HTTP request using
 POST to the /users URI, passing
 in the media type, as well as the resource it wishes to create as the
 HTTP request body. Assuming there are no error conditions, the service
 will return a 201 Created status code. It’s convention for a service to
 return the newly created resource as the response to a
 POST. The service can also return a Location header,
 which specifies the URI of the new resource. A user agent can make a
 GET request to the /users URI to
 get a list of all the resources available, which at this point will be
 one. This is shown in Figure 1-3.
[image: GET to /users]

Figure 1-3. GET to /users

Since we can GET all the users, we should also
 be able to GET a specific user. A
 GET request to the URI that represents user 1 will
 simply be a GET request to
 /users/1 (see Figure 1-4).
[image: GET for a particular user]

Figure 1-4. GET for a particular user

The last two parts of the uniform interface that this service
 implements are PUT and DELETE.
 Figure 1-5 shows a
 PUT request and Figure 1-6 shows
 DELETE.
[image: Changing a resource using PUT]

Figure 1-5. Changing a resource using PUT

[image: Removing a resource using DELETE]

Figure 1-6. Removing a resource using DELETE

Wrap-Up

One of the things I really enjoy about REST as an architecture is
 the exercise I just went through. When designing a RESTful service,
 first determine the resources that the service will expose. Next,
 determine how you will map those resources to URIs, and decide which
 part of the uniform interface each URI should implement. Finally, choose
 the resource format.
This set of steps follows the architectural constraints of REST,
 and can help you determine what the service should look like (URIs) and
 how it should behave (the uniform interface). The verbs are preset, so
 you can concentrate solely on the nouns (resources), and you don’t have
 to create a new API for every service. SOAP, on the other hand, provides
 no real guidelines for what a service should look like or do. Each of
 the actions are created out of nothing with no real guidance for what
 they should be. REST builds on knowledge that you already have about
 URIs, and tells you exactly what each of those URIs can potentially do
 by restricting you to the uniform interface. This is one of the design
 constraints of REST, and, if I can interject a little personal opinion
 into this chapter, it’s one that I enjoy.
Admittedly, there is still data variability in RESTful services,
 since REST does not impose constraints on resource media types. However,
 this lack of data constraints is outweighed by the great utility of the
 REST interface and addressing constraints.
Another benefit of using REST constraints is that it becomes
 easier to use with each service that you build. Once you learn REST, you
 can easily identify which parts of the architectural constraints are
 being used on a service, which makes it increasingly easy to determine
 which constraints you should use in the future.

Processes

One criticism some people have about REST is its lack of support for the concept of a
 processing endpoint that models a particular process.
 Services can sometimes expose functionality that either doesn’t seem to
 fit well within the concept of a resource or doesn’t seem to fit well
 within the semantics of the uniform interface. For example, consider a
 service that is designed to implement bank transfers from one account to
 another. Clearly, you can create each account as a separate resource and
 use the uniform interface to specify the operations that users can perform
 on each account. But what resource represents a transfer between two
 accounts?
This is really a matter of having the right point of view. If you
 view this type of operation as a function, it will not fall neatly into
 the REST model. You can, however, treat it as a temporary resource.
Note
In a typical distributed system, this type of operation would
 generally be wrapped in a transaction. Of course, REST doesn’t use the
 concept of transactions, but you could also represent transactions as
 resources.

This idea doesn’t resonate with some people, even when all the other
 parts of REST as an architecture do. This is a design decision you may
 encounter and be faced with. It also may be that you never will run into
 this kind of decision, or that you are completely happy with the idea of a
 transaction as a resource.
Some people look at this problem and decide to stick with SOAP
 services. Others look at it and decide simply to overload on
 POST. And others try to push REST and the concept of
 resources to their fullest, and will model everything as resources (even
 processes).

Summary

This chapter discussed the basics of creating RESTful services and
 using REST as an architecture. There are some core tenets of REST that
 you’ll want to keep with you as you read through the book.
First, REST uses the same tenets for building services as the Web.
 Resources are named entities that we’d like to interact with. Resources
 are addressable using URIs. The interaction between our code and those
 URIs is done using the uniform interface. The constraints of the REST
 architectural style are simple, elegant, and easy to remember, and are the
 foundations with which arguably the world’s largest, most scalable
 distributed application was built.
REST employs architectural constraints for building services, and
 you are free to use as many or as few of the constraints as you like
 (although, if you only use a few, you may have to argue with purists if
 you want to advertise your service as RESTful).

Chapter 2. WCF RESTful Programming Model

In Chapter 1, I introduced the concepts
 fundamental to using REST to build services. WCF in .NET 3.5 includes a
 sophisticated built-in mechanism that allows you, a .NET developer, to build
 RESTful services using the WCF programming model.
Isn’t WCF All About SOAP?

You might be thinking, “Isn’t WCF all about SOAP?” While you will
 probably find many people who think WCF is only used for building
 SOAP-based services (and many who think WCF is only for building
 RPC-styled SOAP-based services), it turns out that WCF is much broader
 than either of those communication styles. WCF is really a highly
 extensible framework with a common programming model and a totally
 pluggable communication infrastructure.
To illustrate the high-level extensibility of WCF, let’s look at
 some technical details on particular pieces of WCF’s plumbing. Although
 most of the time you won’t be working at this low level, looking at this
 code will help your understanding of REST and WCF.

Channels and Dispatching

So what does WCF do, from a server-side perspective? The basic
 job of the WCF runtime is to listen for (or retrieve) messages from a
 network location, process those messages, and pass them to your code so
 that your code can implement the functionality of a service (Figure 2-1).
Note
WCF’s client-side programming model is symmetrical to that on the
 server side, but the processing of messages is in the opposite
 direction. Chapter 10
 discusses the WCF programming model from the client perspective.

[image: The WCF server-side stack]

Figure 2-1. The WCF server-side stack

	The transport channel
	When you open a WCF server-side endpoint, WCF uses
 a channel listener to create a
 network listener called the transport channel to accept
 network traffic or use a network protocol to retrieve messages. When
 WCF is accepting messages (for example, when listening on a socket),
 it is acting as a passive listener. When WCF is
 looking for messages (for example, when using the MSMQ—Microsoft Message Queuing—protocol to connect to
 a named queue to retrieve messages), it is acting as an active listener. Regardless of
 listening style, the job of listening for messages is performed by
 what WCF refers to as a transport channel. Common transport channels
 include HTTP and MSMQ. In the case of the server side, the
 transport channel is created by a channel listener. The channel
 listener is a factory pattern object that is responsible for setting
 up the server-side listening infrastructure.

	The message encoder
	Next is the message encoder, which takes
 a network message and wraps it in an object that the rest of the WCF
 infrastructure can understand. This object is an instance of
 System.ServiceModel.Channels.Message. Although
 Message is modeled somewhat after a SOAP message
 pattern, with a header and a body, it isn’t necessarily tied to the
 SOAP protocol.
The Message object can be used to
 deserialize a message into a .NET object or retrieve it as
 XML (even if the underlying message is not formatted
 as XML). One important property of Message is
 Version. When this property is set to MessageVersion.None, the object will
 ignore the Headers property (in fact, an
 exception is raised if the Headers property is
 used when Version is set to MessageVersion.None).
Another interesting property is Properties. This is a
 collection that can contain arbitrary objects, so it acts like a
 per-instance state bag. Interesting data can be placed into this
 collection, and other components up and down the stack can then
 communicate information indirectly through data on the message
 itself.

	Protocol channels
	Optional objects follow the message encoder. WCF refers to
 these objects as channels, and to disambiguate
 them from transport channels, they are called protocol channels.
 Protocol channels implement protocols that might be useful for a
 particular service, such as security or reliable-messaging
 protocols. These objects are optional, but in certain services may
 be helpful or even required to implement a particular style of
 architecture.

	The dispatcher
	The dispatching layer is responsible for invoking the
 proper methods on incoming message objects. First, the IDispatchOperationSelector
 object determines which
 method is appropriate. Next, a pluggable component
 implements IDispatchMessageFormatter to
 deserialize the Message object into the proper
 .NET type. Finally, the IOperationInvoker object
 actually invokes the service.

Together, the transport channel, message encoder, protocol channels,
 and dispatcher are called the channel stack. WCF uses
 bindings to create the stack. A binding is really a piece of configuration, although it can
 be represented in memory as an object or serialized into an application
 configuration file. Based on the configuration of your service, through
 both attributes and another type of configuration called a behavior, WCF constructs the
 dispatching layer.
The infrastructure that creates the channel stack is not reliant on
 any particular programming model or communication mechanism. In other
 words, WCF is a pluggable pipeline-like architecture for creating channels
 of communication.
Using this programming model, WCF supports a wide variety of
 communication mechanisms. Suppose, for example, that you want the
 implementation to listen for SOAP-formatted messages over HTTP at a
 particular URI and then route those messages based on the SOAP action
 header’s name. To do this, you can use either the WsHttpBinding or
 BasicHttpBinding objects, which derive from the binding base class and provide
 SOAP-based communication over HTTP.
If you use the default dispatch layer configuration, the
 IDispatchOperationSelector looks at the incoming
 Message object for the SOAP action header and then uses
 .NET metadata to match the action header value to the name of a .NET
 method (this could be an exact match or could be customized using
 the OperationContractAttribute). The
 dispatch layer then uses this information to deserialize the message into
 the accepted .NET types, and the IOperationInvoker
 actually invokes the correct object.
Note
The name of the default implementation is
 OperationSelector, which might indicate that there is
 only one, but this is actually just one potential implementation.

Although many of the WCF defaults in the dispatch layer lean toward
 a SOAP model, the channel stack has no real notion of anything “SOAP-y” in
 the least. It’s only some of the WS-* protocols and WCF out-of-the-box
 (OOTB) bindings and objects that are aware of the SOAP protocol.
Given my assertion that WCF isn’t tied to SOAP, what would it take
 to create a RESTful-based service using WCF? Not a whole lot, actually,
 since WCF has an HTTP listener (in the form of the HTTP transport
 channel), which isn’t tied to POST (i.e., it can handle
 other HTTP verbs). It also has a message encoder that understands XML
 messages, even when those messages aren’t based on SOAP. Putting both of
 those pieces together gives us the basic building blocks for doing RESTful
 services with WCF.
Note
You might be wondering about other incoming HTTP message body
 formats like form or JSON-encoded bodies—we’ll deal with those in later
 chapters.

HTTP Programming with WCF 3.0

It turns out that the facility to use REST existed in WCF even
 before .NET 3.5. (For clarity, I’ll refer to the version that shipped with
 .NET 3.0 as WCF 3.0, and the version that ships with .NET 3.5 as WCF 3.5.)
 WCF 3.0 actually has the infrastructure for doing RESTful-style
 programming, but it lacks any sort of standard RESTful programming model.
 Most of the remainder of this book will focus on the WCF programming model
 rather than on the communication infrastructure. In this section we’ll
 spend some time on the communication layer to illustrate a few key points.
 First, WCF isn’t tied to SOAP, even in WCF 3.0. Second, the communication
 infrastructure of WCF was written well enough to support different
 communication styles without modification in WCF 3.5. WCF 3.5 adds a
 programming model for REST that we could build without Microsoft’s help if
 we were so inclined.
It is possible to use WCF 3.0 to put together an HTTP endpoint
 that doesn’t use SOAP. To do this, we first require a binding to create
 the correct channel stack. However, WCF 3.0 doesn’t include any OOTB
 bindings that fit the bill (they all default to using SOAP), so we will
 have to create a custom binding using a CustomBinding object and adding the
 correct BindingElements. These
 BindingElements will be used to build the channels in the channel stack.
Note
We could also build a class that derives from the binding base
 class, which would be the right thing to do if we were going to reuse
 this binding in more than one project.

For this binding we will need, at minimum, a message encoder and a transport channel. These two objects are the only required
 elements for a channel stack. For most RESTful services, that’s all we’ll
 ever need in the channel stack—there are very few situations in which we
 would want to use other protocol channels. The BindingElements
 have to be added to the binding in the reverse order that they will be
 used, so we add the TextMessageEncodingBindingElement
 first, followed by
 HttpTransportBindingElement (which specifies the use of
 the HTTP transport in the channel stack). Example 2-1 shows the code that creates the
 custom binding (as always, this could instead be part of a configuration
 file).
Example 2-1. Creating a custom binding
CustomBinding b = new CustomBinding();
TextMessageEncodingBindingElement msgEncoder;
msgEncoder = new TextMessageEncodingBindingElement();
msgEncoder.MessageVersion = MessageVersion.None;
b.Elements.Add(msgEncoder);
HttpTransportBindingElement http;
http = new HttpTransportBindingElement();
b.Elements.Add(http);

Note that this code changes the MessageVersion property to
 MessageVersion.None. This instructs the
 TextMessageEncoder not to look for anything “SOAP-y,”
 although it still will only process incoming messages that are formatted
 as XML (since this is what the TextMessageEncoder is
 programmed to do).
Next, we must construct an endpoint. A WCF endpoint has three parts: an address, a
 binding, and a contract. The binding dictates the look of the channel stack
 and determines how the endpoint will communicate. The address is the URI
 at which the endpoint will listen, and the contract contains information
 about the type that WCF will use to route messages. In WCF, the contract
 will be a .NET type with the ServiceContractAttribute, and this type can
 be either an interface or a .NET class. In this case I am specifying a
 .NET class as the contract.
The next step is to host the endpoint so that WCF will create a channel listener to start
 the channel stack. In most cases, the class named
 ServiceHost will carry out this part (see Chapter 5 for more information about
 hosting WCF endpoints).
After creating the ServiceHost instance, add
 a ServiceEndpoint using the CustomBinding, an
 HTTP-based URI as the address, and a type named SimpleHTTPService as the contract. This
 code also uses Console.ReadLine as the mechanism to
 keep the process alive while requests are being processed. We can create a
 console application to host my WCF endpoint. Example 2-2 shows the Main method from my
 console application.
Example 2-2. SimpleHTTPService using WCF
static void Main(string[] args)
{
CustomBinding b = new CustomBinding();
TextMessageEncodingBindingElement msgEncoder;
msgEncoder = new TextMessageEncodingBindingElement();
msgEncoder.MessageVersion = MessageVersion.None;
b.Elements.Add(msgEncoder);
HttpTransportBindingElement http;
http = new HttpTransportBindingElement();
b.Elements.Add(http);
ServiceHost sh = new ServiceHost(typeof(SimpleHTTPService));
ServiceEndpoint se = null;
se = sh.AddServiceEndpoint(typeof(SimpleHTTPService),
 b,
 "http://localhost:8889/TestHttp");
sh.Open();
Console.WriteLine("Simple HTTP Service Listening");
Console.WriteLine("Press enter to stop service");
Console.ReadLine();
}

This code may lead you to wonder what
 SimpleHTTPService looks like. SimpleHTTPService is a class that includes one method (this is typically
 referred to in WCF terminology as a universal
 operation). Instead of having regular .NET types as input and output parameters to
 the method, we are using System.ServiceModel.Channels.Message.
Using Message means that the WCF dispatch layer
 doesn’t have to deserialize the incoming message into specific .NET types.
 Adding the OperationContractAttribute and setting its Action property equal to
 * and the ReplyAction property equal
 to * indicates that all messages, regardless of action,
 will be routed to this method. Admittedly, having to use SOAP header
 information is kind of non-RESTful, since we are annotating the class with
 SOAP-based attributes, but the values of these properties actually short-circuit any SOAP-based routing. Example 2-3 shows the code for the
 SimpleHTTPService.
Example 2-3. SimpleHTTPService implementation
[ServiceContract]
public class SimpleHTTPService
{
[OperationContract(Action = "*", ReplyAction = "*")]
Message AllURIs(Message msg)
{
 HttpRequestMessageProperty httpProps;
 string propName;
 propName = HttpRequestMessageProperty.Name;
 httpProps = msg.Properties[propName] as HttpRequestMessageProperty;
 string uri;
 uri = msg.Headers.To.AbsolutePath;
 Console.WriteLine("Request to {0}", uri);
 if (httpProps.Method != "GET")
 {
 Console.WriteLine("Incoming Message {0} with method of {1}",
 msg.GetReaderAtBodyContents().ReadOuterXml(),
 httpProps.Method);
 }
 else
 {
 Console.WriteLine("GET Request - no message Body");
 }
 //print the query string if any
 if (httpProps.QueryString != null)
 Console.WriteLine("QueryString = {0}", httpProps.QueryString);
 Message response = Message.CreateMessage(
 MessageVersion.None,
 "*",
 "Simple response string");
 HttpResponseMessageProperty responseProp;
 responseProp = new HttpResponseMessageProperty();
 responseProp.Headers.Add("CustomHeader", "Value");
 return response;
}

Figure 2-2 shows the results of
 testing the client (which is just a browser in this case) and the output
 from the service in the console application.
[image: Testing WCF 3.0 HTTP service]

Figure 2-2. Testing WCF 3.0 HTTP service

Due to the structure of WCF 3.0, the endpoint created here will
 route all incoming network requests to the single method. While it would
 be possible to use .NET 3.0 to automatically dispatch different network
 messages to different methods without using SOAP (since the default
 dispatching is based on the concept of Action), it requires adding a fair
 amount of custom code into the WCF channel stack and dispatching layer.
 This is one of the things included in WCF 3.5, which we’ll examine in a
 moment.
There is something else to note about the code in the body of the
 AllURIs method in the earlier code sample. Notice how I
 am asking the Message object for a property from its
 Properties collection. The property is an instance of
 the HttpRequestMessageProperty
 type, which is a property populated by the HTTP transport channel. As you
 can see from the code, this property has all the information about the
 current HTTP request, including the Method and the
 incoming HTTP headers. Message properties are indexed by name, so the
 static Name property of the HttpRequestMessageProperty is used
 to find the property inside of the Message (of course
 my code is assuming the binding being used has the HTTP transport channel
 in use and that the property will always be there). If I wasn’t using
 Message as the parameter type I could access the
 property via the
 OperationContext.Current.IncomingMessageProperties
 collection. Example 2-4 is the full
 definition of the HttpRequestMessageProperty.
Example 2-4. HttpRequestMessageProperty definition
namespace System.ServiceModel.Channels
{
 public sealed class HttpRequestMessageProperty
 {

 public WebHeaderCollection Headers { get; }
 public string Method { get; set; }
 public static string Name { get; }
 public string QueryString { get; set; }
 public bool SuppressEntityBody { get; set; }
 }
}

The code at the end of the AllURIs method in
 Example 2-2 creates an
 HttpResponseMessageProperty object, which is the
 corollary object to the HttpRequestMessageProperty
 object. The HTTP transport channel will use this property to set parts of
 the HTTP response. The code creates and sets the value of a custom HTTP
 header. Example 2-5 includes the full definition of the
 HttpResponseMessageProperty.
Example 2-5. HttpResponseMessageProperty definition
namespace System.ServiceModel.Channels
{
 public sealed class HttpResponseMessageProperty
 {
 public static string Name { get; }
 public HttpStatusCode StatusCode { get; set; }
 public string StatusDescription { get; set; }
 public bool SuppressEntityBody { get; set; }
 }
}

HttpWebRequestMessageProperty and
 HttpWebResponseMessageProperty are important tools when
 using WCF for HTTP, and since RESTful services use HTTP, we’ll find them
 helpful there as well. You’ll see these properties being used throughout
 this book to enhance our RESTful services.
So, what insight into WCF does the code in Examples 2-1 and
 2-2 provide?
 Mainly, that WCF is not just about SOAP, and that WCF has included most of
 the facilities to support RESTful services since the beginning. What was
 lacking in 3.0 was an explicit programming model for REST.

End of sample

 To search for additional titles please go to

 http://search.overdrive.com.

OEBPS/httpatomoreillycomsourceoreillyimages224487.png
#
ER

24

01,
a1,
i1

Result
200
200
200
200
200

Protocol
HTTP
HTTP
HTTP
HTTP
HTTP.

Host URL
Jonmacpro /UserService/UserService. svc/users
Jonmacpro /UserService/UserService.svc/users
Jonmacpro /UserService/UserService svc/users
Jonmacpro /UserService/UserService.svc/users,
Jonmacpro /UserService/UserService.svc/users|

& S| 5 s rpector | Autoesponder 9 Rt sider) s = T

s | Textn | Webroms et Auth || X0

PUT /Userservice/Userservice. svc/users/51b1ef50-dcb6-44ct—
8428-42b513b45ch9 HTTP/1.1

User-Agent: Fiddler

Host: jonmacpro

(Content-Type: text/xml

(Content-Length: 214

<user xmlns:i="http://www.w3.0rg/2001/xMLschema-instance">
<id>51blef50-dcb6-44cF-8428-42b513b45ch9</1d>
<firstname>Jon</firstname>

<lastname>Flanders</lastname>
i<email>jon.flanders@example.org</email>

</user>

e gy

HTTP/I.1 200 OK

Content-Type: application/xml; charset=utf-§
server: Microsoft-11s/7.0

X-Powered-By: ASP.NET

Date: Tue, 19 Aug 2008 00:01:57 GMT
Content-Length: 204

l<user xmins:i="http://wm.w3.org/2001/xMLSchema~instance"><id
51blef50-dcb6-44cf-8428-42b513b45cb9</1d><firstname>Jon
'</Firstnane><lastname>Flanders</lastnanes<emai 1>

jon. flanders@example. org</emai 1></user>

OEBPS/httpatomoreillycomsourceoreillyimages224571.png
i Fiddler - HTTP Debugging Prosy

[File Edit Rules Tools View Help
WebiScanlons] << || stattcs| 1 Sesson Inspector | £ AutoResponder | 4 Request Bukde | (1 iters | = Tmeine
Result Protocol Host URL [|THeaders | Textview | WebForms | HexView | Auth | Raw | XML
B

WA 00RSh L ormacpiol/Deef GET /UserService/UserService.svc/users HTTP/1.1

- Client
User-Agent: Fiddler

- Transport

Host: jonmacpro

Transtormer | Headers | Textvew | imaaevew | Hexvew | Auth | Gachind
HTTP/1.1 200 OK

Content-Type: application/xml; charset=utf-8
server: Microsoft-I1S/7.0

IX-Powered-By: ASP.NET

Date: wed, 29 oct 2008 16:41:59 GMT
content-Length: 60

Prvacy [TRaw | 1L

<users xmlins:

http://www.w3.0rg/2001/XMLSchema-instance"/>

OEBPS/httpatomoreillycomsourceoreillyimages224511.png
/(-;‘ ol @ http://localhost/JSONWebTest/UseDomainServicelSON.htm - | 2] x | Live search
~ @ v |5y Page v (G} Tools v

@ Using WCF Service from "AJAX" [‘ oo~

Life classification
Domain: Archaea ~

Kingdom: ~

Phylum: ~

Class: ~

| Nikhil's Web Development Helper

| & Tools - | Page - Script - HTTP - ASPINET - | Console: & HTTP Logging - [V] Enable Logging B @ Ale
URL Status Timestamp Response ... Connection... Respor| Show Details...
http://localhost/JISONWebTest/UseDomainServiceJSON... 200 8/18/2008 5:38:... 3,530 00:00:0300 00:00:(| X D:

htp:

00:00:0030 00:00:(| @ Clear
& Copy
P

OEBPS/httpatomoreillycomsourceoreillyimages224537.png
¢ @A | @ Test Page For SilverlightAndREST [‘

- ~ g~ [y Page v {5} Tools v

XML | JSON | Feeds

Eventlog Data:

Use FEED

[Testing Event Log API

[Testing Event Log API - again

[Testing Event Log API - yet again

The Windows CardSpace service has been idle for sor
Service stopped successfully.

msnmsgr (4028) \\.\C:\Users\jon\AppData\Local\Micro
msnmsgr (4028) \\.\C:\Users\jon\AppData\Local\Micro
Fault bucket 30360553, type 5

Event Name: MpTelemetry

Response: None

Cab Id: 0

Problem signature:
P1: 80072ee2

P2: EndSearch

P3: Search
P4:1.1.1600.0

P5: MpSigDwn.dll

P6: 1.1.1600.0

P7: Windows Defender

= »

OEBPS/httpatomoreillycomsourceoreillyimages224595.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages224619.png
Entity Data

4%;/ Choose Your Data Connection

Which data connection should your application use to connect to the database?

todel Wizard

2005 vseos b0 =] newCommecton

“This connectin siring appears to contain sensitive data (for example, a password), which s requir
o connectto the database. However, storing sensitive data i the comnection strng can be a sec
tisk. Do you want to incude this sensitive data n the connecton string?

' No, exdude sensitive data from the connecton strng. T wil stit n my application code.

& Yes, indude the sensitive data in the connection string.

Entity connection sting:
metadata=res:/[* User.csdl|res:/|*[User s res:/[*[User mslprovider =System.Data. SaClent;c
191ider comectonsirng=Deta Sorce=.nte Ctoog e 0 nteraed

Security=True;Pooling=Fake”

¥ Save entty connecton setings i Web, Cofig a5
[Lseroeenttes

OEBPS/httpatomoreillycomsourceoreillyimages224613.png
"

o) foeees

R e | B - B - - e - @

<2xml version="1.0" encoding="utf-8" standalone="yes" 7>
- <edmx:Edmx Version="1.0" xmins: edmx="http:/ /schemas. microsoft.com/ado/ 2007/06/ edmx">
<edmx:DataServices>
- <Schema Namespace="UserDBModel" xmins:d="http:/ /schemas.microsoft.com/ado/2007/08/dataservices"
xmins:m="http:/ /schemas.microsoft.com/ado/ 200708/ dataservices/ metadata®
xmins="http:/ /schemas.microsoft.com/ado/2006/04/edm">
- <EntityContainer Name="UserDataContext’ m:sDefaultEntityContainer="true">
<Functionlmport Name="admins" EntitySat="user" RetumType="Collaction(UserDBModel.user)" m:HttpMethod="GET" />
<EntitySet Name="group’ Entity Type="UserDBModel.group’ />
<EntitySet Name="user” EntityType="UserDBModel.user" />
<EntitySet Name="user_group_mapping’ EntityType="UserDBModel.user_group_mapping’ />
- <AssociationSet Name="FK_user_group_mapping_user_group_mapping’

user_group_mapping’ EntitySet="user_group_mapping’ />
</AssociationSet>
- <AssociationSet Name="FK_user_group_mapping_user’ Association="UserDBModel.FK_user_group_mapping_user">
“user’ EntitySet="user’ />
user_group_mapping’ EntitySet="user_group_mapping’ />
</AssociationSet>
</EntityContainer>
- <EntityType Name="group">
- Key>
<PropertyRef Name="group_i
</Key>
<Property Name="group. id" Type="Edm.Inta2" Nulable="false" />
<Property Name="group_name" Type="Edm.String’ Nullable="false’ Max.ength="50" Unicode="true" FixedLength="false" />
<Property Name="group_description’ Type="Edm.String" Nulable="true” MaxLength="50" Uicode="true’ FixedLength="false" />
2 serDBModel.FK_user_group_mapping_user_group_mapping"

/>

</EntityType>.

OEBPS/httpatomoreillycomsourceoreillyimages224461.png
type in a URI to test ('Q’ to exit)
lhttp://example.org

[ROOT MATCH!

type in a URI to test ('Q’' to exit)
jhttp://example.org/Eukaryote

[DOMAIN MATCH!

type in a URI to test ('Q' to exit)
jhttp://example.org/Eukaryote/Animalia/Chordata/Actinopterygii/sSiluriformes/Malap
teruridae/Malapterurus/minjiriya

[SPECIES MATCH!

type in a URI to test ('Q’ to exit)

OEBPS/httpatomoreillycomsourceoreillyimages224531.png
w &

2| httpy//localhost51435/SilverlightAndRESTWeb/BioService svc/Eukaryota

@ http://localhost:51435/SilverlightAndR. [‘

o - B - v [5ypeger

- <Kingdoms xmlns:i="http:/ /www.w3.0rg/2001/XMLSchema-instance">

- <Kingdom>
<Name>Animalia</Name>
<Uri>Animalia</Uri>

</Kingdom>

<Kingdom>
<Name>Fungi</Name>
<Uri>Fungi</Uri>

</Kingdom>

<Kingdom>
<Name>Amoebozoa</Name>
<Uri>Amoebozoa</Uri>

</Kingdom>

<Kingdom>
<Name>Plantae</Name>
<Uri>Plantae</Uri>

</Kingdom>

<Kingdom>
<Name>Chromalveolata</Name>
<Uri>Chromalveolata</Uri>

</Kingdom>

<Kingdom>
<Name>Rhizaria</Name>
<Uri>Rhizaria</Uri>

</Kingdom>

<Kingdom>
<Name>Excavata</Name>
<Uri>Excavata</Uri>

</Kingdom>

</Kingdoms>

OEBPS/httpatomoreillycomsourceoreillyimages224489.png
WebSesions =
Result Protocol Host URL

91 200 HTTP Jonmacpro /UserService/UserService.svc/users
91 200 HTTP Jonmacpro /UserService/UserService.svc/users
01 200 HTTP Jonmacpro /UserService/UserService.svc/users
91 200 HTTP Jonmacpro /UserService/UserService.svc/users,
24, 200 HTTP Jonmacpro /UserService/UserService.svc/users,
94, 200 HTTP Jonmacpro /UserService/UserService.svc/users,

© st B sson pecton| 5 AsoRepondr| 9 R s |) | = T

an oo equs b iog9ng and dopping seson o

==
DELETE - irvice.svc/users/51b1efS0-dcb6-44cf-8428-42b513b45cb9 IRITEN]

Rt s
User-Agent: Fiddler
Host: jonmacpro

et sty

OEBPS/httpatomoreillycomsourceoreillyimages224549.png
Sequential Workflow

9

[AddEntry

OEBPS/httpatomoreillycomsourceoreillyimages224551.png
Edit View Project Debug Workflow Data Tools Test Analyze Window Help
R HE ¥R~ EJ [| b Debug ¥ AnyCPU

Choose Operation

Available Operations: © Import..

& BlogCheckListContracts 1BlogAPI
¥ % AddEntry

% GetBlog

@ Geténtry

@ DeleteEntry

% UpateEntry

[Flo10%3 J9Ma8 5 Xoq00L 3¢

(® AddEntry

Operation Name AddEntry

Parameters | Properties | Permissions

+ X3
Name Type Direction
(ReturValue) System ServiceModelSyndication... Out

entry System ServiceModel.Syndication... In

| oK Cancel

OEBPS/httpatomoreillycomsourceoreillyimages224553.png
Edit View Project Bui

Debug Data Tools Test Anayze Window Help.

Any Py

|8 senicesecurycoment v | & 78 3% 81 E1 &)

(S E G @S REB[9 5| o

Sequential Workflow

©

¥
:

sendBlogEntry System Workflow Acthities SendActivity

Epgwg
Activity

oume -
RESTToen
ponttone w..
Cunecipame
oo .
oucpion
s e
Sricopeonto [————
P
e
o < ity crecsonon s
e hedtaorton
o i
£ o eaem——
e ncredsioton
b o
B maroen
)| Represents the channel that will be used to send the message.

OEBPS/httpatomoreillycomsourceoreillyimages224463.png
@ (sl 2 hitpy/localhost/BioService/ n [

313 n{ﬁ? [@htzp//lucalhusx/muServuce/

- <Domains>
<Domain name="Archaea" uri="Archaea" />
<Domain name="Eubacteria" uri="Eubacteria" />
<Domain name="Eukaryota" uri="Eukaryota" />

</Domains>

OEBPS/httpatomoreillycomsourceoreillyimages224483.png
Result
200
200
200
200

Protocol
HTTP.
HTTP.
HTTP.
HTTP.

Web Sesions =
Host URL

Jonmacpro /UserService/UserService.svc/users

Jonmacpro /UserService/UserService.svc/users

jonmacpro /UserService/UserService.svc/users|

jonmacpro /UserService/UserService.svc/users)

© stattes| 5 Sesson nspecto | £ putoResponder |9 Reguestpukder) trs| = Tmeine]

Veaders | Toxow | Weskoms | Mo | A (w7

[GET /Userservice/Userservice.svc/users/51blef50-dcb6-44cf-
8428-42b513b45cb9 HTTP/1.1

User-Agent: Fiddler

Host: jonmacpro

(Content-Type: text/xml

Icontent-Length: 0

1 I,
o | st | votuen | iramien | e | | comr | Py [T 0L

HTTP/1.1 200 0K

Content-Type: application/xml; charset=utf-8

Last-Modified: Mon, 18 Aug 2008 23:56:43 GMT

ETag: sSFrMG+Kv7yc8jz4neuxy
Server: Microsoft-I1s/7.0
X-Powered-By: ASP.NET

pate: Tue, 19 Aug 2008 00:00:27 GHT
content-Leéngth:

<user xmlns:i="http://www.w3.0rg/2001/xMLSchema-instance"><id:
51blef50-dch6-44cf -8428-42b513b45cb9</1d><F1rstname>Ion
</firstnane><lastname>Flanders</lastname><emai 1>
jon@example.org</email></user>

OEBPS/httpatomoreillycomsourceoreillyimages224605.png
5 Fiddler - HTTP Debugging Proxy

Fie Edt Rues Todk Vew Heb

Web sessions <<
| Result [protocol | Host [LR
Ho 0w 12008 Userservice UserServi

© statstcs 1 Sesson Inspector | £ AutoResponder | G RequestBuider | [Fiters | "= Tmelne |
Headers | Textven | WebFoms | Hewien | Auh |[Raw | o

CEE ViewinNot

Trarsiomer | Heaiers | Texen | tnagevew | Fiesvew | Aum | coding | ey [Tram [0% |
DR

oo no=cache

e 2t any aconsmt charsecmut=s

Coners Tyee, apelicieio

oA e

fscpuer vevsion: 2.o.

B ey A Kone os:a7:57 arr

Boreint cinptn se.

[<2xm version="1.0" encoding="utf-a" standalone="yes 2>
[Sentrysm:base=*htep://winso0s, User Service/ser Service. sve,
Xmine: d"heTp: //schenas. mi rosof L. com,ado, 2007 108/ dataservi ces”
xmins:m="ccp: //Schenas. microsoft. con/ado/2007/08/ dataservices/metadata’
Xmins="htp: /- 3. 0r 32008 /aton’s.
<ldnttp://win200s] User service/Userservice. sve/user (1)</1d>
title typesttextioe/tities
SUpdnted(Zoe 07 25705371572/ updatea>
Zalthors
<nane />
</authors
ik rei=nedit” titles"user href
“content_type="application/uml*>
mproperties>
i Eer 1 m:

type=

jserDaiodel. user

ser(1)” />

USerZenaiTjon. Tlanderagna 1 con/d:user-enail>

<3 userTasT o 13 i ypenEdn DateTIme'>2008-07-28T18:03:46.653</d:user_TastnodFied>
ropertiess

</content>
</entry>

OEBPS/httpatomoreillycomsourceoreillyimages224515.png
Request Headers |Request Body|

Name Value
‘GET /BioService/json HTTP/L.1
UA-CPU x86
Accept-language en-us
Referer http://localhost/ISONWebTest/UseDomainServiceJSON.htm
Accept appication/json
Accept-Encoding gaip, deflate
User-Agent Mozla/4.0 (compatible; MSIE 7.0; Windows NT 6.0; WOW64; SLCCL...

>

Response Headers| Response Content

vere

[{"Name": "Archaea", "Uri": "Archaea"}, { "Name'

" "Eubacteria”, "Uri": "Eubacteria"}, {"Name

“"Eukaryota”, “"Eukaryota"}]

OEBPS/httpatomoreillycomsourceoreillyimages224497.png
Other
modules ServiceHostFactory
e

\WebHttpBinding

OEBPS/httpatomoreillycomsourceoreillyimages224430.jpg
O’REILLY® Jon Flanders

OEBPS/httpatomoreillycomsourceoreillyimages224439.png
Client

GET/usersHTTP/1.1
Host :exanple. org

Service

HTTP/1.1 200 Created
Content-Length:135
Content-type: application/xml

<users>
<users

<id>1</id>
<firstname>Jon</firstname>
<lastname>Flanders</lastname>
<email>jonefoo.con</email>
</user>

</users>

OEBPS/httpatomoreillycomsourceoreillyimages224563.png
Cl State Machine Workflow

O stateMachineBlogAPIService : [StateMachineBlogAPIServicelnitialState

[3 stateMachineBlogAPIServicelnitialState

GetBlogEvent
&
|

& GetBlog

[setStateActivit
= v

Done.

OEBPS/httpatomoreillycomsourceoreillyimages224617.png
Entity Data Model Wizard

A

What should the model contain?

)

Empty model

Generates the model from a database. Classes are generated from the model when the projectis
compied. This wizerd aso lts you specfy the database connection and database objects fo induc!
in the model

cereons [Nexts i | Caneal

OEBPS/httpatomoreillycomsourceoreillyimages224473.png
Wb Sessions

Result Protocol

26

200 HTTP

Host URL
Jonmacpro /UserService/UserService.svc/users

=<1/ St 2 Sesson epecto| 5 Atomesponcr 9 Reavst ke | s |

Tl

GET

 hittp://jonmacpro/UserService/UserService.svc/users
et s

Accept: image/gi, image/x-xbitmap, image/jpeg, image/pipeg, application/x-rr
Accept-Language: en-us

UA-CPU: x86

Accept-Encoding: gzip, deflate

User-Agent: Mozill/4.0 (compatible; MSIE 7.0; Windows NT 6.0; WOW64; SLC
Host: jonmacpro

Connéction: Keep-Alive

Reguest oty

OEBPS/httpatomoreillycomsourceoreillyimages224559.png
&)= @ hpjonmacpro/BlogWorkiiowWeb WorklowBlogEngine sv/blog -Ja]

L 40 [@worktow sample feea] B v B - @ - () Poge v G Tools~

) tve Searen 7

Workflow sample feed Displaying 10/10

You are viewing a feed that contains frequently updated content. When you subscribe to a feed, tis added to the.
‘Common Feed List. Updated information from the feed is automatically downloaded to your computer and can be viewed in

Internet Explorer and other programs. Learn more about feeds. oAl 10
@ Subscribe to this feed
Sortby:
~ Date
Testing 0 Title

Today, August 18, 2008, 7:3847 PM

Testing content 0

Testing 1

Today, August 18, 2008, 7:3847 PM

Testing content 1

Testing 2

Todsy. A

73847 PM

Testing content 2

Testing 3

Today. August 18, 2008, 7:38:47 PM

Testing content 3

OEBPS/httpatomoreillycomsourceoreillyimages224495.png
1IS hosting

Kernel mode i User mode

ﬁ WIWREXE

REQUEST/RESPONSE

m ServiceHostFactory
(eate

OEBPS/httpatomoreillycomsourceoreillyimages224573.png
8 Fiddier - HTTP Debugging Proxy

file Edit Rules Tools View Help

Web Sessions <<)& statscs| 5 Sesson nspecor | £ AutoResponder] 9 Reuest Puder|] Fers| = Timelne
Resit Pot. Host URL Headers | Textvew | WebForms | HexVew | Auth |[Raw | XML
A5.. 400 HTTP Jonmacpro. UserServie/userer | GET/Tserservice/ UserService-sve/users ITP/i-0
A6.. 400 HTTP Jonmacpro JuserServiefuserser Eis
fccept-encoding: zip, deflate
(UserAgent s Magi11a/410" (compatibles NSIE 7.0; Windows NT 6.0; WowG4; SLCCL; .NET CLR 2.0.50727; .NET «
TS B 50)| 5.0 v i 375.52025; Snfosath.2; s iic Ui 5
6 Request Error - Windows Interet Explorer | =
@Uv @) ntpyfonmacy - [4] x| [Live searcn
T 4R | @ Request Emor By o [mC)
= ||| Franstormer | eaders | Textvew | imagetien | Hocview | Auth | Cochin | Pivacy |TRaw
Request Error [FTTP/11 400 Bad Request
e
[Server: Wicroso
The server encountered an error processing the R power ed-spsACD NET
request. See server logs for more detals, [Date: Tue, 42 Ju1 2008 08:54:56 GiT

ontent-Length: 1165

<D version="1.0" encoding="utf-8"7>HTHL> HEAD><STVLE type="text/css">Fcontent{ FONT-SIZE: 0.7em;
WARGINLEFT: Opk; COLOR: #0000 FONT-FAVLLY: verdana; BACKGROUD-CO
#000000; FONT-FAUILY: VerdanaPREBORDER-RIGHT: #f0f0c) lpx solid; Pa

PADDING-LEFT: Spx; 1.2em; PADDING-BOTION: 5

[TOP: 0px; PADDING-LEFT: '15px; FONT-WEIGHT: normal: FONT-SIZE: 26px; NARGIN-BOTION: Opx; PADDING-BOTTON
||| Iuzom:"160%; "cotor: #£FFFF: paDDING-TOP: “10px; FONT-FAMTLY: Tahoma; BACKGROUND-COLOR: #0036} . introf!
[<TITLE-Request Error</TITLES</HEAD><80DY>
ontent"s
heading1">Request Error</p>

‘intro>The server encountered an error processing the request. See server logs for more deta
ntro"></p>

& Local intranet | Protected Mode: Off ®100% ~

[</orvs
[</800Y></smuL>.

OEBPS/httpatomoreillycomsourceoreillyimages224561.png
State Machine Workflow

C stateMachineBlogAPIServicelnitialState

Y GetBlogEvent

1 AddEntryEvent

Y GetEntryEvent

Y DeleteEntryEvent

1 UpdateEntryEvent

Done.

OEBPS/httpatomoreillycomsourceoreillyimages224477.png
Wb essions << 6 Stattes | 5 Ssson inspecto| £ AsoResponder| 9 Reqst Bkder | ters| = Tl
Result Protocol Host URL

91 200 HTTP
27 201 HTTP

Jonmacpro /UserService/UserService.svc/users|

Jonmacpro /UserService/UserService.svc/users|| POST
et s
User-Agent: Fiddler
Host: jonmacpro
Content-Type: text/xml
Content-Length: 113

3 pro equet b Groa0g and doppng

- http://jonmacpro/UserService/UserService.svc/users

sttty

<user>

<id/>
<firstname>Jon</firstname>
<lastname>Flanders</lastname>

<email>jon@example.org</email>
<Juser>

OEBPS/httpatomoreillycomsourceoreillyimages224507.png
~

¢ @R | @ Using WCF Service from "AJAX"

Life classification

Domain: Eukaryota ~

Kingdom: Animalia |

Phylum:

Class: ~|Chromalveolata

Order:
Family: ~
Genus: ~

Species: -

OEBPS/httpatomoreillycomsourceoreillyimages224599.png
/2 http:/ [win2008/Us

O - 2] e imnasserserce sersee svel =[] fove searcn
&

rvice/UserService.svc/ - Windows Internet Explorer

T2 & | it w2008 serService Userservice s/ || & -

<2xml version="1.0" encoding="

utf-g" standalone="yes" 7>

"hitp:/ /www.w3.0rg/ 2007 /app">
- <workspace>
<atom:title >Default</atom: title>
- <collection href="group">
<atom:title >group</atom: itle>
</collection>
- <collection href="user">
<atom:title >user</atom: title>
</collection>
</workspace>
</service>

OEBPS/httpatomoreillycomsourceoreillyimages224435.png
GET
POST
[PUT

@DELETE

«Retrieves a resource:
- Guaranteed not o cause side-effect (SAFE)
« Cacheable:

« reatesa new resource
- Unsafe, effect of this verb isn't defined by HTTP

- Updates an exiting esource
- Used for resource creation when client knows URI
- Can call N times,same thing will aways happen (idempotent)

- Removes a resource
- Can cll N times, same thing will aways happen (idempotent)

J
)
)
)

OEBPS/httpatomoreillycomsourceoreillyimages224587.png

OEBPS/httpatomoreillycomsourceoreillyimages224607.png
5 Fiddler - HTTP Debugging Proxy
Fie Edt Rues Tods Vew Heb

Web Sessions =]
=] Resuit [protocol | Host [IRL

Ho o e 2008 UserServicefUserServ
[EER 3 w2008 UserServicefUserservd
2 m am w2008 [userservicefusersevi

@ statstcs | i Sesson nspector | % AutoResponder 9 Recuest Buider | (] Fiters | = Timeine |

Use this pageto handcafta HTIP Request. You can conea pror request by dragaing and dropping a sessionfrom the HTTP
Sessions .

JposT

e e— i

|
et Headers

Accet: e/, gefc s, magepes, e e, ppcatincs sppcatn, ppkcatinfvd s sosdocamen,apkcatonfan =]
ceptdanguage: encs

AP 5

ceptEncodes: g2, defate

User Agent: oela/, (compatie; MSE 7.0; Windows T 6.0; SLCC1; NET CR 2.0,50727; NET CLR 35,2102 NET GLR 3.5.30428;
oes 2005

 Comecton: Keep-Aive

 ContentType: ppicaton/atam sl typesentry

Content Lengt: 750

al | L’—‘
Requestoody

—n

<l version="1.0" encoding =utF5" standalone="yes 7> =|
Seniry xnbhase hti: w2008 UserSerce UserService v insd it fchemas. mcrosoft com/do/ 200708 dataservices” xnsime
<t type=text"> itle>
author>
name />
<Jauthor>
<content type=appicateni”>
<mipropertes>
Sosr fest_name>Jon<fduser fest_pame>
user_ast_name >Fanders<Jdiuser st rame>
ser_emai>jon.fander Give.com <Jduser_emal>
userast_modiied mtype = Edm DateTimd >2008.07-28T 15
<mipropertes>
<eontent>
<Jentry>

553 </duser last modifed>

: | o

Cotring | | 1/3 hitp:/jwin2008)UserService/UserService.svcfuser(1)

OEBPS/httpatomoreillycomsourceoreillyimages224501.png
www.contoso.com

www.northwind.com

IP Address

1l

OEBPS/httpatomoreillycomsourceoreillyimages224591.png
Default Web Site > CacheTest »

&) output Caching

Use this feature to configure output

Growpby: No Grouping

Extenson_~ User tode

f

Donotcact

File name extension:

Example: aspx or .axd

T User-mode caching

21|

~Flle Cache Moritoring
) Using fie drange roffications:
€ Attme interyals (himmss);

€ prevental caching

Adyanced

¥ Kernel-mode caching
~Flle Cache Moritoring
€ Using fie change notifications:
& Attime intervals (himm:ss)

foo:00:30

© Prevent all caching

[

B
Re

E

Hel
on

OEBPS/httpatomoreillycomsourceoreillyimages224533.png
2| http://localhost:51435/SilverlightAndRESTWeby/SilverlightAndRESTTestPage.aspx ~ |47 | x |f Live Search

¢ @A |@Test Page For SilverlightAndREST [7‘ Q- v #m v |5 Page v {J} Tools -

XML | JSON | Feeds

DOMAINS:

/Archaea
Eubacteria

ukaryota

Kingdoms:

OEBPS/httpatomoreillycomsourceoreillyimages224465.png
@-:‘ b @ http://localhost/BioService/ [2] x | Live search

& httpy//localhost/BioService/

wn - v o v |5 Page v {GiTC

- <Domain>
<Name>Archaea</Name>
<Uri>Archaea</Uri>

</Domain>

- <Domain>
<Name>Eubacteria</Name>
<Uri>Eubacteria</Uri>

</Domain>

- <Domain>
<Name>Eukaryota</Name>
<Uri>Eukaryota</Uri>

</Domain>

</ArrayOfDomain>

- <ArrayOfDomain xmins:i="http:/ /www.w3.0rg/2001/XMLSchema-instance">

OEBPS/httpatomoreillycomsourceoreillyimages224535.png
2| http://localhost:51435/SilverlightAndRESTWeby/SilverlightAndRESTTestPage.aspx ~ | ¢ | x |l Live Search

¢ @A | @ Test Page For SilverlightAndREST [7‘ [I ~ @ v |5 Page v (G} Tools

XML | JSON | Feeds

DOMAINS:

/Archaea
Eubacteria
ukaryota

Kingdoms:
nimalia

Fungi

moebozoa
Plantae
Chromalveolata
Rhizaria
Excavata

OEBPS/httpatomoreillycomsourceoreillyimages224565.png
State Machine Workflow

AddEntry

£l
£l

GetBlog

ApproveEntry

DeleteEntry

£
£
1 UpdateEntry
£

GetEntry

OEBPS/httpatomoreillycomsourceoreillyimages224485.png
e sesions << st B ssonpcon| £ oesponss| 9 R ks |) s = T
Result Protocol Host URL 20 o it TP e, Youn
91 200 HTTP

91200 HTTP
01 200 HTTP
91, 200 HTTP
94, 200 HTTP

Jonmacpro /UserService/UserService.svc/users
Jonmacpro /UserService/UserService.svc/users|| PUT
jonmacpro /UserService/UserService.svc/users|| Reaues weaders
jonmacpro /UserService/UserService.svc/users, ﬁf,i{i‘}ﬂiﬁf;i‘?;"”
Jonmacpro UserService/UserService svcjusers| | (U RITRPD
Content-Length: 214

o equest b Gaggng a0 doppg

onfrom

- arvice svc/users/51b1efS0-dcb6-44cf-8428-42b513b45cb9 ETRITEN]

i="http://www.w3.0rg/2001/XMLSchema-instance">
<id>51b1ef50-dcb6-44cf-8428-42b513b45cbo</id>
<firstname>Jon</firstname>

<lastname>Flanders</lastname>

<email>jon flanders@example.org</email>

<Juser>

OEBPS/httpatomoreillycomsourceoreillyimages224467.png
3-:‘ s | http://localhost/BioService/ []x [Live searcn

& http://localhost/BioService/

~ @ v |5y Page v (G} Tools v

- <Domain>
<Name>Archaea</Name>
<Uri>Archaea</Uri>

</Domain>

- <Domain>
<Name>Eubacteria</Name>
<Uri>Eubacteria</Uri>

</Domain>

- <Domain>
<Name>Eukaryota</Name>
<Uri>Eukaryota</Uri>

</Domain>

</Domains>

- <Domains xmins:i="http:/ /www.w3.0rg/2001/XMLSchema-instance">

OEBPS/httpatomoreillycomsourceoreillyimages224471.png
GET
POST
[PUT

@DELETE

- Retrieves a resource
+ Guaranteed not to cause side-effect (SAFE)
- Cacheable

+Creates a new resource
- Unsafe, effect o this verb isn't defined by HTTP

- Updates an existing esource
- Used fo resource creation when clent knows URI
- Can call N times, same thing will aways happen (idempotent)

- Removesa esource
 Can call N times, same thing will always happen (idempotent)

J
)
>
)

OEBPS/httpatomoreillycomsourceoreillyimages224543.png
GO [©> maws » sis > sitiose »

Fie Vew Hep

- 1218
G strage
55 IN200B (VINDOS st
3 sopicatin s
FPstes
&l stes
Defat e ste

Shaepont -50
Shaepont -ocahareponti3016
Shaepont Central Admnratn

BEEE

@l Default Web Site Home

2

Type. Host Name [Poct | PAddress 4]

htp o -

nettep =

netsive -

netinsng C s Agpication Camnecton

« 20| Setwgs swings
Twe: Paddess: port
Jhtos =] [ad unassigned = [+
Hostname:

[| Ve 53

|
= L] 7
& gy v & 0 e

B S S S

“Tracng Rues and Do,

8 =

Output SSLSettngs LRL Rewsite
Modde

OEBPS/httpatomoreillycomsourceoreillyimages224457.png
] nd.exe
URI path segments are:

type in a URI to test
http://example.org

URI not a match

Press any key to continue .

OEBPS/httpatomoreillycomsourceoreillyimages224509.png
“AAX"

Life classification

Domain:

Eukaryota g

Kingdom: Animalia

Phylum: ~

Class:

| Nikhil's Web Development Helper

i{ &) Tools - | Page - Script + HTTP ~ ASP.NET - | Console: & HTTP Logging -
URL Status Timestamp Response ... Connection... Respor| Show Details..
http://localhost/JSONWebTest/UseDomainService.ntm 200 8/18/2008 5:36:. 3,519 00:00:0010 00:00:(| X Delete
http://localhost/BioService/ 200 8/18/2008 5 246 00:00:0040 00:00:|| 3 Clear
http://locahost/BioService/Eukaryota 200 8/18/2008 5:36:... 492 00:00:0030 00:00:| & Copy

Enable Logging B @ Ale

P

OEBPS/httpatomoreillycomsourceoreillyimages224603.png
iddler - HTTP Debugging Proxy

Fie it s (R vew reb
Web sessions

teders | Textven | Webroms | vexien | Auth |[row | Xa |
(T Juserservice ussrservice sve/uzer

Transfomer | Headers | Textvew | ImageView | Hexview | Auth | Cocing | Prvacy |[Row | XML

[FT7P75,1 200 0%
Aihie-cantrol: no-cache

8 QT

encoding="ycr-5" standalones"yes"7>
asesthtc:) wina00s/ User Service User service, svc,
[Xmine: ae"heep: //Schemas . microsort. conyado) 00708, datacer vices”
=" Cp: //5chenas.microsoft. con/ado/ 2007 /08/dataser Vi ces /metadat
T3 /W3 073/ 2003 J3TOR'>
'<title Typesttext Suser</tities
SIhttp!/jwing00s User service UserService. sve/user</id>
ZUpdates 2008 07-29T0s: 26: 452.</upaateds
K FeisTseits titlecrusers hretoruser” />
Zentry m: type="useroBiode user s
<IdNTtp: //wina008,/ User service, UserService. svc/user (1)</id>

SR e
SEpE e E505"57 25705 26 duz/updatec>
e />
<jantne
i Peiereas sert pret=tuser)" />

Zcontent _type="application/xm ">

ypesrean. a2 10t ser_id
UECTSr ot HanesSons G User st names
e e e et e e ol
e o ndersanet |- conc s aer
e a8 e L DRkt Ioe S0 L07-28718103: 46, 653¢/d: user_Tase_modi e
</mcbropertiess

e

S

OEBPS/httpatomoreillycomsourceoreillyimages224623.png
User.edmx | dbo.group: Tab...in2008.UserDE) |~ dbo.user_grou..n2008.UserDB) | dbo..:

Gy user_group_

@ group

) Scalar Properties
) Scalar Properties

Paroup_descripton | 1 & Navigation Properties
= Navigation Properties =] group
B user_group_mappi B user

@ user

) Scalar Properties

2 Navigatonropertis
=} user_grove_ma.

OEBPS/httpatomoreillycomsourceoreillyimages224545.png
(2 https:/ /win2008/ wcirestsecoiis/ - Windows Internet Explorer

O~ o) mosmmasctestecoss S8 J[52) <)o seorer
& | | @hemlimmosiucessecos] | @ntpsimsosincrest.. x| | -6 - 8 - [Pace - ool

<string xmins="http://schemas.microsoft.com/2003/10/Serializati

n/">Anonymous</string>

OEBPS/httpatomoreillycomsourceoreillyimages224547.png
/2 https:/ | win2008/ wefrestsecoiis/ - Windows Internet Explorer

0
T - [E s immasivcressecosr

U & || @ hepihzmtsinchestsecos! | @ tosliwnasosincestoec.. | 15 70 vetied o - 0. | @htspwnsuctest.. x | |

<stiing xmins="http:/ /schemas.microsoft.com/2003/10/Serialization/*>WIN2008\Administrator </string>

OEBPS/httpatomoreillycomsourceoreillyimages224451.png
Transport channel
(HTTP)

M
e Message encoder

(text; no SOAP)

Protocol channel
(1-N)

Dispatcher
(URI+ VERB)

Your code

OEBPS/httpatomoreillycomsourceoreillyimages224597.png
Retrieved Service Document
Workspace Default found

Collection
Collection
Collection
Collection
Collection
Collection
Collection
Collection
Collection
Collection
Collection
Collection
Collection
Collection
Collection
Collection
Collection
Collection
Collection
Collection

Name=Activity, UrizActivity
Name=ActivityExecutionStatus, Uri=ActivityExecutionStatus
Name=ActivityExecutionStatusEvent, UrizActivityExecutionStatusEven
Name=ActivityInstance, UrizActivityInstance

Name=AddedActivity, UrizAddedActivity
Name=DefaultTrackingProfile, UrizDefaultTrackingProfile
Name=EventAnnotation, UrizEventAnnotation

Name=RemovedActivity, UrizRemovedActivity
Name=SqlTrackingServiceQfelog, UrizSqlTrackingServiceQfelog
Name=TrackingDataltem, Uri=TrackingDataltem
Name=TrackingDataItemAnnotation, Uri=TrackingDataltemAnnotation
Name=TrackingPartitionSetName, Uri=TrackingPartitionSetName
Name=TrackingProfile, Uri=TrackingProfile
Name=TrackingProfileInstance, Uri=TrackingProfileInstance
Name=TrackingWorkflowEvent, Uri=TrackingWorkflowEvent

Name=Type, Uri=Type

Name=UserEvent, UrizUserEvent

Name=Workflow, UrizWorkflow

Name=WorkflowInstance, UrizWorkflowInstance
Name=WorkflowInstanceEvent, UrizWorkflowInstanceEvent

Press any key to continue .

OEBPS/httpatomoreillycomsourceoreillyimages224481.png
Wb Sesons << 16 satsts] 5 S epector | 5 AtoResponder i Reques bk) [= T

Result Protocol Host URL Mo | Texton | Weborms | Hextew | Adth [00 e
©1 200 HTTP jonmacpro /UserService/UserService.svc/users| ﬁizr,xszgf?’;};3123”5@""“-5“ users HTTP/I.1
01 200 HTTP Jonmacpro /UserService/UserService.svc/users | ost: jonmachro

91,200 HTTP Jonmacpro /UserService/UserService.svc/users | Content-Type: text/xml

Content-Length: 0

v

Trarsomer | vesies | Toxten | monevew | R | A | Cooma | prvacy TR | o
HTTP/1.1 200 OK

Content-Type: application/xml; charset=utf-§
server: Microsoft-115/7.0

X-Powered-By: ASP.NET

ate: Mon, 18 Aug 2008 23:59:18 GMT
content-Length: 210

l<users xmlns:i="http: //www.w3.0rg/2001/XuLSchema-instance">
<user><id>51blef 50-dcb6-44CF-8428-42b513b45cb9</1d><F1 rstname>
Jon</firstnane><lastname>Flanders</Tastname><email>
jonGexample. org</emai1></user></users>

OEBPS/httpatomoreillycomsourceoreillyimages224459.png
- nd.exe
URI path segments are:

type in a URI to test
http://example.org/Eukaryote/
URI not a match

Press any key to continue . . .

OEBPS/httpatomoreillycomsourceoreillyimages224519.png
&
® http://localhost/JSONWebTest/UseDomainServicelSON.aspx - | 2] x | Live search

€ Using WCF Service from ASP.NET AJAX [‘

Life classification
Domain: Archaea ~

Kingdom: ~

Phylum: ~

Class: ~

" Nikhil's Web Development Helper

41 Tools - | Page - Script - HTTP - ASPNET - | Console: & HTTP Logging - [/] Enable Logging B @Y Ale
URL Status Timestamp Response ... Connecl| Show Details...
http://localhost/JISONWebTest/UseDomainService]SON.aspx 200 8/18/2008 5:44: 3,814 00:00:2| X Del

http://localhost/JISONWebTest/WebResource.axd?d=VxxBFxrFbOEZ... 200 8/18/2008 5:44:
http://localhost/ISONWebTest/ScriptResource.axd?d=0ZInTiL Mi7Mj 200 8/18/2008 5:44:
http://localhost/JSONWebTest/ScriptResource.axd?d=0ZINILM7Mjo... 200 8/18/2008 5:44: 78420 00:00:0| o
http://localhost/JSONWebTest/BioWrapperService.svc/jsdebug 200 8/18/2008 5:44: 2,048 00:00:0) @ o
http://localhost/ISONWebTest/BioWrapperService.svc/GetRoot 200 8/18/2008 5:44:... 176 00:00:0)

20,794 00:00:0|| 3 Clear
311,158 00:00:0 &3 Copy

OEBPS/httpatomoreillycomsourceoreillyimages224581.png

OEBPS/httpatomoreillycomsourceoreillyimages224583.png
et Rules Tools View- Help

Web sessions <«
+ Re pon. Host URL

G120 we Jormacpro. [UserServelUsarservice sucfusers
@2 200 WP Jonmacpro. userServelusarervice svclusers/e
(930 308 vrre Jonmacpro. NserservelUserservice svclusersead

© Sttstcs| 5 Sesson npecto | £ AutoResponder G Recuest Bukier () Ftrs | = Tnlne|
(s Totvw | webtoms | i auh | o | 90
(T rSevcaUsrSov scherioaan S 3-429 550 0 38280 HTTPN 1
e
ot Soce on, 21 342008
Pragna: nocae
Cam
s
e oo e et
 Aocepttanguage:ens
| uncrus e
| Ui Agent: Mo/ 4.0 compat; SI 7.5 Widows T 6.0; WOWSA;SLCC NETCLR 2050727 T R 3.0.04506; Weda et P
& ranpont
oo Kep v
o i

Gt

Transtomer | Heades | Textiew | imagevew | Hexvew | Adth | Coching | Prvecy [Tow | XL

11307 Vot WodiFied
erver Hicrosoft-T1s/7 0

roner e s
o A 305 Sode 223007 our

OEBPS/httpatomoreillycomsourceoreillyimages224589.png
rall Resul

Max User Load
Requests/Sec

Requests Faled

Requests Cached Percentage
Avg. Response Time (sec)
Avg. Content Length (bytes)
Tests/Sec

Tests Faled

Avg. Test Time (sec)

Avg. Transaction Time (sec)
Avg. Page Time (sec)

~ Test Resuits
Name

Scenario

25
107

023
96.0
107

023

023

Total Tests

OEBPS/httpatomoreillycomsourceoreillyimages224513.png
Request Headers | Request Body |

Name Value
‘GET /BoService/json HTTP/1.1
V¥ x86
Accept-Language en-us
Referer http://localhost/JSONWebTest/UseDomainServiceJSON.htm
Accept applcation/json
Accept-Encoding gp, deflate
User-Agent Mozila/4.0 (compatible; MSTE 7.0; Windows NT 6.0; WOW64; SLCCL
Host localhost
Connection Keep-Alive

Response Headers| Response Content

Name : "Eubacteria”

Uri: "Eubacteria”
=02

Name : "Eukaryota”

Uri: "Eukaryota”

OEBPS/httpatomoreillycomsourceoreillyimages224609.png
Fiddler - HTTP Debugging Proxy.

Web sessions =]
2| Resut [Protocol | Host [URL
o 20 e Win2008 [serservice Usersers
[EF—— Vin2008 _ serservic serserv
Bz w1 wm w2008 serService/UserSenvid

—

——

=181 x]

@) stotstics 1§ Session Inspector | £ AutoResponder | & Request Buider | (] Fiters | "= Timelne |
Theaders | Textien | Webrorms | Hexew | Auh | Raw | 0t |
Request Headers [Raw] [Header Definitions]
[FOST /rSevce/UserSrvio s s HTTP/1 T
‘Accept: image/aif, image /x-xbitmap, image ipeg, image/pipeq, appication)x-ms-appication, appication)vnd.ms-xpsdocument, wuiﬂﬂn_n/'z‘

Kl |
Transfomer | Headers | TextVew | InageView | Hexvien | Auth | Cochng | Privacy |[Ram |

[FTTP/i.1 201 created
|Cache-contro1: no-cache

[Content-Type: appiication/atomsxm; charset=utf-s

[Cocation: hrip: o - 5

[Server: wicrosofc-1e/s.0.
[X-Aspher-Version: 2.0.50727
X-Ponered-ay: ASe. NeT

[Date: Tue, 25 Ju1 2008 0:42:53 GIT.
[Content-Cangen: 555

[<rxm version=:

07 encoding="ucr—5" standalone="yes"7>
Serery ST Basesticep!) ingoos, Userserulce Userstrvice.sve "
[imineY = heep: /7schanas. mi crosoft: comyado/ 007 08 dataservi cas”
ming: a="hCch: /5 henas. m)crosor <. con/ ade/ 200708/ GAt aservi ces,/metadata” m: type="UserDBodel. user'
A nE= hetp: im0, 2005 AL
Tntto.)/ ina008) ser ServA ce/User service. sve/user (2)</ 18>
SRt ete
SUpiatedlaos-07 237 421532/ updateds
nane />
<fauthord
AP ettt sitlestuser” nrefaruser()” />
Scontent Typec*appication/xm s
roper Eress
e 1a s typesan, zntsats2c/d: ser_id
2erTr 1St hamessons/a: aer TAr St naRe
USErTa5 RanestTandars<)at Geer-135t nanes
LT eRa T Jon 1 anderadve, con/ 0t bz emai 1>
LSS Ta5c a1 ea m: ypestEun DACET ine">2008-07-28T1s:
</mpropertiess
</comenes
/ehers

6. 653</0: user_Tast_modif1ed>

EE ViewinNoteoad

Bt | [1/3 htts/fwn2008 sersenvice Userservice.svchser
Lrstart| % M @ 11)2 vaosoft V.. [T riddier - HTTP . 5 Internet infor. .. | [Adninstrator:

Y
| 7| Untited - Notepad | & Feed formatnot... [« &3(ks 10:44PM

| @ zrosters

OEBPS/httpatomoreillycomsourceoreillyimages224575.png
i Fodler - HTTP Debugging Proxy. -

File Edit Rules Tools View Help
| Web sessions

Resut prot. Host URL
A0 404 HTTP Jonmacpro [UserService/Userservice svc

8 Servie - Windows Intenet xporer

OQ - [@ mpusonmacer ~[4]][tve searcn

W e |Bsenice e

Endpoint not found.

& Local inranet | Potected Mode: Off ®100%

® Statstics| B§ Sesson Inspector | £ AutoResponder | 9 Request Bukder | [Fiters | =
Headers | Textew | WebForms | HexVew | Auth |[Raw | XML
[GET /UserService UzerService ve WTTP/LT

P
anguage: en-us

Jsccept-Encoding: gzip, deflate
[User“Agent: Mozi11a/4.0 (compatible; NSTE 7.0; Windows NT 6.0; WOWGA; SLCCL;
iedia Center PC 5.0; .NET CLR 3.5.21023; Infopath.2; MS-RTC Ui 8

lHost: jonmacpro

‘onnectfon: Keep-Alive

[Pragna: no-cache

Tmeine

LNET CLR 2.0.507:

LN

Transtormer | Headers | TextView | imaqevew | Hexvew | Auth

[FTTP/11 404 Vot Found.
ontent-Type: text/htal; charsetsUrF-§
[Server: Wicrosoft-115/7.0
X-powered-oy: ASPNET.

lpate: Tue, 33 Ju] 2008 08:22:55 GIT

Caching | Prvacy |TRaw

ontent-Length: 1019

#000000: BACKGROUND-COLOR: white}p{l
FONT-FAIILY: Verdanal PRE (BORDER-RIGHT: #{0f020 1px solid; PADDI!

GL{MARGIN-TOP: Opx: PADDING-LEFT: 1spx; FONT-WEIGHT: normal: FONI-SIZE: 26px: |
[PADDING-0T TOM: 3px: MARGIN-LEFT: -30px; WIDTH: 10 FFFFFF; PADDING-TOP: 10px; FONT
[BACKGROUNDCOLOR: #003366} nroUARGEN-LEFT: -15px) </STVLES

o</ TITLES </HEADS <B00Y>
ontent's
heading1">Service</ps
[<ew/>

[P class="intro">Endpoint not found.</p>
[</orv>
[</e00v>-</smL>

OEBPS/httpatomoreillycomsourceoreillyimages224493.png
Host Process

ServiceHost

WebHttpBinding

WebHttpBinding

XBinding

WebServiceHost

WebHttpBinding

WebHttpBinding

WebHttpBinding
[

OEBPS/httpatomoreillycomsourceoreillyimages224557.png
OO [mpiomacoromomoniones wordonsiostronesrc - oo S s

e 4o | seniice behavior WorklowsenviceBeta.. | | B8

Page Q) Tools -

Server Error in '/BlogWorkflowWeb' Application.

Service behavior WorkflowServiceBehavior requires that the binding associated with endpoint
WebHttpBinding_IBlogAPI listening on http://jonmacpro/BlogWorkflowWeb/WorkflowBlogEngine.svc
supports the context protocol, because the contract associated with this endpoint may require a session.
Currently configured binding for this endpoint does not support the context protocol. Please modify the
binding to add support for the context protocol or modify the SessionMode on the contract to NotAllowed.

Description: An unhandled exceplion occurred during the execution of the current web request. Please review the stack irace for more information about the effor and where it originated in the
code.

Exception Details: System InvalidOperationException: Service behavior WorklowServiceBehavior requires that the binding associaled with endpoint WebHtpBinding_IBIOgAP stening on
hitpjonmacpro/BlogWorkflowweb/WorkfiowBlogEngine svc supports the contert prolocol, because the contract associaled with this endpoint may requie a session. Curently configured binding
or this endpoint does not support the confext profocol. Please modiy the binding to add suppor forthe context protocol or modify the Sessionhode on the contract to NotAllowed.

Source Error:

An unhandled exception was generated during the execution of the current web request. Information regarding the origin and
location of the exception can be identified using the exception stack trace below.

Stack Trace:

[InvalidoperationException: Service behavior WorkflowserviceBehavior requires that the binding associated with endpoint WebHttpBinding_T
System. ServiceModel.Channels . Contextgindinge lement . validateContextgindingt lementonal IEndpointswi thsessionfulContract (serviceDescriptic
System.ServiceMode] . Description. Dispatcher8uilder.ValidateDescription(serviceDescription description, ServiceHostBase serviceHost) +2
System. ServiceMode] . Description. Dispatcher8uilder. InitializeServiceHost(ServiceDescription description, ServiceHostBase serviceHost)
System. ServiceMode] . ServiceHostBase. Initial izeRuntime() +61
System. ServiceMode] . ServiceHostBase Onopen(Timespan timeout) +63
System. ServiceModel .Channels . Communicationobject.Open(Tinespan timeout) +563
System. ServiceMode] . HostingWanager . Activateservice(String normalizedvirtualpath) +135
System. Servicevodel . HostingWanager . Ensureserviceavailable(string normalizedvirtualpath) +654

[serviceactivati

Exception: The service '/Bloghorkflomweb/WorkflowslogEngine.svc' cannot be activated due to an exception during compil

OEBPS/httpatomoreillycomsourceoreillyimages224621.png
Entity Data Model Wizard

q&/ (Choose Your Database Objects

Which database objects do you want o include in your model?

arou (dbo)
5 user (dbo)
2 user_group_mapping (dbo)

[ty Viens

I stored Procecures

Wodel Namespace
==

OEBPS/httpatomoreillycomsourceoreillyimages224627.png
12 Assembly Information File

Tibebuger Viuaizer
) Generic Handler
3+ page

Categories: Templates:
Vil Cr Visual Studio mstalled templates

Code
ey e Form lvester Page:
General [web user Contol
web | oatabase Unit Test
Windows Forms & ADO.NET Entty Data Model $5)aax Clent sehavir
e AJAX Clent Control S)aax lent ibrary
Reportng X Master Page (5l Ax vieb Form
Workflow |53 AJaX-enabled WCF Service

5] Applcation Hanifest e
DJoronser Fe

) sz Disgram
(EJoataset

35 DymamicDsta Feld

4] Global Applcation Class
B nstaler Cass

'ADO.NET Data Service

Name: Userservice.svc

OEBPS/httpatomoreillycomsourceoreillyimages224539.png
Windows Internet Explorer

OO et Bl
& & Eheaoshciesseco) I

B - B - &~ [yee - @ o

<string xmins="http:/ /schemas.microsoft.com/2003/10/Serialization/*>No security context</string>

OEBPS/httpatomoreillycomsourceoreillyimages224615.png
[Add New Ttem - UserService

Categories:

Templates:

Visual C#

Code
Data
General
vieb

Wiindows Forms

wiPF
Reporting
Wiorkfiow

e Form
[web User Control

| oatabase Unt Test

| ADO.NET Entity Data Model

|AJAX Master Page
5 AJAX-enabled WCF Service

Tebugger Viusizer
) Generic Handler
3+ page

Visual Studio installed templates

[vaster page

| 2 ADONET Data Service
S1A2X Clent Behavior
S)AIAX Clent Lirary

(3] Applcation Manifest Fie:
Jeronser e

) sz Disgram
(EJoataset

3 DynamicData Feld

4] Global Applcation Class
B nstaler Cass

Name:

‘A projectitem for creating an ADO.NET Entity Data Model.

User. edmy]

OEBPS/httpatomoreillycomsourceoreillyimages224579.png
8 Fiadier - HTTP Debugging Proxy

Fle ot Rules Tools View Help

Web sessions <«
+ Re P, Host URL
g1 ;0 we Joomacpro. NserservelUsarservicesvcfusers

@ sattes| 5 Seson nspctor | £ AutoResponder| 8 Request auker |) ters| = Tmaine|
Peaders | Texaven | wWebroms | Hesvew | Aun [| 00

e e

e
o e

Cept: Tnaoe
et ol Hcation/x-siTverTight, application/x-shockwave-1

[abpTRcation/mshord, ‘applfeation/c-s! uer 11aht-2-52, 2pp)

gl dotace :
112/3.0" Compatible; WSTE 7.0; windows NT 6.0; WONGA; SLCCL; NET CLR 2.0.50727; .NET LR 3.0.0450
T CLR'3 5 31022; Tnfopath 21 WSIRIC Lt 8)

o [vew i
Trontormer | eaders | Textvew | maovew | rxview | Adh | Coonoa | prvacy Traw oo |

[ATTP/3.1 201 Created.
 Spplication/sal; charsetautf-o

ent-Length: 191

fauser xul s/ /i3 or /2001 ULSchema-nstance" <id><e206F28-251-4820-27d0-bebaal0aeS16</ids<Firstnanes
[</FSrtnanes <Tastnames 1 ander </ astnanes <onai 1>JonsFoo. cons/ana 15/ usar>

OEBPS/httpatomoreillycomsourceoreillyimages224469.png
~ |2 Page v <} Tools

<?xml version="1.0" encoding="utf-8" 2>
- <Domains xmins:xsi="http:/ /www.w3.0rg/2001/XMLSchema-instance"
xmins:xsd="http:/ /www.w3.0rg/2001/XMLSchema">
<Domain name="Archaea" uri="Archaea" />
<Domain name="Eubacteria" uri="Eubacteria" />
<Domain name="Eukaryota" uri="Eukaryota" />
</Domains>

OEBPS/httpatomoreillycomsourceoreillyimages224447.png
w Transport channel

Message

Protocol channel
(1-N)

Dispatcher
action

Your code

OEBPS/httpatomoreillycomsourceoreillyimages224577.png
B Fiodier - HTTP Debugging Promy ™ o T

Ele ot Bules Tools View Help

Meb Gessios [<< 1@ Sttstes| 25 Sesson nspctor # utesponder] 9§ Recuest Bude | fters |
+ e Pt Host[URL
EReTat Jonmacpro. Rsersenvecusersenve sclusers

post - g JonmacprofysersevieUserSenve svluses e

ey s
|| st it st st e, st st st s sk
N s

ety

Ketsng om ade

e ot NS .05 Woks T 6 O LT T CLR 2050727, ETCLR 3004506 W Crte €5,

s

T S

e

g

m 0
Request Body

>

Sfstrames on<rstrame>

<stames Fanders< fstnane>

e neloo ot

OEBPS/httpatomoreillycomsourceoreillyimages224455.png
URI path segments are:
[DOMAIN

SPECIES

'type in a URI to test
http://example.org/Eukaryote/Animalia/Chordata/Actinopterygii/Siluriformes/Malap
teruridae/Malapterurus/minjiriya
DOMAIN = Eukaryote

KINGDOM = Animalia

PHYLUM = Chordata

|CLASS Actinopterygii

|ORDER = Siluriformes

[FAMILY Malapteruridae

|GENUS = Malapterurus

SPECIES = minjiriya

Press any key to continue . .

OEBPS/httpatomoreillycomsourceoreillyimages224437.png
Client

POST /users HTTP/1.1

Host :exanple. org
Content_Length:111
Content~type: application/xnl

<user>
<id/>
<firstname>Jon</firstname>
<lastname>Flanders</lastname>
<email>jon@foo.com</email>
</usery’

Service

HTTP/1.1 201 Created
Content-Length:116
Content-type: application/xml
Location:

http: //exanple.org/users/1

<user>
<id>1</id>
<firstname>Jon</firstname>
<lastname>Flanders</lastname>
<email>jon@foo.com</email>
</user>’

OEBPS/httpatomoreillycomsourceoreillyimages224443.png
Client

PUT/users/1 HTTP/1.1

Host :exanple. org
Content-Length:116
Content-type: application/xnl

<user>
<id>i</id>
<Firstnane>Jonc/Firstnane>
<lastname>Flanders</lastname>
<email>jongbar.conc/enail>
</usery’

Service

HTTP/1.1 200 OK
Content-Length:116
Content-type: application/xml

<user>

Ad>1¢/id>
<firstnane>Jon</firstnane>
<lastnane>Flanders</lastnane>
<email>jon@bar .come/email>
</user>

OEBPS/oreilly_large.gif
O’REILLY

OEBPS/httpatomoreillycomsourceoreillyimages224491.png
#
a1

o1,

01

a1,
04,

a4,

Result
200
200
200
200
200
200

Protocol
HTTP
HTTP
HTTP
HTTP
HTTP
HTTP

Host | URL |
jonmacpro /UserService/UserService.svc/users
jonmacpro /UserService/UserService.svc/users
Jonmacpro /UserService/UserService svc/users
jonmacpro /UserService/UserService svc/users|
jonmacpro /UserService/UserService.svc/users)|
Jonmacpro /UserService/UserService svc/users,|

O statstes| 5 Sesson nspector | £ AutoResponder S Request Bider) s
Veodes | Texten | Weborms | Hextew . Auh (R 00
DELETE /Userservice/Userservice.sve/users/51blef50-dcb6-44ct-
8428-42b513b45cb9 HTTP/1.1

User-Agent: Fiddler

Host: jonmacpro

Tarsormer | Vesdes | Yo | imoaeven | e | Auth | Gow | prvacy [Thaw | L
HTTP/L.1 200 OK

Server: Microsoft-I1s/7.0

X-Powered-By: ASP.NET

Date: Tue, 19 Aug 2008 00:04:08 GMT
content-Length: 0

OEBPS/httpatomoreillycomsourceoreillyimages224529.png
2 http://localhost:51435/SilverlightAndRESTWeb/BioService.svc/

w &

 nttp://localhost:51435/SilverlightAndR. [‘ [~ @ v |5 Page v (i Tools

- <Domains xmins:i="http:/ /www.w3.0rg/2001/XMLSchema-instance">
- <Domain>
<Name>Archaea</Name>
<Uri>Archaea</Uri>
</Domain>
- <Domain>
<Name>Eubacteria</Name>
<Uri>Eubacteria</Uri>
</Domain>
- <Domain>
<Name>Eukaryota</Name>
<Uri>Eukaryota</Uri>
</Domain>
</Domains>

OEBPS/httpatomoreillycomsourceoreillyimages224555.png
Flle Edit View Project Buld Debug Data Tools Test Analyze Window Help

E-E-S @ % 0B[9 80| b Debug Ay CPU

|28 senicesecurycomen_» | & 538 32 B2 -0

GetBlog SytemWordlowAcities ReceiveActiiy
E&L@.’.Lﬁ________.
Activy
ame) GetBlog
Canreateinstance True
Comtextoken
Descripton
Enabled e
Fauessage 0
SenviceOperatonino BlogCheckListContracts IBlogAPLGetBlog
Handiers
E =
Retmyaiue) o Actty=generateBlogActiy, Path=Atom10Feed
Name senerateBlogActivityL
patn Atomi0Feed
B RetumValue)
g Please specify a value for parameter of type ‘SystemServiceModel Syndication Atom10FeedF-

OEBPS/httpatomoreillycomsourceoreillyimages224475.png
#
01

ResultProtocol
200 HTTP

Host URL
Jonmacpro /UserService/UserService.svc/users

© sattes| 5 ssson nspector | 5 putoesponder | G Rt |) s | = Tmeine
Headrs | TextVew | Webboms | Hexven | Auh R | 4L

Host: jonmacpro

we

[GET /Userservice/Userservice.svc/users HTTP/1.1
User-Agent: Fiddler

Trartormer | readis | Totuen | imoaerew | novew | A | Goawa | pivacy TRaw | 0L

HTTP/1.1 200 OK

content-Léngth:

<users xmlns

content-Type: application/xml; charset=utf-§
Server: Microsoft-IIS/7.0

X-Powered-By: ASP.NET
Date: Mon, 18 Aug 2008 2

116 GMT
60

"http://waw.w3.0rg/2001/xMLSchema-instance" />

OEBPS/httpatomoreillycomsourceoreillyimages224449.png
Bl C\Windows\system32\cmd.exe

[Sinple HTTP Seruvice Listening
Press enter to stop seruvice
Request to /TestHttp

GET Request - no message Body
Querystring = foo=bar

<string

xmins="http:/ /schemas.microsoft.com/2003/10/Serialization/">Simple
response string</string>

Im

& Local intranet | Protected Mode: On

OEBPS/httpatomoreillycomsourceoreillyimages224521.png
@‘ 2Bl | httpy/localhost/ISONWebTest/UseDomainService)SON.aspx - | 42] x | tive search

€ Using WCF Service from ASP.NET AJAX [‘

Life classification
Domain: Eukaryota ~

Kingdom: Animalia -

Phylum: ~

Class: ~

| Nikhil's Web Development Helper
41 Tools - | Page ~ Script + HTTP ~ ASPNET - | Console: & HTTP Logging -

URL Status Timestamp 4 || Show Details...
http://localhost/JSONWebTest/WebResource. axd?d=VxxBFxrFbOEZKAGY_KQU7A28t=6335275... 200 8/18/20085: [X% De
http://localhost/ISONWebTest/ScriptResource.axd?d=0ZINILM7MjoPPzwgCBA2OXGIBWWHCSN... 200 8/18/2008 51 || &) Clear
http://localhost/ISONWebTest/ScriptResource.axd?d=0ZInIILM7MjoPPZWgCBAOXGrBIWWHCSN... 200 8/18/2008 5] ||| & Copy
http://localhost/ISONWebTest/BioWrapperService.svc/jsdebug 200 8/18/2008 5: =
http://localhost/ISONWebTest/BioWrapperService.svc/GetRoot 200 8/18/2008 5:

http://localhost/ISONWebTest/BioWrapperService.svc/GetDomain?Domain=%22Eukaryota%22 200 8/18/2008 5:

Enable Logging B @ Ale

P]

OEBPS/httpatomoreillycomsourceoreillyimages224527.png
@ ol @) http:/localhost51435/SilverlightAndRESTWeb/SilverlightAndRESTTestPage.aspx -

¢ 48 | @ Test Page For SilverlightAndREST |

XML | JSON | Feeds

DOMAINS:
Kingdoms:

OEBPS/httpatomoreillycomsourceoreillyimages224523.png
ke http://localhost:58814/SimpleSilverlightTestPage.aspx

™

- ~ 0 v |2 Page v { Tools ~

‘ W [@Test Page For SimpleSilverlight

Click Me!

OEBPS/httpatomoreillycomsourceoreillyimages224517.png
Request Headers |Request Body|

Name Value
‘GET /JSONWebTest/BioWrapperService.svc/jsdebug HTTP/1.1
Accept image/gF, image/x-xbitmap, image/jpeg, mage/pjpeg, applcation/x-... ~

Response Headers| Response Content

Var BioWrapper=function() { 2
Biokirapper. initializeBase(this); =
this._timeout = 0;

this. userContext = nul
this. Jsucceeded = null;
ghis failed = s
Eiolirapper . prototype={
Zget. path:functionO {
Var p = this.get_pathQ;
if (p) return p;

else return Biokrapper._staticInstance.get_path();},

GetRoot : function(succeededCal lback, failedCal lback,” usercontext) {

/// <param name="succeededcallback® type="Function” optional="true" mayBeNull="true
77/ <param name="failedCallback" type='Function" optional='true" mayBeNull="true"><
777 <param name="userContext" optional="true" mayBeNull="true"></param>

return this._invoke(this._get_path(), 'GetRoot',true,{},succeededCallback, failedcal™
GetDomain: functon(Domain, succeededcallback, fajledcallback, userContext) {

7// <param Domain’ type="String">Syste. String</params.
7/7 <param name="succeededCal Iback" type="Function” gptional="true" mayBeNull="true
777 <param Failedcallback” type='Function” optional="true" mayBeNull="true"><
777 <param userContext” optional="true" mayBeNull="true"></param>

return this._invoke(this. get_path(), 'GetDomain', true, {Domain:Domain},succeededcal
Biolirapper . registerClass ('BioWrapper ' ,Sys.Net.WebServiceProxy) ;

Biolirapper ._staticInstance = new Biokrapper();

BioWrapper . set_path = function(value) {

Biolirapper ._staticInstance.set_path(value); }

Biour apper et path = function®).{

/// <value type="String" mayBeNull="true">The service url.</values

return BioWrapper ._staticInstance.get_path();}

Biolirapper.set_timeout = function{value) { L
Biolirapper ._staticInstance.set_timeout(value); }

Biolirapper .get_timeout = function() {

717 walue SypectNumber">The service timeout.</value>

return BioWrapper._staticInstance.get_timeoutO); }
Biolirapper . set_defaultUserContext = function(value) {

Biolirapper ._staticInstance,set_defaultUserContext(value); }

Biolirapper .get_defaul tUserContext = function() {

717 «valie mayBeNull="true">The servica default user context.</value>

return Biokirapper . _staticInstance.get_defaultUserContextO); I
Biokirapper . set_defaultsucceededcailback = function(value) |

Biolirapper ._staticInstance.set_defaultSucceededcallback(value); }

Biolirapper . get_defaul tSucceededcallback = function() {

717" walue Sypestrunction” mayBenulTo"true">The service default succeeded callback. _

OEBPS/httpatomoreillycomsourceoreillyimages224611.png
@ statstics 1§ Session Inspector | £ AutoResponder | S Request Buider | [] Fiters |
Tieoders || Textew. | WetForms | Hesven | Auth || R

|

[Raw]_[Header Defit

Sehthors
<nane />

<o

Sk e

STink rel
[pe="apptication/stonssat
entry m types"

Jpesentry"

Siele Hpen

Zabthors

[cype="app1cation/atomexnl ; type

mproperties>
aroupid

</airopertiess
<
<alimise
<ini

[cype=app1ication atomexn

pesantry"

roper tiess:
<8: User group_mapping_id
</m:propertiess

ot eieles"user_group nappin
PEtp: //Schenas. mrosorT, con):

wser_grolp_napping(1)” />
/o5t 08 ez Seer s cer elStlabrous
T e Group: hrer-tuser_oroup_mapBing (1), 91 eup"S

sseroaiodel. group™
<igaNTtp:,//winz008/User Service/User Service. SVe/Qroup(a)</1d>

Fitle="group" nref="group(n)" /> -

NEtp: //schenas.microsort. con/ado/2007/08/dataservices /related/user_group_napping
eed" titie="user_group mapping" hrer="group(i)/use:

<content type="appiication/xnl >

ype="cdn. Int32">1</d: group_id> \

roup_nabping” />

SO oUbnanes Km0 07 Bup-nanes
S oupaescr 1pTaniThe adainisirators. </d:group_descriptior

Shink re1="ntcp: //schenas. microsoft, con/ado/2007/08/dataser vices related/user™

Tl entuser ™ hrafaruser-group mappingCL)/user™ />

<content type="app1 ication/xml">

ype="Edn. Int32">1</d: user_group_mapping_id>

TiewinNote

OEBPS/httpatomoreillycomsourceoreillyimages224445.png
Client

DELETE/users/1 HTTP/1.1
Host :www. userservice.com

Service

HTTP/1.1 200 OK
Content-Length:0

OEBPS/httpatomoreillycomsourceoreillyimages224569.png.jpg
CLIENT SERVICE

OEBPS/httpatomoreillycomsourceoreillyimages224441.png
Client

GET/users/1 HTTP/1.1
Host :exanple. org

Service

HTTP/1.1 200 OK
Content-Length:120
Content-type: application/xnl

<user>

<id>1</id>
<firstname>Jon</firstname>
<lastnane>Flanders</lastnane>
<email>jon@foo.con</email>
</user>

OEBPS/httpatomoreillycomsourceoreillyimages224453.png
Bl C\Winc stem32\cmd.exe

URI path segments are:
[DOMAIN

KINGDOM

PHYLUM

[CLASS

IORDER

FAMILY

GENUS

SPECIES

type in a URI to test

OEBPS/httpatomoreillycomsourceoreillyimages224625.png
| User.edmx | dbo.group: Tab...in2008.UserDB) | ‘dbo.user: Tab...in2008.Us

<edmx:Runtime>
<1-- SSDL content --> /
<edmx:StorageModels>
kSchema Namespace="UserDBModel.Sto" Alias="Self" Provider="System.D
</edmx:StorageModels>
<l-- CSDL content -->
<edmx:ConceptualModels>
kSchema Namespace="UserDBModel" Alias="Self" xmlns="http://schemas.
</edmx:ConceptualModels>
<!-- C-S mapping x?so\f -->
<edmx:Mappings>
kMapping Space="C-S" xmlns:"urn:schemas-mic">...</Mappingﬂ
</edmx:Mappings>
</edmx:Runtime>
kedmx:Designer xmlns:"http://schemas.">...</edmx:Designerﬂ
</edmx: Edmx>

I dbo.user_grou..in2008.UserDB) |

http:[Zschemas.microsoft.com[adozzaa-

OEBPS/httpatomoreillycomsourceoreillyimages224503.png
%Kn

OEBPS/httpatomoreillycomsourceoreillyimages224525.png
ok http://localhost:58814/SimpleSilverlightTestPage.aspx

ﬁi} ke [@TestPagchrSlmpIeSllverllghl [‘ B - B - ® - [page v & Tools

Click Me!

<string xmins="http:/ /schemas.microsoft.com/2003/10/
Serialization/">Simple Silverlight Test</string>

OEBPS/httpatomoreillycomsourceoreillyimages224479.png
01
01,

Result Protocol

200 HTTP
200 HTTP

web sessions

Host URL
jonmacpro /UserService/UserService. svc/users|
Jonmacpro /UserService/UserService. svc/users|

<216 sttt 8 Scsson et |5 Aot R utr 0 s = e

e | Texton | Weskoms | ot | At [iow | 1
POST /Userservice/Userservice.svc/users ATTP/1.1
User-Agent: Fiddler

Host: jonmacpro

(Content-Type: text/xml

(Content-Length: 113

<user>
<id/>
<firstname>Jon</firstnames
<lastname>Flanders</lastname>
<emai1>jon@example.org</email>
</user>

e

T | Vesde | et | ot | Hexvew | A | G vy T 0
HTTP/1 0 0K

Content-Type: application/xml; charset=utf-§
server: Microsoft-11s/7.0

X-Powered-By: ASP.NET

Date: Mon, 18 Aug 2008 23:56:43 GMT
content-Length: 195

i<user xmins:i="http://www.w3.0rg/2001/xMLschema-instance"”><id>
51blef50-dcb6-44cf-8428-42b513b45cb9</1d><F1rstname>Jon
'</firstname><lastname>Flanders</lastname><email>

jon@example’.org</email></user>

OEBPS/httpatomoreillycomsourceoreillyimages224567.png
Wb sessions <1 & st 5 sson opecir | 5 Asoespontes |9 Requst bt) s = T

Result Protocol Host URL Veodes Text | Weborms | Hexten | Auh (R 00

. b P POST /v1/ HTTP/1.1

1 401 HTTP data.beta.m... /v1 (content-Type: application/x-ssds+xml

92201 HTTP data.betam... v/ Authorization: Basic am9uzmxhbmR1cnMxOkxUMSNZRiNXTXhncINCZURDTMTE
Host: data.beta.mssds.com

lcontent-Length: 147

Expect: 100-continue

[<Authority xmins=http://schemas microsoft .con/sitka/2008/03/"
5

xmins : tp://www.w3.0rg/2001/xMLSchema-1instance"><Id>booktestnew
</1d></Authority>
- [ewen

Reponse & et o e 1% G ke apcion. Dok her o e
Tnomer | st | Texvi | imaeve | v | Adh | G | oy [T 0a.

WTTP/L.1 201 Created

Transfer-Encoding: chunked

\Content-Type: appiication/x-ssds+xml

26542

Accept

x-msft-request-id: a8ce510b-f87a-4ca3-bbab-d503df01c12b,a8ce510b-F87
4ca3-bbab-d503df0ic1zb

SMsFtRequestUri: http://data.beta.mssds.com/vl/

bate: Tue, 19 Aug 2008 02:55:25 GMT

o

OEBPS/httpatomoreillycomsourceoreillyimages224505.png
Species: -

OEBPS/httpatomoreillycomsourceoreillyimages224585.png
Eie Eait_Rules

@
ER

Resit proL.

W
20 W

Toois view

e

Web sessions. =
Host_ URL

Jonmacpro. [Userservefuseservee.svcusers

Jonmacpro. [serservelUseSenvicesvcusers/e

© Ststs] B Sesson nepector | % utoResponde| S Ryt utr|) s | = T
s Tt | Wit e [tk

£
usa:ﬂqaﬁ: o Ta/E o SFametibte: uste 7.0; windows W 6.0 LCCL NET LR 2.0.50727;
it =

NET CLR 3.0.04506

Trarstormer | Hesders | Textvew | Imageven | rexvew | A | Goching | Pivacy [TRam | XL
FATmo

oneent Type: “spplication/unl; chars
[an: oatbRankyxExSS

ontent-Length: 191

s smlngs ey e 3. org/2001 pt schens-

stance’s<d>ce206£28-F251-4820-a740-bebaal0aes1f</id><Firstnane>
[/FSrstnanes astnmmest Tanders g

atnanes<onai 1>3one oo, cone/onai 15</users.

OEBPS/httpatomoreillycomsourceoreillyimages224601.png
=l

G © ~ 2] rtwimnzostserserveesersere sveler =4[] fove searcn [+
W R @user I

user

You are viewing a feed that contains frequently updated content. When you

subscribe to a feed, it is added to the Common Feed List. Updated information from
the feed is automatically downloaded to your computer and can be viewed in Internet oAl
Explorer and other programs. Learn more abou feeds,

& subscribe to this feed

Today, July 25, 2008, 10:26:48 PM

OEBPS/httpatomoreillycomsourceoreillyimages224593.png
rall Resul

Max User Load
Requests/Sec

Requests Faled

Requests Cached Percentage
Avg. Response Time (sec)
Avg. Content Length (bytes)
Tests/Sec

Tests Faled

Avg. Test Time (sec)

Avg. Transaction Time (sec)
Avg. Page Time (sec)

~ Test Results
Name

Scenario

25
1,253

0.012
96.0

1,253
0.014

0.012

Total Tests

OEBPS/httpatomoreillycomsourceoreillyimages224541.png
P cor [Console Root \Certificates (Local Computer) \Personal\Certificates]

@ Fle Aden Vew Favores window e

e Zm] & SIRE S |-m

T Corsle Raat
G Certctes (Lol Compute) oot Agen >

& 2 persond. LS8 SCINIDS eis Serveraubentcaton <hone>

 catfeates

§ £ Tusted Root Certcation Authrtes

&) Enteprse st

©) Inermedate Certicaton Autortes

&] Tnsted blshers

5 1 Unusted Certcates

®] Thed orty Root Crtication Autrres

® 3 Tustedpecle

= persoral

®

3 Smart Card Trusted Roots

OEBPS/httpatomoreillycomsourceoreillyimages224499.png
@ http://jonmacpro/SimpleWebHostinglL [‘ w - - = v |5} Page v {J} Tools

w &

<string xmins="http:/ /schemas.microsoft.com/2003/10/Serialization/">Just testing service
hosting and HttpContext.Current isn't nulli1i</string>

