

 [image: First Edition]

 Learning Rails 3

Simon St. Laurent

Edd Dumbill

Eric J Gruber

Published by O’Reilly Media

[image:]
Beijing ⋅ Cambridge ⋅ Farnham ⋅ Köln ⋅ Sebastopol ⋅ Tokyo

SPECIAL OFFER: Upgrade this ebook with O’Reilly

Click here for more information on this offer!
Please note that upgrade offers are not available from sample content.

Preface

Everyone cool seems to agree: Ruby on Rails is an amazing way to build web applications.
 Ruby is a powerful and flexible programming language, and Rails takes advantage of that
 flexibility to build a web application framework that takes care of a tremendous amount of work
 for the developer. Everything sounds great!
Except, well… all the Ruby on Rails books talk about this “Model-View-Controller” thing, and
 they start deep inside the application, close to the database, mos9781449309336t of the time. From an
 experienced Rails developer’s perspective, this makes sense—the framework’s power lies largely
 in making it easy for developers to create a data model quickly, layer controller logic on top
 of that, and then, once all the hard work is done, put a thin layer of interface view on the
 very top. It’s good programming style, and it makes for more robust applications. Advanced Ajax
 functionality seems to come almost for free!
From the point of view of someone learning Ruby on Rails, however, that race to show off
 Rails’ power can be extremely painful. There’s a lot of seemingly magical behavior in Rails that
 works wonderfully—until one of the incantations isn’t quite right and figuring out what happened
 means unraveling all that work Rails did. Rails certainly makes it easier to work with databases
 and objects without spending forever thinking about them, but there are a lot of things to
 figure out before that ease becomes obvious.
If you’d rather learn Ruby on Rails more slowly, starting from pieces that are more familiar
 to the average web developer and then moving slowly into controllers and models, you’re in the
 right place. You can start from the HTML you already likely know, and then move more deeply into
 Rails’ many interlinked components.
Note
This updated version of Learning Rails covers version 3.2. There are substantial changes
 from earlier versions. Rails itself keeps changing, even in ways that affect beginners.

Who This Book Is For

You’ve probably been working with the Web for long enough to know that writing web
 applications always seems more complicated than it should be. There are lots of parts to
 manage, along with lots of people to manage, and hopefully lots of visitors to please. Ruby on
 Rails has intrigued you as one possible solution to that situation.
You may be a designer who’s moving toward application development or a developer who
 combines some design skills with some programming skills. You may be a programmer who’s familiar with HTML but who lacks the sense of
 grace needed to create beautiful design—that’s a fair description of one of the authors of
 this book, anyway. Wherever you’re from, whatever you do, you know the Web well and would like
 to learn how Rails can make your life easier.
The only mandatory technical prerequisite for reading this book is direct familiarity with
 HTML and a general sense of how programming works. You’ll be inserting Ruby code into that
 HTML as a first step toward writing Ruby code directly, so understanding HTML is a key
 foundation. (If you don’t know Ruby at all, you probably want to look over Appendix A or at least keep it handy for
 reference.)
Cascading Style Sheets (CSS) will help you make that HTML look a lot nicer, but it’s not
 necessary for this book. Similarly, a sense of how JavaScript works may help. Experience with
 other templating languages (like PHP, ASP, and ASP.NET) can also help, but it isn’t
 required.
You also need to be willing to work from the command line sometimes. The commands aren’t
 terribly complicated, but they aren’t (yet) completely hidden behind a graphical
 interface.

Who This Book Is Not For

We don’t really want to cut anyone out of the possibility of reading this book, but there
 are some groups of people who aren’t likely to enjoy it. Model-View-Controller purists will
 probably grind their teeth through the first few chapters, and people who insist that data
 structures are at the heart of a good application are going to have to wait an even longer
 time to see their hopes realized. If you consider HTML just a nuisance that programmers have
 to put up with, odds are good that this book isn’t for you. Most of the other Ruby on Rails
 books, though, are written for people who want to start from the model!
Also, people who are convinced that Ruby and Rails are the one true way may have some
 problems with this book, which spends a fair amount of time warning readers about potential
 problems and confusions they need to avoid. Yes, once you’ve worked with Ruby and Rails for a
 while, their elegance is obvious. However, reaching that level of comfort and familiarity is
 often a difficult road. This book attempts to ease as many of those challenges as possible by
 describing them clearly.

What You’ll Learn

Building a Ruby on Rails application requires mastering a complicated set of skills. You
 may find that—depending on how you’re working with it, and who you’re working with—you only
 need part of this tour. That’s fine. Just go as far as you think you’ll need.
At the beginning, you’ll need to install Ruby on Rails. We’ll explore different ways of
 doing this, with an emphasis on easier approaches to getting Ruby and Rails operational.
Next, we’ll create a very simple Ruby on Rails application, with only a basic view and
 then a controller that does a very few things. From this foundation, we’ll explore ways to
 create a more sophisticated layout using a variety of tools, learning more about Ruby along
 the way.
Once we’ve learned how to present information, we’ll take a closer look at controllers and
 what they can do. Forms processing is critical to most web applications, so we’ll build a few
 forms and process their results, moving from the simple to the complex.
Forms can do interesting things without storing data, but after a while it’s a lot more
 fun to have data that lasts for more than just a few moments. The next step is setting up a
 database to store information and figuring out how the magic of Rails’ ActiveRecord makes it easy to create code that maps directly
 to database structures—without having to think too hard about database structures or
 SQL.
Once we have ActiveRecord up and running, we’ll explore scaffolding and its possibilities.
 Rails scaffolding not only helps you build applications quickly, it helps you learn to build
 them well. The RESTful approach that Rails emphasizes will make it simpler for you to create
 applications that are both attractive and maintainable. For purposes of illustration, using
 scaffolding also makes it easier to demonstrate one task at a time, which we hope will make it
 easier for you to understand what’s happening.
Ideally, at this point, you’ll feel comfortable with slightly more complicated data
 models, and we’ll take a look at applications that need to combine data in multiple tables.
 Mixing and matching data is at the heart of most web applications.
We’ll also take a look at testing and debugging Rails code, a key factor in the
 framework’s success. Migrations, which make it easy to modify your underlying data structures
 (and even roll back those changes if necessary), are another key part of Rails’ approach to
 application maintainability.
The next step will be to add some common web applications elements like sessions and
 cookies, as well as authentication. Rails (with the help of gems for authentication) can
 manage a lot of this work for you.
We’ll also let Rails stretch its legs a bit, showing off its recent support for
 Syntactically Awesome Stylesheets (Sass), CoffeeScript scripting, bundle management, and
 sending email messages.
By the end of this tour, you should be comfortable with working in Ruby on Rails. You may
 not be a Rails guru yet, but you’ll be ready to take advantage of all of the other resources
 out there for becoming one.

Ruby and Rails Style

It’s definitely possible to write Ruby on Rails code in ways that look familiar to
 programmers from other languages. However, that code often isn’t really idiomatic Ruby, as
 Ruby programmers have chosen other paths. In general, this book will always try to introduce
 new concepts using syntax that’s likely to be familiar to developers from other environments,
 and then explain what the local idiom does. You’ll learn to write idiomatic Ruby that way (if
 you want to), and at the same time you’ll figure out how to read code from the Ruby
 pros.
We’ve tried to make sure that the code we present is understandable to those without a
 strong background in Ruby. Ruby itself is worth an introductory book (or several), but the
 Ruby code in a lot of Rails applications is simple, thanks to the hard work the framework’s
 creators have already put into it. You may want to install Rails in Chapter 1, and then explore Appendix: “An Incredibly Brief Introduction to
 Ruby” before diving in.

Other Options

There are lots of different ways to learn Rails. Some people want to learn Ruby in detail before jumping into a framework
 that uses it. That’s a perfectly good option, and if you want to start that way, you should
 explore the following books:
	Learning
 Ruby by Michael Fitzgerald (O’Reilly, 2007)

	The Ruby Programming
 Language by David Flanagan and Yukhiro Matsumoto (O’Reilly,
 2008)

	Ruby Pocket
 Reference by Michael Fitzgerald (O’Reilly, 2007)

	Programming Ruby, Third Edition by Dave Thomas with Chad Fowler
 and Andy Hunt (Pragmatic Programmers, 2008)

	The Well-Grounded Rubyist by David A. Black (Manning,
 2009)

	Eloquent Ruby by Russ Olsen (Addison-Wesley, 2011)

	Metaprogramming Ruby by Paolo Perrotta (Pragmatic Programmers,
 2010)

You may also want to supplement (or replace) this book with other books on Rails. If you
 want some other resources, you can explore:
	For maximum excitement, try http://railsforzombies.com/, a training
 tool that includes video and exercises.

	Try http://railscasts.com/ for all kinds of detailed programming
 demonstrations in a video format.

	Ruby on Rails 3 Tutorial by Michael Hartl (Addison-Wesley,
 2010), provides a faster-moving introduction that covers many more extensions for
 Rails.

	The Rails 3 Way by Obie Fernandez (Addison-Wesley, 2010), takes
 a big-book reference approach for developers who already know their way.

	Agile Web Development with Rails, Fourth Edition, (Pragmatic
 Programmers, 2010), by Sam Ruby, Dave Thomas, and David Heinemeier Hansson gives a
 detailed explanation of a wide range of features.

Ideally, you’ll want to make sure that whatever books or online documentation you use
 cover at least Rails 3.0 (or later). Rails’ perpetual evolution has unfortunately made it
 dangerous to use a lot of formerly great but now dated material (some of it works, some of it
 doesn’t).
Finally, key resources you should always explore are the Ruby on Rails Guides (http://guides.rubyonrails.org/), which provide an excellent and well-updated
 overview for a lot of common topics. Sometimes they leave gaps or demand more background
 knowledge than beginners have, but they’re a wonderful layer of documentation at a level above
 the basic (though also useful) API documentation at http://api.rubyonrails.org/.

Rails Versions

The Rails team is perpetually improving Rails and releasing new versions. This book was
 updated for Rails 3.2.3 and Ruby 1.9.2.

If You Have Problems Making Examples Work

When you’re starting to use a new framework, error messages can be hard, even impossible,
 to decipher. We’ve included occasional notes in the book about particular errors you might
 see, but it seems very normal for different people to encounter different errors as they work
 through examples. Sometimes it’s the result of skipping a step or entering code just a little
 differently than it was in the book. It’s probably not the result of a problem in Rails
 itself, even if the error message seems to come from deep in the framework. That isn’t likely
 an error in the framework, but much more likely a problem the framework is having in figuring
 out how to deal with the unexpected code it just encountered.
If you find yourself stuck, here are a few things you should check:
	What version of Ruby are you running?
	You can check by entering ruby -v. All of the
 examples in this book were written with Ruby 1.9.2. You can also use Ruby 1.8.7 with
 Rails, but many of the examples here (especially those using hashes) may not always work
 for you. Versions of Ruby older than 1.8.7 may cause problems for Rails 3.x, and even
 version 1.9.1 of Ruby causes problems. Chapter 1
 explores how to install Ruby, but you may need to find documentation specific to your
 specific operating system and environment.

	What version of Rails are you running?
	You can check by running rails -v. You might
 think that you should be able to use the examples here with any version of Rails
 3.x, but Rails keeps changing in ways that break even simple code
 even among the 3.x versions. The examples on the book’s site include a number of
 versions from Rails 2.1 to Rails 3.2. If you’re running a version of Rails other than
 3.2, especially an earlier version, you will encounter problems.

	Are you calling the program the right way?
	Linux and Mac OS X both use a forward slash, /,
 as a directory separator, whereas Windows uses a backslash, \. This book uses the forward slash, but if you’re in Windows, you may need
 to use the backslash. Leaving out an argument can also produce some really
 incomprehensible error messages.

	Is the database connected?
	By default, Rails expects you to have SQLite up and running, though some
 installations use MySQL or other databases. If you’re getting errors that have “sql” in
 them somewhere, it’s probably the database. Check that the database is installed and
 running, that the settings in database.yml are correct, and that the permissions, if any, are set correctly.

	Are all of the pieces there?
	Most of the time, assembling a Rails application, even a simple one, requires
 modifying multiple files—at least a view and a controller. If you’ve only built a
 controller, you’re missing a key piece you need to see your results; if you’ve only
 built a view, you need a controller to call it. As you build more and more complex
 applications, you’ll need to make sure you’ve considered routing, models, and maybe even
 configuration and plug-ins. What looks like a simple call in one part of the application
 may depend on pieces elsewhere.
Eventually, you’ll know what kinds of problems specific missing pieces cause, but at
 least at first, try to make sure you’ve entered complete examples before running
 them.
It’s also possible to have files present but with the wrong permissions set. If you
 know a file is there, but Rails can’t seem to get to it, check to make sure that
 permissions are set correctly.

	Did you save all the files?
	Of course this never happens to you. However, making things happen in Rails often
 means tinkering with multiple files at the same time, and it’s easy to forget to save
 one as you move along. This can be especially confusing if it was a configuration or
 migration file. Always take a moment to make sure everything you’re editing has been
 saved before trying to run your application.

	Are your routes right?
	If you can’t get a page to come up, you probably have a problem with your routes.
 This is a more common problem when you’re creating controllers directly, as you will be
 up through Chapter 4, rather than having Rails generate scaffolding. Check config/routes.rb.

	Is everything named correctly?
	Rails depends on naming conventions to establish connections between data and code
 without you having to specify them explicitly. This works wonderfully, until you have a
 typo somewhere obscure. Rails also relies on a number of Ruby conventions for variables,
 prefacing instance variables with @ or symbols with
 :. These special characters make a big difference,
 so make sure they’re correct.

	Is the Ruby syntax right?
	If you get syntax errors, or sometimes even if you get a nil object error, you may have an extra space, missing bracket, or similar
 issue. Ruby syntax is extremely flexible, so you can usually ignore the discipline of
 brackets, parentheses, or spaces—but sometimes it
 really does matter.

	Is another Rails app running?
	Jumping quickly between programs can be really confusing. In a normal development
 cycle, you’ll just have one app running, and things just work. When you’re reading a
 book, especially if you’re downloading the examples, it’s easy to start an app, close
 the window you use to explore it, and forget it’s still running underneath. Definitely
 stop one server before running another while you’re exploring the apps in this
 book.

	Are you running the right program?
	Yes, this sounds weird. When you’re developing real programs, it makes sense to
 leave the server running to check back and forth with your changes. If you’re testing
 out a lot of small application examples quickly, though, you may have problems.
 Definitely leave the server running while you’re working within a given example, but
 stop it when you change chapters or set off to create a new application with the
 rails command.

	Does your model specify attr_accessible?
	Rails tightened its security rules in Rails 3.2, requiring that models include an
 attr_accessible declaration at the start,
 identifying which fields can be reached through Rails. Older code, even code from
 earlier versions of this book, generally didn’t do this. If you get error messages like
 “Can’t mass-assign protected attributes,” this is likely the problem.

	Did the authors just plain screw up?
	Obviously, we’re working hard to ensure that all of the code in this book runs
 smoothly the first time, but it’s possible that an error crept through. You’ll want to
 check the errata, described in the next section, and download sample code, which will be
 updated for errata.

It’s tempting to try Googling errors to find a quick fix. Unfortunately, the issues just
 described are more likely to be the problem than something else that has clear documentation.
 The Rails API documentation (http://api.rubyonrails.org/) might be helpful at
 times, especially if you’re experimenting with extending an example. There shouldn’t be much
 out there, though, beyond the book example files themselves that you can download to fix an
 example.

If You Like (or Don’t Like) This Book

If you like—or don’t like—this book, by all means, please let people know. Amazon reviews
 are one popular way to share your happiness (or lack of happiness), or you can leave reviews
 on the site for this book:
	http://www.oreilly.com/catalog/9781449309336/

There’s also a link to errata there. Errata gives readers a way to let us know about
 typos, errors, and other problems with the book. The errata will be visible on the page
 immediately, and we’ll confirm it after checking it out. O’Reilly can also fix errata in
 future printings of the book and on Safari, making for a better reader experience pretty
 quickly.
We hope to keep this book updated for future versions of Rails and will also incorporate
 suggestions and complaints into future editions.

Conventions Used in This Book

The following font conventions are used in this book:
	Italic
	Indicates pathnames, filenames, and program names; Internet addresses, such as
 domain names and URLs; and new items where they are defined.

	Constant width
	Indicates command lines and options that should be typed verbatim; names and
 keywords in programs, including method names, variable names, and class names; and HTML
 element tags.

	Constant width bold
	Indicates emphasis in program code lines.

	Constant width italic
	Indicates text that should be replaced with user-supplied values.

Note
This icon signifies a tip, suggestion, or general note.

Warning
This icon indicates a warning or caution.

Using Code Examples

The code examples for this book, which are
 available
 from http://oreil.ly/LearningRails3, come in two forms. One
 is a set of examples, organized by chapter, with each example numbered and named. These
 examples are referenced from the relevant chapter. The other form is a dump of all the code
 from the book, in the order it was presented in the book. That can be helpful if you need a
 line that didn’t make it into the final example, or if you want to cut and paste pieces as you
 walk through the examples. Hopefully, the code will help you learn.
So far, the code examples for this electronic version of the book have stayed in sync with
 the code examples for the print book, updated for errata.
This book is here to help you get your job done. In general, you may use the code in this
 book in your programs and documentation. You do not need to contact us for permission unless
 you’re reproducing a significant portion of the code. For example, writing a program that uses
 several chunks of code from this book does not require permission. Selling or distributing a
 CD-ROM of examples from O’Reilly books does require permission. Answering
 a question by citing this book and quoting example code does not require permission.
 Incorporating a significant amount of example code from this book into your product’s
 documentation does require permission.
We appreciate, but do not require, attribution. An attribution usually includes the
 title, author, publisher, and ISBN. For example:
 “Learning Rails 3 by Simon St.Laurent, Edd Dumbill, and Eric J. Gruber.
 Copyright 2012 Simon St.Laurent, Edd Dumbill, and Eric Gruber, 978-1-449-30933-6.”
If you feel your use of code examples falls outside fair use or the permission given
 above, feel free to contact us at permissions@oreilly.com.

Safari® Books Online

Note
Safari Books Online (www.safaribooksonline.com)
 is an on-demand digital library that delivers expert content in both book and video form
 from the world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and creative
 professionals use Safari Books Online as their primary resource for research, problem solving,
 learning, and certification training.
Safari Books Online offers a range of product mixes and pricing
 programs for organizations, government
 agencies, and individuals. Subscribers have
 access to thousands of books, training videos, and prepublication manuscripts in one fully
 searchable database from publishers like O’Reilly Media, Prentice Hall Professional,
 Addison-Wesley Professional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco
 Press, John Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT
 Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course Technology, and
 dozens more. For more information about Safari Books Online, please visit us online.

How to Contact Us

Please address comments and questions concerning this book to the publisher:
	O’Reilly Media, Inc.
	1005 Gravenstein Highway North
	Sebastopol, CA 95472
	800-998-9938 (in the United States or Canada)
	707-829-0515 (international or local)
	707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
 information. You can access this page at:
	http://oreil.ly/LearningRails3

To comment or ask technical questions about this book, send email to:
	bookquestions@oreilly.com

For more information about our books, courses, conferences, and news, see our website at
 http://www.oreilly.com.
Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia
Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments

Thanks to Mike Loukides for thinking that Rails could use a new and different approach,
 and for supporting this project along the way. Tech reviewers Gregg Pollack, Shelley Powers,
 Mike Fitzgerald, Eric Berry, David Schruth, Mike Hendrickson, and Mark Levitt all helped
 improve the first edition of the book tremendously. For this edition, Aaron Sumner, David
 DeMello, and Alan Harris went through the details carefully, finding many changes we’d
 overlooked and making helpful suggestions. The rubyonrails-talk group provided regular
 inspiration, as did the screencasts and podcasts at http://railscasts.com/.
Edd Dumbill wishes to thank his lovely children, Thomas, Katherine, and Peter, for bashing
 earnestly on the keyboard, and his coauthor, Simon St.Laurent, for his patient encouragement
 in writing this book.
Simon St.Laurent wants to thank Angelika St.Laurent for her support over the course of
 writing this, even when it interfered with dinner, and Sungiva and Konrad St.Laurent for their
 loudly shouted suggestions. Simon would also like to thank Edd Dumbill for his initial
 encouragement and for making this book possible.
Eric would like to thank his lovely wife for enduring many late-night endeavors to learn
 about this wonderful world of code, his parents and sister for always encouraging him to find
 his own path, his community of designers and developers in the Lawrence area, Aaron Sumner for
 being a patient guide in the Ruby world, and his children, who inspire him to learn how to
 code well enough to teach it to them (if that’s what they want).
We’d all like to thank Jasmine Perez for cleaning up our prose, Iris Febres for getting
 this book through production, and Lucie Haskins for the patient work it takes to build an
 index.

Chapter 1. Starting Up Ruby on Rails

Before you can use Rails, you have to install it. Even if it’s already
 installed on your computer, you may need to consider upgrading it. In this
 chapter, we’ll take a look at some ways of installing Ruby, Rails, and the
 supporting infrastructure. Please feel very welcome to jump to whatever
 pieces of this section interest you and skip past those that don’t. Once the
 software is working, we’ll generate the basic Rails application, which will
 at least let you know if Rails is working. However you decide to set up
 Rails, in the end you’re going to have a structure like that shown in Figure 1-1.
[image: The many components of a Rails installation]

Figure 1-1. The many components of a Rails installation

Note
All of these options are free. You don’t need to spend any money to
 use Rails, unless maybe you feel like buying a nice text editor.

[image: The Rails welcome page]

Figure 1-2. The Rails welcome page

If You Run Windows, You’re Lucky

Windows users (at last) can get a basic installation of Rails and supporting
 tools—everything you need to use this book—far more easily than anyone
 else. EngineYard’s Rails Installer, which you can get at http://railsinstaller.org/ , provides all the key components
 in a one-click installation. Visit the site, download the installer, and
 watch the video; after that, you should be ready to move ahead to Starting Up Rails.
Really, it’s that easy! (Well, except that you may have to tell
 Windows Defender not to block the port Rails uses to present the site.
 It’s also possible that you’ll have to install developer tools on newer
 versions of Windows.)
Note
As this book was going to print, an initial version of RailsInstaller appeared for Mac OS X at http://railsinstaller.org/. Macintosh users may also be lucky now. Linux users still await a “coming soon” version.

Getting Started at the Command Line

Installing Rails by hand requires installing Ruby (preferably 1.9.2 or later),
 installing Gems, and then installing Rails. You will eventually also need
 to install SQLite, MySQL, or another relational database, though SQLite is
 already present on the Mac and in many Linux distributions.
Note
As this book was going to print, an initial version of RailsInstaller appeared for Mac OS X at http://railsinstaller.org. Macintosh users may also be lucky now, while Linux users still await a “coming soon” version.

Ruby comes standard on a number of Linux and Macintosh platforms. To
 see whether it’s there, and what version it has, enter ruby -v at the command prompt. You’ll want Ruby
 1.8.7 or 1.9.2, so you may need to update it to a more recent version:
	On Mac OS X, Snow Leopard (10.6) and Lion (10.7) include Ruby 1.8.7,
 and Leopard (10.5) includes Ruby 1.8.6, but the previous version of OS
 X included Ruby 1.8.2. If you’re on Tiger (10.4) or an earlier version
 of OS X, you’ll need to update Ruby itself, a challenge that’s beyond
 the scope of this book. You may want to investigate MacPorts, and the
 directions at http://nowiknow.wordpress.com/2007/10/07/install-ruby-on-rails-for-mac/.
 For a more comprehensive installation, explore http://paulsturgess.co.uk/articles/show/46/. (You should
 ignore the versions of Rails installed with OS X - they’re guaranteed
 to be out of date.)

	Most distributions of Linux include Ruby, but you’ll want to use your
 package manager to make sure it’s updated to 1.9.2. Some, notably
 Ubuntu and Debian, will name the gem command gem1.9.

	For Windows, unless you’re a hardened tinkerer, it’s much easier to use Rails
 Installer. If you’re feeling strong, the One-Click Ruby Installer (http://rubyinstaller.rubyforge.org/) is probably your
 easiest option, though there are other alternatives, including
 Cygwin (http://www.cygwin.com/),
 which brings a lot of the Unix environment to Windows.

A saner long-term approach to installing Ruby and Rails also
 includes installing rvm, the Ruby Version Manager, which frees you from having
 to worry about what version of Ruby your system decided it should have as
 well as giving you better options for managing a clean work environment.
 You can find out more about rvm at http://rvm.beginrescueend.com/. (It was created by
 Wayne E. Seguin, the same person who created Rails
 Installer.) If that doesn’t seem right to you, you can also find out more
 on how to install Ruby on a variety of platforms, see http://www.ruby-lang.org/en/downloads/.
Note
If rvm isn’t for you, you may also want to explore rbenv (https://github.com/sstephenson/rbenv/), a much smaller and
 simpler approach to switching between versions of Ruby.

RubyGems (often just called Gems) is also starting to come standard
 on a number of platforms, most recently on Mac OS X Leopard and Snow
 Leopard, but if you need to install Gems, see the RubyGems User Guide’s instructions at http://www.rubygems.org/read/chapter/3/.
Warning
If you use MacPorts, apt-get, or a similar package installer, you
 may want to use it only to install Ruby, and then proceed from the
 command line. You certainly can install Gems and Rails with these tools,
 but Gems can update itself, which can make for very confusing package
 update issues.

Once you have RubyGems installed, Rails and its many dependencies
 are just a command away (though the output has grown more verbose with
 every version of Rails):
~ simonstl$ gem install rails
	SimonMacBook:living_book_2010_rails_3 simonstl$ gem install rails
	Fetching: i18n-0.6.0.gem (100%)
	Fetching: [many more]..
	Depending on your version of ruby, you may need to install ruby rdoc/ri data:

	<= 1.8.6 : unsupported
	 = 1.8.7 : gem install rdoc-data; rdoc-data --install
	 = 1.9.1 : gem install rdoc-data; rdoc-data --install
	>= 1.9.2 : nothing to do! Yay!
	Fetching: railties-3.2.3.gem (100%)
	Fetching: bundler-1.0.22.gem (100%)
	Fetching: rails-3.2.3.gem (100%)
	Successfully installed i18n-0.6.0
	Successfully installed multi_json-1.1.0
	Successfully installed activesupport-3.2.3
	Successfully installed builder-3.0.0
	Successfully installed activemodel-3.2.3
	Successfully installed rack-1.4.1
	Successfully installed rack-cache-1.2
	Successfully installed rack-test-0.6.1
	Successfully installed journey-1.0.1
	Successfully installed hike-1.2.1
	Successfully installed tilt-1.3.3
	Successfully installed sprockets-2.1.2
	Successfully installed erubis-2.7.0
	Successfully installed actionpack-3.2.3
	Successfully installed arel-3.0.0
	Successfully installed tzinfo-0.3.31
	Successfully installed activerecord-3.2.3
	Successfully installed activeresource-3.2.3
	Successfully installed mime-types-1.17.2
	Successfully installed polyglot-0.3.3
	Successfully installed treetop-1.4.10
	Successfully installed mail-2.4.4
	Successfully installed actionmailer-3.2.3
	Successfully installed thor-0.14.6
	Successfully installed rack-ssl-1.3.2
	Successfully installed json-1.6.5
	Successfully installed rdoc-3.12
	Successfully installed railties-3.2.3
	Successfully installed bundler-1.0.22
	Successfully installed rails-3.2.3
	30 gems installed
	Installing ri documentation for i18n-0.6.0...
 [lots more documentation notices]
You may need to use sudo, which
 gives your command the power of the root (administrative)
 account, if you’re working in an environment that requires root access for
 the installation—otherwise, you can just type gem install rails.
 That will install the latest version of Rails, which may be more recent
 than 3.2.3, as well as all of its dependencies. gem install rails will install the latest
 official release of Rails, which at present is 3.2.3. It will not install
 any Rails betas. (To see which version of Rails is installed, enter
 rails -v at the command line.)
You may also need to install the sqlite3 gem, which isn’t
 automatically installed by the Rails gem but is needed for development.
 That’s gem install
 sqlite3.
If you’re ever wondering which gems (and which versions of gems) are
 installed, type gem list --local. For
 more information on gems, just type gem, or visit http://rubygems.rubyforge.org/.
Note
You can see the documentation that gems have installed by running
 the command gem server, and
 visiting the URL (usually http://localhost:8808)
 that command reports. When you’re done, you can turn off the server with
 Ctrl-C.

Once you have Rails installed, you can create a Rails application
 easily from the command line. Here’s what it looks like in its extended
 glory, but you don’t need to read it every time:
~ $ rails new hello01
 create
 create README.rdoc
 create Rakefile
 create config.ru
 create .gitignore
 create Gemfile
 create app
 create app/assets/images/rails.png
 create app/assets/javascripts/application.js
 create app/assets/stylesheets/application.css
 create app/controllers/application_controller.rb
 create app/helpers/application_helper.rb
 create app/mailers
 create app/models
 create app/views/layouts/application.html.erb
 create app/mailers/.gitkeep
 create app/models/.gitkeep
 create config
 create config/routes.rb
 create config/application.rb
 create config/environment.rb
 create config/environments
 create config/environments/development.rb
 create config/environments/production.rb
 create config/environments/test.rb
 create config/initializers
 create config/initializers/backtrace_silencers.rb
 create config/initializers/inflections.rb
 create config/initializers/mime_types.rb
 create config/initializers/secret_token.rb
 create config/initializers/session_store.rb
 create config/initializers/wrap_parameters.rb
 create config/locales
 create config/locales/en.yml
 create config/boot.rb
 create config/database.yml
 create db
 create db/seeds.rb
 create doc
 create doc/README_FOR_APP
 create lib
 create lib/tasks
 create lib/tasks/.gitkeep
 create lib/assets
 create lib/assets/.gitkeep
 create log
 create log/.gitkeep
 create public
 create public/404.html
 create public/422.html
 create public/500.html
 create public/favicon.ico
 create public/index.html
 create public/robots.txt
 create script
 create script/rails
 create test/fixtures
 create test/fixtures/.gitkeep
 create test/functional
 create test/functional/.gitkeep
 create test/integration
 create test/integration/.gitkeep
 create test/unit
 create test/unit/.gitkeep
 create test/performance/browsing_test.rb
 create test/test_helper.rb
 create tmp/cache
 create tmp/cache/assets
 create vendor/assets/javascripts
 create vendor/assets/javascripts/.gitkeep
 create vendor/assets/stylesheets
 create vendor/assets/stylesheets/.gitkeep
 create vendor/plugins
 create vendor/plugins/.gitkeep
 run bundle install
Fetching source index for https://rubygems.org/
Using rake (0.9.2.2)
Using i18n (0.6.0)
Using multi_json (1.1.0)
Using activesupport (3.2.1)
Using builder (3.0.0)
Using activemodel (3.2.1)
Using erubis (2.7.0)
Using journey (1.0.1)
Using rack (1.4.1)
Using rack-cache (1.1)
Using rack-test (0.6.1)
Using hike (1.2.1)
Using tilt (1.3.3)
Using sprockets (2.1.2)
Using actionpack (3.2.1)
Using mime-types (1.17.2)
Using polyglot (0.3.3)
Using treetop (1.4.10)
Using mail (2.4.1)
Using actionmailer (3.2.1)
Using arel (3.0.0)
Using tzinfo (0.3.31)
Using activerecord (3.2.1)
Using activeresource (3.2.1)
Using bundler (1.0.22)
Using coffee-script-source (1.2.0)
Using execjs (1.3.0)
Using coffee-script (2.2.0)
Using rack-ssl (1.3.2)
Using json (1.6.5)
Using rdoc (3.12)
Using thor (0.14.6)
Using railties (3.2.1)
Installing coffee-rails (3.2.2)
Installing jquery-rails (2.0.0)
Using rails (3.2.1)
Using sass (3.1.15)
Installing sass-rails (3.2.4)
Using sqlite3 (1.3.5)
Using uglifier (1.2.3)
Your bundle is complete! Use `bundle show [gemname]` to see where a
bundled gem is installed.
This also gets longer and longer with each new version of Rails.
 Also, the bundle install piece may pause for a long moment.
Note
Rails application directories are just ordinary directories. You
 can move them, obliterate them and start over, or do whatever you need
 to do with ordinary file-management tools. Each application directory is
 also completely independent—the general “Rails environment” just
 generates these applications.

Starting Up Rails

To start Rails, you’ll need to move into the directory you just created—cd hello01—and then issue your first command to
 get the WEBrick server busy running your application:
~ $ rails server
=> Booting WEBrick
=> Rails 3.2.1 application starting in development on http://0.0.0.0:3000
=> Call with -d to detach
=> Ctrl-C to shutdown server
[2012-02-20 08:48:06] INFO WEBrick 1.3.1
[2012-02-20 08:48:06] INFO ruby 1.9.2 (2010-12-25) [x86_64-darwin10.5.0]
[2012-02-20 08:48:06] INFO WEBrick::HTTPServer#start: pid=89377 port=3000
Rails is now running, and you can watch any errors it encounters
 through the extensive logging you’ll see in this window.
Note
By default, rails server binds
 only to localhost at 0.0.0.0 or
 127.0.0.1, and the application isn’t visible from other computers.
 Normally, that’s a security feature, not a bug, though you can specify
 an address for the server to use with the -b option (and -p for a specific port) if you want to
 make it visible.
For more details on options for using rails server, just enter rails server -h.

If you now visit http://localhost:3000, you’ll
 see the same welcome screen shown previously in Figure 1-2. When
 you’re ready to stop Rails, you can just press Ctrl-C.
Note
You frequently can leave Rails running while coding. In
 development mode, you can make many changes to your application with the
 server running, and you won’t have to restart the server to see them. If
 you change configuration, add scopes, or install gems, though, you’ll
 need to restart.

WEBrick (http://www.webrick.org/) is
 written in Ruby and bundled with recent releases of Ruby.
 It’s very convenient for Ruby development, with or without Rails. It’s an
 excellent testing server, but not designed for large scale
 deployment.
If you’ve never used Ruby before, now would be a good time to
 explore Appendix A, which
 teaches some key components of the language inside of a very simple Rails
 application.
Note
Depending on how you set up your Rails environment and how you use
 Bundler, described in Chapter 17, you may need
 to preface your calls to rails,
 rake, and similar mechanisms with
 bundle exec to make sure you’re
 running exactly the version of the tools you expect to be running. If
 this seems like a lot of extra typing, visit http://robots.thoughtbot.com/post/15346721484/use-bundlers-binstubs
 to learn about binstubs, a way to avoid this.

Test Your Knowledge

Quiz

	What’s the name of the Ruby application packaging utility and
 how do you install Rails with it?

	In what instances would you avoid WEBrick?

	Why should you install a particular version of Ruby on your
 platform when Ruby already comes installed?

Answers

	RubyGems, or just “gems,” which is run with the gem command, is Ruby’s application
 packager. To install the latest version of Rails and all its
 dependencies, just type gem install
 rails.

	WEBrick is great for testing your Rails applications, but
 definitely not the best choice for deployments where performance
 matters.

	Rails only works well on certain versions of Ruby, including
 1.8.7 and 1.9.2.

Chapter 2. Rails on the Web

Now that you have Rails installed, it’s time to make Rails do
 something—not necessarily very much yet, but enough to show you what happens
 when you make a call to a Rails application, and enough to let you do
 something to respond when those calls come in. There’s a long tradition in
 computer books of starting out with a program that says “hello” to the
 programmer. We’ll follow that tradition and pursue it a bit further to make
 clear how Rails can work with HTML. You’re welcome, of course, to make Rails
 say whatever you’d like.
Note
The work in this chapter depends on the hello application created in Chapter 1. If you didn’t create one, go back
 and explore the directions given there. You can also find the files for
 the first demonstration in ch02/hello01 of the downloadable code.

Creating Your Own View

Saying “hello” is a simple thing, focused exclusively on putting a message on a
 screen. To get started, we can post that message using a view including
 HTML that will get sent to the browser.
Rails actually won’t let you create views directly. Its
 controller-centric perspective requires that views be associated with controllers. While that might seem like a
 bit of an imposition, it’s not too hard to work around.
Creating anything in Rails requires going to the command line. Open
 a terminal or command window and go to the home directory of your Rails
 application.
Then type:
 rails generate controller hello index
rails generate’s first argument, controller,
 specifies that it should generate code for a controller, in this case
 named hello, the second argument.
 Finally, including index at the end
 requests a view named index, bound to the hello controller.
Model-View-Controller
“You keep talking about views, controllers, and models. What is
 all that?”
It’s a bit of programmer-speak: Model-View-Controller, or MVC,
 is an old idea that got its start in the Smalltalk
 programming world of the 1970s. The model is the
 underlying data structure, specific to the task the program is
 addressing; controllers manage the flow of data into and out of those objects; and
 views present the information provided by those
 controllers to users.
MVC is an excellent approach for building maintainable
 applications, as each layer keeps its logic to itself. Views might
 include a bit of code for presenting the data from the controller, but
 most of the logic for moving information around should be kept in the
 controller, and logic about data structures should be kept in the model.
 If you want to change how something looks, but not change the logic or
 the data structures, you can just create a new view, without disrupting
 everything underneath it.
As you see more of Rails, in this book and elsewhere, you’ll
 probably come to appreciate MVC’s virtues, though it can seem confusing
 and constraining at first. Chapter 4 will explain how
 Rails uses MVC in more detail.

You’ll see something like:
1 create app/controllers/hello_controller.rb
2 route get "hello/index"
3 invoke erb
4 create app/views/hello
5 create app/views/hello/index.html.erb
6 invoke test_unit
7 create test/functional/hello_controller_test.rb
8 invoke helper
9 create app/helpers/hello_helper.rb
10 invoke test_unit
11 create test/unit/helpers/hello_helper_test.rb
12 invoke assets
13 invoke coffee
14 create app/assets/javascripts/hello.js.coffee
15 invoke scss
16 create app/assets/stylesheets/hello.css.scss
Note
Depending on how your Rails installation worked, it’s possible
 that you’ll receive a message requesting that you run bundle install first. Run that, and then you
 should be able to generate controllers (and everything else) without a hitch.

The create entries identify
 directories and files that the generator created itself.
 You’ll see a new controller in line 1, a new views directory in line 4, the index file
 (index.html.erb) we requested in line
 5, a template for creating tests for that controller in line 7, and a
 helper in line 9, plus a helper for tests in line 11. Lines 14 and 16
 create supporting CoffeeScript (which compiles to JavaScript) and Sass
 (which compiles to CSS) files respectively. (The .rb file extension is the conventional extension for Ruby files; .erb is the common extension for Embedded Ruby files.)
Note
If you foul up a rails generate
 command, you can issue rails destroy
 to have Rails try to fix your mistakes.

Rails 3.x requires one more step before we can run the application.
 Rails used to have default routing rules that made it easy to quickly test
 a controller’s existence, but in Rails 3.x those rules are turned off. To
 fix this, you’ll need to visit the config/routes.rb file. At the very bottom, you’ll see:
match ':controller(/:action(/:id))(.:format)'
end
Remove the # that has been bolded
 above. Then Rails will know where to find your code—don’t worry about why
 quite yet—and the index file is now available to the application. Run
 rails server to get it going, and then
 take a look at http://localhost:3000/hello/,
 hello in the application. Figure 2-1 shows what Rails
 created to start with.
[image: The generated index file identifies its home]

Figure 2-1. The generated index file identifies its home

This isn’t pretty, but there’s already something to learn here. Note
 that the URL that brought up this page is http://localhost:3000/hello/. As the page itself says,
 though, the file is in app/views/hello/index.html.erb. There’s a web
 server running and it’s serving files out of the application’s directory,
 but Rails uses its own rules, not the file structure, to decide what gets
 presented at what URL. For right now, it’s enough to know that the name of
 the controller, hello, will bring up its associated view, which is defined
 by the index.html.erb file.
The initial contents of that file are fairly simple, like those of
 Example 2-1.
Example 2-1. The default contents of index.html.erb
<h1>Hello#index</h1>
<p>Find me in app/views/hello/index.html.erb</p>

The Rails designers didn’t even give these generated pieces a full
 HTML document structure. Since the generated code will get replaced
 anyway, it doesn’t matter very much. It’s not that Rails doesn’t care
 about the surrounding markup, but rather that the surrounding markup
 usually comes from layouts, which are covered in the next chapter. For
 this chapter’s purposes, however, the view is enough to work with.
For starters, we’ll just modify the file a little bit so that it
 presents a slightly friendlier hello, as shown in Example 2-2.
Example 2-2. The new contents of index.html.erb
<h1>Hello!</h1>
<p>This is a greeting from app/views/hello/index.html.erb</p>

If you save that file and then reload, you’ll see something like
 Figure 2-2.
[image: A revised greeting]

Figure 2-2. A revised greeting

Putting one simple HTML page in the slightly obscure location of a
 generated HTML page isn’t incredibly exciting, but it’s a start.

What Are All Those Folders?

You might have noticed the large set of folders Rails created for an
 application. We’ll explore most of these in detail over the course of this
 book, but for now, here’s a quick guide to what’s there:
	app
	Where you build your application’s core. It includes subfolders for
 controllers, assets (like images, stylesheets, and JavaScript),
 helpers, models, and views.

	config
	Hosts database configuration, URL routing rules, and the Rails
 environment structures for development, testing, and deployment.
 You’ll also see a config.ru
 file in the main application directory. Rails uses that to start
 your application, and you shouldn’t touch that for now.

	db
	Provides a home to scripts used to manage relational database
 tables.

	doc
	Collects documentation generated from Ruby code using RubyDoc.
 RubyDoc is a documentation generator for Ruby, much like JavaDoc.
 For a lot more information, see http://www.ruby-doc.org/.

	lib
	Holds code that doesn’t quite fit into the model, view, or
 controller classifications, typically code that’s shared by these
 components or plug-ins you install. The tasks subdirectory contains Rake tasks
 for your application.

	log
	Gathers log data—not just errors, but very rich information on
 requests, how they were processed, how long it took to process them,
 and session data from the request.

	public
	Contains mostly static HTML and the favicon.ico file for your
 application, as well as things like 404 Not Found error reporting
 pages.

	script
	The home for the prebuilt code you’ll be using to generate,
 run, and interact with large portions of your Rails
 application.

	test
	Contains code—generated at first, but updated by you—for testing
 your Rails application.

	tmp
	Rails’ internal home for session variables, temporary files, cached
 data, etc.

	vendor
	Houses plug-ins and gems from outside of Rails itself. Also,
 if the application has been frozen to a particular version of Rails,
 that version may be stored here.

Most of the time you’ll work in app or test, with some ventures into public to work on the few parts of your
 application that Rails doesn’t control directly.

Adding Some Data

As pretty much every piece of Rails documentation will suggest, views are really meant to
 provide users with a perspective on data managed by a controller. It’s a
 little strange to run through all this generation and layers of folders
 just to create an HTML file. To start taking advantage of a little more of
 Rails’ power, we’ll put some data into the controller for hello, hello_controller.rb, and then incorporate that
 data into the view.
If you open app/controllers/hello_controller.rb, you’ll see
 the default code that Rails generated, like that in Example 2-3.
Example 2-3. A very basic controller that does nothing
class HelloController < ApplicationController

 def index
 end
end

This is the first real Ruby code we’ve encountered, so it’s worth
 explaining a bit. The name of the class, HelloController, was created by the script
 generator based on the name we gave, Hello. Rails chose this name to
 indicate the name and type of the class, using its normal convention for
 controllers. Controllers are defined as Ruby classes, which inherit
 (<) most of their functionality from the ApplicationController class. (You don’t need to know anything about ApplicationControllers, or even classes—at least
 not yet—so if you don’t understand at this point, just enjoy the generated
 code and keep reading.)
Note
If you need to learn more about Ruby to be comfortable proceeding,
 take a look at Appendix: An Incredibly Brief Introduction to
 Ruby.

def index is the start of the index
 method, which Rails will call by default when it’s asked for a Hello. As
 you can see, it comes to a nearly immediate end, which is
 followed by the end for the class as a
 whole. If we want to make the index
 method do anything, we’ll have to add some logic. For our current
 purposes, that logic can stay extremely simple. Defining a few variables,
 as shown in Example 2-4,
 will let us play with the basic interactions between controllers and
 views, and allow the view to do a few more interesting things. (Example 2-4 is part of the code
 in ch02/hello02.)
Example 2-4. A basic controller that sets some variables
class HelloController < ApplicationController

 def index
 @message="Hello!"

 @count=3

 @bonus="This message came from the controller."
 end
end

Variables whose names start with @ are called instance variables. They belong to the class that defines
 them and have the convenient property of being accessible
 from the associated view.
Warning
When choosing variable names, always be very careful to avoid the
 enormous list of reserved words presented at http://oldwiki.rubyonrails.org/rails/pages/ReservedWords/.
If you use those names, you may find not only that your programs
 don’t run correctly, but also that the supporting development
 environment misbehaves in strange and annoying ways.

To actually use those variables, make some changes to the view as in
 Example 2-5.
Example 2-5. Modifying index.html.erb to use instance variables from the
 controller
<h1><%= @message %></h1>
<p>This is a greeting from app/views/hello/index.html.erb</p>
<p><%= @bonus %></p>

There are two new pieces here, highlighted in bold. Each contains
 the name of one of the instance variables from hello_controller.rb, surrounded by the <%= and %> tags. When Rails processes this document,
 it will replace the <%= ... %>
 with the value inside. You can, of course, create those values from much
 more complex sources than just a simple variable, but it’s easier to see
 what’s happening here in a simple example.
Note
The <% and %> tags are delimiters used by ERb,
 Embedded Ruby. ERb is part of Ruby and is used extensively in Rails. ERb
 isn’t the only way to generate result views with Rails, but it’s
 definitely the most common.

The result, shown in Figure 2-3, incorporates the
 variables from HelloController into the
 resulting document.
[image: Resulting document incorporating instance variables from the controller]

Figure 2-3. Resulting document incorporating instance variables from the
 controller

If you do a View Source and look at the contents of the HTML
 body element, shown in Example 2-6, the ERb markup has
 completely disappeared, replaced by the instance variable values.
Example 2-6. HTML that Rails generated based on Examples 2-4 and 2-5
<h1>Hello!</h1>
<p>This is a greeting from app/views/hello/index.html.erb</p>

<p>This message came from the controller.</p>

How Hello World Works

The Hello World programs are actually doing a lot of work, as shown in Figure 2-4, though most of it
 happens transparently.
[image: Simplified processing path for the Hello World programs]

Figure 2-4. Simplified processing path for the Hello World programs

When the code runs, Rails interprets the request for http://localhost:3000/hello/ as a call to the Hello controller. It has a list of routing
 rules, managed through a config/routes.rb file you can edit—this is just the default behavior. Controllers
 can have multiple methods, but the default method (just like when you
 request an HTML file) is index. Rails
 routing functionality then calls the index method, which
 sets up some basic variables.
When the controller is done, Rails passes its data to the view in
 the app/views/hello directory. How
 does it know to go there? Thanks to the magic of naming conventions, that
 view processing (possibly including layouts) generates an HTML result,
 which gets sent to the browser.
Rails applications have lots of moving parts, but you can usually
 look at the parts and guess (or control) what Rails is going to do with
 them. As you’ll see in later chapters, the connections between controllers, models, and databases rely heavily on such naming
 conventions and default behaviors. The connections that Rails creates in
 this way won’t solve all of your problems all of the time, but they do
 make it easy to solve a wide variety of problems most of the time. Figure 2-5 shows the pathways
 Rails built on naming conventions in the view and controller.
[image: Paths Rails follows through naming conventions]

Figure 2-5. Paths Rails follows through naming conventions

Note
Rails 2.2 and earlier versions had a security hole, allowing content to come up from the
 controller to the view without checking to see if it included an HTML injection or
 cross-site scripting (XSS) attack. You had to use the h
 or sanitize to clean up content. Rails 3 checks content
 automatically, simplifying your work and sparing you some typing. If you need to include
 HTML, you can use the raw method and html_safe property as described at http://asciicasts.com/episodes/204-xss-protection-in-rails-3/ or in Creating Helper Methods in Chapter 6.

Adding Logic to the View

You can also put more sophisticated logic into the views, thanks to the
 <% and %> tags. (The opening tag lacks the = sign.) These tags let you put Ruby code
 directly into your ERb files. We’ll start with a very simple example,
 shown in Example 2-7, that
 takes advantage of the count variable
 in the controller. (This example is part of the ch02/hello03 code sample.)
Example 2-7. Modifying index.html.erb to present the @bonus message as many
 times as @count specifies
<h1><%= @message %></h1>
<p>This is a greeting from app/views/hello/index.html.erb</p>

<% for i in 1..@count %>
 <p><%= @bonus %></p>
<% end %>

The count variable now controls
 the number of times the bonus message appears because of the for...end loop, which will simply count from 1
 to the value of the count
 variable.
Note
The for loop is familiar to
 developers from a wide variety of programming languages, but it’s not
 especially idiomatic Ruby. Ruby developers would likely use a times construct instead, such as:
<% @count.times do %>
<p><%= @bonus %></p>
<% end %>
Depending on your fondness for punctuation, you can also replace
 the do and end with curly braces, as in:
<% @count.times { %>
<p><%= @bonus %></p>
<% } %>
As always, you can choose the approach you find most comfortable,
 though brackets and for loops aren’t
 considered the standard idiom.

The loop will run three times, counting up to the value the
 controller set for the count variable.
 As a result, “This message came from the controller.” will appear three
 times, as shown in Figure 2-6.
[image: The Hello page after the loop executes]

Figure 2-6. The Hello page after the loop executes

It’s not the most exciting page, but it’s the foundation for a lot
 more work to come.
Note
If you want to comment out ERb lines, you can just insert a
 # symbol after the <%. For example, <%#= @message %> would do nothing,
 because of the #.

Test Your Knowledge

Quiz

	What is the difference between <% and <%=?

	How much logic should you put in your ERb files?

	How does Rails know what controller goes with what view, if
 you don’t tell it?

	Which method can you use to insert HTML that comes to the view
 from the controller?

Answers

	When you use <%=, Rails
 will insert the return value of the code you’ve used into the
 document. If you use <%,
 nothing will be added to the document.

	In general, you should put as little logic into your ERb files
 as possible. You may need to put some logic there to make sure that
 users get the right presentation of the information you’re sharing,
 or to build an interface for them to work with it. However, you
 should avoid putting much else there.

	Once you’ve turned on the default routing rule, Rails maps
 controllers to views through naming conventions, unless your code
 specifies otherwise.

	The raw method will let you
 include markup directly. This is dangerous, so use it
 sparingly!

Chapter 3. Adding Web Style

The application presented in Chapter 2 is
 pretty appalling, visually. You’re not likely to want to present pages that
 look like that to your visitors, unless they’re fond of the early 1990s
 retro look. Rails provides a number of features that will help you make your
 views present results that look the way you think they should look, and do so consistently.
Note
This chapter will explore Rails features for supporting CSS and
 HTML, but it can’t be an HTML or CSS tutorial. If you need one of those,
 try Jennifer Niederst Robbins’ Learning
 Web Design (O’Reilly, 2007) or David Sawyer
 McFarland’s CSS: The
 Missing Manual (O’Reilly, 2009).

I Want My CSS!

Figure 3-1, the
 result of the last chapter’s coding, is not exactly attractive.
[image: The hello page after the loop executes]

Figure 3-1. The hello page after the loop executes

Even this fairly hopeless page, however, can be improved with the
 bit of CSS shown in Example 3-1.
Example 3-1. A simple stylesheet for a simple page
body { font-family:sans-serif;
 }

h1 {font-family:serif;
 font-size: 24pt;
 font-weight: bold;
 color:#F00 ;
 }

Better CSS would of course be a good idea, but this will get things
 started. We could put this stylesheet right into the index.html.erb file as an internal style
 element, but it’s usually easier to manage external stylesheets kept in
 separate files. As noted earlier, though, Rails has its own sense of where
 files should go. In this case, stylesheets should go into the app/assets/stylesheets directory. Before Rails
 3.1, it would have made sense to call Example 3-1 hello.css, but since Rails 3.1 added asset
 management (discussed in Chapter 17), it makes
 more sense for now to put it into the hello.css.scss Rails created when you generated
 the controller. This is actually a Sass file, which will get a lot more
 attention in Chapter 16. For now, just add the CSS to
 the file, making it look like Example 3-2.
Example 3-2. Adding CSS to the SCSS file
// Place all the styles related to the Hello controller here.
// They will automatically be included in application.css.
// You can use Sass (SCSS) here: http://sass-lang.com/
			
	body { font-family:sans-serif;
	 }

	h1 {font-family:serif;
	 font-size: 24pt;
	 font-weight: bold;
	 color:#F00 ;
	 }

The result, combining the HTML generated by the view with the newly
 linked stylesheet, is shown in Figure 3-2. It’s not beautiful,
 but you now have control over styles.
[image: A very slightly prettier “Hello!” using CSS]

Figure 3-2. A very slightly prettier “Hello!” using CSS

So Rails will now pick up that CSS, but how does it know?
How did the stylesheet get linked from the head element? Chapter 2 mentioned that the surrounding HTML document structure came
 from a layout. Layouts are stored in app/views/layouts,
 and in this case, we’ll be using the default application.html.erb file, which gets applied when there aren’t any more specific layouts for a view. (You
 can find all of these files in ch03/hello04.) Its initial
 contents include an HTML5 DOCTYPE declaration, a basic HTML document structure, and some links
 to additional components, as shown in Example 3-3:
Example 3-3. The application.html.erb file created by Rails
<!DOCTYPE html>
	<html>
	<head>
	 <title>Hello01</title>
	 <%= stylesheet_link_tag "application", :media => "all" %>
	 <%= javascript_include_tag "application" %>
	 <%= csrf_meta_tags %>
	</head>
	<body>

 <%= yield %>

	</body>
	</html>

While the title might be a surprise, this code was generated in the
 very first iteration of Hello samples, so that’s what’s in use. You can
 certainly change it.
More important, however, are the stylesheet_link_tag,
 javascript_include_tag, csrf_meta_tag, and yield. The first is the key piece needed for
 setting styles, the next for JavaScript, the next avoids cross-site request forgery (CSRF). The yield is where the content from your view will
 go, as the HTML generated with that layout (Example 3-4) shows.
Example 3-4. HTML generated by the application.html.erb file
<!DOCTYPE html>
	<html>
	<head>
	 <title>Hello01</title>
	 <link href="/assets/application.css?body=1" media="all" rel="stylesheet"
 type="text/css" />
	<link href="/assets/hello.css?body=1" media="all" rel="stylesheet" type="text/css" />
	 <script src="/assets/jquery.js?body=1" type="text/javascript"></script>
	<script src="/assets/jquery_ujs.js?body=1" type="text/javascript"></script>
	<script src="/assets/hello.js?body=1" type="text/javascript"></script>
	<script src="/assets/application.js?body=1" type="text/javascript"></script>
	 <meta content="authenticity_token" name="csrf-param" />
	<meta content="HENkZLxuUaswIRUh9tV7w1SZpuE24dZWVjSKf6TRuR8=" name="csrf-token" />
	</head>
	<body>

	<h1>Hello!</h1>
	<p>This is a greeting from app/views/hello/index.html.erb</p>
	<p>This message came from the controller.</p>
	<p>This message came from the controller.</p>
	<p>This message came from the controller.</p>

	</body>
	</html>

The application is using the default layout, so why not grab all the
 possibly relevant stylesheets? If you look more closely, though, it’s
 including /assets/hello.css, which
 doesn’t exist. Manually visiting http://localhost:3000/assets/hello.css brings up Example 3-5.
Example 3-5. CSS generated from the hello.css.scss file
/* line 4, .../ch03/hello04/app/assets/stylesheets/hello.css.scss */
		body {
		 font-family: sans-serif;
		}

/* line 6, .../ch03/hello04/app/assets/stylesheets/hello.css.scss */
		h1 {
		 font-family: serif;
		 font-size: 24pt;
		 font-weight: bold;
		 color: #F00;
		}

That’s the CSS all right, with some extra debugging information to
 indicate where it came from. Fortunately, these comments only appear when
 you run the application in development mode, and will disappear in
 production mode.
There’s more, though. Because the default link is to "application", not "hello", there is also a
 link to /assets/application.css. There is an application.css file, which looks like Example 3-6.
Example 3-6. Original contents of the application.css file
/*
* This is a manifest file that'll automatically include all the stylesheets
* available in this directory and any sub-directories. You're free to add
* application-wide styles to this file and they'll appear at the top of the
* compiled file, but it's generally better to create a new file per style scope.
*= require_self
*= require_tree .
	*/

If you actually load http://localhost:3000/assets/application.css, however,
 you’ll see that those require statements have compiled hello.css into the
 resulting file.
Example 3-7. CSS generated from the application.css file
/*
* This is a manifest file that'll automatically include all the stylesheets
* available in this directory and any subdirectories. You're free to add
* application-wide styles to this file and they'll appear at the top of the
* compiled file, but it's generally better to create a new file per style scope.
*/
/* line 5, /.../hello04/app/assets/stylesheets/hello.css.scss */
	body {
	 font-family: sans-serif;
	}

/* line 7, /.../hello04/app/assets/stylesheets/hello.css.scss */
	h1 {
	 font-family: serif;
	 font-size: 24pt;
	 font-weight: bold;
	 color: #F00;
	}

The API documentation doesn’t explain why you should want two copies
 of the same CSS delivered to the browser, but perhaps it helps with
 debugging when CSS comes from multiple sources. In production mode, this
 compilation goes further, requiring you to precompile your assets before
 running the application, and only references one resulting
 stylesheet.
The layout file also creates a few links to JavaScript files (which
 this code doesn’t currently use), something that looks like it must have
 come from the csrf_meta_tag, and the
 content generated by the view where the yield used to be.
A lot of sites use the same general structure—headers, stylesheets,
 and often navigation—across many or
 all pages. While you certainly could create a copy of the layout file for
 every controller your application uses, that would violate a core
 principle of Rails: Don’t Repeat Yourself, or DRY. Much of the time,
 it’ll make much more sense to create a layout that acts as the default for
 your entire application, and only create different layouts for the cases
 where you actually need them.
For simple applications and for getting started, this works
 wonderfully. There are, of course, more precise ways of specifying both
 layouts and stylesheets.
What’s That Yield?
It kind of makes sense that a layout would yield control to a more specific template and
 then pick up again, but a yield has a
 more specific meaning in Ruby, one you’ll doubtless see more often as
 you work with it.
Ruby programmers like to play with blocks. Blocks are nameless chunks of code, usually contained in curly braces
 ({}). Many Ruby methods can accept,
 in addition to the usual parameters, a block of code. When yield appears, that block of code gets
 executed. In this case, the block that gets called is the result of the
 controller and view template processing, and so the proper content gets
 inserted into the layout.

Specifying Stylesheets

You can make Rails include only the stylesheets you want with a little
 extra work on the stylesheet_link_tag.
 Instead of the stylesheet_link_tag
 "application" element shown in Example 3-3, you can just write:
<%= stylesheet_link_tag 'hello' %>
When Rails processes the document, it will convert that into
 something like:
<link href="/assets/hello.css?body=1" media="screen"
rel="Stylesheet" type="text/css" />
This keeps Rails from including everything you might or might not
 want from assets/stylesheets. If that
 isn’t quite what you had in mind, you can pass stylesheet_link_tag more detailed parameters:
<%= stylesheet_link_tag 'hello', :media => "all", :type => "text/css", %>
This will produce:
<link href="/assets/hello.css?body=1" media="all" rel="Stylesheet"
type="text/css" />
What happened there? What are all of those strange things with
 colons in front and => arrows
 behind? They’re named parameters for the stylesheet_link_tag method. The names with
 colons in front of them are called symbols, which is a bit
 confusing.
It’s easiest to read the colon as meaning “the thing named” and the
 => as “has the value of.” This means
 that the thing named media has the
 value of all, the thing named type has the value of text/css, and so on. The stylesheet_link_tag method assembles all of
 these pieces to create the final link
 element.

Creating a Layout for a Controller

As you develop your application, different components will likely have different
 looks, and relying on a single layout for the entire application will make
 less and less sense. It’s easy to create a layout that works with a
 specific view, separating the document structure and supporting resources
 from the presentation logic without falling back to a generic
 application-wide layout.
Creating a specific layout for your particular controller is
 simple—just create a layout with the name of your controller plus
 .html.erb in the app/views/layouts folder. If Rails finds a
 layout with the name of the controller (and hasn’t been told to use
 another layout in code), it uses it. If it can’t find one, it defaults to
 application.html.erb (This approach
 is demonstrated in ch03/hello05.) The
 naming conventions Rails follows to decide on a layout are shown in Figure 3-3.
[image: Deciding which layout to use, based on naming conventions]

Figure 3-3. Deciding which layout to use, based on naming conventions

To demonstrate how this works, copy application.html.erb to hello.html.erb and modify it slightly to see
 the difference, as shown in Example 3-8. (This
 is included in ch03/hello05.)
Example 3-8. Slightly modified layout for hello.html.erb
<!DOCTYPE html>
		<html>
		<head>
		 <title><%= @message%></title>
		 <%= stylesheet_link_tag "application", :media => "all" %>
		 <%= javascript_include_tag "application" %>
		 <%= csrf_meta_tag %>
		</head>
		<body>
		<p>(using hello layout)</p>
		<%= yield %>

		</body>
		</html>

The (using hello layout) text
 just gives us a visible marker to see that content is coming from the
 hello.html.erb layout. (It’ll go away
 immediately after this example.) When opened in the browser, the layout
 and view will combine to produce the HTML shown in Example 3-9.
Example 3-9. Combining a layout and a view produces a complete result
<!DOCTYPE html>
<html>
	<head>
		 <title>Hello!</title>
		 <link href="/assets/application.css?body=1" media="all" rel="stylesheet"
 type="text/css" />
		<link href="/assets/hello.css?body=1" media="all" rel="stylesheet"
 type="text/css" />
		 <script src="/assets/jquery.js?body=1" type="text/javascript"></script>
		<script src="/assets/jquery_ujs.js?body=1" type="text/javascript"></script>
		<script src="/assets/hello.js?body=1" type="text/javascript"></script>
		<script src="/assets/application.js?body=1" type="text/javascript"></script>
		 <meta content="authenticity_token" name="csrf-param" />
		<meta content="HENkZLxuUaswIRUh9tV7w1SZpuE24dZWVjSKf6TRuR8=" name="csrf-token" />
	</head>
	<body>
		<p>(using hello layout)</p>
		<h1>Hello!</h1>
		<p>This is a greeting from app/views/hello/index.html.erb</p>
		<p>This message came from the controller.</p>
		<p>This message came from the controller.</p>
		<p>This message came from the controller.</p>

	</body>
</html>

There’s another piece here worth noting, highlighted in Example 3-9. The title element contains the same content—coming from the @message variable—as the original view did. The
 layout has access to all of the same variables as the view. If you were
 creating a layout that was going to be used for many different
 controllers, you might want to choose a more specific variable name for
 that piece, say @page_title, and make
 certain that all of your controllers support it.
[image: Applying a layout to a view]

Figure 3-4. Applying a layout to a view

Choosing a Layout from a Controller

Left to its own devices, Rails assumes that each view has a layout file associated
 with it by the naming convention, or uses the default for the application.
 There are many cases, though, where groups of related views share a common
 layout, but that layout isn’t necessarily the application default. It’s
 much easier to manage that common layout from a single file rather than
 having to change a layout for every controller every time the design
 changes.
The simplest way to make this work is to have controllers specify
 what layout they would like to use. If standardization is your main
 purpose, adding a layout declaration
 like that shown in Example 3-10 (included in
 ch03/hello06) will work.
Example 3-10. Specifying a layout choice in a controller
class HelloController < ApplicationController

 layout "standardLayout"

 def index
 @message="Hello!"
 @count=3
 @bonus="This message came from the controller."
 end
end

Instead of looking for app/views/layouts/hello.html.erb to be the
 layout, Rails will now look for app/views/layouts/standardLayout.html.erb.
Note
The layout call needs to happen
 outside of a method definition, on its own, or you will get mysterious
 undefined method 'layout' errors.
 It’s not that layout is undefined,
 exactly, but that it must be in the right place.

The layout call can also take nil (for no
 layout) or a symbol as a method reference. If there is a method reference,
 that method will determine which layout is used. Example 3-11 shows what this
 might look like.
Example 3-11. Choosing a layout based on program calculations
class HelloController < ApplicationController

 layout :adminOrUser

 def index
 ...
 end

private
 def adminOrUser
 if adminAuthenticated
 "admin_screen"
 else
 "user_screen"
 end
 end
end

In this case, layout took a
 reference to the adminOrUser method,
 which returned either the admin_screen
 layout or the user_screen layout as its
 choice depending on the value of the adminAuthenticated variable (whose value is
 calculated somewhere else).
One other feature of layout is
 worth noting, though we’re not ready to use it yet. If your application
 can return, say, XML or RSS instead of HTML, you may want to be able to
 turn off your HTML layout in cases where it won’t be wanted. You might
 say:
layout "standardLayout", :except => :rss
layout "standardLayout", :except => [:rss, :xml, :text_only]
The first one uses the layout except when RSS has been requested,
 while the second uses the layout except for requests for RSS, XML, and
 text formats. You could also work the opposite way, saying to use the
 layout only for HTML:
layout "standardLayout", :only => :html
Note
You can also select a layout (or no layout) using the render function. (You may want to do this if
 your controller includes multiple actions that need their own
 layouts.)

Sharing Template Data with the Layout

Layouts and view templates share the same information from the controller,
 but there may be times when a view template should include information
 that needs to be embedded in the layout. This might be navigation
 particular to different areas of a site, or personalization, or some kind
 of status bar, for instance, that shows the user how far they’ve gone
 through a particular task.
Example 3-12 shows a
 modified template (included in ch03/hello07) that creates a numbered list HTML
 fragment that the layout in Example 3-13 will include
 separately—actually, before—it includes the main
 template output. The structure created by the <% content_for(:list) do %> code in Example 3-12 is called upon by
 the <%= yield :name %> tag in
 Example 3-13.
Example 3-12. index.html.erb with newly added HTML structure for separate
 inclusion
<h1><%= @message %></h1>
<p>This is a greeting from app/views/hello/index.html.erb</p>

<% for i in 1..@count %>
<p><%= @bonus %></p>
<% end %>

<% content_for(:list) do %>

<% for i in 1..@count %>
<%= @bonus %>
<% end %>

<% end %>

Example 3-13. Layout template with added yield, exposing the list from Example 3-12
<!DOCTYPE html>
		<html>
		<head>
		 <title><%=@message%></title>
		 <%= stylesheet_link_tag "application" %>
		 <%= javascript_include_tag "application" %>
		 <%= csrf_meta_tag %>
		</head>
		<body>
			<%= yield :list %>
			<!--layout will incorporate view-->
		 <%= yield %>

		</body>
		</html>

The result, shown in Figure 3-5, isn’t exactly
 beautiful, but it demonstrates that a template can create content that a
 layout can include anywhere it likes.
[image: Layout including content created as a separate piece by a template]

Figure 3-5. Layout including content created as a separate piece by a
 template

Always remember that this works because the template has executed
 before the layout adds its own ideas. You can communicate from the
 template to the layout, but not from the layout to the template.

Setting a Default Page

Before moving on to more “serious” concerns about developing applications,
 there’s one question that web developers always seem to ask about 15
 minutes into their first Rails experience: How do I set a default page for
 the application?
The Rails welcome page, shown in Figure 1-2, is
 just plain ugly. There are two ways to change that:
	Edit the public/index.html
 file and put in something more to your liking

	Delete the public/index.html file and tweak the
 config/routes.rb file

The first one is pretty easy, but it doesn’t integrate very tightly
 with your Rails application. The
 second approach (also demonstrated in ch03/hello07) lets you pick a controller that
 will run if the Rails application is run without specifying a
 controller—that is, in the test environment, by directly visiting http://localhost:3000/.
To make this work, you’ll need to enter an extra line in the
 config/routes.rb file. Near the
 bottom of that, you’ll see:
You can have the root of your site routed with map.root --
just remember to delete public/index.html.
root :to => "welcome#index"
Change the last line of that to:
 root :to => "hello#index"
Save the file, make sure you’ve deleted or renamed the public/index.html file, and restart your
 server. You should see something like Figure 3-6.
[image: Accessing a controller by default, when the URL doesn’t specify one]

Figure 3-6. Accessing a controller by default, when the URL doesn’t specify
 one

Don’t worry if this edit seems mysterious. You’ll learn more about
 how routing works starting in Chapter 4, with a lot more
 detail to come in Chapter 15.

Test Your Knowledge

Quiz

	Where would you put your CSS stylesheet, and how should you
 connect it to your view?

	How does Rails know which layout to apply to a particular
 view?

	What does that yield thing
 do?

	How do I send data from the view template to the
 layout?

Answers

	Stylesheets go in the assets/stylesheets directory, and you (or
 Rails) connect them to your views (or layouts) by putting a call to
 stylesheet_link_tag in the
 head element.

	By default, Rails will apply the layout in app/views/layout/application.html.erb to
 all of your views. However, if there is a layout file in app/views/layout/ that has the same name
 as a view, Rails will use that instead.

	The yield method hands
 control to a different block of code, one that was passed with
 parameters. Rails often handles this quietly, making it easy to
 share data between, for
 example, layouts and views.

	The layout has access to all of the same variables the view
 uses. You don’t need to do anything special to pass variables to the
 layout, even if you want the layout to apply them early in your HTML
 document.

Chapter 4. Managing Data Flow: Controllers and
 Models

It’s time to meet the key player in Rails applications. Controllers
 are the components that determine how to respond to user
 requests and coordinate responses. They’re at the heart of what many people
 think of as “the program” in your Rails applications, though in many ways
 they’re more of a switchboard. They connect the different pieces that do the
 heavy lifting, providing a focal point for application development. The
 model is the foundation of your application’s data structures,
 which will let you get information into and out of your databases.
Warning
Controllers are important, certainly a “key player,” but don’t get
 too caught up in them. When coming from other development environments,
 it’s easy to think that controllers are the main place you should put
 application logic. As you get deeper into Rails, you’ll likely learn the
 hard way that a lot of code you thought belonged in the controller really
 belonged in the model, or sometimes in the view.

Getting Started, Greeting Guests

Controllers are Ruby objects. They’re stored in the app/controllers directory of your application.
 Each controller has a name, and the object inside of the controller file
 is called nameController.
Demonstrating controllers without getting tangled in all of Rails’
 other components is difficult, so for an initial tour, the application
 will be incredibly simple. (You can see the first version of it in
 ch04/guestbook01.) Guestbooks
 were a common (if kind of annoying) feature on early
 websites, letting visitors “post messages” so that the site’s owner could
 tell who’d been there. (The idea has since evolved into more sophisticated
 messaging, like Facebook’s Timeline.)
Note
If you’ve left any Rails applications from earlier chapters
 running under rails server, it would
 be wise to turn them off before starting a new application.

To get started, create a new Rails application, as we did in Chapter 1. If you’re working from the command
 line, type:
 rails new guestbook

Rails will create the usual pile of files and folders. Next, you’ll
 want to change to the guestbook directory and create a controller:
cd guestbook
rails generate controller entries
 create app/controllers/entries_controller.rb
 invoke erb
 create app/views/entries
 invoke test_unit
 create test/functional/entries_controller_test.rb
 invoke helper
 create app/helpers/entries_helper.rb
 invoke test_unit
 create test/unit/helpers/entries_helper_test.rb
	invoke assets
	invoke coffee
	create app/assets/javascripts/entries.js.coffee
	invoke scss
 create app/assets/stylesheets/entries.css.scss
If you then look at app/controllers/entries_controller.rb, which is
 the main file we’ll work with here, you’ll find:
class EntriesController < ApplicationController
end
This doesn’t do very much. However, there’s an important
 relationship in that first line. Your EntriesController inherits from ApplicationController. The ApplicationController object lives in app/controllers/application_controller.rb,
 and it also doesn’t do very much initially, but if you ever
 need to add functionality that is shared by all of the controllers in your
 application, you can put it into the ApplicationController object.
To make this controller actually do something, we’ll add a method.
 For right now, we’ll call it sign_in,
 creating the very simple object in Example 4-1.
Example 4-1. Adding an initial method to an empty controller
class EntriesController < ApplicationController

 def sign_in

 end

end

We’ll also need a view, so that Rails has something it can present
 to visitors. You can create a sign_in.html.erb file in the app/views/entries/ directory, and then edit it,
 as shown in Example 4-2.
Note
You can also have Rails create a method in the controller, as well
 as a basic view at the same time that it created the controller, by
 typing:
rails generate controller entries sign_in
You can work either way, letting Rails generate as much (or as
 little) code as you like.

Example 4-2. A view that lets users see a message and enter their name
<h1>Hello <%= @name %></h1>

<%= form_tag :action => 'sign_in' do %>
 <p>Enter your name:
 <%= text_field_tag 'visitor_name', @name %></p>

 <%= submit_tag 'Sign in' %>

<% end %>

Example 4-2 has a
 lot of new pieces to it because it’s using helper
 methods to create a basic form. Helper methods take arguments
 and return text, which in this case is HTML that helps build your form.
 The following particular helpers are built into Rails, but you can also
 create your own:
	The form_tag method takes
 the name of our controller method, sign_in, as its :action parameter.

	The text_field_tag method
 takes two parameters and uses them to create a form
 field on the page. The first, visitor_name, is the identifier that the
 form will use to describe the field data it sends back to the
 controller, while the second is default text that the field will
 contain. If the user has filled out this form previously, and our
 controller populates the @name
 variable, it will list the user’s name. Otherwise, it will be
 blank.

	The last helper method, submit_tag, provides the button that will send the data from the
 form back to the controller when the user clicks it.

Once again, you’ll need to enable routing for your controller.
 You’ll need to edit the config/routes.rb file. Remove the # that has
 been bolded below:
match ':controller(/:action(/:id))(.:format)'
	end
If you start up the server and visit http://localhost:3000/entries/sign_in, you’ll see a simple
 form like Figure 4-1.
[image: A simple form generated by a Rails view]

Figure 4-1. A simple form generated by a Rails view

Now that we have a way to send data to our controller, it’s time to
 update the controller so that it does something with that information. In
 this very simple case, it just means adding a line, as shown in Example 4-3.
Example 4-3. Making the sign_in method do something
class EntriesController < ApplicationController

 def sign_in
 @name = params[:visitor_name]
 end

end

The extra line gets the visitor_name parameter from the request header
 sent back by the client and puts it into @name. (If there wasn’t a visitor_name parameter, as would be normal the
 first time this page is loaded, @name
 will just be blank.)
If you enter a name into the form, you’ll now get a pretty basic
 hello message in return, as shown in Figure 4-2. The name will also
 be sitting in the form field for another round of greetings.
[image: A greeting that includes the name that was entered]

Figure 4-2. A greeting that includes the name that was entered

Warning
If, instead of Figure 4-2, you get a strange
 error message about “wrong number of arguments (1 for 0),” check your
 code carefully. You’ve probably added a space between params and [, which produces a syntax error whose
 description isn’t exactly clear. (This seems to have gone away in Ruby
 1.9.2.)

The controller is now receiving information from the user and
 passing it to a view, which can then pass more information.
There is one other minor point worth examining before we move on,
 though: how did Rails convert the http://localhost:3000/entries/sign_in URL into a call to
 the sign_in method of the entries controller? If you look in the config directory of your application, you’ll
 find the routes.rb file, which
 contains the rule we enabled for choosing what gets called when a request
 comes in:
match ':controller(/:action(/:id(.:format)))'
In this case, entries mapped to
 :controller, and sign_in mapped to :action. Rails used this simple mapping to
 decide what to call. We don’t have an :id or a :format—yet. (And as Chapter 2 demonstrated, if there hadn’t been an
 :action, Rails would have defaulted to
 an :action named index.) Figure 4-3 shows how Rails
 breaks down a URL to decide where to go.
[image: How the default Rails routing rules break a URL down into component parts to decide which method to run (needs rules at top updated)]

Figure 4-3. How the default Rails routing rules break a URL down into
 component parts to decide which method to run (needs rules at top
 updated)

Note
You can also see your routes by typing rake routes from the command line. This gives
 you a slightly more compact version and shows how Rails interpreted the
 routes.rb file.

Application Flow

The Rails approach to handling requests, shown in Figure 4-4, has a lot of moving
 parts between users and data.
[image: How Rails breaks down web applications]

Figure 4-4. How Rails breaks down web applications

Rails handles URL processing instead of letting the web server pick
 which file to execute in response to the request. This allows Rails to use
 its own conventions for deciding how a request gets handled, called
 routing, and it allows developers to create their own routing conventions
 to meet their applications’ needs.
The router sends the request information to a controller. The
 controller decides how to handle the request, centralizing the logic for
 responding to different kinds of requests. The controller may interact
 with a data model (or several), and those models will interact with the database if necessary. The
 person writing the controller never has to touch SQL, though, and even the
 person writing the model should be able to stay away from it.
Once the controller has gathered and processed the information it
 needs, it sends that data to a view for rendering. The controller can pick and choose among
 different views if it needs to, making it easy to throw an XML rendering
 on a controller that was originally expecting to be part of an
 HTML-generating process. You could offer a variety of different kinds of
 HTML—basic, Ajax, or meant for mobile—from your applications if necessary.
 Rails can even, at the developer’s discretion, generate basic views
 automatically, a feature called scaffolding. Scaffolding makes it
 extremely easy to get started on the data management side of an
 application without getting too hung up on its presentation.
The final result comes from the view, and Rails sends it along to
 the user. The user, of course, doesn’t need to know how all of this came
 to pass—the user just gets the final view of the information, which
 hopefully is what they wanted.
Now that you’ve seen how this works in the big picture, it’s time to
 return to the details of making it happen.

Keeping Track: A Simple Guestbook

Most applications will need to do more with data—typically, at least, they’ll store
 the data and present it back as appropriate. It’s time to extend this
 simple application so that it keeps track of who has stopped by, as well
 as greeting them. This requires using models. (The complete application is
 available in ch04/guestbook02.)
Warning
As Chapter 5
 will make clear, in most application development, you will likely want
 to create your models by letting Rails create a scaffold, since Rails
 won’t let you create a scaffold after a model with the same name already
 exists. Nonetheless, understanding the more manual approach will make it
 much easier to work on your applications in the long run.

Connecting to a Database Through a Model

Keeping track of visitors will mean setting up and using a database. This should be
 easy when you’re in development mode, as Rails now defaults to
 SQLite, which doesn’t require explicit configuration.
 (When you deploy, you’ll still want to set up a database, typically
 MySQL, as discussed in Chapter 20.) To test whether SQLite is installed on your system, try
 issuing the command sqlite3 -help
 from the command line. If it’s there, you’ll get a help message. If not,
 you’ll get an error, and you’ll need to install SQLite.
Once the database engine is functioning, it’s time to create a
 model. Once again, it’s easiest to use generate to lay a foundation, and then add
 details to that foundation. This time, we’ll create a simple model
 instead of a controller and call the model entry:
rails generate model entry
		 invoke active_record
		 create db/migrate/20110221152951_create_entries.rb
		 create app/models/entry.rb
		 invoke test_unit
		 create test/unit/entry_test.rb
		 create test/fixtures/entries.yml
For our immediate purposes, two of these files are critical. The
 first is app/models/entry.rb, which
 is where all of the Ruby logic for handling a person will go. The
 second, which defines the database structures and thus needs to be
 modified first, is in the db/migrate/ directory. It will have a name
 like [timestamp]_create_entries.rb,
 where [timestamp] is the date and time when it was created. It initially contains
 what’s shown in Example 4-4.
Example 4-4. The default migration for the entry model
1 class CreateEntries < ActiveRecord::Migration
2 def change
3 create_table :entries do |t|
4
5 t.timestamps
6 end
7 end
8 end

There’s a lot to examine here before we start making changes.
 First, note on line 1 that the class is called CreateEntries. The model may be for an entry,
 but the migration will create a table for more than one entry. Rails
 names tables (and migrations) for the plural, and can handle most common
 English irregular pluralizations. (In cases where the singular and
 plural would be the same, you end up with an s
 added for the plural, so deer become deers and sheep become sheeps.)
 Many people find this natural, but other people hate it. For now, just
 go with it—fighting Rails won’t make life any easier.
Also on line 1, you can see that this class inherits most of its
 functionality from the Migration
 class of ActiveRecord. ActiveRecord
 is the Rails library that handles all the database
 interactions. (You can even use it separately from Rails, if you want
 to.)
The action begins on line 2 with the change method. Rails used to have separate self.up and
 self.down methods, one to build
 tables and one to take them down, but Rails 3.1 got smarter. It’s smart
 enough to understand how to run change backwards to
 roll back the migration—effectively it provides you with “undo”
 functionality automatically.
Note
This example takes the slow route through creating a model so
 you can see what happens. In the future, if you’d prefer to move more
 quickly, you can also add the names and types of data on the command
 line, as you will do when generating scaffolding in Chapter 5.

The change method operated on a table called
 Entries. Note that the migration is not concerned with what kind of
 database it works on. That’s all handled by the configuration
 information. You’ll also see that migrations, despite working pretty
 close to the database, don’t need to use SQL—though if you really want
 to use SQL, it’s available.
Storing the names people enter into this very simple application
 requires adding a single column:
create_table :entries do |t|
 t.string :name
 t.timestamps
end
The new line refers to the table (t) and creates a column of type string, which will be accessible as :name.
Note
In older versions of Rails, that new line would have been
 written:
t.column :name, string
The old version still works, and you’ll definitely see
 migrations written this way in older applications and documents. The
 new form is a lot easier to read at a glance, though.

The t.timestamps line is there
 for housekeeping, tracking “created at” and “updated at” information.
 Rails also will automatically create a primary key, :id, for the table. Once you’ve entered the
 new line (at line 4 of Example 4-4), you can run the
 migration with the Rake tool:
$ rake db:migrate
(in /Users/simonstl/rails/guestbook)
== CreateEntries: migrating ==
-- create_table(:entries)
 -> 0.0021s
== CreateEntries: migrated (0.0022s) ===
Rake is Ruby’s own version of the classic command-line Unix
 make tool, and Rails uses it for a
 wide variety of tasks. (For a full list, try rake
 --tasks.)
Note
If you want to run precisely the version of rake that was
 installed with your application, run bundle exec rake
 db:migrate instead. It may or may not matter, depending on
 the details of your Rails installation. See Chapter 17 for more information on
 bundle. Also, in some Rails installations, you may
 receive a message after attempting to run rake
 db:migrate that the command won’t run due to version
 incompatibilities and, in that case, using run bundle
 exec may be your only option.

In this case, the db:migrate task runs
 all of the previously unapplied change (or self.up) migrations in your application’s
 db/migrate/ folder. db:rollback gives you an undo option for the previous by running the
 change methods backwards (or the
 self.down methods if present).
Now that the application has a table with a column for holding
 names, it’s time to turn to the app/models/entry.rb file. Its initial
 contents are very simple:
class Entry < ActiveRecord::Base
 # attr_accessible :title, :body
end
The Entry class inherits from
 the ActiveRecord library’s Base
 class, but has no functionality of its own. It used to be
 able to stay that way—Rails provides enough capability that nothing more
 was needed. Unfortunately, Rails’ superpowers turned out to create some
 security leaks, in particular problems with mass assignment letting
 attackers set values they shouldn’t. To avoid mysterious errors from
 Rails, and to permit your code to assign values to the
 :name property, you need to explicitly specify that
 it’s OK with attr_accessible, as the comment suggests. Change the model to look
 like:
class Entry < ActiveRecord::Base
 attr_accessible :name		
end
This tells Rails that it’s allowed to set values for :name, and only for
 :name.
Warning
Remember that the names in your models also need to stay away
 from the list of reserved words presented at http://oldwiki.rubyonrails.org/rails/pages/ReservedWords/.

Connecting the Controller to the Model

As you may have guessed, the controller is going to be the key component transferring
 data that comes in from the form to the model, and then it will be the
 key component transferring that data back out to the view for
 presentation to the user.
Storing data using the model

To get started, the controller will just blindly save new names to the
 model, using the code highlighted in Example 4-5.
Example 4-5. Using ActiveRecord to save a name
class EntriesController < ApplicationController

 def sign_in
 @name = params[:visitor_name]
 @entry = Entry.create({:name => @name})

 end

end

The highlighted line combines three separate operations into a
 single line of code, which might look like:
 @myEntry = Entry.new
 @myEntry.name = @name
 @myEntry.save
The first step creates a new variable, @myEntry, and declares it to be a new
 Entry object. The next line sets
 the name property of @myEntry—effectively setting the future
 value of the column named “name” in the Entries table—to the @name value that came in through the form.
 The third line saves the @myEntry
 object to the table.
The Entry.create approach
 assumes you’re making a new object, takes the values to be stored as
 named parameters, and then saves the object to the database.
Note
Both the create and the
 save method return a boolean
 value indicating whether or not saving the value to the database was
 successful. For most applications, you’ll want to test this, and
 return an error if there was a failure.

These are the basic methods you’ll need to put information into
 your databases with ActiveRecord. (There are many shortcuts and more
 elegant syntax, as Chapter 5 will
 demonstrate.) This approach is also a bit too simple. If you visit
 http://localhost:3000/entries/sign_in/, you’ll
 see the same empty form that was shown in Figure 4-1. However, because
 @entry.create was called, an empty
 name will have been written to the table. The log data that appears in
 the server’s terminal window shows:
 (0.1ms) begin transaction
		 SQL (87.3ms) INSERT INTO "entries" ("created_at", "name",
 "updated_at") VALUES (?, ?, ?) [["created_at", Mon, 20 Feb 2012 16:18:14
UTC +00:00], ["name", nil], ["updated_at", Mon, 20
Feb 2012 16:18:14 UTC +00:00]]
		 (7.1ms) commit transaction
		
The nil is the problem here because it really
 doesn’t make sense to add a blank name every time someone loads the
 form without sending a value. On the bright side, we have evidence
 that Rails is putting information into the Entries table, and if we
 enter a name, say “Zaphod,” we can see the name being entered
 into
 the table:
	(0.1ms) begin transaction
			 SQL (0.6ms) INSERT INTO "entries" ("created_at", "name", "updated_at")
 VALUES (?, ?, ?) [["created_at", Mon, 20 Feb 2012 16:18:48 UTC +00:00],
 ["name", "Zaphod"], ["updated_at", Mon, 20 Feb 2012 16:18:48 UTC +00:00]]
		
It’s easy to fix the controller so that NULLs aren’t
 stored—though as we’ll see in Chapter 7, this kind of
 validation code really belongs in the model. Two lines, highlighted in
 Example 4-6, will keep
 Rails from entering a lot of blank names.
Example 4-6. Keeping blanks from turning into permanent objects
class EntriesController < ApplicationController

 def sign_in
 @name = params[:visitor_name]
 unless @name.blank?
 @entry = Entry.create({:name => @name})
 end
 end

end

Now Rails will check the @name variable to make sure that it has a
 value before putting it into the database. unless @name.blank? will test for both nil
 values and blank entries. (blank?
 is a Rails method extending Ruby’s String objects.)
If you want to get rid of the NULLs you put into the database, you can run
 rake
 db:rollback and rake
 db:migrate (or rake
 db:migrate:redo to combine them) to drop and rebuild
 the table with a clean copy. In this case, you should stop the server before running
 rake and restart it when you’re done.
== CreateEntries: reverting ==
 -- drop_table(:entries)
 -> 0.0012s
== CreateEntries: reverted (0.0013s) ===

== CreateEntries: migrating ==
 -- create_table(:entries)
 -> 0.0015s
== CreateEntries: migrated (0.0016s) ===
If you want to enter a few names to put some data into the new
 table, go ahead. The next example will show how to get them out.

Retrieving data from the model and showing it

Storing data is a good thing, but only if you can get it out again.
 Fortunately, it’s not difficult for the controller to tell the model
 that it wants all the data, or for the view to render it. For a
 guestbook, it’s especially simple, as we just want all of the data
 every time.
Getting the data out of the model requires one line of
 additional code in the controller, highlighted in Example 4-7.
Example 4-7. A controller that also retrieves data from a model
class EntriesController < ApplicationController

 def sign_in
 @name = params[:visitor_name]
 if !@name.blank? then
 @entry = Entry.create({:name => @name})
 end

 @entries = Entry.all

 end

end

The Entry object includes a
 find method—like new and save, inherited from its parent ActiveRecord::Base class without any
 additional programming. If you run this and look in the logs, you’ll
 see that Rails is actually making a SQL call to populate the @entry array:
	Entry Load (0.4ms) SELECT "entries".* FROM "entries"
		
Next, the view, still in views/entries/sign_in.html.erb, can show
 the contents of that array, to the site’s visitors see who’s come by
 before, using the added lines shown in Example 4-8.
Example 4-8. Displaying existing users with a loop
<h1>Hello <%= @name %></h1>

<%= form_tag :action => 'sign_in' do %>
 <p>Enter your name:
 <%= text_field_tag 'visitor_name', @name %></p>

 <%= submit_tag 'Sign in' %>

<% end %>
<p>Previous visitors:</p>

<% @entries.each do |entry| %>
 <%= entry.name %>
<% end %>

The loop here iterates over the @entries array, running as many times as
 there are entries in @entries.
 @entries, of course, holds the list
 of names previously entered, pulled from the database by the model
 that was called by the controller in Example 4-7. For each entry,
 the view adds a list item containing the name value, referenced here as entry.name. The result, depending on exactly
 what names you entered, will look something like Figure 4-5.
[image: The guestbook application, now displaying the names of past visitors]

Figure 4-5. The guestbook application, now displaying the names of past
 visitors

It’s a lot of steps, yes, but fortunately you’ll be able to skip
 a lot of those steps as you move deeper into Rails. Building this
 guestbook didn’t look very much like the “complex-application-in-five-minutes”
 demonstrations that Rails’ promoters like to show off, but now you
 should understand what’s going on underneath the magic. After the
 apprenticeship, the next chapter will get into some journeyman
 fun.
Looking Under the Hood
Every now and then, you may find something missing, or need to
 see what exactly is coming into your view. Rails includes a number
 of useful pieces that, while you should never ever use them in
 production code, can help you see the data that Rails is providing
 to your view.
To see everything Rails is sending, add this to your view:
<%= debug(assigns) %>
The results of that are both overwhelming and kind of
 repetitive, but you can hunt through there for useful pieces. For
 just the parameters that came in from a request, use:
<%= debug(params) %>
Other arguments to debug
 that might be useful in certain situations are base_path, controller, flash, request, response, and session.

Finding Data with ActiveRecord

The find method and its relatives are common in Rails, usually in
 controllers. It’s constantly used as find(id) to retrieve
 a single record with a given id, while
 the similar all method retrieves an entire set of
 records. There are four basic ways to call find, and then a set of options that can apply
 to all of those uses:
	find by id
	The find method is
 frequently called with a single id, as in find(id), but
 it can also be called with an array of ids, like find (id1, id2, id3,
 ...) in which case find will return an array of values.
 Finally, you can call find
 ([id1, id2]) and retrieve everything with
 id values between
 id1 and
 id2.

	find all
	Calling the all
 method—User.all, for example—will return all the matching
 values as an array.

	find first
	Calling first—User.first, for example—will return the first matching value only. If you want this to raise
 an error if no matching record is found, add an exclamation point, as
 first!.

	find last
	Calling last—User.last, for example— will return the first matching value only. Just as with
 first, if you want this to raise an error if no matching record is
 found, add an exclamation point, as last!.

The options, which have evolved into chainable methods, give you
 much more control over what is queried and which values are returned. All
 of them actually modify the SQL statements used to query the database and
 can accept SQL syntax, but you don’t need to know SQL to use most of them.
 This list of options is sorted by your likely order of needing
 them:
	where
	The where method lets you limit which records are returned. If, for
 example, you set:
Users.all.where("registered = true")
then you would only see records with a registered value of true. :conditions also has another form. You
 could instead write:
Users.all.where(:registered => true)
This will produce the same query and makes it a little more
 readable to list multiple conditions. Also, if conditions are coming
 in from a parameter or some other data source you don’t entirely
 trust, you may want to use the array form of :conditions:
Users.all.where("email = ?", params[:email])
Rails will replace the ?
 with the value of the :email
 parameter that came from the user, after sanitizing it.

	order
	The order method lets
 you choose the order in which records are returned,
 though if you’re using first or
 last it will also determine which
 record you’ll see as first or last. The simplest way to use this is
 with a field name or comma-separated list of field names:
Users.order("family_name, given_name")
By default, the order will
 sort in ascending order, so the option just shown would sort
 family_name values in ascending
 order, using given_name as a
 second sort field when family_name values are the same. If you
 want to sort a field in descending order, just put DESC after the
 field name:
Users.order("family_name DESC, given_name DESC")
This will return the names sorted in descending order.

	limit
	The limit option lets you specify how many records are returned. If you
 wrote:
Users.limit(10)
you would receive only the first 10 records back. (You’ll
 probably want to specify order to
 ensure that they’re the ones you want.)

	offset
	The offset option
 lets you specify a starting point from which records
 should be returned. If, for instance, you wanted to retrieve the
 next 10 records after a set you’d retrieved with limit, you could specify:
Users.limit(10).offset(10)

	readonly
	Retrieves records so that you can read them, but cannot make any
 changes.

	group
	The group option lets you specify a field that the results should group
 on, like the SQL GROUP BY clause.

	lock
	Lets you test for locked rows.

	joins, include, select, and from
	These let you specify components of the SQL query more precisely. You may
 need them as you delve into complex data structures, but you can
 ignore them at first.

Rails also offers dynamic finders, which are methods it automatically supports based on the
 names of the fields in the database. If you have a given_name field, for
 example, you can call find_by_given_name(name)
 to get the first record with the specified
 name, or find_all_by_given_name(name)
 to get all records with the specified name.
 These are a little slower than the regular find method, but may be more readable.
Note
Rails also offers an elegant way to create more readable queries
 with scopes, which you should explore after you’ve found your way
 around.

Test Your Knowledge

Quiz

	Where would you put code to which you want all of your
 controllers to have access?

	How do the default routes decide which requests to send to
 your controller?

	What does the change method
 do in a migration?

	What three steps does the create method combine?

	How do you test to find out whether a submitted field is
 blank?

	How can you retrieve all of the values for a given
 object?

	How can you find a set of values that match a certain
 condition?

	How can you retrieve just the first item of a set?

Answers

	Code in the ApplicationController class, stored at
 app/controllers/application_controller.rb,
 is available to all of the controllers in the project.

	The default routes assume that the controller name follows the
 first slash within the URL, that the controller action follows the
 second slash, and that the ID value follows the third slash. If
 there’s a dot (.) after the ID,
 then what follows the dot is considered the format requested.

	The change method is called
 when Rake runs a migration. The code explains what to create moving
 forward, but Rails can also run it backwards. It usually creates
 tables and fields.

	The create method creates a
 new object, sets its properties to those specified in the
 parameters, and saves it to the database.

	You can test to see whether something is blank using an
 if statement and the blank? method,
 as in:
if @name.blank? then
 something to do if blank
end

	To retrieve all values for a given object, use .all.

	To retrieve a set of values, use .where(conditions).

	To get the first of a set, use .first. You may need to set an :order parameter to make sure that your
 understanding of “first” and Rails’ understanding of “first” are the
 same.

End of sample

 To search for additional titles please go to

 http://search.overdrive.com.

OEBPS/httpatomoreillycomsourceoreillyimages1258955.png
000 People: index =
@ o @ L 42 [@miocanost3000/peoptes v

Listing people

-

Can
Name Secret Country Email Description sena Craduation ~ Body Price Birthday 'ovorite
Vear " temperature e
amai
SIS cmoker Camata bimoGoamplecom et mon e 191 906 18006760200006-412, o Sho £ ey
of mystery. -0400 2012
st wtker s
- oot on 3 30
alier really notice. -0400 2008
il o .
) et and er I
e husband oo
et ocnwataty esico wavesampngom WSS iy oo 20080630 1042100 Show Bt Desiroy
00 3008

Bora 0 B vsiow

OEBPS/httpatomoreillycomsourceoreillyimages1259008.png
000 Courses: show =)

<@~ by @) 4 (@ ocainost 3000 courses/ 1 v]p) %

Students | Courses

Name: Reptiles: Friend or Foe?

Edit | Roll | Back

Done O B vsiow

OEBPS/httpatomoreillycomsourceoreillyimages1258986.png
000 Awards: index

<« @ Y @ iocainost 3000 studdents;2 fawards

Awards for Milletta Stim

Milletta hasn't won any awards yet.

New award | Back

T

OEBPS/httpatomoreillycomsourceoreillyimages1259012.png
o000 Acti

n Controller: Exception caught

<[» | [+ (@ http localhost:3000/students 3 /awards/2

¢ (@ Google

&5 M Hi Modularization testing Apple Mac Amazon eBay Yahoo!

RuntimeError in AwardsController#show

ixuby/object:Avard

sttributes:
a2
mame: Nicest smile
year: 2012
student_ia: 3

oreated_at

updated_at:

Rails.root:

/Users/simonstl/Personal/RailsOutin/living_book_2009/codeCurrent/newtake/9780596518783/Rails3.2/chl1/students05

Application Trace | Framework Trace | Full Trace

app/controllers/avards_controller.rbi23iin "shou!

Request

Parameters:

rstudent_san=rin,
g

‘Show session dump

Show env dump

<

OEBPS/httpatomoreillycomsourceoreillyimages1259033.png
000 Hello Zimbelchen

([©OD) (@ QU o focahostzo00jenmvisnin 7 v)
Hello Zimbelchen

Enter your name: |Zmbelchen

« Zimbel
« Zimbelchen

- W 17T PP —,

OEBPS/httpatomoreillycomsourceoreillyimages1259048.png
Students01
[<[> || + @ hup://locaihost:3000/ ¢ | (@ Google)
s m Modularization testing Apple Mac Amazon eBay Yahoo!

Welcome Zymphonian!

Students | Courses.

Listing students

Given name Middle name Family name Date of birth Grade point average Start date Courses Awards

Giles Prentiss Boschwick ~ 2006-12-14 3.92 2011-12-012 2 ‘Show Edit Awards Destroy
Miletta Zorgos stim 2006-02-02 3.94 2011-09-14 0 0 ‘Show Edit Awards Destroy
Jules. Bloss Miller 2006-11-20 2.76 2011-09-14 0 1 ‘Show Edit Awards Destroy
Greva Sortingo James 2006-07-13 3.24 2011-09-14 0 1 ‘Show Edit Awards Destroy
Jimina Zaphod Yort 2006-12-14 2.98 2011-12-14 0 0 ‘Show Edit Awards Destroy

New Student

OEBPS/httpatomoreillycomsourceoreillyimages1259050.png
Students01
[<[> || + @ hup://locaihost:3000/ ¢] (@~ Google)
s m Modularization testing Apple Mac Amazon eBay Yahoo!

Welcome Zymphonian! | Sian Out

Students | Courses.

Listing students

Given name Middle name Family name Date of birth Grade point average Start date Courses Awards

Giles Prentiss Boschwick ~ 2006-12-14 3.92 2011-12-012 2 ‘Show Edit Awards Destroy
Miletta Zorgos stim 2006-02-02 3.94 2011-09-14 0 0 ‘Show Edit Awards Destroy
Jules. Bloss Miller 2006-11-20 2.76 2011-09-14 0 1 ‘Show Edit Awards Destroy
Greva Sortingo James 2006-07-13 3.24 2011-09-14 0 1 ‘Show Edit Awards Destroy
Jimina Zaphod Yort 2006-12-14 2.98 2011-12-14 0 0 ‘Show Edit Awards Destroy

New Student

OEBPS/httpatomoreillycomsourceoreillyimages1259100.png
given_name.

middle_name

family_name

date_of_birth

grade_point
_average

start_date

Giles

Prentiss.

Boschwick

3/31/1989

392

9/12/2006

Milletta

Torgos

Stim

2211989

394

9/12/2006

Jules

Bloss.

Miller

11/20/1988

276

9/12/2006

Greva

Sortingo

James.

7/14/1989

324

9/12/2006

OEBPS/httpatomoreillycomsourceoreillyimages1258999.png
000 Students: index (=)
<« @ 4 (@ icainost 3000/students VB 3
Students | Courses

Listing students

Given Middle Family DOB GPA Start date Courses Awards

Giles Prentiss Boschwick 1989-03-31 3.92 2006-09-12 0 1 Show Edit Awards Destroy
Milletta Zorgos Stim 1989-02-02 3.94 2006-09-12 0 o Show Edit Awards Destroy
Jules Bloss Miller 1988-11-20 2.76 2006-09-12 0 2 Show Edit Awards Destroy

1

Greva SortingoJames 1989-07-14 3.24 2006-09-12 0 Show Edit Awards Destroy

New student

Done O B vsiow

OEBPS/httpatomoreillycomsourceoreillyimages1259023.png
000 Hello Zimton

@B (©) () ([0 hup://localnost:3000/entry/sign_in

Hello Zimton
Bnter your name: [amen |

OEBPS/httpatomoreillycomsourceoreillyimages1259035.png
HITP request
Cookie: app_session= ~ ——»
all related_values_for_session

@

Queriesfor
wsionfowit ™
HTTPrequest | session1d
Cookie: app_session= —»
session_id \ Retums
L7 sessoninfo

OEBPS/httpatomoreillycomsourceoreillyimages1258912.png
o000 Hello Julia =

@B (©) (#) (0. hup://localnost:3000/entries/sign_in 73 v)
Hello Julia

Enter yourname: s |

Previous visitors:

« Zaphod
« Jedediah
« Hepzibah
« Julius

« ulia

OEBPS/httpatomoreillycomsourceoreillyimages1258894.png
(6 X Xo) Hello!
(1))~ (@) GO (#) (Ol 10.00030007meto

Hellol =

(using layout)

Hello!

This is a greeting from app/views/hello/index.html.erb
This message came from the controller.
This message came from the controller.
This message came from the controller.

Done

OEBPS/httpatomoreillycomsourceoreillyimages1259089.png
Jocalost 3000 students/new ¢ (o

Given name

Famllf name

Date of birth

Grade point average

Start date

Back

OEBPS/httpatomoreillycomsourceoreillyimages1258882.png
Hello [=)

(#) ([0 np://0.0.0.0:3000 hello wv)

1D Hello =7 =
Hello!

‘This is a greeting from app/views/hello/index html.erb

‘This message came from the controller.

OEBPS/httpatomoreillycomsourceoreillyimages1259001.png
000 Courses: index
<« @' () 4 [@ mpijiocainost3000/courses V]

)

Students | Courses

Listing courses

Name Enrolled

Reptiles: Friend or Foe? o ‘Show Edit Destroy
Lavatory Decorations of Ancient Rome 0 ‘Show Edit Destroy
Mathematical Opera o ‘Show Edit Destroy
Immoral Aesthetics o ‘Show Edit Destroy
Advanced Bolt Design o ‘Show Edit Destroy

New course

Done O B vsiow

OEBPS/httpatomoreillycomsourceoreillyimages1259014.png
000 Students: new

@ @ Q B [@meecancsa000rsumnanen v

Students | Courses

ys1 (0

New student

Given name

[Geramiah

Middle name
inke

Family name
[Weruzian
Date of birth

1989 ~| [February +[[18 -]

Grade point average
77

Start date

2007 | [September ~| [16 ~[
Create!

Back

‘Waiting for localhost.

[T REED

v

OEBPS/httpatomoreillycomsourceoreillyimages1259103.png
qiven_name

middle_name

family_name

date_of_birth

grade_point
_average

start_date

Giles

Prentiss.

Boschwick

3/31/1989

392

9/12/2006

Milletta

Torgos

Stim

2211989

394

9/12/2006

Jules

Bloss.

Miller

11/20/1988

276

9/12/2006

Greva

Sortingo

James.

7/14/1989

324

9/12/2006

i usemame | password_hash | role
8 Demetrius | ASVUQPBAZVB | administrator
85 Sharon | BWEROCPA3S7 | class_admin
B Wilmer | S3003VP3ABAS | class_admin
1021 Nicolai SDFB3NCOALF2 | data_analyst

OEBPS/httpatomoreillycomsourceoreillyimages1259025.png.jpg
Cookies

Search: [localhost (Clear)

The following cookies match your search

Site Cookie Name
localhost name
localhost _guestbook001a_session
Name: name
Content: Zimton
: localhost
/

- Any type of connection
at end of session

Remove All Cookies

OEBPS/httpatomoreillycomsourceoreillyimages1258901.png
Hello!
(0 () (O hup://0.0.0.0:3000/ W)

Hellol =7

1. This message came from the controller.
2. This message came from the controller.
3. This message came from the controller.

Hello!

This is a greeting from app/views/hello/index.html.erb
This message came from the controller.
This message came from the controller.

This message came from the controller.

Done

OEBPS/httpatomoreillycomsourceoreillyimages1259062.png
000 new (=)

: i Q @ @ @ s¥ hitp://localhost:3000/session/ new v =

Welcome | Students | Courses | Logout

oon

Password

OEBPS/httpatomoreillycomsourceoreillyimages1259029.png
000 Hello =

(LD (@ GO @ O ecarostsooojemsgnn %)
Hello

Enter your name:

OEBPS/httpatomoreillycomsourceoreillyimages1258874.png
Your applicaton Your application

Rl
e acive | [Acive | [Acion | [hcion | [Acie Other
support | | Record Pack Maier | | Resource gems
Gem
insaller I Bundler I
Ruby (167 orlater; preferably 19.20r ate) I

Mac0SX
Operating system LinuxfUnix

Windows

OEBPS/orm_front_cover.jpg
Rails from the Outside In

Learning

. o Edd Dumbill &
O’REILLY Simon St.Laurent

OEBPS/httpatomoreillycomsourceoreillyimages1258899.png
Hello!

(0 () ([0 nup://0.0.0.0:3000/ hello

Hellol =7

1. This message came from the controller.
2. This message came from the controller.
3. This message came from the controller.

Hello!

This is a greeting from app/views/hello/index.html.erb
This message came from the controller.
This message came from the controller.

This message came from the controller.

Done

OEBPS/httpatomoreillycomsourceoreillyimages1258942.png
000 Guestbook
<J0 Guestbook >+

)3 L) http/ /locathost:3000/people/new - v | (] (B3] [#]+]

New person

Name
K

Secret

Country
Canada =

Email
sasdas

Description
[sadsdfdsfasd

Can send email

4

Graduation year
thousands

Body temperature
twenty-six

Price
not

OEBPS/httpatomoreillycomsourceoreillyimages1259044.png
Action Controller: Exception caught

| <[» || + [@ hup://localhost:3000/authidentity/ register

¢ (@ Google

e m Modularization testing Apple Mac Amazon eSay Yahoo!

Routing Error

No route matches (E0ST] "/auth/identity/callbacks

OEBPS/httpatomoreillycomsourceoreillyimages1258973.png.jpg
000 Students
/D Students + -

(4)>] (@] [0 nup/rtocainost:3000/awards/1 - v | [| [#] [B3+] [#

gl

Name: Best Handwriting
Year: 2011
Student: Giles Boschwick

Edit | Back

x
&
N

OEBPS/httpatomoreillycomsourceoreillyimages1259098.png.jpg
Award from Learning Rails - clean (=]

i e Epr
48 804 @ O8o

(% Reply | (= Forward | (@ Archive | (28 Junk | (® Deete |

From Simon StLaurentk'
To Simon St.Laurent
Message ID <4f899ce2c967¢_23d8123d39852766@SImonMacBook local.mail> 7

Return-Path <simonsti@simonstl.com>
X-Original-Tosimonsti@simonstl.com

Delivered-Tosimansti@simonstl.com

The Chemistry Wizard award for 2012 has gone to Greva James.

R e e o o

OEBPS/httpatomoreillycomsourceoreillyimages1259079.png
Using bundler (1.8.21)
Installing coffes-script-source (1.3.1>

Using execjs <1.3.

Using coffee-script (2.2.8)

Using rack-ss1 (1.3.

Installing json (i.616> with native extensions
Using rdoc

Using thor (B114.6>

Using railties (3.1.1>

Using coffee-rails (3.1.1>

Using jauery-rails ci181d>

‘bundle show [gemnamel® to see where a bundled gem

OEBPS/httpatomoreillycomsourceoreillyimages1258944.png
Guestbook

<JD Guestboolc >+
) > | [hitp: localhost:3000/people/2 viel(n (B

Person was successfully created.
Name: Sploink

Secret:

Country: Canada

Email: sasdas

Description: sadsdfdsfasd

Can send em:

true
Graduation year: 0
Body temperature: 0.0
Pri

: 0.0
Birthday: 2011-03-22
Favorite time: 2011-03-22 19:37:00 UTC

Edit | Back

x

OEBPS/httpatomoreillycomsourceoreillyimages1258964.png
000 People: show

- @ 4 [@mpmcanost3000/peopier2 V]

“Name: Smith Walker
Secret: SpaceAlien

Country: UK

Email: smithwalker@example.com

Description: Smith Walker is one of those people you never really notice... until
it's too late.

Can send email: true

Graduation year: 1983

Body temperature:

8.6
Price:

Birthday: 2008-06-30

Favorite time: Mon Jun 30 10:41:00 -0400 2008
Photo: No photo.

Edit | Back

Done O B vsiow

V

OEBPS/httpatomoreillycomsourceoreillyimages1259075.png
006 http://localhost:3000/assets/application.css.scss

* This is a manifest file that'll automatically include all the stylesheets available in this directory
+ and any sub-directories. You're free to add application-wide styles to this file and they'll appear at
* the top of the compiled file, but it's generally better to create a new file per style scope.

” .css. scss %
7+ line 13, /Users/rumblestrut/Vebapps/students0l/app/assets/styleshects/students.c: .
body {

-moz-box-shadow: 0 0 Spx #888;

“webkit-box-shadow: 0 0 Spx #888;

box-shadow: 0 0 Spx #888;

padding: 4px;

width: 80%;
3
/+ line 22, /Users/rumblestrut/Vebapps/students0l/app/assets/styleshects/students.c: .
body b1

background-color: #0067al;

padding: 10px;

color: #FFF;

margin: 0;
3
/+ line 29, /Users/rumblestrut/Vebapps/students0l/app/assets/styleshects/students.c: .

td.name {
color: #0067al;
}

OEBPS/httpatomoreillycomsourceoreillyimages1258970.png.jpg
000 Students
0 Students L+l
() >] (@] (L1 hup://1ocalhost:3000/awards/new - v | [| [#4] (B3] [

gl

New award

Name
Best Handwriting

Year
2011

Student
Giles Boschwick

(Create Award)

Back

x

OEBPS/httpatomoreillycomsourceoreillyimages1258993.png
K- X & X & . - - MV — -}
€« ot

Given name: Jules

T locahost 3000 stucems/3 V> %

Middle name: Bloss
Family name: Miller

Date of birth: 1988-11-20
Grade point average: 2.76

006-09-12

Name Year Student
Nicest Smile 2007 Jules Miller
Cleanest Desk 2007 Jules Miller
Edit | Awards! | Back

http:/ flocalhost:3000/ students /3 /awards O B vsiow

OEBPS/httpatomoreillycomsourceoreillyimages1258988.png
000 Awards: new [=)

<« @ £ @ iocainost 3000 sturtents;2 fawards/new VB 3

New award for Milletta Stim

Name

OEBPS/httpatomoreillycomsourceoreillyimages1258880.png
000 Hello o

(D~ @ GO (@ [l mossswornes =
Hello!

‘This is a greeting from app/views/ello/index htmlerb

OEBPS/httpatomoreillycomsourceoreillyimages1258909.png
Userfills outform,
sends request

View processing

Model(s)

OEBPS/httpatomoreillycomsourceoreillyimages1259037.png
Students01
[<[» || + @ hup://localhost:3000/students ¢] (@~ Google)
&> (] Hi Modularization testing Apple Mac Amazon cBay Yahoo!

og in | Register

Students | Courses.

Listing students

Given name Middle name Family name Date of birth Grade point average Start date Courses Awards

Giles Prentiss Boschwick ~ 2006-12-14 3.92 2011-12-012 2 ‘Show Edit Awards Destroy
Miletta Zorgos stim 2006-02-02 3.94 2011-09-14 0 0 ‘Show Edit Awards Destroy
Jules. Bloss Miller 2006-11-20 2.76 2011-09-14 0 1 ‘Show Edit Awards Destroy
Greva Sortingo James 2006-07-13 3.24 2011-09-14 0 1 ‘Show Edit Awards Destroy
Jimina Zaphod Yort 2006-12-14 2.98 2011-12-14 0 0 ‘Show Edit Awards Destroy

New Student

OEBPS/httpatomoreillycomsourceoreillyimages1258937.png
Birthday
2011) (March §)(21 ¢

Favorite time
(2011 +)(March (21 #)—(17 #): (50)

OEBPS/httpatomoreillycomsourceoreillyimages1259054.png.jpg
Students

| + |@hnttp://localhost:3000/users/ - ¢ | (Q- Google

»

Modularization testing Apple Mac

»

Welcome Zimbleton! | Sign Out

Students | Courses

Editing user

Provider
identity

vid
9

Name
Zimbleton

Admin

o

Show | Back

OEBPS/httpatomoreillycomsourceoreillyimages1259068.png
Listing students

Student Name Date of birth Grade point average Start date Awards

Giles Prentiss Boschwick 2006-12-14 3.92 2011-12-01 1 ‘Show Edit Destroy
Miletta Zorgos Stim 2006-02-02 3.94 2011-09-14 0 ‘Show Edit Destroy
Jules Bloss Miller 2006-11-20 2.76 2011-09-14 2 ‘Show Edit Destroy
Greva Sortingo James 2006-07-14 3.24 2011-09-14 1 ‘Show Edit Destroy

New Student

OEBPS/httpatomoreillycomsourceoreillyimages1258914.png
000 People: index (=)
G @ @ erezonomeee v]b (G

=

Listing people

New person

Done O B vsiow

OEBPS/httpatomoreillycomsourceoreillyimages1258897.png
(using layout)

Hello!

This is a greeting from app/views/hello/index.html.erb

This message came from the controller.
This message came from the controller.

This message came from the controller.

OEBPS/httpatomoreillycomsourceoreillyimages1259105.png
id | given_name | middle_name | family_name | date_of_birth grade_point | tart_date
i [Avard Year [Student_id averige
1493 | Best Handwriting 12007 1 1| Giles Prentiss. Boschwick |3/31/1989 392 9/12/2006
1657 | Nicest Smile 2007 |3- 2 | Milletta Zorgos Stim 21211989 394 9/12/2006
1831 | Cleanest Desk 2007 |3- 3 | Jules: Bloss Miller 12011988 (276 9/12/2006
1892 | Most likely to win the lotery | 2008 |4- Greva Sortingo James 7/14/1989 34 9/12/2006

OEBPS/httpatomoreillycomsourceoreillyimages1258924.png
GET /students

or

GET /students.htnl
GET /students/1

or

GET /students/1. hitml
GET /students/new

or

GET /students/new. htnl
POST /students

or
POST /student:

tml

index

show

create

GET /students/1/ed i—»
PUT /students/1

or

PUT /students/1.html

DELETE /students/1

or

DELETE /students/1.html

edit

update

destroy

I0ECCEE

Uses index.htmlerb to present a list
of students.

Uses showhtmlerbto present asingle
studentin detal

Success.

Uses newhtmlerbto presentaform
for entering a new student.

Failure

‘Accepts form data to create a student.

successful, redirects to show. If not,
renders through new.
cess

Uses edithtmlerb to presentaform
for editing the speifed student.

Failure

“Accepts form data to modify an existing
student. Ifsuccessful,redirects to show.
IFnot,renders through edit.

Acceptsa request to delete an esting
student. Redirctsto the lstofstudents.

GET /students.json i—» index h—» Renders the list of students as JSON.

GET /students/1.json '—» show h—» Renders a single student as JSON.

GET /students/new.json i—» new h—» Renders a blank student as JSON.

POST /students.json i—»

create i—»

PUT /students/1. json i—>

update i—»

“Accepts form data to create a student.
Fsuccessful, renders thestudentin JSON,
witha 201 Ceated satus and aLocation
header pointing to the new student record.
oot renders the eror abject with a 422
Unprocessable entity staus.

Success.

Accepts form datato modify astudent.
Ifsuccessful, enders o the student record.
Fnotrenders the eror abject with a 422
Unprocessable entity status.

Accepts a request to deletean exisi
DELETE /students/1.json r’uﬂu—' vt R 000 hesgeray.

OEBPS/httpatomoreillycomsourceoreillyimages1258916.png
000 People: new

<« @ 4 (@ iocainost 3000/people mew

Coogle Q

)

New person

[zaphod|
Create

ack

3

T

SR

OEBPS/httpatomoreillycomsourceoreillyimages1259031.png
000 Hello Zimbel

@ @ () (. nup://locaihost:3000/entrysign_in

Hello Zimbel
Bnter your name: sl |

« Zimbel

OEBPS/httpatomoreillycomsourceoreillyimages1258922.png
000 People: index

<« @ 4 [@mpyfiscainost 3000 /pesple

Coogle Q

)

Listing people

Name
Zaphod Show Edit Destroy.

New person

e

SR

OEBPS/httpatomoreillycomsourceoreillyimages1259109.png
course_name id

3 y
Lavatory Decorations of Ancent Rome | 2-
Wathematial Opera 3
mmoal Resthetics 4
Advanced Bolt Design 5

Jhniddle_namefaiy_name | date_of_birt] qrade_pain [tat_date
average

Prentiss Boschwick |3/31/1989 |3.92 9/12/2006

Zorgos Stim 21211989 394 9/12/2006

Bloss Miller 12011988 (276 9/12/2006

Sortingo James 7141989 |34 9/12/2006

OEBPS/oreilly_large.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages1259021.png.jpg
Cookies

Search: [localhost Clear

The following cookies match your search

Site | Cookie Name
localhost name
localhost _guestbook001a_session
Name: name

Content:

Host: localhost
Path: |
Send For: Any type of connection
Expires: at end of session

(Remove All Cookies

OEBPS/httpatomoreillycomsourceoreillyimages1258997.png
000 Students: show

<« @ 4 [@nmpicainost3000/studtents/1 v |-

=

Students | Courses

Given name: Giles

Middle name: Prentiss
Family name: Boschwick
Date of birth: 1989-03-31
Grade point average: 3.92
Start date: 2006-09-12

Awards

Name Year Student
Best Handwriting 2007 Giles Boschwick
Edit | Awards | Back

e

03| e

OEBPS/httpatomoreillycomsourceoreillyimages1258933.png
Guestbook

| + @ http://localhost:3000/people. ¢ | (Q- Google

e M Modularization testing Apple Mac

)»
»

New person

Name
Secret

Country:
O canada

O Mexico

© United Kingdom

O United States of America

Email

NCL

OEBPS/httpatomoreillycomsourceoreillyimages1259064.png
000 Students: index =l

([©OD?) (@) ({00 hup: flocalhost:3000 students %)

Welcome | Students | Courses | Logout

Listing students

Given name Middle name Family name DOB GPA Start date Courses Awards

Giles Prentiss Boschwick ~ 1989-02-15 3.92 2006-09-12 3 o Show Awards
Milletta Zorgos stim 1989-04-17 3.94 2006-09-12 0 o Show Awards
Jules Bloss Miller 1988-11-12 2.76 2006-09-12 2 1 Show Awards
Greva Sortingo James 1989-03-03 3.24 2006-09-12 0 o Show Awards

S W 7T PP —,

OEBPS/httpatomoreillycomsourceoreillyimages1258928.png
060 Guestbook (=]
! (8] Guestbook E
New person N

Name

Secret

Coumty

Description

Can send email
=]

Graduation year

Body temperature

(2011 %) (February ¥} (21

Create person

Back

OEBPS/httpatomoreillycomsourceoreillyimages1259092.png
Students

[4[> | [+ [@nttp://locaihost:3000/students /4 & | (Q- Google

e m Modularization testing Apple Mac Amazon eBay

»

Students | Courses.

Awards for Greva James

Name Year
Most likely to win the lottery 2012 Show Edit Destroy

New award | Back

OEBPS/httpatomoreillycomsourceoreillyimages1259087.png
(4> [~) localhost:3000/students/new Tyve DuckDuckGo

New student
—

Middle name

Famllf name

Date of birth

Grade point average

Start date

Back

OEBPS/httpatomoreillycomsourceoreillyimages1259073.png.jpg
(L assets

) nudents ~ > IR 1 mioes v

& config » @l controllers » @ javascripts »
| config.ru [helpers » [stylesheets >
5K » (3 mailers "

(3 doc » [models "

| Gemfile (3 views -

| Gemfile.lock

& o "

(i 1og -

(3 public "

| Rakefile

" README

(3 script »

(3 test "

(& tmp »

{3 vendor »

OEBPS/httpatomoreillycomsourceoreillyimages1258977.png
000 Students
JO Students =1 -
(4> | (@] L) g localnost:3000 awards v][x] (] (B (=[]

Listing awards

Name Year Student
Best Handwriting 2011 Giles Boschwick Show Edit Destroy
Nicest Smile 2010 Jules Miller Show Edit Destroy
Cleanest Desk 2011 Jules Miller Show Edit Destroy

Most likely to win the lottery 2011 Milletta Stim Show Edit Destroy

New Award

x

OEBPS/httpatomoreillycomsourceoreillyimages1258888.png
Hello [=)

) () (&) (O m1/0.0.0,0:3000melto 2
10 Hello I=7 [=

Hello!

‘This is a greeting from app/views/hello/index html.erb

‘This message came from the controller.
‘This message came from the controller.

‘This message came from the controller.

Done

OEBPS/httpatomoreillycomsourceoreillyimages1259016.png
y T HTTPrequest
W —
HITPresponsewith ~ ———
Set-Cookie: Name=Value

(— header
T HITPrequestwith
7S Cookie: Name=Value
header —_
e HTTP response —
T HIPrequestwith
<A Cookie: Name=Value
header —_

/HTTPN:pcmse
T——— HTTPrequestwith
Ll Cookie: Name=Value
header

OEBPS/httpatomoreillycomsourceoreillyimages1259083.png
5 gem 'sqlite3’
> gem ‘friendly id', '3.2.1' # Added the Friendly_ID gem

OEBPS/httpatomoreillycomsourceoreillyimages1259107.png
presenter
s Jan Busnip

O Milo Jonsten, 005
W James ithers

s Marjore Forbes_

midle_amefaniy_name] date_of_birth|grade_pointstat_date
i Jhvard Ve [Sludent_id avrage
1493 | Bestandwriting 07 1 | Gles Pentiss | Boschwick[331/1989 |3.92 9n2/2006
1657 liestSmile— 2007 2 [Milletta | Zorgos Stim 20271989 [394 9/12/2006
1631teanest Desk 2007 3 | Jules: Bloss Miller 12011988 (276 9/12/2006
1892 sty o i th otery 4 Sotngs |lames 774198 304|910

OEBPS/httpatomoreillycomsourceoreillyimages1258931.png.jpg
Guestbook

| + |@hnttp://localhost:3000/people. ¢ | (Q- Google

Modularization testing Apple Mac

)»
»

New person

Name

Josiah

Secret

Country —————————————————————————

O usa
© canada
O Mexico

Email

Description

=

OEBPS/httpatomoreillycomsourceoreillyimages1258960.png
000

photo_store

(a]>] [z=][=] Q
¥ bevices NEED - 404huml)
24 Macintosh HD. (3 config > 422.html 2png
@oewgs & | | @® > soontmi
i 3 o |8 dspach.ca
> SHARED =1 > 18 dspach feai
e @ 1o - dispatch.rb
1 public [favicon.ico
A fpplications
< [Rakefile (3 images N
BCESEEEE | [recome indiex rml
a orn & seript > javascripts -
@ Pictures 0 test > [photo_store
© downloads & mp - robots.txt
@ smonsu 3 vendor > [stesheats N
B Deskop
¥ SEARCH FOR
: 1 " " "
© Today e N T

2items, 14.47 CB available

OEBPS/httpatomoreillycomsourceoreillyimages1259006.png
000 Students: courses

<« @ £ (@ iocainost 3000/sturtens 1 courses

|0

Students | Courses

Course was successfully added

Giles Boschwick's courses

Course Remove?
Mathematical Opera [~

Remove checked courses

Enroll in new course

Reptiles: Friend or Foe? | _Enroll

Back

e

0 ek

OEBPS/httpatomoreillycomsourceoreillyimages1259070.png
(3 publ

[Name 4] DateModified

© 404.htmi
@ 422.hml
© 500.himl
4 favicon.ico
> [images
< index.htmi
> 3 javascripts
> [paf
2 robots.txt
> [stylesheets

Sep 6, 2011 1.05 PM
Sep 6, 2011 1:05 PM
Sep 6, 2011 1:05 PM
Sep 6, 2011 1:05 PM
Today 10:08 AM

Sep 6, 2011 1:10 PM
Sep 6, 2011 1:05 PM
Sep 6, 2011 1:05 PM
Sep 6, 2011 1:05 PM
Sep 6, 2011 1:05 PM

Kind
HTML
HTML.
HTML
Windo
Folder
HTML,
Folder
Folder
Plain T
Folder

OEBPS/httpatomoreillycomsourceoreillyimages1258946.png
1 error prohibited this person from being saved:

= Name can't be blank

OEBPS/httpatomoreillycomsourceoreillyimages1258892.png
Hello [=)

@ (€) G0 () (L hup://0.0.0.0:3000/hello Yy
I el =7 =

Hello!

This is a greeting from app/views/hello/index.html.erb

This message came from the controller.
This message came from the controller.
This message came from the controller.

Done

OEBPS/httpatomoreillycomsourceoreillyimages1259056.png
000 index =

(LD @ GO @ (O recanosczooo)

Welcome | Students | Courses | Logout

Thanks for signing up!

Welcome

Hi, zoid.

OEBPS/httpatomoreillycomsourceoreillyimages1259046.png
Action Controller: Exception caught

<[» || + (@ http:localhost:3000/auth identity register

¢ | (Q~ Google

Modularization testing Apple Mac Amazon eSay Yahoo!

s M

RuntimeError in SessionsController#create

imap:OmiRuth: sAuthHash

provider: identity

wia
infor imap:omimutn::

name: saphod Torminox

enail: zaphod@example.com

oredentisls: tmapixashi

extra: imapiMashie:smash ()

Rails.root:
/Users/simonstl/Personal/RailsOutin/living_book_2009/codeCurrent/newtake/9780596518783/Rails3. 1/ch14/students07

Application Trace | Framework Trace | Full Trace

“oreate

app/controllers/sessions_controller.rbi3:

Request
Parameters:

OEBPS/httpatomoreillycomsourceoreillyimages1259042.png
Register Identity
<[» || + (@ http:localhost:3000/auth identity register ¢] (@ Google

Modularization testing Apple Mac Amazon eSay Yahoo!

Register Identity

Name:

Email:

zaphod@example.com

Password:

Confirm Password:

Connect

OEBPS/httpatomoreillycomsourceoreillyimages1259052.png
Students01
[<[> || + @ hup://locaihost:3000/ ¢ | (@ Google)
s m Modularization testing Apple Mac Amazon eBay Yahoo!

og in | Register

Students | Courses.

Listing students

Given name Middle name Family name Date of birth Grade point average Start date Courses Awards

Giles Prentiss Boschwick ~ 2006-12-14 3.92 2011-12-012 2 ‘Show Edit Awards Destroy
Miletta Zorgos stim 2006-02-02 3.94 2011-09-14 0 0 ‘Show Edit Awards Destroy
Jules. Bloss Miller 2006-11-20 2.76 2011-09-14 0 1 ‘Show Edit Awards Destroy
Greva Sortingo James 2006-07-13 3.24 2011-09-14 0 1 ‘Show Edit Awards Destroy
Jimina Zaphod Yort 2006-12-14 2.98 2011-12-14 0 0 ‘Show Edit Awards Destroy

New Student

OEBPS/httpatomoreillycomsourceoreillyimages1259066.png
806 Students01
<> |[6][+ Onttp://localhost:3000/students/ ¢ |(Q~ Google uj
1 Students1 B

Listing students

StudentName Date of birth Grade point average Start date Awards

Giles Prentiss Boschwick 2006-12-14 3.92 2011-12:011 w Edit Destroy.
Miletta Zorgos Stim 2006-02-02 3.94 2011-09-14 0 w Edit Destroy.
Jules Bloss Miller 2006-11-20 2.76 2011-09-14 2 w Edit Destroy.
Greva Sortingo James 2006-07-14 3.24 2011-09-14 1 Show Edit Destroy

New Student

OEBPS/httpatomoreillycomsourceoreillyimages1258962.png
000 People: show [=)

<av oo @) £ (@ iocaost3000/e0pie/3 VB 3
- -

Description: Juliet and her husband Romeo wander the world as ghosts.

Can send emal

rue

Graduation year: 1921

Body temperature: 60.
Favorite time: Mon Jun 30 10:43:00 -0400 2008
Photo:)

Edit | Back

Done 0 B vsiow

OEBPS/httpatomoreillycomsourceoreillyimages1258940.png
Country
[["Canada", "Canada"], [*Mexico", "Mexico"], ["United Kingdom", "UK"], [*United States of America", "USA"]]

OEBPS/httpatomoreillycomsourceoreillyimages1258966.png
000 People: new =
<a- @ £} (@ iocainost 3000/people mew v]B) 3
New person
Name *
[Simon St.Laurent
Secret *
Country *
United States of America v/
Email *
[simonsti@simonstl.com
Description
[Einon St.Laurent is an editor at
"Reilly Media, Inc. He used to
e an XML troublemaker, but now
evotes most of that energy to
[local politics and email.
Can send email *
F
Graduation year
1992] | %
Done 0 B vsiow

OEBPS/httpatomoreillycomsourceoreillyimages1259027.png
000 Hello Zimtonito =

([©OD?) (@) (O rup rlocamost3000/entyisignin 7 v)
Hello Zimtonito

Enter your name:

Hmmm... the last time you were here, you said you were Zimton.

O N TP

OEBPS/httpatomoreillycomsourceoreillyimages1258926.png
http://localhost:3000/people.json

< |+ @ hup://localhost:3000/people.json ¢] (Q- Google
e M

Modularization testing Apple Mac Amazon eBay Yahoo!

[{"created_at":"2012-07-01T10:14:16Z","id":1, "name": "Zaphod”, "updated_at":"2012-07-01T10:14:162"}
{"created_at":"2012-07-01T10:14:242","id":2, "name" “updated_at":"2012-07-01710:14:242"},
{"created_at":"2012-07-01T10:14:322","d":3, "name" : "Hepzibah", "updated_at":"2012-07-01T10:14:322"}]

OEBPS/httpatomoreillycomsourceoreillyimages1258905.png
o000 Hello Zaphod =

@ED) () (0.0 hetpi localhost:3000/entries/sign_in ¢ v)
Hello Zaphod

Eter your name: [zoroa |

S " 17T PP —

OEBPS/httpatomoreillycomsourceoreillyimages1259077.png.jpg
806 htp://localhost:3000/assets/ hello.txt

+ @ hup://localhost:3000/assets/ hello.txt ¢ Q-

OEBPS/httpatomoreillycomsourceoreillyimages1258878.png
Hello

(#) ([0 np://0.0.0.0:3000 hello wv)
5] |E3] =

Hello#index

Find me in app/views/hello/index html.erb

OEBPS/httpatomoreillycomsourceoreillyimages1258982.png
Students

JO Students =1

(4) > | (@] |1 hrpyflocalhost:3000/students /4.

) () () (@ (2[4

Given name: Jules
Middle name: Bloss
Family name: Miller

Date of birth: 2006-01-26
Grade point average: 2.76
Start date: 2009-09-10

Awards

Name Year Student
Nicest Smile 2010 Jules Miller
Cleanest Desk 2011 Jules Miller
Edit | Back

OEBPS/httpatomoreillycomsourceoreillyimages1258979.png
Students

JO Students =1

> | [@] [hutp://iocalhost:3000/students

Listing students

Grade
point
average

Giles Davis Boschwick 2006-01-10 3.7
Milletta Zorgos Stim 2006-10-12 3.94
Jules Bloss Miller 2006-01-26 2.76
Greva Sortingo James 2006-07-14 3.24

Given Middle Family Date of
name name name birth

New Student

Start date Awards

2011-03-29 1
2008-09-10 1
2009-09-10 2
2010-09-10 0

Show Edit Destroy
Show Edit Destroy
Show Edit Destroy
Show Edit Destroy

x

OEBPS/httpatomoreillycomsourceoreillyimages1259019.png
0060 Hello [=)

(L1 (@ GO @ O rocanoscsooojenty/sgn s v)
Hello

Enter your name:

OEBPS/httpatomoreillycomsourceoreillyimages1259081.png
gem 'sqlite3’
gem 'friendly_id’ # Added the Friendly_ID gem

OEBPS/httpatomoreillycomsourceoreillyimages1258886.png
Server name

http://localhost:3000/hello/index
| |
Controller - Acton (defauts toindex

¥ [hellodol class HelloController < ApplicationController
w7 apn def_index
v [controllers @nessage="Hellol"
= application.rb
hello_contrallel 1o @count-3
» 2 helpers @bonus="This message cane rom the controller."
» [models end
v [views end
v hello View defauts to antrlle/Action.tmlerb
£ index nml.erb
» [Flayous
b [config <htnl>
> Tdb <Eegd><title><%: @message %> </title></head>
I <body>
> [doc > anessage To</hi>
= <p>This is a greeting from app/views/hello/index.html.erb</p>
<p><%= Bbonus %></p>
STbodyy
</html>
Procedures
@R @ &) (O o ocaes o0t~ 57 v
Hello!

“This is a gretin from appiviewshelloindex b x>

This message came from the contoler.

— e

OEBPS/httpatomoreillycomsourceoreillyimages1258953.png
'hoto ¥ |7 guestbook007
fUsers/simonstl/Pictures springBpg { Browse

Back

PRAAAAAS

404.html
@ 422.html
500.html
File extension goes to File goes to dispatch.cgi
new column in photo_store, dispatch fegi
database named after = dispatch.ib
L dvalue favieon.ico
id | given_name | ...| extension » [avaseripts
1| bimo |..| g [photo_store
2| smith

robots.txt
b [stylesheets

juliet

OEBPS/httpatomoreillycomsourceoreillyimages1259060.png
000 Students: edit e

(LD (@ GO @ (O e ocahost000/stwdensi/ed 75 v)

Welcome | Students | Courses | Logout

Editing student

Given name
Giles

Middle name
Prentiss

Family name

Boschwick-Blink

Date of birth

Grade point average
392

Start date

(z00e T8) (seprember [8) (129

OEBPS/httpatomoreillycomsourceoreillyimages1258903.png
(<) > (&) ()(#) (11 nttp:/localhost:3000/entries/sign in 73 v
Hello

Enteryourname:| |

OEBPS/httpatomoreillycomsourceoreillyimages1258918.png
000 People: show

<@r oo @) £} [@nmnocaost3000/meapie/ 1

v

3

Coogle Q

e

Person was successfully created.
Name: Zaphod

Edit | Back

R

OEBPS/httpatomoreillycomsourceoreillyimages1258948.png
000 Guestbook

<JO eweswox L[> &
() > | L1 nttp: tocatnost 3000 people vie](n] (B (=]

New person

5 errors prohibited this person from being saved:

= Secret must be provided so we can recognize you in the future
= Secret is too short (minimum is 6 characters)

= Secret must contain at least one number

= Secret must contain at least one upper case character

= Secret must contain at least one lower case character

Name
Simon

Secret
/1

Country L
coumty 51
™ =

OEBPS/httpatomoreillycomsourceoreillyimages1259085.png
R R R e e

if defined?(Bundler)
If you precompile assets before deploying to production, use this line
Bundler.require(+Rails.groups(:assets => %w(development test)))
If you want your assets lazily compiled in production, use this line
Bundler.require(:default, :assets, Rails.env)

end

OEBPS/httpatomoreillycomsourceoreillyimages1258920.png
000 People: edit

)

<« @ 4} [@nmpcanost3000/meople/Ljecit v 1> Google Q

Editing person

[Zaphod
Update

Show | Back

Done O B vsiow

OEBPS/httpatomoreillycomsourceoreillyimages1258968.png
(4) 7] [@] [nup://iocatnost:3000/awards new v | (3] [[B3-] [+

New award

OEBPS/httpatomoreillycomsourceoreillyimages1258991.png
000 Awards: edit [=)

<« @ £ (@ nip:yiocainost 3000 students/3 fawarcis/5 et VB 3

Editing award for Jules Miller

Name
[Cleanest Desk

Year

2007
Update

Show | Back

Done O B vsiow

OEBPS/httpatomoreillycomsourceoreillyimages1258975.png
Students

J_}T+

New award

2 errors prohibited this award from being saved:

= Student does not exist
= Student does not exist

Name
Drunken Mayhem

Year
2011

(Create Award)

1+ () (L mpiocosessoojves v [[#0) (2] (=

x

OEBPS/httpatomoreillycomsourceoreillyimages1259003.png
000 Students: courses

<« @ 4} (@ iocainost3000/sturtents 1 courses

|0

Students | Courses

Giles Boschwick's courses

Not enrolled in any courses yet.
Enroll in new course

Reptiles: Friend or Foe? | _Enroll

Back

T

0 e

OEBPS/httpatomoreillycomsourceoreillyimages1259010.png
000 Courses: roll =
<@ @ £ [@ ntpy focainost 3000/ courses/ ol e %

Students | Courses

Roll for Reptiles: Friend or Foe?

Student GPA
Milletta Stim 3.94

Done O B vsiow

OEBPS/httpatomoreillycomsourceoreillyimages1258995.png
000 Students:

index

<« @ 4 @ iocainost3000/students/

)

Listing students

Given Middle Family Date of G:[::
name name name bith PO
Giles Prentiss Boschwick 1989-03-31 3.92
Milletta Zorgos Stim 1989-02-02 3.94
Jules Bloss Miller 1988-11-20 2.76
Greva Sortingo James 1989-07-14 3.24

New student

Start date Awards

2006-09-12 1
2006-09-120
2006-09-122
2006-09-12 1

Show Edit Awards Destroy.
Show Edit Awards Destroy.
Show Edit Awards Destroy.
Show Edit Awards Destroy.

T

SR

OEBPS/httpatomoreillycomsourceoreillyimages1258935.png

OEBPS/httpatomoreillycomsourceoreillyimages1259058.png
000 Students: index =}

I (@) QO o Tocahost3000 suudents D

Welcome | Students | Courses | Logout

Listing students

Given Middie Family o5 Gpa start date Courses Awards

name name name

Giles Prentiss Boschwick 1989-02-15 3.92 2006-09-12 3 0 Show Edit Awards Destroy
Milletta Zorgos ~ Stim 1989-04-17 3.94 2006-09-12 0 o Show Edit Awards Destroy
Jules Bloss Miller 1988-11-12 2.76 2006-09-12 2 1 Show Edit Awards Destroy
Greva Sortingo James 1989-03-03 3.24 2006-09-12 0 0 Show Edit Awards Destroy

New student

S TP

OEBPS/httpatomoreillycomsourceoreillyimages1258951.png
<[>
s M

Guestbook
+ | @ http://localhost:3000/people ¢ | (Q~ Google

Modularization testing Apple Mac Amazon eBay Yahoo!

New person

5 errors prohibited this person from being saved:

Secret must be provided sa we can recognize yau in the future
Secret is too short (minimum is 6 characters)

Secret must contain at least one number

Secret must contain at least one upper case character

Secret must contain at least one lower case character

Name

Simon

Nl

OEBPS/httpatomoreillycomsourceoreillyimages1258907.png
match “:controller(/:action(/:

(.:format)))”

http: //1oca1host 3000/entr1es/51gn in

Sarver ‘name Conlmllar A(lmn Noid value;
name (method) o format value
name

http://localhost:3000/entries/show/1

|
el rame Gntollr Adion ke Noformatvale
name (method)
name

http://localhost:3000/entries/show/1.xml
Slrver‘mme Cl)lll‘la“l! A{I‘inn malue\knmalvalue
name (method)
name

OEBPS/httpatomoreillycomsourceoreillyimages1259039.png
Identity Verification
<[» | [+ (@ http localhost:3000/authyidentity ¢] (@ Google
i Modularization testing Apple Mac Amazon eBay Yahoo!

Password:

Create an Identity

OEBPS/httpatomoreillycomsourceoreillyimages1258884.png
User sendsrequest

View processing

OEBPS/httpatomoreillycomsourceoreillyimages1258890.png
Hello [=)

) () (&) (O m1/0.0.0.0:3000/hello 2
10 Hello I=7 [=

Hello!

‘This is a greeting from app/views/hello/index html.erb

‘This message came from the controller.
‘This message came from the controller.

‘This message came from the controller.

Done

OEBPS/httpatomoreillycomsourceoreillyimages1258876.png
Ruby on Rails: Welcome aboard - Windows Internet Explorer

~=lol

G@ ~ [] Wtpiocahost:anooy

$% & @Ruby on Raiss Welcome sbosrd |

= o)< e semer

x|

[2[]

% - B - @ - [cheage v G Took + 7

@ Intranet setingsare now turned of by defoul, Intranet settings are lss secure then Interet settings, Clck or opions x
Welcome aboard Semch | e s s
You're riding the Rails!
About your application’s environment fth e EEmTY
. Ruby on Rail
Getting started O“” ”‘” ES
Here’s how to get rolling sl e
wailing lists
. IRC channel
1. Create your databases and edit o
config/database.yml e
Bug tracker
Rails needs to know your login and password
Browse the
documentation
2. Use script/generate to create your
models and controllers
Rails 4P1
Ta see all available options, run it without parameters Buby standard librar
Ruby core
3. Set up a default route and remove or B
rename this file
Routes are setup in config/routes. b =
@ [T [[@ memet I motscedode: oF Wiwn -

OEBPS/httpatomoreillycomsourceoreillyimages1258958.png
000 People: new =)
v @ 4 [@mpfocahost3000 peopieinew v |1 3
Body temperature A
Price

Birthday

Favorite time

[2008 ~[[June 10 = —[17 = :[13 <]
Photo

Browse...
Update

-7

0 B vsiow

OEBPS/httpatomoreillycomsourceoreillyimages1259096.png
Students

[4[> || + @ hutp://localhost:3000/students/ & | (Q- Google

e m Modularization testing Apple Mac Amazon eBay

»

Students | Courses.

Awards for Greva James

Name Year
Most likely to win the lottery 2012 Show Edit Destroy
Chemistry Wizard 2012 Show Edit Destroy

New award | Back

OEBPS/httpatomoreillycomsourceoreillyimages1259094.png
Students

[<[» || + @ http://localhost:3000/students/4, & | (Q- Google

e m Modularization testing Apple Mac Amazon eBay

»

Students | Courses.

New award for Greva James

Name
Chemistry Wizard

Year
2012 2]

Back

OEBPS/httpatomoreillycomsourceoreillyimages1258984.png
000 Awards: index =
<a- @ 4% [@ e facainast 3000 students/3 fawards v]p) %

Awards for Jules Miller

Name Year
Nicest Smile 2007 Show Edit Destroy
Cleanest Desk 2007 Show Edit Destroy

New award | Back

Done O B vsiow

