

 [image: Programming Web Services with SOAP]

 Programming Web Services with SOAP

James Snell

Doug Tidwell

Pavel Kulchenko

Editor
Nathan Torkington

Copyright © 2009 O'Reilly Media, Inc.

[image:]

O'Reilly Media

SPECIAL OFFER: Upgrade this ebook with O’Reilly

Click here for more information on this offer!
Please note that upgrade offers are not available from sample content.

A Note Regarding Supplemental Files

Supplemental files and examples for this book can be found at http://examples.oreilly.com/9780596000950/. Please use a standard desktop web browser to access these files, as they may not be accessible from all ereader devices.
All code files or examples referenced in the book will be available online. For physical books that ship with an accompanying disc, whenever possible, we’ve posted all CD/DVD content. Note that while we provide as much of the media content as we are able via free download, we are sometimes limited by licensing restrictions. Please direct any questions or concerns to booktech@oreilly.com.

Preface

You'd be hard-pressed to find a buzzword hotter than
web services
 . Breathless articles promise that web
services will revolutionize business, open new markets, and change
the way the world works. Proponents call web services "The
Third-Generation Internet," putting them on a par with email
and the browseable web. And no protocol for implementing web services
has received more attention than SOAP, the Simple Object
Access Protocol.

This book will give you perspective to make sense of all the hype.
When you finish this book, you will come away understanding three
things: what web services are, how they are written with SOAP, and
how to use other technologies with SOAP to build web services for the
enterprise.

While this book is primarily a technical resource for software
developers, its overview of the relevant technologies, development
models, standardization efforts, and architectural fundamentals can
be easily grasped by a nontechnical audience wishing to gain a better
understanding of this emerging set of new technologies.

For the technical audience, this book has several things to offer:
	A detailed walk-through of the SOAP, WSDL, UDDI, and related
specifications

	Source code and commentary for sample web services

	Insights on how to address issues such as security and reliability in
enterprise environments

Web services represent a powerful new way to build software systems
from distributed components. But because many of the technologies are
immature or only address parts of the problem, it's not a
simple matter to build a robust and secure web service. A web service
solution today will either dodge tricky issues like security, or will
be developed using many different technologies. We have endeavored to
lay a roadmap to guide you through the many possible technologies and
give you sound advice for developing web services.

Will web services revolutionize everything? Quite possibly, but
it's not likely to be as glamorous or lucrative, or happen as
quickly as the hype implies. At the most basic level, web services
are plumbing, and plumbing is never glamorous. The applications they
make possible may be significant in the future, and we discuss
Microsoft Passport and Peer-to-Peer (P2P) systems built with web
services, but the plumbing that enables these systems will never be
sexy.

Part of the fundamental utility of web services is their language
independence—we come back to this again and again in the book.
We show how Java, Perl, C#, and Visual Basic code can be easily
integrated using the web services architecture, and we describe the
underlying principles of the web service technologies that transcend
the particular programming language and toolkit you choose to use.

Audience for This Book

There's a shortage of good information on web services at all
levels. Managers are being bombarded with marketing hyperbole and
wild promises of efficiency, riches, and new markets. Programmers
have a bewildering array of acronyms thrust into their lives and are
expected to somehow choose the correct system to use. On top of this
confusion, there's pressure to do something with web service
immediately.

If you're a programmer, we show you the big picture of web
services, and then zoom in to give you low-level knowledge of the
underlying XML. This knowledge informs the detailed material on
developing SOAP web services. We also provide detailed information on
the additional technologies needed to implement enterprise-quality
web services.

Managers can benefit from this book, too. We strip away the hype and
present a realistic view of what is, what isn't, and what might
be. Chapter 1 puts SOAP in the wider context of
the web services architecture, and Chapter 9 looks
ahead to the future to see what is coming and what is needed (these
aren't always the same).

Structure of This Book

We've arranged the material in this book so that you can read
it from start to finish, or jump around to hit just the topics
you're interested in.

 Chapter 1
 , places SOAP in the
wider picture of web services, discussing Just-in-Time integration
and the Web Service Technology Stack.

 Chapter 2, explains what SOAP does and how it does
it, with constant reference to the XML messages being shipped around.
It covers the SOAP envelope, headers, body, faults, encodings, and
transports.

 Chapter 3, shows how to use SOAP toolkits in Perl,
Visual Basic, Java, and C# to create an elementary web service.

 Chapter 4, presents our first real-world web
service. Registered users may add, delete, or browse articles in a
database.

 Chapter 5, introduces the Web Services Description
Language (WSDL) at an XML and programmatic level, shows how WSDL
makes it easier to write a web service client, and discusses complex
message patterns.

 Chapter 6, shows how to use the Universal
Description, Discovery, and Integration (UDDI) project and the
WS-Inspection standard to publish, discover, and call web services,
and features best practices for using WSDL and UDDI together.

 Chapter 7, builds a peer-to-peer (P2P) web
services application for sharing source code in Perl and Java using
SOAP, WSDL, and related technologies.

 Chapter 8, describes the issues and approaches to
security in web services, focusing on Microsoft Passport, XML
Encryption, and Digital Signatures.

 Chapter 9, explains the present shortcomings in
web services technologies, describes some developing standardization
efforts, and identifies the future battlegrounds for web services
mindshare.

 Appendix A, is a summary of the many varied
standards for aspects of web services such as packaging, security,
transactions, routing, and workflow, with pointers to online sources
for more information on each standard.

 Appendix B, is a gentle introduction to the bits of
the XML Schema specification you'll need to know to make sense
of WSDL and UDDI.

 Appendix C, contains full source for the programs
developed in this book.

Conventions

The following typographic conventions are used in this book:
	
 Italic

	Used for filenames, directories, email addresses, and URLs.

	
 Constant Width

	Used for XML and code examples. Also used for constants, variables,
data structures, and XML elements.

	
 Constant Width Bold

	Used to indicate user input in examples and to highlight portions of
examples that are commented upon in the text.

	
 Constant Width Italic

	Used to indicate replaceables in examples.

Comments and Questions

We have tested and verified all of the information in this book to
the best of our ability, but you may find that features have changed,
that typos have crept in, or that we have made a mistake. Please let
us know about what you find, as well as your suggestions for future
editions, by contacting:

	O'Reilly & Associates, Inc.
	1005 Gravenstein Highway North
	Sebastopol, CA 95472
	(800) 998-9938 (in the U.S. or Canada)
	(707) 829-0515 (international/local)
	(707) 829-0104 (fax)

You can also send us messages electronically. To be put on the
mailing list or request a catalog, send email to:

	
 info@oreilly.com

To ask technical questions or comment on the book, send email to:
	
 bookquestions@oreilly.com

We have a web site for the book, where we'll list examples,
errata, and any plans for future editions. You can access this page
at:

	
 http://www.oreilly.com/catalog/progwebsoap/

For more information about this book and others, see the
O'Reilly web site:

	
 http://www.oreilly.com

Acknowledgments

The authors and editor would like to thank the technical reviewers,
whose excellent and timely feedback greatly improved the book you
read: Ethan Cerami, Tony Hong, Matt Long, Simon Fell, and Aron
Roberts.

James

Thank you,
	To Pavel and Doug, for their help.
	To my editor, Nathan, for his persistent badgering.
	To my wife, Jennifer, for her patience.
	To my son, Joshua, for his joy.
	And to my God, for his grace.

This book wouldn't exist without them.

Doug

I would like to thank my wonderful wife, Sheri Castle, and our
amazing daughter, Lily, for their love and support. Nothing I do
would be possible or meaningful without them.

Pavel

I wouldn't have been able to participate in this project
without my family's patience and love. My son, Daniil, was the
source of inspiration for my work, and my wife, Alena, provided
constant support and encouragement. Thank you!

Many thanks to Tony Hong for his sound technical advice, productive
discussions, and our collaboration on projects that gave me the
required knowledge and experience.

I'd like to thank James Snell for inviting me to participate in
writing this book, and for the help he gave me throughout the
process.

Thanks to our wonderful technical editor, Nathan Torkington, who was
a delight to work with and wonderfully persistent in his efforts to
get this book done and make it great.

Finally, I am fortunate to be part of two communities, Perl and SOAP.
I want to thank the many people that make up those communities for
the enthusiastic support, feedback, and the fresh ideas that
they've provided to me—they've helped to make
SOAP::Lite and the other projects I've worked on what they are
now.

Chapter 1. Introducing Web Services

To make best use of web services and SOAP, you must have a firm
understanding of the principles and technologies upon which they
stand. This chapter is an introduction to a variety of new
technologies, approaches, and ideas for writing web-based
applications to take advantage of the web services architecture. SOAP
is one part of the bigger picture described in this chapter, and
you'll learn how it relates to the other technologies described
in this book: the Web Service Description Language (WSDL), the Web
Service Inspection Language (WS-IL), and the Universal Description,
Discovery, and Integration (UDDI) services.

What Is a Web Service?

Before we go any further, let's define the basic concept of a
"web service." A web
service
 is a network accessible interface to
application functionality, built using standard Internet
technologies. This is illustrated in Figure 1-1.

[image: A web service allows access to application code using standard Internet technologies]

Figure 1-1. A web service allows access to application code using standard Internet technologies

In other words, if an application can be accessed over a network
using a combination of protocols like HTTP, XML, SMTP, or Jabber,
then it is a web service. Despite all the media hype around web
services, it really is that simple.

Web services are nothing new. Rather, they represent the evolution of
principles that have guided the Internet for years.

Web Service Fundamentals

As Figure 1-1 and Figure 1-2 illustrate, a web service is an interface
positioned between the application code and the user of that code. It
acts as an abstraction layer, separating the platform and
programming-language-specific details of how the application code is
actually invoked. This standardized layer means that any language
that supports the web service can access the application's
functionality.

[image: Web services provide an abstraction layer between the application client and the application code]

Figure 1-2. Web services provide an abstraction layer between the application client and the application code

The web services that we see deployed on the Internet today are HTML
web sites. In these, the application services—the mechanisms
for publishing, managing, searching, and retrieving content—are
accessed through the use of standard protocols and data formats: HTTP
and HTML. Client applications (web browsers) that understand these
standards can interact with the application services to perform tasks
like ordering books, sending greeting cards, or reading news.

Because of the abstraction provided by the standards-based
interfaces, it does not matter whether the application services are
written in Java and the browser written in C++, or the application
services deployed on a Unix box while the browser is deployed on
Windows. Web services allow for cross-platform interoperability in a
way that makes the platform irrelevant.

 Interoperability
is one of the key benefits gained from implementing web services.
Java and Microsoft Windows-based solutions have typically been
difficult to integrate, but a web services layer between application
and client can greatly remove friction.

There is currently an ongoing effort within the Java community to
define an exact architecture for implementing web services within the
framework of the Java 2 Enterprise Edition specification. Each of the
major Java technology providers (Sun, IBM, BEA, etc.) are all working
to enable their platforms for web services support.

Many significant application vendors such as IBM and Microsoft have
completely embraced web services. IBM for example, is integrating web
services support throughout their WebSphere, Tivoli, Lotus, and DB2
products. And Microsoft's new .NET development platform is
built around web services.

What Web Services Look Like

Web services are a messaging framework. The only requirement placed
on a web service is that it must be capable of sending and receiving
messages using some combination of standard Internet protocols. The
most common form of web services is to call procedures running on a
server, in which case the messages encode "Call this subroutine
with these arguments," and "Here are the results of the
subroutine call."

 Figure 1-3 shows the pieces
of a web service. The application code holds all the business logic
and code for actually doing things (listing books, adding a book to a
shopping cart, paying for books, etc.). The
Service
Listener speaks the transport protocol (HTTP, SOAP, Jabber, etc.) and
receives incoming requests. The Service Proxy decodes those requests into
calls into the application code. The Service Proxy may then encode a
response for the Service Listener to reply with, but it is possible
to omit this step.

[image: A web service consists of several key components]

Figure 1-3. A web service consists of several key components

The Service Proxy and Service Listener components may either be
standalone applications (a TCP-server or HTTP-server daemon, for
instance) or may run within the context of some other type of
application server. As an example,

 IBM's WebSphere
Application Server includes built-in support for receiving a SOAP
message over HTTP and using that to invoke Java applications deployed
within WebSphere. In comparison, the popular open source
Apache web
server has a module that implements SOAP. In fact, there are
implementations of SOAP for both the Palm and PocketPL Portable
Digital Assistant (PDA) operating systems.

Keep in mind, however, that web services do not require a server
environment to run. Web services may be deployed anywhere that the
standard Internet technologies can be used. This means that web
services may be hosted or used by anything from an Application
Service Provider's vast server farm to a PDA.

Web services do not require that applications conform to a
traditional client-server (where the server holds the data and does
the processing) or n-tier development model (where data storage is
separated from business logic that is separated from the user
interface), although they are certainly being heavily deployed within
those environments. Web services may take any form, may be used
anywhere, and may serve any purpose. For instance, there are strong
crossovers between peer-to-peer systems (with decentralized data or
processing) and web services where peers use standard Internet
protocols to provide services to one another.

Intersection of Business and Programming

Because a web service exposes an application's functionality to
any client in any programming language, they raise interesting
questions in both the programming and the business world.

Programmers tend to raise questions like, "How do we do
two-phase commit transactions?" or "How do I do object
inheritance?" or "How do I make this damn thing run
faster?"—questions typically associated with going
through the steps of writing code.

Business folks, on the other hand, tend to ask questions like,
"How do I ensure that the person using the service is really
who they say they are?" or "How can we tie together
multiple web services into a workflow?" or "How can I
ensure the reliability of web service transactions?" Their
questions typically address business concerns.

These two perspectives go hand-in-hand with one another. Every
business issue will have a software-based solution. But the two
perspectives are also at odds with each other: the business processes
demand completeness, trust, security, and reliability, which may be
incompatible with the programmers' goals of simplicity,
performance, and robustness.

The outcome is that tools for implementing web services will do so
from one of these two angles, but rarely will they do so from both.
For example,
SOAP::Lite, the
Perl-based SOAP implementation written by the coauthor of this book,
Pavel Kulchenko, is essentially written for programmers. It provides
a very simple set of tools for invoking Perl modules using SOAP,
XML-RPC, Jabber, or any number of other protocols.

In contrast, Apache's Axis project (the next
generation of Apache's SOAP implementation) is a more complex
web services implementation designed to make it easier to implement
processes, or to tie together multiple web services. Axis can perform
the stripped down bare essentials, but that is not its primary focus.

The important thing to keep in mind is that both tools implement many
of the same set of technologies (SOAP, WSDL, UDDI, and others, many
of which we discuss later on), and so they are capable of
interoperating with each other. The differences are in the way they
interface with applications. This gives programmers a choice of how
their web service is implemented, without restricting the users of
that service.

Just-In-Time Integration

Once you understand the basic web services outlined earlier, the next
step is to add Just-In-Time
Integration
 . That is, the dynamic integration
of application services based not on the technology platform the
services are implemented in, but upon the business requirements of
what needs to get done.

Just-In-Time Integration recasts the Internet application development
model around a new framework called the web services architecture (Figure 1-4).

[image: The web services architecture]

Figure 1-4. The web services architecture

In the web services architecture, the service
provider publishes a description of the service(s) it
offers via the service registry. The
service consumer searches the service registry
to find a service that meets their needs. The service consumer could
be a person or a program.

Binding refers to a service consumer actually using the service
offered by a service provider. The key to Just-in-Time integration is
that this can happen at any time, particularly at runtime. That is, a
client might not know which procedures it will be calling until it is
running, searches the registry, and identifies a suitable candidate.
This is analogous to late binding in object-oriented programming.

Imagine a purchasing web service, where consumers requisition
products from a service provider. If the client program has
hard-coded the server it talks to, then the service is bound at
compile-time. If the client program searches for a suitable server
and binds to that, then the service is bound at runtime. The latter
is an example of Just-In-Time integration between services.

The Web Service Technology Stack

The web
services architecture is implemented through the layering of five
types of technologies, organized into layers that build upon one
another (Figure 1-5).

[image: The web service technology stack]

Figure 1-5. The web service technology stack

It should come as no surprise that this stack is very similar to the
TCP/IP network model used to describe the architecture of
Internet-based applications (Figure 1-6).

[image: The TCP/IP network model]

Figure 1-6. The TCP/IP network model

The additional packaging, description, and discovery layers in the
web services stack are the layers essential to providing Just-In-Time
Integration capability and the necessary platform-neutral programming
model.

Because each part of the web services stack addresses a separate
business problem, you only have to implement those pieces that make
the most sense at any given time. When a new layer of the stack is
needed, you do not have to rewrite significant chunks of your
infrastructure just to support a new form of exchanging information
or a new way of authenticating users.

The goal is total modularization of the distributed computing
environment as opposed to recreating the large monolithic solutions
of more traditional distributed platforms like Java, CORBA, and COM.
Modularity is particularly necessary in web services because of the
rapidly evolving nature of the standards. This is shown in the sample
CodeShare application of Chapter 7, where we
don't use the discovery layer, but we do draw in another XML
standard to handle security.

Beyond the Stack

The layers of the web services stack do not provide a complete
solution to many business problems. For instance, they don't
address security, trust, workflow, identity, or many other business
concerns. Here are some of the most important standardization
initiatives currently being pursued in these areas:

	XML Protocol
	
 The W3C XML
Protocol working group is chartered with standardizing the SOAP
protocol. Its work will eventually replace the SOAP protocol
completely as the de facto standard for implementing web services.

	XKMS
	
 The XML Key Management Services are a
set of security and trust related services that add Private Key
Infrastructure (PKI) capabilities to web services.

	SAML
	
 The Security Assertions Markup
Language is an XML grammar for expressing the occurrence of security
events, such as an authentication event. Used within the web services
architecture, it provides a standard flexible authentication system.

	XML-Dsig
	
 XML Digital Signatures allow any XML
document to be digitally signed.

	XML-Enc
	
 The
XML Encryption specification allows XML data to be encrypted and for
the expression of encrypted data as XML.

	XSD
	
 XML
Schemas are an application of XML used to express the structure of
XML documents.

	P3P
	
 The W3C's Platform for
Privacy Preferences is an XML grammar for the expression of data
privacy policies.

	WSFL
	The Web Services Flow Language is an
extension to WSDL that allows for the expression of work flows within
the web services architecture.

	Jabber
	
 Jabber is a new
lightweight, asynchronous transport protocol used in peer-to-peer
applications.

	ebXML
	
 ebXML is a suite of
XML-based specifications for conducting electronic business. Built to
use SOAP, ebXML offers one approach to implementing
business-to-business integration services.

Discovery

 The discovery layer provides the
mechanism for consumers to fetch the descriptions of providers. One
of the more widely recognized discovery mechanisms available is the
Universal Description, Discovery, and Integration (UDDI) project. IBM
and Microsoft have jointly proposed an alternative to UDDI, the Web
Services Inspection Language (WS-Inspection). We will discuss both
UDDI and WS-Inspection in depth (including arguments for and against
their use) in Chapter 6.

Description

When a web service is implemented, it must make decisions on every
level as to which network, transport, and packaging protocols it will
support. A description of that service represents those decisions in
such a way that the Service Consumer can contact and use the service.

The Web Service Description Language
(WSDL) is the de facto standard for providing those descriptions.
Other, less popular, approaches include the use of the W3C's
Resource Description Framework (RDF)
and the DARPA Agent Markup Language (DAML),
both of which provide a much richer (but far more complex) capability
of describing web services than WSDL.

We cover WSDL in Chapter 5. You can find out more
information about DAML and RDF from:

	
 http://daml.semanticweb.org

	
 http://www.w3.org/rdf

Packaging

 For
application data to be moved around the network by the transport
layer, it must be "packaged" in a format that all parties
can understand (other terms for this process are
"serialization" and "marshalling"). This
encompasses the choice of data types understood, the encoding of
values, and so on.

HTML is a kind of packaging format, but it can be inconvenient to
work with because HTML is strongly tied to the presentation of the
information rather than its meaning. XML is the basis for most of the
present web services packaging formats because it can be used to
represent the meaning of the data being transferred, and because XML
parsers are now ubiquitous.

 SOAP is a very common packaging
format, built on XML. In Chapter 2, we'll
see how SOAP encodes messages and data values, and in Chapter 3 we'll see how to write actual web
services with SOAP. There are several XML-based packaging protocols
available for developers to use (XML-RPC for instance), but as you
might have guessed from the title of this book, SOAP is the only
format we cover.

Transport

The transport layer includes the various
technologies that enable direct application-to-application
communication on top of the network layer. Such technologies include
protocols like TCP, HTTP, SMTP, and Jabber. The transport
layer's primary role is to move data between two or more
locations on the network. Web services may be built on top of almost
any transport protocol.

The choice of transport protocol is based largely on the
communication needs of the web service being implemented. HTTP, for
example, provides the most ubiquitous firewall support but does not
provide support for asynchronous communication. Jabber, on the other
hand, while not a standard, does provide good a asynchronous
communication channel.

Network

The
 network layer in the web services
technology stack is exactly the same as the network layer in the
TCP/IP
Network Model. It provides the critical basic communication,
addressing, and routing capabilities.

Application

The
 application layer is the code that
implements the functionality of the web service, which is found and
accessed through the lower layers in the stack.

The Peer Services Model

The peer
services model is a complimentary but alternative view of the web
services architecture. Based on the peer-to-peer
(P2P)
architecture, every member of a group of peers shares a common
collection of services and resources. A peer can be a person, an
application, a device, or another group of peers operating as a
single entity.

While it may not be readily apparent, the same fundamental web
services components are present as in the peer services architecture.
There are both service providers and service consumers, and there are
service registries. The distinction between providers and consumers,
however, is not as clear-cut as in the web services case. Depending
on the type of service or resource that the peers are sharing, any
individual peer can play the role of both a service provider and a
service consumer. This makes the peer services model more dynamic and
flexible.

 Instant
Messaging is the most widely utilized implementation of the peer
services model. Every person that uses instant messaging is a peer.
When you receive an invitation to chat with somebody, you are playing
the role of a service provider. When you send an invitation out to
chat with somebody else, you are playing the role of a service
consumer. When you log on to the Instant Messaging Server, the server
is playing the role of the service registry—that is, the
Instant Messaging Server keeps track of where you currently are and
what your instant messaging capabilities are. Figure 1-7 illustrates this.

[image: The peer web services model simply applies the concepts of the web services architecture in a peer-to-peer network]

Figure 1-7. The peer web services model simply applies the concepts of the web services architecture in a peer-to-peer network

Peer services and web services emerged and evolved separately from
one another, and accordingly make use of different protocols and
technologies to implement their respective models. Peer web services
tie the two together by unifying the technologies, the protocols, and
the models into a single comprehensive big picture. The
implementation of a peer web service will be the central focus of
Chapter 7.

Chapter 2. Introducing SOAP

 SOAP's place in the web services
technology stack is as a standardized packaging protocol for the
messages shared by applications. The specification defines nothing
more than a simple XML-based envelope for the information being
transferred, and a set of rules for translating application and
platform-specific data types into XML representations. SOAP's
design makes it suitable for a wide variety of application messaging
and integration patterns. This, for the most part, contributes to its
growing popularity.

This chapter explains the parts of the SOAP standard. It covers the
message format, the exception-reporting mechanism
(faults), and the system for encoding values in
XML. It discusses using SOAP over transports that aren't HTTP,
and concludes with thoughts on the future of SOAP. You'll learn
what SOAP does and how it does it, and get a firm understanding of
the flexibility of SOAP. Later chapters build on this to show how to
program with SOAP using toolkits that abstract details of the XML.

SOAP and XML

 SOAP is
XML. That is, SOAP is an application of the XML specification. It
relies heavily on XML standards like XML Schema and XML Namespaces
for its definition and function. If you are not familiar with any of
these, you'll probably want to get up to speed before
continuing with the information in this chapter (you can find
information about each of these specifications at the World Wide Web
Consortium's web site at http://www.w3c.org). This book assumes you
are familiar with these specifications, at least on a cursory level,
and will not spend time discussing them. The only exception is a
quick introduction to the XML Schema data types in Appendix B.

XML Messaging

 XML messaging
is where applications exchange information using XML documents (see
Figure 2-1). It provides a flexible way for
applications to communicate, and forms the basis of SOAP.

A message can be anything: a purchase order, a request for a current
stock price, a query for a search engine, a listing of available
flights to Los Angeles, or any number of other pieces of information
that may be relevant to a particular application.

[image: XML messaging]

Figure 2-1. XML messaging

Because XML is not tied to a particular application, operating
system, or programming language, XML messages can be used in all
environments. A Windows Perl program can create an XML document
representing a message, send it to a Unix-based Java program, and
affect the behavior of that Java program.

The fundamental idea is that two applications, regardless of
operating system, programming language, or any other technical
implementation detail, may openly share information using nothing
more than a simple message encoded in a way that both applications
understand. SOAP provides a standard way to structure XML messages.

RPC and EDI

 XML messaging, and
therefore SOAP, has two related applications: RPC and EDI. Remote
Procedure Call (RPC) is the basis of distributed computing, the way
for one program to make a procedure (or function, or method, call it
what you will) call on another, passing arguments and receiving
return values. Electronic Document Interchange (EDI) is basis of
automated business transactions, defining a standard format and
interpretation of financial and commercial documents and messages.

If you use SOAP for EDI (known as "document-style" SOAP),
then the XML will be a purchase order, tax refund, or similar
document. If you use SOAP for RPC (known, unsurprisingly, as
"RPC-style" SOAP) then the XML will be a representation
of parameter or return values.

The Need for a Standard Encoding

 If
you're exchanging data between heterogeneous systems, you need
to agree on a common representation. As you can see in Example 2-1, a single piece of data like a telephone
number may be represented in many different, and equally valid ways
in XML.

Example 2-1. Many XML representations of a phone number
<phoneNumber>(123) 456-7890</phoneNumber>
<phoneNumber>
 <areaCode>123</areaCode>
 <exchange>456</exchange>
 <number>7890</number>
</phoneNumber>
<phoneNumber area="123" exchange="456" label="7890" />
<phone area="123">
 <exchange>456</exchange>
 <number>7890</number>
</phone>

Which is the correct encoding? Who knows! The correct one is whatever
the application is expecting. In other words, simply saying that
server and client are using XML to exchange information is not
enough. We need to define:

	The types of information we are exchanging

	How that information is to be expressed as XML

	How to actually go about sending that information

Without these agreed conventions, programs cannot know how to decode
the information they're given, even if it's encoded in
XML. SOAP provides these conventions.

SOAP Messages

 A SOAP message consists of an envelope
containing an optional header and a required body, as shown in Figure 2-2. The header contains blocks of information
relevant to how the message is to be processed. This includes routing
and delivery settings, authentication or authorization assertions,
and transaction contexts. The body contains the actual message to be
delivered and processed. Anything that can be expressed in XML syntax
can go in the body of a message.

[image: The SOAP message structure]

Figure 2-2. The SOAP message structure

The XML syntax for expressing a SOAP message is based on the
http://www.w3.org/2001/06/soap-envelope namespace.
This XML namespace identifier points to an XML Schema that defines
the structure of what a SOAP message looks like.

If you were using document-style SOAP, you might transfer a purchase
order with the XML in Example 2-2.

Example 2-2. A purchase order in document-style SOAP
<s:Envelope
 xmlns:s="http://www.w3.org/2001/06/soap-envelope">
 <s:Header>
 <m:transaction xmlns:m="soap-transaction"
 s:mustUnderstand="true">
 <transactionID>1234</transactionID>
 </m:transaction>
 </s:Header>
 <s:Body>
 <n:purchaseOrder xmlns:n="urn:OrderService">
 <from><person>Christopher Robin</person>
 <dept>Accounting</dept></from>
 <to><person>Pooh Bear</person>
 <dept>Honey</dept></to>
 <order><quantity>1</quantity>
 <item>Pooh Stick</item></order>
 </n:purchaseOrder>
 </s:Body>
</s:Envelope>

This example illustrates all of the core components of the SOAP
Envelope specification. There is the
<s:Envelope>, the topmost container that
comprises the SOAP message; the optional
<s:Header>, which contains additional blocks
of information about how the body payload is to be processed; and the
mandatory <s:Body> element that contains the
actual message to be processed.

Envelopes

Every Envelope
 element must contain exactly one
Body element. The Body element
may contain as many child nodes as are required. The contents of the
Body element are the message. The
Body element is defined in such a way that it can
contain any valid, well-formed XML that has been namespace qualified
and does not contain any processing instructions or Document Type
Definition (DTD) references.

If an Envelope contains a
Header
 element, it must contain no more than
one, and it must appear as the first child of the
Envelope, beforethe
Body. The header, like the body, may contain any
valid, well-formed, and namespace-qualified XML that the creator of
the SOAP message wishes to insert.

Each element contained by the Header is called a
header block
 . The purpose of a header block is to
communicate contextual information relevant to the processing of a
SOAP message. An example might be a header block that contains
authentication credentials, or message routing information. Header
blocks will be highlighted and explained in greater detail throughout
the remainder of the book. In Example 2-2, the
header block indicates that the document has a transaction ID of
"1234".

RPC Messages

 Now
let's see an RPC-style message. Typically messages come in
pairs, as shown in Figure 2-3: the request (the
client sends function call information to the server) and the
response (the server sends return value(s) back to the client). SOAP
doesn't require every request to have a response, or vice
versa, but it is common to see the request-response pairing.

[image: Basic RPC messaging architecture]

Figure 2-3. Basic RPC messaging architecture

Imagine the server offers this function, which returns a
stock's price, as a SOAP service:

public Float getQuote(String symbol);

 Example 2-3 illustrates a simple RPC-style SOAP
message that represents a request for IBM's current stock
price. Again, we show a header block that indicates a transaction ID
of "1234".

Example 2-3. RPC-style SOAP message
<s:Envelope
 xmlns:s="http://www.w3.org/2001/06/soap-envelope">
 <s:Header>
 <m:transaction xmlns:m="soap-transaction"
 s:mustUnderstand="true">
 <transactionID>1234</transactionID>
 </m:transaction>
 </s:Header>
 <s:Body>
 <n:getQuote xmlns:n="urn:QuoteService">
 <symbol xsi:type="xsd:string">
 IBM
 </symbol>
 </n:getQuote>
 </s:Body>
</s:Envelope>

 Example 2-4 is a possible response that indicates
the operation being responded to and the requested stock quote value.

Example 2-4. SOAP response to request in Example 2-3

<s:Envelope
 xmlns:s="http://www.w3.org/2001/06/soap-envelope">
 <s:Body>
 <n:getQuoteRespone
 xmlns:n="urn:QuoteService">
 <value xsi:type="xsd:float">
 98.06
 </value>
 </n:getQuoteResponse>
 </s:Body>
</s:Envelope>

The mustUnderstand Attribute

 When a SOAP message is sent from one
application to another, there is an implicit requirement that the
recipient must understand how to process that message. If the
recipient does not understand the message, the recipient must reject
the message and explain the problem to the sender. This makes sense:
if Amazon.com sent O'Reilly a purchase order for 150 electric
drills, someone from O'Reilly would call someone from
Amazon.com and explain that O'Reilly and Associates sells
books, not electric drills.

Header blocks are different. A recipient may or may not understand
how to deal with a particular header block but still be able to
process the primary message properly. If the sender of the message
wants to require that the recipient understand a particular block, it
may add a mustUnderstand="true" attribute to the
header block. If this flag is present, and the recipient does not
understand the block to which it is attached, the recipient must
reject the entire message.

In the getQuote envelope we saw earlier, the
transaction header contains the
mustUnderstand="true" flag. Because this flag is
set, regardless of whether or not the recipient understands and is
capable of processing the message body (the
getQuote message), if it does not understand how
to deal with the transaction header block, the
entire message must be rejected. This guarantees that the recipient
understands transactions.

Encoding Styles

As part of the overall specification, Section 5 of the SOAP standard
introduces a concept known as encoding
styles
 . An encoding style is a set of rules
that define exactly how native application and platform data types
are to be encoded into a common XML syntax. These are, obviously, for
use with RPC-style SOAP.

The encoding style for a particular set of XML elements is defined
through the use of the
encodingStyle
 attribute, which can be placed
anywhere in the document and applies to all subordinate children of
the element on which it is located.

For example, the encodingStyle attribute on the
getQuote element in the body of Example 2-5 indicates that all children of the
getQuote element conform to the encoding style
rules defined in Section 5.

Example 2-5. The encodingStyle attribute
<s:Envelope
 xmlns:s="http://www.w3.org/2001/06/soap-envelope">
 <s:Body>
 <n:getQuote xmlns:n="urn:QuoteService"
 s:encodingStyle="http://www.w3.org/2001/06/soap-encoding">
 <symbol xsi:type="xsd:string">IBM</symbol>
 </n:getQuote>
 </s:Body>
</s:Envelope>

Even though the SOAP specification defines an encoding style in
Section 5, it has been explicitly declared that no single style is
the default serialization scheme. Why is this important?

Encoding styles are how applications on different platforms share
information, even though they may not have common data types or
representations. The approach that the SOAP Section 5 encoding style
takes is just one possible mechanism for providing this, but it is
not suitable in every situation.

For example, in the case where a SOAP message is used to exchange a
purchase order that already has a defined XML syntax, there is no
need for the Section 5 encoding rules to be applied. The purchase
order would simply be dropped into the Body
section of the SOAP envelope as is.

The SOAP Section 5 encoding style will be discussed in much greater
detail later in this chapter, as most SOAP applications and libraries
use it.

Versioning

 There
have been several versions of the SOAP specification put into
production. The most recent working draft, SOAP Version 1.2,
represents the first fruits of the World Wide Web Consortium's
(W3C) effort to standardize an XML-based packaging protocol for web
services. The W3C chose SOAP as the basis for that effort.

The previous version of SOAP, Version 1.1, is still widely used. In
fact, at the time we are writing this, there are only three
implementations of the SOAP 1.2 specification available: SOAP::Lite
for Perl, Apache SOAP Version 2.2, and Apache Axis (which is not even
in beta status).

While SOAP 1.1 and 1.2 are largely the same, the differences that do
exist are significant enough to warrant mention. To prevent subtle
incompatibility problems, SOAP 1.2 introduces a versioning model that
deals with how SOAP Version 1.1 processors and SOAP Version 1.2
processors may interact. The rules for this are fairly
straightforward:

	If a SOAP Version 1.1 compliant application receives a SOAP Version
1.2 message, a "version mismatch" error will be
triggered.

	If a SOAP Version 1.2 compliant application receives a SOAP Version
1.1 message, the application may choose to either process it
according to the SOAP Version 1.1 specification or trigger a
"version mismatch" error.

The version of a SOAP message can be determined by checking the
namespace defined for the SOAP envelope. Version 1.1 uses the
namespace
http://schemas.xmlsoap.org/soap/envelope/, whereas
Version 1.2 uses the namespace
http://www.w3.org/2001/06/soap-envelope. Example 2-6 illustrates the difference.

Example 2-6. Distinguishing between SOAP 1.1 and SOAP 1.2
<!-- Version 1.1 SOAP Envelope -->
<s:Envelope
 xmlns:s="
http://schemas.xmlsoap.org/soap/envelope/">
 ...
</s:Envelope>

<!-- Version 1.2 SOAP Envelope -->
<s:Envelope
 xmlns:s="
http://www.w3.org/2001/06/soap-envelope">
 ...
</s:Envelope>

When applications report a version mismatch error back to the sender
of the message, it may optionally include an
Upgrade header block that tells the sender which
version of SOAP it supports. Example 2-7 shows the
Upgrade header in action.

Example 2-7. The Upgrade header
<s:Envelope xmlns:s="http://schemas.xmlsoap.org/soap/envelope/">
 <s:Header>
 <V:Upgrade xmlns:V="http://www.w3.org/2001/06/soap-upgrade">
 <envelope qname="ns1:Envelope"
 xmlns:ns1="http://www.w3.org/2001/06/soap-envelope"/>
 </V:Upgrade>
 </s:Header>
 <s:Body>
 <s:Fault>
 <faultcode>s:VersionMismatch</faultcode>
 <faultstring>Version Mismatch</faultstring>
 </s:Fault>
 </s:Body>
</s:Envelope>

For backwards compatibility, version mismatch errors must conform to
the SOAP Version 1.1 specification, regardless of the version of SOAP
being used.

End of sample

 To search for additional titles please go to

 http://search.overdrive.com.

OEBPS/httpatomoreillycomsourceoreillyimages170590.png
sss

uuuuuuuuuu

OEBPS/httpatomoreillycomsourceoreillyimages170582.png
Ayt ot

Web application server

-

[—

OEBPS/httpatomoreillycomsourceoreillyimages170600.png

OEBPS/httpatomoreillycomsourceoreillyimages170610.png
=18
LT S —— e - |
[«

Examplel

The following operations are supported. For a frmal defnton,

ploase roviow the seruice Description

© Tstedstes.

OEBPS/httpatomoreillycomsourceoreillyimages170614.png
o £ Yow Foutes» Coogos[¥
T T T ——
sayHello

o tast, lck the ‘Tnvake’ button,

parameter Value

B T —

OEBPS/httpatomoreillycomsourceoreillyimages170596.png
requestmessage
sonpctee soapsener

responsemessage

OEBPS/httpatomoreillycomsourceoreillyimages170636.png
Lcone o CodeShare! The Open sourco code sharing netuork!
opuriaht o> 2081 Janes Smell. Paul Kalchenko, Dous Tidvell

odeShare Ouner Server started at htp://dianond:8890,

iting for & request.

OEBPS/httpatomoreillycomsourceoreillyimages170598.png
@ subri gty sigedpuchase rer

Pucasing [
e e
pocs teprtie i @
@ i et
Sute
altion

OEBPS/httpatomoreillycomsourceoreillyimages170592.png
Appcten L mesage topiaon

OEBPS/httpatomoreillycomsourceoreillyimages170606.png
IS5 1P 1unnel Monitor: Tunneling localhost:8080 to localhost

From localhost:0080

CIE
from ocamostso

POST /soapiservebmpcrouter TP 1
Host lcalnost 6080

(Connecton Keep-Alte

S08PActon

< Enveiope
NG 5=t schemas xnisoap 0rs0aD
IS X" w3 0101 999PHLSC
nstance”

sminsox
< Body
<msayHelo xmin m=un Ecample! >

K —

[Pt 20008

3 0101 99PN

(Cortent Type:totr
(Cortent Lengtn: 245

<sEmeiope
“aring =" 3 rg200106fs030-¢
IS XSO M 301G/ 9BSHLSCH
nétance
i " o 0101 993MLSCI
<30y
“nsaelloResponse xmins:
<rotun sitype=sd sing'>

K —

m Exam

o

Ustening for connactions on port 5050

OEBPS/httpatomoreillycomsourceoreillyimages170624.png
Datatypes
<wsdypes’>
Messages
<usdimessagel>
Interfaces
<usdporTpel>
Senices

<sindng’>
R

OEBPS/httpatomoreillycomsourceoreillyimages170620.png
ictions: register | Togin | post | remove | browse
[ieatn

hat 35 your user id: Janes

at 35 your passord: 4sjdskio

OEBPS/httpatomoreillycomsourceoreillyimages239126.jpg
Building Distributed Applications

Progmmming Web Services with

James Snell,
Doug Tidwell

O RE'LLY® b \1) & Pavel Kulchenko

OEBPS/httpatomoreillycomsourceoreillyimages170630.png
s

s ldatonand dubectionand
nsemangeme, ity

st e
el Sexchngand Okt
retrising ode

OEBPS/httpatomoreillycomsourceoreillyimages170588.png
Application 1

s
ik I

OEBPS/httpatomoreillycomsourceoreillyimages170616.png
Faete® Gogo o[

</string>

L)

Eioes © Ttedstes

OEBPS/httpatomoreillycomsourceoreillyimages170618.png
="

OEBPS/httpatomoreillycomsourceoreillyimages170622.png
=101
BT e e - |
Adess [g focshostbelowor osmrwsol =]

encoding="utr-g" 7>

<dofnition

tsatianespaco- urniExamplo1”

‘sayHelloSoapin

‘sayHelloHttppostin’-
<m SayHelloHttpPostout”
“pertTyoe o= Example1Soap'
“operation name'sayHello ™

<input

25="s0:sayHelloSoapln' /-

e sisavHBlinSAARONY” /-
‘

Ejooe © Tnstedstes Y

OEBPS/httpatomoreillycomsourceoreillyimages170640.png
17 Riindnanpe oty

ey
T I —— E— — ——
avaton [terme | [e | e | [stttont | [ver [oMo] [t [
T T | —— | — 1
ok [ty | [e [| [oute] [y] avame [raon
sing vl
somalsiing neger
— T —
en e | E | e
Tonguage | [hame | [Toren] - [resatenee |] [snsneton | [pstvereger
Wane | [Wers st | [amsped
o] o] [orme e[t
Torrs | [gy
G ety
Deivinpintiepes daityis
Dtivinseiedops -~ - ~ - ~ dovettytmsonarsticion

Demerspes

OEBPS/httpatomoreillycomsourceoreillyimages170584.png
sevic
ey

A

senie senice
o e anumer

OEBPS/httpatomoreillycomsourceoreillyimages170580.png
Ayt Appcatn dest
platon code

Pottom anslrguge
spe amminiarin

Patomandingoge
aosiconmncaion

OEBPS/httpatomoreillycomsourceoreillyimages170626.png

OEBPS/httpatomoreillycomsourceoreillyimages170628.png
'uwv

OEBPS/httpatomoreillycomsourceoreillyimages170642.png
e EAU Bopct 4 DTD/Sdhens Stenadessn KL Docunent Edtor Sonvert

Table Wew Gowser Tooks Window Hep
CIETS

CEIER L IR N2 T

E

Fareacode.

£im [Gip] Con] Sim] An] A5

SIEY

Lax

Conponerts

honetiamiver B

eder =
[e _Fecets [Potens Enurersions
5oy V41U [E— T o T

OEBPS/httpatomoreillycomsourceoreillyimages170578.png
Webservice

Network

OEBPS/httpatomoreillycomsourceoreillyimages170594.png
‘SOAP emveloge

SO header

Header bk

Header bk

SOAPbody

Mesagebody

OEBPS/httpatomoreillycomsourceoreillyimages170604.png
Deployment descaiptor
N
<>

<f>

r—

Apacesoi?

OEBPS/httpatomoreillycomsourceoreillyimages170612.png
e
B fk yow Foore> Gogo-[o -
s [s oo oot g5l 5

soAp. - |

The following is sample SOAP request and response. The
placehaiders shown nsed to be repiaced with actal valses.

POST /helloworld. asmx HTTP/1.1
Host: localbost

Contenc-Type: text/xm
Contenc-length: Lengtn
SORPACC i0ns "urn: Example1/sagHello”

charseteur-s

<7xm1 version="1.0" encoding=rucz-77>
+Envelope wmins:xei=rhecp://wu.u3 . ore/ 2001/

wen: Exanp le1>
<nane>string</ nane>
</saztelio>
</soap:sody>
</soap:avelope>

@lows © Trustod skos

OEBPS/httpatomoreillycomsourceoreillyimages170586.png
Discorery
Descipion
Padaing
Tansport
Hework

OEBPS/httpatomoreillycomsourceoreillyimages170638.png
o o CodeShare! The Open source code sharing netiark!
oy rantCe) 2001, Sames SneiT, Paud Kalchenka, Doup Tidwel]

search | info | get | Tist | quit | help) [parameters....]

OEBPS/oreilly_large.gif
O’REILLY

OEBPS/httpatomoreillycomsourceoreillyimages170632.png

OEBPS/httpatomoreillycomsourceoreillyimages170634.png
"

4

nmmmmmmm

Oty St et

OEBPS/httpatomoreillycomsourceoreillyimages170602.png
code

SOAP server 'WTTP dacmen

OEBPS/httpatomoreillycomsourceoreillyimages170608.png
G 3 ®

NET intemediate compiler

NET managed runtime

Gatbagecolction
Resoute nanagement
Vi service suppor. et

