

[image: Image]

Programming

O’REILLY®

Mastering Regular Expressions

[image: Image] This book will get you up to speed on the productivity secrets that will make your life easier: regular expressions. Well-crafted regular expressions can reduce hours of tedious labor to a 15-second solution. Now a standard feature in a wide range of languages and popular tools—including Perl, PHP, Java, Python, Ruby, MySQL, VB.NET, and C# (and any language using the .NET Framework)—regular expressions will allow you to code complex and subtle text processing that you never imagined could be automated.

Mastering Regular Expressions, Third Edition, now includes material on PHP and its powerful regular expressions. This edition has been updated throughout to reflect advances in other languages, including expanded in-depth coverage of Sun’s java.util.regex, with special attention to the many differences between Java 1.4.2 and Java 1.5/1.6.

Topics include:

	A comparison of features among many languages and tools

	How a regular expression engine works

	Optimization (major savings available here!)

	Matching only what you want, not what you don’t

	Sections and chapters on individual languages

Written in the lucid, entertaining lone that makes a complex topic become crystal clear to programmers, and filled with solutions to difficult real-world problems, Mastering Regular Expressions, Third Edition, offers a wealth of information that you can put to immediate use to craft elegant, time-saving solutions to a wide range of issues.

“If you use regular expressions as part of your professional work (even if you already have a good book on whatever language you’re programming in) I would strongly recommend this book to you.”

—Dr Chris Brown, Linux Format

“Mastering Regular Expressions is the definitive guide to the subject, and an outstanding resource that belongs on every programmer’s bookshelf. Ten out of Ten Horseshoes.”

—Jason Menard, Java Ranch

“There isn’t a better (or more useful) book available on regular expressions.”

—Zak Greant, Planet PHP

www.oreilly.com

[image: Image]

[image: Image]

Mastering Regular Expressions

Mastering Regular Expressions

Third Edition

Jeffrey E. F. Friedl

O’REILLY®

Beijing • Cambridge • Farnham • Köln • Paris • Sebastopol • Taipei • Tokyo

Mastering Regular Expressions, Third Edition
by Jeffrey E. F. Friedl

Copyright © 2006, 2002, 1997 O’Reilly Media, Inc. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly Media, Inc. books may be purchased for educational, business, or sales promotional use. Online editions are also available for most titles (safari.oreilly.com). For more information contact our corporate/institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Andy Oram

Production Editor: Jeffrey E. F. Friedl

Cover Designer: Edie Freedman

Printing History:

	January 1997:

	First Edition.

	July 2002:

	Second Edition.

	August 2006:

	Third Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of O’Reilly Media, Inc. Mastering Regular Expressions, the image of owls, and related trade dress are trademarks of O’Reilly Media, Inc. Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author assume no responsibility for errors or omissions, or for damages resulting from the use of the information contained herein.

[image: Image] This book uses RepKover™, a durable and flexible lay-at binding.

ISBN: 0-596-52812-4
[M]

FOR [image: Image]

For putting up with me.

And for the years I worked on this book,

for putting up without me.

Table of Contents

Preface

1: Introduction to Regular Expressions

Solving Real Problems

Regular Expressions as a Language

The Filename Analogy

The Language Analogy

The Regular-Expression Frame of Mind

If You Have Some Regular-Expression Experience

Searching Text Files: Egrep

Egrep Metacharacters

Start and End of the Line

Character Classes

Matching Any Character with Dot

Alternation

Ignoring Differences in Capitalization

Word Boundaries

In a Nutshell

Optional Items

Other Quantifiers: Repetition

Parentheses and Backreferences

The Great Escape

Expanding the Foundation

Linguistic Diversification

The Goal of a Regular Expression

A Few More Examples

Regular Expression Nomenclature

Improving on the Status Quo

Summary

Personal Glimpses

2: Extended Introductory Examples

About the Examples

A Short Introduction to Perl

Matching Text with Regular Expressions

Toward a More Real-World Example

Side Effects of a Successful Match

Intertwined Regular Expressions

Intermission

Modifying Text with Regular Expressions

Example: Form Letter

Example: Prettifying a Stock Price

Automated Editing

A Small Mail Utility

Adding Commas to a Number with Lookaround

Text-to-HTML Conversion

That Doubled-Word Thing

3: Overview of Regular Expression Features and Flavors

A Casual Stroll Across the Regex Landscape

The Origins of Regular Expressions

At a Glance

Care and Handling of Regular Expressions

Integrated Handling

Procedural and Object-Oriented Handling

A Search-and-Replace Example

Search and Replace in Other Languages

Care and Handling: Summary

Strings, Character Encodings, and Modes

Strings as Regular Expressions

Character-Encoding Issues

Unicode

Regex Modes and Match Modes

Common Metacharacters and Features

Character Representations

Character Classes and Class-Like Constructs

Anchors and Other “Zero-Width Assertions”

Comments and Mode Modifiers

Grouping, Capturing, Conditionals, and Control

Guide to the Advanced Chapters

4: The Mechanics of Expression Processing

Start Your Engines!

Two Kinds of Engines

New Standards

Regex Engine Types

From the Department of Redundancy Department

Testing the Engine Type

Match Basics

About the Examples

Rule 1: The Match That Begins Earliest Wins

Engine Pieces and Parts

Rule 2: The Standard Quantifiers Are Greedy

Regex-Directed Versus Text-Directed

NFA Engine: Regex-Directed

DFA Engine: Text-Directed

First Thoughts: NFA and DFA in Comparison

Backtracking

A Really Crummy Analogy

Two Important Points on Backtracking

Saved States

Backtracking and Greediness

More About Greediness and Backtracking

Problems of Greediness

Multi-Character “Quotes”

Using Lazy Quantifiers

Greediness and Laziness Always Favor a Match

The Essence of Greediness, Laziness, and Backtracking

Possessive Quantifiers and Atomic Grouping

Possessive Quantifiers, ?+, *+, ++, and {m,n}+

The Backtracking of Lookaround

Is Alternation Greedy?

Taking Advantage of Ordered Alternation

NFA, DFA, and POSIX

“The Longest-Leftmost”

POSIX and the Longest-Leftmost Rule

Speed and Efficiency

Summary: NFA and DFA in Comparison

Summary

5: Practical Regex Techniques

Regex Balancing Act

A Few Short Examples

Continuing with Continuation Lines

Matching an IP Address

Working with Filenames

Matching Balanced Sets of Parentheses

Watching Out for Unwanted Matches

Matching Delimited Text

Knowing Your Data and Making Assumptions

Stripping Leading and Trailing Whitespace

HTML-Related Examples

Matching an HTML Tag

Matching an HTML Link

Examining an HTTP URL

Validating a Hostname

Plucking Out a URL in the Real World

Extended Examples

Keeping in Sync with Your Data

Parsing CSV Files

6: Crafting an Efficient Expression

A Sobering Example

A Simple Change—Placing Your Best Foot Forward

Efficiency Versus Correctness

Advancing Further—Localizing the Greediness

Reality Check

A Global View of Backtracking

More Work for a POSIX NFA

Work Required During a Non-Match

Being More Specific

Alternation Can Be Expensive

Benchmarking

Know What You’re Measuring

Benchmarking with PHP

Benchmarking with Java

Benchmarking with VB.NET

Benchmarking with Ruby

Benchmarking with Python

Benchmarking with Tcl

Common Optimizations

No Free Lunch

Everyone’s Lunch is Different

The Mechanics of Regex Application

Pre-Application Optimizations

Optimizations with the Transmission

Optimizations of the Regex Itself

Techniques for Faster Expressions

Common Sense Techniques

Expose Literal Text

Expose Anchors

Lazy Versus Greedy: Be Specific

Split Into Multiple Regular Expressions

Mimic Initial-Character Discrimination

Use Atomic Grouping and Possessive Quantifiers

Lead the Engine to a Match

Unrolling the Loop

Method 1: Building a Regex From Past Experiences

The Real “Unrolling-the-Loop” Pattern

Method 2: A Top-Down View

Method 3: An Internet Hostname

Observations

Using Atomic Grouping and Possessive Quantifiers

Short Unrolling Examples

Unrolling C Comments

The Freeflowing Regex

A Helping Hand to Guide the Match

A Well-Guided Regex is a Fast Regex

Wrapup

In Summary: Think!

7: Perl

Regular Expressions as a Language Component

Perl’s Greatest Strength

Perl’s Greatest Weakness

Perl’s Regex Flavor

Regex Operands and Regex Literals

How Regex Literals Are Parsed

Regex Modifiers

Regex-Related Perlisms

Expression Context

Dynamic Scope and Regex Match Effects

Special Variables Modified by a Match

The qr/···/ Operator and Regex Objects

Building and Using Regex Objects

Viewing Regex Objects

Using Regex Objects for Efficiency

The Match Operator

Match’s Regex Operand

Specifying the Match Target Operand

Different Uses of the Match Operator

Iterative Matching: Scalar Context, with /g

The Match Operator’s Environmental Relations

The Substitution Operator

The Replacement Operand

The /e Modifier

Context and Return Value

The Split Operator

Basic Split

Returning Empty Elements

Split’s Special Regex Operands

Split’s Match Operand with Capturing Parentheses

Fun with Perl Enhancements

Using a Dynamic Regex to Match Nested Pairs

Using the Embedded-Code Construct

Using local in an Embedded-Code Construct

A Warning About Embedded Code and my Variables

Matching Nested Constructs with Embedded Code

Overloading Regex Literals

Problems with Regex-Literal Overloading

Mimicking Named Capture

Perl Efficiency Issues

“There’s More Than One Way to Do It”

Regex Compilation, the /o Modifier, qr/···/, and Efficiency

Understanding the “Pre-Match” Copy

The Study Function

Benchmarking

Regex Debugging Information

Final Comments

8: Java

Java’s Regex Flavor

Java Support for \p{···} and \P{···}

Unicode Line Terminators

Using java.util.regex

The Pattern.compile() Factory

Pattern’s matcher method

The Matcher Object

Applying the Regex

Querying Match Results

Simple Search and Replace

Advanced Search and Replace

In-Place Search and Replace

The Matcher’s Region

Method Chaining

Methods for Building a Scanner

Other Matcher Methods

Other Pattern Methods

Pattern’s split Method, with One Argument

Pattern’s split Method, with Two Arguments

Additional Examples

Adding Width and Height Attributes to Image Tags

Validating HTML with Multiple Patterns Per Matcher

Parsing Comma-Separated Values (CSV) Text

Java Version Differences

Differences Between 1.4.2 and 1.5.0

Differences Between 1.5.0 and 1.6

9: .NET

.NET’s Regex Flavor

Additional Comments on the Flavor

Using .NET Regular Expressions

Regex Quickstart

Package Overview

Core Object Overview

Core Object Details

Creating Regex Objects

Using Regex Objects

Using Match Objects

Using Group Objects

Static “Convenience” Functions

Regex Caching

Support Functions

Advanced .NET

Regex Assemblies

Matching Nested Constructs

Capture Objects

10: PHP

PHP’s Regex Flavor

The Preg Function Interface

“Pattern” Arguments

The Preg Functions

preg_match

preg_match_all

preg_replace

preg_replace_callback

preg_split

preg_grep

preg_quote

“Missing” Preg Functions

preg_regex_to_pattern

Syntax-Checking an Unknown Pattern Argument

Syntax-Checking an Unknown Regex

Recursive Expressions

Matching Text with Nested Parentheses

No Backtracking Into Recursion

Matching a Set of Nested Parentheses

PHP Efficiency Issues

The S Pattern Modifier: “Study”

Extended Examples

CSV Parsing with PHP

Checking Tagged Data for Proper Nesting

Index

Preface

This book is about a powerful tool called “regular expressions”. It teaches you how to use regular expressions to solve problems and get the most out of tools and languages that provide them. Most documentation that mentions regular expressions doesn’t even begin to hint at their power, but this book is about mastering regular expressions.

Regular expressions are available in many types of tools (editors, word processors, system tools, database engines, and such), but their power is most fully exposed when available as part of a programming language. Examples include Java and JScript, Visual Basic and VBScript, JavaScript and ECMAScript, C, C++, C#, elisp, Perl, Python, Tcl, Ruby, PHP, sed, and awk. In fact, regular expressions are the very heart of many programs written in some of these languages.

There’s a good reason that regular expressions are found in so many diverse languages and applications: they are extremely powerful. At a low level, a regular expression describes a chunk of text. You might use it to verify a user’s input, or perhaps to sift through large amounts of data. On a higher level, regular expressions allow you to master your data. Control it. Put it to work for you. To master regular expressions is to master your data.

The Need for This Book

I finished the first edition of this book in late 1996, and wrote it simply because there was a need. Good documentation on regular expressions just wasn’t available, so most of their power went untapped. Regular-expression documentation was available, but it centered on the “low-level view.” It seemed to me that they were analogous to showing someone the alphabet and expecting them to learn to speak.

The five and a half years between the first and second editions of this book saw the popular rise of the Internet, and, perhaps more than just coincidentally, a considerable expansion in the world of regular expressions. The regular expressions of almost every tool and language became more powerful and expressive. Perl, Python, Tcl, Java, and Visual Basic all got new regular-expression backends. New languages with regular expression support, like PHP, Ruby, and C#, were developed and became popular. During all this time, the basic core of the book — how to truly understand regular expressions and how to get the most from them — remained as important and relevant as ever.

Yet, the first edition gradually started to show its age. It needed updating to reflect the new languages and features, as well as the expanding role that regular expressions played in the Internet world. It was published in 2002, a year that saw the landmark releases of java.util.regex, Microsoft’s .NET Framework, and Perl 5.8. They were all covered fully in the second edition. My one regret with the second edition was that it didn’t give more attention to PHP. In the four years since the second edition was published, PHP has only grown in importance, so it became imperative to correct that deficiency.

This third edition features enhanced PHP coverage in the early chapters, plus an all new, expansive chapter devoted entirely to PHP regular expressions and how to wield them effectively. Also new in this edition, the Java chapter has been rewritten and expanded considerably to reflect new features of Java 1.5 and Java 1.6.

Intended Audience

This book will interest anyone who has an opportunity to use regular expressions. If you don’t yet understand the power that regular expressions can provide, you should benefit greatly as a whole new world is opened up to you. This book should expand your understanding, even if you consider yourself an accomplished regular-expression expert. After the first edition, it wasn’t uncommon for me to receive an email that started “I thought I knew regular expressions until I read Mastering Regular Expressions. Now I do.”

Programmers working on text-related tasks, such as web programming, will find an absolute gold mine of detail, hints, tips, and understanding that can be put to immediate use. The detail and thoroughness is simply not found anywhere else.

Regular expressions are an idea—one that is implemented in various ways by various utilities (many, many more than are specifically presented in this book). If you master the general concept of regular expressions, it’s a short step to mastering a particular implementation. This book concentrates on that idea, so most of the knowledge presented here transcends the utilities and languages used to present the examples.

How to Read This Book

This book is part tutorial, part reference manual, and part story, depending on when you use it. Readers familiar with regular expressions might feel that they can immediately begin using this book as a detailed reference, flipping directly to the section on their favorite utility. I would like to discourage that.

You’ll get the most out of this book by reading the first six chapters as a story. I have found that certain habits and ways of thinking help in achieving a full understanding, but are best absorbed over pages, not merely memorized from a list.

The story that is the first six chapters form the basis for the last four, covering specifics of Perl, Java, .NET, and PHP. To help you get the most from each part, I’ve used cross references liberally, and I’ve worked hard to make the index as useful as possible. (Over 1,200 cross references are sprinkled throughout the book; they are often presented as “[image: Image]” followed by a page number.)

Until you read the full story, this book’s use as a reference makes little sense. Before reading the story, you might look at one of the tables, such as the chart on page 92, and think it presents all the relevant information you need to know. But a great deal of background information does not appear in the charts themselves, but rather in the associated story. Once you’ve read the story, you’ll have an appreciation for the issues, what you can remember off the top of your head, and what is important to check up on.

Organization

The ten chapters of this book can be logically divided into roughly three parts. Here’s a quick overview:

The Introduction

Chapter 1 introduces the concept of regular expressions.

Chapter 2 takes a look at text processing with regular expressions.

Chapter 3 provides an overview of features and utilities, plus a bit of history.

The Details

Chapter 4 explains the details of how regular expressions work.

Chapter 5 works through examples, using the knowledge from Chapter 4.

Chapter 6 discusses efficiency in detail.

Tool-Specific Information

Chapter 7 covers Perl regular expressions in detail.

Chapter 8 looks at Sun’s java.util.regex package.

Chapter 9 looks at .NET’s language-neutral regular-expression package.

Chapter 10 looks at PHP’s preg suite of regex functions.

The introduction elevates the absolute novice to “issue-aware” novice. Readers with a fair amount of experience can feel free to skim the early chapters, but I particularly recommend Chapter 3 even for the grizzled expert.

	Chapter 1, Introduction to Regular Expressions, is geared toward the complete novice. I introduce the concept of regular expressions using the widely available program egrep, and offer my perspective on how to think regular expressions, instilling a solid foundation for the advanced concepts presented in later chapters. Even readers with former experience would do well to skim this first chapter.

	Chapter 2, Extended Introductory Examples, looks at real text processing in a programming language that has regular-expression support. The additional examples provide a basis for the detailed discussions of later chapters, and show additional important thought processes behind crafting advanced regular expressions. To provide a feel for how to “speak in regular expressions,” this chapter takes a problem requiring an advanced solution and shows ways to solve it using two unrelated regular-expression–wielding tools.

	Chapter 3, Overview of Regular Expression Features and Flavors, provides an overview of the wide range of regular expressions commonly found in tools today. Due to their turbulent history, current commonly-used regular-expression flavors can differ greatly. This chapter also takes a look at a bit of the history and evolution of regular expressions and the programs that use them. The end of this chapter also contains the “Guide to the Advanced Chapters.” This guide is your road map to getting the most out of the advanced material that follows.

The Details

Once you have the basics down, it’s time to investigate the how and the why. Like the “teach a man to fish” parable, truly understanding the issues will allow you to apply that knowledge whenever and wherever regular expressions are found.

	Chapter 4, The Mechanics of Expression Processing, ratchets up the pace several notches and begins the central core of this book. It looks at the important inner workings of how regular expression engines really work from a practical point of view. Understanding the details of how regular expressions are handled goes a very long way toward allowing you to master them.

	Chapter 5, Practical Regex Techniques, then puts that knowledge to high-level, practical use. Common (but complex) problems are explored in detail, all with the aim of expanding and deepening your regular-expression experience.

	Chapter 6, Crafting an Efficient Expression, looks at the real-life efficiency ramifications of the regular expressions available to most programming languages. This chapter puts information detailed in Chapters 4 and 5 to use for exploiting an engine’s strengths and stepping around its weaknesses.

Tool-Specific Information

Once the lessons of Chapters 4, 5, and 6 are under your belt, there is usually little to say about specific implementations. However, I’ve devoted an entire chapter to each of four popular systems:

	Chapter 7, Perl, closely examines regular expressions in Perl, arguably the most popular regular-expression–laden programming language in use today. It has only four operators related to regular expressions, but their myriad of options and special situations provides an extremely rich set of programming options — and pitfalls. The very richness that allows the programmer to move quickly from concept to program can be a minefield for the uninitiated. This detailed chapter clears a path.

	Chapter 8, Java, looks in detail at the java.util.regex regular-expression package, a standard part of the language since Java 1.4. The chapter’s primary focus is on Java 1.5, but differences in both Java 1.4.2 and Java 1.6 are noted.

	Chapter 9, .NET, is the documentation for the .NET regular-expression library that Microsoft neglected to provide. Whether using VB.NET, C#, C++, JScript, VBscript, ECMAScript, or any of the other languages that use .NET components, this chapter provides the details you need to employ .NET regular-expressions to the fullest.

	Chapter 10, PHP, provides a short introduction to the multiple regex engines embedded within PHP, followed by a detailed look at the regex flavor and API of its preg regex suite, powered under the hood by the PCRE regex library.

Typographical Conventions

When doing (or talking about) detailed and complex text processing, being precise is important. The mere addition or subtraction of a space can make a world of difference, so I’ve used the following special conventions in typesetting this book:

	A regular expression generally appears like ⌈this⌋. Notice the thin corners which flag “this is a regular expression.” Literal text (such as that being searched) generally appears like ‘this’. At times, I’ll leave off the thin corners or quotes when obviously unambiguous. Also, code snippets and screen shots are always presented in their natural state, so the quotes and corners are not used in such cases.

	I use visually distinct ellipses within literal text and regular expressions. For example […] represents a set of square brackets with unspecified contents, while [···] would be a set containing three periods.

	Without special presentation, it is virtually impossible to know how many spaces are between the letters in “a b”, so when spaces appear in regular expressions and selected literal text, they are presented with the ‘•’ symbol. This way, it will be clear that there are exactly four spaces in ‘a••••b’.

	I also use visual tab, newline, and carriage-return characters:

	•

	a space character

	[image: Image]

	a tab character

	[image: Image]

	a newline character

	[image: Image]

	a carriage-return character

	At times, I use underlining or shade the background to highlight parts of literal text or a regular expression. In this example the underline shows where in the text the expression actually matches:
Because ⌈cat⌋ matches [image: Image] instead of the word ‘cat’, we realize . . .

In this example the underlines highlight what has just been added to an expression under discussion:

To make this useful, we can wrap ⌈Subject|Date⌋ with parentheses, and append a colon and a space. This yields [image: Image].

	This book is full of details and examples, so I’ve included over 1,200 cross references to help you get the most out of it. They often appear in the text in a “[image: Image]123” notation, which means “see page 123.” For example, it might appear like “... is described in Table 8-2 ([image: Image] 367).”

Exercises

Occasionally, and particularly in the early chapters, I’ll pose a question to highlight the importance of the concept under discussion. They’re not there just to take up space; I really do want you to try them before continuing. Please. So as not to dilute their importance, I’ve sprinkled only a few throughout the entire book. They also serve as checkpoints: if they take more than a few moments, it’s probably best to go over the relevant section again before continuing on.

To help entice you to actually think about these questions as you read them, I’ve made checking the answers a breeze: just turn the page. Answers to questions marked with [image: Image] are always found by turning just one page. This way, they’re out of sight while you think about the answer, but are within easy reach.

Links, Code, Errata, and Contacts

I learned the hard way with the first edition that URLs change more quickly than a printed book can be updated, so rather than providing an appendix of URLs, I’ll provide just one:

http://regex.info/

There you can find regular-expression links, all code snippets from this book, a searchable index, and much more. In the unlikely event this book contains an error :-), the errata will be available as well.

If you find an error in this book, or just want to drop me a note, you can contact me at jfriedl@regex.info.

The publisher can be contacted at:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international/local)
(707) 829-0104 (fax)
bookquestions@oreilly.com

For more information about books, conferences, Resource Centers, and the O’Reilly Network, see the O’Reilly web site at:

http://www.oreilly.com

Safari® Enabled

When you see a Safari®Enabled icon on the cover of your favorite technology book, that means the book is available online through the O’Reilly Network Safari Bookshelf. Safari offers a solution that’s better than e-books. It’s a virtual library that lets you easily search thousands of top tech books, cut and paste code samples, download chapters, and find quick answers when you need the most accurate, current information. Try it for free at http://safari.oreilly.com.

Personal Comments and Acknowledgments

Writing the first edition of this book was a grueling task that took two and a half years and the help of many people. After the toll it took on my health and sanity, I promised that I’d never put myself through such an experience again.

I have many people to thank in helping me break that promise. Foremost is my wife, Fumie. If you find this book useful, thank her; without her support and understanding, I’d have neither the strength nor sanity to undertake a task as arduous as the research, writing, and production of a book like this.

While researching and writing this book, many people helped educate me on languages or systems I didn’t know, and more still reviewed and corrected drafts as the manuscripts developed.

In particular, I’d like to thank my brother, Stephen Friedl, for his meticulous and detailed reviews along the way. (Besides being an excellent technical reviewer, he’s also an accomplished writer, known for his well-researched “Tech Tips,” available at http://www.unixwiz.net/)

I’d also like to thank Zak Greant, Ian Morse, Philip Hazel, Stuart Gill, William F. Maton, and my editor, Andy Oram.

Special thanks for providing an insider’s look at Java go to Mike “madbot” McCloskey (formerly at Sun Microsystems, now at Google), and Mark Reinhold and Dr. Cliff Click, both of Sun Microsystems. For .NET insight, I’d like to thank Microsoft’s David Gutierrez, Kit George, and Ryan Byington. I thank Andrei Zmievski of Yahoo! for providing insights into PHP.

I’d like to thank Dr. Ken Lunde of Adobe Systems, who created custom characters and fonts for a number of the typographical aspects of this book. The Japanese characters are from Adobe Systems’ Heisei Mincho W3 typeface, while the Korean is from the Korean Ministry of Culture and Sports Munhwa typeface. It’s also Ken who originally gave me the guiding principle that governs my writing: “you do the research so your readers don’t have to.”

For help in setting up the server for http://regex.info, I’d like to thank Jeffrey Papen and Peak Web Hosting (http://www.PeakWebhosting.com/).

1
Introduction to Regular Expressions

Here’s the scenario: you’re given the job of checking the pages on a web server for doubled words (such as “this this”), a common problem with documents subject to heavy editing. Your job is to create a solution that will:

	Accept any number of files to check, report each line of each file that has doubled words, highlight (using standard ANSI escape sequences) each doubled word, and ensure that the source filename appears with each line in the report.

	Work across lines, even finding situations where a word at the end of one line is repeated at the beginning of the next.

	Find doubled words despite capitalization differences, such as with ‘The the...’, as well as allow differing amounts of whitespace (spaces, tabs, new-lines, and the like) to lie between the words.

	Find doubled words even when separated by HTML tags. HTML tags are for marking up text on World Wide Web pages, for example, to make a word bold: ‘...it is very very important...’.

That’s certainly a tall order! But, it’s a real problem that needs to be solved. At one point while working on the manuscript for this book, I ran such a tool on what I’d written so far and was surprised at the way numerous doubled words had crept in. There are many programming languages one could use to solve the problem, but one with regular expression support can make the job substantially easier.

Regular expressions are the key to powerful, flexible, and efficient text processing. Regular expressions themselves, with a general pattern notation almost like a mini programming language, allow you to describe and parse text. With additional support provided by the particular tool being used, regular expressions can add, remove, isolate, and generally fold, spindle, and mutilate all kinds of text and data.

It might be as simple as a text editor’s search command or as powerful as a full text processing language. This book shows you the many ways regular expressions can increase your productivity. It teaches you how to think regular expressions so that you can master them, taking advantage of the full magnitude of their power.

A full program that solves the doubled-word problem can be implemented in just a few lines of many of today’s popular languages. With a single regular-expression search-and-replace command, you can find and highlight doubled words in the document. With another, you can remove all lines without doubled words (leaving only the lines of interest left to report). Finally, with a third, you can ensure that each line to be displayed begins with the name of the file the line came from. We’ll see examples in Perl and Java in the next chapter.

The host language (Perl, Java, VB.NET, or whatever) provides the peripheral processing support, but the real power comes from regular expressions. In harnessing this power for your own needs, you learn how to write regular expressions to identify text you want, while bypassing text you don’t. You can then combine your expressions with the language’s support constructs to actually do something with the text (add appropriate highlighting codes, remove the text, change the text, and so on).

Solving Real Problems

Knowing how to wield regular expressions unleashes processing powers you might not even know were available. Numerous times in any given day, regular expressions help me solve problems both large and small (and quite often, ones that are small but would be large if not for regular expressions).

Showing an example that provides the key to solving a large and important problem illustrates the benefit of regular expressions clearly, but perhaps not so obvious is the way regular expressions can be used throughout the day to solve rather “uninteresting” problems. I use “uninteresting” in the sense that such problems are not often the subject of bar-room war stories, but quite interesting in that until they’re solved, you can’t get on with your real work.

As a simple example, I needed to check a lot of files (the 70 or so files comprising the source for this book, actually) to confirm that each file contained ‘SetSize’ exactly as often (or as rarely) as it contained ‘ResetSize’. To complicate matters, I needed to disregard capitalization (such that, for example, ‘setSIZE’ would be counted just the same as ‘SetSize’). Inspecting the 32,000 lines of text by hand certainly wasn’t practical.

Even using the normal “find this word” search in an editor would have been arduous, especially with all the files and all the possible capitalization differences.

Regular expressions to the rescue! Typing just a single, short command, I was able to check all files and confirm what I needed to know. Total elapsed time: perhaps 15 seconds to type the command, and another 2 seconds for the actual check of all the data. Wow! (If you’re interested to see what I actually used, peek ahead to page 36.)

As another example, I was once helping a friend with some email problems on a remote machine, and he wanted me to send a listing of messages in his mailbox file. I could have loaded a copy of the whole file into a text editor and manually removed all but the few header lines from each message, leaving a sort of table of contents. Even if the file wasn’t as huge as it was, and even if I wasn’t connected via a slow dial-up line, the task would have been slow and monotonous. Also, I would have been placed in the uncomfortable position of actually seeing the text of his personal mail.

Regular expressions to the rescue again! I gave a simple command (using the common search tool egrep described later in this chapter) to display the From: and Subject: line from each message. To tell egrep exactly which kinds of lines I wanted to see, I used the regular expression ⌈^(From|Subject):⌋.

Once he got his list, he asked me to send a particular (5,000-line!) message. Again, using a text editor or the mail system itself to extract just the one message would have taken a long time. Rather, I used another tool (one called sed) and again used regular expressions to describe exactly the text in the file I wanted. This way, I could extract and send the desired message quickly and easily.

Saving both of us a lot of time and aggravation by using the regular expression was not “exciting,” but surely much more exciting than wasting an hour in the text editor. Had I not known regular expressions, I would have never considered that there was an alternative. So, to a fair extent, this story is representative of how regular expressions and associated tools can empower you to do things you might have never thought you wanted to do.

Once you learn regular expressions, you’ll realize that they’re an invaluable part of your toolkit, and you’ll wonder how you could ever have gotten by without them.†

A full command of regular expressions is an invaluable skill. This book provides the information needed to acquire that skill, and it is my hope that it provides the motivation to do so, as well.

Regular Expressions as a Language

Unless you’ve had some experience with regular expressions, you won’t understand the regular expression ⌈^(From|Subject):⌋ from the last example, but there’s nothing magic about it. For that matter, there is nothing magic about magic. The magician merely understands something simple which doesn’t appear to be simple or natural to the untrained audience. Once you learn how to hold a card while making your hand look empty, you only need practice before you, too, can “do magic.” Like a foreign language — once you learn it, it stops sounding like gibberish.

The Filename Analogy

Since you have decided to use this book, you probably have at least some idea of just what a “regular expression” is. Even if you don’t, you are almost certainly already familiar with the basic concept.

You know that report.txt is a specific filename, but if you have had any experience with Unix or DOS/Windows, you also know that the pattern “*.txt” can be used to select multiple files. With filename patterns like this (called file globs or wildcards), a few characters have special meaning. The star means “match anything,” and a question mark means “match any one character.” So, with the file glob “*.txt”, we start with a match-anything ⌈*⌋ and end with the literal ⌈.txt⌋, so we end up with a pattern that means “select the files whose names start with anything and end with .txt”.

Most systems provide a few additional special characters, but, in general, these filename patterns are limited in expressive power. This is not much of a shortcoming because the scope of the problem (to provide convenient ways to specify groups of files) is limited, well, simply to filenames.

On the other hand, dealing with general text is a much larger problem. Prose and poetry, program listings, reports, HTML, code tables, word lists... you name it, if a particular need is specific enough, such as “selecting files,” you can develop some kind of specialized scheme or tool to help you accomplish it. However, over the years, a generalized pattern language has developed, which is powerful and expressive for a wide variety of uses. Each program implements and uses them differently, but in general, this powerful pattern language and the patterns themselves are called regular expressions.

The Language Analogy

Full regular expressions are composed of two types of characters. The special characters (like the * from the filename analogy) are called metacharacters, while the rest are called literal, or normal text characters. What sets regular expressions apart from filename patterns are the advanced expressive powers that their metacharacters provide. Filename patterns provide limited metacharacters for limited needs, but a regular expression “language” provides rich and expressive metacharacters for advanced uses.

It might help to consider regular expressions as their own language, with literal text acting as the words and metacharacters as the grammar. The words are combined with grammar according to a set of rules to create an expression that communicates an idea. In the email example, the expression I used to find lines beginning with ‘From:’ or ‘Subject:’ was [image: Image]. The metacharacters are underlined; we’ll get to their interpretation soon.

As with learning any other language, regular expressions might seem intimidating at first. This is why it seems like magic to those with only a superficial understanding, and perhaps completely unapproachable to those who have never seen it at all. But, just as [image: Image]† would soon become clear to a student of Japanese, the regular expression in

s!<emphasis>([0-9]+(\.[0-9]+){3})</emphasis>!<inet>$1</inet>!

will soon become crystal clear to you, too.

This example is from a Perl language script that my editor used to modify a manuscript. The author had mistakenly used the typesetting tag <emphasis> to mark Internet IP addresses (which are sets of periods and numbers that look like 209.204.146.22). The incantation uses Perl’s text-substitution command with the regular expression

⌈<emphasis>([0-9]+(\.[0-9]+){3})</emphasis>⌋

to replace such tags with the appropriate <inet> tag, while leaving other uses of <emphasis> alone. In later chapters, you’ll learn all the details of exactly how this type of incantation is constructed, so you’ll be able to apply the techniques to your own needs, with your own application or programming language.

The goal of this book

The chance that you will ever want to replace <emphasis> tags with <inet> tags is small, but it is very likely that you will run into similar “replace this with that” problems. The goal of this book is not to teach solutions to specific problems, but rather to teach you how to think regular expressions so that you will be able to conquer whatever problem you may face.

The Regular-Expression Frame of Mind

As we’ll soon see, complete regular expressions are built up from small building-block units. Each individual building block is quite simple, but since they can be combined in an infinite number of ways, knowing how to combine them to achieve a particular goal takes some experience. So, this chapter provides a quick overview of some regular-expression concepts. It doesn’t go into much depth, but provides a basis for the rest of this book to build on, and sets the stage for important side issues that are best discussed before we delve too deeply into the regular expressions themselves.

While some examples may seem silly (because some are silly), they represent the kind of tasks that you will want to do — you just might not realize it yet. If each point doesn’t seem to make sense, don’t worry too much. Just let the gist of the lessons sink in. That’s the goal of this chapter.

If You Have Some Regular-Expression Experience

If you’re already familiar with regular expressions, much of this overview will not be new, but please be sure to at least glance over it anyway. Although you may be aware of the basic meaning of certain metacharacters, perhaps some of the ways of thinking about and looking at regular expressions will be new.

Just as there is a difference between playing a musical piece well and making music, there is a difference between knowing about regular expressions and really understanding them. Some of the lessons present the same information that you are already familiar with, but in ways that may be new and which are the first steps to really understanding.

Searching Text Files: Egrep

Finding text is one of the simplest uses of regular expressions — many text editors and word processors allow you to search a document using a regular-expression pattern. Even simpler is the utility egrep. Give egrep a regular expression and some files to search, and it attempts to match the regular expression to each line of each file, displaying only those lines in which a match is found. egrep is freely available for many systems, including DOS, MacOS, Windows, Unix, and so on. See this book’s web site, http://regex.info, for links on how to obtain a copy of egrep for your system.

Returning to the email example from page 3, the command I actually used to generate a makeshift table of contents from the email file is shown in Figure 1-1. egrep interprets the first command-line argument as a regular expression, and any remaining arguments as the file(s) to search. Note, however, that the single quotes shown in Figure 1-1 are not part of the regular expression, but are needed by my command shell.† When using egrep, I usually wrap the regular expression with single quotes. Exactly which characters are special, in what contexts, to whom (to the regular-expression, or to the tool), and in what order they are interpreted are all issues that grow in importance when you move to regular-expression use in full-fledged programming languages—something we’ll see starting in the next chapter.

[image: Image]

Figure 1-1: Invoking egrep from the command line

We’ll start to analyze just what the various parts of the regex mean in a moment, but you can probably already guess just by looking that some of the characters have special meanings. In this case, the parentheses, the ⌈^⌋, and the ⌈|⌋ characters are regular-expression metacharacters, and combine with the other characters to generate the result I want.

On the other hand, if your regular expression doesn’t use any of the dozen or so metacharacters that egrep understands, it effectively becomes a simple “plain text” search. For example, searching for ⌈cat⌋ in a file finds and displays all lines with the three letters c·a·t in a row. This includes, for example, any line containing [image: Image].

Even though the line might not have the word cat, the c·a·t sequence in vacation is still enough to be matched. Since it’s there, egrep goes ahead and displays the whole line. The key point is that regular-expression searching is not done on a “word” basis—egrep can understand the concept of bytes and lines in a file, but it generally has no idea of English’s (or any other language’s) words, sentences, paragraphs, or other high-level concepts.

Egrep Metacharacters

Let’s start to explore some of the egrep metacharacters that supply its regular-expression power. I’ll go over them quickly with a few examples, leaving the detailed examples and descriptions for later chapters.

Typographical Conventions

Before we begin, please make sure to review the typographical conventions explained in the preface, on page xxi. This book forges a bit of new ground in the area of typesetting, so some of my notations may be unfamiliar at first.

Start and End of the Line

Probably the easiest metacharacters to understand are ⌈^⌋ (caret) and ⌈$⌋ (dollar), which represent the start and end, respectively, of the line of text as it is being checked. As we’ve seen, the regular expression ⌈cat⌋ finds c·a·t anywhere on the line, but ⌈^cat⌋ matches only if the c·a·t is at the beginning of the line—the ⌈^⌋ is used to effectively anchor the match (of the rest of the regular expression) to the start of the line. Similarly, ⌈cat$⌋ finds c·a·t only at the end of the line, such as a line ending with scat.

It’s best to get into the habit of interpreting regular expressions in a rather literal way. For example, don’t think

⌈^cat⌋ matches a line with cat at the beginning

but rather:

⌈^cat⌋ matches if you have the beginning of a line, followed immediately by c, followed immediately by a, followed immediately by t.

They both end up meaning the same thing, but reading it the more literal way allows you to intrinsically understand a new expression when you see it. How would egrep interpret ⌈^cat$⌋, ⌈^$⌋, or even simply ⌈^⌋ alone? [image: Image] Turn the page to check your interpretations.

The caret and dollar are special in that they match a position in the line rather than any actual text characters themselves. Of course, there are various ways to actually match real text. Besides providing literal characters like ⌈cat⌋ in your regular expression, you can also use some of the items discussed in the next few sections.

Character Classes

Matching any one of several characters

Let’s say you want to search for “grey,” but also want to find it if it were spelled “gray.” Ther egular-expression construct ⌈[···]⌋, usually called a character class, lets you list the characters you want to allow at that point in the match. While ⌈e⌋ matches just an e, and ⌈a⌋ matches just an a, the regular expression ⌈[ea]⌋ matches either. So, then, consider ⌈gr[ea]y⌋: this means to find “g, followed by r, followed by either an e or an a, all followed by y.” Because I’m a really poor speller, I’m always using regular expressions like this against a huge list of English words to figure out proper spellings. One I use often is ⌈sep[ea]r[ea]te⌋, because I can never remember whether the word is spelled “seperate,” “separate,” “separete,” or what. The one that pops up in the list is the proper spelling; regular expressions to the rescue.

Notice how outside of a class, literal characters (like the ⌈g⌋ and ⌈r⌋ of ⌈gr[ae]y⌋) have an implied “and then” between them — “match ⌈g⌋ and then match ⌈r⌋ ...” It’s completely opposite inside a character class. The contents of a class is a list of characters that can match at that point, so the implication is “or.”

As another example, maybe you want to allow capitalization of a word’s first letter, such as with ⌈[Ss]mith⌋. Remember that this still matches lines that contain smith (or Smith) embedded within another word, such as with blacksmith. I don’t want to harp on this throughout the overview, but this issue does seem to be the source of problems among some new users. I’ll touch on some ways to handle this embedded-word problem after we examine a few more metacharacters.

You can list in the class as many characters as you like. For example, ⌈[123456]⌋ matches any of the listed digits. This particular class might be useful as part of ⌈<H[123456]>⌋, which matches <H1>, <H2>, <H3>, etc. This can be useful when searching for HTML headers.

Within a character class, the character-class metacharacter ‘-’ (dash) indicates a range of characters: ⌈<H[1-6]>⌋ is identical to the previous example. ⌈[0-9]⌋ and ⌈[a-z]⌋ are common shorthands for classes to match digits and English lowercase letters, respectively. Multiple ranges are fine, so ⌈[0123456789abcdefABCDEF]⌋ can be written as ⌈[0-9a-fA-F]⌋ (or, perhaps, ⌈[A-Fa-f0-9]⌋, since the order in which ranges are given doesn’t matter). These last three examples can be useful when processing hexadecimal numbers. You can freely combine ranges with literal characters: ⌈[0-9A-Z_!.?]⌋ matches a digit, uppercase letter, underscore, exclamation point, period, or a question mark.

Note that a dash is a metacharacter only within a character class — otherwise it matches the normal dash character. In fact, it is not even always a metacharacter within a character class. If it is the first character listed in the class, it can’t possibly indicate a range, so it is not considered a metacharacter. Along the same lines, the question mark and period at the end of the class are usually regular-expression metacharacters, but only when not within a class (so, to be clear, the only special characters within the class in ⌈[0-9A-Z_!.?]⌋ are the two dashes).

Reading ⌈^cat$⌋, ⌈^$⌋, and ⌈^⌋

[image: Image] Answers to the questions on page 8.

	⌈^cat$⌋

	Literally means: matches if the line has a beginning-of-line (which, of course, all lines have), followed immediately by c·a·t, and then followed immediately by the end of the line.

	

	Effectively means: a line that consists of only cat — no extra words, spaces, punctuation... just ‘cat’.

	⌈^$⌋

	Literally means: matches if the line has a beginning-of-line, followed immediately by the end of the line.

	

	Effectively means: an empty line (with nothing in it, not even spaces).

	⌈^⌋

	Literally means: matches if the line has a beginning-of-line.

	

	Effectively meaningless! Since every line has a beginning, every line will match—even lines that are empty!

Consider character classes as their own mini language. The rules regarding which metacharacters are supported (and what they do) are completely different inside and outside of character classes.

We’ll see more examples of this shortly.

Negated character classes

If you use ⌈[^···]⌋ instead of ⌈[···]⌋, the class matches any character that isn’t listed. For example, ⌈[^1-6]⌋ matches a character that’s not 1 through 6. The leading ^ in the class “negates” the list, so rather than listing the characters you want to include in the class, you list the characters you don’t want to be included.

You might have noticed that the ^ used here is the same as the start-of-line caret introduced on page 8. The character is the same, but the meaning is completely different. Just as the English word “wind” can mean different things depending on the context (sometimes a strong breeze, sometimes what you do to a clock), so can a metacharacter. We’ve already seen one example, the range-building dash. It is valid only inside a character class (and at that, only when not first inside the class). ^ is a line anchor outside a class, but a class metacharacter inside a class (but, only when it is immediately after the class’s opening bracket; otherwise, it’s not special inside a class). Don’t fear — these are the most complex special cases; others we’ll see later aren’t so bad.

As another example, let’s search that list of English words for odd words that have q followed by something other than u. Translating that into a regular expression, it becomes ⌈q[^u]⌋. I tried it on the list I have, and there certainly weren’t many. I did find a few, including a number of words that I didn’t even know were English.

Here’s what happened. (What I typed is in bold.)

% egrep 'q[^u]' word.list
Iraqi
Iraqian
miqra
qasida
qintar
qoph
zaqqum%

Two notable words not listed are “Qantas”, the Australian airline, and “Iraq”. Although both words are in the word.list file, neither were displayed by my egrep command. Why? [image: Image] Think about it for a bit, and then turn the page to check your reasoning.

Remember, a negated character class means “match a character that’s not listed” and not “don’t match what is listed.” These might seem the same, but the Iraq example shows the subtle difference. A convenient way to view a negated class is that it is simply a shorthand for a normal class that includes all possible characters except those that are listed.

Matching Any Character with Dot

The metacharacter ⌈·⌋ (usually called dot or point) is a shorthand for a character class that matches any character. It can be convenient when you want to have an “any character here” placeholder in your expression. For example, if you want to search for a date such as 03/19/76, 03-19-76, or even 03.19.76, you could go to the trouble to construct a regular expression that uses character classes to explicitly allow ‘/’, ‘-’, or ‘·’ between each number, such as ⌈03[-./]19[-./]76⌋. However, you might also try simply using ⌈03.19.76⌋.

Quite a few things are going on with this example that might be unclear at first. In ⌈03[-./]l9[-./]76⌋, the dots are not metacharacters because they are within a character class. (Remember, the list of metacharacters and their meanings are different inside and outside of character classes.) The dashes are also not class metacharacters in this case because each is the first thing after [or [^. Had they not been first, as with ⌈[.-/]⌋, they would be the class range metacharacter, which would be a mistake in this situation.

Quiz Answer

[image: Image] Answer to the question on page 11.

Why doesn’t ⌈q[^u]⌋ match ‘Qantas’ or ‘Iraq’?

Qantas didn’t match because the regular expression called for a lowercase q, whereas the Q in Qantas is uppercase. Had we used ⌈Q[^u]⌋ instead, we would have found it, but not the others, since they don’t have an uppercase Q. The expression ⌈[Qq][^u]⌋ would have found them all.

The Iraq example is somewhat of a trick question. The regular expression calls for q followed by a character that’s not u, which precludes matching q at the end of the line. Lines generally have newline characters at the very end, but a little fact I neglected to mention (sorry!) is that egrep strips those before checking with the regular expression, so after a line-ending q, there’s no non-u to be matched.

Don’t feel too bad because of the trick question.† Let me assure you that had egrep not automatically stripped the newlines (many other tools don’t strip them), or had Iraq been followed by spaces or other words or whatnot, the line would have matched. It is important to eventually understand the little details of each tool, but at this point what I’d like you to come away with from this exercise is that a character class, even negated, still requires a character to match.

With ⌈03.19.76⌋, the dots are metacharacters — ones that match any character (including the dash, period, and slash that we are expecting). However, it is important to know that each dot can match any character at all, so it can match, say, [image: Image].

So, ⌈03[-./]19[-./]76⌋ is more precise, but it’s more difficult to read and write. ⌈03.19.76⌋ is easy to understand, but vague. Which should we use? It all depends upon what you know about the data being searched, and just how specific you feel you need to be. One important, recurring issue has to do with balancing your knowledge of the text being searched against the need to always be exact when writing an expression. For example, if you know that with your data it would be highly unlikely for ⌈03.19.76⌋ to match in an unwanted place, it would certainly be reasonable to use it. Knowing the target text well is an important part of wielding regular expressions effectively.

Alternation

Matching any one of several subexpressions

A very convenient metacharacter is ⌈|⌋, which means “or.” It allows you to combine multiple expressions into a single expression that matches any of the individual ones. For example, ⌈Bob⌋ and ⌈Robert⌋ are separate expressions, but ⌈Bob|Robert⌋ is one expression that matches either. When combined this way, the subexpressions are called alternatives.

Looking back to our ⌈gr[ea]y⌋ example, it is interesting to realize that it can be written as ⌈grey|gray⌋, and even ⌈gr(a|e)y⌋. The latter case uses parentheses to constrain the alternation. (For the record, parentheses are metacharacters too.) Note that something like ⌈gr[a|e]y⌋ is not what we want —within a class, the ‘|’ character is just a normal character, like ⌈a⌋ and ⌈e⌋.

With ⌈gr(a|e)y⌋, the parentheses are required because without them, ⌈gra|ey⌋ means “⌈gra⌋ or ⌈ey⌋,” which is not what we want here. Alternation reaches far, but not beyond parentheses. Another example is ⌈(First|1st)•[Ss]treet⌋.† Actually, since both ⌈First⌋ and ⌈1st⌋ end with ⌈st⌋, the combination can be shortened to ⌈(Fir|1)st•[Ss]treet⌋. That’s not necessarily quite as easy to read, but be sure to understand that ⌈(first|1st)⌋ and ⌈(fir|1)st⌋ effectively mean the same thing.

Here’s an example involving an alternate spelling of my name. Compare and contrast the following three expressions, which are all effectively the same:

⌈Jeffrey|Jeffery⌋
⌈Jeff(rey|ery)⌋
⌈Jeff(re|er)y⌋

To have them match the British spellings as well, they could be:

⌈(Geoff|Jeff)(rey|ery)⌋
⌈(Geo|Je)ff(rey|ery)⌋
⌈(Geo|Je)ff(re|er)y⌋

Finally, note that these three match effectively the same as the longer (but simpler) ⌈Jeffrey|Geoffery|Jeffery|Geoffrey⌋. They’re all different ways to specify the same desired matches.

Although the ⌈gr[ea]y⌋ versus ⌈gr(a|e)y⌋ examples might blur the distinction, be careful not to confuse the concept of alternation with that of a character class. A character class can match just a single character in the target text. With alternation, since each alternative can be a full-fledged regular expression in and of itself, each alternative can match an arbitrary amount of text. Character classes are almost like their own special mini-language (with their own ideas about metacharacters, for example), while alternation is part of the “main” regular expression language. You’ll find both to be extremely useful.

Also, take care when using caret or dollar in an expression that has alternation. Compare ⌈^From|Subject|Date:•⌋ with ⌈^(From|Subject|Date):•⌋. Both appear similar to our earlier email example, but what each matches (and therefore how useful it is) differs greatly. The first is composed of three alternatives, so it matches “⌈^From⌋ or ⌈Subject⌋ or ⌈Date:•⌋,” which is not particularly useful. We want the leading caret and trailing ⌈:•⌋ to apply to each alternative. We can accomplish this by using parentheses to “constrain” the alternation:

⌈^(From|Subject|Date):•⌋

The alternation is constrained by the parentheses, so literally, this regex means “match the start of the line, then one of ⌈From⌋, ⌈Subject⌋, or ⌈Date⌋, and then match ⌈:•⌋.” Effectively, it matches:

	1)

	start-of-line, followed by F·r·o·m, followed by ‘:•’

	or 2)

	start-of-line, followed by S·u·b·j·e·c·t, followed by ‘:•’

	or 3)

	start-of-line, followed by D·a·t·e, followed by ‘:•’

Putting it less literally, it matches lines beginning with ‘From:•’, ‘Subject:•’, or ‘Date:•’, which is quite useful for listing the messages in an email file.

Here’s an example:

% egrep '^(From|Subject|Date): ' mailbox
From: elvis@tabloid.org (The King)
Subject: be seein' ya around
Date: Mon, 23 Oct 2006 11:04:13
From: The Prez <president@whitehouse.gov>
Date: Wed, 25 Oct 2006 8:36:24
Subject: now, about your vote

Ignoring Differences in Capitalization

This email header example provides a good opportunity to introduce the concept of a case-insensitive match. The field types in an email header usually appear with leading capitalization, such as “Subject” and “From,” but the email standard actually allows mixed capitalization, so things like “DATE” and “from” are also allowed. Unfortunately, the regular expression in the previous section doesn’t match those.

One approach is to replace ⌈From⌋ with ⌈[Ff][Rr][Oo][Mm]⌋ to match any form of “from,” but this is quite cumbersome, to say the least. Fortunately, there is a way to tell egrep to ignore case when doing comparisons, i.e., to perform the match in a case insensitive manner in which capitalization differences are simply ignored. It is not a part of the regular-expression language, but is a related useful feature many tools provide. egrep’s command-line option “-i” tells it to do a case-insensitive match. Place -i on the command line before the regular expression:

% egrep -i '^(From|Subject|Date): ' mailbox

This brings up all the lines we matched before, but also includes lines such as:

SUBJECT: MAKE MONEY FAST

I find myself using the -i option quite frequently (perhaps related to the footnote on page 12!) so I recommend keeping it in mind. We’ll see other convenient support features like this in later chapters.

Word Boundaries

A common problem is that a regular expression that matches the word you want can often also match where the “word” is embedded within a larger word. I mentioned this briefly in the cat, gray, and Smith examples. It turns out, though, that some versions of egrep offer limited support for word recognition: namely the ability to match the boundary of a word (where a word begins or ends).

You can use the (perhaps odd looking) metasequences ⌈\<⌋ and ⌈\>⌋ if your version happens to support them (not all versions of egrep do). You can think of them as word-based versions of ⌈^⌋ and ⌈$⌋ that match the position at the start and end of a word, respectively. Like the line anchors caret and dollar, they anchor other parts of the regular expression but don’t actually consume any characters during a match. The expression ⌈\<cat\>⌋ literally means “match if we can find a start-of-word position, followed immediately by c·a·t, followed immediately by an end-of-word position.” More naturally, it means “find the word cat.” If you wanted, you could use ⌈\<cat⌋ or ⌈cat\>⌋ to find words starting and ending with cat.

Note that ⌈<⌋ and ⌈>⌋ alone are not metacharacters — when combined with a backslash, the sequences become special. This is why I called them “metasequences.” It’s their special interpretation that’s important, not the number of characters, so for the most part I use these two meta-words interchangeably.

Remember, not all versions of egrep support these word-boundary metacharacters, and those that do don’t magically understand the English language. The “start of a word” is simply the position where a sequence of alphanumeric characters begins; “end of word” is where such a sequence ends. Figure 1-2 on the next page shows a sample line with these positions marked.

The word-starts (as egrep recognizes them) are marked with up arrows, the word-ends with down arrows. As you can see, “start and end of word” is better phrased as “start and end of an alphanumeric sequence,” but perhaps that’s too much of a mouthful.

[image: Image]

Figure 1-2: Start and end of “word” positions

In a Nutshell

Table 1-1 summarizes the metacharacters we have seen so far.

Table 1-1: Summary of Metacharacters Seen So Far

	Metacharacter

	Name

	Matches

	.

	dot

	any one character

	[···]

	character class

	any character listed

	[^···]

	negated character class

	any character not listed

	^

	caret

	the position at the start of the line

	$

	dollar

	the position at the end of the line

	\<

	backslash less-than

	†the position at the start of a word

	\>

	backslash greater-than

	†the position at the end of a word

	

	

	†not supported by all versions of egrep

	|

	or; bar

	matches either expression it separates

	(···)

	parentheses

	used to limit scope of ⌈|⌋, plus additional uses yet to be discussed

In addition to the table, important points to remember include:

	The rules about which characters are and aren’t metacharacters (and exactly what they mean) are different inside a character class. For example, dot is a metacharacter outside of a class, but not within one. Conversely, a dash is a metacharacter within a class (usually), but not outside. Moreover, a caret has one meaning outside, another if specified inside a class immediately after the opening [, and a third if given elsewhere in the class.

	Don’t confuse alternation with a character class. The class ⌈[abc]⌋ and the alternation ⌈(a|b|c)⌋ effectively mean the same thing, but the similarity in this example does not extend to the general case. A character class can match exactly one character, and that’s true no matter how long or short the specified list of acceptable characters might be.
Alternation, on the other hand, can have arbitrarily long alternatives, each tex-tually unrelated to the other: ⌈\<(1,000,000|million|thousand•thou)\>⌋. However, alternation can’t be negated like a character class.

	A negated character class is simply a notational convenience for a normal character class that matches everything not listed. Thus, ⌈[^x]⌋ doesn’t mean ” match unless there is an x,” but rather “match if there is something that is not x.” The difference is subtle, but important. The first concept matches a blank line, for example, while ⌈[^x]⌋ does not.

	The useful -i option discounts capitalization during a match ([image: Image] 15).†

What we have seen so far can be quite useful, but the real power comes from optional and counting elements, which we’ll look at next.

Optional Items

Let’s look at matching color or colour. Since they are the same except that one has a u and the other doesn’t, we can use ⌈colou?r⌋ to match either. The metacharacter ⌈?⌋ (question mark) means optional. It is placed after the character that is allowed to appear at that point in the expression, but whose existence isn’t actually required to still be considered a successful match.

Unlike other metacharacters we have seen so far, the question mark attaches only to the immediately-preceding item. Thus, ⌈colou?r⌋ is interpreted as “⌈c⌋ then ⌈o⌋ then ⌈l⌋ then ⌈o⌋ then ⌈u?⌋ then ⌈r⌋.”

The ⌈u?⌋ part is always successful: sometimes it matches a u in the text, while other times it doesn’t. The whole point of the ?-optional part is that it’s successful either way. This isn’t to say that any regular expression that contains ? is always successful. For example, against ‘semicolon’, both ⌈colo⌋ and ⌈u?⌋ are successful (matching colo and nothing, respectively). However, the final ⌈r⌋ fails, and that’s what disallows semicolon, in the end, from being matched by ⌈colou?r⌋.

As another example, consider matching a date that represents July fourth, with the “July” part being either July or Jul, and the “fourth” part being fourth, 4th, or simply 4. Of course, we could just use ⌈(July|Jul)•(fourth|4th|4)⌋, but let’s explore other ways to express the same thing.

First, we can shorten the ⌈(July|Jul)⌋ to ⌈(July?)⌋. Do you see how they are effectively the same? The removal of the ⌈|⌋ means that the parentheses are no longer really needed. Leaving the parentheses doesn’t hurt, but with them removed, ⌈July?⌋ is a bit less cluttered. This leaves us with ⌈July?•(fourth|4th|4)⌋.

Moving now to the second half, we can simplify the ⌈4th|4⌋ to ⌈4(th)?⌋. As you can see, ⌈?⌋ can attach to a parenthesized expression. Inside the parentheses can be as complex a subexpression as you like, but “from the outside” it is considered a single unit. Grouping for ⌈?⌋ (and other similar metacharacters which I’ll introduce momentarily) is one of the main uses of parentheses.

Our expression now looks like ⌈July?•(fourth|4(th)?)⌋. Although there are a fair number of metacharacters, and even nested parentheses, it is not that difficult to decipher and understand. This discussion of two essentially simple examples has been rather long, but in the meantime we have covered tangential topics that add a lot, if perhaps only subconsciously, to our understanding of regular expressions. Also, it’s given us some experience in taking different approaches toward the same goal. As we advance through this book (and through to a better understanding), you’ll find many opportunities for creative juices to flow while trying to find the optimal way to solve a complex problem. Far from being some stuffy science, writing regular expressions is closer to an art.

Other Quantifiers: Repetition

Similar to the question mark are ⌈+⌋ (plus) and ⌈*⌋ (an asterisk, but as a regular-expression metacharacter, I prefer the term star). The metacharacter ⌈+⌋ means “one or more of the immediately-preceding item,” and ⌈*⌋ means “any number, including none, of the item.” Phrased differently, ⌈···*⌋ means “try to match it as many times as possible, but it’s OK to settle for nothing if need be.” The construct with plus, ⌈···+⌋, is similar in that it also tries to match as many times as possible, but different in that it fails if it can’t match at least once. These three metacharacters, question mark, plus, and star, are called quantifiers because they influence the quantity of what they govern.

Like ⌈···?⌋, the ⌈···*⌋ part of a regular expression always succeeds, with the only issue being what text (if any) is matched. Contrast this to ⌈···+⌋, which fails unless the item matches at least once.

For example, ⌈•?⌋ allows a single optional space, but ⌈•*⌋ allows any number of optional spaces. We can use this to make page 9’s <H[1-6]> example flexible. The HTML specification† says that spaces are allowed immediately before the closing >, such as with <H3•> and <H4•••>. Inserting ⌈•*⌋ into our regular expression where we want to allow (but not require) spaces, we get ⌈<H[1-6]•*>⌋. This still matches <H1>, as no spaces are required, but it also flexibly picks up the other versions.

Exploring further, let’s search for an HTML tag such as <HR•SIZE=14>, which indicates that a line (a Horizontal Rule) 14 pixels thick should be drawn across the screen. Like the <H3> example, optional spaces are allowed before the closing angle bracket. Additionally, they are allowed on either side of the equal sign. Finally, one space is required between the HR and SIZE, although more are allowed. To allow more, we could just add ⌈•*⌋ to the ⌈•⌋ already there, but instead let’s change it to ⌈•+⌋. The plus allows extra spaces while still requiring at least one, so it’s effectively the same as ⌈••*⌋, but more concise. All these changes leave us with ⌈<HR•+SIZE•*=•*14•*>⌋.

Although flexible with respect to spaces, our expression is still inflexible with respect to the size given in the tag. Rather than find tags with only one particular size such as 14, we want to find them all. To accomplish this, we replace the ⌈14⌋ with an expression to find a general number. Well, in this case, a “number” is one or more digits. A digit is ⌈[0-9]⌋, and “one or more” adds a plus, so we end up replacing ⌈14⌋ by ⌈[0-9]+⌋. (A character class is one “unit,” so can be subject directly to plus, question mark, and so on, without the need for parentheses.)

This leaves us with ⌈<HR•+ SIZE •* = •* [0-9]+ •*>⌋, which is certainly a mouthful even though I’ve presented it with the metacharacters bold, added a bit of spacing to make the groupings more apparent, and am using the “visible space” symbol ‘•’ for clarity. (Luckily, egrep has the -i case-insensitive option, [image: Image] 15, which means I don’t have to use ⌈[Hh][Rr]⌋ instead of ⌈HR⌋.) The unadorned regular expression ⌈<HR +SIZE *= *[0-9]+ *>⌋ likely appears even more confusing. This example looks particularly odd because the subjects of most of the stars and pluses are space characters, and our eye has always been trained to treat spaces specially. That’s a habit you will have to break when reading regular expressions, because the space character is a normal character, no different from, say, j or 4. (In later chapters, we’ll see that some other tools support a special mode in which white-space is ignored, but egrep has no such mode.)

Continuing to exploit a good example, let’s consider that the size attribute is optional, so you can simply use <HR> if the default size is wanted. (Extra spaces are allowed before the >, as always.) How can we modify our regular expression so that it matches either type? The key is realizing that the size part is optional (that’s a hint). [image: Image] Turn the page to check your answer.

Take a good look at our latest expression (in the answer box) to appreciate the differences among the question mark, star, and plus, and what they really mean in practice. Table 1-2 on the next page summarizes their meanings.

Note that each quantifier has some minimum number of matches required to succeed, and a maximum number of matches that it will ever attempt. With some, the minimum number is zero; with some, the maximum number is unlimited.

Making a Subexpression Optional

[image: Image] Answer to the question on page 19.

In this case, “optional” means that it is allowed once, but is not required. That means using ⌈?⌋. Since the thing that’s optional is larger than one character, we must use parentheses: ⌈(···)?⌋. Inserting into our expression, we get:

[image: Image]

Note that the ending ⌈•*⌋ is kept outside of the ⌈(···)?⌋. This still allows something such as <HR•>. Had we included it within the parentheses, ending spaces would have been allowed only when the size component was present.

Similarly, notice that the ⌈•+⌋ before SIZE is included within the parentheses. Were it left outside them, a space would have been required after the HR, even when the SIZE part wasn’t there. This would cause ‘<HR>’ to not match.

Table 1-2: Summary of Quantifier “Repetition Metacharacters”

	

	Minimum Required

	Maximum to Try

	Meaning

	?

	none

	1

	one allowed; none required (“one optional”)

	*

	none

	no limit

	unlimited allowed; none required (“any amount OK”)

	+

	1

	no limit

	unlimited allowed; one required (“at least one”)

Defined range of matches: intervals

Some versions of egrep support a metasequence for providing your own minimum and maximum: ⌈···{min,max}⌋. This is called the interval quantifier. For example, ⌈···{3,12}⌋ matches up to 12 times if possible, but settles for three. One might use ⌈[a-zA-Z]{1,5}⌋ to match a US stock ticker (from one to five letters). Using this notation, {0, 1} is the same as a question mark.

Not many versions of egrep support this notation yet, but many other tools do, so it’s covered in Chapter 3 when we look in detail at the broad spectrum of metacharacters in common use today.

Parentheses and Backreferences

So far, we have seen two uses for parentheses: to limit the scope of alternation, ⌈|⌋, and to group multiple characters into larger units to which you can apply quantifiers like question mark and star. I’d like to discuss another specialized use that’s not common in egrep (although GNU’s popular version does support it), but which is commonly found in many other tools.

In many regular-expression flavors, parentheses can “remember” text matched by the subexpression they enclose. We’ll use this in a partial solution to the doubled-word problem at the beginning of this chapter. If you knew the the specific doubled word to find (such as “the” earlier in this sentence — did you catch it?), you could search for it explicitly, such as with ⌈the•the⌋. In this case, you would also find items such as [image: Image], but you could easily get around that problem if your egrep supports the word-boundary metasequences ⌈\<···\>⌋ mentioned on page 15: ⌈\<the•the\>⌋. We could use ⌈•+⌋ for the space for even more flexibility.

However, having to check for every possible pair of words would be an impossible task. Wouldn’t it be nice if we could match one generic word, and then say “now match the same thing again”? If your egrep supports backreferencing, you can. Backreferencing is a regular-expression feature that allows you to match new text that is the same as some text matched earlier in the expression.

We start with ⌈\<the•+the\>⌋ and replace the initial ⌈the⌋ with a regular expression to match a general word, say ⌈[A-Za-z]+⌋. Then, for reasons that will become clear in the next paragraph, let’s put parentheses around it. Finally, we replace the second ‘the’ by the special metasequence ⌈\1⌋. This yields ⌈\<([A-Za-z]+)•+\1\>⌋.

With tools that support backreferencing, parentheses “remember” the text that the subexpression inside them matches, and the special metasequence ⌈\1⌋ represents that text later in the regular expression, whatever it happens to be at the time.

Of course, you can have more than one set of parentheses in a regular expression. Use ⌈\1⌋, ⌈\2⌋, ⌈\3⌋, etc., to refer to the first, second, third, etc. sets. Pairs of parentheses are numbered by counting opening parentheses from the left, so with ⌈([a-z])([0-9])\1\2⌋, the ⌈\1⌋ refers to the text matched by ⌈[a-z]⌋, and ⌈\2⌋ refers to the text matched by ⌈[0-9]⌋.

With our ‘the•the’ example, ⌈[A-Za-z]+⌋ matches the first ‘the’. It is within the first set of parentheses, so the ‘the’ matched becomes available via ⌈\1⌋. If the following ⌈•+⌋ matches, the subsequent ⌈\1⌋ will require another ‘the’. If ⌈\1⌋ is successful, then ⌈\>⌋ makes sure that we are now at an end-of-word boundary (which we wouldn’t be were the text ‘the•theft’). If successful, we’ve found a repeated word. It’s not always the case that that is an error (such as with “that” in this sentence), but that’s for you to decide once the suspect lines are shown.

When I decided to include this example, I actually tried it on what I had written so far. (I used a version of egrep that supports both ⌈\<···\>⌋ and backreferencing.) To make it more useful, so that ‘The•the’ would also be found, I used the case-insensitive -i option mentioned on page 15.†

Here’s the command I ran:

% egrep -i '\<([a-z]+) +\1\>' files···

I was surprised to find fourteen sets of mistakenly ‘doubled•doubled’ words! I corrected them, and since then have built this type of regular-expression check into the tools that I use to produce the final output of this book, to ensure none creep back in.

As useful as this regular expression is, it is important to understand its limitations. Since egrep considers each line in isolation, it isn’t able to find when the ending word of one line is repeated at the beginning of the next. For this, a more flexible tool is needed, and we will see some examples in the next chapter.

The Great Escape

One important thing I haven’t mentioned yet is how to actually match a character that a regular expression would normally interpret as a metacharacter. For example, if I searched for the Internet hostname ega.att.com using ⌈ega.att.com⌋, it could end up matching something like [image: Image]. Remember, ⌈·⌋ is a metacharacter that matches any character, including a space.

The metasequence to match an actual period is a period preceded by a backslash: ⌈ega\.att\.com⌋. The sequence ⌈\.⌋ is described as an escaped period or escaped dot, and you can do this with all the normal metacharacters, except in a character-class.†

A backslash used in this way is called an “escape” — when a metacharacter is escaped, it loses its special meaning and becomes a literal character. If you like, you can consider the sequence to be a special metasequence to match the literal character. It’s all the same.

As another example, you could use ⌈\([a-zA-Z]+\)⌋ to match a word within parentheses, such as ‘(very)’. The backslashes in the ⌈\(⌋ and ⌈\)⌋ sequences remove the special interpretation of the parentheses, leaving them as literals to match parentheses in the text.

When used before a non-metacharacter, a backslash can have different meanings depending upon the version of the program. For example, we have already seen how some versions treat ⌈\<⌋, ⌈\>⌋, ⌈\1⌋, etc. as metasequences. We will see many more examples in later chapters.

Expanding the Foundation

I hope the examples and explanations so far have helped to establish the basis for a solid understanding of regular expressions, but please realize that what I’ve provided so far lacks depth. There’s so much more out there.

Linguistic Diversification

I mentioned a number of regular expression features that most versions of egrep support. There are other features, some of which are not supported by all versions, which I’ll leave for later chapters.

Unfortunately, the regular expression language is no different from any other in that it has various dialects and accents. It seems each new program employing regular expressions devises its own “improvements.” The state of the art continually moves forward, but changes over the years have resulted in a wide variety of regular expression “flavors.” We’ll see many examples in the following chapters.

The Goal of a Regular Expression

From the broadest top-down view, a regular expression either matches within a lump of text (with egrep, each line) or it doesn’t. When crafting a regular expression, you must consider the ongoing tug-of-war between having your expression match the lines you want, yet still not matching lines you don’t want.

Also, while egrep doesn’t care where in the line the match occurs, this concern is important for many other regular-expression uses. If your text is something such as

...zip is 44272. If you write, send $4.95 to cover postage and...

and you merely want to find lines matching ⌈[0-9]+⌋, you don’t care which numbers are matched. However, if your intent is to do something with the number (such as save to a file, add, replace, and such—we will see examples of this kind of processing in the next chapter), you’ll care very much exactly which numbers are matched.

A Few More Examples

As with any language, experience is a very good thing, so I’m including a few more examples of regular expressions to match some common constructs.

Half the battle when writing regular expressions is getting successful matches when and where you want them. The other half is to not match when and where you don’t want. In practice, both are important, but for the moment, I would like to concentrate on the “getting successful matches” aspect. Even though I don’t take these examples to their fullest depths, they still provide useful insight.

Variable names

Many programming languages have identifiers (variable names and such) that are allowed to contain only alphanumeric characters and underscores, but which may not begin with a digit. They are matched by ⌈[a-zA-Z_][a-zA-Z_0-9]*⌋. The first character class matches what the first character can be, the second (with its accompanying star) allows the rest of the identifier. If there is a limit on the length of an identifier, say 32 characters, you might replace the star with ⌈{0,31}⌋ if the ⌈{min,max}⌋ notation is supported. (This construct, the interval quantifier, was briefly mentioned on page 20.)

A string within double quotes

A simple solution to matching a string within double quotes might be: ⌈"[^"]*"⌋

The double quotes at either end are to match the opening and closing double quotes of the string. Between them, we can have anything... except another double quote! So, we use ⌈[^"]⌋ to match all characters except a double quote, and apply using a star to indicate we can have any number of such non double-quote characters.

A more useful (but more complex) definition of a double-quoted string allows double quotes within the string if they are escaped with a backslash, such as in “nail•the•2\"x4\"•plank". We’ll see this example several times in future chapters while covering the many details of how a match is actually carried out.

Dollar amount (with optional cents)

One approach to matching a dollar amount is: ⌈\$[0-9]+(\.[0-9][0-9])?⌋

From a top-level perspective, this is a simple regular expression with three parts: ⌈\$⌋ and ⌈···+⌋ and ⌈(···)?⌋, which might be loosely paraphrased as “a literal dollar sign, a bunch of one thing, and finally perhaps another thing.” In this case, the “one thing” is a digit (with a bunch of them being a number), and “another thing” is the combination of a decimal point followed by two digits.

This example is a bit naive for several reasons. For example, it considers dollar amounts like $1000, but not $1,000. It does allow for optional cents, but frankly, that’s not really very useful when applied with egrep. egrep never cares exactly how much is matched, but merely whether there is a match. Allowing something optional at the end never changes whether there’s an overall match to begin with.

But, if you need to find lines that contain just a price, and nothing else, you can wrap the expression with ⌈^···$⌋. In this case, the optional cents part becomes important since it might or might not come between the dollar amount and the end of the line, and allowing or disallowing it makes the difference in achieving an overall match.

One type of value our expression doesn’t match is ‘$.49’. To solve this, you might be tempted to change the plus to a star, but that doesn’t work. As to why, I’ll leave it as a teaser until we look at a similar example in Chapter 5 ([image: Image] 194).

An HTTP/HTML URL

The format of web URLs can be complex, so constructing a regular expression to match any possible URL can be equally complex. However, relaxing your standards slightly can allow you to match most common URLs with a fairly simple expression. One common reason I might do this, for example, would be to search my email archive for a URL that I vaguely remember having received, but which I think I might recognize when I see it.

The general form of a common HTTP/HTML URL is along the lines of

http://hostname/path.html

although ending with .htm is common as well.

The rules about what can and can’t be a hostname (computer name, such as www.yahoo.com) are complex, but for our needs we can realize that if it follows ‘http://’, it’s probably a hostname, so we can make do with something simple, such as ⌈[-a-z0-9_.]+⌋. The path part can be even more varied, so we’ll use ⌈[-a-z0-9_:@&?=+,.!/~*%$]*⌋ for that. Notice that these classes have the dash first, to ensure that it’s taken as a literal character and included in the list, as opposed to part of a range ([image: Image] 9).

Putting these all together, we might use as our first attempt something like:

% egrep -i '\<http://[-a-z0-9_.:]+/[-a-z0-9_:@&?=+,.!/~*%$]*\.html?\>' files

Again, since we’ve taken liberties and relaxed what we’ll match, we could well match something such as ‘http:// /foo.html’, which is certainly not a valid URL. Do we care about this? It all depends on what you’re trying to do. For my scan of my email archive, it doesn’t really matter if I get a few false matches. Heck, I could probably get away with even something as simple as:

% egrep -i '\<http://[^]*\.html?\>' files...

As we’ll learn when getting deeper into how to craft an expression, knowing the data you’ll be searching is an important aspect of finding the balance between complexity and completeness. We’ll visit this example again, in more detail, in the next chapter.

An HTML tag

With a tool like egrep, it doesn’t seem particularly common or useful to simply match lines with HTML tags. But, exploring a regular expression that matches HTML tags exactly can be quite fruitful, especially when we delve into more advanced tools in the next chapter.

Looking at simple cases like ‘<TITLE>’ and ‘<HR>’, we might think to try ⌈<.*>⌋. This simplistic approach is a frequent first thought, but it’s certainly incorrect. Converting ⌈<.*>⌋ into English reads “match a ‘<’, followed by as much of anything as can be matched, followed by ‘>’.” Well, when phrased that way, it shouldn’t be surprising that it can match more than just one tag, such as the marked portion of 'this [image: Image] example’.

This might have been a bit surprising, but we’re still in the first chapter, and our understanding at this point is only superficial. I have this example here to highlight that regular expressions are not a difficult subject, but they can be tricky if you don’t truly understand them. Over the next few chapters, we’ll look at all the details required to understand and solve this problem.

Time of day, such as “9:17 am” or “12:30 pm”

Matching a time can be taken to varying levels of strictness. Something such as

⌈[0-9]?[0-9]:[0-9][0-9]•(am|pm)⌋

picks up both 9:17•am and 12:30•pm, but also allows something nonsensical like 99:99•pm.

Looking at the hour, we realize that if it is a two-digit number, the first digit must be a one. But, ⌈1?[0-9]⌋ still allows an hour of 19 (and also an hour of 0), so maybe it is better to break the hour part into two possibilities: ⌈1[012]⌋ for two-digit hours and ⌈[1-9]⌋ for single-digit hours. The result is ⌈(1[012]|[1-9])⌋.

The minute part is easier. The first digit should be ⌈[0-5]⌋. For the second, we can stick with the current ⌈[0-9]⌋. This gives ⌈(1[012]|[1-9]):[0-5][0-9]•(am|pm)⌋ when we put it all together.

Using the same logic, can you extend this to handle 24-hour time with hours from 0 through 23? As a challenge, allow for a leading zero, at least through to 09:59. [image: Image] Try building your solution, and then turn the page to check mine.

Regular Expression Nomenclature

Regex

As you might guess, using the full phrase “regular expression” can get a bit tiring, particularly in writing. Instead, I normally use “regex.” It just rolls right off the tongue (it rhymes with “FedEx,” with a hard g sound like “regular” and not a soft one like in “Regina”) and it is amenable to a variety of uses like “when you regex...,” “budding regexers,” and even “regexification.”† I use the phrase “regex engine” to refer to the part of a program that actually does the work of carrying out a match attempt.

Matching

When I say a regex “matches” a string, I really mean that it matches in a string. Technically, the regex ⌈a⌋ doesn’t match cat, but matches the a in [image: Image]. It’s not something that people tend to confuse, but it’s still worthy of mention.

Metacharacter

Whether a character is a metacharacter (or “metasequence”—I use the words interchangeably) depends on exactly where in the regex it’s used. For example, ⌈*⌋ is a metacharacter, but only when it’s not within a character class and when not escaped. “Escaped” means that it has a backslash in front of it—usually. The star is escaped in ⌈*⌋, but not in ⌈*⌋ (where the first backslash escapes the second), although the star “has a backslash in front of it” in both examples.

Depending upon the regex flavor, there are various situations when certain characters are and aren’t metacharacters. Chapter 3 discusses this in more detail.

Flavor

As I’ve hinted, different tools use regular expressions for many different things, and the set of metacharacters and other features that each support can differ. Let’s look at word boundaries again as an example. Some versions of egrep support the \<···\> notation we’ve seen. However, some do not support the separate word-start and word-end, but one catch-all ⌈\b⌋ metacharacter (which we haven’t seen yet — we’ll see it in the next chapter). Still others support both, and many others support neither.

I use the term “flavor” to describe the sum total of all these little implementation decisions. In the language analogy, it’s the same as a dialect of an individual speaker. Superficially, this concept refers to which metacharacters are and aren’t supported, but there’s much more to it. Even if two programs both support ⌈\<···\>⌋, they might disagree on exactly what they do and don’t consider to be a word. This concern is important when you use the tool.

Extending the Time Regex to Handle a 24-Hour Clock

[image: Image] Answer to the question on page 26.

There are various solutions, but we can use similar logic as before. This time, I’ll break the task into three groups: one for the morning (hours 00 through 09, with the leading zero being optional), one for the daytime (hours 10 through 19), and one for the evening (hours 20 through 23). This can be rendered in a pretty straightforward way: ⌈0?[0-9]|1[0-9]|2[0-3]⌋.

Actually, we can combine the first two alternatives, resulting in the shorter ⌈[01]?[0-9]|2[0-3]⌋. You might need to think about it a bit to convince yourself that they’ll really match exactly the same text, but they do. The figure below might help, and it shows another approach as well. The shaded groups represent numbers that can be matched by a single alternative.

[image: Image]

Don’t confuse “flavor” with “tool.” Just as two people can speak the same dialect, two completely different programs can support exactly the same regex flavor. Also, two programs with the same name (and built to do the same task) often have slightly (and sometimes not-so-slightly) different flavors. Among the various programs called egrep, there is a wide variety of regex flavors supported.

In the late 1990s, the particularly expressive flavor offered by the Perl programming language was widely recognized for its power, and soon other languages were offering Perl-inspired regular expressions (many even acknowledging the inspirational source by labeling themselves “Perl-compatible”). The adopters include PHP, Python, many Java regex packages, Microsoft’s .NET Framework, Tcl, and a variety of C libraries, to name a few. Yet, all are different in important respects. On top of this, Perl’s regular expressions themselves are evolving and growing (sometimes, now, in response to advances seen with other tools). As always, the overall landscape continues to become more varied and confusing.

Subexpression

The term “subexpression” simply refers to part of a larger expression, although it often refers to some part of an expression within parentheses, or to an alternative of ⌈|⌋. For example, with ⌈^(Subject|Date):•⌋, the ⌈Subject|Date⌋ is usually referred to as a subexpression. Within that, the alternatives ⌈Subject⌋ and ⌈Date⌋ are each referred to as subexpressions as well. But technically, ⌈S⌋ is a subexpression, as is ⌈u⌋, and ⌈b⌋, and ⌈j⌋, ...

Something such as 1-6 isn’t considered a subexpression of ⌈H[1-6]•*⌋, since the ‘1-6’ is part of an unbreakable “unit,” the character class. But, ⌈H⌋, ⌈[1-6]⌋, and ⌈•*⌋ are all subexpressions of ⌈H[1-6]•*⌋.

Unlike alternation, quantifiers (star, plus, and question mark) always work with the smallest immediately-preceding subexpression. This is why with ⌈mis+pell⌋, the + governs the ⌈s⌋, not the ⌈mis⌋ or ⌈is⌋. Of course, when what immediately precedes a quantifier is a parenthesized subexpression, the entire subexpression (no matter how complex) is taken as one unit.

Character

The word “character” can be a loaded term in computing. The character that a byte represents is merely a matter of interpretation. A byte with such-and-such a value has that same value in any context in which you might wish to consider it, but which character that value represents depends on the encoding in which it’s viewed. As a concrete example, two bytes with decimal values 64 and 53 represent the characters “@” and “5” respectively, if considered in the ASCII encoding, yet on the other hand are completely different if considered in the EBCDIC encoding (they are a space and some kind of a control character).

On the third hand, if those two bytes are considered in one of the popular encodings for Japanese characters, together they represent the single character [image: Image]. Yet, to represent this same character in another of the Japanese encodings requires two completely different bytes. Those two different bytes, by the way, yield the two characters “Àμ” in the popular Latin-1 encoding, but yield the one Korean character [image: Image] in one of the Unicode encodings.† The point is this: how bytes are to be interpreted is a matter of perspective (called an encoding), and to be successful, you’ve got to make sure that your perspective agrees with the perspective taken by the tool you’re using.

Until recently, text-processing tools generally treated their data as a bunch of ASCII bytes, without regard to the encoding you might be intending. Recently, however, more and more systems are using some form of Unicode to process data internally (Chapter 3 includes an introduction to Unicode [image: Image] 105). On such systems, if the regular-expression subsystem has been implemented properly, the user doesn’t normally have to pay much attention to these issues. That’s a big “if,” which is why Chapter 3 looks at this issue in depth.

Improving on the Status Quo

When it comes down to it, regular expressions are not difficult. But, if you talk to the average user of a program or language that supports them, you will likely find someone that understands them “a bit,” but does not feel secure enough to really use them for anything complex or with any tool but those they use most often.

Traditionally, regular expression documentation tends to be limited to a short and incomplete description of one or two metacharacters, followed by a table of the rest. Examples often use meaningless regular expressions like ⌈a*((ab)*|b*)⌋, and text like ‘a•xxx•ce•xxxxxx•ci•xxx•d’. They also tend to completely ignore subtle but important points, and often claim that their flavor is the same as some other well-known tool, almost always forgetting to mention the exceptions where they inevitably differ. The state of regex documentation needs help.

Now, I don’t mean to imply that this chapter fills the gap for all regular expressions, or even for egrep regular expressions. Rather, this chapter merely provides the foundation upon which the rest of this book is built. It may be ambitious, but I hope this book does fill the gaps for you. I received many gratifying responses to the first edition, and have worked very hard to make this one even better, both in breadth and in depth.

Perhaps because regular-expression documentation has traditionally been so lacking, I feel the need to make the extra effort to make things particularly clear. Because I want to make sure you can use regular expressions to their fullest potential, I want to make sure you really, really understand them.

This is both good and bad.

It is good because you will learn how to think regular expressions. You will learn which differences and peculiarities to watch out for when faced with a new tool with a different flavor. You will know how to express yourself even with a weak, stripped-down regular expression flavor. You will understand what makes one expression more efficient than another, and will be able to balance tradeoffs among complexity, efficiency, and match results. When faced with a particularly complex task, you will know how to work through an expression the way the program would, constructing it as you go. In short, you will be comfortable using regular expressions to their fullest.

The problem is that the learning curve of this method can be rather steep, with three separate issues to tackle:

	How regular expressions are used Most programs use regular expressions in ways that are more complex than egrep. Before we can discuss in detail how to write a really useful expression, we need to look at the ways regular expressions can be used. We start in the next chapter.

	Regular expression features Selecting the proper tool to use when faced with a problem seems to be half the battle, so I don’t want to limit myself to only using one utility throughout this book. Different programs, and often even different versions of the same program, provide different features and metacharacters. We must survey the field before getting into the details of using them. This is the subject of Chapter 3.

	How regular expressions really work Before we can learn from useful (but often complex) examples, we need to “look under the hood” to understand just how a regular expression search is conducted. As we’ll see, the order in which certain metacharacters are checked can be very important. In fact, regular expression engines can be implemented in different ways, so different programs sometimes do different things with the same expression. We examine this meaty subject in Chapters 4, 5, and 6.

This last point is the most important and the most difficult to address. The discussion is unfortunately sometimes a bit dry, with the reader chomping at the bit to get to the fun part — tackling real problems. However, understanding how the regex engine really works is the key to really understanding.

You might argue that you don’t want to be taught how a car works when you simply want to know how to drive. But, learning to drive a car is a poor analogy for learning about regular expressions. My goal is to teach you how to solve problems with regular expressions, and that means constructing regular expressions. The better analogy is not how to drive a car, but how to build one. Before you can build a car, you have to know how it works.

Chapter 2 gives more experience with driving. Chapter 3 takes a short look at the history of driving, and a detailed look at the bodywork of a regex flavor. Chapter 4 looks at the all-important engine of a regex flavor. Chapter 5 shows some extended examples, Chapter 6 shows you how to tune up certain kinds of engines, and the chapters after that examine some specific makes and models. Particularly in Chapters 4, 5, and 6, we’ll spend a lot of time under the hood, so make sure to have your coveralls and shop rags handy.

Summary

Table 1-3 summarizes the egrep metacharacters we’ve looked at in this chapter.

Table 1-3: Egrep Metacharacter Summary

	Items to Match a Single Character

	Metacharacter

	Matches

	·

	dot

	Matches any one character

	[···]

	character class

	Matches any one character listed

	[^···]

	negated character class

	Matches any one character not listed

	\char

	escaped character

	When char is a metacharacter, or the escaped combination is not otherwise special, matches the literal char

	Items Appended to Provide “Counting”: The Quantifiers

	?

	question

	One allowed, but it is optional

	*

	star

	Any number allowed, but all are optional

	+

	plus

	At least one required; additional are optional

	{min, max}

	specified range†

	Min required, max allowed

	Items That Match a Position

	^

	caret

	Matches the position at the start of the line

	$

	dollar

	Matches the position at the end of the line

	\<

	word boundary†

	Matches the position at the start of a word

	\>

	word boundary†

	Matches the position at the end of a word

	Other

	|

	alternation

	Matches either expression it separates

	(···)

	parentheses

	Limits scope of alternation, provides grouping for the quantifiers, and “captures” for backreferences

	\1, \2, ...

	backreference†

	Matches text previously matched within first, second, etc., set of parentheses.

	†not supported by all versions of egrep

In addition, be sure that you understand the following points:

	Not all egrep programs are the same. The metacharacters supported, as well as their exact meanings, are often different — see your local documentation ([image: Image] 23).

	Three reasons for using parentheses are constraining alternation ([image: Image] 13), grouping ([image: Image] 14), and capturing ([image: Image] 21).

	Character classes are special, and have their own set of metacharacters totally distinct from the “main” regex language ([image: Image] 10).

	Alternation and character classes are fundamentally different, providing unrelated services that appear, in only one limited situation, to overlap ([image: Image] 13).

	A negated character class is still a “positive assertion” — even negated, a character class must match a character to be successful. Because the listing of characters to match is negated, the matched character must be one of those not listed in the class ([image: Image] 12).

	The useful -i option discounts capitalization during a match ([image: Image] 15).

	There are three types of escaped items:

	The pairing of ⌈\⌋ and a metacharacter is a metasequence to match the literal character (for example, ⌈*⌋ matches a literal asterisk).

	The pairing of ⌈\⌋ and selected non-metacharacters becomes a metasequence with an implementation-defined meaning (for example, ⌈\<⌋ often means “start of word”).

	The pairing of ⌈\⌋ and any other character defaults to simply matching the character (that is, the backslash is ignored).

Remember, though, that a backslash within a character class is not special at all with most versions of egrep, so it provides no “escape services” in such a situation.

	Items governed by a question mark or star don’t need to actually match any characters to “match successfully.” They are always successful, even if they don’t match anything ([image: Image] 17).

Personal Glimpses

The doubled-word task at the start of this chapter might seem daunting, yet regular expressions are so powerful that we could solve much of the problem with a tool as limited as egrep, right here in the first chapter. I’d like to fill this chapter with flashy examples, but because I’ve concentrated on the solid foundation for the later chapters, I fear that someone completely new to regular expressions might read this chapter, complete with all the warnings and cautions and rules and such, and feel “why bother?”

My brothers were once teaching some friends how to play schaffkopf, a card game that’s been in my family for generations. It is much more exciting than it appears at first glance, but has a rather steep learning curve. After about half an hour, my sister-in-law Liz, normally the quintessence of patience, got frustrated with the seemingly complex rules and said “Can’t we just play rummy?” Yet, as it turned out, they all ended up playing late into the night, including Liz. Once they were able to get over the initial hump of the learning curve, a first-hand taste of the excitement was all it took to hook them. My brothers knew it would, but it took some time and work to get to the point where Liz and the others new to the game could appreciate what they were getting into.

It might take some time to become acclimated to regular expressions, so until you get a real taste of the excitement by using them to solve your problems, it might all feel just a bit too academic. If so, I hope you will resist the desire to “play rummy.” Once you understand the power that regular expressions provide, the small amount of work spent learning them will feel trivial indeed.

2
Extended Introductory Examples

Remember the doubled-word problem from the first chapter? I said that a full solution could be written in just a few lines in a language like Perl. Such a solution might look like:

$/ = ".\n";
while (<>) {
 next if !s/\b([a-z]+)((?:\s|<[^>]+>)+)(\1\b)/\e[7m$1\e[m$2\e[7m$3\e[m/ig;
 s/^(?:[^\e]*\n)+//mg; # Remove any unmarked lines.
 s/^/$ARGV: /mg; # Ensure lines begin with filename.
 print;
}

Yup, that’s the whole program.

Even if you’re familiar with Perl, I don’t expect you to understand it (yet!). Rather, I wanted to show an example beyond what egrep can allow, and to whet your appetite for the real power of regular expressions.

Most of this program’s work revolves around its three regular expressions:

	⌈\b([a-z]+)((?:\s|<[^>]+>)+)(\1\b)⌋

	⌈^(?:[^\e]*\n)+⌋

	⌈^⌋

Though this is a Perl example, these three regular expressions can be used verbatim (or with only a few changes) in many other languages, including PHP, Python, Java, VB.NET, Tcl, and more.

Now, looking at these, that last ⌈^⌋ is certainly recognizable, but the other expressions have items unfamiliar to our egrep-only experience. This is because Perl’s regex flavor is not the same as egrep’s. Some of the notations are different, and Perl (as well as most modern tools) tends to provide a much richer set of metacharacters than egrep. We’ll see many examples throughout this chapter.

About the Examples

This chapter takes a few sample problems — validating user input; working with email headers; converting plain text to HTML — and wanders through the regular expression landscape with them. As I develop them, I’ll “think out loud” to offer a few insights into the thought processes that go into crafting a regex. During our journey, we’ll see some constructs and features that egrep doesn’t have, and we’ll take plenty of side trips to look at other important concepts as well.

Toward the end of this chapter, and in subsequent chapters, I’ll show examples in a variety of languages including PHP, Java, and VB.NET, but the examples throughout most of this chapter are in Perl. Any of these languages, and most others for that matter, allow you to employ regular expressions in much more complex ways than egrep, so using any of them for the examples would allow us to see interesting things. I choose to start with Perl primarily because it has the most ingrained, easily accessible regex support among the popular languages. Also, Perl provides many other concise data-handling constructs that alleviate much of the “dirty work” of our example tasks, letting us concentrate on regular expressions.

Just to quickly demonstrate some of these powers, recall the file-check example from page 2, where I needed to ensure that each file contained ‘ResetSize’ exactly as many times as ‘SetSize’. The utility I used was Perl, and the command was:

% perl -One 'print "$ARGV\n" if s/ResetSize//ig != s/SetSize//ig' *

(I don’t expect that you understand this yet — I hope merely that you’ll be impressed with the brevity of the solution.)

I like Perl, but it’s important not to get too caught up in its trappings here. Remember, this chapter concentrates on regular expressions. As an analogy, consider the words of a computer science professor in a first-year course: “You’re going to learn computer-science concepts here, but we’ll use Pascal to show you.”†

Since this chapter doesn’t assume that you know Perl, I’ll be sure to introduce enough to make the examples understandable. (Chapter 7, which looks at all the nitty-gritty details of Perl, does assume some basic knowledge.) Even if you have experience with a variety of programming languages, normal Perl may seem quite odd at first glance because its syntax is very compact and its semantics thick. In the interest of clarity, I won’t take advantage of much that Perl has to offer, instead presenting programs in a more generic, almost pseudo-code style. While not “bad,” the examples are not the best models of The Perl Way of programming. But, we will see some great uses of regular expressions.

A Short Introduction to Perl

Perl is a powerful scripting language first developed in the late 1980s, drawing ideas from many other programming languages and tools. Many of its concepts of text handling and regular expressions are derived from two specialized languages called awk and sed, both of which are quite different from a “traditional” language such as C or Pascal.

Perl is available for many platforms, including DOS/Windows, MacOS, OS/2, VMS, and Unix. It has a powerful bent toward text handling, and is a particularly common tool used for Web-related processing. See www.perl.com for information on how to get a copy of Perl for your system.

This book addresses the Perl language as of Version 5.8, but the examples in this chapter are written to work with versions as early as Version 5.005.

Let’s look at a simple example:

$celsius = 30;
$fahrenheit = ($celsius * 9 / 5) + 32; # calculate Fahrenheit
print "$celsius C is $fahrenheit F.\n"; # report both temperatures

When executed, this produces:

30 C is 86 F.

Simple variables, such as $fahrenheit and $celsius, always begin with a dollar sign, and can hold a number or any amount of text. (In this example, only numbers are used.) Comments begin with # and continue for the rest of the line.

If you’re used to languages such as C, C#, Java, or VB.NET, perhaps most surprising is that in Perl, variables can appear within a double-quoted string. With the string “$celsius C is $fahrenheit F.\n”, each variable is replaced by its value. In this case, the resulting string is then printed. (The \n represents a newline.)

Perl offers control structures similar to other popular languages:

$celsius = 20;
while ($celsius <= 45)
{
 $fahrenheit = ($celsius * 9 / 5) + 32; # calculate Fahrenheit
 print "$celsius C is $fahrenheit F.\n";
 $celsius = $celsius + 5;
}

The body of the code controlled by the while loop is executed repeatedly so long as the condition (the $celsius <= 45 in this case) is true. Putting this into a file, say temps, we can run it directly from the command line.

Here’s how a run looks:

% perl -w temps
20 C is 68 F.
25 C is 77 F.
30 C is 86 F.
35 C is 95 F.
40 C is 104 F.
45 C is 113 F.

The -w option is neither necessary nor has anything directly to do with regular expressions. It tells Perl to check your program more carefully and issue warnings about items it thinks to be dubious, (such as using uninitialized variables and the like — variables do not normally need to be predeclared in Perl). I use it here merely because it is good practice to always do so.

Well, that’s it for the general introduction to Perl. We’ll move on now to see how Perl allows us to use regular expressions.

Matching Text with Regular Expressions

Perl uses regular expressions in many ways, the simplest being to check if a regex matches text (or some part thereof) held in a variable. This snippet checks the string held in variable $reply and reports whether it contains only digits:

if ($reply =~ m/^[0-9]+$/) {
 print "only digits\n";
} else {
 print "not only digits\n";
}

The mechanics of the first line might seem a bit strange: the regular expression is ⌈^[0-9]+$⌋, while the surrounding m/···/ tells Perl what to do with it. The m means to attempt a regular expression match, while the slashes delimit the regex itself.† The preceding =~ links m/···/ with the string to be searched, in this case the contents of the variable $reply.

Don’t confuse =~ with = or ==. The operator == tests whether two numbers are the same. (The operator eq, as we will soon see, is used to test whether two strings are the same.) The = operator is used to assign a value to a variable, as with $celsius = 20. Finally, =~ links a regex search with the target string to be searched. In the example, the search is m/^[0-9]+$/ and the target is $reply. Other languages approach this differently, and we’ll see examples in the next chapter.

It might be convenient to read =~ as “matches,” such that

if ($reply =~ m/^[0-9]+$/)

becomes:

if the text contained in the variable $reply matches the regex ⌈^[0-9]+$⌋, then ...

The whole result of $reply =~ m/^[0-9]+$/ is a true value if the ⌈^[0-9]+$⌋ matches the string held in $reply, a false value otherwise. The if uses this true or false value to decide which message to print.

Note that a test such as $reply =~ m/[0-9]+/ (the same as before except the wrapping caret and dollar have been removed) would be true if $reply contained at least one digit anywhere. The surrounding ⌈^···$⌋ ensures that the entire $reply contains only digits.

Let’s combine the last two examples. We’ll prompt the user to enter a value, accept that value, and then verify it with a regular expression to make sure it’s a number. If it is, we calculate and display the Fahrenheit equivalent. Otherwise, we issue a warning message:

print "Enter a temperature in Celsius:\n";
$celsius = <STDIN>; # this reads one line from the user
chomp($celsius); # this removes the ending newline from $celsius

if ($celsius =~ m/^[0-9]+$/) {
 $fahrenheit = ($celsius * 9 / 5) + 32; # calculate Fahrenheit
 print "$celsius C is $fahrenheit F\n";
} else {
 print "Expecting a number, so I don't understand \"$celsius\".\n";
}

Notice in the last print how we escaped the quotes to be printed, to distinguish them from the quotes that delimit the string? As with literal strings in most languages, there are occasions to escape some items, and this is very similar to escaping a metacharacter in a regex. The relationship between a string and a regex isn’t quite as important with Perl, but is extremely important with languages like Java, Python, and the like. The section “A short aside — metacharacters galore” ([image: Image] 44) discusses this in a bit more detail. (One notable exception is VB.NET, which requires ‘""’ rather than ‘\"’ to get a double quote into a string literal.)

If we put this program into the file c2f, we might run it and see:

% perl -w c2f
Enter a temperature in Celsius:
22
22 C is 71.599999999999994316 F

Oops. As it turns out (at least on some systems), Perl’s simple print is not always so good when it comes to floating-point numbers.

I don’t want to get bogged down describing all the details of Perl in this chapter, so I’ll just say without further comment that you can use printf (“print formatted”) to make this look better:

printf "%.2f C is %.2f F\n", $celsius, $fahrenheit;

The printf function is similar to the C language’s printf, or the format of Pascal, Tcl, elisp, and Python. It doesn’t change the values of the variables, but merely how they are displayed. The result is now much nicer:

Enter a temperature in Celsius:
22
22.00 C is 71.60 F

Toward a More Real-World Example

Let’s extend this example to allow negative and fractional temperature values. The math part of the program is fine — Perl normally makes no distinction between integers and floating-point numbers. We do, however, need to modify the regex to let negative and floating-point values pass. We can insert a leading ⌈-?⌋ to allow a leading minus sign. In fact, we may as well make that ⌈[-+] ?⌋ to allow a leading plus sign, too.

To allow an optional decimal part, we add ⌈(\.[0-9]*)?⌋. The escaped dot matches a literal period, so ⌈\.[0-9]*⌋ is used to match a period followed by any number of optional digits. Since ⌈\.[0-9]*⌋ is enclosed by ⌈(···)?⌋, the whole subexpression becomes optional. (Realize that this is very different from [image: Image], which incorrectly allows additional digits to match even if ⌈\.⌋ does not match.)

Putting this all together, we get

[image: Image]

as our check line. It allows numbers such as 32, -3.723, and +98.6. It is actually not quite perfect: it doesn’t allow a number that begins with a decimal point (such as .357). Of course, the user can just add a leading zero to allow it to match (e.g., 0.357), so I don’t consider it a major shortcoming. This floating-point problem can have some interesting twists, and I look at it in detail in Chapter 5 ([image: Image] 194).

Side Effects of a Successful Match

Let’s extend the example further to allow someone to enter a value in either Fahrenheit or Celsius. We’ll have the user append a C or F to the temperature entered. To let this pass our regular expression, we can simply add ⌈[CF]⌋ after the expression to match a number, but we still need to change the rest of the program to recognize which kind of temperature was entered, and to compute the other.

In Chapter 1, we saw how some versions of egrep support ⌈\1⌋, ⌈\2⌋, ⌈\3⌋, etc. as metacharacters to refer to the text matched by parenthesized subexpressions earlier within the regex ([image: Image] 21). Perl and most other modern regex-endowed languages support these as well, but also provide a way to refer to the text matched by parenthesized subexpressions from code outside of the regular expression, after a match has been successfully completed.

We’ll see examples of how other languages do this in the next chapter ([image: Image] 137), but Perl provides the access via the variables $1, $2, $3, etc., which refer to the text matched by the first, second, third, etc., parenthesized subexpression. As odd as it might seem, these are variables. The variable names just happen to be numbers. Perl sets them every time the application of a regex is successful.

To summarize, use the metacharacter ⌈\1⌋ within the regular expression to refer to some text matched earlier during the same match attempt, and use the variable $1 in subsequent code to refer to that same text after the match has been successfully completed.

To keep the example uncluttered and focus on what’s new, I’ll remove the fractional-value part of the regex for now, but we’ll return to it again soon. So, to see $1 in action, compare:

[image: Image]

Do the added parentheses change the meaning of the expression? Well, to answer that, we need to know whether they provide grouping for star or other quantifiers, or provide an enclosure for ⌈|⌋. The answer is no on both counts, so what matches remains unchanged. However, they do enclose two subexpressions that match “interesting” parts of the string we are checking. As Figure 2-1 illustrates, $1 will receive the number entered, and $2 will receive the C or F entered. Referring to the flowchart in Figure 2-2 on the next page, we see that this allows us to easily decide how to proceed after the match.

[image: Image]

Figure 2-1: Capturing parentheses

[image: Image]

Figure 2-2: Temperature-conversion program’s logic flow

Temperature-conversion program

print "Enter a temperature (e.g., 32F, 100C):\n";
$input = <STDIN>; # This reads one line from the user.
chomp($input); # This removes the ending newline from $input.

if ($input =~ m/^([-+]?[0-9]+)([CF])$/)
{
 # If we get in here, we had a match. $1 is the number, $2 is "C" or "F".
 $InputNum = $1; # Save to named variables to make the ...
 $type = $2; # ... rest of the program easier to read.

 if ($type eq "C") { # 'eq' tests if two strings are equal
 # The input was Celsius, so calculate Fahrenheit
 $celsius = $InputNum;
 $fahrenheit = ($celsius * 9 / 5) + 32;
 } else {
 # If not "C", it must be an "F", so calculate Celsius
 $fahrenheit = $InputNum;
 $celsius = ($fahrenheit - 32) * 5 / 9;
 }
 # At this point we have both temperatures, so display the results:
 printf "%.2f C is %.2f F\n", $celsius, $fahrenheit;
} else {
 # The initial regex did not match, so issue a warning.
 print "Expecting a number followed by \"C\" or \"F\",\n";
 print "so I don't understand \"$input\".\n";
}

If the program shown on the facing page is named convert, we can use it like this:

% perl -w convert
Enter a temperature (e.g., 32F, 100C):
39F
3.89 C is 39.00 F
% perl -w convert
Enter a temperature (e.g., 32F, 100C):
39C
39.00 C is 102.20 F
% perl -w convert
Enter a temperature (e.g., 32F, 100C):
oops
Expecting a number followed by "C" or "F",
so I don't understand "oops".

Intertwined Regular Expressions

With advanced programming languages like Perl, regex use can become quite intertwined with the logic of the rest of the program. For example, let’s make three useful changes to our program: allow floating-point numbers as we did earlier, allow for the f or c entered to be lowercase, and allow spaces between the number and letter. Once all these changes are done, input such as ‘98.6•f’ will be allowed.

Earlier, we saw how we can allow floating-point numbers by adding ⌈(\.[0-9]*)?⌋ to the expression:

if [image: Image]

Notice that it is added inside the first set of parentheses. Since we use that first set to capture the number to compute, we want to make sure that they capture the fractional portion as well. However, the added set of parentheses, even though ostensibly used only to group for the question mark, also has the side effect of capturing into a variable. Since the opening parenthesis of the pair is the second (from the left), it captures into $2. This is illustrated in Figure 2-3.

[image: Image]

Figure 2-3: Nesting parentheses

Figure 2-3 illustrates how closing parentheses nest with opening ones. Adding a set of parentheses earlier in the expression doesn’t influence the meaning of ⌈[CF]⌋ directly, but it does so indirectly because the parentheses surrounding it have now become the third pair. Becoming the third pair means that we need to change the assignment to $type to refer to $3 instead of $2 (but see the sidebar on the facing page for an alternative approach).

Next, allowing spaces between the number and letter is easier. We know that an unadorned space in a regex requires exactly one space in the matched text, so ⌈•*⌋ can be used to allow any number of spaces (but still not require any):

if [image: Image]

This does give a limited amount of flexibility to the user of our program, but since we are trying to make something useful in the real world, let’s construct the regex to also allow for other kinds of whitespace as well. Tabs, for instance, are quite common. Writing [image: Image], of course, doesn’t allow for spaces, so we need to construct a character class to match either one: [image: Image].

Compare that with [image: Image] and see if you can recognize how they are fundamentally different? [image: Image] After considering this, turn the page to check your thoughts.

In this book, spaces and tabs are easy to notice because of the • and [image: Image] typesetting conventions I’ve used. Unfortunately, it is not so on-screen. If you see something like []*, you can guess that it is probably a space and a tab, but you can’t be sure until you check. For convenience, Perl regular expressions provide the ⌈\t⌋ metacharacter. It simply matches a tab — its only benefit over a literal tab is that it is visually apparent, so I use it in my expressions. Thus, [image: Image] becomes ⌈[•\t]*⌋.

Some other Perl convenience metacharacters are ⌈\n⌋ (newline), ⌈\f⌋ (ASCII form feed), and ⌈\b⌋ (backspace). Well, actually, ⌈\b⌋ is a backspace in some situations, but in others, it matches a word boundary. How can it be both? The next section tells us.

A short aside—metacharacters galore

We saw \n in earlier examples, but in those cases, it was in a string, not a regular expression. Like most languages, Perl strings have metacharacters of their own, and these are completely distinct from regular expression metacharacters. It is a common mistake for new programmers to get them confused. (VB.NET is a notable language that has very few string metacharacters.) Some of these string metacharacters conveniently look exactly the same as some comparable regex metacharacters. You can use the string metacharacter \t to get a tab into your string, while you can use the regex metacharacter ⌈\t⌋ to insert a tab-matching element into your regex.

Non-Capturing Parentheses: ⌈(?: ···)⌋

In Figure 2-3, we use the parentheses of the ⌈(\.[0-9]*)?⌋ part for their grouping property, so we could apply a question mark to the whole of ⌈\.[0-9]*⌋ and make it optional. Still, as a side effect, text matched within these parentheses is captured and saved to $2, which we don’t use. Wouldn’t it be better if there were a type of parentheses that we could use for grouping which didn’t involve the overhead (and possible confusion) of capturing and saving text to a variable that we never intend to use?

Perl, and recently some other regex flavors, do provide a way to do this. Rather than using ⌈(···)⌋, which group and capture, you can use the special notation ⌈(?:···)⌋, which group but do not capture. With this notation, the “opening parentheses” is the three-character sequence (?:, which certainly looks odd. This use of ‘?’ has no relation to the “optional” ⌈?⌋ metacharacter. (Peek ahead to page 90 for a note about why this odd notation was chosen.)

So, the whole expression becomes:

if ($input =~ m/^([-+]?[0-9]+(?:\.[0-9]*)?)([CF])$/)

Now, even though the parentheses surrounding ⌈[CF]⌋ are ostensibly the third set, the text they match goes to $2 since, for counting purposes, the ⌈(?:···)⌋ set doesn’t, well, count.

The benefits of this are twofold. One is that by avoiding the unnecessary capturing, the match process is more efficient (efficiency is something we’ll look at in great detail in Chapter 6). Another is that, overall, using exactly the type of parentheses needed for each situation may be less confusing later to someone reading the code who might otherwise be left wondering about the exact nature of each set of parentheses.

On the other hand, the ⌈(?:···)⌋ notation is somewhat unsightly, and perhaps makes the expression more difficult to grasp at a glance. Are the benefits worth it? Well, personally, I tend to use exactly the kind of parentheses I need, but in this particular case, it’s probably not worth the confusion. For example, efficiency isn’t really an issue since the match is done just once (as opposed to being done repeatedly in a loop).

Throughout this chapter, I’ll tend to use ⌈(···)⌋ even when I don’t need their capturing, just for their visual clarity.

The similarity is convenient, but I can’t stress enough how important it is to maintain the distinction between the different types of metacharacters. It may not seem important for such a simple example as \t, but as we’ll later see when looking at numerous different languages and tools, knowing which metacharacters are being used in each situation is extremely important.

Quiz Answer

[image: Image] Answer to the question on page 44.

How do [image: Image] and [image: Image] compare?

[image: Image] allows either ⌈•*⌋ or [image: Image] to match, which allows either some spaces (or nothing) or some tabs (or nothing). It doesn’t, however, allow a combination of spaces and tabs.

On the other hand, [image: Image] matches [image: Image] any number of times. With a string such as ‘[image: Image]••’ it matches three times, a tab the first time and spaces the rest.

[image: Image] is logically equivalent to [image: Image], although for reasons shown in Chapter 4, a character class is often much more efficient.

We have already seen multiple sets of metacharacters conflict. In Chapter 1, while working with egrep, we generally wrapped our regular expressions in single quotes. The whole egrep command line is written at the command-shell prompt, and the shell recognizes several of its own metacharacters. For example, to the shell, the space is a metacharacter that separates the command from the arguments and the arguments from each other. With many shells, single quotes are metacharacters that tell the shell to not recognize other shell metacharacters in the text between the quotes. (DOS uses double quotes.)

Using the quotes for the shell allows us to use spaces in our regular expression. Without the quotes, the shell would interpret the spaces in its own way instead of passing them through to egrep to interpret in its way. Many shells also recognize metacharacters such as $, *, ?, and so on—characters that we are likely to want to use in a regex.

Now, all this talk about other shell metacharacters and Perl’s string metacharacters has nothing to do with regular expressions themselves, but it has everything to do with using regular expressions in real situations. As we move through this book, we’ll see numerous (sometimes complex) situations where we need to take advantage of multiple levels of simultaneously interacting metacharacters.

And what about this ⌈\b⌋ business? This is a regex thing: in Perl regular expressions, ⌈\b⌋ normally matches a word boundary, but within a character class, it matches a backspace. A word boundary would make no sense as part of a class, so Perl is free to let it mean something else. The warnings in the first chapter about how a character class’s “sub language” is different from the main regex language certainly apply to Perl (and every other regex flavor as well).

Generic “whitespace” with \s

While discussing whitespace, we left off with ⌈[•\t]*⌋. This is fine, but many regex flavors provide a useful shorthand: ⌈\s⌋. While it looks similar to something like ⌈\t⌋ which simply represents a literal tab, the metacharacter ⌈\s⌋ is a shorthand for a whole character class that matches any “whitespace character” This includes (among others) space, tab, newline, and carriage return. With our example, the newline and carriage return don’t really matter one way or the other, but typing ⌈\s*⌋ is easier than ⌈[•\t]*⌋. After a while, you get used to seeing it, and ⌈\s*⌋ becomes easy to read even in complex regular expressions.

Our test now looks like:

[image: Image]

Lastly, we want to allow a lowercase letter as well as uppercase. This is as easy as adding the lowercase letters to the class: ⌈[CFcf]⌋. However, I’d like to show another way as well:

[image: Image]

The added i is called a modifier, and placing it after the m/···/ instructs Perl to do the match in a case-insensitive manner. It’s not actually part of the regex, but part of the m/···/ syntactic packaging that tells Perl what you want to do (apply a regex), and which regex to do it with (the one between the slashes). We’ve seen this type of thing before, with egrep’s -i option ([image: Image] 15).

It’s a bit too cumbersome to say “the i modifier” all the time, so normally “/i” is used even though you don’t add an extra / when actually using it. This /i notation is one way to specify modifiers in Perl — in the next chapter, we’ll see other ways to do it in Perl, and also how other languages allow for the same functionality. We’ll also see other modifiers as we move along, including /g (“global match”) and /x (“free-form expressions”) later in this chapter.

Well, we’ve made a lot of changes. Let’s try the new program:

% perl -w convert
Enter a temperature (e.g., 32F, 100C):
32 f
0.00 C is 32.00 F
% perl -w convert
Enter a temperature (e.g., 32F, 100C):
50 c
10.00 C is 50.00 F

Oops! Did you notice that in the second try we thought we were entering 50° Celsius, yet it was interpreted as 50° Fahrenheit? Looking at the program’s logic, do you see why?

Let’s look at that part of the program again:

if ($input =~ m/^([-+]?[0-9]+(\.[0-9]*)?)\s*([CF])$/i)
{
 *
 *
 *
 $type = $3; # save to a named variable to make rest of program more readable

 if ($type eq "C") { # 'eq' tests if two strings are equal
 *
 *
 *
 } else {
 *
 *
 *

Although we modified the regex to allow a lowercase f, we neglected to update the rest of the program appropriately. As it is now, if $type isn’t exactly ‘C', we assume the user entered Fahrenheit. Since we now also allow ‘c’ to mean Celsius, we need to update the $type test:

if ($type eq "C" or $type eq "c") {

Actually, since this is a book on regular expressions, perhaps I should use:

if ($type =~ m/c/i) {

In either case, it now works as we want. The final program is shown below. These examples show how the use of regular expressions can become intertwined with the rest of the program.

Temperature-conversion program – final listing

print "Enter a temperature (e.g., 32F, 100C):\n";
$input = <STDIN>; # This reads one line from the user.
chomp($input); # This removes the ending newline from $input.

if ($input =~ m/^([-+]?[0-9]+(\.[0-9]*)?)\s*([CF])$/i)
{
 # If we get in here, we had a match. $1 is the number, $3 is "C" or "F".
 $InputNum = $1; # Save to named variables to make the ...
 $type = $3; # ... rest of the program easier to read.

 if ($type =~ m/c/i) { # Is it "c" or "C"?
 # The input was Celsius, so calculate Fahrenheit
 $celsius = $InputNum;
 $fahrenheit = ($celsius * 9 / 5) + 32;
 } else {
 # If not "C", it must be an "F", so calculate Celsius
 $fahrenheit = $InputNum;
 $celsius = ($fahrenheit - 32) * 5 / 9;
 }
 # At this point we have both temperatures, so display the results:
 printf "%.2f C is %.2f F\n", $celsius, $fahrenheit;
} else {
 # The initial regex did not match, so issue a warning.
 print "Expecting a number followed by \"C\" or \"F\",\n";
 print "so I don't understand \"$input\".\n";
}

Intermission

Although we have spent much of this chapter coming up to speed with Perl, we’ve encountered a lot of new information about regexes:

	Most tools have their own particular flavor of regular expressions. Perl’s appear to be of the same general type as egrep’s, but has a richer set of metacharacters. Many other languages, such as Java, Python, the .NET languages, and Tcl, have flavors similar to Perl’s.

	Perl can check a string in a variable against a regex using the construct $variable =~ m/regex/. The m indicates that a match is requested, while the slashes delimit (and are not part of) the regular expression. The whole test, as a unit, is either true or false.

	The concept of metacharacters — characters with special interpretations — is not unique to regular expressions. As discussed earlier about shells and double-quoted strings, multiple contexts often vie for interpretation. Knowing the various contexts (shell, regex, and string, among others), their metacharacters, and how they can interact becomes more important as you learn and use Perl, PHP, Java, Tcl, GNU Emacs, awk, Python, or other advanced languages. (And of course, within regular expressions, character classes have their own mini language with a distinct set of metacharacters.)

	Among the more useful shorthands that Perl and many other flavors of regex provide (some of which we haven’t seen yet) are:

	\t

	a tab character

	\n

	a newline character

	\r

	a carriage-return character

	\s

	matches any “whitespace” character (space, tab, newline, formfeed, and such)

	\S

	anything not ⌈\s⌋

	\w

	⌈[a-zA-Z0-9_]⌋ (useful as in ⌈\w+⌋, ostensibly to match a word)

	\W

	anything not ⌈\w⌋, i.e., ⌈[^a-zA-Z0-9_]⌋

	\d

	⌈[0-9]⌋, i.e., a digit

	\D

	anything not ⌈\d⌋, i.e., ⌈[^0-9]⌋

	The /i modifier makes the test case-insensitive. Although written in prose as “/i” only “i” is actually appended after the match operator’s closing delimiter.

	The somewhat unsightly ⌈(?:···)⌋ non-capturing parentheses can be used for grouping without capturing.

	After a successful match, Perl provides the variables $1, $2, $3, etc., which hold the text matched by their respective ⌈(···)⌋ parenthesized subexpressions in the regex. In concert with these variables, you can use a regex to pluck information from a string. (Other languages provide the same type of information in other ways; we’ll see many examples in the next chapter.)
Subexpressions are numbered by counting open parentheses from the left, starting with one. Subexpressions can be nested, as in ⌈(Washington(•DC)?)⌋. Raw ⌈(···)⌋ parentheses can be intended for grouping only, but as a byproduct, they still capture into one of the special variables.

Modifying Text with Regular Expressions

So far, the examples have centered on finding, and at times, “plucking out” information from a string. Now we look at substitution (also called search and replace), a regex feature that Perl and many tools offer.

As we have seen, $var =~ m/regex/ attempts to match the given regular expression to the text in the given variable, and returns true or false appropriately. The similar construct $var =~ s/regex/replacement/ takes it a step further: if the regex is able to match somewhere in the string held by $var, the text actually matched is replaced by replacement. The regex is the same as with m/···/, but the replacement (between the middle and final slash) is treated as a double-quoted string. This means that you can include references to variables, including $1, $2, and so on to refer to parts of what was just matched.

Thus, with $var =~ s/···/···/ the value of the variable is actually changed. (If there is no match to begin with, no replacement is made and the variable is left unchanged.) For example, if $var contained Jeff•Friedl and we ran

$var =~ s/Jeff/Jeffrey/;

$var would end up with Jeffrey•Friedl. And if we did that again, it would end up with Jeffreyrey•Friedl. To avoid that, perhaps we should use a word-boundary metacharacter. As mentioned in the first chapter, some versions of egrep support ⌈\<⌋ and ⌈\>⌋ for their start-of-word and end-of-word metacharacters. Perl, however, provides the catch-all ⌈\b⌋, which matches either:

$var =~ s/\bJeff\b/Jeffrey/;

Here’s a slightly tricky quiz: like m/···/, the s/···/···/ operation can use modifiers, such as the /i from page 47. (The modifier goes after the replacement.) Practically speaking, what does

$var =~ s/\bJeff\b/Jeff/i;

accomplish? [image: Image] Flip the page to check your answer.

Example: Form Letter

Let’s look at a rather humorous example that shows the use of a variable in the replacement string. I can imagine a form-letter system that might use a letter template with markers for the parts that must be customized for each letter.

Here’s an example:

Dear =FIRST=,
You have been chosen to win a brand new =TRINKET=! Free!
Could you use another =TRINKET= in the =FAMILY= household?
Yes =SUCKER=, I bet you could! Just respond by.....

To process this for a particular recipient, you might have the program load:

$given = "Tom";
$family = "Cruise";
$wunderprize = "100% genuine faux diamond";

Once prepared, you could then “fill out the form” with:

$letter =~ s/=FIRST=/$given/g;
$letter =~ s/=FAMILY=/$family/g;
$letter =~ s/=SUCKER=/$given $family/g;
$letter =~ s/=TRINKET=/fabulous $wunderprize/g;

Each substitution’s regex looks for a simple marker, and when found, replaces it with the text wanted in the final message. The replacement part is actually a Perl string in its own right, so it can reference variables, as each of these do. For example, the marked portion of [image: Image] is interpreted just like the string "fabulous $wunderprize". If you just had the one letter to generate, you could forego using variables in the replacement string altogether, and just put the desired text directly. But, using this method makes automation possible, such as when reading names from a list.

We haven’t seen the /g “global replacement” modifier yet. It instructs the s/···/···/ to continue trying to find more matches, and make more replacements, after (and from where) the first substitution completes. This is needed if each string we check could contain multiple instances of the text to be replaced, and we want each substitution to replace them all, not just one.

The results are predictable, but rather humorous:

Dear Tom,
You have been chosen to win a brand new fabulous 100% genuine faux diamond! Free!
Could you use another fabulous 100% genuine faux diamond in the Cruise household?
Yes Tom Cruise, I bet you could! Just respond by.....

Example: Prettifying a Stock Price

As another example, consider a problem I faced while working on some stock-pricing software with Perl. I was getting prices that looked like “9.0500000037272” The price was obviously 9.05, but because of how a computer represents the number internally, Perl sometimes prints them this way unless special formatting is used. Normally, I would just use printf to display the price with exactly two decimal digits as I did in the temperature-conversion example, but that was not appropriate in this case. At the time, stock prices were still given as fractions, and a price that ended with, say, ⅛, should be shown with three decimals (“.125”), not two.

Quiz Answer

[image: Image] Answer to the question on page 50.

Just what does $var =~ s/\bJeff\b/Jeff/i do?

It might be tricky because of the way I posed it. Had I used ⌈\bJEFF\b⌋ or ⌈\bjeff\b⌋ or perhaps ⌈\bjEfF\b⌋ as the regex, the intent might have been more obvious. Because of /i, the word “Jeff” will be found without regard to capitalization. It will then be replaced by ‘Jeff’, which has exactly the capitalization you see. (/i has no effect on the replacement text, although there are other modifiers examined in Chapter 7 that do.)

The end result is that “jeff” in any capitalization, is replaced by exactly ‘Jeff’.

I boiled down my needs to “always take the first two digits after the decimal point, and take the third digit only if it is not zero. Then, remove any other digits.” The result is that [image: Image] or the already correct [image: Image] is returned as “12.375”, yet [image: Image] is reduced to “37.50”. Just what I wanted.

So, how would we implement this? The variable $price contains the string in question, so let’s use:

$price =~ s/(\.\d\d[1-9]?)d*/$1/

(Reminder: ⌈\d⌋ was introduced on page 49, and matches a digit.)

The initial ⌈\.⌋ causes the match to start at the decimal point. The subsequent ⌈\d\d⌋ then matches the first two digits that follow. The ⌈[1-9]?⌋ matches an additional non-zero digit if that’s what follows the first two. Anything matched so far is what we want to keep, so we wrap it in parentheses to capture to $1. We can then use $1 in the replacement string. If this is the only thing that matches, we replace exactly what was matched with itself — not very useful. However, we go on to match other items outside the $1 parentheses. They don’t find their way to the replacement string, so the effect is that they’re removed. In this case, the “to be removed” text is any extra digits, the ⌈\d*⌋ at the end of the regex.

Keep this example in mind, as we’ll come back to it in Chapter 4 when looking at the important mechanics of just what goes on behind the scenes during a match. Some very interesting lessons can be learned by playing with this example.

Automated Editing

I encountered another simple yet real-world example while working on this chapter. I was logged in to a machine across the Pacific, but the network was particularly slow. Just getting a response from hitting RETURN took more than a minute, but I needed to make a few small changes to a file to get an important program going. In fact, all I wanted to do was change every occurrence of sysread to read. There were only a few such changes to make, but with the slow response, the idea of starting up a full-screen editor was impractical.

Here’s all I did to make all the changes I needed:

% perl -p -i -e 's/sysread/read/g' file

This runs the Perl program s/sysread/read/g. (Yes, that’s the whole program — the -e flag indicates that the entire program follows right there on the command line.) The -p flag results in the substitution being done for every line of the named file, and the -i flag causes any changes to be written back to the file when done.

Note that there is no explicit target string for the substitute command to work on (that is, no $var =~ ···) because conveniently, the -p flag implicitly applies the program, in turn, to each line of the file. Also, because I used the /g modifier, I’m sure to replace multiple occurrences that might be in a line.

Although I applied this to only one file, I could have easily listed multiple files on the command line and Perl would have applied my substitution to each line of each file. This way, I can do mass editing across a huge set of files, all with one simple command. The particular mechanics with which this was done are unique to Perl, but the moral of the story is that regular expressions as part of a scripting language can be very powerful, even in small doses.

A Small Mail Utility

Let’s work on another example tool. Let’s say we have an email message in a file, and we want to prepare a file for a reply. During the preparation, we want to quote the original message so we can easily insert our own reply to each part. We also want to remove unwanted lines from the header of the original message, as well as prepare the header of our own reply.

The sidebar shows an example. The header has interesting fields — date, subject, and so on—but also much that we are not interested in that we’ll want to remove. If the script we’re about to write is called mkreply, and the original message is in the file king.in, we would make the reply template with:

% perl -w mkreply king.in > king.out

(In case you’ve forgotten, the -w option enables extra Perl warnings [image: Image] 38.)

A Sample Email Message

From elvis Thu Feb 29 11:15 2007
Received: from elvis@localhost by tabloid.org (8.11.3) id KA8CMY
Received: from tabloid.org by gateway.net (8.12.5/2) id N8XBK
To: jfriedl@regex.info (Jeffrey Friedl)
From: elvis@tabloid.org (The King)
Date: Thu, Feb 29 2007 11:15
Message-Id: <2007022939939.KA8CMY@tabloid.org>
Subject: Be seein' ya around
Reply-To: elvis@hh.tabloid.org
X-Mailer: Madam Zelda's Psychic Orb [version 3.7 PL92]

Sorry I haven't been around lately. A few years back I checked
into that ole heartbreak hotel in the sky, ifyaknowwhatImean.
The Duke says "hi".
 Elvis

We want the resulting file, king.out, to contain something like:

To: elvis@hh.tabloid.org (The King)
From: jfriedl@regex.info (Jeffrey Friedl)
Subject: Re: Be seein' ya around

On Thu, Feb 29 2007 11:15 The King wrote:
|> Sorry I haven't been around lately. A few years back I checked
|> into that ole heartbreak hotel in the sky, ifyaknowwhatImean.
|> The Duke says "hi".
|> Elvis

Let’s analyze this. To print out our new header, we need to know the destination address (in this case elvis@hh.tabloid.org, derived from the Reply-To field of the original), the recipient’s real name (The King), our own address and name, as well as the subject. Additionally, to print out the introductory line for the message body, we need to know the message date.

The work can be split into three phases:

	Extract information from the message header.

	Print out the reply header.

	Print out the original message, indented by ‘|>•’.

I’m getting a bit ahead of myself — we can’t worry about processing the data until we determine how to read the data into the program. Fortunately, Perl makes this a breeze with the magic “< >” operator. This funny-looking construct gives you the next line of input when you assign from it to a normal $variable, as with "$variable = <>". The input comes from files listed after the Perl script on the command line (from king.in in the previous example).

Don’t confuse the two-character operator < > with the shell’s “> filename” redirection or Perl’s greater-than/less-than operators. It is just Perl’s funny way to express a kind of a getline () function.

Once all the input has been read, < > conveniently returns an undefined value (which is interpreted as a Boolean false), so an entire file can be processed with:

while ($line = < >) {
 ... work with $line here ...
}

We’ll use something similar for our email processing, but the nature of email means we need to process the header specially. The header includes everything before the first blank line; the body of the message follows. To read only the header, we might use:

Process the header
while ($line = < >) {
 if ($line =~ m/^\s*$/) {
 last; # stop processing within this while loop, continue below
 }
 ... process header line here ...
}
... processing for the rest of the message follows ...
 *
 *
 *

We check for the header-ending blank line with the expression ⌈^\s*$⌋. It checks to see whether the target string has a beginning (as all do), followed by any number of whitespace characters (although we aren’t really expecting any except the newline character that ends each line), followed by the end of the string.† The keyword last breaks out of the enclosing while loop, stopping the header-line processing.

So, inside the loop, after the blank-line check, we can do whatever work we like with each header line. In this case, we need to extract information, such as the subject and date of the message.

To pull out the subject, we can employ a popular technique we’ll use often:

if ($line =~ m/^Subject: (.*)/i) {
 $subject = $1;
}

This attempts to match a string beginning with ‘Subject:•’, having any capitalization. Once that much of the regex matches, the subsequent ⌈.*⌋ matches whatever else is on the rest of the line. Since the ⌈.*⌋ is within parentheses, we can later use $1 to access the text of the subject. In our case, we just save it to the variable $subject. Of course, if the regex doesn’t match the string (as it won’t with most), the result for the if is false and $subject isn’t set for that line.

A Warning About ⌈.*⌋

The expression ⌈.*⌋ is often used to mean “a bunch of anything,” since dot can match anything (with some tools, anything except newlines) and star means that any amount is allowed, but none required. This can be quite useful.

However, some hidden “gotchas” can bite the user who doesn’t fully understand the implications of how it works when used as part of a larger expression. We’ve already seen one example ([image: Image] 26), and will see many more in Chapter 4 when this topic is discussed in depth ([image: Image] 164).

Similarly, we can look for the Date and Reply-To fields:

if ($line =~ m/^Date: (.*)/i) {
 $date = $1;
}
if ($line =~ m/^Reply-To: (.*)/i) {
 $reply_address = $1;
}

The From: line involves a bit more work. First, we want the one that begins with [image: Image], not the more cryptic first line that begins with [image: Image]. We want:

From: elvis@tabloid.org (The King)

It has the originating address, as well as the name of the sender in parentheses; our goal is to extract the name.

To match up through the address, we can use ⌈^From:•(\S+)⌋. As you might guess, ⌈\S⌋ matches anything that’s not whitespace ([image: Image] 49), so ⌈\S+⌋ matches up until the first whitespace (or until the end of the target text). In this case, that’s the originating address. Once that’s matched, we want to match whatever is in parentheses. Of course, we also need to match the parentheses themselves. This is done using ⌈\(⌋ and ⌈\)⌋, escaping the parentheses to remove their special metacharacter meaning. Inside the parentheses, we want to match anything — anything except another parenthesis! That’s accomplished with ⌈[^()]*⌋. Remember, the character-class metacharacters are different from the “normal” regex metacharacters; inside a character class, parentheses are not special and do not need to be escaped.

So, putting this all together we get:

⌈^From:•(\S+)•\(([^()]*)\)⌋.

At first it might be a tad confusing with all those parentheses, so Figure 2-4 on the facing page shows it more clearly.

[image: Image]

Figure 2-4: Nested parentheses; $1 and $2

When the regex from Figure 2-4 matches, we can access the sender’s name as $2, and also have $1 as a possible return address:

if ($line =~ m/^From: (\S+) \(([^()]*)\)/i) {
 $reply_address = $1;
 $from_name = $2;
}

Since not all email messages come with a Reply-To header line, we use $1 as a provisional return address. If there turns out to be a Reply-To field later in the header, we’ll overwrite $reply_address at that point. Putting this all together, we end up with:

while ($line = < >)
{
 if ($line =~ m/^\s*$/) { # If we have an empty line...
 last; # this immediately ends the 'while' loop.
 }
 if ($line =~ m/^Subject: (.*)/i) {
 $subject = $1;
 }
 if ($line =~ m/^Date: (.*)/i) {
 $date = $1;
 }
 if ($line =~ m/^Reply-To: (\S+)/i) {
 $reply_address = $1;
 }
 if ($line =~ m/^From: (\S+) \(([^()]*)\)/i) {
 $reply_address = $1;
 $from_name = $2;
 }
}

Each line of the header is checked against all the regular expressions, and if it matches one, some appropriate variable is set. Many header lines won’t be matched by any of the regular expressions, and so end up being ignored.

Once the while loop is done, we are ready to print out the reply header:†

print "To: $reply_address ($from_name)\n";
print "From: jfriedl\@regex.info (Jeffrey Friedl)\n";
print "Subject: Re: $subject\n";
print "\n" ; # blank line to separate the header from message body.

Notice how we add the Re: to the subject to informally indicate that it is a reply. Finally, after the header, we can introduce the body of the reply with:

print "On $date $from_name wrote:\n";

Now, for the rest of the input (the body of the message), we want to print each line with ‘|>•’ prepended:

while ($line = <>) {
 print "|> $line";
}

Here, we don’t need to provide a newline because we know that $line contains one from the input.

It is interesting to see that we can rewrite the code to prepend the quoting marker using a regex construct:

$line =~ s/^/|> /;
print $line;

The substitute searches for ⌈^⌋, which of course immediately matches at the beginning of the string. It doesn’t actually match any characters, though, so the substitute “replaces” the “nothingness” at the beginning of the string with ‘|>•’. In effect, it inserts ‘|>•’ at the beginning of the string. It’s a novel use of a regular expression that is gross overkill in this particular case, but we’ll see similar (but much more useful) examples later in this chapter.

Real-world problems, real-world solutions

It’s hard to present a real-world example without pointing out its real-world shortcomings. First, as I have commented, the goal of these examples is to show regular expressions in action, and the use of Perl is simply a vehicle to do so. The Perl code I’ve used here is not necessarily the most efficient or even the best approach, but, hopefully, it clearly shows the regular expressions at work.

Also, real-world email messages are far more complex than indicated by the simple problem addressed here. A From: line can appear in various different formats, only one of which our program can handle. If it doesn’t match our pattern exactly, the $from_name variable never gets set, and so remains undefined (which is a kind of “no value” value) when we attempt to use it. The ideal fix would be to update the regex to handle all the different address/name formats, but as a first step, after checking the original message (and before printing the reply template), we can put:

if (not defined($reply_address)
 or not defined($from_name)
 or not defined($subject)
 or not defined($date))
{
 die "couldn't glean the required information!";
}

Perl’s defined function indicates whether the variable has a value, while the die function issues an error message and exits the program.

Another consideration is that our program assumes that the From: line appears before any Reply-To: line. If the From: line comes later, it overwrites the $reply_address we took from the Reply-To: line.

The “real” real world

Email is produced by many different types of programs, each following their own idea of what they think the standard is, so email can be tricky to handle. As I discovered once while attempting to write some code in Pascal, it can be extremely difficult without regular expressions. So much so, in fact, that I found it easier to write a Perl-like regex package in Pascal than attempt to do everything in raw Pascal! I had taken the power and flexibility of regular expressions for granted until I entered a world without them. I certainly didn’t want to stay in that world long.

Adding Commas to a Number with Lookaround

Presenting large numbers with commas often makes reports more readable. Something like

print "The US population is $pop\n";

might print out “The US population is 298444215,” but it would look more natural to most English speakers to use “298,444,215” instead. How might we use a regular expression to help?

Well, when we insert commas mentally, we count sets of digits by threes from the right, and insert commas at each point where there are still digits to the left. It’d be nice if we could apply this natural process directly with a regular expression, but regular expressions generally work left-to-right. However, if we distill the idea of where commas should be inserted as “locations having digits on the right in exact sets of three, and at least some digits on the left,” we can solve this problem easily using a set of relatively new regex features collectively called lookaround.

Lookaround constructs are similar to word-boundary metacharacters like ⌈\b⌋ or the anchors ⌈^⌋ and ⌈$⌋ in that they don’t match text, but rather match positions within the text. But, lookaround is a much more general construct than the special-case word boundary and anchors.

One type of lookaround, called lookahead, peeks forward in the text (toward the right) to see if its subexpression can match, and is successful as a regex component if it can. Positive lookahead is specified with the special sequence ⌈(?=···)⌋, such as with ⌈(?=\d)⌋, which is successful at positions where a digit comes next. Another type of lookaround is lookbehind, which looks back (toward the left). It’s given with the special sequence ⌈(?<=···)⌋, such as ⌈(?<=\d)⌋, which is successful at positions with a digit to the left (i.e., at positions after a digit).

Lookaround doesn’t “consume” text

An important thing to understand about lookahead and other lookaround constructs is that although they go through the motions to see if their subexpression is able to match, they don’t actually “consume” any text. That may be a bit confusing, so let me give an example. The regex ⌈Jeffrey⌋ matches

[image: Image]

but the same regex within lookahead, ⌈(?=Jeffrey)⌋, matches only the marked location in:

[image: Image]

Lookahead uses its subexpression to check the text, but only to find a location in the text at which it can be matched, not the actual text it matches. But, combining it with something that does match text, such as ⌈Jeff⌋, allows us to be more specific than ⌈Jeff⌋ alone. The combined expression, ⌈(?=Jeffrey) Jeff⌋, illustrated in the figure on the facing page, effectively matches “Jeff” only if it is part of “Jeffrey.” It does match:

[image: Image]

just like ⌈Jeff⌋ alone would, but it doesn’t match on this line:

... by Thomas Jefferson

By itself, ⌈Jeff⌋ would easily match this line as well, but since there’s no position at which ⌈(?=Jeffrey)⌋ can match, they fail as a pair. Don’t worry too much if the benefit of this doesn’t seem obvious at this point. Concentrate now on the mechanics of what lookahead means — we’ll soon see realistic examples that illustrate their benefit more clearly.

It might be insightful to realize that ⌈(?=Jeffrey)Jeff⌋ is effectively the same as ⌈Jeff(?=rey)⌋. Both match “Jeff” only if it is part of “Jeffrey.”

It’s also interesting to realize that the order in which they’re combined is very important. ⌈Jeff(?=Jeffrey)⌋ doesn’t match any of these examples, but rather matches “Jeff” only if followed immediately by “Jeffrey.”

[image: Image]

Figure 2-5: How ⌈(?=Jeffrey)Jeff⌋ is applied

Another important thing to realize about lookaround constructs concerns their somewhat ungainly notation. Like the non-capturing parentheses “(?:···)” introduced on page 45, these constructs use special sequences of characters as their “open parenthesis.” There are a number of such special “open parenthesis” sequences, but they all begin with the two-character sequence “(?”. The character following the question mark tells what special function they perform. We’ve already seen the group-but-don’t-capture “(?:···)”, lookahead “(?=···)”, and lookbehind “(?<=···)” constructs, and we will see more as we go along.

A few more lookahead examples

We’ll get to adding commas to numbers soon, but first let’s see a few more examples of lookaround. We’ll start by making occurrences of “Jeffs” possessive by replacing them with “Jeff’s” This is easy to solve without any kind of lookaround, with s/Jeffs/Jeff's/g. (Remember, the /g is for “global replacement” [image: Image] 51.) Better yet, we can add word-boundary anchors: s/\bJeffs\b/Jeff's/g.

We might even use something fancy like s/\b(Jeff)(s)\b/$1'$2/g, but this seems gratuitously complex for such a simple task, so for the moment we’ll stick with s/\bJeffs\b/Jeff's/g. Now, compare this with:

s/\bJeff(?=s\b)/Jeff'/g

The only change to the regular expression is that the trailing ⌈s\b⌋ is now within lookahead. Figure 2-6 on the next page illustrates how this regex matches. Corresponding to the change in the regex, the ‘s’ has been removed from the replacement string.

After ⌈Jeff⌋ matches, the lookahead is attempted. It is successful only if ⌈s\b⌋ can match at that point (i.e., if ‘s’ and a word boundary is what follows ‘Jeff’). But, because the ⌈s\b⌋ is part of a lookahead subexpression, the ‘s’ it matches isn’t actually considered part of the final match. Remember, while ⌈Jeff⌋ selects text, the lookahead part merely “selects” a position. The only benefit, then, to having the lookahead in this situation is that it can cause the whole regex to fail in some cases where it otherwise wouldn’t. Or, another way to look at it, it allows us to check the entire ⌈Jeffs⌋ while pretending to match only ⌈Jeff⌋.

[image: Image]

Figure 2-6: How ⌈\bJeff(?=s\b)⌋ is applied

Why would we want to pretend to match less than we really did? In many cases, it’s because we want to recheck that same text by some later part of the regex, or by some later application of the regex. We see this in action in a few pages when we finally get to the number commafication example. The current example has a different reason: we want to check the whole of ⌈Jeffs⌋ because that’s the situation where we want to add an apostrophe, but if we actually match only ‘Jeff’, that allows the replacement string to be smaller. Since the ‘s’ is no longer part of the match, it no longer needs to be part of what is replaced. That’s why it’s been removed from the replacement string.

So, while both the regular expressions and the replacement string of each example are different, in the end their results are the same. So far, these regex acrobatics may seem a bit academic, but I’m working toward a goal. Let’s take the next step.

When moving from the first example to the second, the trailing ⌈s⌋ was moved from the “main” regex to lookahead. What if we did something similar with the leading ⌈Jeff⌋, putting it into lookbehind? That would be ⌈(?<=\bJeff) (?=s\b)⌋, which reads as “find a spot where we can look behind to find ‘Jeff’, and also look ahead to find ‘s’.” It exactly describes where we want to insert the apostrophe. So, using this in our substitution gives:

s/(?<=\bJeff)(?=s\b)/'/g

Well, this is getting interesting. The regex doesn’t actually match any text, but rather matches at a position where we wish to insert an apostrophe. At such locations, we then “replace” the nothingness we just matched with an apostrophe. Figure 2-7 illustrates this. We saw this exact type of thing just a few pages ago with the s/^/|>•/ used to prepend ‘|>•’to the line.

[image: Image]

Figure 2-7: How ⌈(?<=\bJeff)(?=S\b)⌋ is applied

Would the meaning of the expression change if the order of the two lookaround constructs was switched? That is, what does s/(?=s\b)(?<=\bJeff)/'/g do? [image: Image] Turn the page to check your answer.

“Jeffs” summary

Table 2-1 summarizes the various approaches we’ve seen to replacing Jeffs with Jeff's.

Table 2-1: Approaches to the “Jeffs” Problem

	Solution

	Comments

	s/\bJeffs\b/Jeff's/g

	The simplest, most straightforward, and efficient solution; the one I’d use if I weren’t trying to show other interesting ways to approach the same problem. Without lookaround, the regex “consumes” the entire ‘Jeffs’.

	s/\b(Jeff)(s)\b/$1'$2/g

	Complex without benefit. Still consumes entire ‘Jeffs’.

	s/\bJeff(?=s\b)/Jeff'/g

	Doesn’t actually consume the ‘s’, but this not of much practical value here except to illustrate lookahead.

	s/(?<=\bJeff) (?=s\b) / ' /g

	This regex doesn’t actually “consume” any text. It uses both lookahead and lookbehind to match positions of interest, at which an apostrophe is inserted. Very useful to illustrate lookaround.

	s/ (?=s\b) (?<=\bJeff) /' /g

	This is exactly the same as the one above, but the two lookaround tests are reversed. Because the tests don’t consume text, the order in which they’re applied makes no difference to whether there’s a match.

Before moving back to the adding-commas-to-numbers example, let me ask one question about these expressions. If I wanted to find “Jeffs” in a case-insensitive manner, but preserve the original case after the conversion, which of the expressions could I add /i to and have it work properly? I’ll give you a hint: it won’t work properly with two of them. [image: Image] Think about which ones would work, and why, and then turn the page to check your answer.

Quiz Answer

[image: Image] Answer to the question on page 63

What does s/(?=s\b)(?<=\bJeff)/'/g do?

In this case, it doesn’t matter which order ⌈(?=s\b)⌋ and ⌈(?<=\bJeff)⌋ are arranged. Whether “checking on the right, then the left” or the other way around, the key is that both checks must succeed at the same position for the combination of the two checks to succeed. For example, in the string [image: Image], both ⌈(?=s\b)⌋ and ⌈(?<=\bJeff)⌋ can match (at the two locations marked), but since there is no one position where both can be successful, the combination of the two cannot match.

It’s fine for now to use the somewhat vague phrase “combination of the two” to talk about this, as the meaning is fairly intuitive in this case. There are times, however, when exactly how a regex engine goes about applying a regex may not necessarily be quite so intuitive. Since how it works has immediate practical effects on what our regular expressions really mean, Chapter 4 discusses this in explicit detail.

Back to the comma example...

You’ve probably already realized that the connection between the “Jeffs” example and the comma example lies in our wanting to insert something at a location that we can describe with a regular expression.

Earlier, we realized that we wanted to insert commas at “locations having digits on the right in exact sets of three, and at least some digits on the left.” The second requirement is simple enough with lookbehind. One digit on the left is enough to fulfill the “some digits on the left” requirement, and that’s ⌈(?<=\d)⌋.

Now for “locations having digits on the right in exact sets of three.” An exact set of three digits is ⌈\d\d\d⌋, of course. We can wrap it with ⌈(···)+⌋ to allow more than one (the “sets” of our requirement), and append ⌈$⌋ to ensure that nothing follows (the “exact” of our requirement). Alone, ⌈(\d\d\d)+$⌋ matches sets of triple digits to the end of the string, but when inserted into the ⌈(?=···)⌋ lookahead construct, it matches at locations that are even sets of triple digits from the end of the string, such as at the marked locations in [image: Image] . That’s actually more than we want —we don’t want to put a comma before the first digit—so we add ⌈(?<=\d)⌋ to further limit the match locations.

This snippet:

$pop =~ s/(?<=\d)(?=(\d\d\d)+$)/,/g;
print "The US population is $pop\n";

indeed prints “The US population is 298,444,215” as we desire. It might, however, seem a bit odd that the parentheses surrounding ⌈\d\d\d⌋ are capturing parentheses. Here, we use them only for grouping, to apply the plus to the set of three digits, and so don’t need their capture-to-$1 functionality.

I could have used ⌈(?:···)⌋, the non-capturing parentheses introduced in the sidebar on page 45. This would leave the regex as ⌈(?<=\d)(?=(?:\d\d\d)+$)⌋. This is “better” in that it’s more specific — someone reading this later won’t have to wonder if or where the $1 associated with capturing parentheses might be used. It’s also just a bit more efficient, since the engine doesn’t have to bother remembering the captured text. On the other hand, even with ⌈(···)⌋ the expression can be a bit confusing to read, and with ⌈(?:···)⌋ even more so, so I chose the clearer presentation this time. These are common tradeoffs one faces when writing regular expressions. Personally, I like to use ⌈(?:···)⌋ everywhere it naturally applies (such as this example), but opt for clarity when trying to illustrate other points (as is usually the case in this book).

Word boundaries and negative lookaround

Let’s say that we wanted to extend the use of this expression to commafying numbers that might be included within a larger string. For example:

$text = "The population of 298444215 is growing";
 *
 *
 *
$text =~ s/(?<=\d)(?=(\d\d\d)+$)/,/g;
print "$text\n";

As it stands, this doesn’t work because the ⌈$⌋ requires that the sets of three digits line up with the end of the string. We can’t just remove it, since that would have it insert a comma everywhere that there was a digit on the left, and at least three digits on the right—we’d end up with “.. . of 2,9,8,4,4,4,215 is ...”!

It might seem odd at first, but we could replace ⌈$⌋ with something to match a word boundary, ⌈\b⌋. Even though we’re dealing with numbers only, Perl’s concept of “words” helps us out. As indicated by ⌈\w⌋ ([image: Image] 49), Perl and most other programs consider alphanumerics and underscore to be part of a word. Thus, any location with those on one side (such as our number) and not those on the other side (e.g., the end of the line, or the space after a number) is a word boundary.

This “such-and-such on one side, and this-and-that on the other” certainly sounds familiar, doesn’t it? It’s exactly what we did in the “Jeffs” example. One difference here is that one side must not match something. It turns out that what we’ve so far been calling lookahead and lookbehind should really be called positive lookahead and positive lookbehind, since they are successful at positions where their subexpression is able to match. As Table 2-2 shows, their converse, negative lookahead and negative lookbehind, are also available. As their name implies, they are successful as positions where their subexpression is not able to match.

Quiz Answer

[image: Image] Answer to the question on page 64.

Which “Jeffs” solutions would preserve case when applied with /i?

To preserve case, you’ve got to either replace the exact characters consumed (rather than just always inserting ‘Jeff’s’), or not consume any letters. The second solution listed in Table 2-1 takes the first approach, capturing what is consumed and using $1 and $2 to put it back. The last two solutions in the table take the “don’t consume anything” approach. Since they don’t consume text, they have nothing to preserve.

The first and third solutions hard-code the replacement string. If applied with /i, they don’t preserve case. They end up incorrectly replacing JEFFS with Jeff's and Jeff’S, respectively.

Table 2-2: Four Types of Lookaround

	Type

	Regex

	Successful if the enclosed subexpression ...

	Positive Lookbehind

	(?<=......)

	successful if can match to the left

	Negative Lookbehind

	(?<!......)

	successful if can not match to the left

	Positive Lookahead

	(?=......)

	successful if can match to the right

	Negative Lookahead

	(?!......)

	successful if can not match to the right

So, if a word boundary is a position with ⌈\w⌋ on one side and not ⌈\w⌋ on the other, we can use ⌈(?<!\w)(?=\w⌋ as a start-of-word boundary, and its complement ⌈?<=\w)(?!\w)⌋as an end-of-word boundary. Putting them together, we could use ⌈?<!\w)(?=\w)|(?<=\w)(?!\w)⌋ as a replacement for ⌈\b⌋. In practice, it would be silly to do this for languages that natively support \b (\b is much more direct and efficient), but the individual alternatives may indeed be useful ([image: Image] 134).

For our comma problem, though, we really need only ⌈(?!\d)⌋ to cap our sets of three digits. We use that instead of ⌈\b⌋ or ⌈$⌋, which leaves us with:

[image: Image]

This now works on text like “... tone of 12345Hz,” which is good, but unfortunately it also matches the year in “... the 1970s ...” Actually, any of these match “.. . in 1970 ...,” which is not good. There’s no substitute for knowing the data you intend to apply a regex to, and knowing when that application is appropriate (and if your data has year numbers, this regex is probably not appropriate).

Throughout this discussion of boundaries and what we don’t want to match, we used negative lookahead, ⌈(?!\w)⌋ or ⌈(?!\d)⌋. You might remember the “something not a digit” metacharacter ⌈\D⌋ from page 49 and think that perhaps this could be used instead of ⌈(?!\d)⌋. That would be a mistake. Remember, in ⌈\D⌋’s meaning of “something not a digit,” something is required, just something that’s not a digit. If there’s nothing in the text being searched after the digit, ⌈\D⌋ can’t match. (We saw something similar to this back in the sidebar on page 12.)

Commafication without lookbehind

Lookbehind is not as widely supported (nor as widely used) as lookahead. Lookahead support was introduced to the world of regular expressions years before lookbehind, and though Perl now has both, this is not yet true for many languages. Therefore, it might be instructive to consider how to solve the commafication problem without lookbehind. Consider:

[image: Image]

The change from the previous example is that the positive lookbehind that had been wrapped around the leading ⌈\d⌋ has been replaced by capturing parentheses, and the corresponding $1 has been inserted into the replacement string, just before the comma.

What about if we don’t have lookahead either? We can put the ⌈\b⌋ back for the ⌈(?!\d)⌋, but does the technique used to eliminate the lookbehind also work for the remaining lookahead? That is, does the following work?

$text =~ s/(\d)((\d\d\d)+\b)/$1,$2/g;

[image: Image] Turn the page to check your answer.

Text-to-HTML Conversion

Let’s write a little tool to convert plain text to HTML. It’s difficult to write a general tool that’s useful for every situation, so for this section we’ll just write a simple tool whose main goal is to be a teaching vehicle.

In all our examples to this point, we’ve applied regular expressions to variables containing exactly one line of text. For this project, it is easier (and more interesting) if we have the entire text we wish to convert available as one big string. In Perl, we can easily do this with:

undef $/; # Enter "file-slurp" mode.
$text = <>; # Slurp up the first file given on the command line.

Quiz Answer

[image: Image]Answer to the question on page 67.

Does $text =~ s/(\d)((\d\d\d)+\b)/$1,$2/g “commafy” a number?

This won’t work the way we want. It leaves results such as “281,421906.” This is because the digits matched by ⌈\d\d\d)+⌋ are now actually part of the final match, and so are not left “unmatched” and available to the next iteration of the regex via the /g.

When one iteration ends, the next picks up the inspection of the text at the point where the previous match ended. We’d like that to be the point where the comma was inserted so we can go ahead and check to see whether additional commas need to be inserted later in the same number. But, in this case, that restarting point is at the end of all the digits. The whole point of using lookahead was to get the positional check without actually having the inspected text check count toward the final “string that matched.”

Actually, this expression can still be used to solve this problem. If the expression is applied repeatedly by the host language, such as via a while loop, the newly-modified text is completely revisited each time. With each such application, one more comma is added (to each number in the target string, due to the /g modifier). Here’s an example:

while ($text =~ s/(\d)((\d\d\d)+\b)/$1,$2/g) {
 # Nothing to do inside the body of the while — we merely want to reapply the regex until it fails
}

If our sample file contains the three short lines

This is a sample file.
It has three lines.
That's all

the variable $text will then contain

This is a sample file.[image: Image]It has three lines.[image: Image]That's all[image: Image]

although depending on the system, it could instead be

This is a sample file.[image: Image][image: Image]It has three lines.[image: Image][image: Image]That's all[image: Image][image: Image]

since most systems use a newline to end lines, but some (most notably Windows) use a carriage-return/newline combination. We’ll be sure that our simple tool works with either.

Cooking special characters

Our first step is to make any ‘&’, ‘<’, and ‘>’ characters in the original text “safe” by converting them to their proper HTML encodings, ‘&’, ‘<’, and ‘>’ respectively. Those characters are special to HTML, and not encoding them properly can cause display problems. I call this simple conversion “cooking the text for HTML,” and it’s fairly simple:

$text =~s/&/&/g; # Make the basic HTML...
$text =~s/</</g; # ...characters &,<, and>...
$text =~s/>/>/g; # ...HTML safe.

Here again, we’re using /g so that all of target characters will be converted (as opposed to just the first of each in the string if we didn’t use /g). It’s important to convert & first, since all three have ‘&’ in the replacement.

Separating paragraphs

Next, we’ll mark paragraphs by separating them with the <p> paragraph-separator HTML tag. An easy way to identify paragraphs is to consider them separated by blank lines. There are a number of ways that we might try to identify a blank line. At first you might be tempted to use

$text =~s/^$/<p>/g;

to match a “start-of-line position followed immediately by an end-of-line position.” Indeed, as we saw in the answer on page 10, this would work in a tool like egrep where the text being searched is always considered in chunks containing a single logical line. It would also work in Perl in the context of the earlier email example where we knew that each string contained exactly one logical line.

But, as I mentioned in the footnote on page 55, ⌈^⌋ and ⌈$⌋ normally refer not to logical line positions, but to the absolute start- and end-of-string positions.† So, now that we have multiple logical lines embedded within our target string, we need to do something different.

Luckily, most regex-endowed languages give us an easy solution, an enhanced line anchor match mode in which the meaning of ⌈^⌋ and ⌈$⌋ to change from string related to the logical-line related meaning we need for this example. With Perl, this mode is specified with the /m modifier:

$text =~ s/^$/<p>/mg;

Notice how /m and /g have been combined. (When using multiple modifiers, you can combine them in any order.) We’ll see how other languages handle modifiers in the next chapter.

Thus, if we start with ‘···chapter.[image: Image][image: Image]Thus···’ in $text, we will end up with ‘···chapter.[image: Image]<p>[image: Image]Thus···’ as we want.

It won’t work, however, if there are spaces or other whitespace on the “blank” line. To allow for spaces, we can use [image: Image], or perhaps [image: Image] to allow for spaces, tabs, and the carriage return that some systems have before the line-ending newline. These are fundamentally different from ⌈^$⌋ alone in that these now match actual characters, while ⌈^$⌋ matches only a position. But, since we don’t need those spaces, tabs, and carriage returns in this case, it’s fine to match them (and then replace them with our paragraph tag).

If you remember ⌈\s⌋ from page 47, you might be inclined to use [image: Image], just as we did in the email example on page 55. If we use ⌈\s⌋ instead of ⌈[•\t\r]⌋, the fact that ⌈\s⌋ can match a newline means that the overall meaning changes from “find lines that are blank except for whitespace” to “find spans of lines that are blank except for whitespace.” This means that if we have several blank lines in a row, ⌈^\s*$⌋ is able to match them all in one shot. The fortunate result is that the replacement leaves just one <p> instead of the several in a row we would otherwise end up with.

Therefore, if we have the string

...with.[image: Image]Therefore ...

in the variable $text, and we use

[image: Image]

we’ll end up with:

[image: Image]

But, if we use

[image: Image]

we’ll end up instead with the more desirable:

[image: Image]

So, we’ll stick with ⌈\s*$⌋ in our final program.

“Linkizing” an email address

The next step in our text-to-HTML converter is to recognize an email address, and turn it into a “mailto” link. This would convert something like “jfriedl@oreilly.com” to <a•href = "mailto:jfriedl@oreilly.com">jfriedl@oreilly.com.

It’s a common desire to match or validate an email address with a regular expression. The official address specification is quite complex, so to do it exactly is difficult, but we can use something less complex that works for most email addresses we might run into. The basic form of an email address is “username@hostname”. Before looking at just what regular expression to use for each of those parts, let’s look at the context we’ll use them in:

[image: Image]

The first things to notice are the two marked backslash characters, one in the regex (‘\@’) and one toward the end of the replacement string. Each is there for a different reason. I’ll defer the discussion of \@ until a bit later ([image: Image] 77), for the moment merely saying that Perl requires @ symbols to be escaped when used in a regex literal.

The backslash before the ‘/’ in the replacement string is a bit more useful to talk about at the moment. We’ve seen that the basic form of a Perl search and replace is s/regex/replacement/modifiers, with the forward slashes delimiting the parts. Now, if we wish to include a forward slash within one of the parts, Perl requires us to escape it to indicate that it should not be taken as a delimiter, but rather included as part of the regex or replacement string. This means that we would need to use [image: Image] if we wish to get into the replacement string, which is just what we did here.

This works, but it’s a little ugly, so Perl allows us to pick our own delimiters. For instance, s!regex!string!modifiers or s{regex}{string}modifiers. With either, since the slash in the replacement string no longer conflicts with the delimiter, it no longer needs to be escaped. The delimiters for the regex and string parts pair up nicely in the second example, so I’ll use that form from now on.

Returning to the code snippet, notice how the entire address part is wrapped in ⌈\b···\b⌋. Adding these word boundaries help to avoid an embedded match like in [image: Image]. Although running into a nonsensical string like that is probably rare, it’s simple enough to use the word boundaries to guard against matching it when we do, so I use them. Notice also that the entire address part is wrapped in parentheses. These are to capture the matched address, making it available to the replacement string ‘<a•href="mailto:$1">$1’.

Matching the username and hostname

Now we turn our attention to actually matching an email address by building those username and hostname regular expressions. Hostnames, like regex.info and www.oreilly.com, consist of dot-separated parts ending with ‘com’, ‘edu’, ‘info’, ‘uk’, or other selected sequences. A simplistic approach to matching an email address could be ⌈\w+\@\w+(\.\w+)+⌋, which allows ⌈\w+⌋ for the username and the same for each part of the hostname. In practice, though, you’ll need something a little more specific. For usernames, you’ll run into some with periods and dashes in them (although rarely does a username start with one of these). So, rather than ⌈\w+⌋, we’ll try ⌈\w[-.\w]*⌋. This requires the name to start with a ⌈\w⌋, character, but then allows periods and dashes as well. (Notice how we are sure to put the dash first in the class, to ensure that it’s taken as a literal dash, and not the part of an a-z type of range? With many flavors, a range like .-\w is almost certainly wrong, yielding a fairly random set of letters, numbers, and punctuation that’s dependent on the program and the computer’s native character encoding. Perl handles .-\w in a class just fine, but being careful with dash in a class is a good habit to get into.)

The hostname part is a bit more complex in that the dots are strictly separators, which means that there must be something in between for them to separate. This is why even in the simplistic version earlier, the hostname part uses ⌈\w+(\.\w+)+⌋ instead of ⌈[\w.]+⌋. The latter incorrectly matches ‘..x..’. But, even the former matches in ‘Artichokes [image: Image]’, so we still need to be more specific.

One approach is to specifically list what the last component can be, along the lines of ⌈\w+(\.\w+)*\.(com|edu|info)⌋. (That list of alternatives really should be com|edu|gov|int|mil|net|org|biz|info|name|museum|coop|aero|[a-z][a-z], but I’ll use the shorter list to keep the example uncluttered.) This allows a leading ⌈\w+⌋ part, along with optional additional ⌈\.\w+⌋ parts, finally followed by one of the specific ending parts we’ve listed.

Actually, ⌈\w⌋ is not quite appropriate. It allows ASCII letters and digits, which is good, but with some systems may allow non-ASCII letters such as à, ç, Ξ, Æ, and with most flavors, an underscore as well. None of these extra characters are allowed in a hostname. So, we probably should use ⌈[a-zA-Z0-9]⌋, or perhaps ⌈[a-z0-9]⌋ with the /i modifier (for a case-insensitive match). Hostnames can also have a dash as well, so we’ll use ⌈[-a-z0-9]⌋ (again, being careful to put the dash first). This leaves us with ⌈[-a-z0-9]+(\.[-a-z0-9]+)*\.(com|edu|info)⌋ for the hostname part.

As with all regex examples, it’s important to remember the context in which they will be used. By itseff, ⌈[-a-z0-9]+(\.[-a-z0-9]+)*\.(com|edu|info)⌋ could match, say [image: Image], but once we drop it into the context of our program, we’ll be sure that it matches where we want, and not where we don’t. In fact, I’d like to drop it right into the

$text =~ s{\b(usernameregex\@hostnameregex)\b}{$1}gi;

form mentioned earlier (updated here with the s{···}{···} delimiters, and the /i modifier), but there’s no way I could get it to fit onto the page. Perl, of course, doesn’t care if it fits nicely or looks pretty, but I do. That’s why I’ll now introduce the /x modifier, which allows us to rewrite that regex as:

[image: Image]

Wow, that’s different! The /x modifier appears at the end of that snippet (along with the /g and /i modifiers), and does two simple but powerful things for the regular expression. First, it causes most whitespace to be ignored, so you can “free-format” the expression for readability. Secondly, it allows comments with a leading #.

Specifically, /x turns most whitespace into an “ignore me” metacharacter, and # into an “ignore me, and everything else up to the next newline” metacharacter ([image: Image] 111). They aren’t taken as metacharacters within a character class (which means that classes are not free-format, even with /x), and as with other metacharacters, you can escape whitespace and # that you want to be taken literally. Of course, you can always use ⌈\s⌋ to match whitespace, as in m/<a \s+ href=...>/x.

Realize that /x applies only to the regular expression, and not to the replacement string. Also, even though we’ve now switched to using the s{···}{···} form, where the modifiers come after the final ‘}’ (e.g., ‘}x’), in conversation we still refer to “the x modifier” as “/x”.

Putting it together

Well, now we can drop in our username and hostname parts, combined with what we developed earlier, to leave us with the program so far:

undef $/; # Enter "file-slurp" mode.
$text = <>; # Slurp up the first file given on the command line.

$text =~ s/&/&/g; # Make the basic HTML . . .
$text =~ s/</</g; # . . . characters &, <, and > . . .
$text =~ s/>/>/g; # . . . HTML safe.

$text =~ s/^\s*$/<p>/mg; # Separate paragraphs.

Turn email addresses into links . . .
$text =~ s{
 \b
 # Capture the address to $1 . . .
 (
 \w[-.\w]* # username
 \@
 [-a-z0-9]+(\.[-a-z0-9]+)*\.(com|edu|info) # hostname
)
 \b
}{$1}gix;

print $text; # Finally, display the HTML-ized text.

All the regular expressions work with the same multiline string, but notice that only the expression to separate paragraphs requires the /m modifier, since only that expression has ⌈^⌋ or ⌈$⌋. Using /m on the others wouldn’t hurt (well, except to make the reader wonder why it was there).

“Linkizing” an HTTP URL

Finally, let’s turn our attention to recognizing a normal HTTP URL, turning it into a link to itself. This would convert something like “http://www.yahoo.com/” to <a•href="http://www.yahoo.com/">http://www.yahoo.com/.

The basic form of an HTTP URL is “http://hostname/path”, where the /path part is optional. This gives us a form of:

$text =~ s{
 \b
 # Capture the URL to $1 . . .
 (
 http:// hostname
 (
 / path
)?
)
}{$1}gix;

For the hostname part, we can use the same subexpression we used for the email address. The path part of a URL can consist of a variety of characters, and in the previous chapter we used ⌈[-a-z0-9_:@&?=+,.!/~*'%$]*⌋ ([image: Image] 25), which is most ASCII characters except whitespace, control characters, and things like < > () { }.

There’s one other thing we must do before using it with Perl, and that’s escape the @ and $ characters. Again, I’ll defer on the explanation until a bit later ([image: Image] 77). Now, let’s plug in our hostname and path parts:

$text =~ s{
 \b
 # Capture the URL to $1 . . .
 (
 http:// [-a-z0-9]+(\.[-a-z0-9]+)*\.(com|edu|info) \b # hostname
 (
 / [-a-z0-9_:\@&?=+,.!/~*'%\$]* # optional path
)?
)
}{$1}gix;

You’ll notice that there’s no ⌈\b⌋ after the path, since it’s perfectly allowable for a URL to end with punctuation, such as the URL for O’Reilly’s page on this book:

http://www.oreilly.com/catalog/regex3/

Using ⌈\b⌋ at the end would disallow a URL ending this way.

That being said, in practice we probably want to put some artificial restrictions on what the URL can end with. Consider the following text:

[image: Image]

Our current regex matches the marked text, although it’s obvious that the trailing punctuation in each really shouldn’t be part of the URL. When trying to match URLs embedded in English text, it seems to make sense to not include an ending ⌈[.,?!]⌋ as part of the URL. (This isn’t part of any standard, but just a heuristic I’ve come up with that seems to work most of the time.) Well, that’s as easy as adding a “can’t be any of ⌈[.,?!]⌋” negative lookbehind, ⌈{?<![.,?!])⌋, to the end of the path part. The effect is that after we’ve matched what we intend to take as the URL, the lookbehind peeks back to ensure that the last character is appropriate. If not, the engine must reevaluate what’s taken as the URL so that this final condition is fulfilled. That means it’s forced to leave off the offending punctuation so the final lookbehind can match. (We’ll see a different way to solve this problem in Chapter 5 [image: Image] 206.)

Inserting this, we can now try the full program:

undef $/; # Enter "file-slurp" mode
$text = <>; # Slurp up the first file given on the command line.

$text =~ s/&/&/g; # Make the basic HTML . . .
$text =~ s/</</g; # . . . characters &, <, and > . . .
$text =~ s/>/>/g; # . . . HTML safe.

$text =~ s/^\s*$/<p>/mg; # Separate paragraphs.

Turn email addresses into links . . .
$text =~ s{
 \b
 # Capture the address to $1 . . .
 (
 \w[-.\w]* # username
 \@
 [-a-z0-9]+(\.[-a-z0-9]+)*\.(com|edu|info) # hostname
)
 \b
}{$1}gix;

Turn HTTP URLs into links . . .
$text =~ s{
 \b
 # Capture the URL to $1 . . .
 (
 http:// [-a-z0-9]+(\.[-a-z0-9]+)*\.(com|edu|info) \b # hostname
 (
 / [-a-z0-9_:\@&?=+,.!/~*'%\$]* # Optional path
 (?<![.,?!]) # Not allowed to end with [.,?!]
)?
)
}{$1}gix;

print $text; # Finally, display the HTML-ized text.

Building a regex library

Note that the same expression is used for each of the two hostnames, which means that if we ever update one, we have to be sure to update the other. Rather than keeping that potential source of confusion, consider the three instances of $HostnameRegex in this modified snippet from our program:

$HostnameRegex = qr/[-a-z0-9]+(\.[-a-z0-9]+)*\.(com|edu|info)/i;

Turn email addresses into links . . .
$text =~ s{
 \b
 # Capture the address to $1 . . .
 (
 \w[-.\w]* # username
 \@
 $HostnameRegex # hostname
)
 \b
}{$1}gix;

Turn HTTP URLs into links . . .
$text =~ s{
 \b
 # Capture the URL to $1 . . .
 (
 http:// $HostnameRegex \b # hostname
 (
 / [-a-z0-9_:\@&?=+,.!/~*'%\$]* # Optional path
 (?<![.,?!]) # not allowed to end with [.,?!]
)?
)
}{$1}gix;

The first line introduces Perl’s qr operator. It’s similar to the m and s operators in that it takes a regular expression (i.e., used as qr/···/, just like m/···/ and s/···/···/), but rather than immediately applying it to some text in search of a match, it converts the regex provided into a regex object, which you can save to a variable. Later, you can use that object in place of a regular expression, or even as a subexpression of some other regex (as we’ve done here, using the regex object assigned to $HostnameRegex as part of the regex of the two substitutions). This is very convenient because it makes things clearer. As a bonus, we then need only one “master source” to specify the regex to match a hostname, which we can then use as often as we like. There are additional examples of building this type of “regex library” in Chapter 6 ([image: Image] 277), and a detailed discussion in Chapter 7 ([image: Image] 303).

Other languages offer ways to create their own regex objects; several languages are explored briefly in the next chapter, with Java and .NET discussed in detail in Chapters 8 and 9.

Why ‘$’ and ‘&’ sometimes need to be escaped

You’ll notice that the same ‘$’ is used as both the end-of-string metacharacter, and to request interpolation (inclusion) of a variable. Normally, there’s no ambiguity to what ‘$’ means, but within a character class it gets a bit tricky. Since it can’t possibly mean end-of-string within a class, in that situation Perl considers it a request to interpolate (include from) a variable, unless it’s escaped. If escaped, the ‘$’ is just included as a member of the class. That’s what we want this time, so that’s why we have to escape the dollar sign in the path part of the URL-matching regex.

It’s somewhat similar for @. Perl uses @ at the beginning of array names, and Perl string or regex literals allow arrays to be interpolated. If we wish a literal @ to be part of a regex, we must escape it so that it’s not taken as an array interpolation.

Some languages don’t allow variable interpolation (Java, VB.NET, C, C#, Emacs, and awk, for instance). Some do allow variable interpolation (including Perl, PHP, Python, Ruby, and Tcl), but each has their own way to do it. This is discussed further in the next chapter ([image: Image] 101).

That Doubled-Word Thing

The doubled-word problem in Chapter 1 hopefully whetted your appetite for the power of regular expressions. I teased you at the start of this chapter with a cryptic bunch of symbols I called a solution:

$/ = ".\n";
while (<>) {
 next if !s/\b([a-z]+)((?:\s<<[^>]+>)+)(\1\b)/\e[7m$1\e[m$2\e[7m$3\e[m/ig;
 s/^(?:[^\e]*\n)+//mg; # Remove any unmarked lines.
 s/^/$ARGV: /mg; # Ensure lines begin with filename.
 print;
}

Now that you’ve seen a bit of Perl, you hopefully understand at least the general form — the <>, the three s/···/···/, and the print. Still, it’s rather heady stuff! If this chapter has been your only exposure to Perl (and these chapters your only exposure to regular expressions), this example is probably a bit beyond what you want to be getting into at this point.

However, when it comes down to it, I don’t think the regex is really so difficult. Before looking at the program again, it might be good to review the specification found on page 1, and to see a sample run:

% perl -w FindDbl ch01.txt
ch01.txt: check for doubled words (such as this this), a common problem with
ch01.txt: * Find doubled words despite capitalization differences, such as with 'The
ch01.txt: the...', as well as allow differing amounts of whitespace (space, tabs,
ch01.txt: /\<(1,000,000|million|thousand thousand)/. But alternation can't be
ch01.txt: of this chapter. If you knew the the specific doubled word to find (such
 *
 *
 *

Let’s look at the program now, first in Perl. We’ll then briefly look at a solution in Java to see a different approach for working with regular expressions. This time, the listing below uses the s{regex}{replacement)modifiers form of the substitution. It also uses the /x modifier to make the listing clearer (and with the extra room, now uses the more readable ‘next unless’ instead of ‘next if !’). Otherwise, it is identical to the short version at the start of this chapter.

Double-word example in Perl

[image: Image]

This short program does use a fair number of things we haven’t seen yet. Let me briefly explain it and some of the logic behind it, but I direct you to the Perl man page for details (or, if regex-related, to Chapter 7). In the description that follows, “magic” means “because of a feature of Perl that you may not be familiar with yet.”

[image: Image] Because the doubled-word problem must work even when the doubled words are split across lines, I can’t use the normal line-by-line processing I used with the mail utility example. Setting the special variable $/ (yes, that’s a variable) as shown puts the subsequent <> into a magic mode such that it returns not single lines, but more-or-less paragraph-sized chunks. The value returned is just one string, but a string that could potentially contain many of what we would consider to be logical lines.

[image: Image] Did you notice that I don’t assign the value from <> to anything? When used as the conditional of a while like this, <> magically assigns the string to a special default variable.† That same variable holds the default string that s/···/···/ works on, and that print displays. Using these defaults makes the program less cluttered, but also less understandable to someone new to the language, so I recommend using explicit operands until you’re comfortable.

[image: Image] The next unless before the substitute command has Perl abort processing on the current string (to continue with the next) if the substitution doesn’t actually do anything. There’s no need to continue working on a string in which no doubled words are found.

[image: Image] The replacement string is really just “$1 $2 $3” with intervening ANSI escape sequences that provide highlighting to the two doubled words, but not to whatever separates them. These escape sequences are \e[7m to begin highlighting, and \e[m to end it. (\e is Perl’s regex and string shorthand for the ASCII escape character, which begins these ANSI escape sequences.)

Looking at how the parentheses in the regex are laid out, you’ll realize that “$1 $2 $3” represents exactly what was matched in the first place. So, other than adding in the escape sequences, this whole substitute command is essentially a (slow) no-op.

We know that $1 and $3 represent matches of the same word (the whole point of the program!), so I could probably get by with using just one or the other in the replacement. However, since they might differ in capitalization, I use both variables explicitly.

[image: Image] The string may contain many logical lines, but once the substitution has marked all the doubled words, we want to keep only logical lines that have an escape character. Removing those that don’t leaves only the lines of interest in the string. Since we used the enhanced line anchor match mode (the /m modifier) with this substitution, the regex ⌈^([~\e]*\n)+⌋ can find logical lines of non-escapes. Use of this regex in the substitute causes those sequences to be removed. The result is that only logical lines that have an escape remain, which means that only logical lines that have doubled words in them remain.‡

[image: Image] The variable $ARGV magically provides the name of the input file. Combined with /m and /g, this substitution tacks the input filename to the beginning of each logical line remaining in the string. Cool!

Finally, the print spits out what’s left of the string, escapes and all. The while loop repeats the same processing for all the strings (paragraph-sized chunks of text) that are read from the input.

Moving bits around: operators, functions, and objects

As I emphasized earlier, I use Perl in this chapter as a tool to show the concepts. It happens to be a very useful tool, but I again want to stress that this problem can be easily solved with regular expressions in many other languages.

Still, showing the concepts is made a bit easier due to a Perl feature unique among advanced languages, which is that regular expressions are a “first class,” low-level feature of the language. This means that there are basic operators that work with regular expressions in the same way that + and - work with numbers. This reduces the amount of “syntactic baggage” needed to wield regular expressions.

Most languages do not provide this. For reasons that are discussed in Chapter 3 ([image: Image] 93), many modern languages instead provide functions or objects for manipulating and applying regular expressions. There might be a function, for example, that accepts a string to be interpreted as a regular expression, as well as text to be searched, and returns a true or false depending on whether the regular expression matches the text. More commonly, though, these two tasks (first, interpreting a string as a regular expression, and second, applying the regular expression to text) are broken up into two or more separate functions, as seen in the Java listing on the facing page. The code uses the java.util.regex package that comes standard as of Java 1.4.

You can see near the top the same three regular expressions we used in the Perl example, passed as strings to the three Pattern.compile routines. A direct comparison shows that the Java version has a few extra backslashes, but that’s just a side effect of Java’s requirement that regular expressions be provided as strings. Backslashes intended for the regular expression must be escaped to prevent Java’s string parser from interpreting the backslashes in its own way ([image: Image] 44).

You’ll also notice that the regular expressions are located not in the main text-processing part of the program, but at the start, in the initialization section. The Pattern.compile function merely analyzes the string as a regular expression, and builds an internal “compiled version” that is assigned to a Pattern variable (regexl, etc.). Then, in the main text-processing part of the program, that compiled version is applied to text with regexl.matcher (text), the result of which is used to do the replacement. Again, we’ll get into the details in the next chapter, but the point here is that when learning any regex-enabled language, there are two parts to the story: the regex flavor itself, and how the language lets you wield the regular expressions.

Double-word example in Java

import java.io.*;
import java.util.regex.Pattern;
import java.util.regex.Matcher;

public class TwoWord
{
 public static void main(String [] args)
 {
 Pattern regex1 = Pattern.compile(
 ”\\b([a-z]+)((?:\\s|\\<[^>]+\\>)+)(\\1\\b)”,
 Pattern.CASE_INSENSITIVE);
 String replacel = “\033[7m$1\033[m$2\033[7m$3\033[m”;
 Pattern regex2 = Pattern.compile(”^(?:[^\\e]*\\n)+”, Pattern.MULTILINE);
 Pattern regex3 = Pattern.compile(”^([^\\n]+)”, Pattern.MULTILINE);

 // For each command-line argument....
 for (int i = 0; i < args.length; i++)
 {
 try {
 BufferedReader in = new BufferedReader(new FileReader(args[i]));
 String text;

 // For each paragraph of each file.........
 while ((text = getPara(in)) != null)
 {
 // Apply the three substitutions
 text = regex1.matcher(text).replaceAll(replacel);
 text = regex2.matcher(text).replaceAll(””);
 text = regex3.matcher(text).replaceAll(args[i] + “: $1”);

 // Display results
 System.out.print(text);
 }
 } catch (IOException e) {
 System.err.println(”can’t read [”+args[i]+”]: “ + e.getMessage());
 }
 }
 }

 // Routine to read next “paragraph” and return as a string
 static String getPara(BufferedReader in) throws java.io.IOException
 {
 StringBuffer buf = new StringBuffer();
 String line;

 while ((line = in.readLine()) != null &&
 (buf.length() == 0 || line.length() != 0))
 {
 buf.append(line + “\n”);
 }
 return buf.length() == 0 ? null : buf.toString();
 }
}

End of sample

 To search for additional titles please go to

 http://search.overdrive.com.

OEBPS/html/graphics/280fig01.jpg
'($OTHER+ | $DOUBLE $OTHER * | $SINGLE $OTHER #) | $COMMENT | $COMMENT2,

OEBPS/html/page-template.xpgt

	

	
	

	

	
	

OEBPS/html/graphics/161fig02a.jpg
abX

OEBPS/html/graphics/302fig01.jpg

OEBPS/html/graphics/178fig01.jpg
oneselfsufficient

OEBPS/html/graphics/178fig02.jpg
Aw+=. % (\\\n.*)*

OEBPS/html/graphics/f0227-02b.jpg
(‘makudonarudo’)?

OEBPS/html/graphics/333fig01.jpg
‘oneselfsufficient’

OEBPS/html/graphics/094fig01.jpg
if ($line =" m/ Subject: (.*)/i) {
ssubject = §1;
}

OEBPS/html/graphics/263fig09.jpg
AT (L") e) x

OEBPS/html/graphics/263fig08.jpg
T+ (AN LC\\"D+) %"

OEBPS/html/graphics/263fig07.jpg
normal+ (special normal+) =

OEBPS/html/graphics/201fig01.jpg
<a hre

http://www.oreilly.com">0'Reilly Media

OEBPS/html/graphics/246fig01.jpg
1234X2345

OEBPS/html/graphics/263fig06.jpg
T\\"1+ (\

AN"1+) %

OEBPS/html/graphics/263fig04.jpg
"B \\"]+§

AN

OEBPS/html/graphics/263fig03.jpg
AR LY [ASEY [miASIEY [mSUEY (NN

OEBPS/html/graphics/263fig02.jpg
o SN R AW S N0 B S NS B

OEBPS/html/graphics/f0278-02b.jpg
FLUCHHEENT o gERAAEL S Lee s STt LIS i) B IREEE 0NN & ontent
SCOMMENT2 = Qr{//[*\n]+}; ¥ regex 10 maich a G+ // comment

SDOUBLE = @r(* (2:\\.10"\\"])+"}; ¥ regex 10 maich double-guoted siring
SSINGLE = @r(’ (2:\\.1(*"\\])+"}; & regex 1o match single-quoted sring

Stext =~ 8/ ($DOUBLE | SSINGLE) | SCOMMENT | SCOMMENT2/$1/g;

OEBPS/html/graphics/263fig01.jpg

OEBPS/html/graphics/477fig01.jpg
(2: [TOTINC(2R) \))+

OEBPS/html/graphics/193fig01.jpg
\bfoo\ ([")1%\)

OEBPS/html/graphics/193fig02.jpg

OEBPS/html/graphics/277fig01.jpg
char ~CommentStart
char *CommentEnd

/+ start of comment «/
/+ end of comment +/

OEBPS/html/graphics/123.jpg

OEBPS/html/graphics/116fig01.jpg
B _ %
§ 3 EE _ g 3
L N g 3
K 2
E § i ¢ : 3 E
b b e e w
Progrm
Python v v v v v v v v
asvy | 7 v v v 4 v v v
4 v v v v 4 v v
| G A b A
v v v v v v v
sed v 4
G tacs 72 R A A A A A
NET v v 4 v v v v v v
e (preg routines) | V| o v v v v v v
MySQL
GNU grep/egrep. v
flex: v v v v v v v
Ruby v v 4 v v v v v v
/ supported v/ supported in class only See page 91 for version information
/, supported (also supported by string literals)
 supported (but string literals have a different meaning for the same sequence)
. not supported (but string literals have a different meaning for the same sequence)
#, not supported (but supported by string lterals)
“This table assumes the most regex-fiendly type of sin per application e 101

OEBPS/html/graphics/154fig01a.jpg
[0-9]

OEBPS/html/graphics/265fig04.jpg

OEBPS/html/graphics/mre2_0604.jpg
Key

Matchor " m xwy > attempt-utal
essnenns Gacktrack-andattem,but
——— successtul matoh of egex comporent

The name "McDonald’s* is said "makudonarudo® in Japanese
n - +8

Subrattempt

Subattempt

Subatterpt

Subattempt

OEBPS/html/graphics/mre2_0605.jpg
3

> attorpt-utai
eennenns backtack-andatteng, but
———» successful match of regex component

Machor: T pamyxny

The name *McDonald’s® is said *makudonarudo® in Japane
,——s
Subvattempt €

Subattempt

Subvattempt

Subrattempt

OEBPS/html/graphics/mre2_0602.jpg
Regular Expression Literal String
Mo (SN | A=A * =y w2\"x3\#% likeness"
N XA

M (NN | LA"NNT+) *my "2\"x3\#% likeness"
f

) Y
T (JEASNNT |\ L) * 7y '-z‘\-xz\- likeness"
4 Y

Mo (EASNNTH| A\ L) * A likeness®

1~ Positions at which an alternation-backirack occurs

OEBPS/html/graphics/mre2_0603.jpg
3

Matchot: m L% oo attemptbut-fal
- backtack-and-atem,but i
——» sucoesstul match f ogex comporent

The name "McDonald’s® is said "makudonarudo® in Japan
By

"POSIX NFA only

OEBPS/html/graphics/046fig07.jpg
] *

OEBPS/html/graphics/046fig08.jpg
(o) *

OEBPS/html/graphics/mre2_0601.jpg
‘Regular Expression Literal String

Fo (NN LANNT) * {"2\®x3\" likeness"
FFf frrfisArt |
T ¢ [EESTEINONNN | VN2 * oy "2\"x3\"[likenes
! ?

- Positions at which an alternation-backtrack occurs

OEBPS/html/graphics/046fig05.jpg
[-] *

OEBPS/html/graphics/051fig01.jpg
fabulous S$wunderprize/g

OEBPS/html/graphics/131fig01.jpg
abcde

OEBPS/html/graphics/046fig06.jpg
L[]

OEBPS/html/graphics/046fig03.jpg
(x| [e*)

OEBPS/html/graphics/046fig04.jpg

OEBPS/html/graphics/f0227-01a.jpg

OEBPS/html/graphics/046fig01.jpg
L[] %

OEBPS/html/graphics/046fig02.jpg
[* | [fd*

OEBPS/html/graphics/265fig01.jpg
LAY (R "\ "])«

OEBPS/html/graphics/265fig02.jpg
normal= (special normals) ».

OEBPS/html/graphics/265fig03.jpg
NI = o+ (N7 3T *NY) %) %

OEBPS/html/graphics/150fig01.jpg
belly

OEBPS/html/graphics/159fig01.jpg
tonight!

OEBPS/html/graphics/164fig01.jpg
[0-9]*

OEBPS/html/graphics/jap.jpg

OEBPS/html/graphics/292fig01.jpg
‘this$|thats$

OEBPS/html/graphics/164fig04.jpg
at'a 1234

matching [0-9] +

OEBPS/html/graphics/263fig12.jpg
LR RSN EY L

OEBPS/html/graphics/164fig05.jpg
at‘a 1234

matching [0-9] %

OEBPS/html/graphics/263fig11.jpg
1+~

OEBPS/html/graphics/164fig02.jpg
a 1234 num

OEBPS/html/graphics/263fig10.jpg
(AN [N\) *,

OEBPS/html/graphics/164fig03.jpg
21234 -num

OEBPS/html/graphics/345fig01.jpg
href\s:

s ($HttpUrl) (?{ Surl = $°N })

OEBPS/html/graphics/f0231-01.jpg
'makudonarude

OEBPS/html/graphics/f0227-04d.jpg
(‘makudonarudo’)

OEBPS/html/graphics/152fig01.jpg
“Subject:(.*)

OEBPS/html/graphics/152fig02.jpg
“Subject::(.*).*

OEBPS/html/graphics/197fig04.jpg
att 2x*3*

matching '(\\. (**]),

OEBPS/html/graphics/436fig01.jpg
{yes (here) okay)

OEBPS/html/graphics/070fig04.jpg
stext =" 8/ " \s+*S/<p>/mg;

OEBPS/html/graphics/070fig05.jpg
with.M<p>tTherefore

OEBPS/html/graphics/070fig06.jpg
Stext

8/\b(username regex\ @hostname regex) \b/§l<\/a>/g;

OEBPS/html/graphics/193fig02a.jpg
foo(bar (somevar), -3.7)

OEBPS/html/graphics/335fig01.jpg
my $BaillfAnyMatch = gr/(?(?{ defined $longest_match})(?!))/

OEBPS/html/graphics/388fig01.jpg
by .car -or -bike

OEBPS/html/graphics/070fig04a.jpg
“\s*$§

OEBPS/html/graphics/162fig01.jpg
1234
1234
1234
1234

OEBPS/html/graphics/162fig03.jpg
[0-9]+,

OEBPS/html/graphics/168fig02.jpg

OEBPS/html/graphics/162fig02.jpg
a-1234 num

OEBPS/html/graphics/448fig01.jpg
<(\w+) ([">]*)>

OEBPS/html/graphics/096fig01.jpg
if (! Pattern.matches("\\s*", line))
«

77 e is not blank
}

OEBPS/html/graphics/162fig05.jpg
[0-9]*

OEBPS/html/graphics/mre2_0501.jpg
desired match

—L

val = foo(bar(this), 3.7) + 2 * (that - 1);
«

N
lexlz " J
I

regex #1 would match

OEBPS/html/graphics/162fig04.jpg
a 1234 num

OEBPS/html/graphics/168fig01.jpg
\d+.

OEBPS/html/graphics/096fig03.jpg
Imports System.Text.RegularExpressions ' Make regex classes easily available

New Regesx("Subject: (.+)", RegexOptions.IgnoreCase)
5.Match (1ine)

Dim & as Regex
Dim & as Match
If u.Success

subject = M.Groups (1) .Value
Bnd If

OEBPS/html/graphics/096fig02.jpg
if (! line.matches("\\s«",))
t
11 e is not blank

}

OEBPS/html/graphics/v-fig01.jpg
Ll o]

OEBPS/html/graphics/215fig01.jpg
Ten Thousand, 10000

OEBPS/html/graphics/f0227-03c.jpg
‘makudonarudo’)

OEBPS/html/graphics/020fig01.jpg
<HR(«+SIZE

*[0=9]+) 2. %>

OEBPS/html/graphics/149fig01.jpg

OEBPS/html/graphics/007fig01.jpg
vacation

OEBPS/html/graphics/067fig01.jpg
Stext =" s/(\d)(

Advdvd) +(

A\d)) /8L, /e

OEBPS/html/graphics/193fig01a.jpg
foo(somevar, 3.7)

OEBPS/html/graphics/f0278-01a.jpg
A A VLR SR OEEEALY]V TURER I TG (EROREN

e i e e
: ¥ Regex 1o match double-quoted sring

SDOUBLE = @r(* (2:\\. 1 ("\\"])+"};
Stext =~ 8/ ($DOUBLE) | SCOMMENT/$1/g;

OEBPS/html/graphics/395fig01.jpg
What's up, Doc’

OEBPS/html/graphics/188fig01a.jpg
12[0-4]\da|25[0-5],

OEBPS/html/graphics/029fig01.jpg

OEBPS/html/graphics/300fig01.jpg
12 A . e
m/\b{ (tasty| fattening) | (\d+(\.\ds)?))\b/;

R T R [L L.y e e S

OEBPS/html/graphics/program.jpg
Dim FieldRegex as CSV.GetField = New CSV.GetField ’ Ihis mares a new Kegex object

Dim FieldMatch as Match = FieldRegex.Match(Line) ' Apply the regex(oa string
While FieldMatch.Success
Dim Field as String
If FieldMatch.Groups (1) .Success
Field = FieldMatch.Groups ("QuotedField") .Value
Field = Regex.Replace(Field, "**""", """} replace two double quotes with one
Else
Field = FieldMatch.Groups ("UnquotedField") .Value
End If

Console.WriteLine("[* & Field & "]
* can now work with ‘Field’....

FieldMatch = FieldMatch.NextMatch
Fnd While

OEBPS/html/graphics/072fig02.jpg
‘run C:\\startup.command at startup’

OEBPS/html/graphics/072fig03.jpg
Stext = s{
\b
Capture the address 1o 51
«
usernane regex
\e
‘hostname regex
)
\b
}{$1}gix;

OEBPS/html/graphics/190fig01a.jpg
St

" s { . +/ M}

OEBPS/html/graphics/072fig01.jpg

OEBPS/html/graphics/139fig02.jpg
(this|that]).

OEBPS/html/graphics/186fig01.jpg
(AN *)

OEBPS/html/graphics/171fig01.jpg
at ‘subject’ | matching “\w+,

OEBPS/html/graphics/cr.jpg

OEBPS/html/graphics/499fig01.jpg

OEBPS/html/graphics/071fig02.jpg
jfriedl@oreilly.compiler’

OEBPS/html/graphics/071fig01.jpg
<\/a>

OEBPS/html/graphics/171fig02.jpg
at ‘subject’ | matching "\w+,

OEBPS/html/graphics/139fig01.jpg

OEBPS/html/graphics/069fig01.jpg

OEBPS/html/graphics/140fig01.jpg
(2 (?<=NUM:) \d+| \w+)

OEBPS/html/graphics/369fig02.jpg
\p{javaJavaldentifierStart}

OEBPS/html/graphics/069fig02.jpg
T L\E\r]*$

OEBPS/html/graphics/324fig01.jpg

OEBPS/html/graphics/369fig01.jpg
Java. lang.Character.i1sJavaldentifierStart

OEBPS/html/graphics/324fig02.jpg
gnums = split (m/

OEBPS/html/graphics/324fig03.jpg
":12:34:

OEBPS/html/graphics/123fig02.jpg

OEBPS/html/graphics/123fig01.jpg

OEBPS/html/graphics/123fig04.jpg

OEBPS/html/graphics/190fig02a.jpg
$f = preg _replace(’'{(".»/}', ", Sf);

OEBPS/html/graphics/123fig03.jpg

OEBPS/html/graphics/323fig02.jpg
split(/:/, Stext, 99)

OEBPS/html/graphics/323fig01.jpg
split(

. Stext, 99)

OEBPS/html/graphics/123fig05.jpg

OEBPS/html/graphics/211fig01.jpg
@zips = m/(?:\d\d\d\d\d) «? (44\d\d\d) /g;

OEBPS/html/graphics/211fig02.jpg
0382;

31449411615213441829503544272752010217443235

OEBPS/html/graphics/411fig02.jpg
456

OEBPS/html/graphics/274fig11.jpg

OEBPS/html/graphics/274fig10.jpg
xxx/

OEBPS/html/graphics/f0230-01a.jpg

OEBPS/html/graphics/005fig01.jpg
" (From| Subject)

OEBPS/html/graphics/005fig03.jpg

OEBPS/html/graphics/044fig02.jpg

OEBPS/html/graphics/005fig02.jpg

OEBPS/html/graphics/044fig01.jpg
(Sinput =" m/"([-+]2[0-9]+(\.[0-9]=%)?) =([CF])$/)

OEBPS/html/graphics/multi.jpg

OEBPS/html/graphics/097fig01.jpg
if (preg_match(’/”Subject: (.*)/1’, $line, $matches))
$Subject = Smatches(1);

OEBPS/html/graphics/f-002fig02.jpg
LSRN D-336-32812-4 1NN CEI9NN

T T
9 1780596"52812¢6' 6 "36920"52812'"'" g

OEBPS/html/graphics/097fig02.jpg
import re;

Subject: (.+)*, re.IGNORECASE);
arch(line)

R = re.compile(

¥ = R

if
subject

group(1)

OEBPS/html/graphics/289fig01.jpg
m{ </\UStag\E>}

OEBPS/html/graphics/f-002fig03.jpg
sa'ari Includes

sooxs oncme PREE 45-Day
mrrortm Online Edition

OEBPS/html/graphics/044fig04.jpg
(x| g%)

OEBPS/html/graphics/289fig02.jpg
'</TITLE>

OEBPS/html/graphics/044fig03.jpg
[[e] %

OEBPS/html/graphics/f-002fig01.jpg

OEBPS/html/graphics/044fig05.jpg
[ofe] *

OEBPS/html/graphics/160fig05.jpg
at ‘abX’

matching abze

OEBPS/html/graphics/274fig04.jpg

OEBPS/html/graphics/160fig04.jpg
at‘ac’

matching abzc

OEBPS/html/graphics/274fig05.jpg

OEBPS/html/graphics/160fig03.jpg
at ‘ab,

hing 'abzc

OEBPS/html/graphics/274fig02.jpg

OEBPS/html/graphics/160fig02.jpg
at ‘abe’

matching ‘abzc,

OEBPS/html/graphics/274fig03.jpg
xx/

OEBPS/html/graphics/160fig01.jpg
at ‘abe’

matching ‘ap?c

OEBPS/html/graphics/274fig08.jpg
x+["/x]

OEBPS/html/graphics/274fig09.jpg
xXxx/

OEBPS/html/graphics/274fig06.jpg
I/x(["x] Ix+["/])*x/

OEBPS/html/graphics/043fig01.jpg
($input =" m/"([-+]2[0-9]+ (\.[0-9]#)?2)([CF])$/)

OEBPS/html/graphics/274fig07.jpg
/xx A xx/ foo() /xx B xx/

OEBPS/html/graphics/179fig01a.jpg
ongselfsufficient

OEBPS/html/graphics/white-circle-06.jpg

OEBPS/html/graphics/166fig01.jpg
at*

pillions '

matching '.+22/B>

OEBPS/html/graphics/white-circle-07.jpg

OEBPS/html/graphics/166fig02.jpg
Billions and Zillions of suns

OEBPS/html/graphics/white-circle-04.jpg

OEBPS/html/graphics/166fig03.jpg
Billions and Zillions

OEBPS/html/graphics/white-circle-05.jpg

OEBPS/html/graphics/white-circle-02.jpg

OEBPS/html/graphics/274fig01.jpg
e["/].

OEBPS/html/graphics/white-circle-03.jpg

OEBPS/html/graphics/white-circle-01.jpg

OEBPS/html/graphics/mre2_0701.jpg
Level3

Level2

Level 1

Level 0

NCCrro) M)\) |

i'(([A()],_,)*\)'l

OEBPS/html/graphics/161fig01a.jpg
abX

OEBPS/html/graphics/176fig01.jpg
‘a*((ab) % |bx|.*|partridge -in-a pear tree| [a-z])

OEBPS/html/graphics/387fig01.jpg
Madagasgcar

OEBPS/html/graphics/f0425-01.jpg
Target = R.Replace(Target, "<<3&>>"))

Function MatchFunc(Byval M as Match) as String
return M.Result ("<<§&>>")
End Function
Din Evaluator as MatchBvaluator = New MatchEvaluator (AddressOf MatchFunc)

Tiroel = T ielbra ek, etk

OEBPS/html/graphics/387fig02.jpg
Madagascar

OEBPS/html/graphics/151fig01.jpg
regexes

OEBPS/html/graphics/381fig02.jpg
-->one+test<--

OEBPS/html/graphics/170fig01.jpg
.625000

OEBPS/html/graphics/381fig01.jpg
-->one+test<--

OEBPS/html/graphics/381fig00.jpg
>one+test<--

OEBPS/html/graphics/195fig02.jpg

OEBPS/html/graphics/195fig01.jpg
=?2[0-9]+(\.[0-9]%)?|

OEBPS/html/graphics/tick.jpg

OEBPS/html/graphics/264fig02.jpg
NN (AN [P\ >)2 "

OEBPS/html/graphics/264fig01.jpg
CEONNTT e (AN L\ T#) "

OEBPS/html/graphics/475fig01.jpg
TO1++ 1N (?R) \)) *,

OEBPS/html/graphics/264fig05.jpg
makudonarudo

OEBPS/html/graphics/264fig04.jpg

OEBPS/html/graphics/264fig03.jpg
LR RNy [N YRESES

OEBPS/html/graphics/437fig01.jpg

OEBPS/html/graphics/047fig01.jpg
$input =" m/" ([-+]?[0-9]+(\.[0-9]#)?)\s+([CF])$/

OEBPS/html/graphics/197fig01a.jpg
Darth Symbol

OEBPS/html/graphics/047fig02.jpg
$input =" m/" ([-+]?2[0-9]+(\.[0-9]«)?)\s«([CF])$/4

OEBPS/html/graphics/078fig01.jpg
§/ = ".\n"; @ # Setsaspecial “chunk-mode”; chunks end with a period-newline combination

while (<>) @
«
next unless s{@4# (regex starts bere)
48 Newd to match one word:
\b ¥ Start of word
(la-z)+) K Grabuord filling 1 (and \1).

4 Now need 1o allow any number of spaces andlor <TAGS>

« ¥ Save what intervenes 1o 2.
(2: W (Non-capturing parens for grouping the alternation)
\s # Whitespuace (includes newline, which is good).
| # o0
<5145 b dom like <TAG>.
)+ W Necd a least one of tbe above, but allow wiore,
)
#8 Now match the first word again:
(\1\b) N ensures not embedded. This copy sared 1o 53,
Werege ends bere)

)
& Abore s the regex. The replacoment string s below, folowed by the modifies, /4, /g, and /x
Qelns1ie(ns2\e (183 \e [n}ige: @

8/°(2:("\els\n)+//mg; @ # Kemoveany unmarked lines
8/°/$ARGV: /ng; © ¢ Enure lines bogin with filenane.
print;

OEBPS/html/graphics/278fig01.jpg
Stext =" 8/ ($DOUBLE) | $COMMENT/defined($1) ? $1 : ""/ge;

OEBPS/html/graphics/177fig01.jpg
oneselfsufficient

OEBPS/html/graphics/f0229-02b.jpg
The name "McDonald’s" 1s saild "makudonarudo" in Japanese

OEBPS/html/graphics/163fig02.jpg
CA.95472, -USA

OEBPS/html/graphics/163fig01.jpg
~.x([0-9][0-9])

OEBPS/html/graphics/163fig04.jpg
" .x[0-9][0-9]

OEBPS/html/graphics/163fig03.jpg
“Lx ([0-9]1[0-9]),

OEBPS/html/graphics/190fig06a.jpg
Sf = preg _replace(’'/".*\\\/', ', Sf);

OEBPS/html/graphics/120fig00.jpg

OEBPS/html/graphics/262fig03.jpg
[N\]+ (!

OEBPS/html/graphics/262fig01.jpg
LR NS B 5 T s NS 55 T SN B

OEBPS/html/graphics/mre2_0206.jpg
Actualmatch
"see Jeffs book"

ek e Mathed e kg oatead
Result of cokahea

OEBPS/html/graphics/262fig02.jpg
NN [N\ 4

OEBPS/html/graphics/mre2_0207.jpg
Actual match point
"see Jeffs book"

o Mt i et ottt
Result o ookbehing Resultoflookahead

(2<=\b Jeff)|(2=s\b)|
e

OEBPS/html/graphics/276fig03.jpg
const char *cstart = "/+*", +cend =

OEBPS/html/graphics/mre2_0204.jpg
“non-parentheses”charactr lass

iteral parentheses |

—
(\S+) \(([*OT%)\)

cptrelos captreosa

OEBPS/html/graphics/197fig02a.jpg
Darth Symbo:

OEBPS/html/graphics/276fig02.jpg
Ix["x]*x+ ([T /%] ["X] *x+) %/,

OEBPS/html/graphics/476fig01.jpg
P2 [0+ 1IN ((RPAIN))+ 8

OEBPS/html/graphics/mre2_0205.jpg
Actual match
"by Jeffrey Friedl"

Result of lookahead
Matched whi checking __—-
Jookatead TLLT
(2=Jeffrey)|Je:

Regex

OEBPS/html/graphics/276fig01.jpg
'opening normal« (special normal +) + closing,

OEBPS/html/graphics/mre2_0202.jpg
oot
aser

vaidate
nput
(v rager)

)
e

e oy

o temperature
Dy andtype from
valdaton match

tpeis
Gelsus?

calcuate
Celsus

s

calcuate
Falvenheit

display
rmmxl

OEBPS/html/graphics/196fig01.jpg

OEBPS/html/graphics/mre2_0203.jpg
matches into $1
into$2 o3

— L

$input =~ m/A([-+]12[0-9]+(\.[0-91*)?) ([CF])$/

1 open parenthesis 2% apen parenthesis 3 apen parenthesis

OEBPS/html/graphics/101fig01.jpg
(defun FindNextDbl ()
'move to mext doubled word, ignoring < > tags® (interactive)
(re-search-forward *\\<\\ ([a-z]+\\)\\ ([\n \E]\\1<[">]+>\1) +1\1\\>")

OEBPS/html/graphics/276fig04.jpg

OEBPS/html/graphics/481fig01.jpg
TR (\wa4) [C>] 24 (2<1/)>(21)</\2> | ["<>] 4+ 1 <\W[>]=+/>)ws) §

OEBPS/html/graphics/9780596528126.jpg
Understand Your Data and
Be More Productive

Mastering

O'REILLY* Jeffrey EF. Friedi

OEBPS/html/graphics/095fig01.jpg
cooe

import java.util.zregex.e;

1

Mabke regex classes easily available

Pattern r = Pattern.compile(*’Subject: (.+)", Pattern.CASE_INSENSITIVE);
Matcher n = r.matcher (linc);

if (n.£ind() (
subject = m.growp(1) ;
N

OEBPS/html/graphics/148fig01.jpg
indicates

OEBPS/html/graphics/161fig03.jpg
at‘ape’

matching abc,

OEBPS/html/graphics/161fig04.jpg
at ‘abe’

matching ‘ab??,c.

OEBPS/html/graphics/mre2_0201.jpg
second parenthesis

entireregular expression s i

$celsius =~ m/A([-+12[0-9]+) ([CF1)$/

wilfl $1 wil il 52

st parenthesis
pairs with

OEBPS/html/graphics/161fig05.jpg
at‘ape’

matching labc,

OEBPS/html/graphics/129fig01.jpg
s/’

OEBPS/html/graphics/190fig07a.jpg
£

f.replaceFirst(

OEBPS/html/graphics/161fig01.jpg
at ‘abx’

matching ab?c

OEBPS/html/graphics/161fig02.jpg
at‘apc

matching ab??c,

OEBPS/html/graphics/400fig01.jpg
m.usePattern (piWord) .region(start, end) . find (currentlLoc)

OEBPS/html/graphics/190fig03a.jpg
£

f.replaceFirst(

OEBPS/html/graphics/197fig03a.jpg
'You need a 2\ photo.

OEBPS/html/graphics/052fig01.jpg
3750000000392

OEBPS/html/graphics/052fig03.jpg
37.500

OEBPS/html/graphics/175fig01.jpg
three tournaments won

OEBPS/html/graphics/052fig02.jpg

OEBPS/html/graphics/228fig03.jpg
Japanese

OEBPS/html/graphics/228fig01.jpg

OEBPS/html/graphics/228fig02.jpg

OEBPS/html/graphics/207fig01a.jpg
http://www.oreilly.com/catalog/regex/)

OEBPS/html/graphics/127fig01.jpg
(2!\p{Cn})\p{InThai}

OEBPS/html/graphics/266fig01.jpg
(N{L["}1\} %)%

OEBPS/html/graphics/158fig03.jpg
Jtonic

OEBPS/html/graphics/158fig02.jpg
tonic

OEBPS/html/graphics/158fig01.jpg
Jonic

OEBPS/html/graphics/074fig01.jpg
Read "odd" news at http://dailynews.yahoo.com/h/od, and
maybe some tech stuff at http://www.slashdot.com!

OEBPS/html/graphics/f0226-01.jpg
o SR S S E A RRERE &)

OEBPS/html/graphics/026fig01.jpg
<I>short</I>

OEBPS/html/graphics/165fig02.jpg
in Japanese

OEBPS/html/graphics/190fig04a.jpg
Regex.Replace (f,

x,

")

OEBPS/html/graphics/mre2_0901.jpg
"\s+(\d+)"
Constructor

o

Match (*May +16,+1998")

Hothatch)_,

Groupg Court

Suess
Grous (1) I
> s

Group | 6o Group.
Object Object Object
o | | | oo
lmm Lw.m Leng
Vise vaue Ve
Tl Vi e
) sl
e .un RO

OEBPS/html/graphics/165fig01.jpg
The name "McDonald’s" is said "makudonarudo" in Japanese

OEBPS/html/graphics/212fig01.jpg
@zips = m/\G(?:(?!44)\d\d\d\d\d) ~(44\d\d\qd) /¢

OEBPS/html/graphics/165fig03.jpg
Billions and Zillions of suns

OEBPS/html/graphics/325fig01.jpg

OEBPS/html/graphics/f0229-01a.jpg
arudo" in Japa

OEBPS/html/graphics/218fig01.jpg
"10,000"

OEBPS/html/graphics/064fig02.jpg
123456789’

OEBPS/html/graphics/511fig01.jpg

OEBPS/html/graphics/mre2_0101.jpg
command

- Quotes for the shel
shells
prompt regular expresion passed 10 egrep

L — |
% egrep (From|subject): * mailbox-file

—

fst command-fn argument

OEBPS/html/graphics/064fig01.jpg
Thomas -Jefferson

OEBPS/html/graphics/mre2_0102.jpg
— g '

et gand- gootial peine yarmind’d cost me' 519595

! - postions were\< s e | -postons where v s e - words+

OEBPS/html/graphics/187fig02.jpg
and then

OEBPS/html/graphics/187fig01.jpg
Aw+=["AnAN] * (\\VAR[TAn AN] %) *,

OEBPS/html/graphics/190fig05a.jpg
" 8/ x\\//;

OEBPS/html/graphics/155fig01.jpg
after - tonight.

OEBPS/html/graphics/155fig03.jpg
after - tonight.

OEBPS/html/graphics/155fig02.jpg
possible matches: 'to (nite|knight |night),

OEBPS/html/graphics/155fig04.jpg
possible matches: 'to(nite|knight |night),

OEBPS/html/graphics/041fig01.jpg
Scelsius
Scelsius

1+[CF1S/
1+) ([CF1)§/

OEBPS/html/graphics/120fig00a.jpg

OEBPS/html/graphics/120fig00b.jpg

OEBPS/html/graphics/jcaron.jpg

OEBPS/html/graphics/169fig02.jpg
(\.Ad\d[1-9]2)\d+

OEBPS/html/graphics/169fig01.jpg
The name "McDonald’s® is said "makudonarudo" in Japanese

OEBPS/html/graphics/224fig01.jpg
photo.

OEBPS/html/graphics/040fig02.jpg
[0=-9] =

OEBPS/html/graphics/040fig01.jpg
if ($celsius =" m/ [0-9]+(\.[0-9]%)28/) (

OEBPS/html/graphics/085fig01.jpg
“Global Regular Expr

OEBPS/html/graphics/126fig03.jpg
\p{InThai}

OEBPS/html/graphics/126fig02.jpg
[\p{InThai}&&["\p{Cn}]]

OEBPS/html/graphics/28126.jpg

OEBPS/html/graphics/126fig01.jpg
J&&[”

OEBPS/html/graphics/268fig02.jpg
At LA

A"]x)x"

OEBPS/html/graphics/268fig01.jpg
["\\"]+ to [["\\"]%

OEBPS/html/graphics/126fig04.jpg
\p{Cn}

OEBPS/html/graphics/070fig01.jpg

OEBPS/html/graphics/070fig02.jpg
Stext =" s/7[\t\r]+$/<p>/mg;

OEBPS/html/graphics/070fig03.jpg
with. M <p>i<p> N <p>t|Therefore

OEBPS/html/graphics/166fig01a.jpg
Billions

OEBPS/html/graphics/153fig01.jpg
‘about -24 -char-

OEBPS/html/graphics/xxii-fig02.jpg
‘(Subject|Date) :

OEBPS/html/graphics/xxii-fig01.jpg
‘Tt -indicates your.cat-is

OEBPS/html/graphics/tab.jpg

OEBPS/html/graphics/f0263-01.jpg
BN\)= (" \\"]x)*"

OEBPS/html/graphics/258fig01.jpg
"\ (0x (?<=(?:SCALAR| - |HASH)\ (0x) [0-9a-fA-F]+\),

OEBPS/html/graphics/189fig03.jpg
1.2.3.4.5.6

OEBPS/html/graphics/189fig02.jpg
23.3.21.223

OEBPS/html/graphics/189fig01.jpg
2123.3.21.993

OEBPS/html/graphics/327fig01.jpg
“(\a+) (22("X{$1}" })$

OEBPS/html/graphics/327fig02.jpg

OEBPS/html/graphics/floral.jpg
FLORAL

OEBPS/html/graphics/iv-fig01.jpg

OEBPS/html/graphics/022fig01.jpg
megawatt computing

OEBPS/html/graphics/336fig01.jpg
(?{ $Count++ })

OEBPS/html/graphics/060fig03.jpg
by Jeffrey Friedl

OEBPS/html/graphics/482fig01.jpg
< (\w++) [">]*+ (2<1/)> (?1) </\2>

OEBPS/html/graphics/060fig01.jpg
by Jeffrey Friedl.

OEBPS/html/graphics/icon.jpg

OEBPS/html/graphics/060fig02.jpg
by Jgeffrey Friedl.

OEBPS/html/graphics/hand.jpg
=

OEBPS/html/graphics/circle-08.jpg

OEBPS/html/graphics/327fig03.jpg

OEBPS/html/graphics/327fig04.jpg
S & Hion dey" w7 mf
(?{ print *Starting natch.\n* })
the | an | a 1\b

OEBPS/html/graphics/190fig08a.jpg
£

Regex.Replace(f,

OEBPS/html/graphics/circle-04.jpg

OEBPS/html/graphics/021fig01.jpg
the theory

OEBPS/html/graphics/066fig01.jpg
Stext =" s/(?<-

d) (?=(\d\d\d)+(?!\d))/, /g,

OEBPS/html/graphics/circle-05.jpg

OEBPS/html/graphics/circle-06.jpg

OEBPS/html/graphics/nl.jpg

OEBPS/html/graphics/circle-07.jpg

OEBPS/html/graphics/168fig01a.jpg
S$price =" s/(\.\d\d[1-9]1?)\d+/$1/

OEBPS/html/graphics/circle-01.jpg

OEBPS/html/graphics/179fig01.jpg
oneselfsufficient

OEBPS/html/graphics/circle-02.jpg

OEBPS/html/graphics/circle-03.jpg

OEBPS/html/graphics/179fig03.jpg
oneselfsufficient

OEBPS/html/graphics/179fig02.jpg
one(self)? (selfsufficient)?

OEBPS/html/graphics/179fig04.jpg
oneselfsufficient

OEBPS/html/graphics/f0279-01a.jpg
»OTHER

Q""" /1}; & Swyfthat couldn possibly begin one of the otber allernatives

Stext =~ s/ (S$DOUBLE | $SINGLE | SOTHER+) | SCOMMENT | SCOMMENT2/$1/g;

OEBPS/html/graphics/154fig01.jpg
Lx (k)

OEBPS/html/graphics/154fig02.jpg

OEBPS/html/graphics/t0367-01.jpg
Character Shorthands ©
w115 @ | \a (V1 \e \E \m \r \e \Owil \xee \weses \echar
Character Classes and Class Like Constructs

s © | Classe
119 Al
w0 ©

L1171 (may contin cass set operators #129)
ost any character: dot (various meanings, changes with modes)
ass shorthands® \w \d \s W \D \8

@121 @ | Unicode properties and blocks:® \ptrmp) \B(Prop)
Anchors and Other ZeroWidth Tests.

Start of line; S

End of I
Start of

U match: \6
@ b B

Lookaround:® (7=) (21 (2<s) (2<1)
‘Comments and Mode Modificrs
s Mode modifiers:
s Mode-modified spans: (2 modsmodss)
s @ | Comments: From #

(2modsmods) Modifiers allowed: x d s m 4w

il newline (only when cnabled)®

w3 @ | Lierales mode? 1@ \E
Grouping and Capturing

137 wring parentheses: () \1 \2
57 Grouping-only parentheses: (23

i Atomic grouping: (2>-)

w3 Alternation: 1

it Greedy quantifiers: + + 2 (a) (a,) (x¥)

o1 Lazy quantifiers: +2 +2 27 (@) (a7 (xy)?

w12 Possessive quantificrs: ++ ++ 2+ (a)e (m)+ (xyhe

(¢) ~ may also be used within a character class ® @ seetext

OEBPS/html/graphics/012fig01.jpg
‘lottery numbers: 19 203319 7639’

OEBPS/html/graphics/056fig01.jpg
‘From:

OEBPS/html/graphics/267fig01.jpg
o2 e L DR

LA\ +) =

OEBPS/html/graphics/056fig02.jpg
‘From:’

OEBPS/html/graphics/192fig03.jpg
logcal/

OEBPS/html/graphics/192fig02.jpg
Jocal/

OEBPS/html/graphics/267fig02.jpg
[a-z]+ (\.[a-z]+) %

OEBPS/html/graphics/192fig01.jpg
local/

OEBPS/html/graphics/267fig03.jpg
"[*\\"1+ (B

RETay e

OEBPS/html/graphics/cat.jpg

OEBPS/html/graphics/mre2_side-01.jpg
10112[0-9] |2[0-3]
[2[3[<[s e[7] e[3]
o0[o1[0z[03[04]0[06[07]08[08

10[11[1213[14[1516[17[18]19)
20[21[22]23]

! 1011714-911012]12[0-3] |
DEEENECKDE
‘o0[o1]02[03[04[05[0s[07]0a[03]

10[11[12[1314[15[16[17[18[19)
20[2122)23

OEBPS/html/graphics/100fig02.jpg
regsub -all mizpel $Svar misspell newvar

OEBPS/html/graphics/mre2_side-02.jpg
02,02 03 04 05 0607 08 o]

1112 13 14 15 16 17 18 19|

31] o1 02 03 0405 06 07 08 09

31 (a2330| [CFETETEET) 10[1112[1314[1516[17|18[19

20[21[a2[23 242326 27]28]25
45 67 o S

oxlozosoalos[os[o[0s[0s| Iry3) fo-g) |3r0L|CEIFEEY,

For1-91 | {121 10=87%

[14-91]8

OEBPS/html/graphics/100fig01.jpg
regsub mizpel $Svar misspell newvar

