

 [image: Second Edition]

 Learning JavaScript

Shelley Powers

Editor
Simon St. Laurent

Copyright © 2008 Shelley Powers

This book uses RepKover™, a durable and
 flexible lay-flat binding.

O’Reilly books may be purchased for educational, business, or sales
 promotional use. Online editions are also available for most titles
 (http://safari.oreilly.com). For more information,
 contact our corporate/institutional sales department: (800) 998-9938 or
 corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo
 are registered trademarks of O’Reilly Media, Inc.
 Learning JavaScript, the image
 of a baby rhino, and related trade dress are trademarks of O’Reilly Media,
 Inc.
Many of the designations used by manufacturers and sellers to
 distinguish their products are claimed as trademarks. Where those
 designations appear in this book, and O’Reilly Media, Inc. was aware of a
 trademark claim, the designations have been printed in caps or initial
 caps.

While every precaution has been taken in the preparation of this
 book, the publisher and author assume no responsibility for errors or
 omissions, or for damages resulting from the use of the information
 contained herein.

[image:]

O'Reilly Media

SPECIAL OFFER: Upgrade this ebook with O’Reilly

Click here for more information on this offer!
Please note that upgrade offers are not available from sample content.

A Note Regarding Supplemental Files

Supplemental files and examples for this book can be found at http://examples.oreilly.com/9780596521882/. Please use a standard desktop web browser to access these files, as they may not be accessible from all ereader devices.
All code files or examples referenced in the book will be available online. For physical books that ship with an accompanying disc, whenever possible, we’ve posted all CD/DVD content. Note that while we provide as much of the media content as we are able via free download, we are sometimes limited by licensing restrictions. Please direct any questions or concerns to booktech@oreilly.com.

Preface

JavaScript was originally intended to be a scripting interface between
 a web page loaded in the browser client (Netscape Navigator at the time) and
 the application on the server. Since its introduction in 1995, JavaScript
 has become a key component of web development, and has found uses elsewhere
 as well.
This book covers the JavaScript language, from its most primitive data
 types that have been around since the beginning of the language, to its most
 complex features, including those that have to do with Ajax and dynamic page
 effects. After reading this book, you will have the basics you need to work
 with even the most sophisticated libraries and web applications.
Audience

Readers of this book should be familiar with web page technology,
 including Cascading Style Sheets (CSS) and HTML/XHTML. Previous
 programming experience isn’t required, though some sections may require
 extra review if you have no previous exposure to programming.
This book should help:
	Anyone who wants, or needs, to integrate JavaScript into his own
 personal website or sites

	Anyone who uses a content-management tool, such as a weblogging
 tool, and wants to better understand the scripting components
 incorporated into her tool templates

	Web developers who seek to integrate JavaScript and some of the
 dynamic web page/Ajax features into their websites

	Web service developers who want to develop for a new market of
 clients

	Teachers who use web technologies as either the focus or a
 component of their courses

	Web page designers who wish to better understand how they can
 enliven their designs with interactive or animated effects

	Anyone interested in web technologies

Assumptions and Approach

As stated earlier, this book assumes you have experience with HTML
 and CSS, as well as a general understanding of how web applications work.
 Programming experience isn’t necessary, but the book covers all aspects of
 JavaScript, some of which are relatively sophisticated. Though the heavier
 pieces are few, you will need to understand JavaScript well enough to work
 with the newer Ajax libraries.
The Development Environment

Working with JavaScript can be especially challenging because your
 applications have to work not only on different types of machines, but
 also in several different browsers. If you look at web server logfiles
 for a site, you can see accesses from modern browsers, such as Firefox 3
 and IE8, as well as ancient browsers such as IE5.
You can get caught up in trying to create JavaScript for all
 possible variations of operating system and browser, but a better bet is
 to pick a group of target browsers that matches the browsers used by
 most of the people accessing your web pages, and use these to test your
 applications. You may find that your applications won’t work with older
 browsers, but at some point, you won’t be able to support all
 environments for all people.
Throughout this book, I’ll be mentioning “target browsers” when I
 mention how a piece of JavaScript works. For the book, my target
 browsers are Firefox 3.x, Opera 9.x, Safari 3.x (including recent builds
 of WebKit, the infrastructure that forms the basis of Safari), and
 primarily IE8, the next version of Internet Explorer. Most of the
 examples for IE should also work with IE 7.x and IE 6.x, and I’ll try to
 note otherwise. Here is a list of the URLs where you can access these
 browsers:
	You can download Firefox from http://www.mozilla.com/en-US/firefox/.

	Safari is installed with Mac OS X, but you can also access it
 for the Mac and Windows at http://www.apple.com/safari/. Safari is based on the
 open source WebKit project,
 which provides nightly builds for testing at http://webkit.org/.

	You can access Opera at http://www.opera.com/.

	Internet Explorer is built into Windows, but you can access
 the IE8 beta at http://www.microsoft.com/windows/internet-explorer/beta/default.aspx.

JavaScript and browser development is very dynamic, and this adds
 a unique challenge when writing a book on JavaScript. Though I tried to
 include the most updated coverage of JavaScript, both the JavaScript
 specification (the ECMAScript specification, to be more accurate) and
 the browsers themselves were undergoing significant changes. For
 instance, as I was in the editing phase of this book, the ECMAScript
 working group announced plans to abandon work on what was known as
 JavaScript 2 and focus on a new interim specification release,
 ECMAScript 3.1. However, most of the changes in the newer ECMAScript
 aren’t implemented in many of the target browsers. In the cases where I
 was relatively confident that the specification introduced a
 functionality that will be implemented in future browsers, I made a
 note, at a minimum, of upcoming changes.
In addition, browser makers are always introducing new versions of
 their tools. The target browsers used to test examples in this book
 reflect the state of the browsers at the time I wrote the book, which
 may not quite reflect what you’ll find when you read the book.
However, most of the material I’ve focused on is “classic”
 JavaScript, which not only is stable, but also will always form the
 platform on which new changes to both browser and scripting language are
 based. Most, if not all, of the examples in this book should work in
 older and future browsers, as well as the target browsers used to test
 the examples.
Knock on wood.

How the Book Is Organized

The book is organized into six loosely grouped sections.
Chapters 1 through 3
 provide an introduction to the structure of a JavaScript application,
 including the simple data types supported in the language, as well as the
 basic statements and control structures. These establish a baseline of
 understanding of the language for the sections that follow.
Chapters 4 and 5 introduce the main JavaScript objects,
 String, Number, and Boolean, in addition to other built-in objects,
 such as Math, RegExp (for regular
 expressions), Array, and the
 all-important Function.
Chapter 6
 takes a breather from the language bits and prepares the reader for the
 more complex scripting examples later in the book by introducing the
 browser debugging tools, as well as troubleshooting techniques.
Chapter 7 introduces event handling, and
 Chapter 8 then expands on the
 subject by covering form events and JavaScript applications with
 forms.
Chapters 9 through 11
 delve into the more sophisticated aspects of web page development. These
 chapters cover the Browser Object Model (BOM) and the newer Document
 Object Model (DOM), and show how you can create your own custom objects.
 Understanding these models is essential if you wish to create new windows,
 or individually access, modify, or even dynamically create any page
 element. In addition, with custom objects, you can move beyond the
 capabilities that are pre-built into either language or browser. Also
 included in these chapters is a look at browser cookies and some of the
 more modern client-side storage techniques.
Chapters 12 through 15 finish
 the book by diving into the advanced uses of JavaScript, including dynamic
 page effects and Ajax, as well as a more detailed look at using XML or
 JavaScript Object Notation (JSON) with Ajax applications.
Though I try to follow a logical course when covering JavaScript,
 sometimes I’ll need to use functionality in an example that I won’t cover
 in detail until a later chapter. When this occurs, I’ll try to make a note
 about which chapter includes coverage of the more advanced
 functionality.
A Chapter Breakdown

The following is a detailed breakdown of this book’s contents,
 including a brief description of
 what each chapter covers:
	Chapter 1, Hello JavaScript!
	Introduces JavaScript and provides a quick first look at a
 small web page application. This chapter also covers some issues
 associated with the use of JavaScript, including some good
 programming practices recommended for JavaScript applications.

	Chapter 2, JavaScript Data Types and Variables
	Provides an overview of the basic data types in JavaScript,
 as well as an overview of language variables, identifiers, and the
 structure of a JavaScript statement.

	Chapter 3, Operators and Statements
	Covers the basic statements of JavaScript, including
 assignment, conditional, and control statements, as well as the
 operators necessary for all three.

	Chapter 4, The JavaScript Objects
	Introduces the three primary built-in JavaScript objects,
 including Number, String,
 and Boolean, as well as
 Date and Math. The chapter also introduces the
 RegExp object, which provides
 the facilities to do pattern matching.

	Chapter 5, Functions
	Focuses on one other JavaScript built-in object: Function. Function is key to creating custom
 objects, as well as packaging blocks of JavaScript into reusable
 functionality that can be invoked more than once in an
 application.

	Chapter 6, Troubleshooting, Debugging, and Cross-Browser Issues
	Briefly introduces the debugging environments for the book’s
 target browsers (Internet
 Explorer, Safari, Firefox, and Opera), as well as covers basic
 cross-browser development.

	Chapter 7, Catching Events
	Focuses on event handling, including both the original form
 of event handling (which is still commonly used in many
 applications) as well as the newer DOM-based event
 handling.

	Chapter 8, Forms, Form Events, and Validation
	Introduces using JavaScript with forms and form fields,
 including how to access each field type—such as text input fields
 and drop-down lists—and validate the data once retrieved. Form
 validation before the form is submitted to the web server helps
 prevent an unnecessary round trip to the server, and thus saves
 both time and resource use. This chapter also briefly introduces
 issues related to security and forms.

	Chapter 9, Browser As Puzzle Box
	Begins to look at object models accessible from JavaScript,
 starting with the Browser Object Model—a hierarchy of objects
 including the window, document, forms, history, location, and so
 on. Through the BOM, JavaScript can open windows; access page
 elements such as forms, links, and images; and even create some
 basic dynamic effects.

	Chapter 10, Cookies and Other Client-Side Storage
 Techniques
	Covers script-based cookies, which store small pieces of
 data on the client’s machine. With cookies, you can store
 usernames, passwords, and other information so that users don’t
 have to keep reentering data. In addition, this chapter provides a
 brief overview of new and upcoming client-side storage techniques,
 such as Google’s Gears and
 HTML5 local storage that offer capabilities beyond what a cookie
 can provide. The chapter also includes a review of the JavaScript
 sandbox.

	Chapter 11, The DOM, or Web Page As Tree
	Focuses on the DOM, a straightforward, but not trivial,
 object model that provides access to all document elements and
 attributes. Though the model is comprehensive and its coverage is
 fairly straightforward, the chapter could present some challenging
 moments for new programmers.

	Chapter 12, Dynamic Pages
	Provides a general introduction to dynamically altering the
 web page, including modifying an individual element’s style, as
 well as adding and removing elements from the page. Some of the
 effects we’ll explore in this chapter include drag-and-drop, collapsing and
 expanding page sections, visibility, and movement. An understanding of CSS is
 required.

	Chapter 13, Creating Custom JavaScript Objects
	Demonstrates how to create custom objects in JavaScript and
 covers the prototype structure that enables such structures in the
 language. We’ll discuss some programming language concepts, such
 as inheritance and encapsulation, but you don’t need prior
 experience with these concepts to benefit from reading this
 chapter.

	Chapter 14, Moving Outside the Page with Ajax
	Introduces Ajax, which, despite all the excitement it has
 generated, is actually not a complicated use of JavaScript. The
 chapter walks through a complete example, including server-side
 code.

	Chapter 15, Ajax Data: XML or JSON?
	Expands on the example in Chapter 14 that demonstrated
 Ajax with an HTML fragment by demonstrating how to generate and
 process XML through an Ajax application, and then how to do the
 same with JSON. We’ll cover the advantages of both techniques, as
 well as when to use one over the other.

Conventions Used in This Book

The following typographical conventions are used in this
 book:
	Constant width
	Used for command lines and options that should be typed
 verbatim, C# keywords, and code examples

	Constant width italic
	Used for replaceable items, such as variables or optional
 elements, within syntax lines or code

	Constant width
 bold
	Used for emphasis within program code

	Italic
	Used for pathnames, filenames, Internet addresses (such as
 domain names and URLs), and new terms where they are defined

Note
Indicates a tip, suggestion, or general note.

Warning
Indicates a warning or caution.

Using Code Examples

This book is here to help you get your job done. In general, you may
 use the code in this book in your programs and documentation. You do not
 need to contact us for permission unless you’re reproducing a significant
 portion of the code. For example, writing a program that uses several
 chunks of code from this book does not require permission. Selling or
 distributing a CD-ROM of examples from O’Reilly books
 does require permission. Answering a question by
 citing this book and quoting example code does not require permission.
 Incorporating a significant amount of example code from this book into
 your product’s documentation does require
 permission.
We appreciate, but do not require, attribution. An attribution
 usually includes the title, author, publisher, and ISBN. For example:
 “Learning JavaScript, Second Edition, by Shelley
 Powers. Copyright 2009 Shelley Powers, 978-0-596-52187-5.”
If you feel your use of code examples falls outside fair use or the
 permission given here, feel free to contact us at
 permissions@oreilly.com.

Safari® Books Online

Note
When you see a Safari® Books Online icon on the cover of your
 favorite technology book, that means the book is available online
 through the O’Reilly Network Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s a virtual
 library that lets you easily search thousands of top tech books, cut and
 paste code samples, download chapters, and find quick answers when you
 need the most accurate, current information. Try it for free at http://safari.oreilly.com.

How to Contact Us

We have tested and verified the information in this book to the best
 of our ability, but you might find that features have changed (or even
 that we have made mistakes!). Please let us know about any errors you
 find, as well as your suggestions for future editions, by writing
 to:
	O’Reilly Media, Inc.
	1005 Gravenstein Highway North
	Sebastopol, CA 95472
	800-998-9938 (in the United States or Canada)
	707-829-0515 (international/local)
	707-829-0104 (fax)

To ask technical questions or comment on the book, send email
 to:
	bookquestions@oreilly.com

We have a web page for this book where we list examples and any
 plans for future editions. You can access this information at:
	http://www.oreilly.com/catalog/9780596521875

For more information about books, conferences, Resource Centers, and
 the O’Reilly Network, see the O’Reilly website at:
	http://www.oreilly.com

Acknowledgments

I want to thank my editing and review team for helping me write a
 better book. This includes technical editors Tony Ruscoe, Jeni Tennison,
 Matthew Russell, and Trey Holdener, who did an excellent job reviewing the
 content, as well as my long-time editor, Simon St.Laurent. In addition,
 I’d like to thank the other members of the production team: Rachel
 Monaghan, Sumita Mukherji, Joe Wizda, and Jessamyn Read.

Chapter 1. Hello JavaScript!

One reason JavaScript is so popular is that it’s relatively easy to
 add JavaScript to a web page. All you need to do, at a minimum, is include
 an HTML script element in the page, specify "text/javascript" for the type attribute, and add
 whatever JavaScript you want:
<script type="text/javascript">
...some JavaScript
</script>
Installation is not required, nor do you have to torturously work
 through any odd library path configurations. JavaScript works, straight out
 of the box and in most web browsers, including the big four: Firefox,
 Internet Explorer, Opera, and Safari. All you need to do is add a scripting
 block, and you’re in business.
Traditionally, you add JavaScript blocks to the head element in the document (delimited by opening and closing head tags), but you also can include them in
 the body element—or even in both sections. However,
 adding script to the body is not usually considered a good technique, as it
 makes it more difficult to find the script when you’re modifying it at a
 later time. The exception to this rule is when performance is an issue,
 which I’ll cover in Chapter 6. All of the
 examples in this book add scripting blocks only to the web page head
 section.
Hello World!

Also traditionally, the first example when learning a new
 programming language is known as “Hello, World”—a simple application that
 prints out “Hello, World!” to the user interface, whatever it may be. In
 the case of JavaScript, the user interface is the web page. Example 1-1 shows a web page
 with a JavaScript block that, using only one line of JavaScript, pops open
 a small window commonly called an alert box
 with the words “Hello, World!”
Example 1-1. The smallest JavaScript application: “Hello, World!”
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0
Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
<title>Hello, World!</title>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />

<script type="text/javascript">

alert("Hello, World!");

</script>
</head>
<body>
</body>
</html>

Copying Example 1-1
 into a file and opening the file in web browsers that support JavaScript
 should result in an alert box that reads “Hello, World!” If it doesn’t,
 you might want to make sure you have JavaScript enabled.
Note
Older versions of Internet Explorer also disable script if you open the page via the File
 Open menu rather than by using a web page address such as http://<somedomain.com>/index.html.

This application, although very limited in functionality, more or
 less demonstrates the minimum components of a JavaScript application: you
 have a web page, you have a script
 element, and you have a line of JavaScript. Try it yourself, except edit
 the string by replacing “World” with your first name.
Of course, if you want to move beyond just outputting a static
 message to the browser, you’ll need to extend the example somewhat.

Hello World! Once Again

Another variation of the “Hello, World!” application actually writes
 the message to the web page rather than in an alert box. To do so, it
 makes use of four important JavaScript application components: the
 built-in browser document object,
 JavaScript variables, a JavaScript function, and an event handler. As
 impressive as this may sound, you can still code the application in seven
 lines of JavaScript, as shown in Example 1-2.
Example 1-2. “Hello, World!” printed out to the web page
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
<head>
<title>Hello, World!</title>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />

<script type="text/javascript">
function hello() {

 // say hello to the world
 var msg = "Hello, World!";
 document.open();
 document.write(msg);
 document.close();
}
</script>
</head>
<body onload="hello()">
<p>Hi</p>
</body>
</html>

Though Example 1-2
 is a very small application, it does expose several of the basic
 components of most JavaScript applications in use today, each of which
 deserves a closer look. In the rest of this chapter, we’ll take that
 closer look, one component at a time.
Note
Not covered in this chapter is the Document Type Declaration (DOCTYPE) used in Examples
 1-1 and 1-2, which can have an influence on how
 different browsers process the JavaScript. I’ll cover the impact of a
 DOCTYPE in Chapter 6.

The script Tag

JavaScript is frequently used within the context of another
 language, such as markup languages like HTML and XHTML. However, you
 can’t just plop JavaScript into the markup wherever and however you
 want.
In Example 1-2,
 the script element encloses the
 JavaScript. This lets the browser know that when it encounters the
 script element’s opening tag, it shouldn’t process the element’s
 contents as HTML or XHTML. At this point, control over the content is
 turned over to the browser’s scripting engine.
Not all script embedded in web pages is JavaScript, and the
 script element opening tag contains
 an attribute defining the type of script. In the example, this is given
 as text/javascript. Among other
 allowable values for the type attribute
 are:
	text/ecmascript

	text/jscript

	text/vbscript

	text/vbs

The first type value listed
 specifies that the script is interpreted as ECMAScript, based on the
 ECMA-262 scripting standard. The next value causes the script to be interpreted as
 JScript, a variation of ECMAScript that Microsoft implements in Internet
 Explorer. The last two values are for Microsoft’s VBScript, a completely different scripting
 language.
All of these type values
 describe the MIME type of the content. MIME, or Multipurpose
 Internet Mail Extension, is a way to identify how the content is encoded
 (i.e., text), and its specific format
 (javascript). By providing a MIME
 type, those browsers capable of processing the type do so, whereas other
 browsers skip over the section. This ensures that only applications that
 can process the script actually access the script.
Earlier versions of the script
 tag took a language attribute,
 which was used to designate the version of the language,
 as well as the type: javascript1.2 as
 compared to javascript1.1. However, the use of
 language was deprecated in HTML 4.01,
 though it still appears in many JavaScript examples. And therein lies
 one of the earliest cross-browser techniques.
Note
I use the term cross-browser to denote
 JavaScript that works across all target browsers, or uses
 functionality to manage any browser differences so that the
 application works “cross-browser.”

Years ago, when working with cross-browser compatibility issues, it wasn’t uncommon to create a
 specific script for each browser in a separate section or file and then
 use the language attribute to ensure
 that only a compatible browser could access the code. Looking through
 some of my old examples (circa 1997), I found the following:
<script src="ns4_obj.js" language="javascript1.2">
</script>
<script src="ie4_obj.js" language="jscript">
</script>
The philosophy of this approach was that only a browser capable of
 processing JavaScript 1.2 would pick up the first file (primarily
 Netscape Navigator 4.x at that time) and only a browser capable of
 processing JScript would pick up the second file (Internet Explorer 4).
 Kludgey? Sure, but it also worked through the early years of trying to
 deal with frequently broken cross-browser dynamic page effects.
Other valid script attributes are src, defer, and
 charset. The charset attribute defines the character
 encoding used with the script. It usually isn’t set unless you need a
 different character encoding than what’s defined for the
 document.
One attribute that can be quite useful is defer. If you set defer to a value of "defer", it indicates to the browser that the
 script is not going to generate any document content, and the browser
 can continue processing the rest of the page’s content, returning to the
 script when the page has been processed and displayed:
<script type="text/javascript" defer="defer">
...no content being generated
</script>
The defer attribute can help
 speed up page loading when you have a larger JavaScript block or include
 a larger JavaScript library.
The last attribute, src, has to
 do with loading external JavaScript files, which we’ll explore a little
 later. First, though, we’ll take a closer look at the text/javascript type attribute, and what this
 means for each browser.
Adding Script to the Document’s Body
Earlier, I mentioned that the script element is usually added to the
 head element of a web page because
 it’s easier to maintain web pages when the script elements are organized in one place. However, there
 is a legitimate reason for including script within the body element: performance.
When script is added to the head element, the rest of the document can
 be held back from downloading until the script is finished loading
 because browsers load only so many resources from the same domain in
 parallel. In addition, the browser may hold up rendering the rest of
 the page because of the possibility of document.write within the script. If the
 JavaScript files are large, the web page’s images and other important
 information can be delayed, perhaps beyond what’s feasible.
Even the use of the defer
 attribute in the script element
 won’t have an impact on the problems with parallel resource loading,
 or page rendering.
In his book High Performance Web Sites
 (O’Reilly), Steve Souders recommends putting the script
 elements in the bottom of a document, to let the rest of the web page
 load first, before the script. Developers of more complex web
 applications favor this approach. The downside to putting the script
 at the bottom of the page is that the script is then more difficult to
 find, and the pages are harder to maintain.
Which is the best approach? I’ve found that most websites don’t
 incorporate JavaScript libraries that are so large that script
 placement becomes an issue, not when compared to the importance of
 being able to ensure that the pages are easier to maintain. Still, if
 you develop more complex JavaScript libraries, you may want to
 consider making the switch to footer-based scripts.
Regardless of the approach you use, be consistent: place your
 scripts either always in the head
 element or always at the bottom of the body element.

JavaScript Versus ECMAScript Versus JScript

Example 1-2
 used the text/javascript type with the script element, and the application works
 with Firefox, IE, Opera, and Safari. However, not all browsers
 implement JavaScript.
Although the name “JavaScript” has become ubiquitous for
 client-side browser-based scripting, only Mozilla and the popular
 Mozilla browser, Firefox, implement JavaScript, which is the actual name of
 an instance of a broader-based scripting specification, ECMAScript. ECMAScript is
 actually the industry-wide client-side scripting specification. The latest released version
 of ECMAScript is ECMA-262, Edition 3.
However, most browsers honor the text/javascript type, in addition to the more
 appropriate (though far less
 common) text/ecmascript, though there
 can be differences, even significant differences, in exactly what each
 browser or other application supports.
Note
ECMAScript isn’t restricted to just browsers: Adobe’s
 ActionScript support in Flash is based on ECMA-262, Edition 3.

All of the browsers used to test the applications in the
 book—Firefox 3.x, Safari 3.x, Opera 9.x, and IE8—support most, if not
 all, of ECMA-262, Edition 3, and even some of the next generation of
 ECMAScript, ECMAScript 3.1 (and beyond). In this book, I’ll note
 whenever there are browser differences or provide cross-browser
 workarounds. I’ll also be using the more familiar text/javascript for the script element’s type attribute, as shown in Example 1-2.

Defining Functions in JavaScript

In Example 1-2,
 the part of the JavaScript that actually creates the “Hello,
 World!” message exists within a function named hello. Functions are ways of enclosing one or
 more lines of script so that they can be executed one or more times. You
 also use functions to control when the enclosed script is executed. For
 instance, in Example 1-2, the function is
 called only after the web page is loaded.
Here is the typical syntax for creating a function:
function functionname(params) {
 ...
}
The keyword function is
 followed by the function name and parentheses containing zero or more
 parameters (function arguments). In Example 1-2, there are no
 parameters, but we’ll see plenty of examples with parameters throughout
 the book. The script that makes up the function is then enclosed in
 curly braces.
I say “typical” when providing the function syntax because this
 isn’t the only syntax that you can use to create a function. However,
 we’ll get into other variations starting in Chapter 5, which covers JavaScript functions in
 detail.
Of course, once you have a function, you have to invoke it to run
 the script it contains, which leads us to event handlers.

Event Handlers

In the opening body tag of Example 1-2, an HTML attribute
 named onload is assigned the hello function. The onload attribute is what’s known as an
 event handler. This event handler,
 and others, is part of the underlying object model that each browser
 provides.
You use event handlers to map a function to a specific event so
 that when the event occurs, the function’s script is processed. One of
 the more commonly used event handlers is the one just demonstrated,
 the onload event attached
 to the body element. When the web
 page has finished loading, the event is fired, and the handler calls the
 mapped function.
Here are some commonly used event handlers:
	onclick
	Fired when the element receives a mouse click

	onmouseover
	Fired when the mouse cursor is over the element

	onmouseout
	Fired when the mouse cursor is no longer over the
 element

	onfocus
	Fired when the element gains focus (through the mouse or
 keyboard)

	onblur
	Fired when the element no longer has focus

These are only a few of the event handlers, and not all elements
 support all event handlers. The onload event handler is supported for only a
 few elements, such as the body and
 img elements—not surprising, as the event is associated with
 loading something.
Adding an event handler directly to the opening element tag is one
 way to attach an event handler. A second technique occurs directly
 within JavaScript using syntax such as the following:
<script type="text/javascript">
window.onload=hello;

function hello(??) {

 // say hello to the world
 var msg = "Hello, World!";
 document.open();
 document.writeln(msg);
 document.close();
}
</script>
The onload event handler is a
 property of another built-in browser object, the window. The first line of the script then assigns the function,
 hello, directly to the window’s
 onload event handler.
Note
JavaScript functions are also objects in JavaScript, so you can
 assign a function, by name or directly, to a variable or another
 object’s property.

Using the object property approach, you don’t have to add event
 handlers as attributes into element tags, but instead can add them into
 the JavaScript itself. We’ll get into more details on event handlers and
 more advanced forms of event handling beginning in Chapter 7. In the meantime, let’s take a closer look
 at the document object.

The document Browser Object

Example 1-2,
 as small as it is, used one of the most powerful objects
 available in your browser: the document object. The document object is, for all intents and
 purposes, a representation of the page, including all of the elements
 within it. It’s through the document
 that we can access the page contents, and as you’ve just seen, it’s
 through the document that we can also
 modify the page contents.
The document has collections
 mapped to page elements, such as all the images or form elements in the
 page. It also has methods that you can use to both access and alter the
 web page, including the open, writeln, and
 close methods used in Example 1-2.
The open method opens the
 document for writing. In Example 1-2, the document
 opened was the same document with which the script is contained. The
 writeln method is a variation of the
 write method, which outputs a string of text to the document. The only
 difference between write and writeln is that writeln also appends a newline character
 following the text. The close method
 closes the document, and also forces the immediate rendering of the
 document contents.
An unfortunate consequence of writing to the existing document
 after the page is loaded is that the existing contents of the document
 are erased. That’s why when you open the page you’ll see the “Hello,
 World!” message but you won’t see the “Hi” that’s already in the
 page.
Warning
Another consequence of writing over the existing document is
 that with IE, at least with the beta of IE8, you’ll lose your back
 button functionality.

The open and close methods aren’t required for Example 1-2, as browsers will
 automatically open and close the document when the writeln method is called after the document is
 already loaded. If you used the script in the body of the page, you
 would need to explicitly call the open method.
The document, as well as the
 window mentioned earlier, is part of
 a hierarchy of objects known as the Browser Object Model (BOM). The BOM is a basic set
 of objects implemented in most modern browsers. I cover the document and other BOM objects in Chapter 9.
Note
The BOM is the earliest version of the more formal Document Object Model (DOM), and is sometimes referred
 to as DOM Level 0.

The property Operator

In Example 1-2,
 you accessed the methods from the document object through one of the many
 operators supported in JavaScript: the property operator, represented by a single dot
 (.).
Several operators are available in JavaScript: those for arithmetic (+, –),
 those for conditional expressions (<,
 >), and others that I detail more fully later in
 the book. One of the most important, though, is the property operator. Data elements, event
 handlers, and object methods are all considered properties of objects
 within JavaScript, and you access all of them via the property operator.
You also use the property
 operator in a process called method chaining,
 or sometimes just chaining, whereby you
 can apply calls to multiple methods, one after another, all within the
 same statement. We’ll see the following example in the book:
var tstValue = document.getElementById("test").style.backgroundColor="#ffffff";
In this example, a page element
 is accessed using the document method getElementById,
 and its style object is accessed to
 set the background color for that element. The backgroundColor is a property of the style object, which is a property of the
 page element, which is accessed
 through the method getElementById,
 which is a property of the document
 object.
I cover all of these methods and objects in future chapters, but I
 wanted to introduce you to method chaining now, as you’ll see it
 frequently. You cannot chain all properties of all objects—only those
 that return an object.
Note
One of the more popular Ajax libraries, JQuery, makes extensive use of method chaining. I’ll cover
 JQuery briefly in Chapter 14.

The var Keyword and Scope

The “Hello, World!” string I used in Example 1-2 is assigned to an
 object named msg, which is an example
 of a JavaScript variable. A variable is nothing
 more than a named reference to a piece of data. The data can be a
 string, as in Example 1-2, a number, or the
 boolean value of true or false. It can also be a function reference, an
 array, or another object.
In the example, I defined the variable with the var keyword. When you use var with a variable, you’re defining the
 variable with local scope, which means you can access them only within
 the function in which you’ve defined them. If I didn’t use var, the variable msg would be global and would have scope
 inside and outside the function. Using a global variable in a local
 context isn’t a bad thing—and it may be necessary at times—but it isn’t
 a good practice, and you should avoid it if possible.
The reason why you want to avoid global variables is because if
 the application is part of a larger JavaScript application, msg may be in use in another part of the code
 in another file, and you will have overridden whatever data it
 originally contained. Or, if you create a global variable called
 msg, some other library’s script
 could override it by not correctly using the var keyword, and the data you were tracking
 will be lost.
Setting the scope of a variable is important if you have global
 and local variables with the same name. Example 1-2 doesn’t have
 global variables of any name, but it’s important to develop good
 JavaScript coding practices from the beginning.
Here are the rules regarding scope:
	If you declare a variable with the var keyword in a function or block of
 code, its use is local to that function.

	If you use a variable without declaring it with the var keyword, and a global variable of the
 same name exists, the local variable is assumed to be the already
 existing global variable.

	If you declare a variable locally with a var keyword, but you do not initialize it
 (i.e., assign it a value), it is local and accessible but not
 defined.

	If you declare a variable locally without the var keyword, or explicitly declare it
 globally but do not initialize it, it is accessible globally, but
 again, it is not defined.

By using var within a function,
 you can prevent problems when using global and local variables of the
 same name. This is especially critical when using JavaScript
 libraries—such as Dojo, jQuery, and Prototype—because you’re not
 going to know what variable names the other JavaScript code is
 using.

Statements

JavaScript also supports different types of processing instruction types, known as
 statements. Example 1-2 demonstrated a
 basic type of JavaScript statement: the assignment,
 whereby a value is assigned to a variable. Other types of statements
 are for
 loops, which process a script block a given number
 of iterations; the if…else conditional statement, which checks a
 condition to see whether the script block is executed; the switch statement, which checks for a value in a given set and then executes
 the script block associated with that value; and so on.
Each type of statement has certain syntax requirements. In Example 1-2, the assignment
 statement ended with a semicolon. Using a semicolon to terminate a
 statement isn’t a requirement in JavaScript unless you want to type many
 statements on the same line. If you do, you’ll have to insert a
 semicolon to separate the individual statements.
When you type a complete statement on one line, you use a line
 break to terminate the statement. However, just as with the use of
 var, it’s good practice to use
 semicolons to terminate all statements, if for no other reason than it makes the
 code easier to read. More on the semicolon, other operators, and
 statements in Chapter 3.

Comments

As this chapter hopefully demonstrates, there’s quite a lot
 to the JavaScript in even a small application such as Example 1-2. Hold on, though,
 as we’re not quite finished. Last, but certainly not least, a word on
 JavaScript comments.
Comments provide a summary or explanation of the code that
 follows. Comments in JavaScript are an extremely useful way of quickly
 noting what a block of code is doing and whatever dependencies it has.
 It makes the code more readable and more maintainable.
You can use two different types of comments in your own
 applications. The first, using the double slash (//), comments out whatever follows in the
 line:
// This line is commented out in the code
var i = 1; // this is a comment in the line
The second makes use of opening and closing JavaScript comment
 delimiters, /* and */, to mark a block of comments that can extend one or more
 lines:
/* This is a multiline comment
that extends through three lines.
Multiline comments are particularly useful for commenting on a function */
Single-line comments are relatively safe to use, but multiline
 comments can generate problems if the beginning or ending bracket
 character is accidentally deleted.
Typically, you use single-line comments before a block of script
 performing a specific process or creating a specific object; you use
 multiline comment blocks in the beginning of a JavaScript file. A good
 practice to get into with JavaScript is to begin every JavaScript block, function, or object
 definition with at least one line of comments. In addition, provide a more detailed comment
 block at the beginning of all JavaScript library files; include
 information about author, date, and dependencies, as well as a detailed
 purpose of the script.
We’ve explored what you saw in Example 1-2. Now let’s take a
 look at what you didn’t see.

What You Didn’t See: HTML Comments and CDATA Sections

Ten years ago, when most browsers were in their first or second version, JavaScript support was sketchy, with
 each browser implementing a different version. When browsers, such as
 the text-based Lynx, encountered the script
 tag, they usually just printed the output to the page.
To prevent this, the script contents were enclosed in HTML
 comments: <!-- and -->. When HTML comments were used, non-JavaScript-enabled browsers
 ignored the commented-out script, but newer browsers knew to execute the
 script.
It was a kludge, but it was a very widespread kludge. Most web
 pages with JavaScript nowadays feature the added HTML comments because
 the script is copied more often than not. Unfortunately, some new
 browsers today may process the web page as XHTML, and as strictly XML, which means the commented code is
 discarded. In these situations, the JavaScript is ignored. As a
 consequence, using HTML comments to “hide” the script is actively
 discouraged.
Another way to “hide” the script, however, is encouraged, and
 that’s the use of the XML CDATA
 section, particularly if the script is going to be used in XHTML. Example 1-3 is a modification
 of Example 1-2 with the
 addition of a CDATA section, shown in
 bold.
Example 1-3. Modification of Example 1-2 to add a CDATA
 section to “hide” the script
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
<head>
<title>Hello, World!</title>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />

<script type="text/javascript">
//<![CDATA[

function hello() {
 // say hello to the world
 var msg = "Hello, World!";
 document.open();
 document.write(msg);
 document.close();
}

//]]>
</script>
</head>
<body onload="hello()">
<p>Hi</p>
</body>
</html>

The reason for the CDATA
 section is that XHTML processors interpret markup, such as the em element opening and closing tags in this
 new example, even when they’re contained within JavaScript strings.
 Though the script may process correctly and may display the page
 correctly, if you try to validate it without the CDATA section, you’ll get validation errors,
 as shown in Figure 1-1.
[image: Validation error without using a CDATA section]

Figure 1-1. Validation error without using a CDATA section

JavaScript that is imported into the page using the script element’s src attribute is assumed to be compatible with
 XHTML and doesn’t require the CDATA
 section. You should delimit inline or embedded JavaScript with CDATA though, particularly if it’s included
 within the body element. For most
 browsers, you’ll also need to hide the CDATA section opening and closing tags with
 JavaScript comments (//),
 as shown previously in Example 1-3, or you’ll get a
 JavaScript error.
Of course, the best way to keep your web pages uncluttered is to
 remove the JavaScript from the page entirely, through the use of
 JavaScript files.
Most of this book’s examples are embedded into the page primarily
 to make them easier to read and follow. However, the Mozilla Foundation
 recommends (and I agree) that all inline or embedded JavaScript be
 removed from a page and placed in separate JavaScript files. Using a separate file,
 covered in the next section, prevents problems with validation and
 incorrect interpretation of text, regardless of whether the page is
 processed as HTML or XHTML.
Note
JavaScript files are also more efficient, as the browser caches
 them the first time they’re loaded. Additional references to the same
 file are pulled from the cache.

JavaScript Files

JavaScript usage is becoming more object-oriented and complex. To
 simplify their work, as well as share it, JavaScript developers are
 creating reusable JavaScript objects that they can incorporate into many
 applications, including those created by other developers. The only
 efficient way to share these objects is to create them in separate files
 and provide a link to each file in the web page. With the code now in
 files, all the developer needs to do is link the code into the web pages.
 If the code needs to change later, it’s changed in only one place.
Nowadays, all but the simplest JavaScript is created in separate
 script files. Whatever overhead is incurred by using multiple files is
 more than offset by the benefits. To include a JavaScript library or
 script file in your web page, use this syntax:
<script type="text/javascript" src="somejavascript.js"></script>
The script element contains no content, but the closing tag is still
 required.
The browser loads script files into the page in the order in which
 they occur in the page and processes them in order unless defer is used. A script file should be treated
 as though the code is actually included in the page; the behavior is no
 different between script files and embedded JavaScript blocks.
Example 1-4 is yet
 another modification of our “Hello, World!” application, except this time
 the script is moved to a separate file, named helloworld.js. The .js file extension is required, unless you
 direct the web server to use some other extension to represent the
 JavaScript MIME type. However, because the .js has been used as the default for years,
 it’s best not to get creative.
Note
Every rule always has exceptions, and the use of .js is one of them. If the JavaScript is
 being dynamically generated using a server-side application built in a
 language such as PHP, the file will have a different extension.

Example 1-4 contains
 the script, and Example 1-5 shows the now
 altered web page.
Example 1-4. The Hello World script, in a separate file
/*
 function: hello
 author: Shelley
 hello prints out the message, "Hello, World!"
*/

function hello() {

 // say hello to the world
 var msg = "Hello, World!";
 document.open();
 document.write(msg);
 document.close();
}

Example 1-5. The web page, now calling an external script file
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
<head>
<title>Hello, World!</title>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />

<script type="text/javascript" src="helloworld.js">
</script>
</head>
<body onload="hello()">
<p>Hi</p>
</body>
</html>

As you can see, the page is much cleaner, and the application is
 more efficient from a maintenance perspective. Also, other applications
 can now reuse the code. Though it’s unlikely that you’d reuse something as
 simple as the “Hello, World!” script, you’ll be creating examples later in
 the book in which reuse becomes more important.
We have one last section of material to cover in this chapter before
 moving on to variables and data types in Chapter 2.

Accessibility and JavaScript Best Practices

In an ideal world, everyone who visits your website would use the same type of
 operating system and browser and would have JavaScript enabled. Your site
 would never be accessed via a mobile phone or some other oddly sized
 device, vision-impaired people wouldn’t need screen readers, and the
 paralyzed wouldn’t need voice-enabled navigation.
This isn’t an ideal world, but too many JavaScript developers code
 as though it is. We get so caught up in the wonders of what we can create
 that we forget that not everyone can share them.
Many best practices are associated with JavaScript, but if there’s
 one to take away from this book, it’s the following: whatever JavaScript
 functionality you create, it must not come between your site and your
 site’s visitors.
What do I mean by “come between your site and your site’s visitors”?
 I mean that you should avoid using JavaScript in such a way that those who
 cannot, or will not, enable JavaScript are prevented from accessing
 essential site resources. If you create a drop-down menu using JavaScript,
 you also need to provide a script-free alternative. If your visitors are
 vision-impaired, JavaScript must not interfere with audio browsers, which
 happens when instructions are added to a page dynamically.
Many developers don’t follow these practices because they assume the
 practices require extra work, and for the most part, they do. However, the
 work doesn’t have to be a burden—not when the results can increase the
 accessibility of your site. In addition, many companies now require that
 their websites meet a certain level of accessibility. It’s better to get
 into the habit of creating accessible pages in the beginning than to try
 to fix the pages, or your habits, later.
Accessibility Guidelines

The WebAIM site (http://www.webaim.org) has
 a wonderful tutorial on creating accessible JavaScript (available at http://www.webaim.org/techniques/javascript/). It covers
 the ways you shouldn’t use JavaScript, such as using JavaScript for
 menus and other navigation. However, the site also provides ways you can
 use JavaScript to make a site more accessible.
One suggestion is to base feedback on events that can be triggered
 whether you use a mouse or not. For instance, rather than capture mouse
 clicks, you should capture events that are triggered if you use a
 keyboard or a mouse, such as onfocus
 and onblur. If you have a drop-down
 menu, add a link to a separate page, and then provide a static menu on
 the second page.
After reviewing the tutorial at WebAIM, you might want to spend
 some time at the World Wide Web Consortium’s (W3C’s) Web Accessibility
 Initiative (at http://www.w3.org/WAI/). From
 there, you can also access the U.S. government’s Section 508 website (http://www.section508.gov/), which discusses what is
 known as “508 compliance.” Sites that comply with Section 508 are
 accessible regardless of physical constraints. At that website, you can
 access various tools that evaluate your site for accessibility, such as
 Cynthia Says (at http://www.cynthiasays.com/).
Whether your site is located within the United States or
 elsewhere, you want it to be accessible; therefore, a visit to Section
 508 is useful regardless of your locale.
Of course, not all accessibility issues are related to those
 browsers in which JavaScript is limited or disabled by default, such as
 with screen readers. Many people don’t trust JavaScript, or don’t care
 for it and choose to disable it. For both groups of people—those who
 prefer not to use JavaScript, and those who have no choice—it’s
 important to provide alternatives when no script is present. One
 alternative is noscript.

noscript

Some browsers or other applications are not equipped to process
 JavaScript, or are limited in how they interpret the script. If the
 JavaScript is not essential to navigation or interaction, and the
 browser ignores the script, no harm. However, if the JavaScript is
 essential to access the site’s resources and you don’t provide
 alternatives, you’re basically telling these folks to go away.
Years ago, when JavaScript was fairly new, one popular approach
 was to provide a plain or text-only page accessible through a link,
 usually placed at the top of the page. However, the amount of work to
 maintain the two sites could be prohibitive, and developers had to
 constantly worry about keeping the sites synchronized.
A better technique is to provide static alternatives to dynamic,
 script-generated content. When you use JavaScript to create a drop-down
 menu, also provide a standard hierarchical linked menu; when you use
 script to expose form elements for
 editing based on user interaction, provide the more traditional links to
 a second page to do the same.
The element that enables all of this is noscript. Wherever you need static content,
 add a noscript element with the
 content contained within the opening and closing tags. Then, if a
 browser or other application can’t process the script (because
 JavaScript is not enabled for some reason), the noscript content is processed; otherwise, it’s
 ignored.
Example 1-6 is one
 last variation of “Hello, World!” showing the CDATA-protected example modified with the addition of
 noscript. Accessing the page with a
 JavaScript-enabled browser should display a page with “Hello, World!”
 printed out. However, if you access the page with a script-disabled
 browser, a different message results.
Example 1-6. The use of noscript for non-JavaScript-enabled browsers
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
<head>
<title>Hello, World!</title>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />

<script type="text/javascript">
//<![CDATA[

function hello() {
 // say hello to the world
 var msg = "Hello, World!";
 document.open();
 document.write(msg);
 document.close();
}

//]]>
</script>
</head>
<body onload="hello()">
<noscript>
 <p>I'm still here, World!</p>
</noscript>
</body>
</html>

Of course, Example 1-6 is just a
 simplified use of noscript; you’ll
 see more sophisticated uses later in the book, as well as alternative
 script-safe methods.
To test Example 1-6, I used a Firefox
 extension called the Web Developer Toolbar. On this bar is an option to
 disable JavaScript support. When JavaScript is active, the original
 “Hello, World!” message displays. However, when I use the tool to
 deactivate JavaScript support, another message displays: I'm still here, World! Though you can turn
 scripting off directly in the browser, I’ve found that development tools
 such as the Web Developer Toolbar make testing a whole lot
 easier.
Which tools you use depends on the browser with which you prefer
 to develop. I prefer developing with Firefox, and make extensive use of
 the Web Developer Toolbar and Firebug, a sophisticated debugging tool.
 Later, in Chapter 6, which
 covers troubleshooting and debugging, we’ll take a closer look at these,
 as well as tools and options available for other browsers.

Chapter 2. JavaScript Data Types and Variables

Variables in JavaScript are basically named buckets of data, a way of
 creating a reference to that data—regardless of whether the data is a
 string, number, boolean, array, or other object—so that you can access the
 same data again and again. More importantly, you can use variables to
 persist data from one process to another. For instance, your JavaScript
 application can store the value of a form element in a variable, and
 manipulate that value without having to actually manipulate the form element
 itself.
The variable’s data type is the JavaScript
 scripting engine’s interpretation of the type of data that variable is
 currently holding. A string variable holds a string; a number variable holds
 a number value, and so on. However, unlike many other languages, in
 JavaScript, the same variable can hold different types of data, all within
 the same application. This is a
 concept known by the terms loose typing and dynamic
 typing, both of which mean that a JavaScript variable can hold
 different data types at different times depending on context.
With a loosely typed language, you don’t have to declare ahead of time
 that a variable will be a string or a number or a boolean, as the data type
 is actually determined while the application is being processed. If you
 start out with a string variable and then want to use it as a number, that’s
 perfectly fine, as long as the string actually contains something that
 resembles a number and not something such as an email address. If you later
 want to treat it as a string again, that’s fine, too.
The forgiving nature of loose typing can end up generating problems.
 If you try to add two numbers together, but the JavaScript engine interprets
 the variable holding one of them as a string data type, you end up with an
 odd string, rather than the sum you were expecting. Context is everything
 when it comes to variables and data types with JavaScript.
This chapter covers the JavaScript primitive data types of string,
 boolean, and number, as well as the built-in functions for
 modifying values of these types. In addition, we’ll look at two special data
 types in JavaScript, null and undefined, toward the end of the chapter. Along
 the way, we’ll explore escape sequences in strings and take a brief look at
 Unicode. The chapter also delves into the topic of variables, including what
 makes valid and meaningful variable identifiers.
Identifying Variables

JavaScript variables have an identifier, scope, and a specific data
 type. Because the language is loosely typed, the rest, as they say, is
 subject to change without notice.
Variables in JavaScript are much like those in any other language;
 you use them to hold values in such a way that the values can be
 explicitly accessed in different places in the code. Each has an
 identifier that is unique to the scope of use (more on this later),
 consisting of any combination of letters, digits, underscores, and dollar
 signs. An identifier doesn’t have a required format, other than it must
 begin with a character, dollar sign, or underscore:
_variableidentifier
__variableidentifier
variableIdentifier
$variable_identifier
var-ident
Starting with JavaScript 1.5, you can also use Unicode letters (such as ü) and digits, as well as escape sequences (such
 as \u0009) in variable identifiers. The
 following are also valid variable identifiers for JavaScript:
_üvalid
T\u0009
Use special characters with caution, though, as some tools such as
 debuggers may have difficulty with them.
JavaScript is case-sensitive, which means it treats upper- and lowercase characters
 differently. For instance, JavaScript sees the following two variable
 identifiers as separate variables:
stringVariable
stringvariable
An additional restriction on variable identifiers is that they can’t
 be a JavaScript keyword, a list of which appears in Table 2-1. Other keywords may be added over time, as new versions of JavaScript
 (well, technically, ECMAScript) are released.
Table 2-1. JavaScript keywords
	break
	else
	new
	var

	case
	finally
	return
	void

	catch
	for
	switch
	while

	continue
	function
	this
	with

	default	if
	throw
	

	delete
	in
	try
	

	do
	instanceof
	typeof
	

Due to proposed extensions to the ECMA-262 specification, the words in Table 2-2 are also
 considered reserved words and can’t be used as variable
 identifiers.
Table 2-2. ECMA-262 specification reserved words
	abstract
	enum
	int
	short

	boolean
	export
	interface
	static

	byte
	extends
	long
	super

	char
	final
	native
	synchronized

	class
	float
	package
	throws

	const
	goto
	private
	transient

	debugger
	implements
	protected
	volatile

	double
	import
	public
	public

In addition to the ECMAScript reserved words, certain JavaScript-specific words implemented in most browsers are considered
 reserved by implementation. Many are based on the Browser Object Model
 (BOM)—for example, objects such as document and window, which were briefly introduced in Chapter 1. Though not a definitive list,
 Table 2-3 includes the more common words.
Table 2-3. Typical reserved words in browsers
	alert
	eval
	location	open

	array
	focus
	math
	outerHeight

	blur	function
	name
	parent

	boolean
	history
	navigator
	parseFloat

	date
	image
	number
	regExp

	document
	isNaN
	object
	status

	escape
	length
	onLoad
	string

Naming Guidelines

Apart from the variable naming restrictions covered in the
 preceding section, you can use any identifier for variables and
 functions within code, but several naming practices—many inherited from Java and
 other programming languages—can make the code easier to follow and
 maintain.
First, use meaningful words rather than something you’ve thrown
 together quickly. For instance, the variable identifier interestRate is more descriptive than the
 variable intRt or even ir. The latter two names are too cryptic and
 too difficult to understand, even within a given context.
You can also provide a data type clue as part of the name, using
 something such as the following, which is a string, holding a first
 name:
var strFirstName = "Shelley";
This type of naming convention—using the data type as part of the
 variable name—is known as Hungarian notation, and is
 especially popular in Windows development. As such, you’ll most likely
 see it used within the older JScript applications created for Internet
 Explorer, but less often in more modern JavaScript development.
Another naming convention is to use a plural for collections of
 items:
var customerNames = new Array();
Typically, variables are not capitalized because capitalization is
 usually reserved for objects such as String:
var firstName = String("Shelley");
Reserving capitalization for objects makes them easier to
 differentiate from simple variables.
Functions and variables frequently start with lowercase letters,
 and incorporate a verb representing what the function is doing. It’s
 pretty easy to guess what the following function is doing:
function validateNameInRegister(firstName,lastName) ...
Many times, variables and functions have one or more words
 concatenated into a unique identifier, following a format popularized in
 other languages and frequently referred to as CamelCase because of the up-down
 nature of the name, like a camel’s humps:
validateName
firstName
The CamelCase naming format makes the variable much more readable,
 though dashes or underscores between the variable “words” work as
 well:
validate-name
first_name
The newer JavaScript libraries invariably use CamelCase notation,
 which I also prefer for my own applications.
Though you can use a dollar sign, number, or underscore to begin a
 variable, your best bet is to start with a letter. Unnecessary use of
 unexpected characters in variable names can make the code harder to read
 and follow, especially for newer JavaScript developers. However, if
 you’ve looked at some of the newer JavaScript libraries and examples,
 you might have noticed some odd-looking variable names. The popular
 Ajax-based Prototype JavaScript
 library is a strong influence in this regard—so much so that I think of
 the rise of new naming conventions as the “Prototype effect.”
The following is an example of this effect:
var _break = someval;
The underscore is used in these libraries to signal a variable that’s an
 object’s private data member, a concept I’ll cover in Chapter 13. Another interesting
 naming variation that Prototype has introduced is the following, which
 uses the dollar sign ($) to
 name a function that returns a reference to a page element:
$('test').invokeSomeMethod();
The use of the underscore or dollar sign doesn’t change the
 behavior of the variable, even though such usage is relatively new. It’s
 just another way of naming something.
Note
You can find the Prototype JavaScript library at http://www.prototypejs.org/.

Aside from the few JavaScript naming restrictions, nothing is
 mandatory or magical about the naming conventions I’ve outlined. They
 help to make JavaScript easier to read and debug.

Primitive Types

JavaScript is a trim language, with just enough functionality to do
 the job—no more, no less. However, as I’ve said before, it is a confusing
 language in some respects.
For instance, JavaScript has just three primitive data types: string,
 numeric, and boolean. Each is differentiated from the
 others by the type of value it contains: string, numeric, and boolean,
 respectively. However, JavaScript also has built-in objects known as
 String, Number, and Boolean. These would seem to be very different from each other: the first
 three are types of primitive values, whereas the latter three are objects,
 each one with its own built-in properties and methods.
In actuality, the two are connected. The String object wraps the
 string primitive—just as the Number and
 Boolean objects wrap their individual
 primitive types—when using the primitive type like an object. When you
 create a simple string variable in JavaScript, and then use one of the
 String methods, JavaScript implicitly
 wraps the string primitive in a String
 object, processes the String object
 property or method call, and then discards the object. In the following
 code snippet, when the method toUpperCase is called on firstName, an
 object is created to wrap the string and then process the method call
 before the object is discarded:
var firstName = "Shelley";
var cappedName = firstName.toUpperCase();
For all intents and purposes, firstName looks like an object, and it acts like
 an object when calling toUpperCase, but
 it is a primitive. If I call another String object method, the same thing will happen
 again: a String object is created and
 then wraps the primitive, processes the method call, and discards the
 object. As you can imagine, if you’re going to be treating a string like
 an object, you’d be better off creating it as an object. At the same time,
 if all you need is a simple string to print a message or hold a value, you
 don’t need all the functionality that accompanies an object, so creating a
 string primitive is the better option.
Rather than continue to mix primitive data types and objects in a
 confusing mishmash that wanders from primitive to object and back again,
 in the next three sections, we’ll look at each of the primitive data
 types—how they’re created and manipulated, and how you can convert values
 of one type to other type. In Chapter 4,
 I’ll cover the data objects, their methods, and their properties.
Note
When I use the word wrap in the book, I’m
 talking about an object that typically encloses a simpler item, such as
 a String object wrapping a string
 primitive.

The String Data Type

Because JavaScript is a loosely typed language, nothing differentiates a string
 variable from a variable that’s a number or a boolean, other than the
 literal value assigned to the string variable when it’s initialized and
 the context of its use.
A string literal is a sequence of characters delimited by
 single or double quotes:
var strString = "This is a string";
var anotherString= 'But this is also a string';
No rule states which type of quote you use, except that the ending
 quote character must be the same as the beginning one. You can include any
 variation of characters in the string:
var thirdString = "This is 1 string.";
var stringFour = "This is--another string.";
var stringAsNumber = "543";
The last example of a string contains a number, but because it’s
 surrounded by quotes, JavaScript creates the variable as a string.
A string can also include quotes. You can use single and double
 quotes interchangeably if you need to include a quote within a quoted
 string. All you have to do is be consistent—if the string contains a single
 quote, use double quotes around the string; the same is true with the
 double quote. For example:
var string_value = "This is a 'string' with a quote."
or:
var string_value = 'This is a "string" with a quote.'
The empty string is a special case: you’d commonly use it to
 initialize a string variable when it’s defined. The following are examples
 of empty strings:
var string_value = '';
var anotherStringValue = "";
Which quote character you use makes no difference to the JavaScript
 engine. What’s more important is to use one or the other consistently in
 your applications.
String Escape Sequences

Not all characters are treated equally within a string in JavaScript. A
 string can also contain an escape sequence, such as
 \n for the end-of-line terminator. An escape sequence is a pattern in which certain
 characters are encoded in certain ways in order to include them within a
 string.
The following snippet of code assigns a string literal containing
 a line-terminator escape sequence to a variable. When the string is used
 in a dialog window, the escape sequence, \n, is interpreted literally, and a newline is
 published:
var string_value = "This is the first line\nThis is the second line";
This results in:
This is the first line
This is the second line
You can also use the backslash to denote that the quote in the string is
 meant to be taken as a literal character, not as an end-of-string
 terminator:
var string_value = "This is a \"string\" with a quote."
By using the backslash with quotes, you can include single and
 double quotes within a string.
To include a backslash in a string, use two backslashes in a
 row:
var string_value = "This is a \\string\\ with a backslash."
The result of this line of code is a string with two backslashes,
 one on each side of the word “string”.
You can also include Unicode characters in a string by preceding the four-digit
 hexadecimal value of the character with \u. For instance, the following outputs the
 Chinese (simplified) ideogram for “love”:
document.writeln("\u7231");
What displays is somewhat browser-dependent; however, most of the
 more commonly used browsers now have adequate Unicode support.
Note
You can learn more about Unicode, and access relevant charts, at
 http://www.unicode.org/.

String Encoding

Using the backslash to escape characters is helpful when you’re
 using ASCII characters that are normally control characters
 within a string. However, the backslash can’t do anything with
 characters that are not ASCII; nor can it do anything if you want to
 make an entire string safe for HTML processing, which is necessary for
 Ajax-based applications (I’ll touch on this at the end of the
 book).
You use the encodeURI and
 encodeURIComponent methods to escape, or more properly, to
 encode entire strings, converting ASCII and
 non-ASCII characters to URI encoding, which you
 can use in links and Ajax applications.
Note
URI stands for Uniform Resource Identifier, an example of which
 is a web page URL. An example of URI encoding is ISO Latin-1 (also
 known as ISO 8859-1).

The encodeURI makes an
 assumption that the string is a URI such as “http://oreilly.com”, and reserves the following
 characters:
; , / ? : @ & = + $
Alphanumeric characters and the following punctuation are also not
 encoded:
- _ . ! ~ * ' ()
The page fragment symbol (#) is also not
 encoded.
The encodeURIComponent,
 however, encodes all characters except the alphanumeric and punctuation
 characters listed earlier. It assumes that the string being encoded is
 being used as a parameter to a URI, and therefore characters that are
 normally part of a URI, such as the following, are encoded:
& + =
Both functions also have their opposite member: decodeURI, to
 decode the encodeURI encoded string,
 and decodeURIComponent, to decode the
 encodeURIComponent string.
Example 2-1 shows
 a web page that uses all four functions to encode and then decode two
 strings, all of which are then printed out to the current web page using
 document.writeln.
Example 2-1. URI encoding two strings using the JavaScript encodeURI and
 encodeURIComponent methods
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
<head>
<title>URI Encoding</title>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<script type="text/javascript">
//<![CDATA[

function encodeStrings() {
 var sOne =
encodeURIComponent("http://burningbird.net/index.php?pagename=$1&page=$2");
 var sTwo = encodeURI("http://someapplication.com/?catsname=Zöe&URL=");
 var sOutput = "<p>Link is " + sTwo + sOne + "</p>";
 document.write(sOutput);

 var sOneDecoded = decodeURI(sTwo);
 var sTwoDecoded = decodeURIComponent(sOne);

 var sOutputDecoded = "<p>" + sOneDecoded + "</p><p>" + sTwoDecoded + "</p>";
 document.write(sOutputDecoded);

}
//]]>
</script>
</head>
<body onload="encodeStrings()">
 <p></p>
</body>
</html>

Figure 2-1 shows
 the resultant page.
[image: Result of encoding/decoding URI application]

Figure 2-1. Result of encoding/decoding URI application

These are all demonstrations of how to explicitly create a string
 variable, and variations of string literals that incorporate special
 characters. You can also convert the values within a specific variable
 from other data types, depending on the context.

Converting to Strings

You can convert other data types, such as numbers and booleans, to
 a string; typically, the scripting engine will do the conversion
 automatically, based on the context. As an example, if a numeric or
 boolean variable is passed to a function that expects a string, the
 value is implicitly converted to a string first, before the value is
 processed:
var num_value = 35.00;
alert(num_value); // expects a string
In addition, when the plus sign (+) is used with two variables in an assignment
 statement, and one value is a string and the other a number, the number is converted to a string and then the
 two strings are concatenated:
var num_value = 35.00;
var string_value = "This is a number:" + num_value;
When the conversion from number to string occurs depends on when
 the JavaScript scripting engine encounters the string. For instance, if
 the string is the first in a sequence of values, all of the numbers that
 follow are treated as strings:
var strValue = "4" + 3 + 1; // becomes "431"
var strValueTwo = 4 + 3 + "1"; // becomes 71
However, if you use operators other than +, the opposite type of conversion is applied—the string is converted to a
 number:
var firstResult = "35" - 3; // subtraction is applied, resulting in 32
var secondResult = 30 / "3"; // division is applied, resulting in 10
var thirdResult = "3" * 3; // multiplication is applied, resulting in 9
This implicit conversion with its dependency on both operator and
 position demonstrates more fully the danger of loose typing: the values
 you end up with can vary widely, depending on something as simple as
 where in the sequence of operations you introduce a new data type, or
 what type of operator you use.
Note
I cover the addition and other operators demonstrated in this
 chapter, as well as others available in JavaScript, more fully in
 Chapter 3.

Rather than depend fully on happenstance data type conversion, you
 can explicitly convert a variable to a string using the String global function. If the value being converted is a boolean, the resultant
 string is a text representation of
 the boolean value: "true" for true;
 "false" for false. For numbers, the
 string is, again, a string representation of the number, such as
 "–123.06" for –123.06, depending on
 the number of digits and the precision (the placement of the decimal
 point). A value of NaN (Not a Number,
 discussed later) returns "NaN",
 whereas undefined or null variables will return "undefined" or "null", respectively.
Table 2-4 shows the results of
 using toString on different data
 types.
Table 2-4. toString conversion table
	Input
	Result

	Undefined	"undefined"

	Null	"null"

	Boolean
	If true, then "true"; if false, then "false"

	Number
	The string representation of the number, or
 NaN if the variable holds
 this latter value

	String	No conversion

	Object	A string representation of the default
 representation of the object

The last item in the table describes the ECMAScript rule for the
 result of toString with an object.
 The representation is:
"[object "+className+"]"
Example 2-2 shows
 explicit string conversion on several different variables and objects. New number
 and boolean variables are created and initialized to data-type-specific
 values and then both are converted explicitly to strings using String. The example applies the same
 conversion to a variable that’s created without an initial value, and
 one initialized to null. Lastly, it passes the document object to
 String and the resultant string is
 also printed out to the page.
Example 2-2. Explicit and implicit string conversions
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
<head>
<title>Implicit and Explicit String Conversion</title>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<script type="text/javascript">
//<![CDATA[

function convertToString() {
 var newNumber = 34.56;
 var newBoolean = true;
 var nothing;
 var newNull = null;

 var strNumber = String(newNumber); var strBoolean = String(newBoolean);
 var strUndefined = String(nothing); var strNull = String(newNull);

 var strOutput = "<p>" + strNumber + " " + strBoolean + " " + strUndefined + " "
+ strNull + "</p>";
 document.writeln(strOutput);

 var strOutput2 = String(document);
 document.writeln(strOutput2);

}
//]]>
</script>
</head>
<body onload="convertToString()">
 <p></p>
</body>
</html>

The output of this application varies among browsers. Firefox,
 Opera, IE, and Safari all output the first string in the same
 way:
34.56 true undefined null
However, only Opera and Firefox output the ECMAScript-specific
 object representation for document:
[object HTMLDocument]
IE outputs just [object] and
 Safari/WebKit doesn’t output anything at all when using String with document.

End of sample

 To search for additional titles please go to

 http://search.overdrive.com.

OEBPS/httpatomoreillycomsourceoreillyimages232990.png
X
OO - |V roibrpramososnm ©)lx] [8 cooe

Fle Edt View Favories Tooks Help

S Favortes | 5) Customize inks] Free Hotmal 2] ReaPlayer 2] Widows ¥ Windons Marketpiace. 2] Windons Meda

\ Encapmiating Fivome -

Feeic() - CliResdvai @t < Page Sty Took -~ @) ey -

0060 Frames =

Frame A Frame B

Steal this page Steal this page

OEBPS/httpatomoreillycomsourceoreillyimages232966.png
document

OEBPS/httpatomoreillycomsourceoreillyimages232980.png
maller item. One of the first presentation-specific HTML elements was

font, and i’ also one of the older HTML elements you still
find, all too frequently, in web pages. It not surprising that
font and text properties were of such interest in building web.
pages. Few changes you can make to an clements style
auributes can have such an effect as changing the text or font -
properties. 8

OEBPS/httpatomoreillycomsourceoreillyimages232928.png
© Reviews

Returning to Blogher's one-on-one, one person who Virginia helped was Frances Ellen who had an interesting

Semantic Web challenge.
© Specifications
sy Frances is writing a tatime, published twice a week. She's using
(B Tho Wel Wordpress, which n “everse chronological order, and without any tie-in
with each other. Th up with was to create a TOC for the sidebar that
. ‘pulls the entries tog K eto my mind when reading the post was to create
Latest image chapter "categories’ sar ordered alphabetically: Chapter 1, Chapter 2,
and so on. When pu 2 pick which chapter "category” to place the
posting. To ensure t n use chronological order for the postings in the
chapter categories, =ned. This would effectively create a book without
having to manually £
@ nspect - jaueryjstr | changeData < start < <e<e DB R Q ®0
ConsoleHTML_Css | script | DOM et Opions | [Watch | stack | areakpoints Options
T 77 Ld: Jauery e 1.12.2.3 2008/06/25 03:38:39 goba Exp § hangebotae,
2 start(a vectoredpng, false, false, false, false)
H (2)(Object orginalEvent- Event lick which-1 view--window)
4% Suery 1.2.6 - New Wave Javascript (ObjectoriginalEvent=Even cick which=1 view=window)
HE
6+ Copyright (<) 2088 Johm Resig Ciauery.com)
7% Dual Licensed under the MIT MIT-LICHNSE. txt) g reshech.burningbir.net/misc/query. 37 (ine 13)
5 * ond GPL (GPL-LICENSE. txt) Licenses. ————————
Hi
10 * Date: 2008-05-24 14:22:17 0400 (Sot, 28 Moy 2008)
e
2 v
13| eval(Function(,a,c ke, {efunction(c)return(cea?" ' e(parselnt (c/a)eC

OEBPS/httpatomoreillycomsourceoreillyimages232960.png.jpg
(XeX<) Modifying HTML Elements

“« € > »

Attribute Value
s hupz/bumingbird netlj2lospreythumb jog
X

Q 100% v

OEBPS/httpatomoreillycomsourceoreillyimages232992.png
(<€) > I COONANCAL o burmingoira.net/2/ch14 73 ¥
=2 & v

California
Missouri
Washington
\daho

OEBPS/httpatomoreillycomsourceoreillyimages232954.png
(4) 209 (G) (X) () (52 ruepi burningbird.net/12/ch09-04.5¢ v

OEBPS/httpatomoreillycomsourceoreillyimages232926.png
OD 'O'0 O G 1) (<CTTR

Semantic Web
- Specifications
> TheWeb

= D @ Z a »
Returning to Blogher's one-on-one, one person who Virginia helped was Frances Ellen who had an interesting
challenge.

Frances s writng a book, Story of Nodis, two paragraphs at a time, publshed twice a week. She's using.
‘Wordpress, which means that the entris are displaying inreverse chronological order, and without any tie-in
it each other. The solution Virginia and the others came up with was to create a TOC forthe sdebar that
‘pulls the entries together in proper order. An idea that came to my mind when reading the post was o create
chapter "categories”, and have a category listin in the sidebar ordered alphabetically: Chapter 1, Chapter 2,
‘and 50 on. When publishing a new post, Frances world then pic which chapter "category” to lace the
‘posting. To ensure the publications display corretly, she can use chronologicalorder for the postingsin the
chapter categories, when the chapter category pages are opened. This would efectvely create a book without
‘having to manually edit entris in a TOC.

san<mece

PIBR @ %o

oow et

Opions

hile (Lightbon. incgeteroy Lightbox. inogeNm)[0] 1= inageLink.hrs
incgeNmes;

Ligntbox.
3
i

£ (Lightbos.i551ideshon 85 Lightbor.shonPloypouse &4 Lightbox isf
SClightshoublay).shom);
| KRt

7 oo sy Lt et o e i
o0

var arraypagescrotl - Lightbor.

Vo oo - arevpepearot 13 Lo opbosition = **
var Uightbardaft - orraypagescrall 9]}

SCnigm ol

o Titbartn +
1eft: Ughtbontet + ox'
».

Lightbon.total = Lightbon. isogetrray. Length;
Lightbon.changebotadLightsor. mogehin);

‘Objec overiyOpacity=0.§ overiayColor=000
antighshontley s

Vector ogicaor /»< href-*/ioge-gallariss
Iscresnshots/vector-sogic” ide nodetink text”
Siow Tna

Objectlngit=1040.

Sy
p——
> e Ciore, ez, 1050, 1more-1

OEBPS/httpatomoreillycomsourceoreillyimages232942.png
' Developer 100ls

I 4 vew outie
[css] sawt |
o/ ringbrinanvel] b 7 Ceem
BOCTYEE homl FUBLIC *~//WiC//BTD XADAL 1. oo || o cale —m———r—]ly- Y
<html xmlns="http://www.w3.org/1999/xhtml™ i Matth “ B, oo “] Iomerials Voo “ 18 preson S‘
<neac> Name vake Type
<eitle>Text Fields</cicle> 59 someForm 3 DispHTMLFormElement
<neta http-equiv="Content-Type" content="te ethods]
<acript type-"text/javasoript™> Fvent]
//<![CDATAL acceptCharset String.
accesskey stng
acton sting
F OspHTLElementColecton
artusy sting
archeded stng
araDsabled sting
artupanded sting
artispopup stng
araticden stng
aratnvaid sting
arateve integer
artseect sting
araposnset integer
arapressed sting
arResconly stng
arRequred sting
arsecet sting
arselected sting
arasetsie integer
arvakenon sting
atnbutes OspHTMLAbuteColecton
behavortns IHMWLUmColecton
canvaveChicren Sookean
caniaver L Sookean
chidodes DspDOMChidrenColection
chidren OspHTM.ElementColecton
dasstiame sting

dientrieight
var OK = rgEx.exec(target.value] i

if (vindow.addEventlistener) [
‘window. addEventListener ("1oad" , setupE|
} else if (window.attachEvent) (
window. attachEvent ("onload", setupEvel
}else (
window. onload=setupEventa;

)

function setupEvents(evnt) {
var someForm = document.getElenentByld (")
someForn. text2.onblur=checkRequired;
someForm. textl.onchange = validateFiel

}

function checkRequired (evnt) {
var theEvent = evat 2 evnt : window.event ||
var target = theEvent.target 7 theEvent.t

var txtInput = target.value;
if (cxclnput == null || cxtlnput = "7) {
alerc("value is required in field");
)
)

function validateField(evat) [
var theEvent = evat 2 evnt : window.event
var target = theEvent.target 2 theEvent.t
var xgEx = /"\d(3} [-]2\d(2} [-] 2\d(4}5/g;

R R R S R R R Y

OEBPS/httpatomoreillycomsourceoreillyimages232938.png
'\ hutp:/ /burningbird.net/1j2/ch!

safari snippet editor

NI
v Call stack.

< > ch1s-oshumi &

15 /7 globol variables.

2 var snibepob);

n

= vindou.onlodefunction() {
docinent .ot lenentBy1a("cit les") style disploy="block™;

docunent QetE lenenty1d("sueait") sty o dizploy-"rone" ;

docunent QetE lenenty1a("statel 4" onchangespopulatel st

2y

Nt paused

N paused

v Scope Variables

pialy i
08 iniared lootig "+ d.0et/ 32/ ciS-68 pstatenbA ISl ©

OEBPS/httpatomoreillycomsourceoreillyimages232946.png
A Textreds

| € | €| % http://burningbird.net/s2/chos-05.html

& saintLous, Missouri (.

® ces.con-Offcl st

> O £
1) k- watch yur
shelley

» [Other bookmarks.

shelleyl love JavaScript hidden value

OEBPS/httpatomoreillycomsourceoreillyimages232982.png
806 Just-in-Time Help

Q Find inpage

‘This is the help
for the first
item. It only
shows when
you click on

the label for the
item.

OEBPS/httpatomoreillycomsourceoreillyimages233002.png.jpg
& Coogle

Drinks

Select drink:

Appletini

« 1 ounce vodka
« 1/2 ounce Sour Apple Pucker or apple schnapps

Mix vodka and schnapps in a glass filled with ice. Strain
into martini glass. Garnish with an apple sice or ra

OEBPS/httpatomoreillycomsourceoreillyimages232976.png
read

is
A hep:/ /burningbird.net/1j2/ch12-04.html a(Q- Google I

Next slide

Blue block that is absolutely positioned.

Yellow block that is relatively positioned, and giv
az-index of 4.

OEBPS/httpatomoreillycomsourceoreillyimages232912.png
JavaScript

<burningbird.net>

) K7

O Stop executing scripts on this page

OEBPS/httpatomoreillycomsourceoreillyimages232948.png
frames I
amheds

sceen I i I

mm.yl al I

OEBPS/httpatomoreillycomsourceoreillyimages232968.png.jpg
Header

http:/ [burningbird.net

Node Type: 1
Node Name: |
Node Value: null

backgroundColor: #af25a5

Second paragraph with image.

OEBPS/httpatomoreillycomsourceoreillyimages232899.jpg
Add Sparkle and
Life to Your Web Pages

Learning

O'REILLY® Shelley Powers

OEBPS/httpatomoreillycomsourceoreillyimages232962.png
606 Modifying HTML Elements

||\ hup://burningbird.net/|j2/ch11-03 vIC\ Find in page

A good reference for the DOM is the OASIS Technology Report on the DOM. In addition, the
primary DOM location at the W3C is the W3C Document Object Model page, from which you can
then access cach DOM level. A handy interactive guide to test your user agent (browser) and its
compliance to the DOM can be found at the W3C, though I'm not sure how up-to-date it is since it's
not showing the DOM Level 3 support browsers have implemented.

The links

http://xm coverpages org/dom html

http//www w3.0rg/DOM/

http://www w3.0rg/2003/02/06-dom-support html

Ii Q 100% ¥

OEBPS/httpatomoreillycomsourceoreillyimages232984.png
I
[

©

"= Accordion - Windows Internet Explorer
@:/ + [V i bumingbird.net] [42] [%] [G]

Ele Edt View Favories Toos Help

S Favorites ip Add [vmmm [7 @ emiste£7 {5 Home ~

OEBPS/httpatomoreillycomsourceoreillyimages232922.png
Example 9-12

Paragraph text.

« option 1

« option2
F T bI@R @ LX)
Console HTML G55 | script | DM Net Options || Watch | stck | Sreakpoints Optons
10

1L setTineoutCchangeElenents()”, 3000);
2|}

B
14 function changeElenentsO) {
35 var elent - document. getElenentdyLdC"elent™);
16 var elen? - document getElenentbyld("lend"
17 var elend - document getElenentiyld("clens”

@1 var tm - clent.innerhTHL;
20 clent.innerHTML - elend. innerHTHL;
2 clond.innerHTML - clen2. innerHTHL;
22 elen2.innerHTML - tmp; &

OEBPS/httpatomoreillycomsourceoreillyimages232972.png
606 Page as Tree =
http:/ /burningbird.net/lj2/ch11-08.html 17 ¥

Header

To better understand the document tree, consider a web page that has a head and body section, has & page tile,
‘and contains a DIV element that tself contains an H1 header and two paragraphs. One of the paragraphs contains
italicized text; the other has an image--not an uncommon web page.

Second paragraph with image.

OEBPS/httpatomoreillycomsourceoreillyimages232914.png
hoc
[< »][¢]V htpy//bumingbird.netyiz/chos-02(@-

3.489e+1

349

34.889600
100010.111000111011110011010011010110101000010110001
42707363232650261

34.8896

22.63bcd3528588

OEBPS/httpatomoreillycomsourceoreillyimages232970.png.jpg
eo0e6 Highlighting =

| [——

Click to load source page

Click to search for, and
highlight, a specific tag
[y

OEBPS/httpatomoreillycomsourceoreillyimages232930.png
() 209 (C)OO A) (3 g burmingbind.ner 2/ choe-01hrg v Jal[Gi | Q)

e e el

O
L]

|| console | HTML €SS script DOM Net

Options

Hello, World!

OEBPS/httpatomoreillycomsourceoreillyimages232908.png
806 [Invalid] Markup Val
T Newtab @ (invatid) Markup valida... Bl

ion of http://burningbird.net/|j2/ch01-01.xhtml - W3C Markup Validator

o
« € = » & ~ W hup:/validator.w3.org/checkiverbose=1&uri=http%3A%2F¥2Fourningbird.newé2Flj; v | (G Google v
S

Validation Output: 1 Error

@ Line 11, Column 24: document type does not allow element "em" here.
=
var msg = "Hello, World!</en>";

The element named above was found in a context where it is not allowed. This could mean that you have

incorrectly nested elements -- such as a "style" element in the "body" section instead of inside *head" - or two
elements that overlap (which is not allowed).

One common cause for this error is the use of XHTML syntax in HTML documents. Due to HTML's rules of
implicitly closed elements, this error can create cascading effects. For instance, using XHTML's "self-closing"
tags for "meta’ and "link" in the "head" section of a HTML document may cause the parser to infer the end of

the "head" section and the beginning of the *body" section (where "ink' and “meta" are not allowed; hence the
reported error).

T

[showimages + (& 1005 v] |

OEBPS/httpatomoreillycomsourceoreillyimages232934.png
Q rind n pase

A 100
Seripts | DOM _ Error Console Environment. x
»> 63 C.cz & 8 @ 1 Search ~» changeElements line 17 script id 1400

7 global scope ne 1 script id 1401

8
9 function changeElesents() {

10 var eleml = docunent.getElenentayId("s
1 var elem2 = docunent.gotElementayid("
42 var elem = docusent.getlenentayid("

14 var emp = oleml.innerma;
15 cloml.innerimia - elems. innerimia;
16 cloms.ianerimiL = elem. imnerimiL;
g | i ismncrma - s

) o
b &

Scpts | Source | Command e cal sinck | inspecion | Threadog

D@

OEBPS/httpatomoreillycomsourceoreillyimages232964.png
Burningbird's RealTech =

nodeName lid [class I

Local Name: div
Namespace URI: http:/ /www.w3.0rg/ 1998 xhtmi
Node Type: Element

v #document
html
v humi i
#ext
> head
#ext
v body sidebar-left
#ext
#comment
#ext
div header-regi... clear-block

[nodeName Tnodevalue T
) container

dlass. clear-block

v dv wrapper

container _clear-block

#comment
#ext

#ext

#comment

phoenix

OEBPS/httpatomoreillycomsourceoreillyimages232998.png
(4)2 DO A AL hep: burningoira.net/i2/cnta-oLmm ¢ v (G

5] ’

OEBPS/httpatomoreillycomsourceoreillyimages232988.png
http://burningbird.net/1j2/ch1]

(<) > DI AL s fourningbiranet12/chos-04.7¢ v JA(CI

=] ® 7

OEBPS/httpatomoreillycomsourceoreillyimages232920.png
(4) =B IONANC L v ourmingoranersvzrenos-13mm 7+ Jl(C Gooore Q)

- o .
Example 9-12
‘Paragraph text.
« option 1
« option2
mpect - cho-1amm PIBR X}
Console HTML 55 | script | DOM _ Net Options || Watch | stack | reakpoints Options.
9 windon.onload = function®) {
10
11 setTimeout("changeElements()", 3000);
2 3
1
14 function changelenentsO) {
35 var elend - docurent. getElenentdyld("elent");

16 var elen2 - document.getElenentyld("elan2"
17 var elen3 - docunent.getElenentiyld("elen3");

19 var trp - elend.innerHTML;
20 clent.innerHTML - clend. innerHTML;
lem3.innerHTML = clem2. innerHTML;

OEBPS/httpatomoreillycomsourceoreillyimages232950.png
Your name: [shelley

© 0 O Mozilla Firefox O |
QL ey

Hello Shelley!

Close

OEBPS/httpatomoreillycomsourceoreillyimages232932.png
806 innerHTML

Q Find in page
« opton 1
 Ghion2
o v

Scrps | boM v onsle_ Envronment B
S (imenma ®» @ < Quik ind
= Mo burmingbi no2ch00 10 b

i el 1308

known “sorp 500"
scips | Sowce | Commandtine Catsiack | _inspecton | Trsadiog
=R E2

OEBPS/httpatomoreillycomsourceoreillyimages232958.png
() > LI o mmmgraerizions-tomm G G T ——a)

= =] D @ 7z ; a

screen.availHeight: 828
screen.colorDepth: 24
screen.pixelDepth: 24

navigator object

navigatoruserAgent: Mozilla/5 0 (Macintosh; U; PPC Mac OS X 104; en-US;
navigatorappName: Netscape
navigatorappCodeName: Mozilla
navigatorappVersion: 5.0 (Macintosh; en-US)
navigatorappMinorVersion: undefined
navigator platform: MacPPC
navigator.cookieEnabled: true
navigatoronLine: true
navigatoruserLanguage: undefined
navigatormimeTypes|1] description: Embedded JVM
navigator.mimeTypes(1]-type: application/s-java-vm
‘navigator plugins[i] description: Netscape Navigator Default Plug-in
navigatorplugini].descripton: Runs Java applets using the laest installed versions of Java. For more information: Java
. Run version test: Java Information.
‘navigator plugins(i] description: The QuickTime Plugin allows you to view a wide variety of multimedia content in web pages.
For more information, visit the QuickTime Web site.
navigator plugins[i] description: 10.304010
navigator plugins[i] description: Shockwave Flash 9.0 115
navigatorpluginsi].descripton: DivX Browser Plug-In Plays DivX video in your browser!

nwwmplwmmm;m Provides support for Digital Rights Mawnm
: Provides

OEBPS/httpatomoreillycomsourceoreillyimages232916.png
(<) > DO NCA NN b oumingbiri.rty v JAIGE| Q)
2]

‘This is the test string
‘This i the test string
This s the test tring

This s the test string
This is the test string
This is the test string
This i the test string,

‘This is the test string

OEBPS/httpatomoreillycomsourceoreillyimages232918.png
()2 DI CIONA WA rep: fburningbird.net/vy v JIGE | Q)

string literal is Original Literal
Array object is one,two

string literal is Original Literal
Array object is one,2.three

OEBPS/httpatomoreillycomsourceoreillyimages232974.png
(4) 090G) GO () (2 o g reizroni-gsmm— 25+ G coose Q)

- = =] D @ 7

“To better understand the document tee, consider a web page that has a head and body section, has a page tie,

‘and contains a DIV element that itself contains an H1 header and two paragraphs. One of the paragraphs contains
italicized text; the other has an image--not an uncommon web page.

‘Second paragraph with image. New text node

The End

OEBPS/httpatomoreillycomsourceoreillyimages232978.png
'\ htp:/ /burningbird.net/1j2/ch12-06.html

~(Q- Google

One of the first presentation-specific HTML elements was font,
and it also one of the older HTML elements you still find, all
frequently, in web pages. It's not surprising that font and
text properties were of such interest in building web pages.
Few changes you can make to an elements style attributes can
have such an effect as changing the text or font propertics.

tice T say text or font ies. The font has to d

characters themselves: their family, size, type, and other
clements of the characters' appearance. The text attributes,
though, have more to do with decoration attached to the text
and include text decoration, alignment, and so on.

OEBPS/httpatomoreillycomsourceoreillyimages232986.png
\ccordion - Windows Internet.

plorer

rngbraret] (%] x] [

[<IS)

File Edt View Favorites Tools Help
i Favortes 8 accordion [] Bt fhrome >

First Name:

Last Name:

Address

OEBPS/httpatomoreillycomsourceoreillyimages232944.png
first

document

OEBPS/httpatomoreillycomsourceoreillyimages232940.png
' Developer 100ls

N ¢ vew outne
i css] sawt |
o ouringienanzic] b W | % =

<!DOCTYPE html PUBLIC "-//W3C//DID XHIML 1.1//EN" "| Locals | 251 wat allst mediate Window reak(<
<html xmlns="http://wwé.w3.org/1999/xhtml™ xml:lang| | L) L m“& o Ed{“ SRS “B ==

<head>
<titlesText Fields</title>

<meta http-equiv="Content-Type" content="text/htal;
<script type="text/javascript”>

/1< (CORTA[

if (vindow.addEventlistener) [
window. addEventListener ("1oad" , setupEvents, fa
} else if (window.attachEvent) (
window. attachEvent ("onload"”, setupEvents);
}else (
window. onload=setupEventa;

}

function setupEvents(evnt) {
var someForm = document. getElenentByld ("soneForn)
someForm. text2. onblur=checkRequized;
someForn. textl.onchange = validateFiel

)

function checkRequired (evnt) (
var theEvent = evnt 2 evat : window.event;
var target = theEvent.target 7 theEvent.target :

var txtlnput = target.value;
if (cxclnput == null || txtlnput =) {
alerc("value is required in field");
)
)

function validateField(evnt) [

var theEvent = evat 2 evat : window.event;
var target = theEvent.target > theEvent.target :
var xgEx = /"\d(3} [-]2\d(2} [-] 2\d(4}5/g;

var OK = rgEx.exec(target.value|

OEBPS/httpatomoreillycomsourceoreillyimages232936.png
Q Find inpage

T ioow v,
Scripts DOM Eror Console Envionment 2
> 53CCa 808 @ 1 Soarch < Quick fnd
6 secrimoout("changeziesents()*, 3000); P "
7

8

9 funceion cnangoxiementa() {
0 var eleml + docusent.getElesentsyTd(“elent’)
11 var elesd = docusent getElesentayzd("elend’)1
12 var olomd = document.gotslementayid("elend

serps | Source | Command tne CallsuackInspecion | ThreadLog

OEBPS/httpatomoreillycomsourceoreillyimages232956.png
()2 DU IO NCAL i/ /burningbird.net/12/cho8-07.numi 77 v J2((GI s frame Q)

-

7

a3

»

» servicephprcolor=bluc
» servicephp2color=bluc
» servicephprcolor=red
» servicephp2color=bluc
» servicephp7color=red
» servicephprcolor=blu
» servicephprcolor=red
» servicephprcolor=bluc
» servicephprcolor=red
> servicephp7color=bluc

burningbird.net
burningbird.net
burningbird.net
burningbird.net
burningbird.net
burningbird.net
burningbird.net
burningbird.net
burningbird.net
burningbird.net

OEBPS/httpatomoreillycomsourceoreillyimages232910.png
006 http://burningbird.net/1j2/ch02-01.htm!

||\ hup://burningbird.net/[j2/chC vr Google

Link is htp:/someapplication com/?catsname=Z%C3%B6e&URL=http%3A%2F
%2Fburningbird net%2Findex php%3Fpagenameds3D%241%26paged3D%242

hitp://someapplication.com/catsname=Ze&URL=

http://buningbird net/index php?pagename=$1&page=52

OEBPS/httpatomoreillycomsourceoreillyimages232994.png
(4) 2 PO AN o burningoira.net/2/ch1d 73 ¥

] V

« St. Louis
« Kansas City

OEBPS/httpatomoreillycomsourceoreillyimages232952.png
(4) 209 (G) (X) () (5 ruepi burningbird.net/12/ch09-04.5¢ v

OEBPS/httpatomoreillycomsourceoreillyimages233000.png
(4)2 DO ANAL hep: burningoira.net/2/n14-02 phorstate=ty v Y(GE

2] >

OEBPS/httpatomoreillycomsourceoreillyimages232924.png
OD ' O'& O I) TCTTR
- - =] / g 3 »

PO e —————ye] PIER @ eo
Consle HTML 55 | scip [DOM_ et o [wach [[Sk ks Opions
0 e wchexpreson
B etTineoCebogetlementsr, 2035 > s Vindow 0513l
23 mt Py
entet o
14 function changeElenents) { prooms
{28 var eleml = document .getElementByld("elenl"); o o
16 var elen2 - document .getElementByld("elea"); comenEditable rherit
T e el e oSty 10 el o) > eboundinaClieniect getSomdinglientect()
¥ puhentecs . getCientRects)

> getslementsgyClassNameetElesent sdyClasshone)
) “elont”

cassname -

“oodys
v drelent®s
<Parograph text. </
Py

OEBPS/httpatomoreillycomsourceoreillyimages232996.png
(<) > N U A AL ttp://burningbird.net/12/ch14-0L il V2 v)Gl

F e e e

%0
|| console | HTML €SS Script DOM Net
b GET hitpi//burningbird.net/[j2/ch14-02.php?state=MO (168ms)
> © GET http: /burningbird net/i2/ch14-02 php?state=WA 404 (6155ms)

Options
ch14-0Lhtm (ine 61)
ch14-0Lhum (ine 61)

OEBPS/oreilly_large.gif
O’REILLY

