

 [image: Regular Expression Pocket Reference]

 Regular Expression Pocket Reference

Tony Stubblebine

Editor
Nathan Torkington

Copyright © 2009 O'Reilly Media, Inc.

[image:]

O'Reilly Media

Chapter 1. Regular Expression Pocket Reference

Regular expressions (known as regexps or regexes) are a way to
describe text through pattern matching. You might want to use regular
expressions to validate data, to pull pieces of text out of larger
blocks, or to substitute new text for old text.
Regular expression syntax defines a language you use to describe
text. Today, regular expressions are included in most programming
languages as well as many scripting languages, editors, applications,
databases, and command-line tools. This book aims to give quick
access to the syntax and pattern-matching operations of the most
popular of these languages.
About This Book

This book starts with a general introduction to regular expressions.
The first section of this book describes and defines the constructs
used in regular expressions and establishes the common principles of
pattern matching. The remaining sections of the book are devoted to
the syntax, features, and usage of regular expressions in various
implementations.
The implementations covered in this book are Perl, Java, .NET and C#,
Python, PCRE, PHP, the vi editor, JavaScript,
and shell tools.
Conventions Used in This Book

The following typographical conventions are used in this book:
	Italic
	Used for emphasis, new terms, program names, and URLs

	Constant width
	Used for options, values, code fragments, and any text that should be
typed literally

	Constant width italic
	Used for text that should be replaced with user-supplied values

Acknowledgments

The world of regular expressions is complex and filled with nuance.
Jeffrey Friedl has written the definitive work on the subject,
Mastering Regular Expressions
(O'Reilly), a work on which I relied
heavily when writing this book. As a convenience, this book provides
page references to Mastering Regular
Expressions, Second Edition (MRE) for
expanded discussion of regular expression syntax and concepts.
This book simply would not have been written if Jeffrey Friedl had
not blazed a trail ahead of me. Additionally, I owe him many thanks
for allowing me to reuse the structure of his book and for his
suggestions on improving this book. Nat Torkington's
early guidance raised the bar for this book. Philip Hazel, Ron
Hitchens, A.M. Kuchling, and Brad Merrill reviewed individual
chapters. Linda Mui saved my sanity and this book. Tim
Allwine's constant regex questions helped me
solidify my knowledge of this topic. Thanks to Schuyler Erle and
David Lents for letting me bounce ideas off of them. Lastly, many
thanks to Sarah Burcham for her contributions to Section 1.11 and for providing
the inspiration and opportunity to work and write for
O'Reilly.

Introduction to Regexes and Pattern Matching

A regular expression is a
string containing a combination of normal characters and special
metacharacters or metasequences. The normal characters match
themselves.
Metacharacters
and metasequences are characters or sequences
of characters that represent ideas such as quantity, locations, or
types of characters. The list in Section 1.2.1 shows the most common
metacharacters and metasequences in the regular expression world.
Later sections list the availability of and syntax for supported
metacharacters for particular implementations of regular expressions.
Pattern matching consists of finding a section of text
that is described (matched) by a regular expression. The underlying
code that searchs the text is the regular expression
engine.
You can guess the
results of most matches by keeping two rules in mind:
	The earliest (leftmost) match wins
Regular expressions are applied to the input starting at the first
character and proceeding toward the last. As soon as the regular
expression engine finds a match, it returns. (See MRE 148-149,
177-179.)

	Standard quantifiers are greedy
Quantifiers
specify how many times something can be repeated. The standard
quantifiers attempt to match as many times as possible. They settle
for less than the maximum only if this is necessary for the success
of the match. The process of giving up characters and trying
less-greedy matches is called backtracking. (See MRE 151-153.)

Regular expression engines have subtle differences based on their
type. There are two classes of
engines: Deterministic Finite
Automaton (DFA) and Nondeterministic Finite
Automaton (NFA). DFAs are faster but lack many of the features of an
NFA, such as capturing, lookaround, and non-greedy quantifiers. In
the NFA world there are two types: Traditional and POSIX.
	DFA engines
	DFAs compare each character of the input string to the regular
expression, keeping track of all matches in progress. Since each
character is examined at most once, the DFA engine is the fastest.
One additional rule to remember with DFAs is that the alternation
metasequence is greedy. When more than one option in an alternation
(foo|foobar) matches, the longest one is selected.
So, rule #1 can be amended to read "the longest
leftmost match wins." (See MRE 155-156.)

	Traditional NFA engines
	Traditional NFA engines compare each element of the regex to the
input string, keeping track of positions where it chose between two
options in the regex. If an option fails, the engine backtracks to
the most recently saved position. For standard quantifiers, the
engine chooses the greedy option of matching more text; however, if
that option leads to the failure of the match, the engine returns to
a saved position and tries a less greedy path. The traditional NFA
engine uses ordered alternation, where each option in the alternation
is tried sequentially. A longer match may be ignored if an earlier
option leads to a successful match. So, rule #1 can be amended to
read "the first leftmost match after greedy
quantifiers have had their fill." (See MRE 153-154.)

	POSIX NFA engines
	POSIX NFA Engines work similarly to Traditional NFAs with one
exception: a POSIX engine always picks the longest of the leftmost
matches. For example, the alternation cat|category
would match the full word
"category" whenever possible, even
if the first alternative ("cat")
matched and appeared earlier in the alternation. (See MRE 153-154.)

Regex Metacharacters, Modes, and Constructs

The
metacharacters
and
metasequences
shown here represent most available types of regular expression
constructs and their most common syntax. However, syntax and
availability vary by implementation.
Character representations

Many implementations provide shortcuts to represent some characters
that may be difficult to input. (See MRE 114-117.)
	Character shorthands
	Most implementations have specific shorthands for the
alert, backspace,
escape character, form feed,
newline, carriage return,
horizontal tab, and vertical
tab characters. For example, \n is often
a shorthand for the newline character, which is usually LF (012
octal) but can sometimes be CR (15 octal) depending on the operating
system. Confusingly, many implementations use \b
to mean both backspace and word boundary (between
a "word" character and a non-word
character). For these implementations, \b means
backspace in a character class (a set of possible
characters to match in the string) and word boundary elsewhere.

	Octal escape: \num
	Represents a character corresponding to a two- or three- octal digit
number. For example, \015\012 matches an ASCII
CR/LF sequence.

	 Hex and Unicode escapes: \xnum, \x{num}, \unum, \Unum
	Represents a character corresponding to a hexadecimal number.
Four-digit and larger hex numbers can represent the range of Unicode
characters. For example, \x0D\x0A matches an ASCII
CR/LF sequence.

	Control characters: \cchar
	Corresponds to
ASCII control characters encoded with
values less than 32. To be safe, always use an uppercase
char—some implementations do not
handle lowercase representations. For example, \cH
matches Control-H, an ASCII backspace character.

Character classes and class-like constructs

Character classes are ways to define or specify a set of
characters. A character class matches one character in the input
string that is within the defined set. (See MRE 117-127.)
	Normal classes: [...] and [^...]
	Character classes, [...], and
negated character classes,
[^...], allow you to list the characters that
you do or do not want to match. A character class always matches one
character. The - (dash) indicates a range of
characters. To include the dash in the list of characters, list it
first or escape it. For example, [a-z] matches any
lowercase ASCII letter.

	Almost any character: dot (.)
	Usually matches any character except a newline. The match mode can
often be changed so that dot also matches newlines.

	Class shorthands: \w, \d, \s, \W, \D, \S
	Commonly provided shorthands for word character, digit, and space
character classes. A word character is often
all ASCII alphanumeric characters plus the underscore. However, the
list of alphanumerics can include additional locale or Unicode
alphanumerics, depending on the implementation. For example,
\d matches a single digit character and is usually
equivalent to [0-9].

	POSIX character class: [:alnum:]
	POSIX defines several character classes that can be used only within
regular expression character classes (see Table 1-1). For example, [:lower:],
when written as [[:lower:]], is equivalent to
[a-z] in the ASCII locale.

	Unicode properties, scripts, and blocks: \p{prop}, \P{prop}
	The Unicode standard defines classes of characters that have a
particular property, belong to a script, or exist within a block.
Properties are characteristics such as being a
letter or a number (see Table 1-2).
Scripts are systems of writing, such as Hebrew,
Latin, or Han. Blocks are ranges of characters
on the Unicode character map. Some implementations require that
Unicode properties be prefixed with Is or
In. For example, \p{Ll} matches
lowercase letters in any Unicode supported language, such as
a or α.

	Unicode combining character sequence: \X
	Matches a Unicode base character followed by any number of Unicode
combining characters. This is a shorthand for
\P{M}\p{M}. For example, \X
matches è as well as the two characters
e'.

Table 1-1. POSIX character classes
	
Class

	
Meaning

	
alnum

	
Letters and digits.

	
alpha

	
Letters.

	
blank

	
Space or tab only.

	
cntrl

	
Control characters.

	
digit

	
Decimal digits.

	
graph

	
Printing characters, excluding space.

	
lower

	
Lowercase letters.

	
print

	
Printing characters, including space.

	
punct

	
Printing characters, excluding letters and digits.

	
space

	
Whitespace.

	
upper

	
Uppercase letters.

	
xdigit

	
Hexadecimal digits.

Table 1-2. Standard Unicode properties (continued)
	
Property

	
Meaning

	
\p{L}

	
Letters.

	
\p{Ll}

	
Lowercase letters.

	
\p{Lm}

	
Modifier letters.

	
\p{Lo}

	
Letters, other. These have no case and are not considered modifiers.

	
\p{Lt}

	
Titlecase letters.

	
\p{Lu}

	
Uppercase letters.

	
\p{C}

	
Control codes and characters not in other categories.

	
\p{Cc}

	
ASCII and Latin-1 control characters.

	
\p{Cf}

	
Non-visible formatting characters.

	
\p{Cn}

	
Unassigned code points.

	
\p{Co}

	
Private use, such as company logos.

	
\p{Cs}

	
Surrogates.

	
\p{M}

	
Marks meant to combine with base characters, such as accent marks.

	
\p{Mc}

	
Modification characters that take up their own space. Examples
include "vowel signs."

	
\p{Me}

	
Marks that enclose other characters, such as circles, squares, and
diamonds.

	
\p{Mn}

	
Characters that modify other characters, such as accents and umlauts.

	
\p{N}

	
Numeric characters.

	
\p{Nd}

	
Decimal digits in various scripts.

	
\p{Nl}

	
Letters that are numbers, such as Roman numerals.

	
\p{No}

	
Superscripts, symbols, or non-digit characters representing numbers.

	
\p{P}

	
Punctuation.

	
\p{Pc}

	
Connecting punctuation, such as an underscore.

	
\p{Pd}

	
Dashes and hyphens.

	
\p{Pe}

	
Closing punctuation complementing \p{Ps}.

	
\p{Pi}

	
Initial punctuation, such as opening quotes.

	
\p{Pf}

	
Final punctuation, such as closing quotes.

	
\p{Po}

	
Other punctuation marks.

	
\p{Ps}

	
Opening punctuation, such as opening parentheses.

	
\p{S}

	
Symbols.

	
\p{Sc}

	
Currency.

	
\p{Sk}

	
Combining characters represented as individual characters.

	
\p{Sm}

	
Math symbols.

	
\p{So}

	
Other symbols.

	
\p{Z}

	
Separating characters with no visual representation.

	
\p{Zl}

	
Line separators.

	
\p{Zp}

	
Paragraph separators.

	
\p{Zs}

	
Space characters.

Anchors and zero-width assertions

Anchors
and "zero-width assertions" match
positions in the input string. (See MRE 127-133.)
	Start of line/string: ^, \A
	Matches at the beginning of the text being searched. In multiline
mode, ^ matches after any newline. Some
implementations support \A, which only matches at
the beginning of the text.

	End of line/string: $, \Z, \z
	$ matches at the end of a string. Some
implementations also allow $ to match before a
string-ending newline. If modified by multiline mode,
$ matches before any newline as well. When
supported, \Z matches the end of string or before
a string-ending newline, regardless of match mode. Some
implementations also provide \z, which only
matches the end of the string, regardless of newlines.

	Start of match: \G
	In iterative matching,
\G matches the position where the previous match
ended. Often, this spot is reset to the beginning of a string on a
failed match.

	Word boundary: \b, \B,
\<, \>
	Word boundary metacharacters match a
location where a word character is next to a non-word character.
\b often specifies a word boundary location, and
\B often specifies a not-word-boundary location.
Some implementations provide separate metasequences for start- and
end-of-word boundaries, often \< and
\>.

	Lookahead: (?=...), (?!...)
Lookbehind: (?<=...), (?<!...)
	Lookaround
constructs match a location in the text where
the subpattern would match
(lookahead), would
not match (negative lookahead), would have finished matching
(lookbehind), or
would not have finished matching (negative lookbehind). For example,
foo(?=bar) matches foo in
foobar but not food.
Implementations often limit lookbehind constructs to subpatterns with
a predetermined length.

Comments and mode modifiers

Mode modifiers are a way to change how
the regular expression engine interprets a regular expression. (See
MRE 109-112, 133-135.)
	Multiline mode: m
	Changes the behavior of ^ and $
to match next to newlines within the input string.

	Single-line mode: s
	Changes the behavior of . (dot) to match all
characters, including newlines, within the input string.

	Case-insensitive mode: i
	Treat as identical letters that differ only in case.

	Free-spacing mode: x
	Allows for whitespace and comments within a regular expression. The
whitespace and comments (starting with # and
extending to the end of the line) are ignored by the regular
expression engine.

	Mode modifiers: (?i), (?-i), (?mod:...)
	Usually, mode modifiers may be set within a regular expression with
(?mod)
to turn modes on for the rest of the current subexpression;
(?-mod)
to turn modes off for the rest of the current subexpression; and
(?mod:...)
to turn modes on or off between the colon and the closing
parentheses. For example, "use
(?i:perl)" matches "use
perl", "use Perl",
"use PeRl", etc.

	Comments: (?#...) and #
	In free-spacing mode, # indicates that the rest of
the line is a comment. When supported, the comment span
(?#...) can be embedded anywhere in a regular
expression, regardless of mode. For example, .{0,80}(?#Field
limit is 80 chars) allows you to make
notes about why you wrote .{0,80}.

	Literal-text span: \Q...\E
	Escapes metacharacters between \Q and
\E. For example, \Q(.*)\E is
the same as \(\.*\).

Grouping, capturing, conditionals, and control

This section covers the syntax for grouping
subpatterns, capturing submatches,
conditional submatches, and quantifying the number of times a
subpattern matches. (See MRE 135-140.)
	Capturing and grouping parentheses: (...) and \1, \2, ...
	Parentheses perform two functions:
grouping and capturing. Text matched by the subpattern within
parentheses is captured for later use. Capturing parentheses are
numbered by counting their opening parentheses from the left. If
backreferences are available, the submatch can be referred to later
in the same match with \1, \2,
etc. The captured text is made available after a match by
implementation-specific methods. For example,
\b(\w+)\b\s+\1\b matches duplicate words, such as
the the.

	Grouping-only parentheses: (?:...)
	Groups a subexpression, possibly for alternation or quantifiers, but
does not capture the submatch. This is useful for efficiency and
reusability. For example, (?:foobar) matches
foobar, but does not save the match to a capture
group.

	Named capture: (?<name>...)
	Performs capturing and grouping, with captured text later referenced
by name. For example,
Subject:(?<subject>.*) captures the text
following Subject: to a capture group that can be
referenced by the name subject.

	Atomic grouping: (?>...)
	Text matched within the group is never backtracked into, even if this
leads to a match failure. For example,
(?>[ab]*)\w\w matches aabbcc
but not aabbaa.

	Alternation: ...|...
	Allows several subexpressions to be tested.
Alternation's low precedence sometimes causes
subexpressions to be longer than intended, so use parentheses to
specifically group what you want alternated. For example,
\b(foo|bar)\b matches either of the words
foo or bar.

	Conditional: (?if then | else)
	The if is implementation dependent, but
generally is a reference to a captured subexpression or a lookaround.
The then and
else parts are both regular expression
patterns. If the if part is true, the
then is applied. Otherwise,
else is applied. For example,
(<)?foo(?(1)>|bar) matches
<foo> and foobar.

	Greedy quantifiers: *, +, ?, {num,num }
	The greedy quantifiers determine how many times a construct may be
applied. They attempt to match as many times as possible, but will
backtrack and give up matches if necessary for the success of the
overall match. For example, (ab)+ matches all of
ababababab.

	Lazy quantifiers: *?, +?, ??, {num,num }?
	Lazy quantifiers control how many times a construct may be applied.
However, unlike greedy quantifiers, they attempt to match as few
times as possible. For example, (an)+? matches
only an of banana.

	Possessive Quantifiers: *+, ++, ?+, {num,num }+
	Possessive quantifiers are like greedy quantifiers, except that they
"lock in" their match, disallowing
later backtracking to break up the sub-match. For example,
(ab)++ab will not match
ababababab.

Unicode Support

Unicode
is a character set that gives unique numbers to the characters in all
the world's languages. Because of the large number
of possible characters, Unicode requires more than one byte to
represent a character. Some regular expression implementations will
not understand Unicode characters, because they expect one-byte ASCII
characters. Basic support for Unicode characters starts with being
able to match a literal string of Unicode characters. Advanced
support includes character classes and other constructs that contain
characters from all Unicode-supported languages. For example,
\w might match è as
well as e.

Perl 5.8

Perl provides a rich set of
regular-expression operators, constructs, and features, with more
being added in each new release. Perl uses a Traditional NFA match
engine. For an explanation of the rules behind an NFA engine, see
Section 1.2.
This reference covers Perl Version 5.8. Unicode features were
introduced in 5.6, but did not stabilize until 5.8. Most other
features work in Versions 5.004 and later.
Supported Metacharacters

Perl
supports the metacharacters and metasequences listed in Table 1-3 through Table 1-7. For
expanded definitions of each metacharacter, see Section 1.2.1.
Table 1-3. Character representations
	
Sequence

	
Meaning

	
\a

	
Alert (bell).

	
\b

	
Backspace; supported only in character class.

	
\e

	
ESC character, x1B.

	
\n

	
Newline; x0A on Unix and Windows,
x0D on Mac OS 9.

	
\r

	
Carriage return; x0D on Unix and Windows,
x0A on Mac OS 9.

	
\f

	
Form feed, x0C.

	
\t

	
Horizontal tab, x09.

	
\octal

	
Character specified by a two- or three-digit octal code.

	
\xhex

	
Character specified by a one- or two-digit hexadecimal code.

	
\x{hex}

	
Character specified by any hexadecimal code.

	
\cchar

	
Named control character.

	
\N{name}

	
A named character specified in the Unicode standard or listed in
PATH_TO_PERLLIB/unicode/Names.txt. Requires
use charnames ':full'.

Table 1-4. Character classes and class-like constructs (continued)
	
Class

	
Meaning

	
[...]

	
A single character listed or contained in a listed range.

	
[^...]

	
A single character not listed and not contained within a listed range.

	
[:class:]

	
POSIX-style character class valid only within a regex character class.

	
.

	
Any character except newline (unless single-line mode,
/s).

	
\C

	
One byte; however, this may corrupt a Unicode character stream.

	
\X

	
Base character followed by any number of Unicode combining characters.

	
\w

	
Word character, \p{IsWord}.

	
\W

	
Non-word character ,\P{IsWord}.

	
\d

	
Digit character, \p{IsDigit}.

	
\D

	
Non-digit character, \P{IsDigit}.

	
\s

	
Whitespace character, \p{IsSpace}.

	
\S

	
Non-whitespace character, \P{IsSpace}.

	
\p{prop}

	
Character contained by given Unicode property, script, or block.

	
\P{prop}

	
Character not contained by given Unicode property, script, or block.

Table 1-5. Anchors and zero-width tests
	
Sequence

	
Meaning

	
^

	
Start of string, or after any newline in multiline match mode,
/m.

	
\A

	
Start of search string, in all match modes.

	
$

	
End of search string or before a string-ending newline, or before any
newline in multiline match mode, /m.

	
\Z

	
End of string or before a string-ending newline, in any match mode.

	
\z

	
End of string, in any match mode.

	
\G

	
Beginning of current search.

	
\b

	
Word boundary.

	
\B

	
Not-word-boundary.

	
(?=...)

	
Positive lookahead.

	
(?!...)

	
Negative lookahead.

	
(?<=...)

	
Positive lookbehind; fixed-length only.

	
(?<!...)

	
Negative lookbehind; fixed-length only.

Table 1-6. Comments and mode modifiers (continued)
	
Modifier

	
Meaning

	
/i

	
Case-insensitive matching.

	
/m

	
^ and $ match next to embedded
\n.

	
/s

	
Dot (.) matches newline.

	
/x

	
Ignore whitespace and allow comments (#) in
pattern.

	
/o

	
Compile pattern only once.

	
(?mode)

	
Turn listed modes (xsmi) on for the rest of the
subexpression.

	
(?-mode)

	
Turn listed modes (xsmi) off for the rest of the
subexpression.

	
(?mode:...)

	
Turn listed modes (xsmi) on within parentheses.

	
(?-mode:...)

	
Turn listed modes (xsmi) off within parentheses.

	
(?#...)

	
Treat substring as a comment.

	
#...

	
Treat rest of line as a comment in /x mode.

	
\u

	
Force next character to uppercase.

	
\l

	
Force next character to lowercase.

	
\U

	
Force all following characters to uppercase.

	
\L

	
Force all following characters to lowercase.

	
\Q

	
Quote all following regex metacharacters.

	
\E

	
End a span started with \U, \L, or \Q.

Table 1-7. Grouping, capturing, conditional, and control (continued)
	
Sequence

	
Meaning

	
(...)

	
Group subpattern and capture submatch into
\1,\2,... and
$1, $2,....

	
\n

	
Contains text matched by the nth capture
group.

	
(?:...)

	
Groups subpattern, but does not capture submatch.

	
(?>...)

	
Disallow backtracking for text matched by subpattern.

	
...|...

	
Try subpatterns in alternation.

	
*

	
Match 0 or more times.

	
+

	
Match 1 or more times.

	
?

	
Match 1 or 0 times.

	
{n}

	
Match exactly n times.

	
{n,}

	
Match at least n times.

	
{x,y}

	
Match at least x times but no more than
y times.

	
*?

	
Match 0 or more times, but as few times as possible.

	
+?

	
Match 1 or more times, but as few times as possible.

	
??

	
Match 0 or 1 time, but as few times as possible.

	
{n,}?

	
Match at least n times, but as few times as
possible.

	
{x,y}?

	
Match at least x times, no more than
y times, but as few times as possible .

	
(?(COND)...|...)

	
Match with if-then-else pattern where COND
is an integer referring to either a backreference or a lookaround
assertion.

	
(?(COND)...)

	
Match with if-then pattern.

	
(?{CODE})

	
Execute embedded Perl code.

	
(??{CODE})

	
Match regex from embedded Perl code.

Regular Expression Operators

Perl provides the built-in regular expression operators
qr//, m//, and
s///, as well as the split
function. Each operator accepts a regular expression pattern string
that is run through string and variable interpolation and then
compiled.
Regular expressions are often delimited with the forward slash, but
you can pick any non-alphanumeric, non-whitespace character. Here are
some examples:
qr#...# m!...! m{...}
s|...|...| s[...][...] s<...>/.../
A match delimited by slashes (/.../)
doesn't require a leading m:
/.../ #same as m/.../
Using the single quote as a delimiter suppresses
interpolation of variables and the constructs
\N{name},
\u, \l, \U,
\L, \Q, \E.
Normally these are interpolated before being passed to the regular
expression engine.

Unicode Support

Perl
provides built-in support for Unicode 3.2, including full support in
the \w, \d,
\s, and \b metasequences.
The following constructs respect the current locale if
use locale is defined:
case-insensitive (i) mode, \L,
\l, \U, \u,
\w, and \W.
Perl supports the standard Unicode properties (see Table 1-3) as well as Perl-specific composite
properties (see Table 1-9). Scripts and
properties may have an Is prefix but do not
require it. Blocks require an In prefix only if
the block name conflicts with a script name.
Table 1-9. Composite Unicode properties
	
Property

	
Equivalent

	
IsASCII

	
[\x00-\x7f]

	
IsAlnum

	
[\p{Ll}\p{Lu}\p{Lt}\p{Lo}\p{Nd}]

	
IsAlpha

	
[\p{Ll}\p{Lu}\p{Lt}\p{Lo}]

	
IsCntrl

	
\p{C}

	
IsDigit

	
\p{Nd}

	
IsGraph

	
[^\p{C}\p{Space}]

	
IsLower

	
\p{Ll}

	
IsPrint

	
\P{C}

	
IsPunct

	
\p{P}

	
IsSpace

	
[\t\n\f\r\p{Z}]

	
IsUppper

	
[\p{Lu}\p{Lt}]

	
IsWord

	
[_\p{Ll}\p{Lu}\p{Lt}\p{Lo}\p{Nd}]

	
IsXDigit

	
[0-9a-fA-F]

Examples

Example 1-1. Simple match
Match Spider-Man, Spiderman, SPIDER-MAN, etc.
my $dailybugle = "Spider-Man Menaces City!";
if ($dailybugle =~ m/spider[-]?man/i) { do_something(); }

Example 1-2. Match, capture group, and qr
Match dates formatted like MM/DD/YYYY, MM-DD-YY,...
my $date = "12/30/1969";
my $regex = qr!(\d\d)[-/](\d\d)[-/](\d\d(?:\d\d)?)!;
if ($date =~ m/$regex/) {
 print "Day= ", $1,
 "Month=", $2,
 "Year= ", $3;
}

Example 1-3. Simple substitution
Convert
 to
 for XHTML compliance
my $text = "Hello World!
";
$text =~ s#
#
#ig;

Example 1-4. Harder substitution
urlify - turn URL's into HTML links
$text = "Check the website, http://www.oreilly.com/catalog/regexppr.";
$text =~
 s{
 \b # start at word boundary
 (# capture to $1
 (https?|telnet|gopher|file|wais|ftp) :
 # resource and colon
 [\w/#~:.?+=&%@!\-] +? # one or more valid
 # characters
 # but take as little as
 # possible
)
 (?= # lookahead
 [.:?\-] * # for possible punctuation
 (?: [^\w/#~:.?+=&%@!\-] # invalid character
 | $) # or end of string
)
 }{$1}igox;

Other Resources

	Programming Perl, by Larry Wall, Tom
Christiansen, and Jon Orwant (O'Reilly), is the
standard Perl reference.

	Mastering Regular Expressions, Second Edition,
by Jeffrey E. F. Friedl (O'Reilly), covers the
details of Perl regular expressions on pages 283-364.

	perlre is the perldoc documentation provided
with most Perl distributions.

End of sample

 To search for additional titles please go to

 http://search.overdrive.com.

OEBPS/oreilly_large.gif
O’REILLY

OEBPS/httpatomoreillycomsourceoreillyimages240175.jpg
Regular Expressions for Perl, C, PHP,
Python, Java, and .NET

O7 REILLY® Tony Stubblebine

