

 [image: Programming Embedded Systems]

 Programming Embedded Systems

Michael Barr

Anthony Massa

Editor
Andy Oram

Copyright © 2009 O'Reilly Media, Inc.

[image:]

O'Reilly Media

Dedication

	 	For my son, Vikram.
	
	 	--Michael Barr

	 	This book is dedicated to my beautiful and wonderful
 daughters, Katie and Ashley. You mean everything to me. I love
 you..
	
	 	--Anthony Massa

SPECIAL OFFER: Upgrade this ebook with O’Reilly

Click here for more information on this offer!
Please note that upgrade offers are not available from sample content.

A Note Regarding Supplemental Files

Supplemental files and examples for this book can be found at http://examples.oreilly.com/9780596009830/. Please use a standard desktop web browser to access these files, as they may not be accessible from all ereader devices.
All code files or examples referenced in the book will be available online. For physical books that ship with an accompanying disc, whenever possible, we’ve posted all CD/DVD content. Note that while we provide as much of the media content as we are able via free download, we are sometimes limited by licensing restrictions. Please direct any questions or concerns to booktech@oreilly.com.

Foreword

If you mention the word embedded to most
 people, they’ll assume you’re talking about reporters in a war zone. Few
 dictionaries—including the canonical Oxford English
 Dictionary—link embedded to computer
 systems. Yet embedded systems underlie nearly all of the electronic
 devices used today, from cell phones to garage door openers to medical
 instruments. By now, it’s nearly impossible to build anything electronic
 without adding at least a small microprocessor and associated
 software.
Vendors produce some nine billion microprocessors every year.
 Perhaps 100 or 150 million of those go into PCs. That’s only about one
 percent of the units shipped. The other 99 percent go into embedded
 systems; clearly, this stealth business represents the very fabric of our
 highly technological society.
And use of these technologies will only increase. Solutions to
 looming environmental problems will surely rest on the smarter use of
 resources enabled by embedded systems. One only has to look at the network
 of 32-bit processors in Toyota’s hybrid Prius to get a glimpse of the
 future.
Though prognostications are difficult, it is absolutely clear that
 consumers will continue to demand ever-brainier products requiring more
 microprocessors and huge increases in the corresponding software.
 Estimates suggest that the firmware content of most products doubles every
 10 to 24 months. While the demand for more code is increasing, our
 productivity rates creep up only slowly. So it’s also clear that the
 industry will need more embedded systems people in order to meet the
 demand.
What skills will these people need? In the PC world, one must be a
 competent C/C++ programmer. But embedded developers must have a deep
 understanding of both the programming languages and the hardware itself;
 no one can design, code, and test an interrupt service routine, for
 instance, without knowing where the interrupts come from, how the hardware
 prioritizes them, the tricks behind servicing that hardware, and
 machine-level details about saving and preserving the system’s context. A
 firmware developer must have detailed insight into the hardware
 implementation of his system’s peripherals before he can write a single
 line of driver code.
In the PC world, the magic of the hardware is hidden behind an
 extensive API. In an embedded system, that API is always written by the
 engineers that are developing the product.
In this book, Michael Barr and Anthony Massa show how the software
 and hardware form a synergistic gestalt. They don’t shy away from the
 intricacies of interrupts and I/O, or priority inversion and
 mutexes.
The authors appropriately demonstrate building embedded systems
 using a variety of open source tools, including the GNU compiler suite,
 which is a standard tool widely used in this industry. eCos and Linux,
 both free/open source products, are used to demonstrate small and large
 operating systems.
The original version of this book used an x86 target board, which
 has been replaced in this edition by an ARM-based product. Coincidently,
 as this volume was in production, Intel made an end-of-life announcement
 for all of its embedded x86 processors. Readers can be assured that the
 ARM will be around for a very long time, as it’s supported by an enormous
 infrastructure of vendors.
The hardware is inexpensive and easily available; the software is
 free. Together they represent the mainstream of embedded systems
 development. Readers can be sure they’ll use these tools in the
 future.
Buy the development kit, read the book, and execute the examples.
 You’ll get the hands-on experience that employers demand: building and
 working with real embedded applications.
Jack Ganssle

Preface

First figure out why you want the students to learn the subject and
 what you want them to know, and the method will result more or less by
 common sense.
Richard Feynman
Embedded software is in almost every electronic device in use today.
 There is software hidden away inside our watches, DVD players, mobile
 phones, antilock brakes, and even a few toasters. The military uses
 embedded software to guide missiles, detect enemy aircraft, and pilot
 UAVs. Communication satellites, deep-space probes, and many medical
 instruments would’ve been nearly impossible to create without it.
Someone has to write all that software, and there are tens of
 thousands of electrical engineers, computer scientists, and other
 professionals who actually do. We are two of them, and we know from our
 personal experiences just how hard it can be to learn the craft.
Each embedded system is unique, and the hardware is highly
 specialized to the application domain. As a result, embedded systems
 programming can be a widely varying experience and can take years to
 master. However, one common denominator across almost all embedded
 software development is the use of the C programming language. This book
 will teach you how to use C in any embedded system.
Even if you already know how to write embedded software, you can
 still learn a lot from this book. In addition to learning how to use C
 more effectively, you’ll also benefit from the detailed explanations and
 source code associated with common embedded software problems. Among the
 advanced topics covered in the book are memory testing and verification,
 device driver design and implementation, real-time operating system
 internals, and code optimization techniques.
Why We Wrote This Book

Each year, globally, approximately one new processor is
 manufactured per person. That’s more than six billion new processors
 each year, fewer than two percent of which are the Pentiums and PowerPCs
 at the heart of new personal computers. You may wonder whether there are
 really that many computers surrounding us. But we bet that within five
 minutes you can probably spot dozens of products in your own home that
 contain processors: televisions, stereos, MP3 players, coffee makers,
 alarm clocks, VCRs, DVD players, microwaves, dishwashers, remote
 controls, bread machines, digital watches, and so on. And those are just
 the personal possessions—many more such devices are used at work. The
 fact that every one of those products contains not only a processor, but
 also software, is the impetus for this book.
One of the hardest things about this subject is knowing when to
 stop writing. Each embedded system is unique, and we have therefore
 learned that there is an exception to every rule. Nevertheless, we have
 tried to boil the subject down to its essence and present the things
 that programmers definitely need to know about embedded systems.

Intended Audience

This is a book about programming embedded systems in C. As such,
 it assumes that the reader already has some programming experience and
 is at least familiar with the syntax of the C language. It also helps if
 you have some familiarity with basic data structures, such as linked
 lists. The book does not assume that you have a great deal of knowledge
 about computer hardware, but it does expect that you are willing to
 learn a little bit about hardware along the way. This is, after all, a
 part of the job of an embedded programmer.
While writing this book, we had two types of readers in mind. The
 first reader is a beginner—much as we were once. He has a background in
 computer science or engineering and a few years of programming
 experience. The beginner is interested in writing embedded software for
 a living but is not sure just how to get started. After reading the
 first several chapters, he will be able to put his programming skills to
 work developing simple embedded programs. The rest of the book will act
 as a reference for the more advanced topics encountered in the coming
 months and years of his career.
The second reader is already an embedded systems programmer. She
 is familiar with embedded hardware and knows how to write software for
 it but is looking for a reference book that explains key topics. Perhaps
 the embedded systems programmer has experience only with assembly
 language programming and is relatively new to C. In that case, the book
 will teach her how to use the C language effectively in an embedded
 system, and the later chapters will provide advanced material on
 real-time operating systems, peripherals, and code optimizations.
Whether you fall into one of these categories or not, we hope this
 book provides the information you are looking for in a format that is
 friendly and easily accessible.

Organization

The book contains 14 chapters and 5 appendixes. The chapters can
 be divided quite nicely into two parts. The first part consists of
 Chapters 1 through 5 and is intended mainly for newcomers to embedded
 systems. These chapters should be read in their entirety and in the
 order that they appear. This will bring you up to speed quickly and
 introduce you to the basics of embedded software development. After
 completing Chapter
 5, you will be ready to develop small pieces of embedded software
 on your own.
The second part of the book consists of Chapters 6 through 14 and
 discusses advanced topics that are of interest to inexperienced and
 experienced embedded programmers alike. These chapters are mostly
 self-contained and can be read in any order. In addition, Chapters 6
 through 12 contain example programs that might be useful to you on a
 future embedded software project.
	Chapter 1,
 Introduction
	Explains the field of embedded programming and lays out the
 parameters of the book, including the reference hardware used for
 examples

	Chapter 2,
 Getting to Know the Hardware
	Shows how to explore the documentation for your hardware and
 represent the components you need to interact with in C

	Chapter 3,
 Your First Embedded Program
	Creates a simple blinking light application that illustrates
 basic principles of embedded programming

	Chapter 4,
 Compiling, Linking, and Locating
	Goes over the ways that embedded systems differ from
 conventional computer systems during program building steps,
 covering such issues as cross-compilers

	Chapter 5,
 Downloading and Debugging
	Introduces the tools you’ll need in order to iron out
 problems in both hardware and software

	Chapter 6,
 Memory
	Describes the different types of memory that developers
 choose for embedded systems and the issues involved in using each
 type

	Chapter 7,
 Peripherals
	Introduces the notion of a device driver, along with other
 coding techniques for working with devices

	Chapter 8,
 Interrupts
	Covers this central area of working with peripherals

	Chapter 9,
 Putting It All Together
	Combines the concepts and code from the previous chapter
 with convenience functions and a main program, to create a
 loadable, testable application

	Chapter 10,
 Operating Systems
	Introduces common operating system concepts, including tasks
 (or threads) and synchronization mechanisms, along with the
 reasons for adding a real-time operating system

	Chapter 11,
 eCos Examples
	Shows how to use some features of the eCos real-time
 operating system

	Chapter 12,
 Embedded Linux Examples
	Accomplishes the same task as the previous chapter, but for
 the embedded Linux operating system

	Chapter 13,
 Extending Functionality
	Describes options for adding buses, networking, and other
 communication features to a system

	Chapter 14,
 Optimization Techniques
	Describes ways to decrease code size, reduce memory use, and
 conserve power

	Appendix A,
 The Arcom VIPER-Lite Development Kit
	Describes the board used for the examples in this book and
 how to order one for yourself

	Appendix B,
 Setting Up Your Software Development Environment
	Gives instructions for loading the software described in
 this book on your host Windows or Linux computer

	Appendix C,
 Building the GNU Software Tools
	Shows you how to compile the GNU development tools

	Appendix D,
 Setting Up the eCos Development Environment
	Shows you how to build an eCos library appropriate for your
 embedded system so you can compile programs to run on your
 system

	Appendix E,
 Setting Up the Embedded Linux Development Environment
	Describes how to install the embedded Linux tools for your
 Arcom system and build and run a program on it

Throughout the book, we have tried to strike a balance between
 specific examples and general information. Whenever possible, we have
 eliminated minor details in the hope of making the book more readable.
 You will gain the most from the book if you view the examples, as we do,
 primarily as tools for understanding important concepts. Try not to get
 bogged down in the details of any one circuit board or chip. If you
 understand the general C programming concepts, you should be able to
 apply them to any embedded system you encounter.
To focus the book’s example code on specific concepts, we
 intentionally left it incomplete—for example, by eliminating certain
 include files and redundant variable declarations. For complete details
 about the code, refer to the full example source code on the book’s web
 site.

Conventions, Typographical and Otherwise

The following typographical conventions are used throughout the
 book:
	Italic
	Indicates names of files, programs, methods, and options
 when they appear in the body of a paragraph. Italic is also used
 for emphasis and to introduce new terms.

	Constant Width
	In examples, indicates the contents of files and the output
 of commands. In regular text, this style indicates keywords,
 functions, variable names, classes, objects, parameters, and other
 code snippets.

	Constant Width
 Bold
	Indicates commands and options to be typed literally. This
 style is used in examples only.

	 Constant Width Bold
 Italic
	Indicates text to be replaced with user values; for example,
 a filename on your system. This style is used in examples
 only.

Tip
This symbol is used to indicate a tip, suggestion, or general
 note.

Warning
This symbol is used to indicate a warning.

Other conventions relate to gender and roles. With respect to
 gender, we have purposefully used both “he” and “she” throughout the
 book. With respect to roles, we have occasionally distinguished between
 the tasks of hardware engineers, embedded software engineers, and
 application programmers. But these titles refer only to roles played by
 individual engineers, and it should be noted that it can and often does
 happen that a single individual fills more than one of these roles on an
 embedded-project team.

Obtaining the Examples Online

This book includes many source code listing, and all but the most
 trivial snippets are available online. These examples are organized by
 chapter number and include build instructions (makefiles) to help you
 recreate each of the executables. The complete archive is available at
 http://examples.oreilly.com/embsys2.

Using Code Examples

This book is here to help you get your job done. In general, you
 may use the code in this book in your programs and documentation. You do
 not need to contact us for permission unless you’re reproducing a
 significant portion of the code. For example, writing a program that
 uses several chunks of code from this book does not require permission.
 Selling or distributing a CD-ROM of examples from O’Reilly books
 does require permission. Answering a question by
 citing this book and quoting example code does not require permission.
 Incorporating a significant amount of example code from this book into
 your product’s documentation does require
 permission.
We appreciate, but do not require, attribution. An attribution
 usually includes the title, author, publisher, and ISBN. For example:
 “Programming Embedded Systems with C and GNU Development
 Tools, Second Edition, by Michael Barr
 and Anthony Massa. Copyright 2007 O’Reilly Media, Inc.,
 978-0-596-00983-0.”
If you feel your use of code examples falls outside fair use or
 the permission given above, feel free to contact us at
 permissions@oreilly.com.

Comments and Questions

Please address comments and questions concerning this book to the
 publisher:
	O’Reilly Media, Inc.
	1005 Gravenstein Highway North
	Sebastopol, CA 95472
	800-998-9938 (in the United States or Canada)
	707-829-0515 (international or local)
	707-829-0104 (fax)

We have a web page for this book, where we list errata, code
 examples, and any additional information. Corresponding files for code
 examples are mentioned on the first line of the example. You can access
 this page at:
	http://www.oreilly.com/catalog/9780596009830

To comment or ask technical questions about this book, send email
 to:
	bookquestions@oreilly.com

For more information about our books, conferences, Resource
 Centers, and the O’Reilly Network, see our web site at:
	http://www.oreilly.com

Safari® Enabled

When you see a Safari® Enabled icon on the cover of your favorite
 technology book, that means the book is available online through the
 O’Reilly Network Safari Bookshelf.
Safari offers a solution that’s better than e-books. It’s a
 virtual library that lets you easily search thousands of top tech books,
 cut and paste code samples, download chapters, and find quick answers
 when you need the most accurate, current information. Try it for free at
 http://safari.oreilly.com.

Personal Comments and Acknowledgments

From Michael Barr

For as long as I can remember, I have been interested in writing
 a book or two. But now that I have written several, I must confess
 that I was naive when I started. I had no idea how much work it would
 take, or how many other people would have to get involved in the
 process. Another thing that surprised me was how easy it was to find a
 willing publisher. I had expected that to be the hard part.
I continue to be thankful to all of the following people for
 sharing their ideas and reviewing my work on the first edition: Toby
 Bennett, Paul Cabler (and the other great folks at Arcom), Mike
 Corish, Kevin D’Souza, Don Davis, Steve Edwards, Mike Ficco, Barbara
 Flanagan, Jack Ganssle, Stephen Harpster, Jonathan Harris, Jim Jensen,
 Mark Kohler, Andy Kollegger, Jeff Mallory, Ian Miller, Henry Neugauss,
 Chris Schanck, Brian Silverman, John Snyder, Jason Steinhorn, Ian
 Taylor, Lindsey Vereen, Jeff Whipple, and Greg Young.
I would also like to thank our editor, Andy Oram. Without his
 enthusiasm for my initial proposal, overabundant patience, and
 constant encouragement, neither the first nor the second edition of
 this book would have been completed.
And, of course, I am extremely thankful to Anthony Massa.
 Anthony’s interest in updating this book with additional materials,
 new hardware and examples, and a change to the GNU tools came at just
 the right time. It has been difficult to watch someone else update a
 first edition that I felt good about and that sold so surprisingly
 well. But the new book is significantly better for Anthony’s tireless
 efforts. This second edition would not exist if not for Anthony’s hard
 work and dedication to the project.

From Anthony Massa

This is my second adventure in the realm of book writing. I
 thought writing a second edition would be a lot less work because most
 of the material was already finished. Boy, was I wrong. The second
 edition was as bit of a struggle and took more effort and time than I
 expected, but I think the book turned out better as a result.
I am very thankful to our editor, Andy Oram. His feedback was
 fantastic, he was a guiding light to push the book to completion, he
 always provided the needed spark to pull things together, and he even
 stepped in to test the code when needed. The second edition of this
 book is much better because of him and would not have been possible
 without his support and determination.
I would like to thank Michael Barr for the opportunity to work
 with him on this project. I know how attached a writer can become to
 such a project; thank you for entrusting me with the new edition.
 Michael provided extremely helpful input and helped me guide the text
 in the right direction. There were some struggles getting things just
 right, but I think that working through them has improved the book.
 Michael is truly a great mind in the embedded software development
 community.
Thanks to the folks at Arcom that so graciously provided the
 very impressive and top-notch development system for this book. A big
 thank you to Glen Middleton, who was always there to make sure I got
 whatever I needed. And thanks to Arcom’s extremely helpful development
 team of Ian Campbell, Martyn Blackwell, and David Vrabel.
I am very fortunate that the following people gave their
 valuable time to help make this book better by sharing ideas and
 reviewing the second edition. This outstanding team was made up of
 Michael Boerner, John Catsoulis, Brian Jepson, Nigel Jones, Alfredo
 Knecht, Jon Masters, Tony Montiel, Andrea Pellegrini, Jack Quinlan,
 Galen Seitz, and David Simon. A special thanks to Jonathan Larmour for
 being there in the clutch when I had a question for you—you came
 through for me, again.
A special thanks to my A-1 review crew of Greg Babbitt, my
 brother Sean Hughes, Brian Kingston, Anthony Taranto, and Joseph
 Terzoli.
I would like to thank two great people for all their support
 throughout my life—Nonno and Nonna. They were always there for me with
 love and guidance.
Thanks to my brother, Laurie, and my sister, Catherine, for
 their support. I am grateful that both of you are in my life.
I would like to give a very special thank you to my Mom and Dad
 for giving me the foundation to succeed. You are very special people,
 are very supportive in everything I do in life, and are always there
 whenever I need anything. I feel blessed that I have you for my
 parents.
I am thankful to my daughters, Katie and Ashley, who are always
 there to cheer me up when I’m down or stressed out. You are precious,
 special girls, and I love you both with all my heart.
Finally, I would like to thank my wonderful wife, Deanna. I know
 this journey was tough at times, but you were always patient and
 supportive. I’m grateful that you are in my life. Thanks for being my
 best friend.

Chapter 1. Introduction

I think there is a world market for maybe five computers.
—Thomas Watson, Chairman of IBM, 1943

There is no reason anyone would want a computer in their
 home.
—Ken Olson, President of Digital Equipment Corporation,
 1977

One of the more surprising developments of the last few decades has
 been the ascendance of computers to a position of prevalence in human
 affairs. Today there are more computers in our homes and offices than
 there are people who live and work in them. Yet many of these computers
 are not recognized as such by their users. In this chapter, we’ll explain
 what embedded systems are and where they are found. We will also introduce
 the subject of embedded programming and discuss what makes it a unique
 form of software programming. We’ll explain why we have selected C as the
 language for this book and describe the hardware used in the
 examples.
What Is an Embedded System?

An embedded system is a combination of
 computer hardware and software—and perhaps additional parts, either
 mechanical or electronic—designed to perform a dedicated function. A
 good example is the microwave oven. Almost every household has one, and
 tens of millions of them are used every day, but very few people realize
 that a computer processor and software are involved in the preparation
 of their lunch or dinner.
The design of an embedded system to perform a dedicated function
 is in direct contrast to that of the personal computer. It too is
 comprised of computer hardware and software and mechanical components
 (disk drives, for example). However, a personal computer is not designed
 to perform a specific function. Rather, it is able to do many different
 things. Many people use the term general-purpose computer to make
 this distinction clear. As shipped, a general-purpose computer is a
 blank slate; the manufacturer does not know what the customer will do
 with it. One customer may use it for a network file server, another may
 use it exclusively for playing games, and a third may use it to write
 the next great American novel.
Frequently, an embedded system is a component within some larger
 system. For example, modern cars and trucks contain many embedded
 systems. One embedded system controls the antilock brakes, another
 monitors and controls the vehicle’s emissions, and a third displays
 information on the dashboard. Some luxury car manufacturers have even
 touted the number of processors (often more than 60, including one in
 each headlight) in advertisements. In most cases, automotive embedded systems are connected by a
 communications network.
It is important to point out that a general-purpose computer interfaces to numerous embedded
 systems. For example, a typical computer has a keyboard and mouse, each
 of which is an embedded system. These peripherals each contain a
 processor and software and is designed to perform a specific function.
 Another example is a modem, which is designed to send and receive
 digital data over an analog telephone line; that’s all it does. And the
 specific function of other peripherals can each be summarized in a
 single sentence as well.
The existence of the processor and software in an embedded system
 may be unnoticed by a user of the device. Such is the case for a
 microwave oven, MP3 player, or alarm clock. In some cases, it would even
 be possible to build a functionally equivalent device that does not
 contain the processor and software. This could be done by replacing the
 processor-software combination with a custom integrated circuit (IC)
 that performs the same functions in hardware. However, the processor and
 software combination typically offers more flexibility than a hardwired
 design. It is generally much easier, cheaper, and less power intensive
 to use a processor and software in an embedded system.
History and Future

Given the definition of embedded systems presented earlier in this
 chapter, the first such systems could not possibly have appeared
 before 1971. That was the year Intel introduced the world’s first
 single-chip microprocessor. This chip, the 4004, was designed for
 use in a line of business calculators produced by the Japanese company
 Busicom. In 1969, Busicom asked Intel to design a set of custom
 integrated circuits, one for each of its new calculator models. The
 4004 was Intel’s response. Rather than design custom hardware for each
 calculator, Intel proposed a general-purpose circuit that could be
 used throughout the entire line of calculators. This general-purpose
 processor was designed to read and execute a set of
 instructions—software—stored in an external memory chip. Intel’s idea
 was that the software would give each calculator its unique set of
 features and that this design style would drive demand for its core
 business in memory chips.
The microprocessor was an overnight success, and its use
 increased steadily over the next decade. Early embedded applications
 included unmanned space probes, computerized traffic lights, and
 aircraft flight control systems. In the 1980s and 1990s, embedded
 systems quietly rode the waves of the microcomputer age and brought
 microprocessors into every part of our personal and professional
 lives. Most of the electronic devices in our kitchens (bread machines,
 food processors, and microwave ovens), living rooms (televisions,
 stereos, and remote controls), and workplaces (fax machines, pagers,
 laser printers, cash registers, and credit card readers) are embedded
 systems; over 6 billion new microprocessors are used each year. Less
 than 2 percent (or about 100 million per year) of these
 microprocessors are used in general-purpose computers.
It seems inevitable that the number of embedded systems will
 continue to increase rapidly. Already there are promising new embedded
 devices that have enormous market potential: light switches and
 thermostats that are networked together and can be controlled
 wirelessly by a central computer, intelligent air-bag systems that
 don’t inflate when children or small adults are present, medical
 monitoring devices that can notify a doctor if a patient’s
 physiological conditions are at critical levels, and dashboard
 navigation systems that inform you of the best route to your
 destination under current traffic conditions. Clearly, individuals who
 possess the skills and the desire to design the next generation of
 embedded systems will be in demand for quite some time.

Real-Time Systems

 One subclass of embedded systems deserves an
 introduction at this point. A real-time system
 has timing constraints. The function of a real-time system is thus
 partly specified in terms of its ability to make certain calculations
 or decisions in a timely manner. These important calculations or
 activities have deadlines for completion.
The crucial distinction among real-time systems lies in what
 happens if a deadline is missed. For example, if the real-time system
 is part of an airplane’s flight control system, the lives of the
 passengers and crew may be endangered by a single missed deadline.
 However, if instead the system is involved in satellite communication,
 the damage could be limited to a single corrupt data packet (which may
 or may not have catastrophic consequences depending on the application
 and error recovery scheme). The more severe the consequences, the more
 likely it will be said that the deadline is “hard” and thus, that the
 system is a hard real-time system. Real-time systems at
 the other end of this continuum are said to have “soft” deadlines—a
 soft real-time system. Figure 1-1 shows some
 examples of hard and soft real-time systems.
[image: A range of example real-time systems]

Figure 1-1. A range of example real-time systems

Real-time system design is not simply about speed. Deadlines for
 real-time systems vary; one deadline might be in a millisecond, while
 another is an hour away. The main concern for a real-time system is
 that there is a guarantee that the hard deadlines of the system are
 always met. In order to accomplish this the system must be
 predictable.
The architecture of the embedded software, and its interaction
 with the system hardware, play a key role in ensuring that real-time
 systems meet their deadlines. Key software design issues include
 whether polling is sufficient or interrupts should be used, and what
 priorities should be assigned to the various tasks and interrupts.
 Additional forethought must go into understanding the worst-case
 performance requirements of the specific system activities.
All of the topics and examples presented in this book are
 applicable to the designers of real-time systems. The designer of a
 real-time system must be more diligent in his work. He must guarantee
 reliable operation of the software and hardware under all possible
 conditions. And, to the degree that human lives depend upon the
 system’s proper execution, this guarantee must be backed by
 engineering calculations and descriptive paperwork.

Variations on a Theme

Unlike software designed for general-purpose computers, embedded
 software cannot usually be run on other embedded systems without
 significant modification. This is mainly because of the incredible
 variety of hardware in use in embedded systems. The hardware in each
 embedded system is tailored specifically to the application, in order to
 keep system costs low. As a result, unnecessary circuitry is eliminated
 and hardware resources are shared wherever possible.
In this section, you will learn which hardware features are common
 across all embedded systems and why there is so much variation with
 respect to just about everything else. Later in the book, we will look
 at some techniques that can be used to minimize the impact of software
 changes so they are not needed throughout all layers of the
 software.
Common System Components

By definition, all embedded systems contain a processor and software, but
 what other features do they have in common? Certainly, in order to have software, there must be a
 place to store the executable code and temporary storage for runtime
 data manipulation. These take the form of read-only memory (ROM) and
 random access memory (RAM), respectively;
 most embedded systems have some of each. If only a small amount of
 memory is required, it might be contained within the same chip as the
 processor. Otherwise, one or both types of memory reside in external
 memory chips.
 All embedded systems also contain some type of inputs
 and outputs. For example, in a microwave oven, the inputs are the
 buttons on the front panel and a temperature probe, and the outputs
 are the human-readable display and the microwave radiation. The
 outputs of the embedded system are almost always a function of its
 inputs and several other factors (elapsed time, current temperature,
 etc.). The inputs to the system usually take the form of sensors and
 probes, communication signals, or control knobs and buttons. The
 outputs are typically displays, communication signals, or changes to
 the physical world. See Figure 1-2 for a
 general example of an embedded system.
[image: A generic embedded system]

Figure 1-2. A generic embedded system

With the exception of these few common features, the rest of the
 embedded hardware is usually unique and, therefore, requires unique
 software. This variation is the result of many competing design
 criteria.
The software for the generic embedded system shown in Figure 1-2 varies
 depending on the functionality needed. The hardware is the blank
 canvas, and the software is the paint that we add in order to make the
 picture come to life. Figure 1-3 gives just
 a couple of possible high-level diagrams that could be implemented on
 such a generic embedded system.
[image: (a) Basic embedded software diagram and (b) a more complex embedded software diagram]

Figure 1-3. (a) Basic embedded software diagram and (b) a more complex
 embedded software diagram

Both the basic embedded software diagram in Figure 1-3(a) and the
 more complex embedded software diagram in Figure 1-3(b) contain
 very similar blocks. The hardware block is common in both
 diagrams.
The device drivers are embedded software modules that
 contain the functionality to operate the individual hardware devices.
 The reason for the device driver software is to remove the need for
 the application to know how to control each piece of hardware. Each
 individual device driver would typically need to know only how to
 control its hardware device. For instance, for a microwave oven,
 separate device drivers control the keypad, display, temperature
 probe, and radiation control.
If more functionality is required, it is sometimes necessary to
 include additional layers in the embedded software to assist with this
 added functionality. In this example, the complex diagram includes a
 real-time operating system
 (RTOS) and a networking stack. The RTOS can help
 the programmer separate the application’s functionality into distinct
 tasks for better organization of the application software and a more
 responsive system. We will investigate the use of an RTOS later in
 this book. The network stack also adds to the functionality of the
 basic embedded system; a microwave oven might use it to pop up a
 message on your desktop computer when your lunch is ready.
The responsibilities of the application software layer is the
 same in both the basic and the complex embedded software diagrams. In
 a microwave oven, the application processes the different inputs and
 controls the outputs based on what the user commands it to do.
You’ll notice that the software in Figure 1-3 is
 represented by discrete blocks stacked on top of one another with
 fixed borders. This is done deliberately, to indicate the separation
 of the different software functional layers that make up the complete
 embedded software system. Later, we will break down these blocks
 further to show you how you can keep your embedded software clean,
 easy to read, and portable. Keeping these software layers distinct,
 with well-defined methods that neighboring layers can use to
 communicate, helps you write good embedded software.

Requirements That Affect Design Choices

Each embedded system must meet a completely different set of
 requirements, any or all of which can affect the compromises and
 trade-offs made during the development of the product. For example, if
 the system must have a production cost of less than $10, other
 desirable traits—such as processing power and system reliability—might
 need to be sacrificed in order to meet that goal.
Of course, production cost is only one of the possible
 constraints under which embedded hardware designers work. Other common
 design requirements include:
	Processing power
	The workload that the main chip can handle. A common
 way to compare processing power is the millions of instructions per second
 (MIPS) rating. If two otherwise similar processors have ratings
 of 25 MIPS and 40 MIPS, the latter is said to be the more
 powerful. However, other important features of the processor
 need to be considered. One is the register width, which typically ranges from 8 to
 64 bits. Today’s general-purpose computers use 32- and 64-bit
 processors exclusively, but embedded systems are still mainly
 built with less costly 4-, 8-, and 16-bit processors.

	Memory
	The amount of memory (ROM and RAM) required to hold the
 executable software and the data it manipulates. Here the
 hardware designer must usually make his best estimate up front
 and be prepared to increase or decrease the actual amount as the
 software is being developed. The amount of memory required can
 also affect the processor selection. In general, the register
 width of a processor establishes the upper limit of the amount
 of memory it can access (e.g., a 16-bit address register can
 address only 64 KB (216
) memory locations). [1]

	Number of units
	The expected production run. The trade-off between
 production cost and development cost is affected
 most by the number of units expected to be produced and sold.
 For example, it rarely makes sense to develop custom hardware
 components for a low-volume product.

	Power consumption
	The amount of power used during operation. This is extremely
 important, especially for battery-powered portable devices. A
 common metric used to compare the power requirements of portable
 devices is mW/MIPS (milliwatts per MIPS); the greater this
 value, the more power is required to get work done. Lower power
 consumption can also lead to other favorable device
 characteristics, such as less heat, smaller batteries, less
 weight, smaller size, and simpler mechanical design.

	Development cost
	The cost of the hardware and software design
 processes, known as nonrecurring engineering (NRE). This is
 a fixed, one-time cost, so on some projects, money is no object
 (usually for high-volume products), whereas on other projects,
 this is the only accurate measure of system cost (for the
 production of a small number of units).

	Lifetime
	How long the product is expected to stay in use. The
 required or expected lifetime affects all sorts of design
 decisions, from the selection of hardware components to how much
 system development and production is allowed to cost. How long
 must the system continue to function (on average)? A month, a
 year, or a decade?

	Reliability
	How reliable the final product must be. If it is a
 children’s toy, it may not have to work properly 100 percent of
 the time, but if it’s an antilock braking system for a car, it
 had sure better do what it is supposed to do each and every
 time.

In addition to these general requirements, each system has
 detailed functional requirements. These are the things that give the
 embedded system its unique identity as a microwave oven, pacemaker, or
 pager.
Table 1-1
 illustrates the range of typical values for each of the previous design
 requirements. The “low,” “medium,” and “high” labels are meant for
 illustration purposes and should not be taken as strict delineations.
 An actual product has one selection from each row. In some cases, two
 or more of the criteria are linked. For example, increases in required
 processing power could lead to increased production costs. Conversely,
 we might imagine that the same increase in processing power would have
 the effect of decreasing the development costs—by reducing the
 complexity of the hardware and software design. So the values in a
 particular column do not necessarily go together.
Table 1-1. Common design requirements for embedded systems
	Criterion	Low	Medium	High
	Processor	4- or 8-bit	16-bit	32- or 64-bit
	Memory	< 64 KB	64 KB to 1 MB	> 1 MB
	Development cost	< $100,000	$100,000 to $1,000,000	> $1,000,000
	Production cost	< $10	$10 to $1,000	> $1,000
	Number of units	< 100	100 to 10,000	> 10,000
	Power consumption	> 10 mW/MIPS	1 to 10 mW/MIPS	< 1 mW/MIPS
	Lifetime	Days, weeks, or months	Years	Decades
	Reliability	May occasionally fail	Must work reliably	Must be fail-proof

[1] The narrower the register width, the more likely it is
 that the processor employs tricks such as multiple address
 spaces to support more memory. There are still embedded
 systems that do the job with a few hundred bytes. However,
 several thousand bytes is a more likely minimum, even on an
 8-bit processor.

Embedded Design Examples

To demonstrate the variation in design requirements from one embedded system to the next,
 as well as the possible effects of these requirements on the hardware,
 we will now take some time to describe three embedded systems in some
 detail. Our goal is to put you in the system designer’s shoes for a few
 moments before narrowing our discussion to embedded software
 development.
Digital Watch

At the current peak of the evolutionary path that began
 with sundials, water clocks, and hourglasses is the digital watch.
 Among its many features are the presentation of the date and time
 (usually to the nearest second), the measurement of the length of an
 event to the nearest hundredth of a second, and the generation of an
 annoying little sound at the beginning of each hour. As it turns out,
 these are very simple tasks that do not require very much processing
 power or memory. In fact, the only reason to employ a processor at all is to support a range of models and
 features from a single hardware design.
The typical digital watch contains a simple, inexpensive 4-bit
 processor. Because processors with such small registers cannot address
 very much memory, this type of processor usually contains its own
 on-chip ROM. And, if there are sufficient registers available, this
 application may not require any RAM at all. In fact, all of the
 electronics— processor, memory, counters, and real-time clocks—are
 likely to be stored in a single chip. The only other hardware elements
 of the watch are the inputs (buttons) and outputs (display and
 speaker).
A digital watch designer’s goal is to create a reasonably
 reliable product that has an extraordinarily low production cost. If, after production, some watches are
 found to keep more reliable time than most, they can be sold under a
 brand name with a higher markup. For the rest, a profit can still be
 made by selling the watch through a discount sales channel. For
 lower-cost versions, the stopwatch buttons or speaker could be
 eliminated. This would limit the functionality of the watch but might
 require few or even no software changes. And, of course, the
 cost of all this development effort may be fairly high,
 because it will be amortized over hundreds of thousands or even
 millions of watch sales.
In the case of the digital watch, we see that software,
 especially when carefully designed, allows enormous flexibility in
 response to a rapidly changing and highly competitive market.

Video Game Player

 When you pull the Sony PlayStation 2 out from your
 entertainment center, you are preparing to use an embedded system. In
 some cases, these machines are more powerful than personal computers
 of the same generation. Yet video game players for the home market are
 relatively inexpensive compared with personal computers. It is the
 competing requirements of high processing power and low production
 cost that keep video game designers awake at night.
The companies that produce video game players don’t usually
 care how much it costs to develop the system as long as the production
 costs of the resulting product are low—typically around a hundred
 dollars. They might even encourage their engineers to design custom
 processors at a development cost of millions of dollars each. So,
 although there might be a 64-bit processor inside your video game
 player, it is probably not the same processor that would be found in a
 general-purpose computer. In all likelihood, the processor is highly
 specialized for the demands of the video games it is intended to
 play.
Because production cost is so crucial in the home video game
 market, the designers also use tricks to shift the costs around. For
 example, one tactic is to move as much of the memory and other peripheral electronics as possible off
 of the main circuit board and onto the game cartridges.
 [2] This helps to reduce the cost of the game
 player but increases the price of every game. So, while the system
 might have a powerful 64-bit processor, it might have only a few
 megabytes of memory on the main circuit board. This is just enough
 memory to bootstrap the machine to a state from which it can access
 additional memory on the game cartridge.
We can see from the case of the video game player that in
 high-volume products, a lot of development effort can be sunk into
 fine-tuning every aspect of a product.

Mars Rover

In 1976, two unmanned spacecrafts arrived on the planet Mars. As part
 of their mission, they were to collect samples of the Martian surface,
 analyze the chemical makeup of each, and transmit the results to
 scientists back on Earth. Those Viking missions were amazing.
 Surrounded by personal computers that must be rebooted occasionally,
 we might find it remarkable that more than 30 years ago, a team of
 scientists and engineers successfully built two computers that
 survived a journey of 34 million miles and functioned correctly for
 half a decade. Clearly, reliability was one of the most important requirements
 for these systems.
What if a memory chip had failed? Or the software had contained
 bugs that had caused it to crash? Or an electrical connection had
 broken during impact? There is no way to prevent such problems from
 occurring, and on other space missions, these problems have proved
 ruinous. So, all of these potential failure points and many others had
 to be eliminated by adding redundant circuitry or extra functionality:
 an extra processor here, special memory diagnostics there, a hardware
 timer to reset the system if the software got stuck, and so on.
More recently, NASA launched the Pathfinder mission. Its primary goal was to demonstrate
 the feasibility of getting to Mars on a budget. Of course, given the
 advances in technology made since the mid-70s, the designers didn’t
 have to give up too much to accomplish this. They might have reduced
 the amount of redundancy somewhat, but they still gave Pathfinder more
 processing power and memory than Viking. The Mars
 Pathfinder was actually two embedded systems: a landing craft and a
 rover. The landing craft had a 32-bit processor and 128 MB of RAM; the
 rover, on the other hand, had only an 8-bit processor and 512 KB of
 RAM. These choices reflect the different functional requirements of
 the two systems. Production cost probably wasn’t much of an issue in
 either case; any investment would have been worth an improved
 likelihood of
 success.

[2] For example, Atari and Nintendo have designed some of their
 systems this way.

Life As an Embedded Software Developer

Let’s now take a brief look at some of the qualities of embedded
 software that set embedded developers apart from other types of software
 developers. An embedded software developer is the one who gets her hands
 dirty by getting down close to the hardware.
Embedded software development, in most cases, requires
 close interaction with the physical world—the hardware platform. We say
 “in most cases” because there are very large embedded systems that
 require individuals to work solely on the application-layer software for
 the system. These application developers typically do not have any
 interaction with the hardware. When designed properly, the hardware
 device drivers are abstracted away from the actual hardware so that a
 developer writing software at the application level doesn’t know how a
 string gets output to the display, just that it happens when a
 particular routine is called with the proper parameters.
	Hardware knowledge
	The embedded software developer must become intimately
 familiar with the integrated circuits, the boards and buses, and
 the attached devices used in order to write solid embedded
 software (also called firmware). Embedded developers shouldn’t
 be afraid to dive into the schematics, grab an oscilloscope probe,
 and start poking around the circuit to find out what is going
 on.

	Efficient code
	Because embedded systems are typically designed with the
 least powerful and most cost-effective processor that meets the
 performance requirements of the system, embedded software
 developers must make every line of code count. The ability to
 write efficient code is a great quality to possess as a firmware
 developer.

	Peripheral interfaces
	At the lowest level, firmware is very
 specialized, because each component or circuit has its own
 activity to perform and, furthermore, its own way of performing
 that activity. Embedded developers need to know how to communicate
 with the different devices or peripherals in
 order to have full control of the devices in the system. Reacting
 to stimuli from external peripherals is a large part of embedded
 software development.
For example, in one microwave oven, the firmware might get
 the data from a temperature sensor by reading an 8-bit register in
 an external analog-to-digital converter; in another system, the
 data might be extracted by controlling a serial bus that
 interfaces to the external sensor circuit via a single
 wire.

	Robust code
	There are expectations that embedded systems will run for
 years in most cases. This is not a typical requirement for
 software applications written for a PC or Mac. Now, there are
 exceptions. However, if you had to keep unplugging your microwave
 in order to get it to heat up your lunch for the proper amount of
 time, it would probably be the last time you purchased a product
 from that company.

	Minimal resources
	Along the same lines of creating a more robust system,
 another large differentiator between embedded software and other
 types of software is resource constraints. The rules for writing
 firmware are different from the rules for writing software for a
 PC. Take memory allocation, for instance. An application for
 a modern PC can take for granted that it will have access to
 practically limitless resources. But in an embedded system, you
 will run out of memory if you do not plan ahead and design the
 software properly.
An embedded software developer must closely manage
 resources, from memory to processing power, so that the system
 operates up to specification and so failures don’t occur. For
 example, using standard dynamic memory allocation functions can
 cause fragmentation, and eventually the system may cease to
 operate. This requires a reboot since you have no place to store
 incoming data.
Quite often, in embedded software, a developer will allocate
 all memory needed by the system at initialization time. This is
 safer than using dynamic memory allocation, though it cannot
 always be done.

	Reusable software
	As we mentioned before , code portability or
 code reuse—writing software so that it can be
 moved from hardware platform to hardware platform—is very useful
 to aid transition to new projects. This cannot always be done; we
 have seen how individual each embedded system is. Throughout this
 book, we will look at basic methods to ensure that your embedded
 code can be moved more easily from project to project. So if your
 next project uses an LCD for which you’ve previously developed a
 driver, you can drop in the old code and save some precious time
 in the schedule.

	Development tools
	The tools you will use throughout your career as an
 embedded developer will vary from company to company and often
 from project to project. This means you will need to learn new
 tools as you continue in your career. Typically, these tools are
 not as powerful or as easy to use as those used in PC software
 development.
The debugging tools you might come across could vary
 from a simple LED to a full-blown in-circuit emulator (ICE). This requires
 you, as the firmware developer, and the one responsible for
 debugging your code, to be very resourceful and have a bag of
 techniques you can call upon when the debug environment is
 lacking. Throughout the book, we will present different “low-level
 software tools” you can implement with little impact on the
 hardware design.

These are just a few qualities that separate embedded software
 developers from the rest of the pack. We will investigate these and
 other techniques that are specific to embedded software development as
 we continue.

The C Language: The Lowest Common Denominator

One of the few constants across most embedded systems is the use of the C
 programming language. More than any other, C has become the language of
 embedded programmers. This has not always been the case, and it will not
 continue to be so forever. However, at this time, C is the closest thing
 there is to a standard in the embedded world. In this section, we’ll
 explain why C has become so popular and why we have chosen it as the
 primary language of this book.
Because successful software development so frequently depends on
 selecting the best language for a given project, it is surprising to
 find that one language has proven itself appropriate for both 8-bit and
 64-bit processors; in systems with bytes, kilobytes, and megabytes of
 memory; and for development teams that range from one to a dozen or more
 people. Yet this is precisely the range of projects in which C has
 thrived.
The C programming language has plenty of advantages. It is small
 and fairly simple to learn, compilers are available for almost every
 processor in use today, and there is a very large body of experienced C
 programmers. In addition, C has the benefit of processor-independence,
 which allows programmers to concentrate on algorithms and applications
 rather than on the details of a particular processor architecture.
 However, many of these advantages apply equally to other high-level
 languages. So why has C succeeded where so many other languages have
 largely failed?
Perhaps the greatest strength of C—and the thing that sets it
 apart from languages such as Pascal and FORTRAN—is that it is a very
 “low-level” high-level language. As we shall see throughout the book, C
 gives embedded programmers an extraordinary degree of direct hardware
 control without sacrificing the benefits of high-level languages. The
 “low-level” nature of C was a clear intention of the language’s
 creators. In fact, Brian W. Kernighan and Dennis M. Ritchie included the
 following comment in the opening pages of their book The C
 Programming Language (Prentice Hall):
C is a relatively “low level” language. This characterization is
 not pejorative; it simply means that C deals with the same sort of
 objects that most computers do. These may be combined and moved about
 with the arithmetic and logical operators implemented by real
 machines.
Few popular high-level languages can compete with C in the
 production of compact, efficient code for almost all processors. And, of
 these, only C allows programmers to interact with the underlying
 hardware so easily.
Other Embedded Languages

Of course, C is not the only language used by embedded
 programmers. At least four other languages—assembly, C++, Forth, and
 Ada—are worth mentioning in greater detail.
In the early days, embedded software was written exclusively in
 the assembly language of the target processor. This gave
 programmers complete control of the processor and other hardware, but
 at a price. Assembly languages have many disadvantages, not the least
 of which are higher software development costs and a lack of code
 portability. In addition, finding skilled assembly programmers has
 become much more difficult in recent years. Assembly is now used
 primarily as an adjunct to the high-level language, usually only for
 startup system code or those small pieces of code that must be
 extremely efficient or ultra-compact, or cannot be written in any
 other way.
Forth is efficient but extremely low-level and unusual;
 learning to get work done with it takes more time than with C.
C++ is an object-oriented superset of C that is
 increasingly popular among embedded programmers. All of the core
 language features are the same as C, but C++ adds new functionality
 for better data abstraction and a more object-oriented style of
 programming. These new features are very helpful to software
 developers, but some of them reduce the efficiency of the executable
 program. So C++ tends to be most popular with large development teams,
 where the benefits to developers outweigh the loss of program
 efficiency.
Ada is also an object-oriented language, though
 substantially different from C++. Ada was originally designed by the
 U.S. Department of Defense for the development of mission-critical
 military software. Despite being twice accepted as an international
 standard (Ada83 and Ada95), it has not gained much of a foothold
 outside of the defense and aerospace industries. And it has been
 losing ground there in recent years. This is unfortunate because the
 Ada language has many features that would simplify embedded software
 development if used instead of C or C++.

Choosing a Language for the Book

A major question facing the authors of a book such as this
 one is which programming language or languages to discuss. Attempting
 to cover too many languages might confuse the reader or detract from
 more important points. On the other hand, focusing too narrowly could
 make the discussion unnecessarily academic or (worse for the authors
 and publisher) limit the potential market for the book.
Certainly, C must be the centerpiece of any book about embedded
 programming, and this book is no exception. All of the sample code is
 written in C, and the discussion will focus on C-related programming
 issues. Of course, everything that is said about C programming applies
 equally to C++. We will use assembly language only when a
 particular programming task cannot be accomplished in any other
 way.
We feel that this focus on C with a brief introduction to
 assembly most accurately reflects the way embedded software is
 actually developed today and the way it will continue to be developed
 in the near term. This is why examples in this edition do not use C++.
 We hope that this choice will keep the discussion clear, provide
 information that is useful to people developing actual systems, and
 include as large a potential audience as possible. However, we do
 cover the impact of C++ on embedded software in Chapter 14.
Fixed Width Integers: Sometimes Size Matters
Computer programmers don’t always care how wide an integer is when held by
 the processor. For example, when we write:
int i;

for (i = 0; i < N; i++)
{
 ...
}
we generally expect our compiler to generate the most
 efficient code possible, whether that makes the loop counter an 8-,
 16-, 32-, or even 64-bit quantity.
As long as the integer is wide enough to hold the maximum
 value (N, in the example just
 shown), we want the processor to be used in the most efficient way.
 And that’s precisely what the ISO C and C++ standards tell the
 compiler writer to do: choose the most efficient
 integer size that will fulfill the specific request. Because of the
 variable size of integers on different processors and the
 corresponding flexibility of the language standards, the previous
 code may result in a 32-bit integer with one compiler but a 16-bit
 integer with another—possibly even when the very same processor is
 targeted.
But in many other programming situations, integer size
 matters. Embedded programming, in particular, often involves
 considerable manipulation of integer data of fixed widths.
In hindsight, it sure would’ve been nice if the authors of the
 C standard had defined some standard names and made compiler
 providers responsible for providing the appropriate typedef for each fixed-size integer type in a library
 header file. Alternatively, the C standard could have specified that
 each of the types short, int, and long has a standard width on all
 platforms; but that might have had an impact on performance,
 particularly on 8-bit processors that must implement 16- and 32-bit
 additions in multi-instruction sequences.
Interestingly, it turns out the 1999 update to the International Organization for Standardization’s (ISO)
 C standard (also referred to as C99) did just
 that. The ISO has finally put the weight of its standard behind a
 preferred set of names for signed and unsigned fixed-size integer
 data types. The newly defined type names are:
8-bit: int8_t, uint8_t
16-bit: int16_t, uint16_t
32-bit: int32_t, uint32_t
64-bit: int64_t, uint64_t
According to the updated standard, this required set of
 typedefs (along with some others) is to be defined by compiler
 vendors and included in the new header file stdint.h.
If you’re already using a C99-compliant compiler, this new language feature
 makes that declaration of a fixed-width integer variable or a
 register as straightforward as using one of the new type
 names.
Even if you don’t have an updated compiler, the inclusion of
 these names in the C99 standard suggests that it’s time to update
 your coding standards and practices. Love them or hate them, at
 least these new names are part of an accepted international
 standard. As a direct result, it will be far easier in the future to
 port C programs that require fixed-width integers to other compilers
 and target platforms. In addition, modules that are reused or sold
 with source can be more easily understood when they conform to
 standard naming and typing conventions such as those in C99.
If you don’t have a C99-compliant compiler yet, you’ll have to
 write your own set of typedefs, using compiler-specific knowledge of
 the char, short, and long primitive widths.
For the examples in this book, we use the C99 style for
 variable types that require specific widths. We have generated our
 own stdint.h that is specific
 to the gcc variant targeting the ARM XScale
 processor. Our file may not work in other build environments.

Consistent Coding Practices

Whatever language is selected for a given project, it is
 important to institute some basic coding guidelines or styles to be followed by all
 developers on a project. Coding guidelines can make reading code
 easier, both for you and for the next developer that has to inherit
 your code. Understanding exactly what a particular software routine is
 doing is difficult enough without having to fight through several
 changes in coding style that emerged because a number of different
 developers touched the same routine over the years, each leaving his
 own unique mark. Stylistic issues, such as how variables are named or
 where the curly brace should reside, can be very personal to some
 developers.
There are a number of decent coding standards floating around on
 the Internet. One standard we like is located online at http://www.ganssle.com and was
 developed by Jack Ganssle. Another that we like, by Miro Samek, is located online at http://www.quantum-leaps.com.
These standards give you guidelines on everything from directory
 structures to variable names and are a great starting point; you can
 incorporate into them the styles that you find necessary and helpful.
 If a coding standard for the entire team is not something you can sell
 your company on, use one yourself and stick to it.

End of sample

 To search for additional titles please go to

 http://search.overdrive.com.

OEBPS/httpatomoreillycomsourceoreillyimages70240.png
200V
500us

Indelay ms routine

OEBPS/httpatomoreillycomsourceoreillyimages70298.png
= H

Switch Lamp.

Battery (9 volt)

i
T

OEBPS/httpatomoreillycomsourceoreillyimages70272.png
Preemption Relinguish

Task Ccompletes ts vork Task B completes its work

Task Cready torun

OEBPS/httpatomoreillycomsourceoreillyimages70230.png
ﬁ W
armel
GNULinker (1d)
.

blink.map blink.exe

viperlted

OEBPS/httpatomoreillycomsourceoreillyimages70202.png
Application

Real-time.
Application Operating N;m’k
System
Device rivers Device rivers
Harduare Hardware

OEBPS/httpatomoreillycomsourceoreillyimages70224.png
UC++ I UC++ I Assembly I

v v v
Compiler . Assembler '
Object | Object | Object |

E¢

Relocatable

Executable

If

OEBPS/httpatomoreillycomsourceoreillyimages70266.png
Command-

Moritor and Control Line
Processing Loop Interface
Module

BuzzerDriver | LED Driver | Serial Driver

Software

Hardware Arcom Board Hardware

OEBPS/oreilly_large.gif
O’REILLY

OEBPS/httpatomoreillycomsourceoreillyimages70222.png
Bit

GPDRO Register
(0x40E0000C)

30

“

PINT

PIN3D

PN

PIN2E

PINZT

PINZ6

PIN2S
PINE
N2
PINZI
PIN2D

PINTS

PINTE

PINTT

PINTG

PINTS

PINTS

PINTS

PINTZ
PIN

PINIO

PINE
PINT

PING
PINS.
PN

PINZ
PINT

PIND

Green LED GPIO Pin

OEBPS/httpatomoreillycomsourceoreillyimages70284.png.jpg
e e e ®

i

s74.J0 60 0000 of
sP2|sp7l0 © © © © © © Ofcours

LENO Leyi (€020
SRS

Mol 0000000
i

fon

ol coooooe0
swo]l coo0o0000
ol cooo000

‘.Oi‘

/ +8¥.1 13 15 17" GND 01 03 08 07 s
45V 10 12 14 (6 00 TD 02 04 06 Vil] ©2005 [AIBICID TH

Button SWO

OEBPS/httpatomoreillycomsourceoreillyimages70238.png
Input 1

Input 2
e I —
Inputs

Input 9 |
Input4

time

OEBPS/httpatomoreillycomsourceoreillyimages70296.png

OEBPS/httpatomoreillycomsourceoreillyimages70218.png
reset:
; Reset Code
: (inassembly)
mp hw_init

hw_init.
+ Hardware

;Initialization
(inassembly)

jmpstartup
startup:
; Startup Code
+{inassembly)

call main
main)

1¥The (/C++ program startshere. */

}

OEBPS/httpatomoreillycomsourceoreillyimages70292.png
Logic Logic
block block
Switch
matrix
Logic Logic
block block

OEBPS/httpatomoreillycomsourceoreillyimages70252.png
Processor

UART R5-2 01089
Perpheral Transceiver Connector

OEBPS/httpatomoreillycomsourceoreillyimages70204.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages70232.png
Implement Code
Buid Code
Download and
Debug

OEBPS/httpatomoreillycomsourceoreillyimages70270.png
Preemption Relinquish

Task B ready to run Task B completes ts work

OEBPS/httpatomoreillycomsourceoreillyimages70286.png
SDA (data)

Microprocessor

SCL (clock)

Peripheral | [Peripheral | [Peripheral
Device 1 Device 2 Device n

OEBPS/httpatomoreillycomsourceoreillyimages212705.jpg
Thinking Inside the Box

Programming

Embedded
Systems

in C and C++

O'REILLY" Michael Barr

OEBPS/httpatomoreillycomsourceoreillyimages70234.png
main() {
int a=98,b;

->b=a-32;

}h-b+5/9.0; Embedded System

-

Target

Communications Link

OEBPS/httpatomoreillycomsourceoreillyimages70278.png
Firstdeadline t; Firstdeadiine t; Second deadiine t;

S0 6 70 8 % 100 110

t; completes before tymisses 1, completes before
b edine firstdeadine second deadline

OEBPS/httpatomoreillycomsourceoreillyimages70220.png.jpg
YIRE)

)=
T
=
|
£

> 8

Y&/ 45yt 1315 17" GhD 9103 08 07
45V 10 12 14 |6 00 TD 02 04 06

OEBPS/httpatomoreillycomsourceoreillyimages70264.png
Bit

OSMRO Register
(0x40A00000)

Bi

0SCRRegister
(0x40A00010)

Bit

0SSR Register
(0x40A00014)

Bit

OIER Register
(0x40A00010)

3130292827 26252423 222120191817 1615141312110 9 8 3210
Timer Match Value

313029282726252423 222120191817 1615141312110 9 8 3210
Timer Count Value

313029 2827 26 25 24 23 22 21 20 19 18 17 16 15 14 13 121110 9 8 3210

Resned 2lalel

313029 28 27 26252423 22212019 18 17 16 15 14 13 121110 9 8 3210

Reserved

I
T2E

TIIE

TOE

OEBPS/httpatomoreillycomsourceoreillyimages70274.png

OEBPS/httpatomoreillycomsourceoreillyimages70254.png
Peripheral A Peripheral B

INT0
INT1
INT2
INT3

‘ Peripheral A Peripheral B

Interrupt Controller

Processor Processor

A B

OEBPS/httpatomoreillycomsourceoreillyimages70248.png
Memory

Processor

Shorted Wire

Memory

Processor

[[=—

Open Wire

OEBPS/httpatomoreillycomsourceoreillyimages70210.png
Component

Reference
Designator Prefix

Resistor

R

Gapacitor

Diode

Gystal

Inductor

Power

Ground

OEBPS/httpatomoreillycomsourceoreillyimages70216.png
OxFFFFFFFF
0x51000000

| Uneed |
{6ME) 0x50000000
0x44000000
Peripherals 0640000000
[Unsed |

0x0800030F

SMSC Ethernet
Controller

0x08000300

0x04000000
SORAM

(64 MB)

0x00000000

OEBPS/httpatomoreillycomsourceoreillyimages70208.png.jpg
Computer —> Network

Ethernet
port

(SMSC Ethernet
controller)

535Nq eJRP PUE SSAPPY

PXA255
XScale
processor

snq¥0Ld

Parallel port

Printer

OEBPS/httpatomoreillycomsourceoreillyimages70214.png

OEBPS/httpatomoreillycomsourceoreillyimages70226.png
> compile foo.c
> assenble bar.asn
> link foo.o bar.o
> locate foo.exe

The development tools that build
the embedded software run ona
general-purpose computer

Dﬁngld smlnj
=00
Target

The embedded software that is
built by those tools runs on the
embedded system

OEBPS/httpatomoreillycomsourceoreillyimages70290.png
SCK
+—MOSI
Master s MISO
5

Slave 1

L»[sa
L—»{wos|
MisO
L— 5

Slave 2

OEBPS/httpatomoreillycomsourceoreillyimages70200.png
Inputs Processor Outputs

OEBPS/httpatomoreillycomsourceoreillyimages70242.png
Pad

Silkscreen
Indentations

N

HLNEN

OEBPS/httpatomoreillycomsourceoreillyimages70294.png
- Logicblock

- Programmable intercomnect

10 block

OEBPS/httpatomoreillycomsourceoreillyimages70246.png
Address Offset
Long

Word
Byte

00

Address Offset
Long

Word
Byte

00

0 02 03

OEBPS/httpatomoreillycomsourceoreillyimages70258.png
Bit

ICMR Register
(0x40D00004)

30

il

2

27

%

5

u

3

2

2

12 11 1

[[E]

W30

W23
W28

W27

(3

W25

[
W3

w2
5]

W20
W19

W18

W17

Reserved

W10

5]

W8
Reserved | ~
Reserved| o~
Reserved | -~

Reserved| «

Reserved |

Reserved | ~

Reserved | —

Reserved| <

GPIO Pin 0 Interrupt

OEBPS/httpatomoreillycomsourceoreillyimages70304.png

OEBPS/httpatomoreillycomsourceoreillyimages70228.png
am-elf-gcc
6N C ompler (gcc

OEBPS/httpatomoreillycomsourceoreillyimages70268.png
Case1: P(ty)>P(ty)

00

t

First deadline t,

30

t completes before
fistdeadline

50 60

Second deadline ‘l,ﬂmdeadh’ne t

70

0 100 10

t; completes before
second deadline

t, completes before
fistdeadline

Gse: Plty)<P(t)

t Wt

firtdeadline t,

t, completebefore
fistdeadline

S0 6

t misses
fistdeadline

Second deadline Tl,ﬁlsl deadline t;

70 80 %0 100 110

1, executes again o
‘meet second deadline

OEBPS/httpatomoreillycomsourceoreillyimages70198.png
Non- Soft Hard

realtime realime > ealtime
Computer User Intenet Cuise Tele- Flght Hectronic

simulation interface video control communications control engine

OEBPS/httpatomoreillycomsourceoreillyimages70250.png
Applcaton

OEBPS/httpatomoreillycomsourceoreillyimages70256.png
High
Level-Sensitive

Low

High
Edge Sensitive

Low

Active

Active

— Time —

OEBPS/httpatomoreillycomsourceoreillyimages70262.png
main() Interrupt | serialReceiverIsr() | main main()
ocaurs resumes

e | Store

ecection | egicer

backto

gIndex

Increment
gIndex

OEBPS/httpatomoreillycomsourceoreillyimages70206.png
Intel PXA255 XScale
Processor

Ethernet
Controller

Printer

Computer—p-" Network " —-Computer

OEBPS/httpatomoreillycomsourceoreillyimages70212.png
D[o‘.wsl <o\

Busnet---»]

0ff page connector

Net;

RX1|

v -
110
PRSI D VNV g3 RESET
PN
1

usn,\mH 6P0_3

/(g

Net Pin
label ~ number
1(12-«--Reference designator ,—{}A[w..zn]
v v
g? 2 DO<--Pinname M %
0 nfB M
1]y, N TR
B8]y, M T
T— hfa—s—
DS 0w "o %
D? 1] % v :?T
TR M
5 08 po |2l
5 16), Ao |51
o0_18] o [N
g:; ;9 o1t a5 M2 :11
013 1? oz i3 :g mi
|00 T
5 o1 s 20—
15 B pys neP2—A6__
ay A7
Junction T
0 (A
s
Proy Lo
[- \
Rl 129160 4 oy L Netiabel showing
L 1Ble nos P2 —, conections
101 No connect PLi
P00 1
1024p1.1/R150 3
PRARSS 1
o corinection ai OUTPUTPORT

RISIC>
[
w9V VIR

between two nets

Comporient type

OEBPS/httpatomoreillycomsourceoreillyimages70236.png
Embedded System

e —— = = |

int a=98,b;

->b=a-32;

b=b+5/9.0; lummsmm
}

OEBPS/httpatomoreillycomsourceoreillyimages70302.png
Applications

HTTP Server

Telnet Server

Email
(SMTP Client)

Network Interface

Serial Port

Ethernet Port

OEBPS/httpatomoreillycomsourceoreillyimages70244.png
DRAM SRAM NVRAM Flash EEPROM EPROM PROM Masked

OEBPS/httpatomoreillycomsourceoreillyimages70280.png
speciicesources

OEBPS/httpatomoreillycomsourceoreillyimages70282.png
- Blocks tryingto take mutex - Takes mutex

Medium-proity task preempts __ Releases mutex
Tow-priorty task ;

Increasing Priority

c-Takesmutex -

Time

OEBPS/httpatomoreillycomsourceoreillyimages70300.png
) Welcome To Elintrix! - Mozilla Firefox

ookmarks

te2.10820.12

1021082012

Sensor Network Map

(Click on sensor node for properties page.)

102.108.20.22

1621082008

OEBPS/httpatomoreillycomsourceoreillyimages70288.png
§53400Y.

$53400Y
$53400Y

OEBPS/httpatomoreillycomsourceoreillyimages70276.png
Task A (priority = 150)

Task B (priority = 200)

1.Task Astartsrunning.
2.Atimer interruptoccurs, during which Task B
becomes eady torun.
3. Afer the ISR is omplete, schedter s caled.
4.Inthe operating ystem scheduler's context
switch code:
a.Task s ontextis saved.

b. Task B's context is restored.

5. Task B wakes up, with its instruction pointer
pointing to the st place it was sved.

6.The operating system scheduler code exists.

7. Task B continues running where it lft of.

OEBPS/httpatomoreillycomsourceoreillyimages70260.png
Ethernet network
interface controller
interrupt occurs

Interrupt Vector
Table

Ethernet ISR Address

Timer 2 ISR Address

Main Program

while (1)
if {foo == TRUE}
7# Do something */

+
else

7+ Do something else */

Processor Stack

ISR
interruptEthernet ISR

Processor Context

