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Foreword



If you mention the word embedded to most
    people, they’ll assume you’re talking about reporters in a war zone. Few
    dictionaries—including the canonical Oxford English
    Dictionary—link embedded to computer
    systems. Yet embedded systems underlie nearly all of the electronic
    devices used today, from cell phones to garage door openers to medical
    instruments. By now, it’s nearly impossible to build anything electronic
    without adding at least a small microprocessor and associated
    software.
Vendors produce some nine billion microprocessors every year.
    Perhaps 100 or 150 million of those go into PCs. That’s only about one
    percent of the units shipped. The other 99 percent go into embedded
    systems; clearly, this stealth business represents the very fabric of our
    highly technological society.
And use of these technologies will only increase. Solutions to
    looming environmental problems will surely rest on the smarter use of
    resources enabled by embedded systems. One only has to look at the network
    of 32-bit processors in Toyota’s hybrid Prius to get a glimpse of the
    future.
Though prognostications are difficult, it is absolutely clear that
    consumers will continue to demand ever-brainier products requiring more
    microprocessors and huge increases in the corresponding software.
    Estimates suggest that the firmware content of most products doubles every
    10 to 24 months. While the demand for more code is increasing, our
    productivity rates creep up only slowly. So it’s also clear that the
    industry will need more embedded systems people in order to meet the
    demand.
What skills will these people need? In the PC world, one must be a
    competent C/C++ programmer. But embedded developers must have a deep
    understanding of both the programming languages and the hardware itself;
    no one can design, code, and test an interrupt service routine, for
    instance, without knowing where the interrupts come from, how the hardware
    prioritizes them, the tricks behind servicing that hardware, and
    machine-level details about saving and preserving the system’s context. A
    firmware developer must have detailed insight into the hardware
    implementation of his system’s peripherals before he can write a single
    line of driver code.
In the PC world, the magic of the hardware is hidden behind an
    extensive API. In an embedded system, that API is always written by the
    engineers that are developing the product.
In this book, Michael Barr and Anthony Massa show how the software
    and hardware form a synergistic gestalt. They don’t shy away from the
    intricacies of interrupts and I/O, or priority inversion and
    mutexes.
The authors appropriately demonstrate building embedded systems
    using a variety of open source tools, including the GNU compiler suite,
    which is a standard tool widely used in this industry. eCos and Linux,
    both free/open source products, are used to demonstrate small and large
    operating systems.
The original version of this book used an x86 target board, which
    has been replaced in this edition by an ARM-based product. Coincidently,
    as this volume was in production, Intel made an end-of-life announcement
    for all of its embedded x86 processors. Readers can be assured that the
    ARM will be around for a very long time, as it’s supported by an enormous
    infrastructure of vendors.
The hardware is inexpensive and easily available; the software is
    free. Together they represent the mainstream of embedded systems
    development. Readers can be sure they’ll use these tools in the
    future.
Buy the development kit, read the book, and execute the examples.
    You’ll get the hands-on experience that employers demand: building and
    working with real embedded applications.
Jack Ganssle

Preface



First figure out why you want the students to learn the subject and
    what you want them to know, and the method will result more or less by
    common sense.
Richard Feynman
Embedded software is in almost every electronic device in use today.
    There is software hidden away inside our watches, DVD players, mobile
    phones, antilock brakes, and even a few toasters. The military uses
    embedded software to guide missiles, detect enemy aircraft, and pilot
    UAVs. Communication satellites, deep-space probes, and many medical
    instruments would’ve been nearly impossible to create without it.
Someone has to write all that software, and there are tens of
    thousands of electrical engineers, computer scientists, and other
    professionals who actually do. We are two of them, and we know from our
    personal experiences just how hard it can be to learn the craft.
Each embedded system is unique, and the hardware is highly
    specialized to the application domain. As a result, embedded systems
    programming can be a widely varying experience and can take years to
    master. However, one common denominator across almost all embedded
    software development is the use of the C programming language. This book
    will teach you how to use C in any embedded system.
Even if you already know how to write embedded software, you can
    still learn a lot from this book. In addition to learning how to use C
    more effectively, you’ll also benefit from the detailed explanations and
    source code associated with common embedded software problems. Among the
    advanced topics covered in the book are memory testing and verification,
    device driver design and implementation, real-time operating system
    internals, and code optimization techniques.
Why We Wrote This Book



Each year, globally, approximately one new processor is
      manufactured per person. That’s more than six billion new processors
      each year, fewer than two percent of which are the Pentiums and PowerPCs
      at the heart of new personal computers. You may wonder whether there are
      really that many computers surrounding us. But we bet that within five
      minutes you can probably spot dozens of products in your own home that
      contain processors: televisions, stereos, MP3 players, coffee makers,
      alarm clocks, VCRs, DVD players, microwaves, dishwashers, remote
      controls, bread machines, digital watches, and so on. And those are just
      the personal possessions—many more such devices are used at work. The
      fact that every one of those products contains not only a processor, but
      also software, is the impetus for this book.
One of the hardest things about this subject is knowing when to
      stop writing. Each embedded system is unique, and we have therefore
      learned that there is an exception to every rule. Nevertheless, we have
      tried to boil the subject down to its essence and present the things
      that programmers definitely need to know about embedded systems.


Intended Audience



This is a book about programming embedded systems in C. As such,
      it assumes that the reader already has some programming experience and
      is at least familiar with the syntax of the C language. It also helps if
      you have some familiarity with basic data structures, such as linked
      lists. The book does not assume that you have a great deal of knowledge
      about computer hardware, but it does expect that you are willing to
      learn a little bit about hardware along the way. This is, after all, a
      part of the job of an embedded programmer.
While writing this book, we had two types of readers in mind. The
      first reader is a beginner—much as we were once. He has a background in
      computer science or engineering and a few years of programming
      experience. The beginner is interested in writing embedded software for
      a living but is not sure just how to get started. After reading the
      first several chapters, he will be able to put his programming skills to
      work developing simple embedded programs. The rest of the book will act
      as a reference for the more advanced topics encountered in the coming
      months and years of his career.
The second reader is already an embedded systems programmer. She
      is familiar with embedded hardware and knows how to write software for
      it but is looking for a reference book that explains key topics. Perhaps
      the embedded systems programmer has experience only with assembly
      language programming and is relatively new to C. In that case, the book
      will teach her how to use the C language effectively in an embedded
      system, and the later chapters will provide advanced material on
      real-time operating systems, peripherals, and code optimizations.
Whether you fall into one of these categories or not, we hope this
      book provides the information you are looking for in a format that is
      friendly and easily accessible.

Organization



The book contains 14 chapters and 5 appendixes. The chapters can
      be divided quite nicely into two parts. The first part consists of
      Chapters 1 through 5 and is intended mainly for newcomers to embedded
      systems. These chapters should be read in their entirety and in the
      order that they appear. This will bring you up to speed quickly and
      introduce you to the basics of embedded software development. After
      completing Chapter
      5, you will be ready to develop small pieces of embedded software
      on your own.
The second part of the book consists of Chapters 6 through 14 and
      discusses advanced topics that are of interest to inexperienced and
      experienced embedded programmers alike. These chapters are mostly
      self-contained and can be read in any order. In addition, Chapters 6
      through 12 contain example programs that might be useful to you on a
      future embedded software project.
	Chapter 1,
          Introduction
	Explains the field of embedded programming and lays out the
            parameters of the book, including the reference hardware used for
            examples

	Chapter 2,
          Getting to Know the Hardware
	Shows how to explore the documentation for your hardware and
            represent the components you need to interact with in C

	Chapter 3,
          Your First Embedded Program
	Creates a simple blinking light application that illustrates
            basic principles of embedded programming

	Chapter 4,
          Compiling, Linking, and Locating
	Goes over the ways that embedded systems differ from
            conventional computer systems during program building steps,
            covering such issues as cross-compilers

	Chapter 5,
          Downloading and Debugging
	Introduces the tools you’ll need in order to iron out
            problems in both hardware and software

	Chapter 6,
          Memory
	Describes the different types of memory that developers
            choose for embedded systems and the issues involved in using each
            type

	Chapter 7,
          Peripherals
	Introduces the notion of a device driver, along with other
            coding techniques for working with devices

	Chapter 8,
          Interrupts
	Covers this central area of working with peripherals

	Chapter 9,
          Putting It All Together
	Combines the concepts and code from the previous chapter
            with convenience functions and a main program, to create a
            loadable, testable application

	Chapter 10,
          Operating Systems
	Introduces common operating system concepts, including tasks
            (or threads) and synchronization mechanisms, along with the
            reasons for adding a real-time operating system

	Chapter 11,
          eCos Examples
	Shows how to use some features of the eCos real-time
            operating system

	Chapter 12,
          Embedded Linux Examples
	Accomplishes the same task as the previous chapter, but for
            the embedded Linux operating system

	Chapter 13,
          Extending Functionality
	Describes options for adding buses, networking, and other
            communication features to a system

	Chapter 14,
          Optimization Techniques
	Describes ways to decrease code size, reduce memory use, and
            conserve power

	Appendix A,
          The Arcom VIPER-Lite Development Kit
	Describes the board used for the examples in this book and
            how to order one for yourself

	Appendix B,
          Setting Up Your Software Development Environment
	Gives instructions for loading the software described in
            this book on your host Windows or Linux computer

	Appendix C,
          Building the GNU Software Tools
	Shows you how to compile the GNU development tools

	Appendix D,
          Setting Up the eCos Development Environment
	Shows you how to build an eCos library appropriate for your
            embedded system so you can compile programs to run on your
            system

	Appendix E,
          Setting Up the Embedded Linux Development Environment
	Describes how to install the embedded Linux tools for your
            Arcom system and build and run a program on it



Throughout the book, we have tried to strike a balance between
      specific examples and general information. Whenever possible, we have
      eliminated minor details in the hope of making the book more readable.
      You will gain the most from the book if you view the examples, as we do,
      primarily as tools for understanding important concepts. Try not to get
      bogged down in the details of any one circuit board or chip. If you
      understand the general C programming concepts, you should be able to
      apply them to any embedded system you encounter.
To focus the book’s example code on specific concepts, we
      intentionally left it incomplete—for example, by eliminating certain
      include files and redundant variable declarations. For complete details
      about the code, refer to the full example source code on the book’s web
      site.

Conventions, Typographical and Otherwise



The following typographical conventions are used throughout the
      book:
	Italic
	Indicates names of files, programs, methods, and options
            when they appear in the body of a paragraph. Italic is also used
            for emphasis and to introduce new terms.

	Constant Width
	In examples, indicates the contents of files and the output
            of commands. In regular text, this style indicates keywords,
            functions, variable names, classes, objects, parameters, and other
            code snippets.

	Constant Width
          Bold
	Indicates commands and options to be typed literally. This
            style is used in examples only.

	 Constant Width Bold
          Italic 
	Indicates text to be replaced with user values; for example,
            a filename on your system. This style is used in examples
            only.



Tip
This symbol is used to indicate a tip, suggestion, or general
        note.

Warning
This symbol is used to indicate a warning.

Other conventions relate to gender and roles. With respect to
      gender, we have purposefully used both “he” and “she” throughout the
      book. With respect to roles, we have occasionally distinguished between
      the tasks of hardware engineers, embedded software engineers, and
      application programmers. But these titles refer only to roles played by
      individual engineers, and it should be noted that it can and often does
      happen that a single individual fills more than one of these roles on an
      embedded-project team.

Obtaining the Examples Online



This book includes many source code listing, and all but the most
      trivial snippets are available online. These examples are organized by
      chapter number and include build instructions (makefiles) to help you
      recreate each of the executables. The complete archive is available at
      http://examples.oreilly.com/embsys2.

Using Code Examples



This book is here to help you get your job done. In general, you
      may use the code in this book in your programs and documentation. You do
      not need to contact us for permission unless you’re reproducing a
      significant portion of the code. For example, writing a program that
      uses several chunks of code from this book does not require permission.
      Selling or distributing a CD-ROM of examples from O’Reilly books
      does require permission. Answering a question by
      citing this book and quoting example code does not require permission.
      Incorporating a significant amount of example code from this book into
      your product’s documentation does require
      permission.
We appreciate, but do not require, attribution. An attribution
      usually includes the title, author, publisher, and ISBN. For example:
      “Programming Embedded Systems with C and GNU Development
      Tools, Second Edition, by Michael Barr
      and Anthony Massa. Copyright 2007 O’Reilly Media, Inc.,
      978-0-596-00983-0.”
If you feel your use of code examples falls outside fair use or
      the permission given above, feel free to contact us at
      permissions@oreilly.com.

Comments and Questions



Please address comments and questions concerning this book to the
      publisher:
	O’Reilly Media, Inc.
	1005 Gravenstein Highway North
	Sebastopol, CA 95472
	800-998-9938 (in the United States or Canada)
	707-829-0515 (international or local)
	707-829-0104 (fax)

We have a web page for this book, where we list errata, code
      examples, and any additional information. Corresponding files for code
      examples are mentioned on the first line of the example. You can access
      this page at:
	http://www.oreilly.com/catalog/9780596009830

To comment or ask technical questions about this book, send email
      to:
	bookquestions@oreilly.com

For more information about our books, conferences, Resource
      Centers, and the O’Reilly Network, see our web site at:
	http://www.oreilly.com


Safari® Enabled



When you see a Safari® Enabled icon on the cover of your favorite
      technology book, that means the book is available online through the
      O’Reilly Network Safari Bookshelf.
Safari offers a solution that’s better than e-books. It’s a
      virtual library that lets you easily search thousands of top tech books,
      cut and paste code samples, download chapters, and find quick answers
      when you need the most accurate, current information. Try it for free at
      http://safari.oreilly.com.
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Chapter 1. Introduction



I think there is a world market for maybe five computers.
—Thomas Watson, Chairman of IBM, 1943

There is no reason anyone would want a computer in their
      home.
—Ken Olson, President of Digital Equipment Corporation,
      1977

One of the more surprising developments of the last few decades has
    been the ascendance of computers to a position of prevalence in human
    affairs. Today there are more computers in our homes and offices than
    there are people who live and work in them. Yet many of these computers
    are not recognized as such by their users. In this chapter, we’ll explain
    what embedded systems are and where they are found. We will also introduce
    the subject of embedded programming and discuss what makes it a unique
    form of software programming. We’ll explain why we have selected C as the
    language for this book and describe the hardware used in the
    examples.
What Is an Embedded System?



An  embedded system is a combination of
      computer hardware and software—and perhaps additional parts, either
      mechanical or electronic—designed to perform a dedicated function. A
      good example is the microwave oven. Almost every household has one, and
      tens of millions of them are used every day, but very few people realize
      that a computer processor and software are involved in the preparation
      of their lunch or dinner.
The design of an embedded system to perform a dedicated function
      is in direct contrast to that of the personal computer. It too is
      comprised of computer hardware and software and mechanical components
      (disk drives, for example). However, a personal computer is not designed
      to perform a specific function. Rather, it is able to do many different
      things. Many people use the term  general-purpose computer to make
      this distinction clear. As shipped, a general-purpose computer is a
      blank slate; the manufacturer does not know what the customer will do
      with it. One customer may use it for a network file server, another may
      use it exclusively for playing games, and a third may use it to write
      the next great American novel.
Frequently, an embedded system is a component within some larger
      system. For example, modern cars and trucks contain many embedded
      systems. One embedded system controls the antilock brakes, another
      monitors and controls the vehicle’s emissions, and a third displays
      information on the dashboard. Some luxury car manufacturers have even
      touted the number of processors (often more than 60, including one in
      each headlight) in advertisements. In most cases, automotive embedded systems are connected by a
      communications network.
It is important to point out that a general-purpose computer interfaces to numerous embedded
      systems. For example, a typical computer has a keyboard and mouse, each
      of which is an embedded system. These peripherals each contain a
      processor and software and is designed to perform a specific function.
      Another example is a modem, which is designed to send and receive
      digital data over an analog telephone line; that’s all it does. And the
      specific function of other peripherals can each be summarized in a
      single sentence as well.
The existence of the processor and software in an embedded system
      may be unnoticed by a user of the device. Such is the case for a
      microwave oven, MP3 player, or alarm clock. In some cases, it would even
      be possible to build a functionally equivalent device that does not
      contain the processor and software. This could be done by replacing the
      processor-software combination with a custom  integrated circuit (IC)
      that performs the same functions in hardware. However, the processor and
      software combination typically offers more flexibility than a hardwired
      design. It is generally much easier, cheaper, and less power intensive
      to use a processor and software in an embedded system.
History and Future



Given the definition of embedded systems presented earlier in this
        chapter, the first such systems could not possibly have appeared
        before 1971. That was the year Intel introduced the world’s first
        single-chip microprocessor. This chip, the 4004, was designed for
        use in a line of business calculators produced by the Japanese company
        Busicom. In 1969, Busicom asked Intel to design a set of custom
        integrated circuits, one for each of its new calculator models. The
        4004 was Intel’s response. Rather than design custom hardware for each
        calculator, Intel proposed a general-purpose circuit that could be
        used throughout the entire line of calculators. This general-purpose
        processor was designed to read and execute a set of
        instructions—software—stored in an external memory chip. Intel’s idea
        was that the software would give each calculator its unique set of
        features and that this design style would drive demand for its core
        business in memory chips.
The microprocessor was an overnight success, and its use
        increased steadily over the next decade. Early embedded applications
        included unmanned space probes, computerized traffic lights, and
        aircraft flight control systems. In the 1980s and 1990s, embedded
        systems quietly rode the waves of the microcomputer age and brought
        microprocessors into every part of our personal and professional
        lives. Most of the electronic devices in our kitchens (bread machines,
        food processors, and microwave ovens), living rooms (televisions,
        stereos, and remote controls), and workplaces (fax machines, pagers,
        laser printers, cash registers, and credit card readers) are embedded
        systems; over 6 billion new microprocessors are used each year. Less
        than 2 percent (or about 100 million per year) of these
        microprocessors are used in general-purpose computers.
It seems inevitable that the number of embedded systems will
        continue to increase rapidly. Already there are promising new embedded
        devices that have enormous market potential: light switches and
        thermostats that are networked together and can be controlled
        wirelessly by a central computer, intelligent air-bag systems that
        don’t inflate when children or small adults are present, medical
        monitoring devices that can notify a doctor if a patient’s
        physiological conditions are at critical levels, and dashboard
        navigation systems that inform you of the best route to your
        destination under current traffic conditions. Clearly, individuals who
        possess the skills and the desire to design the next generation of
        embedded systems will be in demand for quite some time.

Real-Time Systems



 One subclass of embedded systems deserves an
        introduction at this point. A real-time system
        has timing constraints. The function of a real-time system is thus
        partly specified in terms of its ability to make certain calculations
        or decisions in a timely manner. These important calculations or
        activities have deadlines for completion.
The crucial distinction among real-time systems lies in what
        happens if a deadline is missed. For example, if the real-time system
        is part of an airplane’s flight control system, the lives of the
        passengers and crew may be endangered by a single missed deadline.
        However, if instead the system is involved in satellite communication,
        the damage could be limited to a single corrupt data packet (which may
        or may not have catastrophic consequences depending on the application
        and error recovery scheme). The more severe the consequences, the more
        likely it will be said that the deadline is “hard” and thus, that the
        system is a  hard real-time system. Real-time systems at
        the other end of this continuum are said to have “soft” deadlines—a
         soft real-time system. Figure 1-1 shows some
        examples of hard and soft real-time systems.
[image: A range of example real-time systems]

Figure 1-1. A range of example real-time systems

Real-time system design is not simply about speed. Deadlines for
        real-time systems vary; one deadline might be in a millisecond, while
        another is an hour away. The main concern for a real-time system is
        that there is a guarantee that the hard deadlines of the system are
        always met. In order to accomplish this the system must be
        predictable.
The architecture of the embedded software, and its interaction
        with the system hardware, play a key role in ensuring that real-time
        systems meet their deadlines. Key software design issues include
        whether polling is sufficient or interrupts should be used, and what
        priorities should be assigned to the various tasks and interrupts.
        Additional forethought must go into understanding the worst-case
        performance requirements of the specific system activities.
All of the topics and examples presented in this book are
        applicable to the designers of real-time systems. The designer of a
        real-time system must be more diligent in his work. He must guarantee
        reliable operation of the software and hardware under all possible
        conditions. And, to the degree that human lives depend upon the
        system’s proper execution, this guarantee must be backed by
        engineering calculations and descriptive paperwork.



Variations on a Theme



Unlike software designed for general-purpose computers, embedded
      software cannot usually be run on other embedded systems without
      significant modification. This is mainly because of the incredible
      variety of hardware in use in embedded systems. The hardware in each
      embedded system is tailored specifically to the application, in order to
      keep system costs low. As a result, unnecessary circuitry is eliminated
      and hardware resources are shared wherever possible.
In this section, you will learn which hardware features are common
      across all embedded systems and why there is so much variation with
      respect to just about everything else. Later in the book, we will look
      at some techniques that can be used to minimize the impact of software
      changes so they are not needed throughout all layers of the
      software.
Common System Components



By definition, all  embedded systems contain a processor and software, but
        what other features do they have in common? Certainly, in order to have software, there must be a
        place to store the executable code and temporary storage for runtime
        data manipulation. These take the form of   read-only memory (ROM) and 
        random access memory (RAM), respectively;
        most embedded systems have some of each. If only a small amount of
        memory is required, it might be contained within the same chip as the
        processor. Otherwise, one or both types of memory reside in external
        memory chips.
 All embedded systems also contain some type of inputs
        and outputs. For example, in a microwave oven, the inputs are the
        buttons on the front panel and a temperature probe, and the outputs
        are the human-readable display and the microwave radiation. The
        outputs of the embedded system are almost always a function of its
        inputs and several other factors (elapsed time, current temperature,
        etc.). The inputs to the system usually take the form of sensors and
        probes, communication signals, or control knobs and buttons. The
        outputs are typically displays, communication signals, or changes to
        the physical world. See Figure 1-2 for a
        general example of an embedded system.
[image: A generic embedded system]

Figure 1-2. A generic embedded system

With the exception of these few common features, the rest of the
        embedded hardware is usually unique and, therefore, requires unique
        software. This variation is the result of many competing design
        criteria.
The software for the generic embedded system shown in Figure 1-2 varies
        depending on the functionality needed. The hardware is the blank
        canvas, and the software is the paint that we add in order to make the
        picture come to life. Figure 1-3 gives just
        a couple of possible high-level diagrams that could be implemented on
        such a generic embedded system.
[image: (a) Basic embedded software diagram and (b) a more complex embedded software diagram]

Figure 1-3. (a) Basic embedded software diagram and (b) a more complex
          embedded software diagram

Both the basic embedded software diagram in Figure 1-3(a) and the
        more complex embedded software diagram in Figure 1-3(b) contain
        very similar blocks. The hardware block is common in both
        diagrams.
The device drivers are embedded software modules that
        contain the functionality to operate the individual hardware devices.
        The reason for the device driver software is to remove the need for
        the application to know how to control each piece of hardware. Each
        individual device driver would typically need to know only how to
        control its hardware device. For instance, for a microwave oven,
        separate device drivers control the keypad, display, temperature
        probe, and radiation control.
If more functionality is required, it is sometimes necessary to
        include additional layers in the embedded software to assist with this
        added functionality. In this example, the complex diagram includes a
           real-time operating system
        (RTOS) and a networking stack. The RTOS can help
        the programmer separate the application’s functionality into distinct
        tasks for better organization of the application software and a more
        responsive system. We will investigate the use of an RTOS later in
        this book. The network stack also adds to the functionality of the
        basic embedded system; a microwave oven might use it to pop up a
        message on your desktop computer when your lunch is ready.
The responsibilities of the application software layer is the
        same in both the basic and the complex embedded software diagrams. In
        a microwave oven, the application processes the different inputs and
        controls the outputs based on what the user commands it to do.
You’ll notice that the software in Figure 1-3 is
        represented by discrete blocks stacked on top of one another with
        fixed borders. This is done deliberately, to indicate the separation
        of the different software functional layers that make up the complete
        embedded software system. Later, we will break down these blocks
        further to show you how you can keep your embedded software clean,
        easy to read, and portable. Keeping these software layers distinct,
        with well-defined methods that neighboring layers can use to
        communicate, helps you write good embedded software.

Requirements That Affect Design Choices



Each  embedded system must meet a completely different set of
        requirements, any or all of which can affect the compromises and
        trade-offs made during the development of the product. For example, if
        the system must have a production cost of less than $10, other
        desirable traits—such as processing power and system reliability—might
        need to be sacrificed in order to meet that goal.
Of course, production cost is only one of the possible
        constraints under which embedded hardware designers work. Other common
        design requirements include:
	Processing power
	The workload that the main chip can handle. A common
              way to compare processing power is the  millions of instructions per second
              (MIPS) rating. If two otherwise similar processors have ratings
              of 25 MIPS and 40 MIPS, the latter is said to be the more
              powerful. However, other important features of the processor
              need to be considered. One is the register width, which typically ranges from 8 to
              64 bits. Today’s general-purpose computers use 32- and 64-bit
              processors exclusively, but embedded systems are still mainly
              built with less costly 4-, 8-, and 16-bit processors.

	Memory
	The amount of  memory (ROM and RAM) required to hold the
              executable software and the data it manipulates. Here the
              hardware designer must usually make his best estimate up front
              and be prepared to increase or decrease the actual amount as the
              software is being developed. The amount of memory required can
              also affect the processor selection. In general, the register
              width of a processor establishes the upper limit of the amount
              of memory it can access (e.g., a 16-bit address register can
              address only 64 KB (216 
              ) memory locations). [1] 

	Number of units
	The   expected production run. The trade-off between
                production cost and development cost is affected
              most by the number of units expected to be produced and sold.
              For example, it rarely makes sense to develop custom hardware
              components for a low-volume product.

	Power consumption
	The amount of power used during operation. This is extremely
              important, especially for battery-powered portable devices. A
              common metric used to compare the power requirements of portable
              devices is  mW/MIPS (milliwatts per MIPS); the greater this
              value, the more power is required to get work done. Lower power
              consumption can also lead to other favorable device
              characteristics, such as less heat, smaller batteries, less
              weight, smaller size, and simpler mechanical design.

	Development cost
	The cost of the hardware and software design
              processes, known as  nonrecurring engineering (NRE). This is
              a fixed, one-time cost, so on some projects, money is no object
              (usually for high-volume products), whereas on other projects,
              this is the only accurate measure of system cost (for the
              production of a small number of units).

	Lifetime
	How long the product is expected to stay in use. The
              required or expected lifetime affects all sorts of design
              decisions, from the selection of hardware components to how much
              system development and production is allowed to cost. How long
              must the system continue to function (on average)? A month, a
              year, or a decade?

	Reliability
	How reliable the final product must be. If it is a
              children’s toy, it may not have to work properly 100 percent of
              the time, but if it’s an antilock braking system for a car, it
              had sure better do what it is supposed to do each and every
              time.



In addition to these general requirements, each system has
        detailed functional requirements. These are the things that give the
        embedded system its unique identity as a microwave oven, pacemaker, or
        pager.
Table 1-1
        illustrates the range of typical values for each of the previous design
        requirements. The “low,” “medium,” and “high” labels are meant for
        illustration purposes and should not be taken as strict delineations.
        An actual product has one selection from each row. In some cases, two
        or more of the criteria are linked. For example, increases in required
        processing power could lead to increased production costs. Conversely,
        we might imagine that the same increase in processing power would have
        the effect of decreasing the development costs—by reducing the
        complexity of the hardware and software design. So the values in a
        particular column do not necessarily go together.
Table 1-1. Common design requirements for embedded systems
	Criterion	Low	Medium	High
	Processor	4- or 8-bit	16-bit	32- or 64-bit
	Memory	< 64 KB	64 KB to 1 MB	> 1 MB
	Development cost	< $100,000	$100,000 to $1,000,000	> $1,000,000
	Production cost	< $10	$10 to $1,000	> $1,000
	Number of units	< 100	100 to 10,000	> 10,000
	Power consumption	> 10 mW/MIPS	1 to 10 mW/MIPS	< 1 mW/MIPS
	Lifetime	Days, weeks, or months	Years	Decades
	Reliability	May occasionally fail	Must work reliably	Must be fail-proof






[1] The narrower the register width, the more likely it is
                  that the processor employs tricks such as multiple address
                  spaces to support more memory. There are still embedded
                  systems that do the job with a few hundred bytes. However,
                  several thousand bytes is a more likely minimum, even on an
                  8-bit processor.



Embedded Design Examples



To demonstrate the variation in  design requirements from one embedded system to the next,
      as well as the possible effects of these requirements on the hardware,
      we will now take some time to describe three embedded systems in some
      detail. Our goal is to put you in the system designer’s shoes for a few
      moments before narrowing our discussion to embedded software
      development.
Digital Watch



At  the current peak of the evolutionary path that began
        with sundials, water clocks, and hourglasses is the digital watch.
        Among its many features are the presentation of the date and time
        (usually to the nearest second), the measurement of the length of an
        event to the nearest hundredth of a second, and the generation of an
        annoying little sound at the beginning of each hour. As it turns out,
        these are very simple tasks that do not require very much processing
        power or memory. In fact, the only reason to employ a processor at all is to support a range of models and
        features from a single hardware design.
The typical digital watch contains a simple, inexpensive 4-bit
        processor. Because processors with such small registers cannot address
        very much memory, this type of processor usually contains its own
        on-chip ROM. And, if there are sufficient registers available, this
        application may not require any RAM at all. In fact, all of the
        electronics— processor, memory, counters, and real-time clocks—are
        likely to be stored in a single chip. The only other hardware elements
        of the watch are the inputs (buttons) and outputs (display and
        speaker).
A digital watch designer’s goal is to create a reasonably
        reliable product that has an extraordinarily low production cost. If, after production, some watches are
        found to keep more reliable time than most, they can be sold under a
        brand name with a higher markup. For the rest, a profit can still be
        made by selling the watch through a discount sales channel. For
        lower-cost versions, the stopwatch buttons or speaker could be
        eliminated. This would limit the functionality of the watch but might
        require few or even no software changes. And, of course, the
        cost of all this development effort may be fairly high,
        because it will be amortized over hundreds of thousands or even
        millions of watch sales.
In the case of the digital watch, we see that software,
        especially when carefully designed, allows enormous flexibility in
        response to a rapidly changing and highly competitive market.

Video Game Player



 When  you pull the Sony PlayStation 2 out from your
        entertainment center, you are preparing to use an embedded system. In
        some cases, these machines are more powerful than personal computers
        of the same generation. Yet video game players for the home market are
        relatively inexpensive compared with personal computers. It is the
        competing requirements of high processing power and low production
        cost that keep video game designers awake at night.
The companies that produce video game players don’t usually
        care how much it costs to develop the system as long as the production
        costs of the resulting product are low—typically around a hundred
        dollars. They might even encourage their engineers to design custom
        processors at a development cost of millions of dollars each. So,
        although there might be a 64-bit processor inside your video game
        player, it is probably not the same processor that would be found in a
        general-purpose computer. In all likelihood, the processor is highly
        specialized for the demands of the video games it is intended to
        play.
Because production cost is so crucial in the home video game
        market, the designers also use tricks to shift the costs around. For
        example, one tactic is to move as much of the memory and other peripheral electronics as possible off
        of the main circuit board and onto the game cartridges.
        [2]  This helps to reduce the cost of the game
        player but increases the price of every game. So, while the system
        might have a powerful 64-bit processor, it might have only a few
        megabytes of memory on the main circuit board. This is just enough
        memory to bootstrap the machine to a state from which it can access
        additional memory on the game cartridge.
We can see from the case of the video game player that in
        high-volume products, a lot of development effort can be sunk into
        fine-tuning every aspect of a product.

Mars Rover



In  1976, two  unmanned spacecrafts arrived on the planet Mars. As part
        of their mission, they were to collect samples of the Martian surface,
        analyze the chemical makeup of each, and transmit the results to
        scientists back on Earth. Those Viking missions were amazing.
        Surrounded by personal computers that must be rebooted occasionally,
        we might find it remarkable that more than 30 years ago, a team of
        scientists and engineers successfully built two computers that
        survived a journey of 34 million miles and functioned correctly for
        half a decade. Clearly, reliability was one of the most important requirements
        for these systems.
What if a memory chip had failed? Or the software had contained
        bugs that had caused it to crash? Or an electrical connection had
        broken during impact? There is no way to prevent such problems from
        occurring, and on other space missions, these problems have proved
        ruinous. So, all of these potential failure points and many others had
        to be eliminated by adding redundant circuitry or extra functionality:
        an extra processor here, special memory diagnostics there, a hardware
        timer to reset the system if the software got stuck, and so on.
More recently, NASA launched the  Pathfinder mission. Its primary goal was to demonstrate
        the feasibility of getting to Mars on a budget. Of course, given the
        advances in technology made since the mid-70s, the designers didn’t
        have to give up too much to accomplish this. They might have reduced
        the amount of redundancy somewhat, but they still gave Pathfinder more
        processing power and memory than Viking. The Mars
        Pathfinder was actually two embedded systems: a landing craft and a
        rover. The landing craft had a 32-bit processor and 128 MB of RAM; the
        rover, on the other hand, had only an 8-bit processor and 512 KB of
        RAM. These choices reflect the different functional requirements of
        the two systems. Production cost probably wasn’t much of an issue in
        either case; any investment would have been worth an improved
        likelihood of 
        success.



[2] For example, Atari and Nintendo have designed some of their
            systems this way.



Life As an Embedded Software Developer



Let’s  now take a brief look at some of the qualities of embedded
      software that set embedded developers apart from other types of software
      developers. An embedded software developer is the one who gets her hands
      dirty by getting down close to the hardware.
Embedded software development, in most cases, requires
      close interaction with the physical world—the hardware platform. We say
      “in most cases” because there are very large embedded systems that
      require individuals to work solely on the application-layer software for
      the system. These application developers typically do not have any
      interaction with the hardware. When designed properly, the hardware
      device drivers are abstracted away from the actual hardware so that a
      developer writing software at the application level doesn’t know how a
      string gets output to the display, just that it happens when a
      particular routine is called with the proper parameters.
	Hardware knowledge
	The embedded software developer must become intimately
            familiar with the integrated circuits, the boards and buses, and
            the attached devices used in order to write solid embedded
            software (also called  firmware). Embedded developers shouldn’t
            be afraid to dive into the schematics, grab an oscilloscope probe,
            and start poking around the circuit to find out what is going
            on.

	Efficient code
	Because  embedded systems are typically designed with the
            least powerful and most cost-effective processor that meets the
            performance requirements of the system, embedded software
            developers must make every line of code count. The ability to
            write efficient code is a great quality to possess as a firmware
            developer.

	Peripheral interfaces
	At   the lowest level, firmware is very
            specialized, because each component or circuit has its own
            activity to perform and, furthermore, its own way of performing
            that activity. Embedded developers need to know how to communicate
            with the different devices or peripherals in
            order to have full control of the devices in the system. Reacting
            to stimuli from external peripherals is a large part of embedded
            software development.
For example, in one microwave oven, the firmware might get
            the data from a temperature sensor by reading an 8-bit register in
            an external analog-to-digital converter; in another system, the
            data might be extracted by controlling a serial bus that
            interfaces to the external sensor circuit via a single
            wire.

	Robust code
	There  are expectations that embedded systems will run for
            years in most cases. This is not a typical requirement for
            software applications written for a PC or Mac. Now, there are
            exceptions. However, if you had to keep unplugging your microwave
            in order to get it to heat up your lunch for the proper amount of
            time, it would probably be the last time you purchased a product
            from that company.

	Minimal resources
	Along the same lines of creating a more robust system,
            another large differentiator between embedded software and other
            types of software is resource constraints. The rules for writing
            firmware are different from the rules for writing software for a
            PC. Take memory allocation, for instance. An application for
            a modern PC can take for granted that it will have access to
            practically limitless resources. But in an embedded system, you
            will run out of memory if you do not plan ahead and design the
            software properly.
An embedded software developer must closely manage
            resources, from memory to processing power, so that the system
            operates up to specification and so failures don’t occur. For
            example, using standard dynamic memory allocation functions can
            cause fragmentation, and eventually the system may cease to
            operate. This requires a reboot since you have no place to store
            incoming data.
Quite often, in embedded software, a developer will allocate
            all memory needed by the system at initialization time. This is
            safer than using dynamic memory allocation, though it cannot
            always be done.

	Reusable software
	As we mentioned before , code portability or
            code reuse—writing software so that it can be
            moved from hardware platform to hardware platform—is very useful
            to aid transition to new projects. This cannot always be done; we
            have seen how individual each embedded system is. Throughout this
            book, we will look at basic methods to ensure that your embedded
            code can be moved more easily from project to project. So if your
            next project uses an LCD for which you’ve previously developed a
            driver, you can drop in the old code and save some precious time
            in the schedule.

	Development tools
	The tools you will use throughout your career as an
            embedded developer will vary from company to company and often
            from project to project. This means you will need to learn new
            tools as you continue in your career. Typically, these tools are
            not as powerful or as easy to use as those used in PC software
            development.
The debugging tools you might come across could vary
            from a simple LED to a full-blown   in-circuit emulator (ICE). This requires
            you, as the firmware developer, and the one responsible for
            debugging your code, to be very resourceful and have a bag of
            techniques you can call upon when the debug environment is
            lacking. Throughout the book, we will present different “low-level
            software tools” you can implement with little impact on the
            hardware design.



These are just a few qualities that separate embedded software
      developers from the rest of the pack. We will investigate these and
      other techniques that are specific to embedded software development as
      we continue.
      

The C Language: The Lowest Common Denominator



One of the  few  constants across most embedded systems is the use of the C
      programming language. More than any other, C has become the language of
      embedded programmers. This has not always been the case, and it will not
      continue to be so forever. However, at this time, C is the closest thing
      there is to a standard in the embedded world. In this section, we’ll
      explain why C has become so popular and why we have chosen it as the
      primary language of this book.
Because successful software development so frequently depends on
      selecting the best language for a given project, it is surprising to
      find that one language has proven itself appropriate for both 8-bit and
      64-bit processors; in systems with bytes, kilobytes, and megabytes of
      memory; and for development teams that range from one to a dozen or more
      people. Yet this is precisely the range of projects in which C has
      thrived.
The C programming language has plenty of advantages. It is small
      and fairly simple to learn, compilers are available for almost every
      processor in use today, and there is a very large body of experienced C
      programmers. In addition, C has the benefit of processor-independence,
      which allows programmers to concentrate on algorithms and applications
      rather than on the details of a particular processor architecture.
      However, many of these advantages apply equally to other high-level
      languages. So why has C succeeded where so many other languages have
      largely failed?
Perhaps the greatest strength of C—and the thing that sets it
      apart from languages such as Pascal and FORTRAN—is that it is a very
      “low-level” high-level language. As we shall see throughout the book, C
      gives embedded programmers an extraordinary degree of direct hardware
      control without sacrificing the benefits of high-level languages. The
      “low-level” nature of C was a clear intention of the language’s
      creators. In fact, Brian W. Kernighan and Dennis M. Ritchie included the
      following comment in the opening pages of their book The C
      Programming Language (Prentice Hall):
C is a relatively “low level” language. This characterization is
      not pejorative; it simply means that C deals with the same sort of
      objects that most computers do. These may be combined and moved about
      with the arithmetic and logical operators implemented by real
      machines.
Few popular high-level languages can compete with C in the
      production of compact, efficient code for almost all processors. And, of
      these, only C allows programmers to interact with the underlying
      hardware so easily.
Other Embedded Languages



Of course, C is not the only language used by embedded
        programmers. At least four other languages—assembly, C++, Forth, and
        Ada—are worth mentioning in greater detail.
In the early days, embedded software was written exclusively in
        the assembly language of the target processor. This gave
        programmers complete control of the processor and other hardware, but
        at a price. Assembly languages have many disadvantages, not the least
        of which are higher software development costs and a lack of code
        portability. In addition, finding skilled assembly programmers has
        become much more difficult in recent years. Assembly is now used
        primarily as an adjunct to the high-level language, usually only for
        startup system code or those small pieces of code that must be
        extremely efficient or ultra-compact, or cannot be written in any
        other way.
Forth is efficient but extremely low-level and unusual;
        learning to get work done with it takes more time than with C.
C++ is an object-oriented superset of C that is
        increasingly popular among embedded programmers. All of the core
        language features are the same as C, but C++ adds new functionality
        for better data abstraction and a more object-oriented style of
        programming. These new features are very helpful to software
        developers, but some of them reduce the efficiency of the executable
        program. So C++ tends to be most popular with large development teams,
        where the benefits to developers outweigh the loss of program
        efficiency.
Ada is also an object-oriented language, though
        substantially different from C++. Ada was originally designed by the
        U.S. Department of Defense for the development of mission-critical
        military software. Despite being twice accepted as an international
        standard (Ada83 and Ada95), it has not gained much of a foothold
        outside of the defense and aerospace industries. And it has been
        losing ground there in recent years. This is unfortunate because the
        Ada language has many features that would simplify embedded software
        development if used instead of C or C++.

Choosing a Language for the Book



A major question facing the authors of a book such as this
        one is which programming language or languages to discuss. Attempting
        to cover too many languages might confuse the reader or detract from
        more important points. On the other hand, focusing too narrowly could
        make the discussion unnecessarily academic or (worse for the authors
        and publisher) limit the potential market for the book.
Certainly, C must be the centerpiece of any book about embedded
        programming, and this book is no exception. All of the sample code is
        written in C, and the discussion will focus on C-related programming
        issues. Of course, everything that is said about C programming applies
        equally to C++. We will use assembly language only when a
        particular programming task cannot be accomplished in any other
        way.
We feel that this focus on C with a brief introduction to
        assembly most accurately reflects the way embedded software is
        actually developed today and the way it will continue to be developed
        in the near term. This is why examples in this edition do not use C++.
        We hope that this choice will keep the discussion clear, provide
        information that is useful to people developing actual systems, and
        include as large a potential audience as possible. However, we do
        cover the impact of C++ on embedded software in Chapter 14.
Fixed Width Integers: Sometimes Size Matters
Computer programmers don’t always care how wide an integer is when held by
          the processor. For example, when we write:
int i;

for (i = 0; i < N; i++)
{
    ...
}
we generally expect our compiler to generate the most
          efficient code possible, whether that makes the loop counter an 8-,
          16-, 32-, or even 64-bit quantity.
As long as the integer is wide enough to hold the maximum
          value (N, in the example just
          shown), we want the processor to be used in the most efficient way.
          And that’s precisely what the ISO C and C++ standards tell the
          compiler writer to do: choose the most efficient
          integer size that will fulfill the specific request. Because of the
          variable size of integers on different processors and the
          corresponding flexibility of the language standards, the previous
          code may result in a 32-bit integer with one compiler but a 16-bit
          integer with another—possibly even when the very same processor is
          targeted.
But in many other programming situations, integer size
          matters. Embedded programming, in particular, often involves
          considerable manipulation of integer data of fixed widths.
In hindsight, it sure would’ve been nice if the authors of the
          C standard had defined some standard names and made compiler
          providers responsible for providing the appropriate typedef for each fixed-size integer type in a library
          header file. Alternatively, the C standard could have specified that
          each of the types short, int, and long has a standard width on all
          platforms; but that might have had an impact on performance,
          particularly on 8-bit processors that must implement 16- and 32-bit
          additions in multi-instruction sequences.
Interestingly, it turns out the 1999 update to the  International Organization for Standardization’s (ISO)
          C standard (also referred to as C99) did just
          that. The ISO has finally put the weight of its standard behind a
          preferred set of names for signed and unsigned fixed-size integer
          data types. The newly defined type names are:
8-bit: int8_t, uint8_t
16-bit: int16_t, uint16_t
32-bit: int32_t, uint32_t
64-bit: int64_t, uint64_t
According to the updated standard, this required set of
          typedefs (along with some others) is to be defined by compiler
          vendors and included in the new header file  stdint.h.
If you’re already using a C99-compliant compiler, this new language feature
          makes that declaration of a fixed-width integer variable or a
          register as straightforward as using one of the new type
          names.
Even if you don’t have an updated compiler, the inclusion of
          these names in the C99 standard suggests that it’s time to update
          your coding standards and practices. Love them or hate them, at
          least these new names are part of an accepted international
          standard. As a direct result, it will be far easier in the future to
          port C programs that require fixed-width integers to other compilers
          and target platforms. In addition, modules that are reused or sold
          with source can be more easily understood when they conform to
          standard naming and typing conventions such as those in C99.
If you don’t have a C99-compliant compiler yet, you’ll have to
          write your own set of typedefs, using compiler-specific knowledge of
          the char, short, and long primitive widths.
For the examples in this book, we use the C99 style for
          variable types that require specific widths. We have generated our
          own stdint.h that is specific
          to the   gcc variant targeting the ARM XScale
          processor. Our file may not work in other build environments.


Consistent Coding Practices



Whatever language is selected for a given project, it is
        important to institute some basic coding guidelines or styles to be followed by all
        developers on a project. Coding guidelines can make reading code
        easier, both for you and for the next developer that has to inherit
        your code. Understanding exactly what a particular software routine is
        doing is difficult enough without having to fight through several
        changes in coding style that emerged because a number of different
        developers touched the same routine over the years, each leaving his
        own unique mark. Stylistic issues, such as how variables are named or
        where the curly brace should reside, can be very personal to some
        developers.
There are a number of decent coding standards floating around on
        the Internet. One standard we like is located online at http://www.ganssle.com and was
        developed by Jack Ganssle. Another that we like, by Miro Samek, is located online at http://www.quantum-leaps.com.
These standards give you guidelines on everything from directory
        structures to variable names and are a great starting point; you can
        incorporate into them the styles that you find necessary and helpful.
        If a coding standard for the entire team is not something you can sell
        your company on, use one yourself and stick to it.





End of sample
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