

 [image: First Edition]

 Ruby Best Practices

Gregory T Brown

Editor
Mike Loukides

Copyright © 2009 Gregory Brown

O’Reilly books may be purchased for educational, business, or sales
 promotional use. Online editions are also available for most titles
 (http://my.safaribooksonline.com).
 For more information, contact our corporate/institutional sales
 department: 800-998-9938 or corporate@oreilly.com.

O’Reilly and the O’Reilly logo are registered trademarks of O’Reilly
 Media, Inc. Ruby Best Practices, the image of a
 green crab, and related trade dress are trademarks of O’Reilly Media,
 Inc.
Many of the designations used by manufacturers and sellers to
 distinguish their products are claimed as trademarks. Where those
 designations appear in this book, and O’Reilly Media, Inc. was aware of a
 trademark claim, the designations have been printed in caps or initial
 caps.

While every precaution has been taken in the preparation of this
 book, the publisher and author assume no responsibility for errors or
 omissions, or for damages resulting from the use of the information
 contained herein. In March 2010, this work will be released under the
 Creative Commons Attribution-Noncommercial-Share Alike 3.0 License. To view a copy of this license,
 visit http://creativecommons.org/licenses/by-nc-sa/3.0/
 or send a letter to Creative Commons, 171 2nd Street, Suite 300, San
 Francisco, California, 94105, USA.

[image:]

O'Reilly Media

SPECIAL OFFER: Upgrade this ebook with O’Reilly

Click here for more information on this offer!
Please note that upgrade offers are not available from sample content.

Foreword

Yukihiro “Matz” Matsumoto

In 1993, when Ruby was born, Ruby had nothing. No user base except for
 me and a few close friends. No tradition. No idioms except for a few
 inherited from Perl, though I regretted most of them afterward.
But the language forms the community. The community nourishes the
 culture. In the last decade, users increased—hundreds of thousands of
 programmers fell in love with Ruby. They put great effort into the language
 and its community. Projects were born. Idioms tailored for Ruby were
 invented and introduced. Ruby was influenced by Lisp and other functional
 programming languages. Ruby formed relationships between technologies and
 methodologies such as test-driven development and duck typing.
This book introduces a map of best practices of the language as of
 2009. I’ve known Greg Brown for years, and he is an experienced Ruby
 developer who has contributed a lot of projects to the language, such as
 Ruport and Prawn. I am glad he compiled his knowledge into this book.
His insights will help you become a better Ruby programmer.

Preface

Some programming languages excel at turning coders into clockwork
 oranges. By enforcing rigid rules
 about how software must be structured and implemented, it is possible to
 prevent a developer from doing anything dangerous. However, this comes at a
 high cost, stifling the essential creativity and passion that separates the
 masterful coder from the mediocre. Thankfully, Ruby is about as far from
 this bleak reality as you can possibly imagine.
As a language, Ruby is designed to allow developers to express
 themselves freely. It is meant to operate at the programmer’s level,
 shifting the focus away from the machine and toward the problem at hand.
 However, Ruby is highly malleable, and is nothing more than putty in the
 hands of the developer. With a rigid mindset that tends to overcomplicate
 things, you will produce complex Ruby code. With a light and unencumbered
 outlook, you will produce simple and beautiful programs. In this book,
 you’ll be able to clearly see the difference between the two, and find a
 clear path laid out for you if you choose to seek the latter.
A dynamic, expressive, and open language does not fit well into strict
 patterns of proper and improper use. However, this is not to say that
 experienced Rubyists don’t agree on general strategies for attacking
 problems. In fact, there is a great degree of commonality in the way that
 professional Ruby developers approach a wide range of challenges. My goal in
 this book has been to curate a collection of these techniques and practices
 while preserving their original context. Much of the code discussed in this
 book is either directly pulled from or inspired by popular open source Ruby
 projects, which is an ideal way to keep in touch with the practical world
 while still studying what it means to write better code.
If you were looking for a book of recipes to follow, or code to copy
 and paste, you’ve come to the wrong place. This book is much more about how
 to go about solving problems in Ruby than it is about the exact solution you
 should use. Whenever someone asks the question “What is the right way to do
 this in Ruby?”, the answer is always “It depends.” If you read this book,
 you’ll learn how to go with the flow and come up with good solutions even as
 everything keeps changing around you. At this point, Ruby stops being scary
 and starts being beautiful, which is where all the fun begins.
Audience

This book isn’t really written with the Ruby beginner in mind, and
 certainly won’t be very useful to someone brand new to programming.
 Instead, I assume a decent technical grasp of the Ruby language and at
 least some practical experience in developing software with it. However,
 you needn’t be some guru in order to benefit from this book. The most
 important thing is that you actually care about improving the way you
 write Ruby code.
As long as you have at least an intermediate level of experience,
 reading through the book should be enjoyable. You’ll want to have your
 favorite reference book handy to look things up as needed. Either
 The Ruby
 Programming Language by David Flanagan and Yukihiro
 Matsumoto (O’Reilly) or Programming Ruby, Third
 Edition, by Dave Thomas (Pragmatic Bookshelf) should do the trick.
It is also important to note that this is a Ruby 1.9 book. It makes
 no attempt to provide notes on the differences between Ruby 1.8 and 1.9
 except for in a brief appendix designed specifically for that purpose.
 Although many of the code samples will likely work with little or no
 modifications for earlier versions of Ruby, Ruby 1.9 is the way forward,
 and I have chosen to focus on it exclusively in this book. Although the
 book may still be useful to those maintaining legacy code, it is
 admittedly geared more toward the forward-looking crowd.

About This Book

This book is designed to be read by chapter, but the chapters are
 not in any particular order. The book is split into two parts, with eight
 chapters forming its core and three appendixes included as supplementary
 material. Despite the fact that you can read these topics in any order
 that you’d like, it is recommended that you read the entire book. Lots of
 the topics play off of each other, and reading through them all will give
 you a solid base in some powerful Ruby techniques and practices.
Each of the core chapters starts off with a case study that is meant
 to serve as an introduction to the topic it covers. Every case study is
 based on code from real Ruby projects, and is meant to provide a practical
 experience in code reading and exploration. The best way to work through
 these examples is to imagine that you are working through a foreign
 codebase with a fellow developer, discussing the interesting bits as you
 come across them. In this way, you’ll be able to highlight the exciting
 parts without getting bogged down on every last detail. You are not
 expected to understand every line of code in the case studies in this
 book, but instead should just treat them as useful exercises that prepare you for studying the
 underlying topics.
Once you’ve worked your way through the case study, the remainder of
 each core chapter fills in details on specific subtopics related to the
 overall theme. These tend to mix real code in with some abstract examples,
 preferring the former but falling back to the latter when necessary to
 keep things easy to understand. Some code samples will be easy to run as
 they are listed; others might only be used for illustration purposes. This
 should be easy enough to figure out as you go along based on the context.
 I wholeheartedly recommend running examples when they’re relevant and
 stopping frequently to conduct your own explorations as you read this
 book. The sections are kept somewhat independent of one another to make it
 easy for you to take as many breaks as you need, and each wraps up with
 some basic reminders to refresh your memory of what you just read.
Although the core chapters are the essential part of this book, the
 appendixes should not be overlooked. You’ll notice that they’re slightly
 different in form and content from the main discussion, but maintain the
 overall feel of the book. You’ll get the most out of them if you read them
 after you’ve completed the main part of the book, as they tend to assume
 that you’re already familiar with the rest of the content.
That’s pretty much all there is to it. The key things to remember
 are that you aren’t going to get much out of this book by skimming for
 content on a first read, and that you should keep your brain engaged while
 you work your way through the content. If you read this entire book
 without writing any code in the process, you’ll probably rob yourself of
 the full experience. So pop open your favorite editor, start with the
 topic from the chapter listing that interests you most, and get
 hacking!

Conventions Used in This Book

The following typographical conventions are used in this
 book:
	Italic
	Indicates new terms, URLs, email addresses, filenames, and
 file extensions.

	Constant width
	Used for program listings, as well as within paragraphs to
 refer to program elements such as variable or function names,
 databases, data types, environment variables, statements, and
 keywords.

	Constant width
 bold
	Shows commands or other text that should be typed literally by
 the user.

	Constant width italic
	Shows text that should be replaced with user-supplied values
 or by values determined by context.

Using Code Examples

This book is here to help you get your job done. In general, you may
 use the code in this book in your programs and documentation. You do not
 need to contact us for permission unless you’re reproducing a significant
 portion of the code. For example, writing a program that uses several
 chunks of code from this book does not require permission. Selling or
 distributing a CD-ROM of examples from O’Reilly books does require
 permission. Answering a question by citing this book and quoting example
 code does not require permission. Incorporating a significant amount of
 example code from this book into your product’s documentation does require
 permission.
We appreciate, but do not require, attribution. An attribution
 usually includes the title, author, publisher, and ISBN. For example:
 “Ruby Best Practices by Gregory Brown. Copyright 2009
 Gregory Brown, 978-0-596-52300-8.”
If you feel your use of code examples falls outside fair use or the
 permission given here, feel free to contact us at
 permissions@oreilly.com.

Safari® Books Online

Note
When you see a Safari® Books Online icon on the cover of your
 favorite technology book, that means the book is available online
 through the O’Reilly Network Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s a virtual
 library that lets you easily search thousands of top tech books, cut and
 paste code samples, download chapters, and find quick answers when you
 need the most accurate, current information. Try it for free at http://my.safaribooksonline.com.

How to Contact Us

Please address comments and questions concerning this book to the
 publisher:
	O’Reilly Media, Inc.
	1005 Gravenstein Highway North
	Sebastopol, CA 95472
	800-998-9938 (in the United States or Canada)
	707-829-0515 (international or local)
	707-829-0104 (fax)

O’Reilly has a web page for this book, where we list errata,
 examples, and any additional information. You can access this page
 at:
	http://oreilly.com/catalog/9780596523008/

Gregory maintains a community-based page for this book at:
	http://rubybestpractices.com

To comment or ask technical questions about this book, send email
 to:
	bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers,
 and the O’Reilly Network, see our
 website at:
	http://www.oreilly.com

Acknowledgments

Over the course of writing Ruby Best
 Practices, I was thoroughly supported by my friends, family,
 and fellow hackers. I want to thank each and every one of the folks who’ve
 helped out with this book, because it would not exist without them.
This book did not have a typical technical review process, but
 instead was supported by an excellent advisory board whose members
 participated in group discussion and the occasional review as each chapter
 was released. These folks not only helped catch technical errors, but
 helped me sketch out the overall vision for how the book should come
 together as well. Participants included James Britt, Francis Hwang, Hart
 Larew, Chris Lee, Jeremy McAnally, and Aaron Patterson.
Rounding out the group was the best pair of guiding mentors I could
 hope for, Brad Ediger and James Edward Gray II. Both have published Ruby
 books, and have worked with me extensively on a number of Ruby projects.
 James and Brad were both instrumental in producing this book, and to my
 career as a software developer in general. I have learned a ton from each
 of them, and thanks to their help with RBP, I can
 now pass their knowledge on to you.
Much of the source code in this book comes from the open source Ruby
 community. Although I talk about my own projects (Prawn and Ruport) a lot,
 most of the code I show is actually from other contributors or at least
 originated from good ideas that came up in mailing list discussions,
 feature requests, and so on. In addition to these two projects, I also
 have benefited from studying a whole slew of other gems, including but not
 limited to: activesupport, builder, camping, faker, flexmock, gibberish,
 haml, highline, lazy, nokogiri, pdf-writer, and rspec. Great thanks go out
 to all of the developers of these projects, whom I’ve tried to acknowledge
 directly wherever I can throughout the text.
Of course, without Yukihiro Matsumoto (Matz), we wouldn’t have Ruby
 in the first place. After writing this book, I am more impressed than ever
 by the language he has designed. If I’m lucky, this book will help show
 people just how beautiful Ruby can be.
Producing the technical content for this work was daunting, but only
 part of the overall picture. My editor, Mike Loukides, and the entire
 O’Reilly production team have made publishing this book a very comfortable
 experience. After overcoming major fears about the hurdles of working with
 a mainstream publisher, I’ve found the folks at O’Reilly to be helpful,
 accommodating, and supportive. It is especially nice that this book will
 become an open community resource less than a year after it prints. This
 measure is one I hope to see other technical book publishers adopt, and
 one I’m very thankful that O’Reilly was open to.
Finally, I need to thank the folks who’ve helped me keep my sanity
 while working on this huge project. My future wife, Jia Wu, has been
 amazingly supportive of me, and helped make sure that I occasionally ate
 and slept while working on this book. On the weekends, we’d usually escape
 for an bit and spend time with my close friends and family. Though they
 didn’t have anything to do with the project itself, without Pete, Paul,
 Mom, Dad, and Vinny, I doubt you’d be reading this book right now. Thanks
 to all of you, even if you’ll never need to read this book.
So many people helped out in countless different ways, that I’m sure
 I’ve missed someone important while compiling this list. To make sure
 these folks get their well-deserved credit, please keep an eye on the
 acknowledgments page at http://rubybestpractices.com
 and let me know if there is someone who needs to be added to the list. But
 for now, if I’ve failed to list you here, thank you and please know that
 I’ve not forgotten what you’ve done to help me.

Chapter 1. Driving Code Through Tests

If you’ve done some Ruby—even a little bit—you have probably heard of
 test-driven development (TDD). Many advocates present
 this software practice as the “secret key” to programming success. However,
 it’s still a lot of work to convince people that writing tests that are
 often longer than their implementation code can actually lower the total
 time spent on a project and increase overall efficiency.
In my work, I’ve found most of the claims about the benefits of TDD to
 be true. My code is better because I write tests that document the expected
 behaviors of my software while verifying that my code is meeting its
 requirements. By writing automated tests, I can be sure that once I narrow
 down the source of a bug and fix it, it’ll never resurface without me
 knowing right away. Because my tests are automated, I can hand my code off
 to others and mechanically assert my expectations, which does more for me
 than a handwritten specification ever could do.
However, the important thing to take home from this is that automated
 testing is really no different than what we did before we discovered it. If
 you’ve ever tried to narrow down a bug with a print statement based on a
 conditional, you’ve already written a primitive form of automated
 testing:
if foo != "blah"
 puts "I expected 'blah' but foo contains #{foo}"
end
If you’ve ever written an example to verify that a bug exists in an
 earlier version of code, but not in a later one, you’ve written something
 not at all far from the sorts of things you’ll write through TDD. The only
 difference is that one-off examples do not adequately account for the
 problems that can arise during integration with other modules. This problem
 can become huge, and is one that unit testing frameworks handle quite
 well.
Even if you already know a bit about testing and have been using it in
 your work, you might still feel like it doesn’t come naturally. You write
 tests because you see the long-term benefits, but you usually write your
 code first. It takes you a while to write your tests, because it seems like
 the code you wrote is difficult to pin down behavior-wise. In the end,
 testing becomes a necessary evil. You appreciate the safety net, but except
 for when you fall, you’d rather just focus on keeping your balance and
 moving forward.
Masterful Rubyists will tell you otherwise, and for good reason.
 Testing may be hard, but it truly does make your job of writing software
 easier. This chapter will show you how to integrate automated testing into
 your workflow, without forcing you to relearn the troubleshooting skills
 you’ve already acquired. By making use of the best practices discussed here,
 you’ll be able to more easily see the merits of TDD in your own work.
A Quick Note on Testing Frameworks

Ruby provides a unit testing framework in its standard library
 called minitest/unit. This library provides a
 user-level compatibility layer with the popular
 test/unit library, which has been fairly standard in
 the Ruby community for some time now. There are significant differences
 between the minitest/unit and
 test/unit implementations, but as we won’t be
 building low-level extensions in this chapter, you can assume that the
 code here will work in both minitest/unit and
 test/unit without modification.
For what it’s worth, I don’t have a very strong preference when it
 comes to testing frameworks. I am using the Test::Unit API here because it is part of
 standard Ruby, and because it is fundamentally easy to hack on and extend.
 Many of the existing alternative testing frameworks are built on top of
 Test::Unit, and you will almost
 certainly need to have a working knowledge of it as a Ruby developer.
 However, if you’ve been working with a noncompatible framework such as
 RSpec, there’s nothing wrong with
 that. The ideas here should be mostly portable to your framework of
 choice.
And now we can move on. Before digging into the nuts and bolts of
 writing tests, we’ll examine what it means for code to be easily testable,
 by looking at some real examples.

Designing for Testability

Describing testing with the phrase “Red, Green, Refactor” makes it
 seem fairly straightforward. Most people interpret this as the process of
 writing some failing tests, getting those tests to pass, and then cleaning
 up the code without causing the tests to fail again. This general
 assumption is exactly correct, but a common misconception is how much work
 needs to be done between each phase of this cycle.
For example, if we try to solve our whole problem all in one big
 chunk, add tests to verify that it works, then clean up our code, we end
 up with implementations that are very difficult to test, and even more
 challenging to refactor. The following example illustrates just how bad
 this problem can get if you’re not careful. It’s from some payroll
 management code I wrote in a hurry a couple of years ago:
def time_data_for_week(week_data,start,employee_id)

 data = Hash.new { |h,k| h[k] = Hash.new }

 %w[M T W TH F S].zip((0..6).to_a).each do |day,offset|

 date = (start + offset.days).beginning_of_day

 data[day][:lunch_hours] = LunchTime.find(:all, conditions:
 ["employee_id = ? and day between ? and ?",
 employee_id, date, date + 1.day - 1.second]).inject(0) { |s,r|
 s + r.duration
 }

 times = [[:sick_hours , "Sick"],
 [:personal_hours, "Personal"],
 [:vacation_hours, "Vacation"],
 [:other_hours, "Other"]]

 times.each do |a,b|
 data[day][a] = OtherTime.find(:all, conditions:
 ["employee_id = ? and category = '#{b}' and date between ? and ?",
 employee_id, date, date + 1.day - 1.second]).inject(0) { |s,r|
 s + r.hours
 }
 end

 d = week_data.find { |d,_| d == date }
 next unless d

 d = d[-1]
 data[day].merge!(
 regular_hours: d.inject(0) { |s,e|
 s + (e.end_time ? (e.end_time - e.start_time) / 3600 : 0)
 } - data[day][:lunch_hours],
 start_time: d.map { |e| e.start_time }.sort[0],
 end_time: d.map { |e| e.end_time }.compact.sort[-1]
)
 end

 sums = Hash.new(0)

 data.each do |k,v|
 [:regular_hours, :lunch_hours, :sick_hours,
 :personal_hours, :vacation_hours, :other_hours].each { |h|
 sums[h] += v[h].to_f }
 end

 Table(:day,:start_time,:end_time,:regular_hours,:lunch_hours,
 :sick_hours,:personal_hours,:vacation_hours, :other_hours) do |t|
 %w[M T W TH F S].each { |d| t << {day: d}.merge(data[d]) }
 t << []
 t << { day: "Totals" }.merge(sums)
 end
end
When you looked at the preceding example, did you have an easy time
 understanding it? If you didn’t, you don’t need to worry, because I can
 hardly remember what this code does, and I’m the one who wrote it. Though
 it is certainly possible to produce better code than this without
 employing TDD, it’s actually quite difficult to produce something this
 ugly if you are writing your tests first. This is especially true if you
 manage to keep your iterations nice and tight. The very nature of
 test-driven development lends itself to breaking your code up into
 smaller, simpler chunks that are easy to work with. It’s safe to say that
 we don’t see any of those attributes here.
Now that we’ve seen an example of what not to do, we can investigate
 the true benefits of TDD in the setting of a real project. What follows is
 the process that I went through while developing a simple feature for the
 Prawn PDF generation library. But first, a small diversion is
 necessary.
A Test::Unit Trick to Know About
Usually, test cases written with
 minitest/unit or test/unit
 look like this:
class MyThingieTest < Test::Unit::TestCase
 def test_must_be_empty
 #...
 end

 def test_must_be_awesome
 #...
 end
end
But in all the examples you’ll see in this chapter, we’ll be
 writing our tests like this:
class MyThingieTest < Test::Unit::TestCase
 must "be empty" do
 #...
 end

 must "be awesome" do
 #...
 end
end
If you’ve used Test::Unit
 before, you might be a bit confused by the use of the must() method here. This is actually a custom
 addition largely based on the test()
 method in the activesupport gem. All this code does
 is automatically generate test methods for you, improving the clarity of
 our examples a bit. You don’t really need to worry about how this works,
 but for the curious, the implementation can be found at http://github.com/sandal/rbp/tree/master/testing/test_unit_extensions.rb.
We also discuss this in Chapter 3, Mastering the Dynamic Toolkit, as an example of how to make custom
 extensions to preexisting objects. So although you only need to
 understand how must() is used here,
 you’ll get a chance to see how it is built later on.

The code we’re about to look at was originally part of Prawn’s early
 support for inline styling, which allows users to make use of bold and
 italic typefaces within a single string of text. In practice, these
 strings look very similar to the most basic HTML markup:
"This is a string with bold, <i>bold italic</i> and <i>italic</i> text"
Although the details of how Prawn actually converts these strings
 into stylized text that can be properly rendered within a PDF document are
 somewhat gory, the process of breaking up the string and parsing out the
 style tags is quite straightforward. We’ll focus on this aspect of things,
 stepping through the design and development process until we end up with a
 simple function that behaves as follows:
>> StyleParser.process("Some bold and <i>italic</i> text")
=> ["Some ", "", "bold", "", " and ", "<i>", "italic", "</i>", " text"]
This example demonstrates the final product, but the initial pass at
 things wasn’t so polished. I started by considering the possibility of
 passing all the strings rendered in Prawn through style processing, so the
 initial case I thought of was actually to allow the method to return the
 string itself when it did not detect any style data. My early example
 looked something like this:
class TestInlineStyleParsing < Test::Unit::TestCase
 must "simply return the string if styles are not found" do
 @pdf = Prawn::Document.new
 assert_equal "Hello World", @pdf.parse_inline_styles("Hello World")
 end
end
My initial functionality looked something like this:
class Prawn::Document
 def parse_inline_styles(text)
 text
 end
end
This caused my example to run without failure, and is quite possibly
 the most boring code imaginable. However, working in small steps like this
 helps keep things simple and also allows you to sanity-check that things
 are working as expected. Seeing that this was the case, I was able to move
 forward with another set of examples. The modified test case ended up
 looking like this:
class TestInlineStyleParsing < Test::Unit::TestCase
 must "simply return the string if styles are not found" do
 @pdf = Prawn::Document.new
 assert_equal "Hello World", @pdf.parse_inline_styles("Hello World")
 end

 must "parse italic tags" do
 @pdf = Prawn::Document.new
 assert_equal ["Hello ", "<i>", "Fine", "</i>", " World"],
 @pdf.parse_inline_styles("Hello <i>Fine</i> World")
 end

 must "parse bold tags" do
 @pdf = Prawn::Document.new
 assert_equal ["Some very ", "", "bold text", ""],
 @pdf.parse_inline_styles("Some very bold text")
 end

end
Despite the fact that I’m writing a book titled Ruby Best
 Practices, I freely admit that I write some dumb code
 sometimes. For evidence, we can look at the first bit of code that made
 this example work:
def parse_inline_styles(text)
 require "strscan"

 sc = StringScanner.new(text)
 output = []
 last_pos = 0

 loop do
 if sc.scan_until(/<\/?[ib]>/)
 pre = sc.pre_match[last_pos..-1]
 output << pre unless pre.empty?
 output << sc.matched
 last_pos = sc.pos
 else
 output << sc.rest if sc.rest?
 break output
 end
 end

 output.length == 1 ? output.first : output
end
That’s way longer than it needs to be. Luckily, a useful aspect of
 using automated behavior verification is that it is helpful during
 refactoring. I had planned to send this code out to the
 ruby-talk mailing list so that I could learn the
 elegant solution that I knew must exist but couldn’t quite muster in my
 first pass. Before I could do that though, I needed to add another example
 to clarify the intended behavior:
must "parse mixed italic and bold tags" do
 @pdf = Prawn::Document.new
 assert_equal ["Hello ", "<i>", "Fine ", "", "World", "", "</i>"],
 @pdf.parse_inline_styles("Hello <i>Fine World</i>")
end
Some folks might make the claim that a good test suite makes it
 easier to communicate with customers, but I’ve never been too sure about
 that. What I do know is that tests are downright awesome for describing a
 problem to your fellow developers. Within minutes of posting my examples
 to ruby-talk, I had a much better implementation in
 hand:[1]
def parse_inline_styles(text)
 segments = text.split(%r{(</?.*?>)}).reject {|x| x.empty? }
 segments.size == 1 ? segments.first : segments
end
Running the examples showed that this code accomplished what my
 earlier code did, as there were no failures. However, your code is only as
 correct as the examples you choose, and as it turns out, this code gave me
 more than I bargained for. It parsed out anything within angle braces,
 meaning it’d pull out the tags in the following string:
"Hello <indigo>Charlie</indigo>"
Though this might be useful in some situations, I really wanted to
 parse out only the two specific tags I planned to handle, so I added an
 example to cover this:
must "not split out other tags than <i>, , </i>, " do
 @pdf = Prawn::Document.new
 assert_equal ["Hello <indigo>Ch", "", "arl", "", "ie</indigo>"],
 @pdf.parse_inline_styles("Hello <indigo>Charlie</indigo>")
end
This new example resulted in a failure, as expected. The required
 change was simple, and caused everything to pass again:
def parse_inline_styles(text)
 segments = text.split(%r{(</?[ib]>)}).delete_if{|x| x.empty? }
 segments.size == 1 ? segments.first : segments
end
I originally planned to pass through this function every string that
 Prawn attempted to render, and this influenced the way the initial
 interface was specified. However, later I realized that it would be better
 to check to see whether a string had any style tags in it before
 attempting to parse it. Because the process of rendering the text is
 handled in two very different ways depending on whether there are inline
 styles present, I needed to handle only the case when there were tags to
 be extracted in my parser:
def parse_inline_styles(text)
 text.split(%r{(</?[ib]>)}).delete_if{|x| x.empty? }
end
This cleanup caused one of my examples to fail, because it broke the
 old default behavior:
 1) Failure:
test_simply_return_the_string_if_styles_are_not_found(TestInlineStyleParsing) [...]:
<"Hello World"> expected but was
<["Hello World"]>.
As this example was no longer relevant, I simply removed it and was
 back under the green light. But I still needed a related feature, which
 was the ability to test whether a string
 needed to be parsed. I considered making this a private method on
 Prawn::Document,
 but it led to some ugly code:
must "be able to check whether a string needs to be parsed" do
 @pdf = Prawn::Document.new
 assert ! @pdf.send(:style_tag?, "Hello World")
 assert @pdf.send(:style_tag?, "Hello <i>Fine</i> World")
end
Most of the time when I need to use send() to call a private method in one of my
 tests, I try to rethink my interface. Sometimes it’s a necessary evil, but
 most of the time it just means that things
 are looking to be refactored. When I first added Document#parse_inline_styles, it didn’t
 concern me much to add a single utility method for this purpose. However,
 once I found out that I needed an additional helper method, I began to
 rethink the problem. I realized things would look better if I wrapped the
 code up in a module.
I updated my examples to reflect this change, and cleaned them up a
 bit by adding a setup method, which
 gets run before each individual test:
class TestInlineStyleParsing < Test::Unit::TestCase

 def setup
 @parser = Prawn::Document::Text::StyleParser
 end

 must "parse italic tags" do
 assert_equal ["Hello ", "<i>", "Fine", "</i>", " World"],
 @parser.process("Hello <i>Fine</i> World")
 end

 must "parse bold tags" do
 assert_equal ["Some very ", "", "bold text", ""],
 @parser.process("Some very bold text")
 end

 must "parse mixed italic and bold tags" do
 assert_equal ["Hello ", "<i>", "Fine ", "", "World", "", "</i>"],
 @parser.process("Hello <i>Fine World</i>")
 end

 must "not split out other tags than <i>, , </i>, " do
 assert_equal ["Hello <indigo>Ch", "", "arl", "", "ie</indigo>"],
 @parser.process("Hello <indigo>Charlie</indigo>")
 end

 must "be able to check whether a string needs to be parsed" do
 assert @parser.style_tag?("Hello <i>Fine</i> World")
 assert !@parser.style_tag?("Hello World")
 end

end
Because these features didn’t really rely on anything within
 Prawn::Document, it made me happy to
 give them a home of their own, ready to be expanded later as needed. I
 created the module and dropped in the trivial check that made up the
 style_tag? feature:
module StyleParser
 extend self

 def process(text)
 text.split(%r{(</?[ib]>)}).delete_if{|x| x.empty? }
 end

 def style_tag?(text)
 !!(text =~ %r{(</?[ib]>)})
 end
end
With the tests passing, I snuck in one more bit of cleanup under the
 green light, just to make things a little more DRY:[2]
module StyleParser
 extend self

 TAG_PATTERN = %r{(</?[ib]>)}

 def process(text)
 text.split(TAG_PATTERN).delete_if{|x| x.empty? }
 end

 def style_tag?(text)
 !!(text =~ TAG_PATTERN)
 end
end
With these two simple features in hand, I was then ready to work on
 implementing the inline styling support in Prawn, which I can assure you
 was far less pleasant to hack together.[3] Even though this example was quite simple, it captures the
 entire process of evolving a feature by using progressively tweaked
 examples from start to finish. Although the end result is an automated
 safety net that verifies that my methods behave as I’ve specified them,
 you can see that the process of problem discovery, refactoring, and
 iterative design are the true fruits of test-driven development. This is
 what justifies spending time writing tests that are often longer than your
 implementation. The resulting examples are mostly a helpful side effect;
 the power of this technique is in what insight you gain through writing
 them in the first place.
Now that we’ve seen the process in action, we’ll take a step back
 and go over some testing fundamentals. Although this stuff may be familiar
 to folks who are already accustomed to TDD, it doesn’t hurt to brush up on
 the essentials, as they form a foundation for the more advanced stuff that
 we’ll tackle a little later.

[1] Thanks to Robert Dober, ruby-talk post
 #309593.

[2] Don’t Repeat Yourself.

[3] In fact, it wasn’t until several months later that an acceptable
 inline styling tool saw the light of day, thanks to the efforts of
 Jamis Buck.

Testing Fundamentals

A few good habits go a long way when it comes to TDD. We’ll now take
 a look at some key techniques that help make writing solid and
 maintainable tests much easier.
Well-Focused Examples

A common beginner habit in testing is to create a single example
 that covers all of the edge cases for a given method. An example of this
 might be something along these lines:
class VolumeTest < Test::Unit::TestCase
 must "compute volume based on length, width, and height" do
 # defaults to l=w=h=1
 assert_equal 1, volume

 #when given 1 arg, set l=x, set w,h = 1
 x = 6
 assert_equal x, volume(x)

 # when given 2 args, set l=x, w=y and h=1
 y = 2
 assert_equal x*y, volume(x,y)

 # when given 3 args, set l=x, w=y and h=z
 z = 7
 assert_equal x*y*z, volume(x,y,z)

 # when given a hash, use :length, :width, :height
 assert_equal x*y*z, volume(length: x, width: y, height: z)
 end
end
Though it is relatively easy to type things out this way, there
 are some limitations that are worth noting. One of the most obvious
 issues with this approach is that it isn’t very organized. Compare the
 previous example to the next, and you’ll see how much easier it is to
 read things when they are cleanly separated out:
class VolumeTest < Test::Unit::TestCase

 must "return 1 by default if no arguments are given" do
 # defaults to l=w=h=1
 assert_equal 1, volume
 end

 must "set l=x, set w,h = 1 when given 1 numeric argument" do
 x = 6
 assert_equal x, volume(x)
 end

 must "set l=x, w=y, and h=1 when given 2 arguments" do
 x, y = 6, 2
 assert_equal x*y, volume(x,y)
 end

 must "set l=x, w=y, and h=z when given 3 arguments" do
 x,y,z = 6, 2, 7
 assert_equal x*y*z, volume(x,y,z)
 end

 must "use :length, :width, and :height when given a hash argument" do
 x,y,z = 6, 2, 7
 assert_equal x*y*z, volume(length: x, width: y, height: z)
 end

end
However, the improved clarity is actually one of the lesser
 reasons why this code is better. In the former example, your failure
 report will include only the first assertion that was violated; the code
 that follows it will not even be executed. When you get the report back,
 you’ll get a message that shows you the numeric expected/actual values,
 but it will be titled something like, “a volume function should compute
 volume based on length width and height,” which is not very instructive
 for determining which case caused the problem.
In the latter approach, every single example will run, testing all
 of the cases simultaneously. This means that if a change you make to
 your code affects three out of the four cases, your tests will report
 back three out of four cases rather than just the first failed assertion
 in the example. They’ll have more useful names, too, each uniquely
 pointing back to the individual must() call that failed.
Although the code shown here is unlikely to have side effects,
 there is an additional benefit to splitting up examples: each one runs
 in its own clean-slate environment. This means you can use setup and teardown methods to manage pre- and
 postprocessing, but the code will run largely independent of your other
 examples. The benefit here is that you’ll avoid the problem of
 accidentally depending on some side effect or state that is left hanging
 around as a result of another method call. Because of this, your tests
 will be more isolated and less likely to run into false positives or
 strange errors.

Testing Exceptions

Code is not merely specified by the way it acts under favorable
 conditions. Although it’d be great if we could assume conservative input
 and liberal output constraints, this just doesn’t seem to be practical
 in most cases. This means that our code will often need to raise
 appropriate exceptions when it isn’t able to handle the request it has
 been given, or if it detects misuse that deserves further attention.
 Luckily, Test::Unit makes it easy for
 us to specify both when code should raise a certain error, and when we
 expect it to run without error. We’ll take a look at a trivial little
 lockbox object that provides rudimentary access control to get a feel
 for how this looks. See if you can understand the tests just by reading
 through them:
class LockBoxTest < Test::Unit::TestCase

 def setup
 @lock_box = LockBox.new(password: "secret",
 content: "My Secret Message")
 end

 must "raise an error when an invalid password is used" do
 assert_raises(LockBox::InvalidPassword) do
 @lock_box.unlock("kitten")
 end
 end

 must "Not raise error when a valid password is used" do
 assert_nothing_raised do
 @lock_box.unlock("secret")
 end
 end

 must "prevent access to content by default" do
 assert_raises(LockBox::UnauthorizedAccess) do
 @lock_box.content
 end
 end

 must "allow access to content when box is properly unlocked" do
 assert_nothing_raised do
 @lock_box.unlock("secret")
 @lock_box.content
 end
 end

end
As you can see, these tests read pretty clearly. Testing your
 exceptions is as easy as using the assert_raises() and assert_nothing_raised() methods with the
 relevant error class names. We can take a quick look at the
 implementation of LockBox to see what
 the code that satisfies these tests looks like:
class LockBox

 UnauthorizedAccess = Class.new(StandardError)
 InvalidPassword = Class.new(StandardError)

 def initialize(options)
 @locked = true
 @password = options[:password]
 @content = options[:content]
 end

 def unlock(pass)
 @password == pass ? @locked = false : raise(InvalidPassword)
 end

 def content
 @locked ? raise(UnauthorizedAccess) : @content
 end
end
Nothing too fancy is going on here—just a few conditional
 arguments and a pair of custom exceptions.[4] But if we failed to test the cases that generated the
 exceptions, we wouldn’t have full test coverage. Generally speaking, any
 time your methods might intentionally raise an error, you’ll want to set
 up test cases that cover both the condition where this error is raised
 as well as the case where it is not. This will help make sure that your
 error can actually be raised, while ensuring that it isn’t raised
 unconditionally. Testing this way will help you catch trivial mistakes
 up front, which is always a good thing.

Run the Whole Suite at Once

Though the examples we have worked with so far might fit well in a
 single file, you’ll eventually want to split up your tests across
 several files. However, that doesn’t mean that you should run them only
 in isolation!
A key feature of automated testing is that it gives you a
 comprehensive sense of how your software is running as a system, not
 just on a component-by-component basis. To keep aware of any problems
 that might occur during refactoring or wiring in new features, it is
 beneficial to run your entire suite of examples on every change.
 Luckily, using Ruby’s standard project automation tool, this is trivial.
 Here is a sample Rakefile that uses some of the most
 common conventions:
require "rake/testtask"

task :default => [:test]

Rake::TestTask.new do |test|
 test.libs << "test"
 test.test_files = Dir["test/test_*.rb"]
 test.verbose = true
end
This code makes it so rake test
 will run every Ruby file in the test/ folder of
 your project that starts with test_ and ends with
 the .rb extension. A typical directory layout that
 works with this sort of command looks like this:
test/
 test_foo.rb
 test_bar.rb
You can tweak which files get run by changing the glob pattern
 passed to Dir. These work pretty much
 the same as they do on the command line, so you can just put one
 together that suits your file layout.
Now, if you’ve got some expensive resources you’re writing tests
 against, such as file I/O, database interaction, or some network
 operation, you may be a bit nervous about the idea of running all your
 tests on every change you make. This may be due to performance concerns
 or due to the fact that you simply can’t afford to do frequent
 live tests of your external resources. However, in
 most cases, this problem can be worked around, and actually leads to
 better tests.
The solution I’m alluding to is mock objects,
 and how they can be used to avoid dependencies on external resources.
 We’ll go over several advanced concepts in the following section, but
 mocks are as good a place to start as any, so we’ll work with them
 first. Before we do that though, let’s review some of the key guidelines
 that outline testing fundamentals:
	Keep your test cases atomic. If you are testing a function
 with multiple interfaces, write multiple examples. Also, write an
 example for each edge case you want to test.

	Don’t just check function input and output, also use assert_raises() and assert_nothing_raised() to test that
 exceptions are being thrown under the right conditions, and not
 unexpectedly.

	Use a rake task to automate running your test suite, and run
 all of your examples on every change to ensure that integration
 issues are caught as soon as they are introduced. Running tests
 individually may save time by catching problems early, but before
 moving from feature to feature, it is crucial to run the whole
 suite.

[4] The syntax used for creating errors here is just a shortcut
 for class MyCustomError < StandardError;
 end.

Advanced Testing Techniques

The most basic testing techniques will get you far, but when things
 get complicated, you need to break out the big guns. What follows are a
 few tricks to try out when you run into a roadblock.
Using Mocks and Stubs

In a perfect world, all the resources that we needed would be
 self-contained in our application, and all interactions would take place
 in constant time. In our real work, life is nothing like this. We’ve got
 to deal with user input, database interaction, web service calls, file
 I/O, and countless other moving parts that live outside of our
 application. Testing these things can be painful.
Sure, we could set up a development database that gets blown out
 and reloaded every time our tests run—that’s what Rails does. We could
 read and write from temporary files, clearing out our leftovers after
 each example runs. For things like web services, we could build a fake
 service that acts the way we expect our live service to act and run it
 on a staging server. The question here is not whether it is possible to
 do this, but whether it is necessary.
Sometimes, you really do need to deal with real-world data. This
 is especially true when you want to tune and optimize performance or
 test resource-dependent interactions. However, in most cases, our code
 is mainly interested only in the behavior of the things we interact
 with, not what they really are. This is where either a mock or a stub
 could come in handy.
There are additional benefits to removing dependencies on external
 code and resources as well. By removing these extra layers, you are
 capable of isolating your examples so that they test only the code in
 question. This purposefully eliminates a lot of interdependencies within your tests and helps
 make sure that you find and fix problems in the right places, instead of
 everywhere their influence is felt.
Let’s start with a trivial example, to help you get your head
 around the concepts of mocks and stubs, and form a working definition of
 what they are.
What follows is some basic code that asks a user a yes or no
 question, waits for input, and then returns true or
 false based on the answer. A basic implementation
 might look like this:
class Questioner

 def ask(question)
 puts question
 response = gets.chomp
 case(response)
 when /^y(es)?$/i
 true
 when /^no?$/i
 false
 else
 puts "I don't understand."
 ask question
 end
 end

end
Go ahead and toy around with this a bit by executing something
 similar to this little chunk of code, to get a sense for how it
 works:
q = Questioner.new
puts q.ask("Are you happy?") ? "Good I'm Glad" : "That's Too Bad"
Interacting with this code by just running a simple script in the
 console is enough to show that it pretty much works as expected.
 However, how do we test it? Is it enough to break down the code so that
 it’s a bit more testable, allowing us to write tests for everything but
 the actual user interaction?
class Questioner

 def ask(question)
 puts question
 response = yes_or_no(gets.chomp)
 response.nil? ? ask(question) : response
 end

 def yes_or_no(response)
 case(response)
 when /^y(es)?$/i
 true
 when /^no?$/i
 false
 end
 end

end
Now most of the work is being done in yes_or_no, which is easily testable:
class QuestionerTest < Test::Unit::TestCase

 def setup
 @questioner = Questioner.new
 end

 %w[y Y YeS YES yes].each do |yes|
 must "return true when yes_or_no parses #{yes}" do
 assert @questioner.yes_or_no(yes), "#{yes.inspect} expected to parse as true"
 end
 end

 %w[n N no nO].each do |no|
 must "return false when yes_or_no parses #{no}" do
 assert ! @questioner.yes_or_no(no), "#{no.inspect} expected to parse as false"
 end
 end

 %w[Note Yesterday xyzaty].each do |mu|
 must "return nil because #{mu} is not a variant of 'yes' or 'no'" do
 assert_nil @questioner.yes_or_no(mu), "#{mu.inspect} expected to parse as nil"
 end
 end

end
These examples will all pass, and most of your code will be
 tested, except for the trivial ask()
 method. However, what if we wanted to build code that relies on the
 results of the ask() method?
class Questioner

 def inquire_about_happiness
 ask("Are you happy?") ? "Good I'm Glad" : "That's Too Bad"
 end

 def ask(question)
 puts question
 response = yes_or_no(gets.chomp)
 response.nil? ? ask(question) : response
 end

 def yes_or_no(response)
 case(response)
 when /^y(es)?$/i
 true
 when /^no?$/i
 false
 end
 end
end
If we want to write tests that depend on the return value of
 ask(), we’ll need to do something to
 prevent the need for direct user input. A relatively simple way to test
 inquire_about_happiness() is to
 replace the ask() method with a stub
 that returns our expected values
 for each scenario:
class HappinessTest < Test::Unit::TestCase
 def setup
 @questioner = Questioner.new
 end

 must "respond 'Good I'm Glad' when inquire_about_happiness gets 'yes'" do
 def @questioner.ask(question); true; end
 assert_equal "Good I'm Glad", @questioner.inquire_about_happiness
 end

 must "respond 'That's Too Bad' when inquire_about_happiness gets 'no'" do
 def @questioner.ask(question); false; end
 assert_equal "That's Too Bad", @questioner.inquire_about_happiness
 end
end
If we wanted to be a bit more formal about things, we could use a
 third-party tool to make our stubbing more explicit and easier to work
 with. There are lots of options for this, but one I especially like is
 the flexmock gem by Jim Weirich. We’ll look at this
 tool in much greater detail when we discuss formal mocking, but for now,
 let’s just look at how it can be used to clean up our stubbing
 example:
require "flexmock/test_unit"

class HappinessTest < Test::Unit::TestCase
 def setup
 @questioner = Questioner.new
 end

 must "respond 'Good I'm Glad' when inquire_about_happiness gets 'yes'" do
 stubbed = flexmock(@questioner, :ask => true)
 assert_equal "Good I'm Glad", stubbed.inquire_about_happiness
 end

 must "respond 'That's Too Bad' when inquire_about_happiness gets 'no'" do
 stubbed = flexmock(@questioner, :ask => false)
 assert_equal "That's Too Bad", stubbed.inquire_about_happiness
 end
end
The example code accomplishes the same task as our manual
 stubbing, but does so in an arguably more pleasant and organized way.
 Though it might be overkill to pull in a third-party package just to
 stub out a method or two, you can see how this interface would be
 preferable if you needed to write tests that were a little more
 complicated, or at least more involved.
No matter how we implement them, stubs do allow us to improve our
 test coverage a bit more here. Still, let’s pause for a moment and ask
 ourselves a question: did we really finish our job? Looking at the code,
 we find that our naive implementation sans tests looks like this:
class Questioner

 def inquire_about_happiness
 ask("Are you happy?") ? "Good I'm Glad" : "That's Too Bad"
 end

 def ask(question)
 puts question
 response = gets.chomp
 case(response)
 when /^y(es)?$/i
 true
 when /^no?$/i
 false
 else
 puts "I don't understand."
 ask question
 end
 end

end
Our test-driven results turn out like this:
class Questioner

 def inquire_about_happiness
 ask("Are you happy?") ? "Good I'm Glad" : "That's Too Bad"
 end

 def ask(question)
 puts question
 response = yes_or_no(gets.chomp)
 response.nil? ? ask(question) : response
 end

 def yes_or_no(response)
 case(response)
 when /^y(es)?$/i
 true
 when /^no?$/i
 false
 end
 end

end
Though we’ve successfully split out our
 yes_or_no parser for testing, we still don’t have any
 automated checks for how our code will display a question to the user
 and how it will respond based on that code. Presently, the only safety
 net we have for our I/O code is our limited testing in our terminals,
 which can hardly be called robust. Although it is of course better to
 have some coverage than no coverage at all, we can do better
 here.
Ruby ships with a StringIO
 class, which essentially is an IO
 object that is implemented to work against a string rather than the
 typical file handles. Although I hesitate to call this a mock object, it
 comes close in practice. We’ll take a quick look at how you might use it
 to test I/O code, which is a nice stepping stone that can lead us into
 real mock territory.
But before we can test with StringIO, we need to make it so that our
 Questioner class allows us to swap
 out the input and output sources for our own custom objects:
class Questioner

 def initialize(in=STDIN,out=STDOUT)
 @input = in
 @output = out
 end

 def ask(question)
 @output.puts question
 response = @input.gets.chomp
 case(response)
 when /^y(es)?$/i
 true
 when /^no?$/i
 false
 else
 @output.puts "I don't understand."
 ask question
 end
 end

end
By default, nothing will change and I/O will still go to STDIN and STDOUT. However, this opens the door for
 replacing these I/O objects with a pair of StringIO
 objects, allowing us to totally rethink our tests:
class QuestionerTest < Test::Unit::TestCase

 def setup
 @input = StringIO.new
 @output = StringIO.new
 @questioner = Questioner.new(@input,@output)
 @question = "Are you happy?"
 end

 ["y", "Y", "YeS", "YES", "yes"].each do |y|
 must "return false when parsing #{y}" do
 provide_input(y)
 assert @questioner.ask(@question), "Expected '#{y}' to be true"
 expect_output "#{@question}\n"
 end
 end

 ["n", "N", "no", "nO"].each do |no|
 must "return false when parsing #{no}" do
 provide_input(no)
 assert !@questioner.ask(@question)
 expect_output "#{@question}\n"
 end
 end

 [["y", true],["n", false]].each do |input,state|
 must "continue to ask for input until given #{input}" do
 provide_input "Note\nYesterday\nxyzaty\n#{input}"
 assert_equal state, @questioner.ask(@question)
 expect_output "#{@question}\nI don't understand.\n"*3 + "#{@question}\n"
 end
 end

 def provide_input(string)
 @input << string
 @input.rewind
 end

 def expect_output(string)
 assert_equal string, @output.string
 end

end
Without too much more effort, we were able to specify and test the
 full behavior of this trivial little program. We are able to test both
 the logic, and the actual I/O operations, to verify that they work as we
 expect them to. In this particular case, we were pretty lucky that Ruby
 ships with a library that acts like an I/O object and makes our testing
 easier. We won’t always be so lucky. What’s more, we don’t really need
 most of what StringIO has to offer here. A lighter
 (albeit more abstract) approach would be to use a formal mocking
 framework to do the job. Let’s take a look at how this problem might be
 solved in flexmock, to make things a bit clearer:
require "flexmock/test_unit"

class QuestionerTest < Test::Unit::TestCase

 def setup
 @input = flexmock("input")
 @output = flexmock("output")
 @questioner = Questioner.new(@input,@output)
 @question = "Are you happy?"
 end

 ["y", "Y", "YeS", "YES", "yes"].each do |y|
 must "return false when parsing #{y}" do
 expect_output @question
 provide_input(y)
 assert @questioner.ask(@question), "Expected '#{y}' to be true"
 end
 end

 ["n", "N", "no", "nO"].each do |no|
 must "return false when parsing #{no}" do
 expect_output @question
 provide_input(no)
 assert !@questioner.ask(@question)
 end
 end

 [["y", true], ["n", false]].each do |input, state|
 must "continue to ask for input until given #{input}" do
 %w[Yesterday North kittens].each do |i|
 expect_output @question
 provide_input(i)
 expect_output("I don't understand.")
 end

 expect_output @question
 provide_input(input)

 assert_equal state, @questioner.ask(@question)
 end
 end

 def provide_input(string)
 @input.should_receive(:gets => string).once
 end

 def expect_output(string)
 @output.should_receive(:puts).with(string).once
 end

end
The interesting thing about this example is that flexmock() returns a completely generic
 object, yet this accomplishes the same results as using
 StringIO, which is finely tuned for emulating a real
 IO object. The end result is that the
 latter example tends to focus on the interactions between your code and
 the resource, and that the former example is more directly bound to what
 an I/O object actually is. It can be beneficial to avoid such tight
 distinctions, especially when working in Ruby, where what an object
 actually is tends to be less important than what it can do.
To generalize: mock objects essentially break interactions down
 into the messages that an object should receive, the arguments that
 accompany the messages, the return values of the methods, whether a
 block is yielded, and whether any errors should be raised. If this
 sounds like a lot, don’t worry too much. The beauty of a mock object is
 that you need to specify only those things that are necessary to handle
 in your code.
Flexmock (like many of the other Ruby mocking options) is quite
 robust, and to go over it extensively here would take more than just a
 single section of a chapter. However, through this simple example, you
 can see that there are ways to avoid actively hitting your external
 resources while still being able to test your interactions with
 them.
Of course, using a mock object comes with its own cost, like
 anything else. In this example, if we changed the internal code to use
 print() instead of puts(), we would need to modify our mock
 object, but we would not need to modify our StringIO-based solution. Although a mock
 object completely eliminates the need to worry about the internal state
 of your dependencies, it creates a tighter coupling to their interfaces.
 This means that some care should be taken when deciding just how much
 you want to mock out in any given test suite.
Learning how to build decent mock objects without going overboard
 takes some practice, but is not too hard once you get the hang of it. It
 ultimately forms one of the hard aspects of
 testing, and once that bridge is crossed, only a few more
 remain.

Testing Complex Output

Dealing with programs that need to generate complex output can be
 a pain. Verifying that things actually work as you expect them to is
 important, but simply comparing raw output values in an automated test
 leads to examples that are nearly impossible to follow. However, we
 often resort to just dumping our expected data into our tests and
 comparing it to what we’re
 actually generating. This sort of test is useful for detecting when a problem arises, but
 finding the source of it, even with decent diff utilities, can be a real
 pain.
Imagine we’ve got a basic blog that needs to output RSS, which is
 really just a specialized XML format. The following example is a
 simplified version of what I use to generate the feeds in my blog. James
 Gray actually wrote the code for it, using XML Builder, another great
 gem from Jim Weirich:
require "builder"
require "ostruct"

class Blog < OpenStruct

 def entries
 @entries ||= []
 end

 def to_rss
 xml = Builder::XmlMarkup.new
 xml.instruct!
 xml.rss version: "2.0" do
 xml.channel do
 xml.title title
 xml.link "http://#{domain}/"
 xml.description description
 xml.language "en-us"

 @entries.each do |entry|
 xml.item do
 xml.title entry.title
 xml.description entry.description
 xml.author author
 xml.pubDate entry.published_date
 xml.link entry.url
 xml.guid entry.url
 end
 end
 end
 end
 end

end
We need to test that the output of this to_rss method is what we expect it to be. The
 lazy approach would look like this:
require "time"

class BlogTest < Test::Unit::TestCase

FEED = <<-EOS
<?xml version="1.0" encoding="UTF-8"?><rss version="2.0"
><channel><title>Awesome</title><link>http://majesticseacreature.com/</link>
<description>Totally awesome</description><language>en-us</language><item>
<title>First Post</title><description>Nothing interesting</description>
<author>Gregory Brown</author><pubDate>2008-08-08 00:00:00 -0400</pubDate>
<link>http://majesticseacreature.com/awesome.html</link>
<guid>http://majesticseacreature.com/awesome.html</guid></item></channel></rss>
EOS

 def setup
 @blog = Blog.new
 @blog.title = "Awesome"
 @blog.domain = "majesticseacreature.com"
 @blog.description = "Totally awesome"
 @blog.author = "Gregory Brown"

 entry = OpenStruct.new
 entry.title = "First Post"
 entry.description = "Nothing interesting"
 entry.published_date = Time.parse("08/08/2008")
 entry.url = "http://majesticseacreature.com/awesome.html"

 @blog.entries << entry
 end

 must "have a totally awesome RSS feed" do
 assert_equal FEED.delete("\n"), @blog.to_rss
 end

end
You could make this slightly less ugly by storing your output in a
 file, but it’s not much better:
class BlogTest < Test::Unit::TestCase

 def setup
 @blog = Blog.new
 @blog.title = "Awesome"
 @blog.domain = "majesticseacreature.com"
 @blog.description = "Totally awesome"
 @blog.author = "Gregory Brown"

 entry = OpenStruct.new
 entry.title = "First Post"
 entry.description = "Nothing interesting"
 entry.published_date = Time.parse("08/08/2008")
 entry.url = "http://majesticseacreature.com/awesome.html"

 @blog.entries << entry
 end

 must "have a totally awesome RSS feed" do
 assert_equal File.read("expected.rss"), @blog.to_rss
 end

end
In the end, the issue boils down to the fact that you’re
 definitely not focusing on the important parts of the problem if you
 have to check the output character by character. An RSS feed with some
 extra whitespace in it would be no less valid than the file shown here,
 yet it would cause an annoying failure in your tests.
Unless it really isn’t worth your time, the best way to deal with
 complex output is to parse it into a workable dataset before doing your
 comparisons. There are a few RSS feed parsers out there that would make
 quick work of a file like this. However, in the interest of generality,
 we could use a generic XML parser without much more effort.
There are a few solid choices for XML parsing in Ruby, and even
 support for it in the standard library. However, the library that I find
 most pleasant to work with is the nokogiri gem, written by Aaron
 Patterson. Here’s what part of the tests look like after they’ve been
 reworked to use Nokogiri:
require "time"
require "nokogiri"

class BlogTest < Test::Unit::TestCase

 def setup
 @blog = Blog.new
 @blog.title = "Awesome"
 @blog.domain = "majesticseacreature.com"
 @blog.description = "Totally awesome"
 @blog.author = "Gregory Brown"

 entry = OpenStruct.new
 entry.title = "First Post"
 entry.description = "Nothing interesting"
 entry.published_date = Time.parse("08/08/2008")
 entry.url = "http://majesticseacreature.com/awesome.html"

 @blog.entries << entry
 @feed = Nokogiri::XML(@blog.to_rss)
 end

 must "be RSS v 2.0" do
 assert_equal "2.0", @feed.at("rss")["version"]
 end

 must "have a title of Awesome" do
 assert_equal "Awesome", text_at("rss", "title")
 end

 must "have a description of Totally Awesome" do
 assert_equal "Totally awesome", text_at("rss", "description")
 end

 must "have an author of Gregory Brown" do
 assert_equal "Gregory Brown", text_at("rss", "author")
 end

 must "have an entry with the title: First Post" do
 assert_equal "First Post", text_at("item", "title")
 end

 def text_at(*args)
 args.inject(@feed) { |s,r| s.send(:at, r) }.inner_text
 end

end
This is a huge improvement! Now, our tests actually look like
 they’re verifying the things we’re interested in, rather than simply
 checking our output against some amorphous code blob that we can’t
 easily inspect and verify.
Of course, this approach to testing complex data requires you to
 trust whatever you are using to parse your output, but as long as you
 can do that, the ability of whatever library you use to parse your
 output is from the very start an indication that you are producing
 meaningful results.
Not every file format you will encounter will have parsers
 available for it, of course. Some of the formats you need to produce may
 even be fully custom-made. However, providing that it isn’t impossible
 to build one, a parser will come in handy for making your tests more
 flexible and expressive. Consider this possibility before turning to
 direct file comparison as a last resort only.
We’re about to wrap up with a mixed bag of tips and tricks for
 keeping your test suite maintainable, but before we do that, let’s go
 over some of the highlights of the advanced testing techniques discussed
 in this section:
	Mocks and stubs can be used to remove external dependencies
 from tests while still verifying proper behavior and
 interaction.

	Stubs are used when we want to replace some functionality with
 canned results to make testing other code easier.

	Mocks are used to create objects that can act in place of an
 external resource for the purpose of testing. Mock objects are set
 up with expected responses, which are then verified when the tests
 are run. This means that if you have something like my_obj.should_receive(:foo).once and
 foo is never called on my_obj, this will result in a test
 failure. This is the primary difference between mocks and
 stubs.

	When testing complex output, it is best to find a tool that
 parses the output format you are generating, and write your tests
 against its results.

	When you can’t find a tool for parsing your output format, you
 might consider building one that parses only the values you are
 interested in, in addition to necessary basic validation of the
 document’s structure.

	If it isn’t possible to parse your generated data without
 great effort, consider storing your expected output in its own file
 and loading it into your tests as needed, using a diff utility to
 compare expected and actual output.

	For most XML formats, Nokogiri does a great job of parsing the
 document and making it easily searchable.

Keeping Things Organized

Just like other code, test suites tend to grow in both size and
 complexity throughout the lifecycle of a project. The following techniques
 help keep things tidy and well factored, allowing your tests to continue
 to serve as a road map to your project.
Embedding Tests in Library Files

If you are working on a very small program or library, and you
 want to be able to run your tests while in development, but then require
 the code as part of another program later, there is a simple idiom that
 is useful for embedding your tests:
class Foo
 ...
end

if __FILE__ == $PROGRAM_NAME
 require "test/unit"

 class TestFoo < Test::Unit::TestCase
 #...
 end
end
Simply wrapping your tests in this if statement
 will allow running ruby foo.rb to
 execute your tests, while require
 "foo" will still work as expected without running the tests.
 This can be useful for sharing small programs with others, or for
 writing some tests while developing a small prototype of a larger
 application. However, once you start to produce more than a few test
 cases, be sure to break things back out into their normal directory
 structure. Giant files can be a bit unwieldy to deal with, and it is a
 bit awkward (even though it is possible) to treat your
 lib/ directory as if it were also your test
 suite.

Test Helpers

When you begin to chain together a large amount of test cases, you
 might find that you are repeating some information across them. Some of
 the most common things in this regard are require
 statements and basic helper functions.
A good solution to keep things clean is to create a
 test/test_helpers.rb file and then do all of your
 global configuration there. In your individual tests, you can require
 this file by expanding the direct path to it, using the following
 idiom:
require File.dirname(__FILE__) + '/test_helpers'
This allows your test files to be run individually from any
 directory, not just the top-level directory. Here is a sample
 test_helpers.rb from the Prawn project to give you
 a sense of what kinds of things might go into the file:
require "rubygems"
require "test/unit"

$LOAD_PATH << File.join(File.dirname(__FILE__), '..', 'lib')
require "prawn"
gem 'pdf-reader', ">=0.7.3"
require "pdf/reader"

def create_pdf
 @pdf = Prawn::Document.new(left_margin: 0, right_margin: 0,
 top_margin: 0, bottom_margin: 0)
end

def observer(klass)
 @output = @pdf.render
 obs = klass.new
 PDF::Reader.string(@output,obs)
 obs
end

def parse_pdf_object(obj)
 PDF::Reader::Parser.new(
 PDF::Reader::Buffer.new(StringIO.new(obj)), nil).parse_token
end

puts "Prawn tests: Running on Ruby Version: #{RUBY_VERSION}"
Here you can see that load path adjustments, project-specific
 dependencies, and some basic helper functions are being loaded. The
 helper functions are obviously Prawn-specific, but as you can see, they provide
 wrappers around common operations that need to be done in a number of
 our tests, which result in something like this in practice:
class PolygonTest < Test::Unit::TestCase

 must "draw each line passed to polygon()" do
 @pdf = Prawn::Document.new
 @pdf.polygon([100,500],[100,400],[200,400])

 line_drawing = observer(LineDrawingObserver)
 assert_equal [[100,500],[100,400],[200,400],[100,500]],
 line_drawing.points
 end

end
It’s completely up to you how far you wish to take this sort of
 thing. As a rule of thumb, if you find yourself using a feature in more
 than a few places, consider adding it to
 test_helpers.rb. If you want a little more of a
 clean approach, you can wrap your helpers in a module, but depending on
 what you’re doing, just defining them at the top level might be fine as
 well.
Your helper file essentially allows you to centralize the support
 features for your test suite. When used effectively, this approach can
 greatly simplify your tests and reduce duplicated code that can lead to
 problems.

Custom Assertions

In addition to building helper functions to support your examples,
 you can actually build custom assertions to augment the vocabulary of
 your tests.
Porting an example from RSpec’s documentation, it is easy to see
 how simple it is to add a custom assertion to your tests. We want to
 transform a basic statement that looks like this:
assert bob.current_zone.eql?(Zone.new("4"))
into something a bit more friendly, such as:
assert_in_zone("4", bob)
To do this in Test::Unit, we’ll
 make use of the low-level function assert_block(). Here’s how you would define
 assert_in_zone and its complement,
 assert_not_in_zone:
def assert_in_zone(expected, person)
 assert_block("Expected #{person.inspect} to be in Zone #{expected}") do
 person.current_zone.eql?(Zone.new(expected))
 end
end

def assert_not_in_zone(expected_zone, person)
 assert_block("Expected #{person.inspect} not to be in Zone #{expected}") do
 !person.current_zone.eql?(Zone.new(expected))
 end
end
With these definitions in place, you can use the assertions as we
 specified earlier. When the statement is true, the assertion will pass;
 when it is false, the assertion will fail and display the custom
 message. All of the assertions in Test::Unit can be built upon assert_block, which indicates how powerful it
 can be for creating your own higher-level assertions.
We’re winding to a close with the discussion of testing practices,
 but here’s the recap of things you can do to keep your testing code neat
 and well formed:
	If you’re working with a tiny program, don’t bother with the
 formal directory structure—just use the simple idiom that allows
 your script to be both loaded as a library and run as an
 executable.

	If your application is bigger, eliminate duplication by
 centralizing your boilerplate and support code in a
 test/test_helpers.rb file that is required by
 all of your tests.

	If your code seems to be doing a lot of complicated stuff and
 Test::Unit’s built-in assertions aren’t doing the
 trick, build your own via the simple assert_block function.

Conclusions

Testing is a big topic—one that can easily span across several
 books. Each respective testing framework available in Ruby can be an
 equally huge topic, and one that is worth studying in its own right.
 Nevertheless, the goal of this chapter was to teach the principles behind
 test-driven development, rather than the exact technical applications you
 might encounter. It is important to remember that testing is meant to make
 your code better and more maintainable, not to lead you into confusion or
 make you feel like you’re stuck doing busywork instead of doing real
 coding.
Also remember that if your solution seems difficult to test, it may
 be a sign that your design is not flexible enough to easily be refactored
 or interacted with. By writing the tests before the code, and cleaning up
 after every small feature spike, it becomes easier and easier to avoid the
 common pitfalls of overly complex code.
Of course, there are cases in which things really just are difficult
 to test. You’ll know when you run into these things, as they often include
 dependence on a complex or difficult-to-pin-down external resource, or
 have some other special thing about them that just makes testing
 hard. In these cases, don’t let testing dogma get in
 your way: it doesn’t make sense to freeze in place simply because you
 can’t think of a good testing strategy. But by the same token, don’t let
 these things steal your focus away from the parts of your application that
 you actually can test. Try to remember that partial coverage is usually
 much better than no coverage at all.
The good thing is that for the most part, Ruby is a language that
 truly makes testing enjoyable, as long as you learn how to do it properly.
 The topics covered in this chapter will hopefully put you well on your
 way, but the best way to get into the swing of things is simply to get out
 there and start writing some tests. The rest will come together
 naturally.

End of sample

 To search for additional titles please go to

 http://search.overdrive.com.

OEBPS/callouts/1.png

OEBPS/callouts/3.png

OEBPS/callouts/2.png

OEBPS/callouts/5.png

OEBPS/callouts/4.png

OEBPS/httpatomoreillycomsourceoreillyimages300723.png
abort()

Ends the current PStore#transaction, discarding any changes to the data store.

Example:
require "pstore”

store = PStore.new("data file.pstore”)
store.transaction do # begin transaction

this change is not applied, see below.
this change is not applied, see below.

end transaction here, discard all changes

store[:three]
end

this change is never reached

WARNING: This method is only valid in a PStore#transaction. It will raise PStore:

Error if called at any other time.
[Source]

OEBPS/httpatomoreillycomsourceoreillyimages300721.png
new (options={},&block)

Creates a new PDF Document. The following options are available:

ipage_size: One of the Document::PageGeometry::SIZES [LETTER]
:page_layout: Either :portrait or :landscape

1eft_nargin: Sets the left margin in points [0.5 inch]

iright_margin: Sets the right margin in points [0.5 inch]

+top_nargin: Sets the top margin in points [0.5 inch]

:bottom_nargin: Sets the bottom margin in points [0.5 inch]
:skip_page_creation: Creates a document without starting the first page [false]
compress: Compresses content streams before rendering them [false]
sbackground: An image path to be used as background on all pages [nil]

Usage:

New document, US Letter paper, portrait orientation
pdf = Prawn: :Document .new

New document, A4 paper, landscaped
pdf = Prawn: :Document .new(:page_size => "A4", :page_layout => :landscape)

New document, with background
pdf = Prawn: :Document .new(:background => "#{Prawn: :BASEDIR}/data/images/pigs. pg")

OEBPS/httpatomoreillycomsourceoreillyimages300727.png

OEBPS/httpatomoreillycomsourceoreillyimages300702.jpg
Increase Your Productivity—Write Better Code

Best Pracnces

O’REILLY® Gregory 1. Brown

OEBPS/httpatomoreillycomsourceoreillyimages300709.png
Yol

Cissors

Opponent: Paper

You

OEBPS/httpatomoreillycomsourceoreillyimages300707.png
O Rock O Paper O Scissors (shoot!)

OEBPS/httpatomoreillycomsourceoreillyimages300719.png
2% Haml::Engine

In: lib/hami/engine.rb

Parent: Object

This is the class where all the parsing and processing of the Haml template is done. It can be directly used
by the user by creating a new instance and calling <o nen1 to render the template. For example:

template = File.read('templates/really cool template.haml')
hani_engine Engine. new(template)

outpit = hanl_engine.to_htal

uts oucput

Methods

def_method htmi4? htmi5? htmi? new render render_proc to_html xhtmi?

Included Modules

Precompiler

Attributes

indentation [RW] A string containi
ambiguous (for example, for a single-level document).

options [RW] ‘Allow reading and writing of the options hash
preconpiled [RW] This string contains the source code that is evaluated to produce the Haml document.

OEBPS/httpatomoreillycomsourceoreillyimages300717.png
Toi: Caillou

Adversaire: Ciseaux

Tu perds

OEBPS/httpatomoreillycomsourceoreillyimages300713.png
i 5371
WF: Ak
¥R T

OEBPS/callouts/13.png

OEBPS/callouts/14.png

OEBPS/oreilly_large.gif
O’REILLY

OEBPS/callouts/15.png

OEBPS/callouts/10.png

OEBPS/callouts/11.png

OEBPS/callouts/12.png

OEBPS/callouts/7.png

OEBPS/httpatomoreillycomsourceoreillyimages300725.png
Imperial Conversions
Convert several metric units to one another and to PDF points

Public Instance methods

f2in(f)

[Source]

f2pt()

[Source]

in2pt(inch)

[Source]

yd2in(yd)

[Source]

yd2pt(yd)

[Source]

OEBPS/callouts/6.png

OEBPS/callouts/9.png

OEBPS/callouts/8.png

OEBPS/httpatomoreillycomsourceoreillyimages300715.png
O Caillou © Feuille O Ciseaux (onyva

OEBPS/httpatomoreillycomsourceoreillyimages300711.png.jpg
OA%k O OWI(#)

