

 [image: First Edition]

 HTML & CSS: The Good Parts

Ben Henick

Editor
Simon St. Laurent

Copyright © 2010 Ben Henick

O’Reilly books may be purchased for educational, business, or sales
 promotional use. Online editions are also available for most titles
 (http://my.safaribooksonline.com).
 For more information, contact our corporate/institutional sales
 department: 800-998-9938 or corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo
 are registered trademarks of O’Reilly Media, Inc. HTML &
 CSS: The Good Parts, the image of a ring-tailed cat, and
 related trade dress are trademarks of O’Reilly Media, Inc.
Many of the designations used by manufacturers and sellers to
 distinguish their products are claimed as trademarks. Where those
 designations appear in this book, and O’Reilly Media, Inc., was aware of a
 trademark claim, the designations have been printed in caps or initial
 caps.

While every precaution has been taken in the preparation of this
 book, the publisher and author assume no responsibility for errors or
 omissions, or for damages resulting from the use of the information
 contained herein.

[image:]

O'Reilly Media

Dedication

To the memory of my mother and the patience of my father—each a
 wellspring of love, hope, and
 knowledge.

Preface

HTML and CSS are old technologies that have seen over a decade of use
 and continue to evolve. Web developers celebrating their fifteenth year of
 work have seen all kinds of projects built across a wide variety of
 browsers, experimented with different features, and noted their successes
 and failures.
Despite their best efforts, the people who created HTML and CSS didn’t
 always get it right. Some experiments didn’t work out very well. At the same
 time, some pieces proved even more useful than expected. Mastering these
 technologies requires figuring out which pieces of the specs are cruft, in
 urgent need of abandonment, and which are gold, deserving maximum use.
 Focusing on HTML and CSS best practices does more than help you create sites
 that work: it lets you build more effective sites more efficiently, with
 much lighter long-term maintenance costs.
The Who and What of This Book

Hopefully you’re holding this book because you read a glowing review
 on one of your favorite websites, or because somebody you know said that
 you absolutely need to read it. (An author can
 dream.)
Still, you need more information than that. Is this book for
 you?
If you and your priorities are described in the paragraphs that
 follow, then you should walk out of the store with this book under your
 arm, or at least sit down in the nearest available chair and start
 reading.
What Are the Good Parts?

There’s no getting around the fact that long stretches of HTML and
 CSS are boring. I mean sleep-through-it boring. In
 this way, web technologies are like a certain class of movies: viewers
 find themselves wanting to skip the exposition so they can watch the
 good parts.
This book attempts to cater to that sentiment. All of the
 exposition—which I do invite the reader to
 tackle—is tucked away into Chapters 2
 and 3,
 available for a quick “rewind” if you realize that you might have missed
 something.
The nonexpository parts are about making cool stuff happen:
 nailing down faithfulness to composites, getting the upper hand over
 bugs, building template markup that can survive redesigns, and manifold
 other topics.

What You Should Know Before You Read This Book

This book makes one basic assumption: that you’re familiar with
 the scope of HTML 4.01 elements, CSS selectors, and CSS property/value
 pairs. The companion
 website for this book includes reference tables that link to
 exhaustive descriptions of HTML and CSS on third-party sites, but it
 will be far easier to follow along if you’re already familiar with the
 capabilities of HTML and CSS.
In addition, this book will be easier to digest if you’ve gained
 an understanding of the separation of behavior, presentation, content,
 and structure into separate layers within a site or application.
If you feel uneasy about any of this, O’Reilly’s
 Definitive Guides and Pocket
 References for HTML and CSS come highly recommended.
For the benefit of readers who may have overestimated their
 knowledge, the basics of page, stylesheet, and element structure
 are covered as briefly as possible.

The Ideal Reader

You might be an ideal reader of this book if:
	You’re confident when the time comes to start building the
 server side of an application, but redesigns get on your nerves
 because you’re forced to dive back into the code and revise the bits
 of markup that are interspersed within it. The most effective
 solution to this problem is called the “CSS Zen” technique,
 exemplified by Dave Shea’s CSS Zen Garden. This book
 explains CSS Zen—structuring production of markup so that redesign
 efforts can be confined to stylesheets—from a perspective suited to
 engineers.

	You’re skilled at the use of a web-centric Integrated
 Development Environment (IDE) such as Adobe Dreamweaver or Microsoft
 Visual Studio, but your expectations routinely collide with its
 limitations. Left unattended, an IDE typically inserts all manner of
 cruft (i.e., “excess; superfluous junk”) into web materials,
 egregiously violating the KISS (Keep It Simple, Stupid) Principle.
 This occurs because IDEs are one-size-fits-all solutions. This book
 explains HTML and CSS in enough detail that you can start
 configuring your tools of choice to handle the specific cases you
 work with every day.

	You have—for whatever reason—a lot of bad habits that need to
 be superseded by good ones. Some of you probably still use HTML to
 manage presentation as well as structure, and CSS meanwhile is terse
 to the point of impenetrability. This book’s perspective places CSS
 in a useful light.

	You’re a print-trained graphic designer who needs to
 understand the strengths and limitations of the web medium in order
 to avoid career stagnation. You’ve looked at HTML, you’ve looked at
 CSS, and you believe they fit together—but you just don’t understand
 how. This book takes a close look at the
 connection between the two, so that you can get the hang of putting
 design elements exactly where you want them.

	Your professional role encourages or perhaps even requires you
 to develop to statutory accessibility requirements, or internally
 mandated cross-media usability requirements. Without CSS-ready
 markup, there’s little hope of developing cross-media-friendly
 sites, much less sites accessible to impaired users. This book
 explains how to develop a site so that accessibility requirements
 can be met without needing to build multiple sites in
 parallel.

	You’re already a specialist in some skill set outside of the
 presentation layer, and you want to make your job easier. Put
 simply, narrower specialization leads to reduced skill overlap,
 which in turn poses barriers to intrateam communication. This book
 lays out the priorities of the developers whose work lies closest to
 site visitors, and in so doing gives you the information you need to
 communicate more effectively with your teammates.

	You’re tired of beating your head against the brick wall more
 commonly known as Internet Explorer 6. Several sites, particularly
 Position Is
 Everything, delve into solutions for the nightmare that is
 stylesheet authoring for legacy versions of Internet Explorer.
 However, most online resources are tuned to specific bugs and
 behaviors. In Chapter 14, you’ll find
 condensed explanations of the quirks “under the hood” that cause
 unwanted collisions and blowouts, as well as a cookbook of practices
 and techniques that will help you avoid many such problems
 altogether.

A Warning About Familiarity (or Lack Thereof)

Chances are that you are already familiar with some of the
 contents of this book. Because its audience comprises a wide range of
 specialists, there may be times when material meant for engineers is
 painfully obvious to designers, and vice versa. There may also be times
 when the discussion begins to remind you of a contentious argument.
 Creative and implementation decisions are too often made from a position
 of political strength instead of merit, and it’s my hope that this book
 can be used to support merit-based arguments against Bad Ideas.
If instead everything in this book is new, it’s possible that
 you’ve gotten a bit ahead of yourself. The book’s companion website
 is built in large part to meet the needs of folks like you, by way of
 ensuring that all purchasers of this book will be
 able to get some value from it. However, if the material does seem a bit
 advanced, you can expect some difficulty. The best way of dealing with
 that is to be patient, and ask lots of questions of
 colleagues and associates.

Objectives of This Book

This book is meant to translate into plain English the quirks of
 HTML, CSS, and the document tree that are hard to grasp without guidance
 or experience:
	Choosing and using the ideal version of HTML for your
 project

	Removing the obstacles between your current practice and
 consistently valid markup

	Using HTML to implement for structure, rather than presentation,
 in ways that get the best out of CSS

	Obscure-yet-useful HTML elements

	Getting-plug-in-content-to-work-dammit

	Using tables properly, and getting the most out of them

	The method behind the madness of CSS selectors, particularly
 descendant selectors

	CSS selector precedence

	The CSS block layout context

	CSS margin collapsing

	Bugs and other oddities imposed by Internet Explorer 6

	Wrangling form presentation

	The history behind the bugginess of web browsers

	What HTTP does when your back is turned (and why it’s
 important)

This book tries to cover what all presentation layer developers
 should know. It aims to describe the many
 relationships between layers of the web technology
 stack that are touched by designers and presentation layer developers, and
 also to present the strengths of HTML and CSS.
This book will also introduce the less experienced reader to a long
 list of CSS layout “tricks” essential to the demands of presentation,
 accessibility, and Search Engine Optimization (SEO). These include:
	Centering content

	Using enhanced Fahrner Image Replacement to implement bitmapped
 heading type

	Creating well-aligned columns of equal (or apparently equal)
 height

	Using the CSS float property
 to get the best of both column presentation and markup source
 order

	Building versatile, visually rich navigation interfaces

	Developing work habits that will make your sites
 Ajax-ready

	Getting the most out of the CSS position property

	Creating versatile grid systems for your sites

A full reading of this book should imbue the reader with the
 majority of the knowledge needed to transform nearly any consistent set of
 composites—no matter how far-out their apparent requirements—into the
 presentation and content layers of an accessible, usable, and “crawl”-able
 website.
What Is Not In This Book

This book focuses tightly on practices that maximize the
 effectiveness of markup and stylesheets. For that reason, a number of
 things are not included in this book:
	Sparsely supported bits of advanced and platform-specific
 CSS
	You can do a lot of fun stuff with CSS…but unfortunately,
 some of it relies on unevenly supported CSS selectors and
 properties. Such cases will be handled in terms of
 desired results: if an ActiveX filter
 supported in Internet Explorer has an analog in Firefox, it might
 be mentioned, or vice versa for -moz-* properties that have analogs in
 the IE runtime environment. The minimum
 requirement for discussion of implementation techniques in this
 book is reliable support in both Firefox 3 and Internet Explorer
 8, and broader platform support for techniques that render obscure
 accents.

	CSS properties targeted at comparatively obscure media
 types
	This book will cover production techniques well suited to
 the creation of highly accessible sites, but it is only intended
 as an introduction to implementing sites that
 are accessible to impaired visitors.

	JavaScript and the Document Object Model (DOM)
	While this book will mention JavaScript at times and even
 occasionally show a bit of code, its focus on HTML and CSS means
 that it doesn’t cover how to manipulate HTML and CSS with
 JavaScript or the DOM.

	Integration with frameworks such as jQuery and YUI
	Many people have many beautiful things to say about
 JavaScript frameworks, but you won’t find any mention of them in
 this book. Despite their usefulness in a variety of environments,
 JavaScript frameworks are neglected here for reasons of scope. The
 best resources for learning about the interaction of JavaScript
 frameworks, styles, and markup are to be found in web resources
 and books that focus on frameworks specifically.

	Comprehensive discussion of CSS frameworks such as YUI Grids
 and Blueprint
	The goal of this book is to help you burnish your skills in
 good faith so that the results on your résumé are pleasing not
 only to Human Resources evaluators, but to hiring managers as
 well. Therefore, reading this book should help you to better
 understand any CSS framework that you might be called upon to use,
 instead of instructing you on the use of any framework in
 particular.

	Web server configuration techniques
	Typical web server runtime configurations neglect a number
 of settings that can ease the achievement of usability,
 accessibility, and standards compliance objectives. However, these
 oversights fall more into the domain of system administrators. A
 number of other O’Reilly titles, particularly Webmaster in a
 Nutshell and Website
 Optimization, address this area of interest. A
 number of online communities and blogs also explore this topic
 from time to time.

	Developing for the mobile web
	This book has the misfortune of being written by a lifetime
 resident of the U.S., where the feature set and reliability of
 mobile web access has plenty of room for improvement. The iPhone’s
 popularity has improved the situation, but still has not made it
 entirely tolerable. As it stands, only a minority of the mobile
 device users in the U.S. can hold any realistic expectation of
 using the same Web as personal computer users. Meanwhile, the
 expense of prepaid device connectivity found in the U.S., and the
 wildly uneven availability of unencumbered emulators for mobile
 device platforms, further exacerbates the problems faced when
 developing mobile content for U.S. visitors. It is my hope that
 the next edition of this book will be able to
 include development techniques intended to benefit site visitors
 who use mobile devices.

	Any mention of the Opera desktop browser
	If there is one omission from this book over which I
 agonize, it’s the omission of the Opera desktop browser from all
 discussions of browser behavior. Unfortunately, when I weighed
 Opera’s market share against the amount of testing its inclusion
 in the book would require, the results of the comparison were
 superlatively discouraging. Since I owe Chris Mills of Opera
 direct thanks for his role in helping me to
 secure the contract for this book, rest assured that I did not
 make my decision lightly. Given any more than the barest amount of
 reader interest, I won’t hesitate to discuss the Opera desktop
 browser at length on this book’s companion website.

About Web Standards

Last but not least, there is the question of compliance with World
 Wide Web Consortium (W3C) Recommendations in commercial settings,
 particularly those environments that are nurtured in large
 enterprises.
I’ve always made it a point to distinguish between “standards
 friendliness” and “standards
 compliance.” The first obeys the spirit of
 so-called web standards and is easy to achieve with practice, while the
 second focuses on obeying the letter of the
 Recommendations and can prove impossible to achieve.
The effectiveness of a website is enhanced far more by standards
 friendliness than by standards compliance, with the greatest
 enhancements coming from adherence to both objectives. This book
 embraces the compromises and fallbacks that preserve standards
 friendliness in spite of adverse development conditions, with only the
 occasional twisted grimace.
You may have noticed that I referred to “so-called” web standards
 earlier. The underlying irony is that web standards…aren’t, at least not
 literally.
Standardization requires conscientious use of
 a formally defined system across an entire industry, typically (if not
 always) by standards bodies whose work contributes directly or
 indirectly to policies and publications of the International
 Organization for Standardization
 (ISO).
Another hallmark of true standards is an objective set of criteria
 and processes by which claims of compliance can be
 enforced—an asset that the W3C’s products very much
 lack.
For these reasons the popular definition of W3C Recommendations as
 standards is reasonable in spirit, but has no basis
 in literal fact.
That said, the practice of web standards development has evolved
 tremendously since the go-go era of the 1990s, a point that’s explored
 in greater detail on this book’s companion
 website.

About Photoshop

Chapters 9 and 11
 discuss image production techniques in some detail, and the procedures
 described there are based on the Adobe Photoshop user interface. I took
 this approach because in any moderately sized group of web
 professionals, you’ll find a wide diversity of preferred tools and
 implementation techniques…until you get to the
 question of working with graphics. Alternatives to Photoshop
 (particularly Fireworks, another Adobe product) claim their devotees,
 but even those operators will agree that a working knowledge of
 Photoshop’s toolset and user interface is immensely useful.
My choice was also based on slanted experience; I haven’t used
 anything other than Photoshop to manipulate web images since I was a
 full-on novice. My hope is that visitors to this book’s companion site
 will submit their own alternative-title cookbooks for the image
 manipulation techniques discussed in the book.
The matter of relying on Photoshop also illuminates the importance
 of tool choice with respect to team effectiveness. Chapter 4 introduces the
 value of production standards and code libraries, but the benefits of
 tool uniformity also extend to off-the-shelf software choices.

What You’ll Find on the Companion Website

The companion website to this book, http://www.htmlcssgoodparts.net, contains a wealth of
 information. Among the goodies you’ll find are:
	Errata and corrections

	Blog entries about reader questions, current technical
 developments, and best practices

	Staged demonstrations of techniques discussed in the book,
 complete with source markup and stylesheet rules and indexed to page
 numbers

	Boilerplate and/or templates for multicolumn layouts and other
 widgets

	HTML and CSS reference tables that link to multiple
 third-party documentation sources

	Visitor-submitted reviews of books and software of interest to
 this book’s audience

Nomenclature

Names for the various pieces of web technology sometimes vary from
 shop to shop and from place to place. To minimize the potential for
 confusion, the terms spelled out below in emphasis
 are used consistently throughout the book.
Files are discrete nodes on a server host’s native filesystem,
 while resources are documents or document
 fragments referenced by discrete Uniform Resource Identifier (URIs). Not
 all files are URIs, and not all URIs are files; a URI might contain
 several files, database query results, or data streams, while a file
 might amount to nothing more than the logic that determines the content
 of multiple URIs.
Pages or documents
 contain one or more resources of arbitrary classification
 and are the visitor-facing output of a request for a single URI (or
 perhaps multiple URIs, on sites where Ajax has been deployed). Finally,
 this book treats the differences between the terms “URI” and “URL” as
 minor to the point of insignificance, in part because the term
 “resource” itself has been so muddled it’s become functionally
 meaningless in the face of rapid evolution.
Content is the matter around which websites are built.
HTML, XHTML, and XML tags are referred to in sum as markup.
Stylesheets are the content of CSS files or style elements. Stylesheet
 rules assign presentation to one or several elements within a
 page. A stylesheet rule contains a selector, which defines the
 element(s) on the page to which one or more property/value pairs are to be
 applied.
Browsers are also known as user agents,
 UAs, or clients.
HTML and CSS are parsed in serial fashion, and according to the results of that
 process the browser renders a page.
JavaScript is a registered trademark of Sun Microsystems that refers here
 to the programming language used to script data processing and
 interactivity within browsers. Different vendors refer to it by
 different names to avoid court trouble, but where there’s a browser,
 there’s usually a JavaScript interpreter.
The Document Object Model (or
 DOM) is both the representation of a web document’s structure, and
 the definition of how that structure ought to be organized, queried, and
 altered programmatically. Several DOM specifications for web documents
 exist, though only one is developed and sanctioned by the World Wide Web
 Consortium as a body.
The stack of web-related services is colloquially and commonly
 understood to include an operating system, a web service, a relational
 database service, a server-side scripting language, HTML, CSS, and
 JavaScript. The platforms used in the first four layers of the stack
 vary from shop to shop. Of the layers on this notional stack, the first
 four layers refer to the server-side environment, and the
 latter three to the client-side environment.
The client-side environment is artificially divided into four
 sublayers: structure (defined by markup), content
 (enclosed by markup), presentation
 (defined by CSS), and behavior
 (defined by JavaScript). Together these form a second
 Model-View-Controller (MVC) architecture that mirrors and
 interacts with the MVC architecture on the server side.
Ajax is an acronym representing Asynchronous JavaScript And
 XML, an implementation approach made convenient by the
 ubiquity of the GetXMLHttpRequest
 Application Programming Interface (API).
HTML elements are the principal items in the HTML namespace;
 tags are literal markup, which might well contain attributes with values, and most often enclose
 content.
Copy and illustrations
 are to content what text and
 images are to data.
A doctype declaration can (and usually should) appear at the beginning of a
 given web document and identifies the version of HTML against which that
 document should validate. The document type definition (also
 called a DTD) is a machine-readable series of
 statements that defines validity for the applicable version of HTML. The
 values contained in a doctype declaration directly reference a specific
 DTD.
W3C Recommendations are official documents that serve as specifications for
 web technology platforms and best practices associated with the use of
 those platforms.
Project managers minimize the obstacles
 standing between a project team and the completion of their
 deliverables. Designers create the look, feel, and
 user experience of sites. Engineers and
 application developers design and write the code
 that makes sites go. Presentation layer developers
 as a group deliver everything that directly faces site visitors; of
 these, stylists create templates and stylesheets,
 and producers ensure that content gets placed into
 production. Most other roles commonly found in web project teams are
 titled here as they would be in an advertising/marketing
 environment.
Current browsers or user agents refer to the
 mass-market browser versions current when this book went to press:
 Internet Explorer 6–8, Firefox 3.x, and Safari 3.x–4.x.
Several of the terms listed here point to obscure processes with
 an impact on the web user experience; these processes will be discussed
 in more detail throughout this book.

“Read the Source, Luke!”

When I first started working with the web platform in 1995, “Read
 the Source, Luke!” was easily the most popular advice given to the
 greenest newbies on mailing lists. This hearkens back to the climactic
 moments of Star Wars: A New Hope, and exhorts the
 petitioner to read through the source markup (and now, 13 years later,
 the stylesheet rules) of results they find admirable.
There’s more to this advice than sci-fi nerd humor. The best
 understanding of effective passages of markup and styles comes from
 reading through them without filters—in much the same way that
 “Force-sensitives” of the Star Wars milieu get the
 most out of their talents by letting go of their
 prejudicial thoughts.
If you try to puzzle out how somebody accomplished a presentation
 goal before you read his source, you might be badly
 disappointed…and if you never read his source, you
 might never figure it out for yourself.
However, before we can get into the finer points of learning from
 source markup and CSS, it’s best to look at the Web as a system—the
 relationships between the underlying conventions and technologies that
 make it go.

Conventions Used in This Book

The following font conventions are used in this book:
	Italic
	Indicates pathnames, filenames, and program names; also
 Internet addresses, such as domain names and URLs

	Constant width
	Indicates command lines and options that should be typed
 verbatim; names and keywords in programs, including method names,
 variable names, and class names; and HTML element tags

	Constant width
 bold
	Indicates emphasis in program code lines

	Constant width italic
	Indicates text that should be replaced with user-supplied
 values

Note
This icon signifies a tip, suggestion, or general note.

Warning
This icon indicates a warning or caution.

Using Code Examples

This book is here to help you get your job done. In general, you may
 use the code in this book in your programs and documentation. You do not
 need to contact us for permission unless you’re reproducing a significant
 portion of the code. For example, writing a program that uses several
 chunks of code from this book does not require permission. Selling or
 distributing a CD-ROM of examples from O’Reilly books does require
 permission. Answering a question by citing this book and quoting example
 code does not require permission. Incorporating a significant amount of
 example code from this book into your product’s documentation does require
 permission.
We appreciate, but do not require, attribution. An attribution
 usually includes the title, author, publisher, and ISBN. For example:
 “HTML & CSS: The Good Parts, by Ben Henick.
 Copyright 2010 Ben Henick, 978-059615760-9.”
If you feel your use of code examples falls outside fair use or the
 permission given above, feel free to contact us at
 permissions@oreilly.com.

Safari® Books Online

Note
Safari Books Online is an on-demand digital library that lets you
 easily search over 7,500 technology and creative reference books and
 videos to find the answers you need quickly.

With a subscription, you can read any page and watch any video from
 our library online. Read books on your cell phone and mobile devices.
 Access new titles before they are available for print, and get exclusive
 access to manuscripts in development and post feedback for the authors.
 Copy and paste code samples, organize your favorites, download chapters,
 bookmark key sections, create notes, print out pages, and benefit from
 tons of other time-saving features.
O’Reilly Media has uploaded this book to the Safari Books Online
 service. To have full digital access to this book and others on similar
 topics from O’Reilly and other publishers, sign up for free at http://my.safaribooksonline.com.

How to Contact O’Reilly

We have tested and verified the information in this book to the best
 of our ability, but you may find that features have changed (or even that
 we have made a few mistakes!). Please let us know about any errors you
 find, as well as your suggestions for future editions, by writing
 to:
	O’Reilly Media, Inc.
	1005 Gravenstein Highway North
	Sebastopol, CA 95472
	800-998-9938 (in the U.S. or Canada)
	707-829-0515 (international/local)
	707-829-0104 (fax)

O’Reilly’s catalog page for this book, which lists errata, examples,
 and any additional information, is at:
	http://www.oreilly.com/catalog/9780596157609/

The author has a companion website for this book at:
	http://www.htmlcssgoodparts.net

To comment or ask technical questions about this book, send email to
 the following, quoting the book’s ISBN (9780596157609):
	bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers,
 and the O’Reilly Network, see our
 website at:
	http://www.oreilly.com

Acknowledgments

When I reflect upon my experiences of 15 years as a site builder,
 the quality that impresses me most is ignorance. There’s plenty of it to
 go around, and like many site builders, I often take opportunities to
 castigate the ignorance of others less skilled…but not in this
 book.
Why?
Of greater concern still is my own ignorance, which is no less
 deserving of criticism. Close on the heels of ignorance are trepidation
 and obstinacy, both of which were regular contributors to my internal
 dialogue during the year that I took to write this book.
Given that attitude, this book attempts to exemplify the belief that
 one should light a candle for others to find their way, instead of cursing
 the darkness. I give fair due to the comfort engendered by continued
 reliance upon legacy production techniques, and where best practices are
 mentioned, I make a point of selling them as softly as I can without
 muddling my message.
In sum, I tried to fill this book with the advice that would have
 stood me in good stead eight or nine years ago, that instead many people
 (including myself) sorted out only by trial, error, and accident, and
 thence shared one iota at a time as they became able.
I hope that this book will be as useful to you now, as it would’ve
 been to me when I was working toward CSS mastery.
There are a number of people whose involvement in my life brought me
 far enough to achieve that state of mastery and to write this book. Since
 this is my first chance to call them out fully in public, I feel that I
 ought to mention them by name. Apart from my family, these benefactors
 include Christian Cepel, Steven Champeon, Sumin Chou, Teddi Deppner, Nick
 Finck, David Hemphill, Molly Holzschlag, Brenda Houston, Ethan Marcotte,
 Doug Petersen, Lance Taylor, Thomas Vander Wal, Peter Zale, and Jeffrey
 Zeldman. These individuals have each made significant contributions to my
 life, and without all of them, it’s likely that this
 book would never have been written.
There are also several people named in the book itself. Of these,
 Chris Mills of Opera Software has my special thanks. Chris has never been
 far from this project—he’s the one who suggested me to O’Reilly Media as
 an author candidate. In fact, Chris started me down this road in the first
 place, by inviting me to contribute to the Opera Web
 Standards Curriculum.
The contents and quality of this book are not owed to my work alone.
 In fact, it was kept from the precipice of failure by the indefatigable
 patience of Simon St.Laurent, my editor at O’Reilly Media. My words might
 be on these pages and my name might be on the cover, but Simon’s constant
 support of this project bridged the long gap between my effort and a
 successful conclusion.
Michael Smith is ultimately responsible for this book’s contents on
 the subject of HTML5, and the absence of his name from its cover makes
 poor thanks for his willingness to rescue me from lurching through that
 proverbial minefield.
I had the opportunity to handpick three technical reviewers:
 Kimberly Blessing, Gez Lemon, and Chris Van Domelen. Each of them made
 categorically critical contributions to the accuracy and currency of this
 book, any remaining lack of which is my responsibility alone.
Kimberly and Chris have also been stalwart associates and sources of
 technical advice for several years, and I find myself unable (as in so
 many other cases) to thank them in adequate measure for their help.
O’Reilly Media was gracious enough to provide three additional
 technical reviewers: Edd Dumbill, Elaine Nelson, and Shelley Powers. Their
 contributions helped find many more glitches and improve the structure of
 the book.
While I might’ve written this book someday, you wouldn’t be reading
 it now without the outstanding work of Douglas Crockford, which proved
 that a “Good Parts” series would find enthusiastic readers.
I believe strongly that things really work on
 account of the work done by “backstage” folks, and this project confirmed
 that belief. Especially high praise goes to Emily Quill, who untangled the
 unwieldy parts of this book’s draft, and in doing so, ensured that you
 will get your money’s worth for this book. Loranah Dimant tirelessly
 addressed my last-minute edits and ensured a bright polish for the
 book.
My final thanks here go to Eric Meyer, who sets the bar high for the
 rest of us who take a hand at developer education.
In closing, I hope that the knowledge you gain from this book will
 lead you to achievements that are no
 less impressive in degree than those of the people mentioned here.

Chapter 1. Hypertext at the Core

A properly built website is far more than the sum of its markup,
 stylesheets, scripting, and multimedia resources. Well-built websites take
 full advantage of their hypertext medium, making a once obscure technology
 central to the way we consume information. Without easily activated
 links, the Web wouldn’t be the Web; it would be just a
 rigidly organized heap of documents.
While hypertext offers tremendous flexibility, it also requires
 developers to help visitors find their way. Visitors will take unexpected
 paths even within a site, and will arrive from sites or bookmarks that you
 don’t control. The power that hypertext provides also comes with the
 responsibility to structure your site in ways that visitors will be able to
 comprehend and navigate.
The Web Without Links

The Web’s use of links to connect information makes it different from
 previous media. Today, when the Web is so familiar, it’s easy to forget
 those differences, but they pave the way to developing successful
 websites. So what happens when you remove hyperlinks from a site?
	The first and most significant result of excising hypertext from
 a networked information system is that content becomes strictly linear:
 one must first read through a given amount of content before reaching
 the object of his interest. Take the links out of hypermedia and the
 result is nearly useless without a concerted attempt at imposing
 internal order and structure.

	Linear resources are designed and structured on different
 assumptions, expecting that a reader has examined (or at
 least referred to) previous passages of content. Take this book as an
 example. You can jump around within it, but chapters are still ordered
 by the descending importance of the subjects that they cover. Also, if
 the companion website for
 this book did not exist, there would be plenty of verbose
 markup examples between its covers.

	The visitor’s sense of location is informed by
 standard cues. Most books and other linear information resources have some
 sort of header or footer content on every page (or on the title bar of
 the reader application), and a visitor’s state of progress through a
 networked information resource, like a large Portable Document Format
 (PDF) file, is cued by a vertical scroll bar.

These distinctions illustrate how hyperlinks
 add new dimensions to documents. While this gives the Web tremendous
 flexibility, it also creates challenges. The added navigational
 possibilities result in systems that make it difficult to maintain a sense
 of place. While the consumer of a linear resource can count on traditional
 cues and her own critical thinking skills to enforce her sense of place,
 the consumer of hyperlinked resources needs the help of designers and
 implementers to maintain her sense of location.
Notions of “beginning” and “end” are artificial if not entirely
 absent from web media. This is a marked departure from the fundamental
 nature of nonhyperlinked resources, which are bounded by
 definition.

URIs

In a perfect system, Uniform Resource Identifiers, or URIs (formerly Uniform Resource Locators, or URLs) would be
 hidden from the site visitor. They aren’t especially human-readable, comprised as they are of a
 protocol token, a host alias, and something that looks like a filesystem
 reference but isn’t. URIs often end in token/value pairs that are
 deliberately designed to be computer-readable, as opposed to
 visitor-friendly.
We’re all familiar with simple URIs like
 http://www.example.com/ that point to the home page of
 a site. These appear in advertisements and on business cards, and the
 http:// has come to mean “type this in
 to find the website.” However, well-crafted URIs can contain a lot of
 information—look at commonly encountered URIs at your favorite search site
 or news site, and you’ll see a lot more going on. Google search result
 URIs, for example, can contain a parameter named start that specifies the number of results
 ranked higher than those displayed, as in
 http://www.google.com/?q=hypertext&hl=en&start=10.
 In a similar vein, popular Content Management System (CMS) platforms and e-commerce catalog platforms allow the same
 resource to be associated with multiple URIs, where
 the longer URIs enhance a resource’s searchability or specify that
 additional content be served along with the core resource (e.g., a product
 listing or the summary of a weblog entry).
Note
Browsers and other tools use the HTTP protocol to process URIs and
 retrieve information. If you want to know more about how this processing
 works, and how its features and limitations might affect your pages, see
 the appendix.

Managing Links

Hypertext as we understand it today was first implemented at
 Stanford University in the 1960s, but didn’t become an everyday tool
 until the advent of affordable commercial Internet access three decades
 later. The “explosion” of the Internet not only provided a way for
 hyperlinks to connect across a broad network, but it also nurtured an
 understanding that web hyperlinks should be simple and tolerant of
 failure.
HTML link conventions assume that the person creating a link knows
 what will be at the URI at the end of it. That doesn’t necessarily mean
 that link creators control what is at the end of
 the link, however. In fact, the ability to link to any content without
 having to ask its creator beforehand is a critical aspect of the Web’s
 success. If it has a URI, you can link to it. If a URI doesn’t work, a
 well-built site will report an error (like the ubiquitous “404 Not
 Found”) and present a page that can help the lost visitors find their
 way again.
The power and immediacy of web links raised all kinds of cultural
 (and in some cases legal) questions about what it means to be able to
 link directly to someone else’s material, but over time a simpler and
 probably more intractable issue arose: link rot. Creating links to
 information you don’t control eventually means that over time those
 links break, as information and even sites change or disappear. It also
 means that you may have visitors arriving at your site who are confused
 and frustrated because they didn’t find what they wanted
 immediately.
To some degree, link rot is inevitable, and even automated systems
 (like search engines) have a difficult time keeping up with it. Even if
 links still point to useful pages, they may evolve over time into
 something very different. Within your own sites, you have somewhat more
 control, though major site redesigns can make this difficult. Caution,
 well-built error pages, and clear navigation can help minimize these
 problems.
Note
While visitors can usually deal with regular links that send
 them to the wrong place, it may be more difficult for your pages to
 recover from missing images, code, stylesheets, or other components
 that are supposed to be inserted via accurate href
 and src values. The more important the component to
 your page, the more you will want to link to it at a stable location
 under your control.

Improving the User Experience with Linking

Links are part of HTML, the means by which URIs are most commonly exposed within
 the Web’s application layer, at the point where HTML and HTTP intersect.
 At the application level, there isn’t much difference between following
 a link and accessing a given URI through the Location bar of a
 browser.
Links provide infinite opportunities to site
 builders—opportunities that are usually passed over. Anything can link
 to anything else. Hyperlinks in documents aren’t constrained to site navigation, stylesheet
 references, and syndication references; they can also point to an
 unlimited number of related documents and all kinds of alternative
 content. Hyperlinks that respond to user interaction can be placed
 anywhere, point to anything, and trigger behavior limited only by
 platform constraints, good sense, and a site builder’s imagination.
 Well-implemented hypertext enhances information with the following
 benefits, among many:
	Broadened accessibility to and control of information
	Hyperlinks can always reference every part of the Web that
 is not access-controlled. Rather than delivering long chunks of
 exposition out of necessity (as this book does) or referring to
 other matters that must then be physically obtained, hyperlinks
 allow the users to decide for themselves which information
 resources they will access and how.

	Creation of multiple narratives from a single body of
 content
	Hyperlinks make it possible for a visitor’s “journey” to
 take any and all forms that he desires…within reason.

	Community-driven attention flow
	Incoming hyperlinks lend credibility to destination content
 without the need for subject matter–expert intervention—a fact
 that defines a number of systems already in use, especially
 Google’s PageRank algorithm. It remains possible for the “wisdom
 of crowds” to be qualitatively poor, but accuracy tends to
 increase over time since subject matter experts remain closely
 involved with the process.

Hypertext Implementation Challenges

Web technology allows users to direct their own experience in ways that
 until 1992 had been the stuff of science fiction. No single person or
 entity has unqualified control over a given user’s web experience
 (although not for lack of trying). A single user session can result in
 requests for content from multiple unaffiliated authors, on tangential
 or unrelated subjects, and require an arbitrary amount of user
 interaction.
This seeming anarchy places new demands on implementers:
	Context (i.e., steady “You Are Here” and “That’s Over There”
 signaling) is the most important part of an effective site, apart
 from the actual site content.

	Untested assumptions about a visitor’s goals and knowledge
 create a short, straight path to folly and disaster.

	Duplication of content adds needless burdens to the user
 experience (and to the site building process).

	The Web’s lack of bounds, assumptions, and context can create
 user impairments out of thin air, and often these impairments
 must be addressed. The Web’s tremendous openness creates the need
 for specialist disciplines in web information architecture and
 usability.

Because the Web breaks the linear structure
 of traditional media outright, implementers must never forget that their
 tools define context, first and foremost.

Chapter 2. Working with HTML Markup

When building a site, one of the most important tasks that you perform
 is link creation, but HyperText Markup Language (HTML) offers a heap of
 features beyond links. HTML documents describe the hypertext and contain
 much of the content users explore while visiting the Web, connecting them to
 other resources including presentation style, scripts, images, video, sound,
 and much more. As you’ll see, a key part of working with HTML is knowing
 when to let other technologies (and sometimes people) do their
 work.
HTML has been in constant development since its invention in 1992, and
 web software (like browsers and web-focused IDEs) have evolved apace. As
 HTML nears its third decade, clear best practices for markup have emerged
 both from HTML markup itself and from the technical and business ecosystems
 that interact with it. Clear HTML syntax lets you build a reliable document
 tree to hold your content and support additional layers of style and
 behavior. Chapter 5 is devoted to the
 features of CSS that interact with the document tree.
HTML Syntax

HTML and its stricter sibling XHTML define a set of rules for marking up
 documents, as well as rules for how that markup should be structured. HTML
 parsers (but not XHTML parsers) usually follow a principle referred to as
 “Postel’s Law,” stated as follows:
Be conservative in what you send, and liberal in what you
 accept.

Where XHTML requires the creator of the document to write very
 precise markup, HTML parsers will liberally repair omissions and remove
 empty elements that are present in markup. This makes the document valid
 from the visitor’s perspective, though not necessarily using the structure
 originally intended by the stylist. (HTML5 is defining this behavior
 formally, but in the past it has varied from browser to browser.)
Tags, Elements, and Attributes

HTML defines a number of elements, each of which falls within a particular semantic domain
 and takes a name derived or borrowed whole from English. Elements define
 the structure of the document and lay the foundation for its
 presentation and manipulation.
Each element reference in a document is contained within one or
 two tags—tokens enclosed by angle
 brackets (< and >) containing the name of the element being
 used. Opening tags always begin with <
 immediately followed by the element name, and reference all attributes
 and values associated with the element; closing
 tags are featureless apart from the element name, which is
 preceded by a forward slash.
Elements without discrete closing tags are handled in different
 ways:
	HTML elements with optional closing
 tags—most notably li (list item)
 and p (paragraph) elements—allow
 for complete omission of the closing tag.

	HTML elements that forbid a closing tag
 are indistinguishable from opening tags of other elements.

	XHTML elements always either forbid or require closing tags;
 “optional” doesn’t get much traction in XHTML.

	Tags referencing XHTML elements that forbid closing tags
 terminate not with >, but with
 />. This token is usually
 preceded by a space, to prevent parsing failures at the hands of
 legacy user agents.

Tags can contain an arbitrary amount of whitespace, and attributes
 can be listed in any order within an opening tag.
All element instances can be modified through the use of attributes, most of which should in
 turn be followed by values. In plain HTML, elements and
 attributes are case insensitive, but in XHTML, they should be written
 entirely in lowercase characters. As a dialect of XML, XHTML poses two additional rules:
	XHTML is broadly case sensitive, which
 can matter with respect to values, while HTML enforces the case
 sensitivity of values only for the class and id attributes.

	Where an attribute is applied within an XHTML tag, it
 must be followed with a value. In the case of
 attributes that are typically deprived of a value in HTML, the
 common practice is to duplicate the name of the attribute in the
 value (e.g., checked="checked"
 instead of simply checked).

Example 2-1 shows some valid
 XHTML 1.0 Transitional markup.
Example 2-1. XHTML 1.0 snippet
<div id="header"><h1>AcmeStore.com</h1></div>

<img src="/images/portrait.gif" width="144" height="180" alt="This is a random portrait
of somebody." />

The first line of Example 2-1
 contains three elements, one inside another, not unlike a matryoshka doll. It’s important to
 remember that when elements are nested, they should be closed in the
 reverse order in which they were opened, to create
 the nesting shown in Figure 2-1. Inadvertent
 failure to follow this rule is a common cause of blowouts.
[image: Well-formed HTML tags nest in exactly the same way as matryoshka dolls]

Figure 2-1. Well-formed HTML tags nest in exactly the same way as
 matryoshka dolls

Example 2-1 also treats
 attribute values according to XHTML rules. XHTML values are
 always quoted. HTML values follow a different
 rule:
	 	In certain cases, authors may specify the value of an attribute
 without any quotation marks. The attribute value may only contain
 letters (a–z and A–Z), digits (0–9), hyphens (ASCII decimal 45),
 periods (ASCII decimal 46), underscores (ASCII decimal 95), and colons
 (ASCII decimal 58). We recommend using quotation marks even
 when it is possible to eliminate them [emphasis].
	
	 	--HTML 4.01 specification, World Wide
 Web Consortium

Note
Character references within attribute values are discussed in
 Inserting Entities to Provide Non-ASCII Characters and The Fine Print of URL Encoding: ASCII Entities.

Page Structure

When a browser receives content it believes to be HTML, it will attempt to process
 the content based on what it can figure out from the markup contained in
 the document. Even if that markup has missing parts, is structured
 strangely, or is otherwise not standards-compliant, the browser can
 usually display something resembling what its creator had in
 mind.
If a web document is to be valid, however, it
 must contain a number of properly structured
 elements with appropriate content. A valid HTML document
 contains the following components, in order:
	The document type declaration

	The document’s html
 element

	Within the html element,
 the document’s head
 element

	Within the head element, a
 title element and any necessary
 link, script,
 base, and meta
 elements

	Within the html element and
 after the head element, the
 document’s body element, which
 represents everything on the page that might be directly
 user-facing

	Within the document’s body
 element, at least one block element

Rendering Modes, Flavors of HTML, and Document Type
 Declarations

As of this writing, HTML has been steadily evolving for 17 years. Five versions have been
 developed, and HTML5, the most recent of these, is steadily making its way
 to popular use though it is not yet complete. The World Wide Web Consortium (W3C) has also published a
 Recommendation for XHTML, the XML-conformant version of HTML 4.01.
Note
While it is still too early to know what the “good parts” of HTML5
 will be, throughout this book we will cover new HTML5 functionality
 where it might change best practices.

Since version 1.0, HTML has included something called the document type declaration at the very
 beginning of the document. This identifies the version of HTML used in a
 document to a user agent, but was generally ignored by web browsers until
 2001. For example, the document type declaration for HTML 4.01 Strict
 would look like the following:
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">
The most significant impact of the document type declaration is its
 influence on the way that element footprints are rendered. Different
 DOCTYPEs lead to different rendering modes. (They also set expectations
 for HTML validators.)
Note
You’ve probably seen the acronym “DTD,” which expands to “Document
 Type Definition.” The DTD is the machine-readable definition that the
 document type declaration is intended to reference. At any rate, the
 declaration and definition are different matters; the former ideally
 points to the latter, and only the latter is referred to as a DTD. This
 book’s companion
 website examines the finer points of DTDs and document type
 declarations in greater detail.

HTML or XHTML?

The currently popular “flavors” of HTML are variants of HTML 4.01. The
 widest divide lies between those variants that follow traditional HTML
 syntax, and those redefined to meet XML’s requirements for well
 formedness. When served with the correct MIME type (see Table A-1 in the appendix),
 XHTML is also parsed according to the stricter syntactical requirements
 of XML.
Normal HTML enforces somewhat looser rules, allowing things like
 the omission of closing tags, and is case insensitive. XHTML, meanwhile,
 requires all elements to be properly closed with a complete tag or
 /> as needed, and named entirely
 in lowercase characters.
XHTML suffers one substantial disadvantage—its canonical MIME type
 isn’t supported by Internet Explorer, a problem discussed in greater detail
 in Chapter 14.
However, carefully formatted XHTML (or HTML written under the
 constraints of XHTML) offers an even greater advantage that has led to
 its selection for markup examples in this book and its related
 materials. Because XHTML’s required syntax is more rigid, XHTML source
 fragments are measurably easier to read than their HTML analogs, and the
 rules defining valid XHTML are less confusing.
Note
HTML5 includes support for an XML syntax, but does not require
 its use.

Strict, Transitional, or Frameset?

As HTML has evolved, a number of elements have been deprecated: that is, officially
 designated as obsolescent or out of scope. In addition, many elements
 have circumscribed scope—they must appear within certain elements or
 contain certain elements.
In brief, the differences between the Strict, Transitional, and
 Frameset subtypes of HTML can be defined in terms of permissiveness and
 rigidity. Strict variants have the narrowest requirements with
 respect to the contents or containers of certain elements, and are less
 relaxed about the use of deprecated elements.
The Frameset subtype, meanwhile, is meant to be used in one
 circumstance: for documents that define a series of frame elements. Framesets and frames will be
 discussed in more detail in Chapter 14.
Finally, note that iframe
 elements fall within the scope of the Transitional document types,
 not the Frameset document types.
Note
HTML5 offers only one choice for document type, which is
 effectively Strict plus new HTML5 features.

CSS3 allows those definitions to be made independently of the
 document type with the box-sizing property, which has
 two values: content-box and
 border-box. The layout behaviors associated with
 these values are given close attention in Chapter 6.

A Tale of Two Box Models

Current web browsers use document type declarations as a “switch” that can
 determine the “box model” used to define the underlying measurements
 that will inform the page layout.
The dimensions of an element box defined by HTML can be modified
 with various CSS properties that control its content footprint, gutters
 (padding, etc.), borders, and margins as separate components. Older
 browsers calculate these dimensions subtractively:
 custom footprint dimensions include associated
 gutters and borders. Margins are also treated differently with respect
 to containing elements.
However, the CSS 2.1 specification requires that footprint
 calculations be handled additively, so that
 gutters, borders, and margins are rendered as an addition to any custom
 footprint dimensions. Of course, there is still a lot of content on the
 Web that was styled to accommodate the older layout approach.
By including a document type declaration in a document, a page
 author sets a switch that defines the layout model that will be applied
 to a page’s block elements by default. Some declarations cause rendering
 engines to behave according to the technical standard set in the CSS 2.1 specification,
 while others cause rendering engines to behave according to the legacy
 approach (frequently referred to as “quirks mode”). Where a document
 type declaration is omitted, the legacy box model is applied.
In cases where the distinction might be important, source examples
 in this book and its companion materials will be framed in terms of the
 box model defined in the CSS 2.1 specification.
Note
For a thorough list of DOCTYPEs and the modes that various
 browsers use to render them, see http://hsivonen.iki.fi/doctype/.

Choosing the Right Document Type for Your Project

In the hands of experienced developers, document type choices are a question of
 personal preference. I always use XHTML 1.0 Transitional for new
 projects and redesigns-from-scratch—thanks to the consistency of XML’s
 rules, I find that the resulting markup is easier to comprehend during
 the production and quality assurance phases of a project.
However, my needs are not yours. In order to address your most
 important needs, you should ask the following questions before choosing
 the document type to be used on a particular project:
	What “flavor” of HTML does the project sponsor use on its
 other online properties, or use as a matter of course?
	Generally speaking, it’s best to stick with conventions
 established by materials already in production.

	Does anyone hold the expectation that content will be stored
 in a datastore meant to be accessed by multiple systems?
	In this case, XHTML—which is a dialect of XML—might well be
 a better choice, since portability is perhaps the greatest
 strength of XML.

	How likely is it that your work product will be processed by
 transformation algorithms such as search-and-replace
 functions?
	Strict document types will hold up better in the face of
 transformation algorithms.

Finally, on a somewhat different note, there is the question of
 how you use your tools. It’s generally best to hang onto the tools
 you’re already using, unless you have an obvious need to change.

Beautiful Parts: Universal Attributes

You’ll be seeing a lot of the class and id attributes throughout this book. These are
 universal attributes—they can be used by
 any element in the HTML vocabulary that’s valid as
 well as body itself.
In addition to class and id, there are four other attributes that are
 similarly versatile:
	title

	lang/xml:lang

	dir

	style

dir specifies which direction
 type should run. style will be
 described in Chapter 14.
Providing Stylesheet Hooks with class and id

Two attributes that can be assigned to all elements are
 class and id. Several class values
 but only one id value can be assigned to a given
 element. Multiple class values are
 separated by spaces, e.g., class="alternate
 callToAction".
Valid class and id values
 should contain only letters, numbers, hyphens, and underscores. These
 values should begin only with letters and numbers. However, Internet
 Explorer 6 parses and applies stylesheet values that are associated with
 class values, id values, and
 property names that begin with underscores—an oversight that provides
 stylists with a low-pass filtering technique.
A more important question is where to put
 classes and ids. As a rule, classes should be assigned to those frequently
 encountered elements that share both design purpose and presentation
 peculiarities, but aren’t used predictably. On many sites, classes are also assigned to the body elements of pages that fall within a
 single section of the site’s architecture, such as the common “About”
 and “Contact” sections.
The overall structure of site templates tends to inform where and
 how id and class values are
 assigned. I typically assign the following ids to the appropriate elements of every site
 template that I build:
	main

	header

	primaryNav

	bodyCopy

	sidebar

	footer

	secondaryNav

If you look carefully at that list, you’ll note the total absence
 of page- or site-specific values that refer to page coordinates (e.g.,
 left or right columns), color, or specific sizes. A similar reliance
 upon context is used for class values
 as well; section values and hints to purpose such as error make frequent appearances, but
 references to absolute dimensions or colors do not. The closest thing to
 an exception in this regard is made for form styles, where minimally
 subjective class values like
 short, medium, and long turn up with regularity in order to avoid
 styling label/field pairs one by one.

Describing Content with title and lang

In addition to id and class, HTML 4.x and XHTML 1.x added two other universal
 attributes that are used to provide metadata about the language and
 general nature of the content related to the elements to which they are
 applied.
Of these, title is more
 commonly used. Its value is an arbitrary string that provides a brief
 description of an element’s content. It can also include the title of a
 link’s destination, a technique used extensively on Wikipedia. Finally,
 browsers can put aside title values
 and display them as document metadata. If implemented and used well,
 title values can be a tremendous help to visitors
 trying to find needle-sized bits of information in haystack-sized
 information stores.
The title attribute is
 comparable to the alt
 attribute used for images, but is distinguished from alt by the fact that alt is meant to be displayed as a
 substitute for an image that cannot be displayed,
 whereas title
 describes content instead of serving as a fallback
 for it.
In current desktop browsers, the value of the title attribute is displayed in a tool tip
 when the associated element is moused over, as shown in
 Figure 2-2. These tool
 tips are truncated by some browsers when they run long, though the
 truncation point varies from one browser to the next.
[image: A title tool tip, as displayed by Internet Explorer 8 on Vista/Aero]

Figure 2-2. A title tool tip, as displayed by Internet Explorer 8 on
 Vista/Aero

The lang attribute, meanwhile, is a meaningful nod to the “World Wide” part of
 the Web. In much the same way that the title attribute can be used to supply
 supplemental information about the content of an element or the
 destination of a link, lang does
 exactly the same for foreign-language content.
You are supremely polite when you use the lang
 attribute, because it aids visitors in the task of understanding the
 context of foreign-language content even when they cannot make out its
 exact meaning. Furthermore, screen readers need an accurate
 lang or Content-Language response
 header value to pronounce foreign-language content accurately.
Note
The hreflang attribute
 exists as a counterpart to the lang attribute and is used to signal that
 a hyperlink points to content written in a language other than that
 specified for the current document.

Finally, note that XHTML served with the application/xhtml+xml MIME type should use
 the xml:lang attribute in
 place of the lang attribute.
Note
When the the lang or
 xml:lang attributes are used to describe an entire
 document, they should be attached to the html
 element, instead of the html element.

The value that you provide for the lang attribute (and the Content-Language HTTP response header field)
 is chosen from a list composed from various ISO-sanctioned codes and
 structured according to rules maintained by the IETF.
Table 2-1. Frequently encountered Content-Language values
	Language	lang/Content-language value
	English	en
	English (American)	en-US
	English (British)	en-GB
	Chinese (Simplified)	zh-Hans
	Chinese (Traditional)	zh-Hant
	Chinese (Taiwanese, no script specified)	zh-TW
	Spanish	es
	Japanese	ja
	French	fr
	Portuguese	pt
	Portuguese (Brazilian)	pt-BR
	German	de
	Arabic	ar
	Russian	ru
	Korean	ko

To learn more about effectively using the title attribute in links, read Creating Effective Link Content and title Values.
 lang values of interest are listed in Table 2-1.

The contenteditable Attribute in HTML5

The HTML5 specification adds a number of new global attributes to HTML, including
 contenteditable, which is already
 supported by most modern browsers. It’s mainly intended for providing
 in-browser rich-text/WYSIWYG editors—the kind of editing interfaces you
 might find in browser-based blog-authoring tools, for example.
The contenteditable attribute
 essentially enables you as an author to specify that particular parts of
 a page (the contents of particular elements) are editable. Within those
 editable parts of the page, users can potentially perform actions like
 selecting text, cutting and pasting, and moving text (including by
 dragging and dropping it), as well as changing the character formatting
 of text to appear bold or italic, or in a different color, or even
 actions like adding hyperlinks.
Just setting the contenteditable attribute on a particular
 element won’t cause a browser to actually expose any obvious editing
 controls to the users. However, it generally will
 enable users to at least perform actions that have common, familiar
 keyboard shortcuts (for example, Ctrl-X to cut, Ctrl-V to paste, or
 Ctrl-B and Ctrl-I for bold and italic). Some browsers even provide a
 text-editing context menu that’s available by right-clicking in a
 contenteditable area; this may add a
 few additional character-formatting actions that don’t have common
 keyboard shortcuts, such as changing the font size or color of selected
 text.
It’s possible that other browsers will follow suit and expose more
 contenteditable text-editing actions
 (such as, say, an action for easily adding hyperlinks) through a related
 context menu. However, all that being said, if you want to provide an
 in-browser user interface for performing editing actions in contenteditable content, you’ll also need to
 write some programming (scripting) in JavaScript. For example, you can
 easily add a button to a page allowing users to make selected text bold
 (rather than forcing them to use a keyboard shortcut), but to make it
 work, you’ll need to add some scripting that associates your button with
 the action you expect it to perform. (The HTML5 specification provides a
 number of APIs to facilitate scripting in combination with the contenteditable attribute, but I won’t go into
 the details here.)
Another limitation of contenteditable is that, on its own, it
 provides no means for users to actually save the contents of any pages
 they’ve edited. That’s something else for which you, as an author, will
 need to provide an interface.

Separating Content, Structure, Presentation, and Behavior

Making Your Sites “Safe As Houses”

Imagine a dwelling. The simplest such structure meant to stand for any length of
 time will have some kind of durable structural frame anchored to the
 ground and covered with some kind of paneling.
For the client side of a website, that frame and cover are the
 structural layer, the markup: it defines the overall form of the
 result.
When you start getting fancy with your house, you can add things
 like siding, paint, trim, and shingles. This is like the presentation
 layer of your website, driven on the whole by CSS. In the same way that
 the walls and roof will fall off of a poorly framed house, CSS will be
 difficult to use if the markup is not properly assembled.
A good house has things like climate-control hardware, doors,
 windows, electricity, and plumbing. In many cases, things like this are
 what make the house truly enjoyable to live in. Likewise, the behavior
 layer of a website is the part that most clearly responds to user
 activity. However, without the other parts of the architecture and
 engineering properly installed, the behavior layer will most likely be
 ineffective.
And what about the content? Well, as the point of a house is to
 shelter people and their stuff, so the point of a website is to serve as
 the ideal vessel of a heap of content. Each HTML page holds a markup
 structure wrapped around content.

Separation in Practice

When a developer works under the principle of separation, the
 likely result is that each client-side layer of the site enjoys
 tremendous independence from the particulars of the other layers. That
 independence will never be complete; at best, it
 will enable in new properties the reuse of assets that already exist. At
 any rate, the principle of separation assumes the following
 dependencies:
	A site’s behavior loses its punch without the presence of an
 effective presentation.

	A site’s presentation is dependent upon the underlying quality
 of its structure.

	Without thoughtfully assembled content, creating a solid site
 structure becomes a fool’s errand.

However, it's easy to achieve a level of “layer independence” that
 will minimize the impact of changes—so that, by defining a class that is only assigned to an element when
 a visitor interacts with it, you can make unlimited changes to the
 presentation of an element without also needing to alter any JavaScript
 that defines its behavior. Likewise, you can give yourself free rein to
 fiddle with a stylesheet and completely revise a site’s presentation
 without being forced to dig into any of the site’s structure or content—the “CSS Zen” approach (see the
 section The Functional Principles of CSS Zen).

Working with Document Trees

Much of the work at the beginning of a website development project revolves around
 developing a simple HTML structure that CSS and perhaps eventually
 JavaScript can use as a framework for their presentation and behavior
 activity. This work focuses on creating a basic structure that many
 documents can use as their foundation and possibly as their template. At
 this point in the process, the focus is less on content and more on
 common structures that wrap that content. Example 2-2 shows the body element of a simple HTML document
 structure.
Example 2-2. A simple HTML document structure
<body>
 <h1>...</h1>
 <div id="main">
 <div id="priorityContent">
 <div id="bodyCopy">

 <h2>...</h2>
 <div class="section">
 ...
 </div>

 <h2>...</h2>
 <div class="section">
 ...
 </div>
 </div>

 <div id="sidebar">
 ...
 </div>

 <ul id="primaryNav">
 ...

 <div id="footer"
 <ul id="secondaryNav">
 ...

 <p id="colophon">...</p>
 </div>

 </div>
 </div>
</body>

This sample provides more than just a template. Its nested and
 labeled elements also define a structure that CSS (and JavaScript) can
 build on, creating a tree (labeled using # for
 ids and . for
 classes) that looks something
 like:
Note
The production standards enforced at many workplaces generally
 rely on class values in templates more heavily than
 suggested in Example 2-2 and
 the document tree outline below.

	body
	h1

	div#main
	div#priorityContent
	div#bodyCopy
	h2

	div.section
	...

	div#sidebar
	...

	ul#primaryNav

	div#footer
	ul#secondaryNav

	p#colophon

Sketching your document tree as a nested list and then creating
 markup from the structure you’ve defined may make it easier to see and
 manipulate the tree structure you’ll need. The tree shown here is
 relatively simple, and doesn’t reach down into individual paragraphs or
 other forms of content. As you fill documents with additional content,
 you will be constantly extending the document tree, and expanding the
 amount of material that your stylesheets and perhaps your JavaScript
 code can modify.

Browsers, Parsing, and Rendering

Current web browsers typically parse and render content piecemeal, quite
 often starting the process before a page has been received in full by the
 browser. HTML browsers—or more generically, user agents—will process an
 HTML or XHTML document serially from the beginning of a document’s source,
 working out the relationships between the various elements it contains and
 filling in gaps if necessary to create a document tree. Meanwhile, they
 read any CSS specified by the HTML in a similar fashion, matching up
 stylesheet selectors to the elements contained in the page as described in
 the next chapter.
The serial nature of these processes is important for three
 reasons:
	The only way in which user intervention can affect parsing is to
 halt it
	The markup, CSS, JavaScript, session data, and user data
 received by the browser in the scope of a single page set the stage
 for everything that happens until the page is completely
 rendered.

	Until a page and its related media are completely received,
 parsed, and rendered, their appearance is subject to change at the
 hands of the browser’s rendering engine
	In high-latency environments, slow arrivals can create
 visually disconcerting results as the page shifts over time to
 accommodate recently arrived components. This behavior can lead to
 the dreaded “Flash of Unstyled Content,” which is explored briefly
 on this book’s companion
 website.

	There is no strict rule as to what a web browser should or
 should not parse, as long as the data in question can be
 interpreted
	Browsers are permissive about what they attempt to download
 and parse. This permissiveness leaves it to the discretion of a
 site’s developers to conserve resources, a task best accomplished by
 ensuring that stylesheet data is matched with care to the
 requirements of the current document. This is a potential cause for
 concern to those who need to account for performance in marginal
 environments.

Because Ajax uses the W3C Document Object Model Application
 Programming Interface (DOM API) to update the contents of arbitrary
 elements within a page, it’s absolutely vital that markup within any page
 intended to contain the output of Ajax calls be syntactically correct.
 This is particularly true with respect to sibling elements of those meant
 to be updated.
Markup syntax errors alter the document tree and element boundaries
 into a configuration different than what’s intended, which can make it
 unnecessarily difficult to find the cause of JavaScript errors in
 Ajax-oriented code.
Dynamic HTML, Ajax, and Rendering

First- and second-generation desktop browsers only ran a single
 set of rendering passes per page request, so that additional rendering
 would only take place after another page request had been sent to a
 server. All subsequent desktop browsing platforms have made it possible
 to insert additional content after the initial “page load,” a feature
 that was called “Dynamic HTML” until the XMLHttpRequest API became
 popular. The ability of this new API to asynchronously request and
 insert new content without loading an entirely new page eventually led
 to the adoption of the term “Ajax.”

Chapter 3. CSS Overview

Like in a cinematic or musical work, the “Good Parts” of CSS are
 easier to find if you have a basic understanding of what’s going on. This
 chapter lays the foundation for what’s to come in the rest of this book—it
 explores the role of CSS in creating successful websites, and provides a
 survey of its basic components.
Note
If you’re in a hurry to get to the Good Parts, you can skip ahead.
 There are some mentions of Bad Parts and Awful Parts here worth noting,
 though, and CSS is complicated enough that a quick review can be
 helpful.

Connecting Stylesheets to HTML Documents

HTML documents can specify the stylesheets that are applied to them, using
 the link element, the
 style element, or the @import declaration.
Note
Go to http://www.htmlcssgoodparts.net/ for
 an interactive demonstration of the relationships between stylesheet
 rules and elements in a typical page.

Referencing a Stylesheet with link

The most common method of associating styles with your document is to use
 a link element within the head of a document. The source of link elements usually looks something like
 this:
<link rel="stylesheet" href="/styles.css" media="screen" title="Primary Stylesheet" />
This approach also supports stylesheet
 choices: a stylist can create multiple stylesheets,
 assign a title to each, and assign a
 second rel (relation) value of
 alternate to all but one of the
 referenced stylesheets. (Multiple rel
 values should be separated by spaces.) Users will then be able to choose
 which stylesheet they want to associate with your site. This feature is
 supported by Firefox, recent versions of Safari, and Internet Explorer
 8.

Targeting Internet Explorer Versions with Conditional
 Comments

Internet Explorer’s partial support for CSS has created a variety of problems
 for developers. However, one of Internet Explorer’s other nonstandard
 features makes it possible to specify stylesheets
 only for Internet Explorer, even to the degree of
 specifying particular versions of that browser.
Note
Updates made to Windows in late 2009 disabled Internet Explorer
 8’s support for conditional comments when operating in “IE8 Standards”
 mode.

Internet Explorer defines HTML comments differently than other
 browsers, which allows you to include source that only Internet Explorer
 will parse as proper markup.
One possible example that references a stylesheet is:
<!-- [if lt IE 8]><link rel="stylesheet"
href="/styles.ie.css" media="screen" /><![endif]-->
The <![endif]--> closing
 “tag” is a constant feature of such markup. The opening matter is
 written in the following format, with user-supplied values in
 emphasis:
<!-- [if version_constraint IE version]>
The user-supplied values work as follows:
	version_constraint
	This item is optional, but where present can take one of
 four forms:
	gt: greater than [
 >]

	gte: greater than or
 equal to [≥]

	lt: less than [<
]

	lte: less than or
 equal to [≤]

	version
	This item is also optional, and where used corresponds to a
 major release: 5, 5.5, 6, 7, or 8.

The Internet Explorer conditional comment syntax also supports
 Boolean AND, OR, and NOT operators, which are explained in more detail
 at the Microsoft
 Developer Network site.
Low-pass and high-pass rule filters can serve as fit alternatives
 to stylesheets conditionally targeted to legacy versions of Internet
 Explorer. These rule filters are discussed in more detail in Chapter 14.

Replacing link with style

When the style element is
 used, it can contain any quantity of valid CSS. One
 effective use of style blocks is to
 serve CSS rules that are specific to a single page; I make a regular
 habit of using this technique. Many developers use style elements to reference stylesheets
 requested via the @import rule, which
 is discussed in more detail next.
The conditional comments described earlier can also enclose a
 style element or its content.
Note
It’s generally best to keep style blocks short, as their presence
 affects the proportion of keyword-rich content in a page, thus having
 the potential for a slightly negative impact on Search Engine
 Optimization (SEO) efforts.

When a page marked up in XHTML is served with the correct MIME
 type (application/xhtml+xml),
 style content must be placed inside a
 <![CDATA[...]]> (character
 data) block.

Using @import

The @import statement
 first became popular in the late 1990s, when developers
 discovered that Netscape 4 wouldn’t parse it. This made it easy to
 include more advanced stylesheets that would work with other browsers,
 while leaving Netscape 4 alone.
In contemporary use, @import
 declarations are reduced to their original intended function, which is
 to serve as an analog to an include function that
 is applied specifically to stylesheets.
@import declarations must
 always appear at the top of a stylesheet’s source order, valid
 @import declarations can only be preceded by an
 @charset declaration. The browser parses and applies
 the styles in an @imported stylesheet
 as though they were in the place of the @import declaration that referenced them, a
 fact that can affect rule priority.
For the sake of consistency with other bits of CSS syntax, only
 the parenthetical method of reference will be demonstrated:
@import url(/form_styles.css);
It is also possible to apply stylesheets called @import to specific media, which is discussed
 shortly.

Beware of style Attributes!

The first rule of standards-friendly development (see Rules of Standards-Friendly Development) demands that you
 keep presentation details out of your markup, so avoid the style attribute
 however and whenever possible. In those (extremely) rare instances where it
 must be used (for example, Content Management
 Systems that lock out stylesheets), it should contain the desired series
 of valid property/value pairs, just as if those same pairs were being
 included in a stylesheet rule applying only to that element.
The style attribute is further discussed (and
 subjected to passionate abuse) in The Awful Parts.

Targeting Rules to Specific Media

HTML and CSS allow you to create different stylesheets for
 different media, most commonly screen and print. A single document might have several
 stylesheets, each targeted at one or more media. There are three
 approaches to applying styles to specific media:
	Add an optional media attribute/value pair
 to an appropriate link or
 style element
	Adding a media attribute
 to one of these elements will cause the valid rules
 contained within that element’s scope to apply only to the desired
 media. Therefore, if you want a linked stylesheet to apply only to
 printed pages, you would include media="print" in the applicable link tag.

	Add an @media block to a style block that
 hasn’t already been assigned a mutually exclusive
 media value
	For example, @media print { body {
 font-size: 12pt; } } will cause the default type size of
 a given page or site to be changed to 12 points.

	Add a media value to an @import declaration that isn’t already
 placed within a mutually exclusive media scope
	In the same way that the @media selector trails with the names of
 one or more recognized
 media, the file reference in an @import declaration can be followed with
 the names of one or more recognized media, for example, @import(/styles.print.css)
 print;. This approach targets all of the rules in that
 stylesheet to the desired medium or media.
Warning
Note that @import
 declarations placed inside @media blocks are invalid.

Where multiple media are named, they should be
 comma-separated.
The following media type values are described in the CSS 2.1
 specification and claim greater-than-insignificant support from browser
 and other user agent vendors:
	all
	All devices

	screen
	Monitor-type displays attached to personal computers, typically
 cathode ray tube (CRT; “TV-type”) or liquid crystal diode (LCD;
 “flat panel”) displays; often applicable mobile device displays as
 well, at vendors’ discretion

	print
	Paper sheets of arbitrary number and area, coated with
 ink, pigment, or toner

	handheld
	Mobile devices and personal digital assistants (PDAs);
 poorly supported by all but very recently marketed devices, as of
 2009

	projection
	Tabletop projectors; poorly supported by nearly all
 vendors

	speech
	Screen reader and text-to-phone platforms; poorly
 supported

The remaining media types described in the CSS 2.1 specification
 are functionally unsupported:
	braille
	Braille terminals

	embossed
	Braille printers

	tty
	Two-dimensional fixed pitch display environments (usually a
 monochrome CRT display or command-line client software);
 accurately cognate to the traditional Unix designation for dumb
 terminals

	tv
	Television browsers, like the erstwhile WebTV

Choosing the Elements You Want to Style: Writing Selectors

A typical stylesheet, regardless of its scope, is a series of rules structured as
 follows:
selector { property: value; property: value; [...] }
The bad news—and the bane of many newcomers to CSS—is that this
 structure is terse to the point of impenetrability.
The steep learning curve of CSS syntax is rewarded with the ability
 to affect a page’s presentation with a superlative degree of granularity.
 Any selector can point to any arbitrary set of elements within a page, and
 CSS properties can accomplish anything within the limits of an
 implementer’s experience and imagination, when put to thoughtful
 use.
Note
The concepts explained briefly here are taken up in much greater
 detail in Applying Taxonomy Through the Cascade.

Parents, Children, and Siblings: Element/Node
 Relationships

The section Tags, Elements, and Attributes introduced the
 idea of element nesting for the purpose of
 explaining how tags-inside-tags need to be written. Element nesting
 opens to door to one of the most important aspects of applied HTML and
 CSS:
It is not only allowed but actually encouraged to “wrap”
 stretches of clearly related content in elements set aside for just
 that purpose, and to assign descriptive ids and/or classes to such wrappers.

When such “semantically appropriate” elements are used to enclose
 content, new relationships are created in the document tree, thereby
 increasing the number of CSS selectors that can be used in the course of
 implementing a design.
Multiple nested elements have what are referred to as
 parent, child, and
 sibling relationships:
	Document tree
	The notional branching structure of all elements in a
 document. Synonymous with “Document Object Model” as applied to a
 specific document.

	Parent
	The element that directly contains the element at the focus of
 concern.

	Ancestor
	An element higher in the document tree, possibly many levels
 higher, that contains the element in question.

	Child
	The element that is directly contained by the element at the focus of
 concern.

	Descendant
	An element contained by the element in question which is
 deeper in the document tree.

	Sibling
	An element that shares a common immediate
 parent with the element at the focus of concern.

CSS makes a clear distinction made between generic parent and
 child elements, and those that are immediate or
 direct. For example, an li element in a valid
 document claims some ul or ol element as its direct parent, but will also
 have at least one—if not two—other parent elements within its document
 tree: body (which is required by the DTD for the various flavors of
 HTML 4.x) and quite likely another block element.

Simple Selectors

Typically, selectors interface with markup at three main points: element names, class
 attribute values, and id attribute
 values.
	Elements
	p { ... }

	classes
	.about { ... }

	ids
	#corporatehistory { ...
 }

The following fragment of markup includes hooks for all of the
 example selectors just shown:
<body class="about" ... >
...
 <div id="corporatehistory" ... >
 ...
 <p>The 1990s were a time of drastic change throughout the industry.<p>
 ...
 </div>
...
</body>
The p { ... } selector will
 apply to the p element in code
 fragment just shown. The .about { ...
 } selector will apply to the body element, whose class value is "about". And finally, the #corporatehistory { ... }
 selector will apply to the div
 element with an id of "corporatehistory".
Beyond these three foundations, CSS 2.1 specifies other selector
 types, including universal
 selectors (*), child selectors
 (div > p), descendant selectors
 (div p), adjacent selectors (ol + p), and attribute selectors (p[lang], p[lang="en"] or a number of other variants). It also includes the
 :first-line,
 :first-letter,
 :before, and :after pseudoelements, as well as a variety of
 pseudoclasses: :first-child,
 :link, :visited, :active,
 :hover, :focus, and :lang. CSS3 adds even more pseudoclasses and
 pseudoelements, but is still in development.

Multiple and Descendant Selectors

The capacity to combine multiple selectors in a single rule is by far the greatest
 contributor to the versatility of CSS. Selectors can be combined and
 comma-separated to apply the same characteristics to multiple arbitrary
 elements, whitespace-separated to reference child elements, and
 concatenated to enforce a high degree of granularity. There is no limit
 on the number or type of selectors that can be associated with a single
 stylesheet rule.
The examples shown in Table 3-1 are assumed to be in
 a stylesheet that applies to an entire site.
Table 3-1. CSS selectors scoped in plain English
	Selector
	Applies
 to

	p
	All paragraphs in the document

	.about
	All elements in the
 document with a class value
 of about

	#corporatehistory
	The element in the
 document with an id value of
 corporatehistory (if
 present)

	h1,h2,h3
	All first-, second-, and
 third-level headings in the document

	.privacy,.copyright
	All elements with a
 class of privacy or copyright

	#header,#footer
	The element assigned an
 id of header, and the element assigned an
 id of footer

	p.footnote
	All paragraphs assigned a
 class of footnote

	#bodycopy.usergenerated
	An element that has been
 assigned both an id of
 bodycopy
 and a class of usergenerated

	.navigation a
	All links with an
 ancestor parent assigned a class of navigation

	#primarynavigation
 li.current
	All list items with a
 class of current and an ancestor parent with an
 id of primarynavigation

	.about #bodycopy
	Any element on the site
 with an id of bodycopy and an ancestor parent
 assigned a class of about

	body#personalproducts,

body#proproducts,
body#enterpriseproducts
	The body elements within the site assigned the ids
 personalproducts,
 proproducts, and enterpriseproducts

	body#personalproducts
 #bodycopy,
body#proproducts
 #bodycopy,
body#enterpriseproducts
 #bodycopy
	The elements assigned an
 id of bodycopy, within the documents
 suggested by the previous example

	ol li ol li ol li
	A list item in the third
 level of a nested ordered list (such as an outline)

Selecting Direct Child Elements

CSS provides the > selector
 to create selectors for elements with an immediate child
 relationship, so that:
#bodycopy>p { ... }
refers to the paragraph element in:
<div id="bodycopy"><p>...</p></div>
but not the paragraph element in:
<div id="bodycopy"> ... <blockquote><p> ... </p></blockquote> ... </div>
The > selector is discussed
 as one of the Bad Parts—not because there’s anything wrong with it, but
 rather because it’s not supported by Internet Explorer 6.

End of sample

 To search for additional titles please go to

 http://search.overdrive.com.

OEBPS/httpatomoreillycomsourceoreillyimages531486.png
Inline block

M
| [l
I

Block

Inline

OEBPS/httpatomoreillycomsourceoreillyimages531484.png.jpg
2 HTML and CSS: The Good Parts — Test Space - Windows Internet Explorer
pace
Y.)

e ———

6 HTML and CSS: The Good Parts -~ Test Space.

Lorem Ipsum Dolor Sit Amet
12 October 2009, 3:36pm — 42 comments

Lorem ipsum dolor sit amet, consectetur adipisicing et sed do efusmod tempor incididunt ut labore et dolore magna aliqua. Ut
enim ad minim veniam, quis nostrud exercitation ulameo laboris nisi ut aliquip ex ca commodo consequat. Duis aute irure dolor
in reprehenderit in voluptate velit esse cilum dolore eu fugiat milla pariatur. Excepteur sint occaccat cupidatat non proident, sunt
in calpa qui officia deserunt molit anim id est laborum.

Code:

h2 {

margin-bottom: -L.5em;
border-botton: 1px solid black;
padding-bottom: 1.75em;

background-colo

#ddd;

p.metadata {
margin: 00 1.75em 0;

@ - ®00% -

@ Intemet | Protected Mode: On

OEBPS/httpatomoreillycomsourceoreillyimages531474.png
#fLeftiidget {
width: 25%;
height: 10.5em;
float: left;

}

Lorem ipsum dolor
sitamet,
consectetur
adipiscing elit.
Maecenas feugiat,
ipsum sed blandit
aliquet...

#icleftiidget {
clear: left;

}

#fRightiidget {
width: 25%;
height: 14em;
float: right;

}

OEBPS/httpatomoreillycomsourceoreillyimages531480.png
432px
Lorem ipsum dolor sit amet, consectetur adipiscing elit.
Nunc vitae volutpat metus. Suspendisse eu pharetra est
Suspendisse non lectus elit, faucibus aliquet nibh. Class.
aptent taciti sociosqu ad litora torquent per conubia
nostra, velevet per inceptos himenaeos. Donec erat velit,
elementum at suscipit roof a, meep aliquet nec ante.
Maecenas cursus lobortis massa, interdume erat.

p { width: 424px; border: 4px solid black; margin: auto }

720px

OEBPS/httpatomoreillycomsourceoreillyimages531502.png.jpg
jenicula aliquet

Aticles

Siideshows

About

Contact

lerisque enim risus id
jectus. Sed matts, leo
get fermentum piacerat,
st liguia viverra augue,

tincldunt nunc dolor in
eque. Nullam nec ante
igula. Sed adipiscing
jehicula aliquet.

Slideshows

About

OEBPS/httpatomoreillycomsourceoreillyimages531559.png
hgh (p\ Glyph

The qi\uck/red foyumps%

OEBPS/httpatomoreillycomsourceoreillyimages531470.png
Literal HTML tags nest
exactly like matryoshka
dolls. Given
<body>
<div>
<p>
the closing tags will fall

inm order of
their insertion.

@ o0fo

<body>

<div>

<p>

</p>

</div>

</body>

OEBPS/httpatomoreillycomsourceoreillyimages531492.png.jpg
o o focir

#bodycopy {float: right; width 23.3333en; }

e
i

#sidebar { margin-right: 23.833en; }
#footer { clear: both; }

#sidebar, #footer { height: 2.5em; }

/* swallows up the botton-margin of the
h4 elenents */

#main { height: 1%; overflow: auto; }

OEBPS/httpatomoreillycomsourceoreillyimages531504.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages531542.png
2YPes ol guacine: Snd disesi fueled rosd venicles.

el gsig. e o ross s =
Vehicle type# of axles ! Number of (incl. driver) =L Lo Lot
Gross Max. ¢ g Truck| 25125t |1

T sz 2

G ¥ haliile f o]
Moot S5 GS

42, Wotorey caos 12

Vil typorof s &3, M. Nurber o ek e |01 =5

o

OEBPS/httpatomoreillycomsourceoreillyimages531482.png
visible: Lorem ipsum dolor sit
amet, consectetuer adipiscing elit.
Ut magna quam, auctor non,

massa. Phasellus sagittis rhoncus
lacus. Phasellus consectetuer.

hidden: Lorem ipsum dolor sit amet,
consectetuer adipiscing elit. Ut

auto: Lorem ipsum dolor sit ame, ()
consectetuer adipiscing elit. Ut

scrol1: Lorem ipsum dolor sit
amet, consectetuer adipiscing
elit. Ut magna quam, auctor non,

OEBPS/httpatomoreillycomsourceoreillyimages531569.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages531532.png
Types of gasoline- and diesel-fueled road vehicles.

Weight
Vehicle type | # of axles Number of passengers (incl. driver)
Gross | Max.
Truck |22 >15t |25t25t |1
Car |2 05t-25t1.5t-4t |1-8
Motorcycle |2 <025t |03t-05t]1-2
Gross | Max.
Vehicle type | # of axles Number of passengers (incl. driver)

Weight

OEBPS/httpatomoreillycomsourceoreillyimages531585.png.jpg
>/ (&)

When a browser requests a page, it is
certain to make more than one literal
request. Stylesheets,script files, and
images also need to be requested
and downloaded.

OEBPS/httpatomoreillycomsourceoreillyimages531583.png
nameserver
An HTTP request has six basic steps

1. nameserver lookup

2.TCP/IP connection by client (browser) to server
3. Literal request

4. Server processing of request

5. Server reply

o 6. Client receipt, parsing and rendering

Client Web server

OEBPS/httpatomoreillycomsourceoreillyimages531524.png.jpg
thead

——

tbody

tfoot

—

gos | td ; colgroup :
Weight Number of
passengers
Vehicle type | # of axi Gross Max. (incl. driver)
Truck >1.5t 2.5t-25t |1
Car |2 0.5t-2.5t |1.5t-4t |1-8
Motorcycle | 2 <0.25t 0.3t-0.5t | 1-2
Vehicle type | # of axles | Gross Number of
ax. || Numberot
Weight (incl. driver)

OEBPS/httpatomoreillycomsourceoreillyimages531581.png.jpg
HTML and CSS; The e -
Bie £t Yiw gy Gockmeks Iooh oo
& - C 5 o L o sheioses e

Hypertext at the Core

chO2insert bl A properly built web site s far more than the sum of its markup, stylesheets, scrptiny
resources. Well-built web sites take full advantage of their hypertext medium, makir

ch03 biml y we consume information. Without easily activated links,

b0 bl
While hypertex offrs tremendons bty it lso requires developes t0 help visito
<08 o Visitors wiltake unexpected paths even within site. and will arive from sits or 500
conteol. The power that hspestext provide also comes with responsibiity, for sruct

shibhosl sways that visitors will be able to comprehend and navigate.

<hO7 himl The Web Without Links

08 peml ‘The Web's wse of links to connect information makes it different from previous media.

Web is so familia, i’s easy to forget those difference, but they establish the path to dev

ch09 himl 3 web sites. 50 what happens when you remove hyperlinks from asite? 4
< i m W o
S8 Done F i
</head>
<frameset cols="20%",*">

<frame name="left_frame" src="ms/" />

<frame name="left_frame" src="ms/choi.html" />
</frameset>

</html>

OEBPS/httpatomoreillycomsourceoreillyimages531465.jpg
L R R RRRRRRRSEEERRRRRRRRRRRRRRRRRERR
Better Ways to Build Websites that Work

O’REILLY*® Ben Henick

OEBPS/httpatomoreillycomsourceoreillyimages531498.png.jpg
is is the header.

is Is the sidebar.

tnain { position: relative; left: 0; top: 0
overflow: hidden;}

/* the height of #main is inherited from the auto height of body
- changing overflow from auto to hidden removes scroll bars */

#sidebar p { position: absolute; right: -2.5em;
bottom: -7.5em; width: 10em; }

OEBPS/httpatomoreillycomsourceoreillyimages531526.png
Types of gasoline- and diesel-fueled road vehicles.

Vehicle type# of axles onee Ont, Number of passengers (incl. driver)
Truck 22 S15t 256051
Car 2 0512511 504t 1-8
Motorcycle 2 <025 0.3t-0.5t1-2
Gross Max.

Vehicle type# of axles C"°pn, 1% Number of passengers (incl. driver)

OEBPS/httpatomoreillycomsourceoreillyimages531544.png
yer Select Filter View Window Help

Heght[3

[sy (Fraaropecciuse 18) wnir——|

TETTRT

OEBPS/httpatomoreillycomsourceoreillyimages531536.png
Types of gasoline- and diesel-fueled road vehicles.

Weight Number of

passengers

Vehicle type | # of axles Gross |Max. |(incl. driver)

Truck |22 >1.5t | 25t-25t |1

Car|2 0.5t-2.5t1.5t-4t |1-8
Motorcycle |2 <0.25t |0.3t-05t|1-2

Vehicle type | # of axles Gross |Max. |Number of

passengers

Weight (incl. driver)

OEBPS/httpatomoreillycomsourceoreillyimages531548.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages531565.png
m‘:fli_rpm
pellentesque. Vi

aliquatn metus

tellus cursus acc

T oo
LATIGILT TSI

pellentesque. V
non aliquam m
mauris aliquam

LT L
pellentesque. V'
aliquam metus p

tellus cursus acc

T g

OEBPS/httpatomoreillycomsourceoreillyimages531530.png
Types of gasoline- and diesel-fueled road vehicles.

Vehicle typel¢ of aleQ*:‘nu INumber of passengers (incl. driver)
k2 B5t25t[1
3 051251 5t-4t_[1-8
WMotorcycle 2 0.3t-0.5(1-2
Max.
Vehicle typeft of axles->Ose L1128 Number of passengers (incl. driver)

OEBPS/httpatomoreillycomsourceoreillyimages531540.png
Types of gasoline- and diesel-fueled road vehicies.

Weight Number of

passengers

Vehicle type | #ofaxies | Gross | Max. (incl. driver)

Truck |22 >15 |25t-25t |1

Car|2 0.5t-2.5t [1.5t4t |1-8
Motorcycle |2 <0.25t |0.3t-05t [1-2

Vehicle type | #of axies | Gross Max. ‘Number of

passengers

Weight (incl. driver)

OEBPS/httpatomoreillycomsourceoreillyimages531554.png
display: block; display: block; display: block;
float: left; width: [original]; float: right;
clear: left; clear: both: clear: right;

margin: o [x] [y] 0; margin: 0 auto; margin: 0 0 [x] [y];

OEBPS/httpatomoreillycomsourceoreillyimages531546.png.jpg
Width:

Height:

399

[pixels

112

[Relative

Anchor:

[pixels

[t

-]

A

RIS

OEBPS/httpatomoreillycomsourceoreillyimages531476.png
body>div {
position: static; }

body>divsiabs {
position: absolute;

left: 32px; top: 32px; }

body>div+#relDiv>#absInRel {
position: absolute;
left: 288px;
top: -120px;
width: 216px;
height: 216px; }

body>divefirelDiv {
position: relative;
top: -132px;
left: 36px; }

OEBPS/httpatomoreillycomsourceoreillyimages531561.png
the quick red fox the quick red fox

Arial Comic Sans MS

the quick red fox the quick red fox
Courier New Georgia

the quick red fox the quick red fox
Impact Times New Roman

the quick red fox the quick red fox
Trebuchet MS Verdana

miin OO |« Xne #.0

ngs

OEBPS/httpatomoreillycomsourceoreillyimages531488.png.jpg
“The Electoral College elected Washington unanimously in 1789, and

again in the 1792 election; he remains the only president o receive.
B 100 ot e eecort votes. At s nauguraton, e nsste n having
& Barbacos Rum served ! John Adams was elected vice presicent,
Y Washington took the oath of office as the frs President under the
Constittion for the United States of America on Aprll 30,
Federal Hallin New York Ciy although, at first, he hadi the
B positon!!

Portai by Gibert Star, 1795 &

he 1st tes Congress voted to pay Washington a salary of $25,000 a year—a large sum in 1789,
Washingf wealthy, declined the salary, since he valued his image as a selfiess public servant. At
the urgin laress, however, he ultimately acoepted the payment, to avold seting a precedent whereby

the presidency would be perceived s limited only to independently wealhy individuals who could serve.
without any salary. Washington attended carefully to the pomp and ceremony of office, making sure that the
tites and trappings were suitably republican and never emulated European royal courts. To that end, he.
preferred the tle "Mr. Presicent’ o the more majestic names suggested.

OEBPS/httpatomoreillycomsourceoreillyimages531494.png
2 1 3 3 1 2 1 2 3
none | [right| [none none | | Left | [none left| |none| [none
left Tight left
1 3 2 2 3 1 3 2 1
left | [none| |right left | |none| [right] none | | none | [right]
none none right

OEBPS/httpatomoreillycomsourceoreillyimages531478.png
padding

Lorem ipsum dolor sit amet, consectetur
adipiscing elit. Nunc vitae volutpat metus.
Suspendisse eu pharetra est. Suspendisse
non lectus elit, faucibus aliquet nibh. Class

aptent taciti sociosqu ad litora torquent per
conubia nostra, per inceptos himenaeos.
Donec erat velit, elementum at suscipit a,
aliquet necante. Maecenas cursus lobortis
massa, interdume erat.

OEBPS/httpatomoreillycomsourceoreillyimages531571.png
Font name: Verdana

ersion: Version 5.00
OpenType Layout, Digitally Signed, TrueType Outlines

abcdefghijkimnopgrstuvwxyz ABCDEFGHIJKLM
1234567890.:,; ' " (1?) +-*/=

12 The quick brown fox jumps over the lazy dog. 123456789
s The quick brown fox jumps over the laz

. The quick brown fox jumps o

b Trebuchet Ms
» Type Embellishments One LET

- . abc

P nop

e : 12

OEBPS/httpatomoreillycomsourceoreillyimages531472.png
tothe next

superscript [none] bestassigned an nfinfesimal 1ine

‘A survey of HTMLA infine clements.

styled with an underine, by defaut

OEBPS/httpatomoreillycomsourceoreillyimages531496.png.jpg
e mars. o0 et ormanium placerat st gl
g vicia sique.

#sidebar p { position: absolute; }

/¥ this value removes it from the 'normal
low, and it expands bec it doesn’t
have a parent with nondefault position and
width valu

relative; }

aiaus,dam i posuers imbord ch ora peum.
celeatiosnm s 1 ocus. 5% masa 0

#main { position: relative; left: 0; top:

hanges the position context of all
child elements */

#sidebar p { position: absolute; }
/* the origin of this element's positioning

grid has changed to the upper-left corner
of #imain */

OEBPS/oreilly_large.gif
O’REILLY

OEBPS/httpatomoreillycomsourceoreillyimages531500.png.jpg
/* for the sake of illustration the positioning of
#sidebar p has been removed */

#nav { position: absolute; left: .083em; top: 0;
margin: 0; padding: 0; list-style-type: none;
border-top-width: .083em; border-left-width: .083em; }

#nav 1i { display: block; float: left; width: 8.896em; }

#nav a { display: block; width: 6.813em; height: 2.333em;
line-height: 2.3333=em; padding: 0 lem 0 lem;
border-right-width: .083em; border-botton-width: .083em;
background-color: #fFf; }

OEBPS/httpatomoreillycomsourceoreillyimages531573.png
Logotype

ACME WIDGETS, INC.

Copperplate Gothic
Bold, 48px, #000000

Ahead

This is a headline.

Helvetica Neue, 36px,
#404040

B-head

Quick red fox

Helvetica Neue, 36px,
#808080

C-head

Lazy brown dog

Helvetica Neue Bold,
16px, #404040, 24px
line-height

Body copy

Lorem ipsum dolor sit amet, onsectetur adipiscing elit. Curabitur id lectus

Helvetica Neue, 16px,
#404040, 24px line-
height

Navigation

PRODUCTS

Copperplate Gothic
Bold, 24px, #404040

Inline links

visit one of our locations

Helvetica Neue, 16px,
#000000, 24px line-
height, underlined

OEBPS/httpatomoreillycomsourceoreillyimages531579.png.jpg
violet

[Vidiet

Warm colors Warm colors
violet violet
orange orange
yellow yellow

Cool colors Cool colors
Green Green
Blue Blue
Indigo Indigo

Warm colors
violet

orange.
yellow

Cool colors
Green
Blue
indigo

OEBPS/httpatomoreillycomsourceoreillyimages531528.png

OEBPS/httpatomoreillycomsourceoreillyimages531506.png

OEBPS/httpatomoreillycomsourceoreillyimages531490.png
browser canvas

#header
=
Y
2 &
3 5
= ¥
P 5
£

clear: both;

#main

OEBPS/httpatomoreillycomsourceoreillyimages531514.png

OEBPS/httpatomoreillycomsourceoreillyimages531512.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages531552.png
Camera

Scanner

Designer’s
display

Visitors
display

Visitor's
printer

OEBPS/httpatomoreillycomsourceoreillyimages531567.png
Lorem ipsum d

Lisresm igmum dallar 2t ame
crim Emerohem Sk Sc

Sed niad metur, varhe nec

This is the sidehar.

OEBPS/httpatomoreillycomsourceoreillyimages531575.png.jpg
Lorem ipsum dolor sit amet, onsectetur adipiscing elit. Curabitur i

gravida mi. Duis a mi ac leo porta pellentesque. Vestibulum dolor

i

interdum tincidunt. Sed vel massa turpis. Cras hendrerit euismod ¢

i

ac fringilla sapien ultrices a. Etiam adipiscing dignissim posuere. T

metus, varius nec bibendum ut, ultrices eu ante. Suspendisse hend

feugiat lacus placerat vitae.

Intemet Explorer 6

Firefox and Safari
(older versions)

Safari 3+, Firefox 2.5+,
Intemet Explorer 7+

OEBPS/httpatomoreillycomsourceoreillyimages531556.png
10

n

12

OEBPS/httpatomoreillycomsourceoreillyimages531563.png
Mac: Safari 4 and Firefox 3.5

the quick red fox

Times

the quick red fox

Helvetica

the quick red fox

Courier

the quick red fox

Apple Chancery

the quicl(red fox

Papyrus

Windows: Firefox 3.5

the quick red fox

Times New Roman

the quick red fox
Arial

the quick red fox

Courier New

the quick red fox
ComicSans MS

OEBPS/httpatomoreillycomsourceoreillyimages531508.png
52| £ HTML and CS5: The Good .. | € HTML and CSS: The Go...

Lorem ipsum dolor sit amet

Consectetur adipiscing elit
Ut at libero nec nunc interdum
Elementum ut sit amet neque

Cras purus augue, lobortis nec

Portttor at, dapibus at neque

OEBPS/httpatomoreillycomsourceoreillyimages531522.png

OEBPS/httpatomoreillycomsourceoreillyimages531520.png
Slideshows

OEBPS/httpatomoreillycomsourceoreillyimages531534.png
Types of gasoline- and diesel-fueled road vehicles.

Weight Number of
Vehicletype | #of axles passengers
Gross | Max. | (incl. driver)
Truck |22 >1.5t | 25t-25t |1
Car 0.5t-25t1.5t-4t |1-8
Motorcycle <0.25t |0.3t-05t|1-2
Gross | Max. | Numberof
Vehicletype | #of axles passengers
Weight (incl. driver)

OEBPS/httpatomoreillycomsourceoreillyimages531577.png
Usemame Jancelot

Password

Usemame
lancelot

Password

Gender.

Hale Female

OEBPS/httpatomoreillycomsourceoreillyimages531510.png
* Apple & Mac
» Business & Culture
» Certification & Training

» Databases

By Brady Forrest
Comments: 0

Foursquare is the new|
Dodgeball. Which is to

R:0, G:0, B: 0| 2000000 | AX:0, AY: 0 | div¥main-logo

Palette Browser.
Webpage DOM Color Analyzer.
Firebug,

Zoom

Resample Last Location
‘Add Color to Favorites.
Clear Status Bar

Copy "rgh(250, 150, 3)"
Copy "rgh(88%, 59% 13%)"
Copy "#FA%G1"

Copy "FA%621"

Copy "R: 250, G: 150,

Options

Help

[SeDme

Spresdng
Community | Events | webcasts | Newsletters
Color Picker.
Ve 40% on All
Eyedropper.

fre Celebrating Ot

gift-giving season i
Vou save. From nol
purchase Microsoft
lly.com and save. S:
s, and 200 DRM-f
» |provided in four con
| MOBL, and Android
INT in the shopping
Fy Microsoft Press i
in and Simple and
P

NS & COMMENTAR

hive | Audio | Vided
lying With Four

By Brady Forrest
Comments: 0

» Irsquare is the new
geball. Which is to

OEBPS/httpatomoreillycomsourceoreillyimages531538.png
Types of gasoline- and diesel-fueled road vehicles.

Weight

Number of

passengers (incl.
Vehicle type | # of axies Gross | Max. driver)
Truck | =2 >1.5t 2.5t-25t |1
Car |2 0.5t-2.5t| 1.5t-4t |1-8
Motorcycle | 2 <0.25t | 0.3t-0.5t|1-2
Vehicle type | # of axies Gross | Max, Number of
passengers (incl.
Welght driver)

OEBPS/httpatomoreillycomsourceoreillyimages531516.png
€ seLrcra pisioy By

the road to enlightenment

50 what is this about?

o€ mesources By

GARDGN Th@ BEAUTY OF

\ hello there! My name is Elliot Jay Stocks.
a designer, an illustrator, a speaker, and an author.

SEXY WEB
DESIGN

=

z women's |

Modern Problem:
Retrosp|

t | senc 3
_—

From top to botiom:

o cs2engarden com/cssfle-181/181.cs5
Repeating background pater:
i,/ o csszengarden com/7cssfie=1 76/176 css
Large.non repeating, isressed page backaround
o Jlloaystocks com/
Nonrepeating deve:
I/ /imagazine bogs nytimes com/ etc
Mild gl effect and rounded corners
o w22 verizon com/
orop shadow:
/o bocing.com/

OEBPS/httpatomoreillycomsourceoreillyimages531550.png.jpg
Levels

Input Levels: [0 1.00 | [255

Output Levels: [0 255

- Channel: [RGB —

| || 7]
5 3
™ Preview
Levels
-~ Channel: | RGB _
Input Levels: [14 100 | 216 E—
(Lload—.)
(save
Auto)
e ey
("Options...)
Output Levels: |0 255
| || 7]
! 3
™ Preview
Levels
-~ Channel: [RGB — @
Input Levels: |0 [1.00 |[255 | | Cancel)
Load..)
| “\ —
 Auo)
mmnm||||IIIIII|||||||||||||| | e
e - amnaan
| ("Options...)
Output Levels: |0 255
| || 7]

™ Preview

OEBPS/httpatomoreillycomsourceoreillyimages531518.png.jpg
Lorem ipsum dolor sit amet o

Consectetur adipiscing elit. Curabitur id lectus vel leo sagittis mole:
mi ac leo porta pellentesque. Vestibulum dolor nibh, commodo a ali
tincidunt. Sed vel massa turpis. Cras hendrerit euismod quam, non alii

Lorenyipsuin dolor sittamet 0

Consectetur adipiscing elit. Curabitur id lectus vel leo sagittis mole:
mi ac leo porta pellentesque. Vestibulum dolor nibh, commodo a a;j
tincidunt. Sed vel massa turpis. Cras hendrerit euismod quam, non ali

Lorem ipsum dolor sit amet o

Consectetur adipiscing elit. Curabitur id lectus vel leo sagittis mole:
mi ac leo porta pellentesque. Vestibulum dolor nibh, commodo a am
tincidunt. Sed vel massa turpis. Cras hendrent euismod quam, non alif

