

 [image: First Edition]

 HTML5: Up and Running

Mark Pilgrim

Editor
Mike Loukides

Copyright © 2010 Mark Pilgrim

This book uses RepKover™, a durable and flexible lay-flat
 binding.

O’Reilly books may be purchased for educational, business, or sales
 promotional use. Online editions are also available for most titles
 (http://my.safaribooksonline.com).
 For more information, contact our corporate/institutional sales
 department: (800) 998-9938 or corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo
 are registered trademarks of O’Reilly Media, Inc. HTML5: Up and
 Running, the image of an alpine chamois, and related trade
 dress are trademarks of O’Reilly Media, Inc.
Many of the designations used by manufacturers and sellers to
 distinguish their products are claimed as trademarks. Where those
 designations appear in this book, and O’Reilly Media, Inc. was aware of a
 trademark claim, the designations have been printed in caps or initial
 caps.

While every precaution has been taken in the preparation of this
 book, the publisher and author assume no responsibility for errors or
 omissions, or for damages resulting from the use of the information
 contained herein.

[image:]

O'Reilly Media

Preface

Diving In

What is HTML5? HTML5 is
 the next generation of HTML, superseding
 HTML 4.01, XHTML 1.0, and
 XHTML 1.1. HTML5 provides new features
 that are necessary for modern web applications. It also standardizes many
 features of the web platform that web developers have been using for
 years, but that have never been vetted or documented by a standards
 committee. (Would it surprise you to learn that the Window object has never been formally
 documented? In addition to the new features, HTML5 is the
 first attempt to formally document many of the “de facto” standards that
 web browsers have supported for years.)
Like its predecessors, HTML5 is designed to be
 cross-platform. You don’t need to be running Windows or Mac OS X or Linux
 or Multics or any particular operating system in order to take advantage
 of HTML5. The only thing you do need
 is a modern web browser. There are modern web browsers available for free
 for all major operating systems. You may already have a web browser that
 supports certain HTML5 features. The latest versions of
 Apple Safari, Google Chrome, Mozilla Firefox, and Opera all support many
 HTML5 features. (You’ll find more detailed browser
 compatibility tables throughout this book.) The mobile web browsers that
 come preinstalled on iPhones, iPads, and Android phones all have excellent
 support for HTML5. Even Microsoft has announced that the
 upcoming Version 9 of Internet Explorer will support some
 HTML5 functionality.
This book will focus on eight topics:
	New semantic elements like <header>, <footer>, and <section> (Chapter 3)

	Canvas, a two-dimensional drawing surface that you can program
 with JavaScript (Chapter 4)

	Video that you can embed on your web pages without resorting to
 third-party plug-ins (Chapter 5)

	Geolocation, whereby visitors can choose to share their physical
 locations with your web application (Chapter 6)

	Persistent local storage without resorting to third-party
 plug-ins (Chapter 7)

	Offline web applications that work even after network access is
 interrupted (Chapter 8)

	Improvements to HTML web forms (Chapter 9)

	Microdata that lets you create your own vocabularies beyond
 HTML5 and extend your web pages with custom semantics
 (Chapter 10)

HTML5 is designed, as much as possible, to be
 backward compatible with existing web browsers. New features build on
 existing features and allow you to provide fallback content for older
 browsers. If you need even greater control, you can detect support for
 individual HTML5 features (Chapter 2)
 using a few lines of JavaScript. Don’t rely on fragile browser sniffing to
 decide which browsers support HTML5! Instead, test for
 the features you need using HTML5 itself.

Conventions Used in This Book

The following typographical conventions are used in this
 book:
	Italic
	Indicates new terms, URLs, email addresses, filenames, and
 file extensions.

	Constant width
	Used for program listings, as well as within paragraphs to
 refer to program elements such as variable or function names,
 databases, data types, environment variables, statements, and
 keywords.

	Constant width
 bold
	Shows commands or other text that should be typed literally by
 the user.

	Constant width italic
	Shows text that should be replaced with user-supplied values
 or by values determined by context.

Tip
This icon signifies a tip, suggestion, or general note.

Caution
This icon indicates a warning or caution.

Using Code Examples

This book is here to help you get your job done. In general, you may
 use the code in this book in your programs and documentation. You do not
 need to contact us for permission unless you’re reproducing a significant
 portion of the code. For example, writing a program that uses several
 chunks of code from this book does not require permission. Selling or
 distributing a CD-ROM of examples from O’Reilly books does require
 permission. Answering a question by citing this book and quoting example
 code does not require permission. Incorporating a significant amount of
 example code from this book into your product’s documentation does require
 permission.
We appreciate, but do not require, attribution. An attribution
 usually includes the title, author, publisher, and ISBN. For example:
 “HTML5: Up and Running by Mark Pilgrim. Copyright
 2010 O’Reilly Media, Inc., 978-0-596-80602-6.”
If you feel your use of code examples falls outside fair use or the
 permission given above, feel free to contact us at
 permissions@oreilly.com.

A Note on the Editions of This Book

This book is derived from its HTML5 source, found at http://diveintohtml5.org/ and maintained by the author. The
 ebook and
 Safari Books
 Online editions include all the original hyperlinking, while the
 print edition includes only a subset of the hyperlinks, set as URLs in
 parentheses. If you are reading the print edition, please refer to one of
 the other editions—or the original source—for a richer linking experience.
 Because the author maintains http://diveintohtml5.org/ in HTML5, the site includes live
 examples of the code described in this book, many of which had to be
 modified for publication. Please visit http://diveintohtml5.org/ to see these examples, but be
 aware that their rendering may vary across browsers.

Safari® Books Online

Note
Safari Books Online is an on-demand digital library that lets you
 easily search over 7,500 technology and creative reference books and
 videos to find the answers you need quickly.

With a subscription, you can read any page and watch any video from
 our library online. Read books on your cell phone and mobile devices.
 Access new titles before they are available for print, and get exclusive
 access to manuscripts in development and post feedback for the authors.
 Copy and paste code samples, organize your favorites, download chapters,
 bookmark key sections, create notes, print out pages, and benefit from
 tons of other time-saving features.
O’Reilly Media has uploaded this book to the Safari Books Online
 service. To have full digital access to this book and others on similar
 topics from O’Reilly and other publishers, sign up for free at http://my.safaribooksonline.com.

How to Contact Us

Please address comments and questions concerning this book to the
 publisher:
	O’Reilly Media, Inc.
	1005 Gravenstein Highway North
	Sebastopol, CA 95472
	800-998-9938 (in the United States or Canada)
	707-829-0515 (international or local)
	707-829-0104 (fax)

We have a web page for this book, where we list errata, examples,
 and any additional information. You can access this page at:
	http://oreilly.com/catalog/9780596806026/

To comment or ask technical questions about this book, send email
 to:
	bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers,
 and the O’Reilly Network, see our
 website at:
	http://www.oreilly.com

Chapter 1. How Did We Get Here?

Diving In

Recently, I stumbled across a quote from a Mozilla developer
 about
 the tension inherent in creating standards:
Implementations and specifications have to do a delicate dance
 together. You don’t want implementations to happen before the
 specification is finished, because people start depending on the details
 of implementations and that constrains the specification. However, you
 also don’t want the specification to be finished before there are
 implementations and author experience with those implementations,
 because you need the feedback. There is unavoidable tension here, but we
 just have to muddle on through.

Keep this quote in the back of your mind, and let me explain how
 HTML5 came to be.

MIME Types

This book is about HTML5, not previous
 versions of HTML, and not any version of
 XHTML. But to understand the history of
 HTML5 and the motivations behind it, you need to
 understand a few technical details first. Specifically,
 MIME types.
Every time your web browser requests a page, the web server
 sends a number of headers before it sends the actual page markup. These
 headers are normally invisible, although there are a number of web
 development tools that will make them visible if you’re interested. The
 headers are important, because they tell your browser how to interpret the
 page markup that follows. The most important header is called Content-Type, and it looks like this:
Content-Type: text/html
text/html is called the “content
 type” or “MIME type” of the page. This header is the
 only thing that determines what a particular resource
 truly is, and therefore how it should be rendered. Images have their own
 MIME types (image/jpeg
 for JPEG images, image/png for PNG images, and
 so on). JavaScript files have their own MIME type.
 CSS stylesheets have their own MIME
 type. Everything has its own MIME type. The Web runs on
 MIME types.
Of course, reality is more complicated than that. Very early web
 servers (I’m talking web servers from 1993) didn’t send the Content-Type header, because it didn’t exist
 yet. (It wasn’t invented until 1994.) For compatibility reasons that date
 all the way back to 1993, some popular web browsers will ignore the
 Content-Type header under certain
 circumstances. (This is called “content sniffing.”) But as a general rule
 of thumb, everything you’ve ever looked at on the
 Web—HTML pages, images, scripts, videos, PDFs, anything
 with a URL—has been served to you with a specific
 MIME type in the Content-Type header.
Tuck that under your hat. We’ll come back to it.

A Long Digression into How Standards Are Made

Why do we have an element? I don’t suppose that’s a
 question you ask yourself very often. Obviously
 someone must have created it. These things don’t just
 appear out of nowhere. Every element, every attribute, every feature of
 HTML that you’ve ever used—someone created them, decided
 how they should work, and wrote it all down. These people are not gods,
 nor are they flawless. They’re just people. Smart people, to be sure. But
 just people.
One of the great things about standards that are developed “out in
 the open” is that you can go back in time and answer these kinds of
 questions. Discussions occur on mailing lists, which are usually archived
 and publicly searchable. So, I decided to do a bit of “email archaeology”
 to try to answer the
 element question. I had to go back to before there was an
 organization called the World Wide Web Consortium (W3C).
 I went back to the earliest days of the Web, when you could count the
 number of web servers on the fingers of both hands, and maybe a couple of
 toes.
On February 25, 1993, Marc Andreessen wrote:[1]
I’d like to propose a new, optional HTML tag:
IMG
Required argument is SRC="url".
This names a bitmap or pixmap file for the browser to attempt to
 pull over the network and interpret as an image, to be embedded in the
 text at the point of the tag’s occurrence.
An example is:

(There is no closing tag; this is just a standalone tag.)
This tag can be embedded in an anchor like anything else; when
 that happens, it becomes an icon that’s sensitive to activation just
 like a regular text anchor.
Browsers should be afforded flexibility as to which image formats
 they support. Xbm and Xpm are good ones to support, for example. If a
 browser cannot interpret a given format, it can do whatever it wants
 instead (X Mosaic will pop up a default bitmap as a placeholder).
This is required functionality for X Mosaic; we have this working,
 and we’ll at least be using it internally. I’m certainly open to
 suggestions as to how this should be handled within HTML; if you have a
 better idea than what I’m presenting now, please let me know. I know
 this is hazy with regard to image format, but I don’t see an alternative
 than to just say “let the browser do what it can” and wait for the
 perfect solution to come along (MIME, someday, maybe).

This quote requires some explanation. Xbm and Xpm
 were popular graphics formats on Unix systems.
“Mosaic” was one of the earliest web browsers. (“X Mosaic” was the
 version that ran on Unix systems.) When he wrote this message in early
 1993, Marc had not
 yet founded the company that made him famous, Mosaic
 Communications Corporation, nor had he started work on that
 company’s flagship product, “Mosaic Netscape.” (You may know them better
 by their later names, “Netscape Corporation” and “Netscape Navigator.”)
“MIME, someday, maybe” is a reference to content
 negotiation, a feature of HTTP where a client (like a web browser)
 tells the server (like a web server) what types of resources it supports
 (like image/jpeg) so the server can
 return something in the client’s preferred format. “The Original
 HTTP as defined in 1991” (the only version that was implemented in
 February 1993) did not have a way for clients to tell servers what kinds
 of images they supported, thus the design dilemma that Marc faced.
A few hours later, Tony
 Johnson replied:
I have something very similar in Midas 2.0 (in use here at SLAC,
 and due for public release any week now), except that all the names are
 different, and it has an extra argument NAME="name". It has almost exactly the same
 functionality as your proposed IMG
 tag. e.g.,
<ICON name="NoEntry"
 href="http://note/foo/bar/NoEntry.xbm">
The idea of the name parameter was to allow the browser to have a
 set of “built in” images. If the name matches a “built in” image it
 would use that instead of having to go out and fetch the image. The name
 could also act as a hint for “line mode” browsers as to what kind of a
 symbol to put in place of the image.
I don’t much care about the parameter or tag names, but it would
 be sensible if we used the same things. I don’t much care for
 abbreviations, i.e., why not IMAGE=
 and SOURCE=. I somewhat prefer
 ICON since it implies that the
 IMAGE should be smallish, but maybe
 ICON is an overloaded word?

Midas was another early web browser, a contemporary of X Mosaic.
 It was cross-platform; it ran on
 both Unix and VMS. “SLAC” refers to the Stanford
 Linear Accelerator Center,
 now the SLAC National Accelerator Laboratory, which hosted the first web
 server in the United States (in fact, the
 first web server outside Europe). When Tony
 wrote this message, SLAC was an old-timer on the WWW, having hosted five
 pages on its web server for a whopping 441 days.
Tony continued:
While we are on the subject of new tags, I have another, somewhat
 similar tag, which I would like to support in Midas 2.0. In principle it
 is:
<INCLUDE
 HREF="...">
The intention here would be that the second document is to be
 included into the first document at the place where the tag occurred. In
 principle the referenced document could be anything, but the main
 purpose was to allow images (in this case arbitrary sized) to be
 embedded into documents. Again the intention would be that when HTTP2
 comes along the format of the included document would be up for separate
 negotiation.

“HTTP2” is a reference to Basic HTTP as defined in
 1992. At this point, in early 1993, it was still largely
 unimplemented. The draft known as “HTTP2” evolved and was eventually
 standardized as “HTTP 1.0”.
 HTTP 1.0 did include request
 headers for content negotiation, a.k.a. “MIME, someday,
 maybe.”
Tony went on:
An alternative I was considering was:
See
 photo
I don’t much like adding more functionality to the <A> tag, but the idea here is to
 maintain compatibility with browsers that can not honour the INCLUDE parameter. The intention is that
 browsers which do understand INCLUDE,
 replace the anchor text (in this case “See photo”) with the included
 document (picture), while older or dumber browsers ignore the INCLUDE tag completely.

This proposal was never implemented, although the idea of providing
 text if an image is missing is an
 important accessibility technique that was missing from Marc’s
 initial proposal. Many
 years later, this feature was bolted on as the attribute, which Netscape promptly
 broke by erroneously
 treating it as a tooltip.
A few hours after Tony posted his message, Tim
 Berners-Lee responded:
I had imagined that figures would be represented as
<a name=fig1 href="fghjkdfghj"
 REL="EMBED, PRESENT">Figure
where the relationship values mean
EMBED Embed this here when presenting it
PRESENT Present this whenever the source document is presented
Note that you can have various combinations of these, and if the
 browser doesn’t support either one, it doesn’t break.
[I] see that using this as a method for selectable icons means
 nesting anchors. Hmmm. But I hadn’t wanted a special tag.

This proposal was never implemented, but the rel attribute is still around (see Friends and (Link) Relations).
Jim
 Davis added:
It would be nice if there was a way to specify the content type,
 e.g.
<IMG
 HREF="http://nsa.gov/pub/sounds/gorby.au"
 CONTENT-TYPE=audio/basic>
But I am completely willing to live with the requirement that I
 specify the content type by file extension.

This proposal was never implemented, but Netscape did later add
 support for arbitrary embedding of media objects with the <embed> element.
Jay
 C. Weber asked:
While images are at the top of my list of desired medium types in
 a WWW browser, I don’t think we should add idiosyncratic hooks for media
 one at a time. Whatever happened to the enthusiasm for using the MIME
 typing mechanism?

Marc
 Andreessen replied:
This isn’t a substitute for the upcoming use of MIME as a standard
 document mechanism; this provides a necessary and simple implementation
 of functionality that’s needed independently from MIME.

Jay
 C. Weber responded:
Let’s temporarily forget about MIME, if it clouds the issue. My
 objection was to the discussion of “how are we going to support embedded
 images” rather than “how are we going to support embedded objections in
 various media.”
Otherwise, next week someone is going to suggest “let’s put in a
 new tag <AUD
 SRC="file://foobar.com/foo/bar/blargh.snd">” for
 audio.
There shouldn’t be much cost in going with something that
 generalizes.

With the benefit of hindsight, it appears that Jay’s concerns were
 well founded. It took a little more than a week, but HTML5 did finally add
 new <video> and <audio> elements.
Responding to Jay’s original message, Dave
 Raggett said:
True indeed! I want to consider a whole range of possible
 image/line art types, along with the possibility of format negotiation.
 Tim’s note on supporting clickable areas within images is also
 important.

Later in 1993, Dave proposed HTML+ as
 an evolution of the HTML standard. The proposal was never implemented, and
 it was superseded by HTML
 2.0. HTML 2.0 was a “retro-spec,” which means it formalized
 features already in common use: “This
 specification brings together,
 clarifies, and formalizes a set of features that roughly
 corresponds to the capabilities of HTML in common use prior to June
 1994.”
Dave later wrote HTML 3.0,
 based on his earlier HTML+ draft. Outside of the W3C’s own reference
 implementation, Arena, HTML 3.0 was never
 implemented. It was superseded by HTML 3.2, which was also a
 “retro-spec”: “HTML 3.2 adds widely
 deployed features such as
 tables, applets and text flow around images, while providing full backward
 compatibility with the existing standard HTML 2.0.”
Dave later coauthored HTML 4.0, developed HTML Tidy,
 and went on to help with XHTML, XForms, MathML, and other modern W3C
 specifications.
Getting back to 1993, Marc
 replied to Dave:
Actually, maybe we should think about a general-purpose procedural
 graphics language within which we can embed arbitrary hyperlinks
 attached to icons, images, or text, or anything. Has anyone else seen
 Intermedia’s capabilities with regard to this?

Intermedia
 was a hypertext project from Brown University. It was developed from 1985
 to 1991 and ran on A/UX, a Unix-like
 operating system for early Macintosh computers.
The idea of a “general-purpose procedural graphics language” did
 eventually catch on. Modern browsers support both SVG
 (declarative markup with embedded scripting) and <canvas> (a procedural direct-mode
 graphics API), although the latter started as a
 proprietary extension before being “retro-specced” by the WHAT Working
 Group.
Bill
 Janssen replied:
Other systems to look at which have this (fairly valuable) notion
 are Andrew and Slate. Andrew is built with _insets_, each of which has
 some interesting type, such as text, bitmap, drawing, animation,
 message, spreadsheet, etc. The notion of arbitrary recursive embedding
 is present, so that an inset of any kind can be embedded in any other
 kind which supports embedding. For example, an inset can be embedded at
 any point in the text of the text widget, or in any rectangular area in
 the drawing widget, or in any cell of the spreadsheet.

“Andrew” is a reference to the Andrew User Interface System,
 although at that time it was simply known as the Andrew
 Project.
Meanwhile, Thomas
 Fine had a different idea:
Here’s my opinion. The best way to do images in WWW is by using
 MIME. I’m sure postscript is already a supported subtype in MIME, and it
 deals very nicely with mixing text and graphics.
But it isn’t clickable, you say? Yes, you’re right. I suspect
 there is already an answer to this in display postscript. Even if there
 isn’t the addition to standard postscript is trivial. Define an anchor
 command which specifies the URL and uses the current path as a closed
 region for the button. Since postscript deals so well with paths, this
 makes arbitrary button shapes trivial.

Display
 PostScript was an onscreen rendering technology codeveloped by
 Adobe and NeXT.
This proposal was never implemented, but the idea that the best way
 to fix HTML is to replace it with something else altogether still pops
 up from time to time.
On
 March 2, 1993, Tim Berners-Lee commented:
HTTP2 allows a document to contain any type which the user has
 said he can handle, not just registered MIME types. So one can
 experiment. Yes I think there is a case for postscript with hypertext. I
 don’t know whether display postscript has enough. I know Adobe are
 trying to establish their own postscript-based “PDF” which will have
 links, and be readable by their proprietary brand of viewers.
I thought that a generic overlaying language for anchors (HyTime
 based?) would allow the hypertext and the graphics/video standards to
 evolve separately, which would help both.
Let the IMG tag be INCLUDE and let it refer to an arbitrary
 document type. Or EMBED if INCLUDE sounds like a cpp include which people
 will expect to provide SGML source code to be parsed inline—not what was
 intended.

HyTime
 was an early, SGML-based hypertext document system. It loomed large in
 many early discussions of HTML, and later XML.
Tim’s proposal for an <INCLUDE> tag was never implemented,
 although you can see echoes of it in <object>, <embed>, and the <iframe> element.
Finally, on March 12, 1993, Marc
 Andreessen revisited the thread:
Back to the inlined image thread again—I’m getting close to
 releasing Mosaic v0.10, which will support inlined GIF and XBM
 images/bitmaps, as mentioned previously. [...]
We’re not prepared to support INCLUDE/EMBED at this point. [...] So we’re probably
 going to go with (not ICON,
 since not all inlined images can be meaningfully called icons). For the
 time being, inlined images won’t be explicitly content-type’d; down the
 road, we plan to support that (along with the general adaptation of
 MIME). Actually, the image reading routines we’re currently using figure
 out the image format on the fly, so the filename extension won’t even be
 significant.

[1] http://1997.webhistory.org/www.lists/www-talk.1993q1/0182.html.
 The thread described over the next several pages can be followed by
 clicking the “Next message” and “Previous message” links.

An Unbroken Line

I am extraordinarily fascinated with all aspects of this
 almost 17-year-old conversation that led to the creation of an
 HTML element that has been used on virtually every web
 page ever published. Consider this:
	HTTP still exists. It successfully evolved from 0.9 into 1.0 and
 later 1.1, and
 still it evolves.

	HTML still exists. That rudimentary data format (it didn’t even
 support inline images!) successfully evolved into 2.0, 3.2, and 4.0.
 HTML is an unbroken line. A twisted, knotted, snarled line, to be
 sure—there were plenty of “dead branches” in the evolutionary tree,
 places where standards-minded people got ahead of themselves (and
 ahead of authors and implementors)—but still, here we are in 2010, and
 web pages
 from 1990 still render in modern browsers. I just loaded one
 up in the browser of my state-of-the-art Android mobile phone, and I
 didn’t even get prompted to “please wait while importing legacy
 format...”

	HTML has always been a conversation between browser makers,
 authors, standards wonks, and other people who just showed up and
 liked to talk about angle brackets. Most of the successful versions of
 HTML have been “retro-specs,” catching up to the world while
 simultaneously trying to nudge it in the right direction. Anyone who
 tells you that HTML should be kept “pure” (presumably by ignoring
 browser makers, or ignoring authors, or both) is simply misinformed.
 HTML has never been pure, and all attempts to purify it have been
 spectacular failures, matched only by the attempts to replace
 it.

	None of the browsers in use in 1993 still exist in any
 recognizable form. Netscape Navigator was abandoned
 in 1998 and rewritten
 from scratch to create the Mozilla Suite, which was then
 forked
 to create Firefox. Internet Explorer had its humble
 “beginnings” in “Microsoft Plus! for Windows 95,” where it was bundled
 with some desktop themes and a pinball game; but of course, that
 browser can be traced back
 further too.

	Some of the operating systems from 1993 still exist, but none of
 them are relevant to the modern Web. Most people today who
 “experience” the Web do so on a PC running Windows 2000 or later, a
 Mac running Mac OS X, a PC running some flavor of Linux, or a handheld
 device like an iPhone. In 1993, Windows was at Version 3.1 (and
 competing with OS/2), Macs were running System 7, and Linux was
 distributed via Usenet. (Want to have some fun? Find a graybeard and
 whisper “Trumpet Winsock” or “MacPPP.”)

	Some of the same people are still around
 and still involved in what we now simply call “web standards.” That’s
 after almost 20 years. And some were involved in predecessors of HTML,
 going back into the 1980s and before.

	Speaking of predecessors.... With the eventual popularity of
 HTML and the Web, it is easy to forget the contemporary formats and
 systems that informed their design. Before you read this chapter, had
 you ever heard of Andrew? Intermedia? HyTime? And HyTime was not some
 rinky-dink academic research project; it was an ISO
 standard approved for military use. It was Big Business. And
 you can read about it yourself at http://www.sgmlsource.com/history/hthist.htm.

But none of this answers the original question: why do we have an
 element? Why not an <icon>
 element? Or an <include> element?
 Why not a hyperlink with an include
 attribute, or some combination of rel
 values? Why an element?
 Quite simply, because Marc Andreessen shipped one, and shipping code
 wins.
That’s not to say that all shipping code wins;
 after all, Andrew and Intermedia and HyTime shipped code too. Code is
 necessary but not sufficient for success. And I
 certainly don’t mean to say that shipping code before a
 standard will produce the best solution. Marc’s element didn’t mandate a common
 graphics format; it didn’t define how text flowed around it; it didn’t
 support text alternatives or fallback content for older browsers. And 17
 years later, we’re still
 struggling with content sniffing, and it’s still a
 source of crazy security vulnerabilities. You can trace that
 through the Great Browser
 Wars, all the way back to February 25, 1993, when Marc Andreessen
 offhandedly remarked, “MIME, someday, maybe,” and then shipped his code
 anyway.

A Timeline of HTML Development from 1997 to 2004

In December 1997, the World Wide Web Consortium (W3C) published HTML
 4.0 and promptly shut down the HTML Working
 Group. Less than two months later, a separate W3C Working
 Group published XML
 1.0. A mere three months after that, the W3C held a workshop
 called “Shaping the Future of
 HTML” to answer the question, “Has W3C given up
 on HTML?” This was the answer:
In discussions, it was agreed that further extending
 HTML 4.0 would be difficult, as would converting 4.0 to
 be an XML application. The proposed way to break free
 of these restrictions is to make a fresh start with the next generation
 of HTML based upon a suite of XML tag-sets.

The W3C rechartered the HTML
 Working Group to create this “suite of XML tag-sets.” The members’ first step, in December 1998, was
 to draft an interim specification that simply reformulated
 HTML in XML without adding any
 new elements or attributes. This specification later became known as
 “XHTML
 1.0”. It defined a new MIME type for XHTML documents, application/xhtml+xml. However, to ease the
 migration of existing HTML 4 pages, it also included
 Appendix C, which
 “summarizes design guidelines for authors who wish their XHTML documents
 to render on existing HTML user agents.” Appendix C said you were allowed
 to author so-called “XHTML” pages but still serve them
 with the text/html
 MIME type.
The next target was web forms. In August 1999, the same HTML Working
 Group published a first draft of XHTML
 Extended Forms. Its members set the expectations in the
 very first sentences of this draft
 document:
After careful consideration, the HTML Working
 Group has decided that the goals for the next generation of forms are
 incompatible with preserving backward compatibility with browsers
 designed for earlier versions of HTML. It is our
 objective to provide a clean new forms model (“XHTML
 Extended Forms”) based on a set of well-defined requirements. The
 requirements described in this document are based on experience with a
 very broad spectrum of form applications.

A few months later, “XHTML Extended Forms” was
 renamed “XForms” and moved to its own
 Working Group. That group worked in parallel with the
 HTML Working Group and finally published the first edition of
 XForms 1.0 in October 2003.
Meanwhile, with the transition to XML complete, the
 members of the HTML Working Group set their sights on
 creating “the next generation of HTML.” In May 2001, they
 published the first edition of
 XHTML 1.1, which added only
 a few minor features on top of XHTML 1.0 but
 eliminated the “Appendix C” loophole. Starting with Version 1.1, all XHTML
 documents were to be served with a MIME type of application/xhtml+xml.

Everything You Know About XHTML Is Wrong

Why are MIME types important? Why do I keep coming back to them? Three words: draconian error
 handling. Browsers have always been “forgiving” with
 HTML. If you create an HTML page but
 forget to give it a <title>,
 browsers will display the page anyway, even though the <title> element has always been required
 in every version of HTML. Certain tags are not allowed
 within other tags, but if you create a page that puts them inside anyway,
 browsers will just deal with it (somehow) and move on without displaying
 an error message.
As you might expect, the fact that “broken” HTML
 markup still worked in web browsers led authors to create broken
 HTML pages. A lot of broken pages. By some estimates,
 over 99 percent of HTML pages on the Web today have at
 least one error in them. But because these errors don’t cause browsers to
 display visible error messages, nobody ever fixes them.
The W3C saw this as a fundamental problem with the Web, and set out
 to correct it. XML, published in 1997, broke from the tradition of forgiving
 clients and mandated that all programs that consumed XML
 must treat so-called “well-formedness” errors as fatal. This concept of
 failing on the first error became known as “draconian error handling,”
 after the Greek leader Draco, who
 instituted the death penalty for relatively minor infractions of his laws.
 When the W3C reformulated HTML as an XML
 vocabulary, the people in charge mandated that all documents served with
 the new application/xhtml+xml MIME
 type would be subject to draconian error handling. If there was
 even a single error in your XHTML page, web browsers
 would have no choice but to stop processing and display an error message
 to the end user.
This idea was not universally popular. With an estimated error rate
 of 99 percent on existing pages, the ever-present possibility of
 displaying errors to the end user, and the dearth of new features in
 XHTML 1.0 and 1.1 to justify the cost, web authors
 basically ignored application/xhtml+xml. But that doesn’t mean
 they ignored XHTML altogether. Oh, most definitely not.
 Appendix C of the XHTML 1.0 specification gave the web
 authors of the world a loophole: “Use something that looks kind of like
 XHTML syntax, but keep serving it with the text/html MIME type.” And
 that’s exactly what thousands of web developers did: they “upgraded” to
 XHTML syntax but kept serving it with a text/html
 MIME type.
Even today, while many web pages claim to be
 XHTML—they start with the XHTML doctype
 on the first line, use lowercase tag names, use quotes around attribute
 values, and add a trailing slash after empty elements like
 and <hr
 />—only a tiny fraction of these pages are served with the
 application/xhtml+xml
 MIME type that would trigger XML’s
 draconian error handling. Any page served with a MIME
 type of text/html, regardless of its
 doctype, syntax, or coding style, will be parsed using a “forgiving”
 HTML parser, silently ignoring any markup errors and
 never alerting end users (or anyone else), even if the page is technically
 broken.
XHTML 1.0 included this loophole, but
 XHTML 1.1 closed it, and the never-finalized
 XHTML 2.0 continued the tradition of requiring draconian
 error handling. And that’s why there are billions of pages that claim to
 be XHTML 1.0, and only a handful that claim to be
 XHTML 1.1 (or XHTML 2.0). So, are you
 really using XHTML? Check your MIME
 type. (Actually, if you don’t know what MIME type you’re
 using, I can pretty much guarantee that you’re still using text/html.) Unless you’re serving your pages
 with a MIME type of application/xhtml+xml, your so-called
 “XHTML” is XML in name only.

A Competing Vision

In June 2004, the W3C held the Workshop on Web
 Applications and Compound Documents. Present at this workshop were
 representatives of several browser vendors, web development companies, and
 other W3C members. A group of interested parties, including the Mozilla
 Foundation and Opera Software, gave a presentation on their competing
 visions of the future of the Web: an
 evolution of the existing HTML 4 standard to include new
 features for modern web application developers:
The following seven principles represent what we believe to be the
 most critical requirements for this work:
	Backward compatibility, clear migration path
	Web application technologies should be based on
 technologies authors are familiar with, including HTML, CSS, DOM,
 and JavaScript.
Basic Web application features should be implementable using
 behaviors, scripting, and style sheets in IE6 today so that
 authors have a clear migration path. Any solution that cannot be
 used with the current high-market-share user agent without the
 need for binary plug-ins is highly unlikely to be
 successful.

	Well-defined error handling
	Error handling in Web applications must be defined
 to a level of detail where User Agents (UAs) do not have to invent
 their own error handling mechanisms or reverse engineer other User
 Agents’.

	Users should not be exposed to authoring errors
	Specifications must specify exact error recovery behaviour
 for each possible error scenario. Error handling should for the
 most part be defined in terms of graceful error recovery (as in
 CSS), rather than obvious and catastrophic failure (as in
 XML).

	Practical use
	Every feature that goes into the Web Applications
 specifications must be justified by a practical use case. The
 reverse is not necessarily true: every use case does not
 necessarily warrant a new feature.
Use cases should preferably be based on real sites where the
 authors previously used a poor solution to work around the
 limitation.

	Scripting is here to stay
	But should be avoided where more convenient
 declarative markup can be used. Scripting should be device and
 presentation neutral unless scoped in a device-specific way (e.g., unless included
 in XBL).

	Device-specific profiling should be avoided
	Authors should be able to depend on the same features being
 implemented in desktop and mobile versions of the same UA.

	Open process
	The Web has benefited from being developed in an open
 environment. Web Applications will be core to the
 Web, and its development should also take place in the open.
 Mailing lists, archives and draft specifications should
 continuously be visible to the public.

In a straw poll, the workshop participants were asked, “Should the
 W3C develop declarative extensions to HTML and CSS and imperative
 extensions to DOM, to address medium level Web Application requirements,
 as opposed to sophisticated, fully-fledged OS-level APIs?” The vote was 11
 to 8 against. In their summary of the
 workshop, the W3C’s members wrote, “At present, W3C does not
 intend to put any resources into the third straw-poll topic: extensions to
 HTML and CSS for Web Applications, other than technologies being developed
 under the charter of current W3C Working Groups.”
Faced with this decision, the people who had proposed evolving
 HTML and HTML forms had only two
 choices: give up, or continue their work outside of the W3C. They chose
 the latter, registered the whatwg.org domain, and in June 2004,
 the
 WHAT Working Group was born.

What Working Group?

What the heck is the WHAT Working Group?
 I’ll let it explain for
 itself:
The Web Hypertext Applications Technology Working Group is a
 loose, unofficial, and open collaboration of Web browser manufacturers
 and interested parties. The group aims to develop specifications based
 on HTML and related technologies to ease the deployment of interoperable
 Web Applications, with the intention of submitting the results to a
 standards organisation. This submission would then form the basis of
 work on formally extending HTML in the standards track.
The creation of this forum follows from several months of work by
 private e-mail on specifications for such technologies. The main focus
 up to this point has been extending HTML4 Forms to support features
 requested by authors, without breaking backward compatibility with
 existing content. This group was created to ensure that future
 development of these specifications will be completely open, through a
 publicly-archived, open mailing list.

The key phrase here is “without breaking backward compatibility.”
 XHTML (minus the Appendix C loophole) is not backward compatible
 with HTML. It requires an entirely new
 MIME type, and it mandates draconian error handling for
 all content served with that MIME type. XForms is not backward compatible with HTML forms,
 because it can only be used in documents that are served with the new
 XHTML MIME type, which means that XForms
 also mandates draconian error handling. All roads lead to
 MIME.
Instead of scrapping over a decade’s worth of investment in
 HTML and making 99 percent of existing web pages
 unusable, the WHAT Working Group decided to take a
 different approach: documenting the “forgiving” error handling algorithms
 that browsers actually used. Web browsers have always been forgiving of
 HTML errors, but nobody had ever bothered to write down
 exactly how they did it. NCSA Mosaic had its own algorithms for dealing
 with broken pages, and Netscape tried to match them. Then Internet
 Explorer tried to match Netscape. Then Opera and Firefox tried to match
 Internet Explorer. Then Safari tried to match Firefox. And so on, right up
 to the present day. Along the way, developers burned thousands and
 thousands of hours trying to make their products compatible with those of
 their competitors.
If that sounds like an insane amount of work, that’s because it is.
 Or rather, it was. It took several years, but (modulo a few obscure edge
 cases) the WHAT Working Group successfully documented how to parse
 HTML in a way that is compatible with existing
 web content. Nowhere in the final algorithm is there a step that mandates
 that the HTML consumer should stop processing and display
 an error message to the end user.
While all that reverse-engineering was going on, the
 WHAT Working Group was quietly working on a few other
 things, too. One of them was a specification, initially dubbed Web Forms 2.0, that
 added new types of controls to HTML forms. (You’ll learn
 more about web forms in Chapter 9.) Another was a
 draft specification called “Web Applications 1.0” that included major new
 features, like a direct-mode drawing canvas (see Chapter 4) and native support
 for audio and video without plug-ins (see Chapter 5).

Back to the W3C

For several years, the W3C and the WHAT Working Group
 largely ignored each other. While the WHAT Working Group focused on web
 forms and new HTML features, the W3C HTML Working Group was busy with
 Version 2.0 of XHTML. But by October 2006, it was clear that the WHAT
 Working Group had picked up serious momentum, while XHTML 2 was still
 languishing in draft form, unimplemented by any major browser. In October
 2006, Tim Berners-Lee, the founder of the W3C itself, announced that the W3C
 would work together with the WHAT Working Group to evolve
 HTML:
Some things are clearer with hindsight of several years. It is
 necessary to evolve HTML incrementally. The attempt to get the world to
 switch to XML, including quotes around attribute values and slashes in
 empty tags and namespaces all at once didn’t work. The large
 HTML-generating public did not move, largely because the browsers didn’t
 complain. Some large communities did shift and are enjoying the fruits
 of well-formed systems, but not all. It is important to maintain HTML
 incrementally, as well as continuing a transition to a well-formed
 world, and developing more power in that world.
The plan is to charter a completely new HTML group. Unlike the
 previous one, this one will be chartered to do incremental improvements
 to HTML, and also in parallel XHTML. It will have a different chair and
 staff contact. It will work on HTML and XHTML together. We have strong
 support for this group, from many people we have talked to, including
 browser makers.
There will also be work on forms. This is a complex area, as
 existing HTML forms and XForms are both form languages. HTML forms are
 ubiquitously deployed, and there are many implementations and users of
 XForms. Meanwhile, the Webforms submission has suggested sensible
 extensions to HTML forms. The plan is, informed by Webforms, to extend
 HTML forms.

One of the first things the newly rechartered W3C HTML Working Group
 decided was to rename “Web Applications 1.0” to “HTML5.” And here we are,
 diving into HTML5.

Postscript

In October 2009, the W3C shut down the XHTML 2 Working
 Group and issued this statement to
 explain the decision:
When W3C announced the HTML and XHTML 2 Working Groups in March
 2007, we indicated that we would continue to monitor the market for
 XHTML 2. W3C recognizes the importance of a clear signal to the
 community about the future of HTML.
While we recognize the value of the XHTML 2 Working Group’s
 contributions over the years, after discussion with the participants,
 W3C management has decided to allow the Working Group’s charter to
 expire at the end of 2009 and not to renew it.

The ones that win are the ones that ship.

Further Reading

	“The History
 of the Web”, an old draft by Ian Hickson

	“HTML/History”, by
 Michael Smith, Henri Sivonen, and others

	“A
 Brief History of HTML”, by Scott Reynen

Chapter 2. Detecting HTML5 Features

Diving In

You may well ask, “How can I start using
 HTML5 if older browsers don’t support it?” But the
 question itself is misleading. HTML5 is not one big
 thing; it is a collection of individual features. So, you can’t detect
 “HTML5 support,” because that doesn’t make any sense. But
 you can detect support for individual features, like
 canvas, video, or geolocation.

Detection Techniques

When your browser renders a web page, it constructs a
 Document Object Model (DOM), a collection of objects that represent the
 HTML elements on the page. Every element—every <p>, every <div>, every —is represented in the
 DOM by a different object. (There are also global
 objects, like window and document, that aren’t tied to specific
 elements.)
All DOM objects share a set of common properties,
 but some objects have more than others. In browsers that support
 HTML5 features, certain objects will have unique
 properties. A quick peek at the DOM will tell you which
 features are supported.
There are four basic techniques for detecting whether a browser
 supports a particular feature. From simplest to most complex:
	Check if a certain property exists on a global object (such as
 window or navigator).
For an example of testing for geolocation support, see Geolocation.

	Create an element, then check if a certain property exists on
 that element.
For an example of testing for canvas support, see Canvas.

	Create an element, check if a certain method exists on that
 element, then call the method and check the value it returns.
For an example of testing which video formats are supported, see
 Video Formats.

	Create an element, set a property to a certain value, then check
 if the property has retained its value.
For an example of testing which <input> types are supported, see Input Types.

Modernizr: An HTML5 Detection Library

Modernizr is an open source, MIT-licensed JavaScript
 library that detects support for many HTML5 and
 CSS3 features. At the time of writing, the latest version
 is 1.1. You should always use the latest version. To do so, include the
 following <script> element at the
 top of your page:
<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8">
 <title>Dive into HTML5</title>
 <script src="modernizr.min.js"></script>
</head>
<body>
 ...
</body>
</html>
Modernizr runs automatically. There is no modernizr_init() function to call. When it runs,
 it creates a global object called Modernizr that contains a set of Boolean
 properties for each feature it can detect. For example, if your browser
 supports the canvas API (see Chapter 4), the Modernizr.canvas property will be true. If your browser does not support the
 canvas API, the Modernizr.canvas property will be false:
if (Modernizr.canvas) {
 // let's draw some shapes!
} else {
 // no native canvas support available :(
}

End of sample

 To search for additional titles please go to

 http://search.overdrive.com.

OEBPS/httpatomoreillycomsourceoreillyimages660642.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages660650.png
Source image

Destination canvas

dy

dx

dh

OEBPS/httpatomoreillycomsourceoreillyimages661017.png

OEBPS/httpatomoreillycomsourceoreillyimages661023.png
Mark Pilgrim’s event calendar

Excerpt from the page will show up here.

Excerpt from the page will show up here.

Google Developer Day 2009 Fri, Nov 6 Congress Center, Praha 4, Czech Republic

ConFoo.ca 2010 Wed, Mar 10 Hilton Montreal Bonaventure, Montréal, Québec, Canada
diveintohtml5.org/examples/event-plus-microdata.html - Cached - Similar pages

OEBPS/httpatomoreillycomsourceoreillyimages661013.png
<form>
<input type="search">
<input type="submit" \

</ form>

OEBPS/httpatomoreillycomsourceoreillyimages660999.png
200912 ~ || Go |

|
g

b

Vo Tie Wet T
12 3 4
7 slys 1 om
1 15V o1
22 omou o

ERE-RE i
Today

st sm
5 e
L)
B
=z
None.

OEBPS/httpatomoreillycomsourceoreillyimages660895.png
[T Y O Y [re—

Neworleans2006 P

Source:

Tee: [1000222)] chapters: [1 trough (1 Ouston: 00:02:22 q
Destination:
File: C:isersipilgrimiDocumentsiDowrloadsienOrleansz006 m#v | Browse
Output Settings (Preset: Custom)
Contaer; [opAFIs <) [Largefiesoo (7] waboptinized [o 5 support |
Ficure | Video Fiters | Vil | Ao |subifes | Chepters | Advanced |
Audio Tracks E
seectad Track: Now Track b
source Audo Codec Mxdoun Smplerate Biuate DRC
(Butomatc <) [aac o)] [Automatic <o s <] 0 o
Track Source Audio Codec Mixdown Samplerate (kHz) Bitrate (Kbps) DRC
[R MC(ax) DobyPrologll 4 1z 00
<[m » —

Scan Completed
<[i »

OEBPS/httpatomoreillycomsourceoreillyimages660676.png
@ Fircfoga - Make Ogg Video in your Browser - Mozilla Firefox
Eile Edit View History Bookmarks Tools Help

oe 4 (L nitpifiefogg org/makefindexhimi

[E=]

[Frefoga - Make Ogo Video i your B

= Selectnewfile | & Save Ogg
NewOrleans2006.cv

» Preset: Custom settings

» Encoding range

» Basic quality and resolution control

» Metadata for the clip
» Advanced video encoding controls

» Advanced audio encoding controls

hitp://firefogg.org/make/indexhtrmit

B vsiow

w0 @

OEBPS/httpatomoreillycomsourceoreillyimages660660.png
Software Installation =)

' Install add-ons only from authors whom you trust.

Mialicious software can damage your computer or violate your privacy.

You have asked to instal the following itemn:

't Firefogg-1.0.0xpi (Author not verific)
http:/ffirefogg.org/win32/Firefogg-L0.0.xpi

[cneel |

OEBPS/httpatomoreillycomsourceoreillyimages660672.png
Eile

Edit View Hitory Bookmarks Tools Help

< C 0 4y (L ntpsetoggorg/make/indeshimitt

) Firefogg - Make Ogg Video in your B

@ Selectnewfile | & Save Ogy
NewOrleans2006.dv
» Preset: Web Video Theora, Vorbis 400kbs & 400px max width

» Encoding range

~_ Basic quality and resolution control

OVideo Qualty 5

L Eaa——
©Two Pass Encoding
© Audio Qualty 1

-
©Video Codec Ttheora
© Audio Codec “vorbis +
©Video Width 720

Dane

7R vow

w0 @

OEBPS/httpatomoreillycomsourceoreillyimages660634.png
(0,0)

(500,375)

OEBPS/httpatomoreillycomsourceoreillyimages661025.png
Anna’s Pizzeria: review

¥k Review by Mark Pilgrim - Mar 31, 2010
Excerpt from the page will show up here.
Excerpt from the page will show up here.

diveintohtml5.org/examples/review-plus-microdata.html - Cached - Similar pages

OEBPS/httpatomoreillycomsourceoreillyimages660962.png
ATET 11:31 PM o=

<input type=url> - Dive Into HTML5

diveintohtmis.orglexa... C -

<form>

<input typ

afwle|r|T]v]u|i]o]P]

¥ E0CDO00 &
o D -

OEBPS/httpatomoreillycomsourceoreillyimages660993.png
L
g
L
g

OEBPS/httpatomoreillycomsourceoreillyimages660628.png

OEBPS/httpatomoreillycomsourceoreillyimages661019.png
s (Go

11is too high. The
highest value you
can use is 10.

OEBPS/httpatomoreillycomsourceoreillyimages660636.png
.(ﬂ.ﬂ)

(500,375)

OEBPS/httpatomoreillycomsourceoreillyimages660640.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages660967.png
AT&T 11:40 PM o=

<form>

<input typ

OEBPS/httpatomoreillycomsourceoreillyimages660666.png
@ Firefogg - video encoding and uplosding forFirefox - Mozil Firefox =

Fie Edt View History Bookmarks Tools Help
= C X Ay (L hpysirfogg.org/ .

Loading... B -

Firefogg

video encoding and uploading for Firefox

Sites using Firefogg - Use Firefong on vour Site - akeoggﬁmen

g/ firefogg.org/make/indexhml PR ®

OEBPS/httpatomoreillycomsourceoreillyimages660670.png
@ Fircfoga - Make Ogg Video in your Browser - Mozilla Firefox
Eile Edit View History Bookmarks Tools Help

oe 4 (L nitpifiefogg org/makefindexhimi

[E=]

[Frefoga - Make Ogo Video i your B

@ Selectnewfile | & Save Ogy

NewOrleans2006.dv

» Preset: Web Video Theora, Vorbis 400kbs & 400px max width

» Encoding range

|+ Basic quality and resolution control

> Metadata for the clip
» Advanced video encoding controls

» Advanced audio encoding controls

hitp://firefogg.org/make/indexhtrmit

7R vow

156 ©®

OEBPS/httpatomoreillycomsourceoreillyimages660956.png
AT&T 11:40 PM o=

<input type=email> - Dive Into HTMLS

diveintohtmis.orglexa... C -

<form>

<input typ

afwle|r|T]v]u|i]o]P]

® E00DO00
o] . IR

OEBPS/httpatomoreillycomsourceoreillyimages660656.png
@ Firefogg - video encoding and uplosding forFirefox - Mozil Firefox =

File Edit View History Bookmarks Tools Help
BNe] & ([tpysinetongora/ -

[Firefogg - video encoding and upload... | -

Firefogg

video encoding and uploading for Firefox

Sites using Firefogq - Use Firefoaq on your Site - Make O Video

Dane PR ®

OEBPS/httpatomoreillycomsourceoreillyimages660929.png
W HandBrake

ﬁ Smmo 6 ot [atto Quene ShaWQuaua prview ([l Actvit Window

Source: NewOrleans2006

Duration: 00:02:22

oo [3

Tite: [1.(00:02:22) Chapters: [t

Destination:

Files C:AUsers|plgrimDocuments|Dovriads|NenOrleans2008 mév
Output Settings (Preset: Custom)

Container: MP4 File = | 1 Large file size

icture [Vido ks | Voo | Ao |subttes | chapters | Acvaneed]

‘eb optimized [iPod 5G support

Audio Tracks

Selected Track: New Track.

source Audo Codec Mxdoun Smplerate Biuate DRC
(Butomatc <) [aac o)] [Automatic <o s <] 0 o
Track Source Audio Codec Mixdown Samplerate (kHz) Bitrate (Kbps) DRC
[R MC(ax) DobyPrologll 4 1z 00

Scan Completed
<[i

OEBPS/httpatomoreillycomsourceoreillyimages660619.jpg
Dive into the Future of Web Development

Up and Running

O’REILLY*

Google ress Mark Pilgrim

OEBPS/httpatomoreillycomsourceoreillyimages660658.png
@ Firefogg - video encoding and uplosding forFirefox - Mozil Firefox =

File Edit View History Bookmarks Tools Help
BNe] & ([tpysinetongora/ -

Google »

[Firefogg - video encoding and upload... | -

& Firefox prevented thi site frefogg.org) from asking you to install software on your computer o]

Firefo

video encoding and uploading for Firefox

Sites using Firefogq - Use Firefoaq on your Site - Make O Video

Stopped PR ®

OEBPS/httpatomoreillycomsourceoreillyimages660816.png
ﬁ:um (@ sor [s o Qe ShaWQuaua preview ([l Actvit Window

Source:

Neworleans2006 P

s [so00228)) chsters: [1 oo [3 st 096222 o
Destination

e
Output Settings (Preset: Custom)

Conaner: (1PaFls=] Il Lorga s 3] Weboptned] P spport |
Pidurs [Video Fiters | Yeeo | Audo | Subtite | Chapters | Advanced |

vieo Qualty d

Target Size (ME):

——

2pass Encading

%Tuvha st Pass

Avg Birate (ps): 600 =

Constent Quty: 60.78% RFi20

Scan Completed
<[i »

OEBPS/httpatomoreillycomsourceoreillyimages660691.png
W HandBrake

o~ | @) 5o [BB Ao to use (g Srom Qe | [o [sty Wi

Select "Source” ta cantinue

[1 o0:02:22)

E—

o <) oustion: ovi02:22

ettings (Preset: Normal)
e [prre <] lagefsie [Weboptimaed (] oSG sppor

Video Fiters | video | Audia

You currently have "Automatically name output files” enabled for the

e 720480 Aspect Rati destination file box, but you do not have a default directory set.

¢ Height

You should set 2 "Default Path” in HandBrakes preferences. (See Tools'
7] Kesp Aspect Ratio menu -> ‘Options'-> ‘General' Tab -> ‘Default Path)

orphic: [strict
iy Sis; 6551480 &

Battom

Prosets

© Apple

Unive|
Pod
iPhon|
Applel

© Regular
Norm|
High |

 Legacy.
Class)|
Applel
Phon|
Pod I

OEBPS/httpatomoreillycomsourceoreillyimages660940.png

OEBPS/httpatomoreillycomsourceoreillyimages660674.png
Eile Edit View History Bookmarks Tools Help

< C 0 4y (L ntpsetoggorg/make/indeshimitt

) Firefogg - Make Ogg Video in your B

= Selectnewfile | & Save Ogg
NewOrleans2006.cv
» Preset: Custom settings

» Encoding range

~ Basic quality and resolution control

©Two Pass Encoding

© Audio Quality

-

©Video Codec: theora v
© Audio Codec: vorbis v
©Vvideo Width: 320
O video Height: 213
L [E—
g/ irefoga.org/make/indexhe R s @

OEBPS/httpatomoreillycomsourceoreillyimages660624.png

OEBPS/httpatomoreillycomsourceoreillyimages660632.png
s Top ofem square

Ideographi
baseline

Bollom of em squate-

Bottom of bounding box

OEBPS/httpatomoreillycomsourceoreillyimages660700.png
L queue ShaWQuaua Pvavmw [2ty Window a

Presets

through

Duration: 00:02:22 Apple

Browse iPod
Caomee)
o) AppleTy
rge file size || Web optimized [iPod 5 support

© Regular
Normal
s | Chapters | Advenced o
Cropping & Legacy
136 Automatic Classic
M ikh Custon AppleT¥ Legacy

iPhone Legacy
iPod Legacy

- e

Battom

OEBPS/httpatomoreillycomsourceoreillyimages660983.png

OEBPS/httpatomoreillycomsourceoreillyimages661015.png
<form>

<input type="search">

<input type="submit" \

</form>

OEBPS/httpatomoreillycomsourceoreillyimages660737.png
T O] — T —

Source: NewOrleans2006

T (1000220 <] chapers: 1 toush 1 Duton: 000222
Destination:
e ~—

Output Settings (Preset: Custom)

Container: (M4 File -

e [{idoo s | o[Audo | ubiies | Chaptrs | Advanced

arge file size %wa’ Grliized (7] iPod 56 support

size Cropping
Sowrce: 720x480 AspectRatio: 1.3 Automatic
widh Height Max idth Custom

Keep Aspect Ratio

"
PR—
e e

Battom

Scan Completed
<[i

OEBPS/httpatomoreillycomsourceoreillyimages660978.png

OEBPS/httpatomoreillycomsourceoreillyimages660668.png
@ Fircfoga - Make Ogg Video in your Browser - Mozilla Firefox
Eile Edit View History Bookmarks Tools Help

@ BN 4y (L] bttpsfivefoga.org/makefindechiml - »
|| Firefogg - Make Ogg Video nyour Br.| =
Firefogg - video encoding and uploading for Firefox
Sites ysing Firefouq - Use Firefoas on wour it - Make Ogg Video
= Select il
ttpi/ffrefogg.ora/make/indexhtmit FRvow 2565 @

OEBPS/httpatomoreillycomsourceoreillyimages660945.png
Search Bookmarks and History

OEBPS/httpatomoreillycomsourceoreillyimages660950.png

OEBPS/httpatomoreillycomsourceoreillyimages660988.png
i
g

18 1R I 10 1
Blalze o

RIS 7
Filalso g

18 12 13 1~
181815 0w §

L
g
L
g

F
g
8

GG §

OEBPS/httpatomoreillycomsourceoreillyimages660630.png

OEBPS/httpatomoreillycomsourceoreillyimages661021.png
About Mark Pilgrim

Anytown PA - Developer advocate - Google, Inc.
Excerpt from the page will show up here.
Excerpt from the page will show up here.

diveintohtml5.org/examples/person-plus-microdata.html - Cached - Similar pages

OEBPS/httpatomoreillycomsourceoreillyimages660664.png
@ Firefogg - video encoding and uplosding forFirefox - Mozil Firefox =

File Edit View History Bookmarks Tools Help
BNe] & ([tpysinetongora/ -

[Firefogg - video encoding and upload... | -

Firefogg

video encoding and uploading for Firefox

Sites using Firefogq - Use Firefoaq on your Site - Make O Video

Y

Dane PR ®

OEBPS/httpatomoreillycomsourceoreillyimages660777.png
T O] — T —

Source: NewOrleans2006

T (1000220 <] chapers: 1 toush 1 Duton: 000222
Destination:
e ~—

Output Settings (Preset: Custom)

Container: (M4 File -

e [idoo s | o[Audo | ubiies | Chaptrs | Advanced

orgefilesize (7] web optimized [] iPod 56 support

size Cropping
Sowrce: 720x480 AspectRatio: 1.3 Automatic
widh Height Max idth Custom

%Keep ‘Aspect Ratio! Top
JR—
Len e

Battom

Scan Completed
<[i

OEBPS/httpatomoreillycomsourceoreillyimages660934.png
Encoding: task L of 2, 57.75 % (126.81 tps, avg L18./L tps, ETA 00ROOmL5S)

OEBPS/httpatomoreillycomsourceoreillyimages660626.png
.(ﬂ.ﬂ)

(500,375)

OEBPS/httpatomoreillycomsourceoreillyimages660638.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages660644.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages660686.png
G e || @) 5o (BB o cume ([o ums
i videoriey
5 DVD/VIDED.TS Folder

| [No DVD Drive Ready]

(=T -

b) @ [=) e [=) ousters

Fie:

Output Settings (Preset: Normal)

Container: (M4 File -

e [idoo s | o[Audo | ubiies | Chaptrs | Advanced

Large e size (1] Web optimized

iPod 56 support

Browse

size Cropping
Saurce: Aspest Ratio © Automatic
widh Height Custom

[Keep Aspect Ratio

Display Size: 030 Left Right

Battom

« i

OEBPS/httpatomoreillycomsourceoreillyimages661010.png

OEBPS/httpatomoreillycomsourceoreillyimages660646.png

OEBPS/httpatomoreillycomsourceoreillyimages660654.png
OO

1000
- 1000

OEBPS/httpatomoreillycomsourceoreillyimages661004.png
2009-W52 |~

a

December | »

[2009]3]

@

Wesk Von Tue Wed Thu Fr Sat Sun
E) 1232858
o 783wz
51 16151617 18 192
2 azwxzmd
= B
1 10
| Today | Nome

OEBPS/httpatomoreillycomsourceoreillyimages660973.png
<form>

<input type="number"

max="10"

step="2"

OEBPS/httpatomoreillycomsourceoreillyimages660855.png
ﬁ source - | (@) st % o Queue ShaWQuaua preview ([l Actvit Window

Source: NewOrleans2006

T (1000220 <] chapers: 1

3] ton 3

Destination:

Fie:

Output Settings (Preset: Custom)

Container: MP4 File = | 1 Large file size

Picure | oo ks | Voo

i sbties | Chapers | v

<) owatens ani222

‘eb optimized [iPod 5G support

Audio Tracks

Selected Track: New Track.

source Audo Codec Mxdoun Smplerate Biuate DRC
(Butomatc ~) [Aac faoo)) [Automtic <o s <] 0 o
Track Source Audio Codec Mixdown Samplerate (kHz) Bitrate (Kbps) DRC
[R MC(ax) DobyPrologll 4 1z 00

Scan Completed

OEBPS/httpatomoreillycomsourceoreillyimages660680.png
Eile Edit View History Bookmarks Tools Help

C' 0 Gy ([htp/ffnefogg.org/make/indexhtmit

[Firefoga - Muke Ogo Video i your B

M Encoding video to Ogyg o

0% - Transcoded

» Preview video

= Selet wy
(NewOrleans2006 dv

» Preset: Custom settings

» Encoding range

» Basic quality and resolution control o
Dane PR s @

OEBPS/httpatomoreillycomsourceoreillyimages660648.png

OEBPS/oreilly_large.gif
O’REILLY

OEBPS/httpatomoreillycomsourceoreillyimages660652.png

OEBPS/httpatomoreillycomsourceoreillyimages660662.png
Add-ons

& & 4 @ %

GetAdd-ons Bxtensions Themes Plugin Installation

Restart Firefox to complete your changes Restart Firefox | x

Firefogg 10
Restart to complete the instalatio

