

 [image: Ruby Pocket Reference]

 Ruby Pocket Reference

Michael Fitzgerald

Editor
Simon St. Laurent

Copyright © 2009 Michael Fitzgerald

[image:]

O'Reilly Media

SPECIAL OFFER: Upgrade this ebook with O’Reilly

Click here for more information on this offer!
Please note that upgrade offers are not available from sample content.

Chapter 1. Ruby Pocket Reference

Ruby is an open source, object-oriented programming language created by Yukihiro "Matz" Matsumoto. First released in Japan in 1995, Ruby has gained worldwide acceptance as an easy-to-learn, powerful, and expressive language, especially since the advent of Ruby on Rails, a web application framework written in Ruby (http://www.rubyonrails.org). Ruby's core is written in the C programming language and runs on all major platforms. It is an interpreted rather than compiled language. For more information on Ruby, see http://www.ruby-lang.org.
Conventions Used in This Book

The following font conventions are used in this book:
	Italic
	Indicates pathnames and filenames (such as program names); Internet addresses, such as domain names and URLs; and emphasized or newly defined terms.

	Constant width
	Indicates commands and options that should be typed verbatim in a file or in irb; or names and keywords in Ruby programs, including method, variable, and class names.

	Constant width italic
	Indicates user-supplied values.

	Constant width bold
	Used to draw attention to parts of programs.

Comments and Questions

Please address comments and questions concerning this book to the publisher:
	O'Reilly Media, Inc.
	1005 Gravenstein Highway North
	Sebastopol, CA 95472
	800-998-9938 (in the United States or Canada)
	707-829-0515 (international or local)
	707-829-0104 (Fax)

There is a web page for this book, which lists errata, examples, or any additional information. You can access this page at:
	http://www.oreilly.com/catalog/9780596514815

To comment or ask technical questions about this book, send email to:
	bookquestions@oreilly.com

For information about books, conferences, Resource Centers, and the O'Reilly Network, see the O'Reilly web site at:
	http://www.oreilly.com

Acknowledgments

This book is dedicated to John H. Atkinson, Jr. (1934–2007).
I want to thank Simon St.Laurent, Ryan Waldron, and Rachel Monaghan for their help in creating, editing, and producing this book.

Running Ruby

Test to see whether Ruby is running on your computer by typing the following at a shell or command prompt:
ruby --version
An affirmative response will look similar to this (this example is for version 1.8.6 running on Mac OS X):
ruby 1.8.6 (2007-03-13 patchlevel 0) [powerpc-darwin8.9.0]
You can install Ruby on any of the major platforms. For Ruby file archives and installation instructions, see http://www.ruby-lang.org/en/downloads.
Running the Ruby Interpreter

Usage:
ruby [switches] [--] [program filename] [arguments]
Switches (or command-line options):
	-0[octal]
	Specify a record separator (\0 if no argument).

	-a
	Autosplit mode with -n or -p (splits $_ into $F).

	-c
	Check syntax only.

	-Cdirectory
	cd to directory before executing your script or program.

	-d
	Set debugging flags (set predefined variable $DEBUG to true).

	-e 'command'
	Execute one line of script. Several -es allowed. Omit [program filename].

	-Fpattern
	split() pattern for autosplit (-a).

	-i[extension]
	Edit ARGV files in place (make backup if extension supplied).

	-Idirectory
	Specify $LOAD_PATH (predefined variable) directory; may be used more than once.

	-Kkcode
	Specify the character set. See Table 16.

	-l
	Enable line-ending processing.

	-n
	Assume 'while gets(); ... end' loop around your script.

	-p
	Assume loop like -n but print line also like sed.

	-rlibrary
	Require the library before executing your script.

	-s
	Enable some switch parsing for switches after script name.

	-S
	Look for the script using PATH environment variable.

	-T[level]
	Turn on tainting checks.

	-v
	Print version number, then turn on verbose mode (compare --version).

	-w
	Turn warnings on for your script or program.

	-W[level]
	Set warning level: 0=silence, 1=medium, and 2=verbose (default).

	-x[directory]
	Strip off text before #! shebang line, and optionally cd to directory.

	--copyright
	Print the copyright.

	--version
	Print the version (compare -v).

Using a Shebang Line on Unix/Linux

A shebang line may appear on the first line of a Ruby program (or other program or script). Its job is to help a Unix/Linux system execute the commands in the program or script according to a specified interpreter—Ruby, in our case. (This does not work on Windows.) Here is a program named hi.rb with a shebang on the first line:
#!/usr/bin/env ruby

puts "Hello, Matz!"
Other alternative shebang lines are #!/usr/bin/ruby or #!/usr/local/bin/ruby. With a shebang in place, you can type the filename (followed by Return or Enter) at a shell prompt without invoking the Ruby interpreter directly:
$ hi.rb

Associating File Types on Windows

Windows doesn't know or care about shebang (#!), but you can achieve a similar effect by creating a file type association with the assoc and ftype commands on Windows (DOS). To find out whether an association exists for the file extension .rb, use the assoc command:
C:\Ruby Code>assoc .rb
File association not found for extension .rb
If it's not found, associate the .rb extension with a file type:
C:\Ruby Code>assoc .rb=rbFile
Then test to see whether the association exists:
C:\Ruby Code>assoc .rb
.rb=rbFile
Now test to see whether the file type for Ruby exists:
C:\Ruby Code>ftype rbfile
File type 'rbfile' not found or no open command associated
with it.
If not found, you can create it with a command like this:
C:\Ruby Code>ftype rbfile="C:\Program Files\Ruby\bin\
ruby.exe" "%1" %*
Be sure to put the correct path to the executable for the Ruby interpreter, followed by the substitution. %1 is a substitution variable for the file you want to run, and %* accepts all other parameters that may appear on the command line. Test it: variables
C:\Ruby Code>ftype rbfile
rbfile="C:\Program Files\Ruby\bin\ruby.exe" "%1" %*
Finally, add .rb to the PATHEXT environment variable. See whether it is there already with set:
C:\Ruby Code>set PATHEXT
PATHEXT=.COM;.EXE;.BAT;.CMD;.VBS;.VBE;.JS;.JSE;.WSF;.WSH;
.tcl
If it is not there, add it like this:
C:\Ruby Code>set PATHEXT=.rb;%PATHEXT%
Then test it again:
C:\Ruby Code>set PATHEXT
PATHEXT=.rb;.COM;.EXE;.BAT;.CMD;.VBS;.VBE;.JS;.JSE;.WSF;
.WSH;.tcl
All is now in order:
C:\Ruby Code>type hi.rb
#!/usr/bin/env ruby

puts "Hello, Matz!"
Make sure you are able to execute the file:
C:\Ruby Code>cacls hi.rb /g username:f
Are you sure (Y/N)?y
processed file: C:\Ruby Code\hi.rb
Run the program by entering the program's file name at the command prompt, with or without the file extension:
C:\Ruby Code>hi
Hello, Matz!
To preserve these settings, you may add these commands to your autoexec.bat file, or set the environment variables by selecting Star → Control Panel → System, clicking on the Advanced tab, and then clicking the Environment Variables button.

Reserved Words

Table 1 lists Ruby's reserved words or keywords.
Table 1. Ruby's reserved words
	Reserved word
	Description

	BEGIN
	Code, enclosed in { }, to run before the program runs.

	END
	Code, enclosed in { }, to run when the program ends.

	alias
	Creates an alias for an existing method, operator, or global variable.

	and
	Logical operator; same as && except and has lower precedence.

	begin
	Begins a code block or group of statements; closes with end.

	break
	Terminates a while or until loop, or a method inside a block.

	case
	Compares an expression with a matching when clause; closes with end. See when.

	class
	Defines a class; closes with end.

	def
	Defines a method; closes with end.

	defined?
	A special operator that determines whether a variable, method, super method, or block exists.

	do
	Begins a block, and executes code in that block; closes with end.

	else
	Executes following code if previous conditional is not true, set with if, elsif, unless, or case. See if, elsif.

	elsif
	Executes following code if previous conditional is not true, set with if or elsif.

	end
	Ends a code block (group of statements) started with begin, class, def, do, if, etc.

	ensure
	Always executes at block termination; use after last rescue.

	false
	Logical or Boolean false; instance of FalseClass; a pseudovariable. See true.

	for
	Begins a for loop; used with in.

	if
	Executes code block if conditional statement is true. Closes with end. Compare unless, until.

	in
	Used with for loop. See for.

	module
	Defines a module; closes with end.

	next
	Jumps to the point immediately before the evaluation of the loop's conditional. Compare redo.

	nil
	Empty, uninitialized, or invalid; always false, but not the same as zero; object of NilClass; a pseudovariable.

	not
	Logical operator; same as !.

	or
	Logical operator; same as || except or has lower precedence.

	redo
	Jumps after a loop's conditional. Compare next.

	rescue
	Evaluates an expression after an exception is raised; used before ensure.

	retry
	When called outside of rescue, repeats a method call; inside rescue, jumps to top of block (begin).

	return
	Returns a value from a method or block. May be omitted, but method or block always return a value, whether it is explicit or not.

	self
	Current object (receiver invoked by a method); a pseudovariable.

	super
	Calls method of the same name in the superclass. The superclass is the parent of this class.

	then
	Separator used with if, unless, when, case, and rescue. May be omitted, unless conditional is all on one line.

	true
	Logical or Boolean true; instance of TrueClass; a pseudovariable. See false.

	undef
	Makes a method undefined in the current class.

	unless
	Executes code block if conditional statement is false. Compare if, until.

	until
	Executes code block while conditional statement is false. Compare if, unless.

	when
	Starts a clause (one or more) under case.

	while
	Executes code while the conditional statement is true.

	yield
	Executes the block passed to a method.

	_ _FILE_ _
	Name of current source file; a pseudovariable.

	_ _LINE_ _
	Number of current line in the current source file; a pseudovariable.

Operators

Table 2 lists all of Ruby's operators in descending order of precedence. Operators that are implemented as methods may be overridden and are indicated in the Method column.
Table 2. Ruby's operators
	Operator
	Description
	Method

	::
	Scope resolution
	
	[] []=
	Reference, set
	✓

	**
	Raise to power (exponentiation)
	✓

	+ - ! ˜
	Positive (unary), negative (unary), logical negation, complement
	✓ (not !)

	* / %
	Multiplication, division, modulo (remainder)
	✓

	+ -
	Addition, subtraction
	✓

	<< >>
	Shift left, shift right
	✓

	&
	Bitwise and
	✓

	| ^
	Bitwise or, bitwise exclusive or
	✓

	> >= < <=
	Greater than, greater than or equal to, less than, less than or equal to
	✓

	<=> == === != =˜ !˜
	Equality comparison (spaceship, equality, equality, not equal to, match, not match
	✓ (not != or !˜)

	&&
	Logical and
	
	||
	Logical or
	

	Range inclusive, range exclusive
	✓ (not ...)

	? :
	Ternary
	
	= += -= *= /= %= **= <<= >>= &= |= ^= &&= ||=
	Assignment, abbreviated assignment
	
	not
	Logical negation
	
	and or
	Logical composition
	
	defined?
	Special operator (no precedence)
	

Comments

A comment hides a line, part of a line, or several lines from the Ruby interpreter. You can use the hash character (#) at the beginning of a line:
I am a comment. Just ignore me.
Or, a comment may be on the same line after a statement or expression:
name = "Floydene" # ain't that a name to beat all
You can make a comment run over several lines, like this:
This is a comment.
This is a comment, too.
This is a comment, too.
I said that already.
Here is another form. This block comment conceals several lines from the interpreter with =begin/=end:
=begin
This is a comment.
This is a comment, too.
This is a comment, too.
I said that already.
=end
A block can comment out one line or as many lines as you want.

Numbers

Numbers are not primitives; each number is an object, an instance of one of Ruby's numeric classes. Numeric is Ruby's base class for numbers. The numeric class Fixnum is used for integers, fixed-length numbers with bit lengths of the native machine word, minus 1. The Float class is for floating-point numbers, which use the native architecture's double-precision floating-point representation internally. The Bignum class is used to hold integers larger than Fixnum can hold. Bignums are created automatically if any operation or assignment yields a result too large for Fixnum. The only limitation on the size integer Bignum can represent is the available memory in the operating system:
2411 # integer, of class Fixnum
2_411 # integer, of class Fixnum, underscore ignored
241.1 # float, of class Float
3.7e4 # scientific notation, of class Float
3E4 # scientific notation, of class Float
3E-4 # scientific notation, with sign before
 exponent
0444 # octal, of class Fixnum
0xfff # hexadecimal, of class Fixnum
0b1101 # binary, of class Fixnum
4567832704 # integer, of class Bignum
Figure 1 shows a hierarchy of Ruby's math classes.
[image: Hierarchy of Ruby math classes]

Figure 1. Hierarchy of Ruby math classes

Variables

A variable is an identifier that is assigned to an object, and that object may hold a value. The type of the value is assigned at runtime. Ruby variables are not declared nor statically typed. Ruby uses duck typing, a kind of dynamic typing. If a value behaves or acts like a certain type, such as an integer, Ruby gives it a context, and it is treated in that context. Duck typing comes from the concept that if it walks like a duck, quacks like a duck, flies like a duck, and swims like a duck (or integer or float, etc.), then it is probably a duck. If a variable is able to act like an integer, for example, then it is legal to use it in that context.
Local Variables

A local variable has a local scope or context. For example, if a variable is defined inside of a method or a loop, its scope is within the method or loop where it was defined. Local variable names must start with a lowercase letter or with an underscore character (_), such as alpha or _beta, and cannot be prefixed with a special character (as in @, @@, or $).

Instance Variables

An instance variable belongs to a particular instance of a class (hence the name) and can only be accessed from outside that instance via an accessor (or helper) method. Instance variables are always prefixed with a single at sign (@), as in @hello. See the upcoming section "Classes."

Class Variables

A class variable is shared among all instances of a class. Only one copy of a class variable exists for a given class. In Ruby, it is prefixed by two at signs (@@), such as @@times. You have to initialize (declare a value for) a class variable before you use it. See the upcoming section "Classes."

Global Variables

Global variables are available globally to a program, inside any structure. Their scope is the whole program. They are prefixed by a dollar sign ($), such as $amount. Matz's opinion on global variables is, and I quote, "They are ugly, so don't use them." I would take his advice. You can use a singleton instead. See the upcoming section "Singletons."

Constants

Constant variable names must begin with a capital letter (Matz), and by convention are frequently all capitals (MATZ). This makes make them easy to spot. As their name suggests, constants are not expected to change their value after their initial assignment. Because Ruby is a flexible language, there are a couple of notable exceptions to this. First, you can reassign a constant in Ruby, though Ruby will generate a warning if you do, and it's not a good idea. Second, and more importantly, since constants refer to objects, the contents of the object to which the constant refers may change without Ruby generating a warning. Thus, Ruby constants are called mutable, because, although the constant is only expected to refer to a single object throughout the program, what's contained in that object may vary.

Parallel Assignment of Variables

With parallel assignment, you can assign several values to several variables in a single expression. A list of variables, separated by commas, can be placed to the left of the equals sign, with the list of values to assign them (in order) on the right. Here is an example:
x, y, z = 100, 200, 500
You can also assign values of different types:
a, b, c = "cash", 1.99, 100

End of sample

 To search for additional titles please go to

 http://search.overdrive.com.

OEBPS/oreilly_large.gif
O’REILLY

OEBPS/httpatomoreillycomsourceoreillyimages202615.png
Object

Matrix
Numeric
Integer
Rational
Fixium Bignum

Complex
Math Prec
module)\ module

OEBPS/httpatomoreillycomsourceoreillyimages250953.jpg
A Quick Guide to Ruby

Pocket
Reference

O’REILLY® Michael Fitzgerald

