

 [image: Practical PostgreSQL]

 Practical PostgreSQL

Joshua D. Drake

John C. Worsley

Editor
Jonathan Gennick

Copyright © 2011 Command Prompt, Inc.

Practical PostgreSQL
by John C. Worsley and Joshua D. Drake

All rights reserved.

Published by O’Reilly & Associates, Inc., 1005 Gravenstein Highway North, Sebastopol,
 CA 95472.

O’Reilly & Associates books may be purchased for educational, business, or sales
 promotional use. Online editions are also available for most titles (safari.oreilly.com). For more information,
 contact our corporate/institutional sales department: 800-998-9938 or
 corporate@oreilly.com.

Editor: Jonathan Gennick
Cover Designer: Ellie Volckhausen
Printing History:
 January 2002: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered
 trademarks of O’Reilly & Associates, Inc. Many of the designations used by manufacturers and
 sellers to distinguish their products are claimed as trademarks. Where those designations appear
 in this book, and O’Reilly & Associates, Inc. was aware of a trademark claim, the
 designations have been printed in caps or initial caps. The association between the image of a
 mammoth and the topic of practical PostgreSQL is a trademark of O’Reilly & Associates,
 Inc.
The Command Prompt logo is a trademark of Command Prompt, Inc.

While every precaution has been taken in the preparation of this book, the publisher
 assumes no responsibility for errors or omissions, or for damages resulting from the use of the
 information contained herein.

[M]

[image:]

O'Reilly Media

A Note Regarding Supplemental Files

Supplemental files and examples for this book can be found at http://examples.oreilly.com/9781565928466/. Please use a standard desktop web browser to access these files, as they may not be accessible from all ereader devices.
All code files or examples referenced in the book will be available online. For physical books that ship with an accompanying disc, whenever possible, we’ve posted all CD/DVD content. Note that while we provide as much of the media content as we are able via free download, we are sometimes limited by licensing restrictions. Please direct any questions or concerns to booktech@oreilly.com.

Preface

PostgreSQL is one of the most successful open source databases available. It is arguably
 also the most advanced, with a wide range of features that challenge even many closed-source
 databases.
This book is intended to be a practical guide to PostgreSQL v7.1.x, though most of the book
 should also apply to earlier and future releases of PostgreSQL. The content is focused on getting
 you comfortable with PostgreSQL in the most expedient fashion possible. Although we will touch on
 some academic database subjects, such discussion will be kept brief. Our core focus is to provide
 the reader with enough of an understanding of PostgreSQL to manage a fully operational PostgreSQL
 database. Our hope is that by introducing this book to the community we will provide a better
 understanding of PostgreSQL and its functionality.
Who Is the Intended Audience?

This book is for anyone interested in utilizing the PostgreSQL object-relational
 database-management system (ORDBMS). The reader should be familiar with Linux- and Unix-based
 systems, but is not expected to be a database guru. Although the test operating system for this
 book is Red Hat Linux, the tasks in this book that apply to Linux should apply to most Unix
 variants without much modification.

Structure of This Book

This book is divided into four parts, each focused on a different aspect of a PostgreSQL
 database system. It also includes a complete command reference, and a small set of technical
 appendixes.
Part I, is a general overview of PostgreSQL.
 It documents what it is, where you can obtain it, and how to install it on your system. It also
 covers a wide variety of compilation options which allow you to customize PostgreSQL to your
 needs.
Part II, includes everything from general information on
 relational databases and the structured query language (SQL), to advanced extensibility of
 PostgreSQL’s functions and operators. Chapter 3, begins with
 relational database and table concepts, and introduces the basics of statements, keywords,
 identifiers, and data types. Chapter 4, delves deeper into the
 use of SQL, covering how to perform essential database functions such as creating and altering
 tables, inserting rows into tables, copying data, retrieving result sets, and using
 views.
Chapter 5, expands on the variety of operators and
 functions built into PostgreSQL, while Chapter 6, includes extra
 information on the use of the psql and PgAccess database clients.
 Concluding the part is Chapter 7, which details the more advanced
 PostgreSQL features such as indices, inheritance, arrays, constraints, triggers, sequences and
 cursors. This chapter also documents PostgreSQL’s advanced extensibility with user-defined
 operators and functions.
Part III, explores topics with which you should be
 familiar if you are (or plan to be) the administrator of a PostgreSQL database. This part begins
 with Chapter 8, which describes PostgreSQL’s
 authentication methods and the types of encryption available for use. Chapter 9 details the fundamental management of a PostgreSQL database,
 including initialization of the filesystem, and how to start and stop the backend. This chapter
 also contains information on database creation, removal, backup, and restoration of a backup.
 Chapter 10 documents how to add and remove user accounts and
 groups, and manage database privileges.
Part IV, is a foray into the world of programming for
 PostgreSQL, covering the PL/pgSQL procedural language, JDBC (Java DataBase
 Connectivity), and LXP. Chapter 11 includes information about
 the PL/ pgSQL language, how to add it into a PostgreSQL database, and how to use its various
 programmatic features. Chapter 12, shows how to build the JDBC interface to
 PostgreSQL, and introduces the basics of using it. Chapter 13 wraps up the part by
 documenting the installation, configuration and use of the LXP PostgreSQL application server for
 the Apache HTTP server.
Finally, Part V contains a comprehensive command reference
 guide, which documents each of the standard and extended SQL commands supported by
 PostgreSQL.

Platform and Version Used

At the time of this book’s writing, version 7.1.3 is the most current release of
 PostgreSQL. This is the version used in all examples, and for the construction of our example
 database, booktown. All examples should be compatible with any of the
 PostgreSQL 7.1 versions, which is the reason you will see the version referred to as 7.1.x
 within our text.

What Is Included on the CD?

The CD included with this book contains the complete source for PostgreSQL 7.1.3. The CD
 also includes the PostgreSQL application server LXP. The following is a listing of what is on
 the CD, including a short description of each package:
	postgresql-7.1.3.tar.gz
	The community version of PostgreSQL in compressed source form. This is the most actively
 developed PostgreSQL distribution. We do not provide binaries of PostgreSQL, as you may want
 to compile different features.
The source is available as a single compressed file
 (postgresql-7.1.3.tar.gz). Its contents are not extracted on the CD, as
 you must copy and extract the files onto your hard drive before installing PostgreSQL.

	lxp-eval-0.8.0.tgz
	An evaluation/developer-use copy of the LXP PostgreSQL application server for Apache
 1.3.x. LXP is a good tool for integrating PostgreSQL (and other technologies) with the web.
 This package is a binary distribution intended for x86-based systems. It must be copied to
 your hard drive before it can be extracted.

	lxp/
	A directory containing the extracted contents of the
 lxp-eval-0.8.0.tgz file. LXP can be installed directly from the
 lxp directory on the CD. See Chapter 13 for information on
 installing LXP.

	booktown.sql
	The PostgreSQL dump of the example booktown database used throughout this book. This
 file contains both commands to re-create the database schema, as well as some sample
 data.
To install this database after you have installed PostgreSQL, type from the command line
 psql -U postgres template1 -f /mnt/cdrom/booktown.sql (where
 /mnt/cdrom is the path to your mounted CD, and
 postgres is your PostgreSQL superuser).

Conventions Used in This Book

	Italic
	Used for filenames, directory names, string-bound constants, and URLs. It is also used
 for emphasis, and for the first use of a technical term.

	Constant width
	Used for keywords, identifiers (such as tables and columns), data types, examples, and
 to show the contents of files, and the output of commands.

	Constant width italic
	Used in syntax descriptions to indicated user-defined items.

	Constant width bold
	Indicates user input within examples.

	UPPERCASE
	Used within syntax descriptions, uppercase usually indicates keywords.

	lowercase
	Used within syntax descriptions, lowercase usually indicates user-defined items, such as
 variables and identifiers.

	[]
	Used within syntax descriptions, square brackets enclose optional items, which are
 separated from one another by pipes (|).

	{ }
	Used within syntax descriptions, curly brackets enclose a set of items from which you
 must choose one.

	...
	Used within syntax descriptions, ellipses indicate repeating information. Used within
 examples, ellipses indicate that a section of unimportant information was removed from the
 example output to improve readability and conserve space.

Note
[image: Conventions Used in This Book]
The owl icon indicates a tip, suggestion, or general note. For example, we’ll let you know
 that PostgreSQL supports the use of all ISO standard time zone abbreviations in the section on
 time zones.

Note
[image: Conventions Used in This Book]
The turkey icon indicates a warning or caution. For example, we’ll warn you ahead of time
 that using the DELETE command without a WHERE clause can
 delete all of your data from a table.

Acknowledgments

Command Prompt would like to express our thanks to the following people: Andrew Brookins
 for his contributions and editing support, Michael Holloway for clutch editing, Corwin
 Light-Williams for his JDBC chapter, and of course, a chubby little Penguin named Tux. We would
 also like to take a moment to thank our families; it has been a long road and we appreciate your
 love and patience.
John would like to thank his parents for their lifelong support, and for purchasing him
 computer equipment in his formative years for better reasons than playing Wolfenstein 3D until
 2:00 in the morning.
Joshua would like to thank God for providing a family with enough patience to tolerate the
 long hours needed to complete this book, and specifically his son, Joshua A, for being the
 coolest kid on the planet.
Last but not least, we would like to thank O’Reilly & Associates for their help in
 creating this book, and the PostgreSQL community for their technical assistance (particularly
 Tom Lane), and for providing such a great product.

Comments and Questions

We have tested and verified the information in this book to the best of our ability, but
 you may find that features have changed or that we have made mistakes. If so, please notify us
 by writing to:
O’Reilly & Associates

101 Morris Street

Sebastopol, CA 95472

(800) 998-9938 (in the U.S. or Canada)

(707) 829-0515 (international or local)

(707) 829-0104 (FAX)

You can also send messages electronically. To be put on the mailing list or request a
 catalog, send email to:
	info@oreilly.com

To ask technical questions or comment on the book, send email to:
	bookquestions@oreilly.com

There is a web page for this book, which lists errata, examples, and any additional
 information. You can access this page at:
	http://www.oreilly.com/catalog/ppostgresql/

You may view a constantly developed version of this book at the authors website. The
 authors’ website is available at:
	http://www.commandprompt.com/ppbook/

	http://www.postgresql.info/

Part I. Introduction & Installation

Chapter 1. What Is PostgreSQL?

PostgreSQL is an
 Object-Relational Database Management System (ORDBMS) that has been developed in various forms
 since 1977. It began as a project named Ingres at the University of California at Berkeley.
 Ingres itself was later developed commercially by Relational Technologies/Ingres
 Corporation.
In 1986 another team led by Michael Stonebraker from Berkeley continued the development of
 the Ingres code to create an object-relational database system called Postgres. In 1996, due to
 a new open source effort and the enhanced functionality of the software, Postgres was renamed to
 PostgreSQL, after a brief stint as Postgres95. The PostgreSQL project is still under very active
 development worldwide from a team of open source developers and contributors.
PostgreSQL is widely considered to be the most advanced open source database system in the
 world. It provides many features (which are discussed in more detail in the section titled PostgreSQL Feature Set) that are traditionally seen only in enterprise-caliber
 commercial products.
Open Source Free Version

PostgreSQL is an open source project. Open source by definition means that you can obtain
 the source code, use the program, and modify it freely without the confines of proprietary
 software. In the database world, open source means that you have honest access to benchmarking
 numbers and performance statistics, which companies such as Oracle prohibit. Open source also
 means that you are free to modify PostgreSQL to fit your particular needs.
However, there is a misconception that since open source software is free from
 distribution restrictions, it is always free of cost to your company. This is not necessarily
 the case. It is true that you can, without external cost, download and install open source software,
 but there will always be costs associated with the time and energy your company puts into
 support and research of the application. As such, if you do not have those resources to spend,
 there are several commercial vendors and consultants who deal specifically with
 PostgreSQL.
Commercial PostgreSQL Products

The Red Hat version of PostgreSQL is called Red Hat Database and is a very new product to
 the database market. Red Hat Database is based on the community-released open source version,
 PostgreSQL 7.1. Red Hat Database currently supports Linux only, preferably Red Hat Linux
 7.1.

Open Source Versus Commercial Products

The open source version of PostgreSQL only includes the database-management system and
 the associated programming interfaces. The Red Hat version of PostgreSQL includes a graphical
 installer and limited support for the installation.
The main factor in deciding whether to use the open source version of PostgreSQL or a
 commercially packaged version should be your business requirements. If you have a
 knowledgeable on-site technical-support staff, the community version may do well for you.
 However, if you need installation, configuration, and management support, you may be better
 served by purchasing a commercial version of PostgreSQL.
If you prefer to do business with smaller consulting companies, we have compiled a modest
 list of professional companies providing support for PostgreSQL in the section titled Commercial Support.

The Bottom Line

Marketing would suggest that a commercial version of PostgreSQL is somehow objectively
 superior to an open source version of PostgreSQL. In reality, this is not the case. When
 deciding what version of PostgreSQL you are going to run, you need only be aware of your own
 needs. For example, are you going to need installation support? Is a graphical installation
 important to you? If they are, then you should probably purchase a commercial version of
 PostgreSQL. However, if you or one of your staff are comfortable with compiling and
 configuring source code, the open source version could be more applicable to you.
There are two additional questions you may want to ask. Do you need printed documentation
 and are you willing to pay for PostgreSQL? The commercial distribution comes with printed
 documentation. However, if you are reading this book, we hope you won’t need the additional
 documentation. The other question relates to cost. Red Hat Database is priced at
 $2,295.00.
The most
 important thing to remember when deciding on which version of PostgreSQL to use is this (from
 a perspective of general usage and feature availability): there is no practical
 difference between the open source and the commercial versions.

Commercial Support

Outside of Red Hat, there are many companies that provide consulting services to the
 PostgreSQL community. The following is a small list of consultants providing commercial
 support for PostgreSQL.
	Command Prompt, Inc. (http://www.commandprompt.com/)
	Command Prompt, Inc. is a Linux managed-services and PostgreSQL-support company. They
 provide Linux and PostgreSQL support, including custom programming in C & C++, Java,
 PHP, Perl, and their own LXP application server for PostgreSQL.
Command Prompt, Inc. is the author of this book.

	Cybertec Geschwinde & Schvnig OEG (http://postgres.cybertec.at/)
	Cybertec provides training courses, support, consulting, and cost-effective high-end
 systems. Cybertec services the German-speaking region (Austria, Germany, and
 Switzerland).

	dbExperts (http://www.dbexperts.com.br/)
	dbExperts offers training courses, specialized support for development, and commercial
 products for PostgreSQL. dbExperts is located in Brazil and provides services in the
 Portuguese language.

	PostgreSQL, Inc. (http://www.pgsql.com/)
	PostgreSQL, Inc. offers support for PostgreSQL, database hosting, and promotional
 materials.

	Software Research Associates (http://osb.sra.co.jp/)
	Software Research Associates offers a range of services to aid customers with open
 source software-based systems. Support from this company is also available in
 Japanese.

Community Support

The PostgreSQL community provides active support to users of PostgreSQL via a number of
 mailing lists. There are several user mailing lists to which you can subscribe, segregated by
 topic (e.g., pgsql-general, pgsql-hackers, etc.). The mailing lists for
 PostgreSQL users are quite thorough, covering everything from general discussion to support on
 developing with PostgreSQL programming interfaces. For a complete list of mailing lists with
 associated descriptions, please visit the PostgreSQL website at http://www.postgresql.org.

PostgreSQL Feature Set

As stated previously in this chapter, PostgreSQL is widely considered the most advanced
 open source database in the world. PostgreSQL provides a wealth of features that are usually
 only found in commercial databases such as DB2 or Oracle. The following is a brief listing of
 some of these core features, as of PostgreSQL 7.1.x.
	Object-Relational DBMS
	PostgreSQL approaches data with an object-relational model, and is capable of handling
 complex routines and rules. Examples of its advanced functionality are declarative SQL
 queries, multi-version concurrency control, multi-user support, transactions, query
 optimization, inheritance, and arrays.

	Highly extensible
	PostgreSQL supports user-defined operators, functions, access methods, and data
 types.

	Comprehensive SQL support
	PostgreSQL supports the core SQL99 specification and includes advanced features such as
 SQL92 joins.

	Referential integrity
	PostgreSQL supports referential integrity, which is used to insure the validity of a
 database’s data.

	Flexible API
	The flexibility of the PostgreSQL API has allowed vendors to provide development
 support easily for the PostgreSQL RDBMS. These interfaces include Object Pascal, Python,
 Perl, PHP, ODBC, Java/JDBC, Ruby, TCL, C/C++, and Pike.

	Procedural languages
	PostgreSQL has support for internal procedural languages, including a native language
 called PL/pgSQL. This language is comparable to the Oracle procedural language, PL/SQL.
 Another advantage to PostgreSQL is its ability to use Perl, Python, or TCL as an embedded
 procedural language.

	MVCC
	MVCC, or Multi-Version Concurrency Control, is the technology that PostgreSQL uses to
 avoid unnecessary locking. If you have ever used another SQL capable
 DBMS, such as MySQL or Access, you have probably noticed that there are times when a reader
 has to wait for access to information in the database. The waiting is caused by people who
 are writing to the database. In short, the reader is blocked by writers who are updating
 records.
By using MVCC, PostgreSQL avoids this problem entirely. MVCC is considered better than
 row-level locking because a reader is never blocked by a writer. Instead, PostgreSQL keeps
 track of all transactions performed by the database users. PostgreSQL is then able to manage
 the records without causing people to wait for records to become available.

	Client/server
	PostgreSQL uses a process-per-user client/server architecture. This is similar to the
 Apache 1.3.x method of handling processes. There is a master process that forks to provide
 additional connections for each client attempting to connect to PostgreSQL.

	Write Ahead Logging (WAL)
	The PostgreSQL feature known as Write Ahead Logging increases the
 reliability of the database by logging changes before they are written
 to the database. This ensures that, in the unlikely occurrence of a database crash, there
 will be a record of transactions from which to restore. This can be greatly beneficial in
 the event of a crash, as any changes that were not written to the database can be recovered
 by using the data that was previously logged. Once the system is restored, a user can then
 continue to work from the point that they were at before the crash occurred.

Where to Proceed from Here

Now that your introduction to PostgreSQL is complete, there are several places to proceed.
 We have provided the following list as a synopsis of the rest of the book. This is a guideline,
 so to speak, of what you need to read next.
	If you would like to install PostgreSQL 7.1.x at this time, then you may continue to
 Chapter 2.

	If you are new to the SQL language and database queries, then you may continue to Chapter 3. Note that although many of the concepts introduced in Chapter 3 are of a general nature, some of the techniques and concepts
 presented are specific to PostgreSQL, and should not be overlooked if you want a
 comprehensive understanding of the software.

	If you are already familiar with the SQL language and statement structure, you may be
 more interested in Chapter 4, Chapter 5, or Chapter 7.

	If you have a working knowledge of PostgreSQL as an end user and you would like to begin
 setting up the database server, database users and groups, and authentication, then you may
 skip to Part III. This part was written to aid system
 administrators in initializing, configuring, and managing newly installed or existing
 PostgreSQL databases.

	If you are familiar with PostgreSQL as a database-management system and would like to
 move directly into technical programming concepts and techniques, read through Part IV. This part of the book contains documentation on
 PL/pgSQL, the native PostgreSQL procedural language, as well as information and examples on
 the JDBC interface and the LXP web-based application server.

Chapter 2. Installing PostgreSQL

This chapter focuses on the requirements and steps involved
 in installing and configuring PostgreSQL. Many of the PostgreSQL capabilities are not enabled,
 by default. For example, support for the TCL language is a feature that must be explicitly
 requested during compile-time. As there are many other features that are not configured by
 default, we will cover the various flags and options you may use to enable them when compiling
 PostgreSQL. It is important that you carefully read through all the steps in this process before
 beginning installation.
This chapter will walk you through the installation steps on a Linux/Unix-style platform.
 Our installation platform is Linux, but these instructions should be compatible with most
 current Unix platforms.
Note
[image: Installing PostgreSQL]
Although PostgreSQL is capable of running on a Win32 platform, this book does not cover
 installation on Windows. The Win32 version of PostgreSQL requires the Cygwin environment and
 will not operate independently within Win32. Although Cygwin can be useful in many situations,
 the use of PostgreSQL in a Cygwin environment is not recommended.

Preparing for Installation

The installation of PostgreSQL is not difficult. However, there are some software
 requirements that you will need for the PostgreSQL compilation. All of the requirements—outside
 of the PostgreSQL source code—are GNU tools. If you are running Linux, there is a good chance
 that the tools are already installed. If you are running a BSD derivative, such as FreeBSD or
 MacOS X, you may have to download the tools.
If you find that you are missing any of the required components, first check your vendor’s
 web site for the packages; otherwise, you may download them from http://www.gnu.org. It is also essential that you have enough disk space
 available to unpack and compile the source code on the filesystem to which you install.
 Disk-space requirements are discussed in the section titled Disk Space.
Required Software Packages

You will most likely have some of the required software packages already installed on
 your system, if not all of them. These packages are as follows:
	GNU make
	GNU make is commonly known as gmake on non-GNU based systems, but
 is normally referred to as just make on GNU-based systems such as
 Linux. For consistency, we will refer to it as gmake throughout the
 majority of this book.
We recommend that you use at least gmake version 3.76.1 or higher
 when compiling PostgreSQL. To verify the existence and correct version number of
 gmake, type the command shown in Example 2-1.

Example 2-1. Verifying GNU make
$ gmake --version

GNU Make version 3.79.1, by Richard Stallman and Roland McGrath.
Built for i386-redhat-linux-gnu
Copyright (C) 1988, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 2000
 Free Software Foundation, Inc.
This is free software; see the source for copying conditions.
There is NO warranty; not even for MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE.

Report bugs to <bug-make@gnu.org>.

	ISO/ANSI C Compiler
	There are numerous ISO/ANSI C compilers available. The recommended compiler for
 PostgreSQL is the GNU C Compiler, although PostgreSQL has been known to build with
 compilers from different vendors. At the time of this writing, the most commonly
 distributed versions of GCC are 2.95 and 2.96 (RedHat Linux 7.x and Mandrake Linux 8.x). If
 you do not currently have GCC installed, you can download it by visiting the GNU website at
 http://gcc.gnu.org.
To check for the existence and version of GCC, enter the command shown in Example 2-2.

Example 2-2. Verifying GCC
$ gcc --version
2.95.3

	GNU zip and tar
	GNU zip is also called gzip. GNU zip is a compression utility
 that can compress as well as decompress files. All compressed, or
 zipped, files made with gzip have a
 .gz extension. You can test for the existence of the
 gzip program with the gzip - -version
 command.
In addition to gzip, you will require a copy of
 tar, a utility used to group several files and directories into a
 single archive, as well as to unpack these archives onto the filesystem. An archived
 tar output file will typically contain a .tar
 extension. Files that are both archived by tar and compressed by
 gzip often have a .tar.gz compound extension, as
 is the case with the included PostgreSQL source distribution. You can test for
 tar with the tar - -version command.

Example 2-3. Verifying gzip and tar
$ gzip --version
gzip 1.3
(1999-12-21)
Copyright 1999 Free Software Foundation
Copyright 1992-1993 Jean-loup Gailly
This program comes with ABSOLUTELY NO WARRANTY.
You may redistribute copies of this program
under the terms of the GNU General Public License.
For more information about these matters, see the file named COPYING.
Compilation options:
DIRENT UTIME STDC_HEADERS HAVE_UNISTD_H HAVE_MEMORY_H HAVE_STRING_H
Written by Jean-loup Gailly.

$ tar --version
tar (GNU tar) 1.13.17
Copyright 2000 Free Software Foundation, Inc.
This program comes with NO WARRANTY, to the extent permitted by law.
You may redistribute it under the terms of the GNU General Public License;
see the file named COPYING for details.
Written by John Gilmore and Jay Fenlason.

Optional Packages

The following are some optional packages that you may want to have installed:
	GNU Readline library
	The GNU Readline library greatly increases the usability of psql,
 the standard PostgreSQL command-line console client. It adds all of the standard
 functionality of the GNU Readline library to the psql command line,
 such as being able to easily modify, edit, and retrieve command-history information with
 the arrow keys and the ability to search the command history (also known as a
 reverse-i-search). If the Readline library is already installed on
 your system, the configuration process should automatically compile readline support with
 psql.
Note
[image: Optional Packages]
You may not need this package if you have NetBSD, as NetBSD has a
 libedit library, which provides Readline compatibility.

	OpenSSL
	OpenSSL is an Open Source implementation of the SSL/TLS protocols. OpenSSL is commonly
 used with utilities such as OpenSSH and Apache-SSL. PostgreSQL can make use of OpenSSL for
 encrypted connectivity between the psql client application and the
 PostgreSQL backend. You may also want to consider OpenSSL if you wish to use Stunnel. More
 information on OpenSSL is located at http://www.openssl.org. Installing and configuring Stunnel for use with PostgreSQL is discussed in
 Chapter 8.

	Tcl/Tk
	Tcl/Tk is a combination programming language and graphical toolkit. Although we don’t
 cover the use of Tcl with PostgreSQL, we do cover the use of PgAccess, which is written in
 Tcl. If you wish to utilize the PgAccess application you will need to install the Tcl/Tk
 software. The website for Tcl/Tk is http://tcl.activestate.com.

	Ant/JDK
	The JDK is the Java Development Kit. It is required for Java development; hence, it is
 required by PostgreSQL if you wish to enable JDBC support. Ant is a
 Java-based build tool (somewhat like gmake) that is also required for
 JDBC support. The JDK can be downloaded from http://java.sun.com/j2se/index.html, and Ant can
 be downloaded from http://jakarta.apache.org/ant/index.html.

Disk Space

PostgreSQL does not require the extensive use of disk resources. In fact, in comparison
 to products such as Oracle, PostgreSQL could be considered fat free. However, PostgreSQL is a
 database, and as with any database, the requirements will grow as you continue to use
 PostgreSQL.
On an average Linux machine, you will need approximately 50 MB of hard-drive space to
 unpack the source and another 60 MB of hard drive space to compile the source. If you choose
 to run the regression tests, you will need an additional 30 MB. Depending on the configuration
 options you choose, PostgreSQL can take anywhere from 8
 to 15 MB of hard drive space once installed.
Note
[image: Disk Space]
Remember that PostgreSQL’s space requirements will grow as you use the system! Be sure
 to plan ahead for the amount of data you will be storing.

Trying to install on a system lacking in disk space is potentially dangerous! Before
 installing PostgreSQL, we recommend that you check your filesystem to be sure you have enough
 disk space in your intended installation partition (e.g., /usr/local). If
 you have a GNU-based system, the df command should be at your disposal.
 Example 2-4 checks for free disk space, reported in 1k
 blocks.
Example 2-4. Verifying disk space
$ df -k
Filesystem 1k-blocks Used Available Use% Mounted on
/dev/hda1 2355984 932660 1303644 42% /
/dev/hdb1 4142800 2133160 1799192 54% /home
/dev/hda6 1541680 272540 1190828 19% /usr/local

10 Steps to Installing PostgreSQL

PostgreSQL is included on the CD distributed with this book, but you may want to visit the
 PostgreSQL website to see if there is a newer version available. Many FTP sites make the source
 files for PostgreSQL available for download; a complete list of FTP mirrors can be found at
 http://www.postgresql.org.
Once you have connected to a PostgreSQL FTP mirror, you will see the stable releases
 located within a directory beginning with v followed by a version (such as
 v7.1.3/). There should also be a symbolic link to the most recent stable
 release’s directory called latest/.
Within this sub-directory is a list of package files. The complete PostgreSQL installation
 package is named postgresql-[version].tar.gz and should be the largest
 file in the list. The following sub-packages are also made available for download, and may be
 installed in any combination (though at least base is required):
	postgresql-base-[version].tar.gz
	The base package contains the bare minimum of source code required
 to build and run PostgreSQL.

	postgresql-docs-[version].tar.gz
	The docs package contains the PostgreSQL documentation in HTML
 format. Note that the PostgreSQL man pages are automatically installed
 with the base package.

	postgresql-opt-[version].tar.gz
	The opt package contains several
 optional extensions to PostgreSQL, such as the interfaces for C++
 (libpq++), JDBC, ODBC, Perl, Python, and Tcl. It also contains the
 source required for multibyte support.

	postgresql-test-[version].tar.gz
	The test package contains the regression test suite. This package
 is required to run regression tests after compiling PostgreSQL.

Step 1: Creating the “postgres” User

Create a Unix user account to own and manage the PostgreSQL database files. Typically,
 this user is named postgres, but it can be named anything that you
 choose. For consistency throughout the book, the user postgres is
 considered the PostgreSQL root or superuser.
You will need to have root privileges to create the PostgreSQL superuser. On a Linux
 machine, you can use the command shown in Example 2-5 to add
 the postgres user.
Example 2-5. Adding the postgres user
$ su - -c "useradd postgres"

Note
[image: Adding the postgres user]
Do not try to use the root user as the PostgreSQL superuser. Doing
 so presents a large security hole.

Step 2: Installing the PostgreSQL Source Package

Once you have acquired the source for PostgreSQL, you should copy the PostgreSQL source
 package to a temporary compilation directory. This directory will be the path where you
 install and configure PostgreSQL. Within this path, you will extract the contents from the
 tar.gz file and proceed with installation.
Bear in mind that this will not be the location of the installed database files. This is
 a temporary location for configuration and compilation of the source package itself. If you
 have downloaded the PostgreSQL package from the Internet, it is probably not saved in your
 intended compilation directory (unless you explicitly chose to save there). A common
 convention for building source on Unix and Linux machines is to build within the
 /usr/local/src path. You will most likely need root privileges to access
 this path. As such, the remaining examples in this chapter will involve the
 root user until otherwise specified.
Note
[image: Step 2: Installing the PostgreSQL Source Package]
If you are a user of a commercial Linux distribution, we strongly suggest that you
 verify whether or not you have PostgreSQL already installed. On RPM-based systems, such as
 SuSe, Mandrake, or RedHat, this can be done by using the following command: rpm -qa
 | grep -i postgres. If you do have PostgreSQL installed, there is a good chance
 that it is outdated. You will want to download and install the latest version of PostgreSQL
 available. An RPM installation of PostgreSQL will sometimes install scripts and programs such
 as postmaster and psql into globally accessible
 directories. This can cause conflicts with source-built versions, so before installing a new
 version, be sure to remove the RPM by using the rpm -e <package
 name> command.

To unpack PostgreSQL source code on a Linux system, first move (or copy, from the CD) the
 compressed source file into /usr/local/src (most people move their source
 files here to keep them separate from their home directories and/or other locations they may
 keep downloaded files). After moving it to the filesystem location where you wish to unpack
 it, use tar to unpack the source files. The commands to perform these
 actions are shown in Example 2-6.
Example 2-6. Unpacking the PostgreSQL source package
[root@host root]# cp postgresql-7.1.3.tar.gz /usr/local/src
[root@host root]# cd /usr/local/src
[root@host src]# tar -xzvf postgresql-7.1.3.tar.gz
postgresql-7.1.3/
postgresql-7.1.3/ChangeLogs/
postgresql-7.1.3/ChangeLogs/ChangeLog-7.1-7.1.1
postgresql-7.1.3/ChangeLogs/ChangeLog-7.1RC1-to-7.1RC2
postgresql-7.1.3/ChangeLogs/ChangeLog-7.1RC2-to-7.1RC3
postgresql-7.1.3/ChangeLogs/ChangeLog-7.1RC3-to-7.1rc4
postgresql-7.1.3/ChangeLogs/ChangeLog-7.1beta1-to-7.1beta3
postgresql-7.1.3/ChangeLogs/ChangeLog-7.1beta3-to-7.1beta4
postgresql-7.1.3/ChangeLogs/ChangeLog-7.1beta4-to-7.1beta5
postgresql-7.1.3/ChangeLogs/ChangeLog-7.1beta5-to-7.1beta6
postgresql-7.1.3/ChangeLogs/ChangeLog-7.1beta6-7.1RC1
postgresql-7.1.3/ChangeLogs/ChangeLog-7.1rc4-7.1
postgresql-7.1.3/ChangeLogs/ChangeLog-7.1.1-7.1.2
postgresql-7.1.3/ChangeLogs/ChangeLog-7.1.2-7.1.3
postgresql-7.1.3/COPYRIGHT
[...]
[root@host root]# chown -R postgres.postgres postgresql-7.1.3

Notice the last command used in Example 2-6. The command is chown -R postgres.postgres postgresql-7.1.3. This
 command grants the ownership of the PostgreSQL source directory tree to
 postgres, which in turn enables you to compile PostgreSQL as the
 postgres user. Once the extraction and ownership change has completed,
 you can switch to the postgres user to compile PostgreSQL, resulting in
 all compiled files automatically being owned by postgres.
For reference purposes, the following list is a description of the
 tar options used to extract the PostgreSQL source distribution:
	x (extract)
	tar will extract from the passed filename (as opposed to creating
 a new file).

	v (verbose)
	tar will print verbose output as files are extracted. You may
 omit this flag if you do not wish to see each file as it is unpacked.

	z (zipped)
	tar will use gunzip to decompress the
 source. This option assumes that you are using the GNU tools; other versions of
 tar may not support the z flag. In the event
 that you are not using the GNU tools, you will need to manually unzip the file using
 gunzip before you can unpack it with tar.

	f (file)
	tar will use the filename following the f
 parameter to determine from which file to extract. In our examples, this file is
 postgresql-7.1.3.tar.gz.

After you have completed the extraction of the files, switch to the
 postgres user and change into the newly created directory (e.g.,
 /usr/local/src/postgres-7.1.3). The remaining installation steps will
 take place in that directory.

Step 3: Configuring the Source Tree

Before compilation, you must configure the source, and specify installation options
 specific to your needs. This is done with the configure script.
The configure script is also used to check for software dependencies
 that are required to compile PostgreSQL. As configure checks for
 dependencies, it will create the necessary files for use with the gmake
 command.
To use the default installation script, issue the following command:
 ./configure. To specify options that will enable certain non-default
 features, append the option to the ./configure command. For a list of all
 the available configuration options, use ./configure - -help
There is a good chance that the default source configuration that
 configure uses will not be the setup you require. For a well-rounded
 PostgreSQL installation, we recommend you use at least the following options:
	- -with-CXX
	Allows you to build C++ programs for use with PostgreSQL by building the
 libpq++ library.

	- -enable-odbc
	Allows you to connect to PostgreSQL with programs that have a compatible ODBC driver
 (such as Microsoft Access).

	- -enable-multibyte
	Allows multibyte characters to be used, such as non-English language characters (e.g.,
 Kanji).

	- -with-maxbackends=NUMBER
	Sets NUMBER as the maximum number of allowed
 connections (32, by default).

You can also specify anything from the following complete list of configuration
 options:
	- -prefix=PREFIX
	Specifies that files should be installed under the directory provided with
 PREFIX, instead of the default installation
 directory (/usr/local/pgsql).

	- -exec-prefix=EXEC-PREFIX
	Specifies that architecture-dependent executable files should be installed under the
 directory supplied with EXEC-PREFIX.

	- -bindir=DIRECTORY
	Specifies that user executable files (such as psql) should be
 installed into the directory supplied with DIRECTORY.

	- -datadir=DIRECTORY
	Specifies that the database should install data files used by PostgreSQL’s program
 suite (as well as sample configuration files) into the directory supplied with
 DIRECTORY. Note that the directory here is
 not used as an alternate database data directory;
 it is merely the directory where read-only files used by the program suite are
 installed.

	- -sysconfdir=DIRECTORY
	Specifies that system configuration files should be installed into the directory
 supplied with DIRECTORY. By default, these are put
 into the etc folder within the specified base installation
 directory.

	- -libdir=DIRECTORY
	Specifies that library files should be stored in the directory supplied with
 DIRECTORY. If you are running Linux, this
 directory should also be entered into the ld.so.conf file.

	- -includedir=DIRECTORY
	Specifies that C and C++ header files should be installed into the directory supplied
 with DIRECTORY. By default, include files are
 stored in the include folder within the base installation
 directory.

	- -docdir=DIRECTORY
	Specifies that documentation files should be installed into the directory supplied
 with DIRECTORY. This does not include PostgreSQL’s
 man files.

	- -mandir=DIRECTORY
	Specifies that man files should be installed into the directory
 supplied with DIRECTORY.

	- -with-includes=DIRECTORIES
	Specifies that the colon-separated list of directories supplied with
 DIRECTORIES should be searched with the purpose
 of locating additional header files.

	- -with-libraries=DIRECTORIES
	Specifies that the colon-separated list of directories supplied with
 DIRECTORIES should be searched with the purpose
 of locating additional libraries.

	- -enable-locale
	Enables locale support. The use of locale support will incur a performance penalty and
 should only be enabled if you are are not in an English-speaking location.

	- -enable-recode
	Enables the use of the recode translation library.

	- -enable-multibyte
	Enables multibyte encoding. Enabling this option allows the support of non-ASCII
 characters; this is most useful with languages such as Japanese, Korean, and Chinese, which
 all use nonstandard character encoding.

	- -with-pgport=NUMBER
	Specifies that the the port number supplied with NUMBER should be used as the default port by PostgreSQL. This can be
 changed when starting the postmaster application.

	- -with-maxbackends=NUMBER
	Sets NUMBER as the maximum number of allowed
 connections (32, by default).

	- -with-CXX
	Specifies that the C++ interface library should be compiled during installation. You
 will need this library if you plan to develop C++ applications for use with
 PostgreSQL.

	- -with-perl
	Specifies that the PostgreSQL Perl interface module should be compiled during
 installation. This module will need to be installed in a directory that is usually owned by
 root, so you will most likely need to be logged in as the
 root user to complete installation with this option chosen. This
 configuration option is only required if you plan to use the pl/Perl procedural
 language.

	- -with-python
	Specifies that the PostgreSQL Python interface module should be compiled during
 installation. As with the - -with-perl option, you will most likely
 need to log in as the root user to complete installation with this
 option. This option is only required if you plan to use the pl/Python procedural
 language.

	- -with-tcl
	Specifies that Tcl support should be included in the installation. This option will
 install PostgreSQL applications and extensions that require Tcl, such as
 pgaccess (a popular graphical database client) and the pl/Tcl
 procedural language.

	- -without-tk
	Specifies that Tcl support should be compiled without additional support for Tk, the
 graphical application tool kit. Using this option with the - -with-tcl
 option specifies that PostgreSQL Tcl applications that require Tk (such as
 pgtksh and pgaccess) should not be
 installed.

	- -with-tclconfig=DIRECTORY, - -with-tkconfig=DIRECTORY
	Specifies that the Tcl or Tk (depending on the option) configuration file (either
 tclConfig.sh or tkConfig.sh) is located in the
 directory supplied with DIRECTORY, instead of the
 default directory. These two files are installed by Tcl/Tk, and the information within them
 is required by PostgreSQL’s Tcl/Tk interface modules.

	- -enable-odbc
	Enables support for ODBC.

	- -with-odbcinst=DIRECTORY
	Specifies that the ODBC driver should look in the directory supplied with
 DIRECTORY for its
 odbcinst.ini file. By default, this file is held in the
 etc directory, which is located in the installation directory.

	- -with-krb4=DIRECTORY,
 - -with-krb5=DIRECTORY
	Enables support for the Kerberos authentication system. The use of Kerberos is not
 covered in this book.

	- -with-krb-srvnam=NAME
	Specifies the name of the Kerberos service principal. By
 default, postgres is set as the service principal name.

	- -with-openssl=DIRECTORY
	Enables the use of SSL to support encrypted database connections. To build support for
 SSL, OpenSSL must be configured correctly and installed in the directory supplied with
 DIRECTORY. This option is required if you plan on
 using the stunnel tool.

	- -with-java
	Enables Java/JDBC support. The Ant and JDK packages are required
 for PostgreSQL to compile correctly with this feature enabled.

	- -enable-syslog
	Enables the use of the syslog daemon for logging. You will need
 to specify that you wish to use syslog for logging at runtime if you
 wish to use it.

	- -enable-debug
	Enables the compilation of all PostgreSQL libraries and applications with debugging
 symbols. This will slow down performance and increase binary file size, but the debugging
 symbols are useful for developers to help diagnose bugs and problems that can be
 encountered with PostgreSQL.

	- -enable-cassert
	Enables assertion checking. This feature slows down performance and should be used
 only during development of the PostgreSQL system itself.

If you compile PostgreSQL and find that you are missing a feature, you can return to this
 step, reconfigure, and continue with the subsequent steps to build and install PostgreSQL. If
 you choose to come back to this step and reconfigure the PostgreSQL source before installing,
 be sure to use the gmake clean command from the top-level directory of
 the source tree (usually, /usr/local/src/postgresql-[version]). This will
 remove any leftover object files and partially compiled files.

Step 4: Compiling the Source

After using the configure command, you may begin compiling the
 PostgreSQL source by entering the gmake command.
Note
[image: Step 4: Compiling the Source]
On Linux machines, you should be able to use make instead of
 gmake. BSD users should use gnumake.

Example 2-7. Compiling the source with GNU make
[postgres@host postgresql-7.1.3]# gmake
gmake -C doc all
gmake[1]: Entering directory /usr/local/src/postgresql-7.1.3/doc'
gmake[1]: Nothing to be done for all'.
gmake[1]: Leaving directory /usr/local/src/postgresql-7.1.3/doc'
gmake -C src all
gmake[1]: Entering directory /usr/local/src/postgresql-7.1.3/src'
gmake -C backend all
gmake[2]: Entering directory /usr/local/src/postgresql-7.1.3/src/backend'
gmake -C utils fmgroids.h
gmake[3]: Entering directory /usr/local/src/postgresql-7.1.3/src/backend/utils'
[...]

At this point, depending on the speed of your machine, you may
 want to get some coffee because the PostgreSQL compilation could take 10 minutes, an hour, or
 even more. After the compilation has finished, the following message should appear:
All of PostgreSQL is successfully made. Ready to install.

Step 5: Regression Testing

Regression tests are an optional but recommended step. The
 regression tests help verify that PostgreSQL will run as expected after you have compiled the
 source. The tests check tasks such as standard SQL operations, as well as extended
 capabilities of PostgreSQL. The regression tests can point out possible (but not necessarily
 probable) problems which may arise when running PostgreSQL.
If you decide you would like to run the regression tests, do so by using the following
 command: gmake check, as shown in Example 2-8.
Example 2-8. Making regression tests
[postgres@host postgresql-7.1.3]# gmake check
gmake -C doc all
gmake[1]: Entering directory /usr/local/src/postgresql-7.1.3/doc'
gmake[1]: Nothing to be done for all'.
gmake[1]: Leaving directory /usr/local/src/postgresql-7.1.3/doc'
[...]

The gmake check command will build a test installation of PostgreSQL
 within the source tree, and display a list of all the checks it is running. As each test
 completes, the success or failure will be reported. Items that fail the check will have a
 failed message printed, rather than the successful ok
 message. If any checks fail, gmake check will display output similar to
 that found in Example 2-9, though the number of tests failed may
 be higher on your system than the number in the example.
Example 2-9. Regression check output
=======================
1 of 76 tests failed.
=======================

The differences that caused some tests to fail can be viewed in the
file ./regression.diffs'. A copy of the test summary that you see
above is saved in the file ./regression.out'.

The files referenced in Example 2-9 (regression.diffs and
 regression.out) are placed within the source tree at
 src/test/regress. If the source tree is located in
 /usr/local/src, the full path to the directory files would be
 /usr/local/src/postgresql-[version]/src/test/regress.
The regression tests will not always pick up every possible error. This can be due to
 inconsistencies in locale settings (such as time zone support), or hardware-specific issues
 (such as floating-point results). As with any application, be sure to perform your own
 requirements testing while developing with PostgreSQL.
Note
[image: Regression check output]
You cannot run the regression tests as the root user. Be sure to
 run gmake check as the postgres user.

Step 6: Installing Compiled Programs and Libraries

After you have configured and compiled the PostgreSQL source code, it is time to install
 the compiled libraries, binaries, and data files into a more appropriate home on the system.
 If you are upgrading from a previous version of PostgreSQL, be sure to back up your database
 before beginning this step. Information on performing PostgreSQL database backups can be found
 in Chapter 9.
Installation of the compiled files is accomplished with the commands demonstrated in
 Example 2-10. When executed in the manner shown in Example 2-10, the su command temporarily logs you
 in as the root user to execute the required commands. You must have the
 root password to execute both of the commands shown in Example 2-10.
Note
[image: Step 6: Installing Compiled Programs and Libraries]
If you specified a non-default installation directory in Step 3, use the directory you
 specified instead of /usr/local/pgsql.

Example 2-10. The gmake install command
$ su -c "gmake install"
Password:
gmake -C doc install
gmake[1]: Entering directory /usr/local/src/postgresql-7.1.3/doc'
mkdir /usr/local/pgsql
mkdir /usr/local/pgsql/man
mkdir /usr/local/pgsql/doc
mkdir /usr/local/pgsql/doc/html
[...]
$ su -c "chown -R postgres.postgres /usr/local/pgsql"
Password:

The su -c “gmake install” command will install the freshly compiled
 source either into the directory structure you chose in Step 3 with the -
 -prefix configuration option, or, if this was left unspecified, into the default
 directory of /usr/local/pgsql. The use of the su -c “chown -R
 postgres.postgres /usr/local/pgsql” command will ensure that the
 postgres user owns the PostgreSQL installation directories. Using the
 su -c command lets you save a step by only logging you in as the
 root user for the duration of the command’s execution.
If you chose to configure the PostgreSQL source with the Perl or Python interface, but
 did not have root access, you can still install the interfaces manually. Use the commands
 demonstrated in Example 2-11 to install the Perl
 and Python modules manually.
Example 2-11. Installing Perl and Python modules manually
$ su -c "gmake -C src/interfaces/perl5 install"
Password:
Password:
gmake: Entering directory /usr/local/src/postgresql-7.1.3/src/interfaces/perl5'
perl Makefile.PL
Checking if your kit is complete...
Looks good
Writing Makefile for Pg
gmake -f Makefile clean
[...]
$ su -c "gmake -C src/interfaces/python install"
Password:
gmake: Entering directory /usr/local/src/postgresql-7.1.3/src/interfaces/python'
sed -e 's,@libpq_srcdir@,../../../src/interfaces/libpq,g' \
 -e 's,@libpq_builddir@,../../../src/interfaces/libpq,g' \
 -e 's%@EXTRA_LIBS@% -lz -lcrypt -lresolv -lnsl -ldl -lm -lbsd -lreadline -ltermcap %g' \
 -e 's%@INCLUDES@%-I../../../src/include%g' \
[...]

You may also want to install the header files for PostgreSQL. This is important, because
 the default installation will only install the header files for client application
 development. If you are going to be using some of PostgreSQL’s advanced functionality, such as user-defined functions or
 developing applications in C that use the libpq library, you will need
 the header files. To install the required header files, perform the commands demonstrated in
 Example 2-12.
Example 2-12. Installing all headers
$ su -c "gmake install-all-headers"
Password:
gmake -C src install-all-headers
gmake[1]: Entering directory /usr/local/src/postgresql-7.1.3/src'
gmake -C include install-all-headers
[...]

Step 7: Setting Environment Variables

The use of the PostgreSQL environment variables is not required. However, they are
 helpful when performing tasks within PostgreSQL, including starting and shutting down the
 postmaster processes. The environment variables that should be set are
 for the man pages and the bin directory. You can do
 so by adding the following statements into the /etc/profile file. This
 should work for any sh-based shell, including bash and ksh.
PATH=$PATH:/usr/local/pgsql/bin
MANPATH=$MANPATH:/usr/local/pgsql/man
export PATH MANPATH
Note
[image: Step 7: Setting Environment Variables]
You must login to the system after the
 /etc/profile file has had environment variables added to it in order
 for your shell to utilize them.

Depending on how your system handles shared libraries, you may need to inform the
 operating system of where your PostgreSQL shared libraries are located. Systems such as Linux,
 FreeBSD, NetBSD, OpenBSD, Irix, HP/UX, and Solaris will most likely not need to do
 this.
In a default installation, shared libraries will be located in
 /usr/local/pgsql/lib (this may be different, depending on whether you
 changed it with the - -prefix configuration option). One of the most
 common ways to accomplish this is to set the LD_LIBRARY_PATH environment
 variable to /usr/local/pgsql/lib. See Example 2-13 for an example of doing this in
 Bourne-style shells and Example 2-14 for an
 example of doing this in csh and tcsh.
Example 2-13. Setting LD_LIBRARY_PATH in a bash shell
$ LD_LIBRARY_PATH=/usr/local/pgsql/lib
$ export LD_LIBRARY_PATH

Example 2-14. Setting LD_LIBRARY_PATH in csh and tcsh
$ setenv LD_LIBRARY_PATH /usr/local/pgsql/lib

Step 8: Initializing and Starting PostgreSQL

If you are logged
 in as the root user, instead of using the su -c
 command in the previous steps, you will now need to login as the postgres
 user you added in step 1. Once you are logged in as the postgres user,
 issue the command shown in Example 2-15.
Example 2-15. Initializing the database
$ /usr/local/pgsql/bin/initdb -D /usr/local/pgsql/data

The -D option in the previous command is the location where the data
 will be stored. This location can also be set with the PGDATA environment
 variable. If you have set PGDATA, the -D option is
 unnecessary. If you would like to use a different directory to hold these data files, make
 sure the postgres user account can write to that directory. When you
 execute initdb you will see something similar to what is shown in Example 2-16.
Example 2-16. Output from initdb
$ /usr/local/pgsql/bin/initdb -D /usr/local/pgsql/data
This database system will be initialized with username "postgres."
This user will own all the data files and must also own the server process.

Creating directory /usr/local/pgsql/data
Creating directory /usr/local/pgsql/data/base
Creating directory /usr/local/pgsql/data/global
Creating directory /usr/local/pgsql/data/pg_xlog
Creating template1 database in /usr/local/pgsql/data/base/1
DEBUG: database system was shut down at 2001-08-24 16:36:35 PDT
DEBUG: CheckPoint record at (0, 8)
DEBUG: Redo record at (0, 8); Undo record at (0, 8); Shutdown TRUE
DEBUG: NextTransactionId: 514; NextOid: 16384
DEBUG: database system is in production state
Creating global relations in /usr/local/pgsql/data/global
DEBUG: database system was shut down at 2001-08-24 16:36:38 PDT
DEBUG: CheckPoint record at (0, 108)
DEBUG: Redo record at (0, 108); Undo record at (0, 0); Shutdown TRUE
DEBUG: NextTransactionId: 514; NextOid: 17199
DEBUG: database system is in production state
Initializing pg_shadow.
Enabling unlimited row width for system tables.
Creating system views.
Loading pg_description.
Setting lastsysoid.
Vacuuming database.
Copying template1 to template0.

Success. You can now start the database server using:

/usr/local/pgsql/bin/postmaster -D /usr/local/pgsql/data
or
/usr/local/pgsql/bin/pg_ctl -D /usr/local/pgsql/data -l logfile start

Note
[image: Output from initdb]
You can indicate that PostgreSQL should use a different data directory by specifying the
 directory location with the -D option. This path must be initialized
 through initdb.

When the initdb command has completed, it will provide you with
 information on starting the PostgreSQL server. The first command displayed will start
 postmaster in the foreground. After entering the command as it is shown
 in Example 2-17, the prompt will be inaccessible
 until you press CTRL-C on the keyboard to shut down the postmaster
 process.
Example 2-17. Running postmaster in the foreground
$ /usr/local/pgsql/bin/postmaster -D /usr/local/pgsql/data
DEBUG: database system was shut down at 2001-10-12 23:11:00 PST
DEBUG: CheckPoint record at (0, 1522064)
DEBUG: Redo record at (0, 1522064); Undo record at (0, 0); Shutdown TRUE
DEBUG: NextTransactionId: 615; NextOid: 18720
DEBUG: database system is in production state

Starting PostgreSQL in the foreground is not normally required. We suggest the use of the
 second command displayed. The second command will start postmaster in the
 background. It uses pg_ctl to start the postmaster service, as shown in
 Example 2-18.
Example 2-18. Running postmaster in the background
$ /usr/local/pgsql/bin/pg_ctl -D /usr/local/pgsql/data -l /tmp/pgsql.log start
postmaster successfully started

The major difference between the first command and the second command is that the second
 runs postmaster in the background, as well as redirects any debugging
 information to /tmp/pgsql.log. For normal operation, it is generally
 better to run postmaster in the background, with logging enabled.
Note
[image: Running postmaster in the background]
The pg_ctl application can be used to
 start and stop the PostgreSQL server. See Chapter 9 for more on
 this command.

Step 9: Configuring the PostgreSQL SysV Script

The SysV script will allow the graceful control of the PostgreSQL database through the
 use of the SysV runlevel system. The SysV script can be used for starting, stopping, and
 status-checking of PostgreSQL. It is known to work with most Red Hat based versions of Linux,
 including Mandrake; however, it should work with other SysV systems (e.g., UnixWare, Solaris,
 etc.) with little modification. The script is named linux. To use it, you
 will first need to copy the linux script to your
 init.d directory. You may require root access to do this.
First, change to the directory where you unpacked the PostgreSQL source. In our case, the
 path to that directory is /usr/local/src/postgresql-7.1.3/. Then, issue a
 cp command to copy the script from
 contrib/start-scripts into the init.d directory.
 Example 2-19 demonstrates how to do this on a Red Hat Linux
 system.
Example 2-19. Copying the linux script
$ cd /usr/local/src/postgresql-7.1.3/
$ su -c "cp contrib/start-scripts/linux /etc/rc.d/init.d/postgresql"

Example 2-19 arbitrarily re-names the new copy to
 postgresql; you may call it whatever you prefer, though it is typically
 named either postgresql, or postgres.
You will need to make the script file executable after copying it.
 To do so, use the command shown in Example 2-20.
Example 2-20. Making the linux script executable
$ su -c "chmod a+x /etc/rc.d/init.d/postgresql"

There are no additional requirements to use the SysV script with Red Hat, if you do not
 intend on using it to start PostgreSQL automatically (i.e., if you wish to use the script
 manually). However, if you do wish for the script to startup PostgreSQL automatically when the
 machine boots up (or changes runlevels), you will need to have the
 chkconfig program installed. If chkconfig is
 installed, you will also need to add the following two lines, including the hash (#) symbol, at the beginning of the
 /etc/rc.d/init.d/postgresql file:
chkconfig: 345 85 15
description: PostgreSQL RDBMS
These
 example numbers should work on your system; however, it is good to know what role they
 perform. The first group of numbers (345) represent which runlevels
 PostgreSQL should be started at. The example shown would start PostgreSQL at runlevels 3, 4,
 and 5. The second group of numbers (85) represent the order in which
 PostgreSQL should be started within that runlevel, relative to other programs. You should
 probably keep the second number high, to indicate that it should be started later in the
 runlevel. The third number (15) represents the order in which PostgreSQL
 should be shutdown. It is a good idea to keep this number low, representing a shutdown order
 that is inverse from the startup order. As previously mentioned, the script should work on
 your system with the numbers provided, but you can change them if it is necessary.
Once these two lines have been added to the script, you can use the commands shown in
 Example 2-21 on Red Hat and Mandrake Linux
 distributions to start the PostgreSQL database. Be sure to execute these as the
 root user.
Example 2-21. Starting PostgreSQL with the SysV script
$ service postgresql start
Starting PostgreSQL: ok
$ service postgresql stop
Stopping PostgreSQL: ok

Note
[image: Starting PostgreSQL with the SysV script]
The SysV script logs redirects all PostgreSQL debugging output to
 /usr/local/pgsql/data/serverlog, by default.

Step 10: Creating a Database

Now that the PostgreSQL database system is running, you have the option of using the
 default database, template1. If you create a new database, and you would
 like all of your consecutive databases to have the same system-wide options, then you should
 first configure the template1 database to have those options enabled. For
 instance, if you plan to use the PL/pgSQL language to program, then you should install the
 PL/pgSQL language into template1 before using
 createdb. Then when you use the createdb command,
 the database created will inherit template1's objects, and thus, inherit
 the PL/pgSQL language. For more information on installing the PL/pgSQL language into a
 database, refer to Chapter 11.
The next step will be to create a new database. This will be a simple test database. We
 do not recommend using the default template1 database for testing purposes.
 As you have not created any users with database-creation rights, you will want to make sure
 that you are logged in as the postgres user when adding a new database.
 You can also create users that are allowed to add databases, which is discussed later in Chapter 10. To create a new database named testdb, enter the command shown in Example 2-22.
Example 2-22. Creating a database
$ createdb testdb
CREATE DATABASE

You should receive a message that says CREATE DATABASE, indicating
 that creation of the database was successful. You can now use PostgreSQL’s command line
 interface, psql, to access the newly created database. To do so, enter
 the command shown in Example 2-23.
Example 2-23. Accessing a database with psql
$ psql testdb

You can now start entering SQL commands (e.g., such as SELECT) at the
 psql prompt. If you are unfamiliar with psql,
 please see Chapter 4 for an introduction.
To verify that the database is working correctly, you can issue the command shown in
 Example 2-24, which should give you a listing of the languages
 installed in the database.
Example 2-24. Querying a system table
testdb=# SELECT * FROM pg_language;
 lanname | lanispl | lanpltrusted | lanplcallfoid | lancompiler
----------+---------+--------------+---------------+-------------
 internal | f | f | 0 | n/a
 C | f | f | 0 | /bin/cc
 sql | f | f | 0 | postgres
(3 rows)

Part II. Using PostgreSQL

Chapter 3. Understanding SQL

This chapter discusses the
 history and fundamental concepts of SQL and forms the foundation for the next chapter, which is
 about applying SQL with PostgreSQL. It addresses the basics of relational databases,
 object-related database extensions, the structure of a SQL statement, and provides an overview
 of PostgreSQL-supported data types, operators and functions.
Introduction to SQL

SQL, the Structured Query Language, is a mature, powerful, and
 versatile relational query language. The history of SQL extends back to IBM research begun in
 1970. The next few sections discuss the history of SQL, its predecessors, and the various SQL
 standards that have developed over the years.
A Brief History of SQL

The relational model, from which SQL draws much of its conceptual core, was formally
 defined in 1970 by Dr. E. F. Codd, a researcher for IBM, in a paper entitled A
 Relational Model of Data for Large Shared Data Banks. This article generated a
 great deal of interest in both the feasibility and practical commercial application of such a
 system.
In 1974 IBM began the System/R project and with the work of Donald Chamberlin and others,
 developed SEQUEL, or Structured English Query Language. System/R was
 implemented on an IBM prototype called SEQUEL-XRM in 1974–75. It was then completely rewritten
 in 1976–1977 to include multi-table and multiuser features. When the system was revised it was
 briefly called “SEQUEL/2,” and then renamed “SQL” for legal reasons.
In 1978, methodical testing commenced at customer test sites.
 Demonstrating both the usefulness and practicality of the system, this testing proved to be a
 success for IBM. As a result, IBM began to develop commercial products that implemented SQL
 based on their System R prototype, including SQL/DS (introduced in 1981), and DB2 (in
 1983).
Several other software vendors accepted the rise of the relational model and announced
 SQL-based products. These included Oracle (who actually beat IBM to market by two years by
 releasing their first commercial RDBMS, in 1979), Sybase, and Ingres (based on the University
 of California’s Berkeley Ingres project).
Note
[image: A Brief History of SQL]
PostgreSQL’s name is, as you might have guessed, a play on the name Ingres. Both
 PostgreSQL and Ingres trace their roots back to the UC Berkeley’s Ingres RDBMS system.

SQL and Its Predecessors

SQL is based largely on relational algebra and tuple relational calculus. Relational
 algebra, introduced by E. F. Codd in 1972, provided the basic concepts behind computing SQL
 syntax. It is a procedural way to construct data-driven queries, and it addresses the
 how logic of a structured query. The tuple relational calculus
 (TRC), on the other hand, affects the underlying appearance of SQL.
 Relational calculus uses declarative expressions, addressing the what
 logic of a structured query.
There are additional features that set SQL apart from those that merely implement
 features that are part of relational algebra or calculus. These features include:
	Support for data insertion, modification and deletion
	Users are allowed to insert, delete, and modify stored data records.

	Arithmetic operators
	Arithmetic operations such as addition, subtraction, multiplication, and division
 (e.g., (value1 * 5) + value2) are allowed, as well as comparison
 operators (e.g., value3 >= value4).

	Display of data
	Users may display query-generated relationships (such as a table’s contents).

	Assignment
	Users may rename a relation that is computed by a query instead of forcing the use of
 the default relationship name, which may be derived from a column or function name,
 depending on the query.

	Aggregate functions
	User may group related rows together
 and calculate averages, sums, counts, maximums, and minimums.

SQL Standards

The American National Standards Institute (ANSI) standardized SQL in 1986 (X3.135) and
 the International Standards Organization (ISO) standardized it in 1987. The United States
 government’s Federal Information Processing Standard (FIPS) adopted the
 ANSI/ISO standard. In 1989, a revised standard known commonly as SQL89 or
 SQL1, was published.
Due partially to conflicting interests from commercial vendors, much of the SQL89
 standard was intentionally left incomplete, and many features were labeled
 implementor-defined. In order to strengthen the standard, the ANSI committee revised its
 previous work with the SQL92 standard ratified in 1992 (also called
 SQL2). This standard addressed several weaknesses in SQL89 and set forth
 conceptual SQL features which at that time exceeded the capabilities of any existing RDBMS
 implementation. In fact, the SQL92 standard was approximately six times the length of its
 predecessor. As a result of this disparity, the authors defined three levels of SQL92
 compliance: Entry-level conformance (only the barest improvements to
 SQL89), Intermediate-level conformance (a generally achievable set of
 major advancements), and Full conformance (total compliance with the
 SQL92 features).
More recently, in 1999, the ANSI/ISO released the SQL99 standard
 (also called SQL3). This standard addresses some of the more advanced and
 previously ignored areas of modern SQL systems, such as object-relational database concepts,
 call level interfaces, and integrity management. SQL99 replaces the SQL92 levels of compliance
 with its own degrees of conformance: Core SQL99 and Enhanced
 SQL99.
PostgreSQL presently conforms to most of the Entry-level SQL92 standard, as well as many
 of the Intermediate- and Full-level features. Additionally, many of the features new in SQL99
 are quite similar to the object-relational concepts pioneered by PostgreSQL (arrays,
 functions, and inheritance).

Introduction to Relational Databases

PostgreSQL is a sophisticated Object-Relational Database Management
 System (ORDBMS). An ORDBMS is an extension of the more traditional
 Relational Database Management Systems (RDBMS). An RDBMS enables users to
 store related pieces of data in two-dimensional data structures called
 tables. This data may consist of many defined types,
 such as integers, floating-point numbers, character strings, and timestamps. Data inserted in a
 table is categorized using a grid-like system of vertical columns, and horizontal rows. The
 relational model was built on a strong premise of conceptual simplicity, which is arguably both
 its most prominent strength and weakness.
The object-relational aspect of PostgreSQL adds numerous enhancements to the straight
 relational data model. These include support for arrays (multiple values
 in a single column), inheritance (child-parent relationships between
 tables), and functions (programmatic methods invoked by SQL statements).
 For the advanced developer, PostgreSQL even supports extensibility of its data types and
 procedural languages.
Due to this object-relational concept, tables are sometimes called classes, while rows and
 columns can be referred to as object-instances and object-attributes, respectively. We will use
 this terminology interchangeably in this book. Other SQL data structures, such as indices and
 views, can be referred to as database objects.
Note
[image: Introduction to Relational Databases]
Take care to observe that object-relational is not synonymous with
 object-oriented, a term pertaining to many modern programming languages.
 While PostgreSQL supports several objective improvements to the relational model, it is still
 accurate to refer to PostgreSQL as a Relational Database Management System (RDBMS).

Understanding Databases

While PostgreSQL is commonly considered an RDBMS, or a “database,” it may not be commonly
 understood what is meant specifically by the word database. A database
 within PostgreSQL is an object-relational implementation of what is formally called a
 schema in SQL99.
Put simply, a database is a stored set of data that is logically interrelated. Typically,
 this data can be accessed in a multiuser environment. This is the case with PostgreSQL, though
 there are well-defined rights and restrictions enforced with that access.
It may not be commonly understood that PostgreSQL can have several
 databases concurrently available, each with their own owner, and each with their own unique
 tables, views, indices, sequences, and functions.
In order to create a table, function, or any other database object, you must connect to a
 specific database via a PostgreSQL client. Once connected, you can create
 an object, which is then owned by the connected database, and therefore
 is inaccessible from any other database (though a client may have several connections open to
 different databases).
By
 keeping fundamental data objects segregated into their own databases in this fashion, you run
 a smaller risk of running into a naming collision by choosing a table name already chosen for
 another purpose (e.g., if two users each wanted to have a table called products for two separate applications). This is because neither database has any
 knowledge of the other database’s components, and will not attempt to make any kind of logical
 relationship between them. Furthermore, as the same rule applies to object-relational data
 objects, users may even create functions and language definitions within their database that
 are inaccessible to other users connected to other databases running within PostgreSQL.
By default, PostgreSQL installs only one functional database, which is called template1 to represent the template nature of the database. Any database created
 after template1 is essentially a clone, inheriting any of its database
 objects, including table structure, functions, languages, etc. It is not uncommon to create a
 default database for new PostgreSQL users with the same name as their PostgreSQL user-name, as
 PostgreSQL will attempt to connect to a database with the same name as the connecting user if
 a database name is not specified.

Understanding Tables

Tables are quite possibly the most important aspect of SQL to understand inside and out,
 as all of your data will reside within them. In order to be able to correctly plan and design
 your SQL data structures, and any programmatic routines toward accessing and applying that
 data, a thorough understanding of tables is an absolute pre-requisite.
A table is composed of columns and rows, and
 their intersections are fields. If you have ever used spreadsheet
 software before (such as Excel), these two terms are visually represented in the same manner,
 and the fields within a table are equivalent to the cells within a spreadsheet. From a general
 perspective, columns within a table describe the name and type of data that will be found (and
 can be entered) by row for that column’s fields. Rows within a table represent
 records composed of fields that are described from left to right by
 their corresponding column’s name and type. Each field in a row is implicitly correlated with
 each other field in that row. In this sense, columns can be thought of as descriptors for the
 discrete, sequential elements of a row, and each row can be thought of as a stored record
 matching that description.
Table 3-1 illustrates a simple table called books, used by our imaginary bookstore, Book Town. We will
 frequently refer to this table in later examples. Each of its stored records describes a book
 by a numeric identifier, title, author identifier, and subject identifier. These
 characteristics, from left to right, are described by its columns (id, title,
 author_id, and subject_id).
Table 3-1. An example SQL table
	
 id

 	
 title

 	
 author_id

 	
 subject_id

	
 7808

 	
 The Shining

 	
 4156

 	
 9

	
 156

 	
 The Tell-Tale Heart

 	
 15

 	
 9

	
 4513

 	
 Dune

 	
 1866

 	
 15

	
 4267

 	
 2001: A Space Odyssey

 	
 2001

 	
 15

	
 1608

 	
 The Cat in the Hat

 	
 1809

 	
 2

	
 1590

 	
 Bartholomew and the Oobleck

 	
 1809

 	
 2

As you can see, this describes a table with four columns, in a fixed, left-to-right
 order, currently populated by six rows (also known as tuples, or records). It is essential to
 understand that in a relational database, while a table has a fixed column order, rows
 themselves are inherently unordered. You will see later, as the SQL’s query structure is
 explained in Chapter 4, that there are ways within SQL to
 order selected rows. However, the rows in the database itself are not automatically ordered in
 any consistently predictable way. When order is meaningful for a SQL query, you must carefully
 consider and explicitly order records.
Every table must have at least one column, but tables may at times contain no rows,
 because each vertical column corresponds to a relatively fixed attribute
 of the data represented in that table (such as the title column in the
 previous example’s books table). Without a column, a row’s contents would
 be ambiguous; without a row, a table is merely lacking recorded data. As of PostgreSQL 7.1,
 there is a maximum of 1600 columns to a table, and an unlimited number of rows (i.e., you are
 limited only by hardware limitations, such as disk space).
In Table 3-1, the column names fairly clearly indicate the
 significance of each column. The decision of how to name columns is fairly arbitrary, though,
 and care must be taken in planning table names and conventions to avoid ambiguity.
Though it may not be immediately obvious, each of the columns of a table have an
 associated data type. While a column’s data type helps to further
 describe the sort of information it contains, it constrains the kind of
 data that may be inserted into the column. For example, the author_id
 column is of type integer; this signifies that any insertion attempts not
 consisting of pure a integer (e.g., 110a) will fail. These types are
 described in more detail in the section titled Data Types.
This section introduced the general concepts of how data is logically arranged in a
 relational database and within tables. The next section explains why statements are the basis
 for all interactions with the database.

SQL Statements

Conceptual
 information on relational databases and tables is of course entirely moot if you don’t have any
 idea of how to directly interact with your data. From a general perspective, SQL consists
 entirely of structured statements, with which all data in the database is
 added, modified, and removed. These statements form the basis for your communication with the
 PostgreSQL server.
The following sections dissect the anatomy of a SQL statement into its structural pieces,
 explaining the significance of each, and their relation to one another. The standard PostgreSQL
 command-line client, psql, provides output to display example PostgreSQL
 statements.
Our SQL examples commonly take place within an example database called booktown, the database for our imaginary bookstore, Book Town. The output from
 psql is consistently prefixed with a default prompt style, which looks
 like this:
booktown=#
Some simpler examples may use our generic test database, testdb, if not
 specific to the Book Town examples. By default, the psql prompt displays
 only the name of the connected database and the =# characters indicating
 that the system is ready for a new command (though you will see that the =
 symbol will change dynamically as psql tracks the status of SQL input). We
 display this prompt along with the SQL input and output in order to help familiarize you with
 the psql output.
Chapter 4 documents psql in more
 detail, and it is only mentioned here to explain the source and style of this book’s SQL
 examples using PostgreSQL.
Note
[image: SQL Statements]
The schema (with sample data) for the booktown database can be found
 in the booktown.sql file, on the CD-ROM. To install this database, type
 psql -U postgres template1 -f /mnt/cdrom/booktown.sql from the command
 line (where /mnt/cdrom is the path to your mounted CD, and
 postgres is your PostgreSQL superuser).

The Anatomy of a SQL Statement

SQL statements always begin with a command (a word, or group of
 words, that describes what action the statement will initiate). The
 command can be called the verb of the SQL statement, as it always
 describes an action to be taken. Statements typically contain one or more
 clauses, which are formal modifiers that further describe the function
 of the SQL statement.
Table 3-2 contains a list of some of the most
 commonly used PostgreSQL commands.
Table 3-2. Fundamental PostgreSQL commands
	
 Command

 	
 Description

	
 CREATE DATABASE

 	
 Creates a new database

	
 CREATE INDEX

 	
 Creates a new index on a table column

	
 CREATE SEQUENCE

 	
 Creates a new sequence in an existing database

	
 CREATE TABLE

 	
 Creates a new table in an existing database

	
 CREATE TRIGGER

 	
 Creates a new trigger definition

	
 CREATE VIEW

 	
 Creates a new view on an existing table

	
 SELECT

 	
 Retrieves records from a table

	
 INSERT

 	
 Adds one or more new records into a table

	
 UPDATE

 	
 Modifies the data in existing table records

	
 DELETE

 	
 Removes existing records from a table

	
 DROP DATABASE

 	
 Destroys an existing database

	
 DROP INDEX

 	
 Removes a column index from an existing table

	
 DROP SEQUENCE

 	
 Destroys an existing sequence generator

	
 DROP TABLE

 	
 Destroys an existing table

	
 DROP TRIGGER

 	
 Destroys an existing trigger definition

	
 DROP VIEW

 	
 Destroys an existing table view

	
 CREATE USER

 	
 Adds a new PostgreSQL user account to the system

	
 ALTER USER

 	
 Modifies an existing PostgreSQL user account

	
 DROP USER

 	
 Removes an existing PostgreSQL user account

	
 GRANT

 	
 Grant rights on a database object to a user

	
 REVOKE

 	
 Deny rights on a database object from a user

	
 CREATE FUNCTION

 	
 Creates a new SQL function within a database

	
 CREATE LANGUAGE

 	
 Creates a new language definition within a database

	
 CREATE OPERATOR

 	
 Creates a new SQL operator within a database

	
 CREATE TYPE

 	
 Creates a new SQL data type within a database

While obviously code-like in nature, SQL was designed with ease of use and readability in
 mind. As a result, SQL statements often bear a strong resemblance to simple, instructional
 English sentences. A strong feature of SQL is that its statements are designed to instruct the
 server what data to find, not literally how to find
 it, as you would be forced to do in an ordinary programming language. Reading a well-designed
 SQL query should be nearly as easy as reading an ordinary sentence.
Note
[image: Fundamental PostgreSQL commands]
In
 SQL texts, the word query is frequently used interchangeably with
 statement. In order to be clear, within this book the term
 query is used only to refer to statements which return
 data (e.g., SELECT statements), rather than general SQL
 statements, which may instead create, add, or modify data.

Internally, PostgreSQL interprets structured SQL statements as a sequence of
 tokens, usually delimited by whitespace (spaces or newlines, outside of
 quotes), though some tokens may be placed adjacently if there is no chance of ambiguity (such
 as when operators are placed directly next to identifiers). A token in this context is a word
 or character that can be identified meaningfully by the server when the SQL statement is
 parsed, or interpreted.
Technically, each token can either be considered a keyword, an
 identifier, a quoted identifier, a
 constant (also called a literal), or one of several
 special character symbols. Keywords are words PostgreSQL recognizes as words with predefined
 SQL or PostgreSQL-specific meanings; these include SQL commands, clauses, function names, and
 special noise terms, which are often accompanied optionally with SQL
 commands (e.g., the noise term WORK in the COMMIT
 command). In contrast, identifiers represent variable names for tables, columns, and any other
 database object.
Both keywords and identifiers reference internally defined functions, values, or records,
 as far as PostgreSQL is concerned. Constants, on the other hand, describe pieces of data that
 are interpreted literally, such as a number or character string.
Finally, a SQL statement contains special character symbols. These are reserved
 characters (such as parentheses, the semicolon, and square brackets) that logically affect the
 meaning and arrangement of your keywords, identifiers, and literals. You can think of these
 characters as the punctuation for your SQL statements.
Operators fall under the category of special character symbols; they
 can be used to imply logical operations or evaluations between data values (either literals,
 or represented by identifiers), and are generally between one and four characters in
 length.
The following sections explain and expand upon the nature of these elementary components
 of SQL.

Token Formatting Considerations

As
 described in the preceding section, each sequential element of a SQL statement is considered a
 token. What may not be immediately clear, however, is that tokens may be kept all on the same
 line, or they may be split across several lines, as extra whitespace is ignored by
 PostgreSQL’s parser.
Consider the SQL statement in Example 3-1, which is executed
 first on a single line, and then executed again, split across two separate lines. Both
 SELECT statements instruct the database to display the entire contents of
 the my_list table:
Example 3-1. Spaces and newlines
testdb=# SELECT * FROM my_list;
 todos
--
 Pick up laundry.
 Send out bills.
 Wrap up Grand Unifying Theory for publication.
(3 rows)

testdb=# SELECT *
testdb-# FROM
testdb-# my_list;
 todos
--
 Pick up laundry.
 Send out bills.
 Wrap up Grand Unifying Theory for publication.
(3 rows)

In Example 3-1 there are several newlines and spaces between
 the second statement’s tokens. As you can see by the identical output, PostgreSQL ignores the
 extra newlines and spaces, making both statements semantically equivalent. You can take
 advantage of this behavior by splitting a long string of tokens across numerous lines for
 improved readability of your SQL statement. This probably isn’t necessary for statements as
 simple as those in Example 3-1, but it can be quite helpful when
 dealing with complex SQL statements with numerous clauses, expressions, and conditions.
 Throughout this book we will periodically split some statements over several lines to help
 show what each part of the statement is intended to accomplish.

Keywords and Identifiers

Keywords are any reserved SQL terms which have a reserved syntactic meaning to the
 server. Some common keywords are INSERT, UPDATE,
 SELECT, and DELETE.
All SQL commands are keywords, though many keywords themselves are not complete commands.
 For instance, the command INSERT INTO is a valid SQL command, and the word INTO is a
 reserved keyword. As you might guess, however, the word INTO has no
 particular significance when used out of context.
Identifiers, as described earlier, are variable names that reference database objects.
 These names are arbitrarily designated by the creator of the database object upon creation.
 The objects which can be referred to by identifiers in PostgreSQL may be databases, tables,
 columns, indices, views, sequences, rules, triggers, or functions.
Example 3-2 adds three pieces of information about Oregon
 into a simple table called states.
Example 3-2. Keywords and commands
booktown=# INSERT INTO states VALUES (33, 'Oregon', 'OR');
INSERT 3389701 1

In Example 3-2, the INSERT INTO SQL
 command makes use of the SQL keywords INSERT, INTO, and
 VALUES.
The INSERT INTO command modifies the table referenced by the states identifier. The modification in this case is the insertion of a new
 record.
Quoted identifiers

While not normally required, quotes can be used around identifiers, meaning they should
 be interpreted literally. For example, if we want to view each of the columns from a table
 called states, a simple statement to achieve this would ordinarily
 read:
booktown=# SELECT * FROM states;
 id | name | abbreviation
----+------------+--------------
 33 | Oregon | OR
 42 | Washington | WA
(2 rows)
The keywords in this statement are SELECT and FROM, while the identifiers are the asterisk * (indicating all
 columns), and states (the table name). With this command, we are selecting
 all columns from a table named states and thereby viewing its
 contents.
You can accomplish the same thing by putting quotes around the identifier, with the
 following statement:
booktown=# SELECT * FROM "states";
 id | name | abbreviation
----+------------+--------------
 33 | Oregon | OR
 42 | Washington | WA
(2 rows)
As you can see, the output is identical when
 applying quotes to a lowercase identifier. However, the following statement, which uses
 quotes around the stAtes identifier, will fail:
booktown=# SELECT * FROM "stAtEs";
ERROR: Relation 'stAtEs' does not exist
This statement fails because it instructs PostgreSQL to look for a table called,
 literally, stAtEs (rather than states). In other words,
 with the use of quotes, the statement has explicitly requested that PostgreSQL interpret the
 identifier name literally.
All non-quoted identifiers are folded, or converted, to lowercase.
 When specifying stAtEs, or STATES (i.e., any
 combination of uppercase or lowercase letters) without quotes,
 PostgreSQL automatically converts the identifier to lowercase (states)
 before processing the statement.
Note
[image: Quoted identifiers]
The folding of unquoted identifiers to lowercase names is a PostgreSQL-specific
 convention. The SQL92 standard specifies that unquoted identifiers always be converted to
 uppercase. For both legacy and readability reasons, PostgreSQL does not intend to move to
 this part of the SQL92 standard.
This should be of special note to database administrators familiar with other SQL
 products, such as Oracle, who expect case to automatically change to uppercase. If you are a
 developer, and you are interested in writing easily portable applications, be sure to
 consider this case issue to avoid conflicts over this convention.

Since the parser can still read and understand mixed-case statements (provided that they
 are formed with the correct syntax), you should use uppercase and lowercase terminology
 carefully. Your use of case can both help and hinder your efficiency when working with a
 large amount of SQL.
We recommend that, for readability, you try typing identifiers in lowercase and keywords
 in uppercase, the convention used throughout this book. By visually separating the fixed,
 systematic terminology from the user-defined data objects, you make it a great deal easier to
 quickly read and understand complex SQL statements.

When quotes are required

The only instances where you are required to use quotes are either
 when a database object’s identifier is identical to a keyword, or when the identifier has at
 least one capitalized letter in its name. In either of these circumstances, you must remember
 to quote the identifier both when creating the object, as well as in any subsequent
 references to that object (e.g., in SELECT, DELETE, or
 UPDATE statements).
If you do not quote an identifier that is spelled identically to an existing keyword,
 PostgreSQL will return an error message because it interprets the intended identifier
 as a keyword. For instance, if you had a table whose name was literally
 select, you would get an error message if you tried querying it with the
 following statement:
testdb=# SELECT * FROM select;
ERROR: parser: parse error at or near "select"
As you can see, an unquoted query on a table called select produces
 an error message. To specify that select is in fact a table, and not a
 keyword, it needs to be placed inside of quotes. Therefore, the correct syntax to view a
 table named select is as follows.
testdb=# SELECT * FROM "select";
 selected

 0
 1
 52
 105
(4 rows)
Remember that any identifiers with at least one capitalized letter must be treated
 similarly. For example, if you’ve for some reason created a table named ProDucts (notice the capitalized “P” and “D”), and you want to destroy it (as you
 probably should, with a name like that!), then once again the identifier needs to be quoted
 in order to accurately describe its name to PostgreSQL, as follows:
booktown=# DROP TABLE ProDucts;
ERROR: table "products" does not exist
booktown=# DROP TABLE "ProDucts";
DROP
This technique can be extremely useful in some circumstances, even if you never name
 database objects with these criteria yourself. For example, importing data through an
 external ODBC connection (e.g., via Microsoft Access) can result in table names with all
 capitalized letters. Without the functionality of quoted identifiers, you would have no way
 to accurately reference these tables.

Identifier validity

Both keywords and identifier names in PostgreSQL have a maximum length limit of 31
 characters. Parsed keywords or identifiers over that length limit are automatically
 truncated. Identifiers may begin with any letter (a through z), or with an underscore, and
 may then be followed by letters, numbers (0 through 9), or underscores.
 While keywords are not permitted to start or end with an underscore, identifier names
 are permitted to do so. Neither keywords nor identifiers should ever
 begin with a number.
In the section titled When quotes are required we described how quoted
 identifiers could be used to “overrule” the case insensitivity of identifiers by placing
 quotes around them. The same rule-bending can apply to the assertion that an identifier
 cannot begin with a number. While PostgreSQL will not allow you to create a table using the
 name 1st_bent_rule without quotes, the name is acceptable if it is
 surrounded with quotes.
Example 3-3 first fails in trying to create an illegally named
 table. It then proceeds to bend the rules with quotes.
Example 3-3. Bending rules
booktown=# CREATE TABLE 1st_bent_rule (rule_name text);
ERROR: parser: parse error at or near "1"
booktown=# CREATE TABLE "1st_bent_rule" (rule_name text);
CREATE

Furthermore, while quotes themselves are, of course, not allowed within the set of
 quotes to refer to a table name, other normally illegal characters are allowed, such as
 spaces and ampersands. Take note that while the ANSI/ISO SQL standard forbids using
 identifiers with the same names as SQL keywords, PostgreSQL (like many other SQL
 implementations) has a similarly relaxed view on this, allowing you to force such names with
 quoted identifiers.
Remember that while the use of quotes can be a useful trick to know for unusual
 circumstances, if you wish to design portable, standard SQL statements and relations, it is
 best to adhere to ANSI/ISO standards whenever possible.

Constants

While much of the data in working with a database is stored on the disk and referred to
 via identifiers (e.g., table names, column names, and functions), there are obviously times
 when new data must be introduced to the system. This may be observed when inserting new
 records, when forming clauses to specify criteria to delete or modify, or even when performing
 calculations on existing records. This data is input through constants, which are sometimes
 called literals because they literally represent a value in a SQL statement (rather than
 referencing an existing value by identifier).
An implicitly typed constant is one whose type
 is recognized automatically by PostgreSQL’s parser merely by its syntax. PostgreSQL supports
 five types of implicitly typed constants:
	String

	Bit string

	Integer

	Floating point

	Boolean

String constants

A string constant is an arbitrary sequence of characters bound by single quotes
 (apostrophes). These are typically used when inserting character data into a table or passing
 character data to any other database object. A practical example of the necessity of string
 constants is updating the first and last names of authors in Book Town’s authors table:
booktown=# SELECT * FROM authors;
 id | last_name | first_name
-------+-----------+------------------
 1809 | Geisel | Theodor Seuss
 1111 | Denham | Ariel
 15990 | Bourgeois | Paulette
 25041 | Bianco | Margery Williams
 16 | Alcott | Luoisa May
 115 | Poe | Edgar Allen
(6 rows)
Looking at this table’s contents, it might stand out to you that the first_name with id 16, Louisa May has
 been misspelled as Luoisa May. To correct this, an UPDATE statement can be made with a string constant, as shown in Example 3-4.
Example 3-4. Using string constants
booktown=# UPDATE authors
booktown-# SET first_name = 'Louisa May'
booktown-# WHERE first_name = 'Luoisa May';
UPDATE 1
booktown=# SELECT * FROM authors;
 id | last_name | first_name
-------+-----------+------------------
 1809 | Geisel | Theodor Seuss
 1111 | Denham | Ariel
 15990 | Bourgeois | Paulette
 25041 | Bianco | Margery Williams
 15 | Poe | Edgar Allen
 16 | Alcott | Louisa May
(6 rows)

The UPDATE statement made in Example 3-4
 uses the string constants Louisa May and Luoisa May
 in conjunction with the SET and WHERE keywords. This
 statement updates the contents of the table referenced by the authors
 identifier and, as shown, corrects the misspelling.
The fact that string constants are bound by single quotes presents an obvious semantic
 problem, however, in that if the sequence itself contains a single quote, the literal bounds
 of the constant are made ambiguous. To escape (make literal) a single
 quote within the string, you may type two adjacent single quotes. The parser will interpret
 the two adjacent single quotes within the string constant as a single, literal quote.
 PostgreSQL will also allow single quotes to be embedded by using a C-style backslash:
testdb=# SELECT 'PostgreSQL''s great!' AS example;
 example

 PostgreSQL's great!
(1 row)

booktown=# SELECT 'PostgreSQL\'s C-style slashes are great!' AS example;
 example

 PostgreSQL's C-style slashes are great!
(1 row)
PostgreSQL also supports the C-style “backslash escape” sequences, which are listed in
 Table 3-3.
Table 3-3. PostgreSQL supported C-style escape sequences
	
 Escape sequence

 	
 Description

	
 \\

 	
 Literal backslash

	
 \'

 	
 Literal apostrophe

	
 \b

 	
 Backspace

	
 \f

 	
 Form feed

	
 \n

 	
 Newline

	
 \r

 	
 Carriage return

	
 \t

 	
 Tab

	
 \xxx

 	
 ASCII character with the corresponding octal number xxx

Note
[image: PostgreSQL supported C-style escape sequences]
As a result of the backslashes’ special meaning described in Table 3-3, in order to include a backslash in
 the string you must escape it using a another backslash (e.g., 'A single backslash is: \\' will transform the pair of backslashes into a single
 backslash).

When entering two quoted character strings to PostgreSQL
 that are separated by some amount of whitespace, and where that whitespace includes at least
 one newline, the strings are concatenated and viewed as if they had been typed as one
 constant. This is illustrated in Example 3-5.
Example 3-5. Multiline string constants
booktown=# SELECT 'book'
booktown-#
booktown-# 'end' AS example;
 example

 bookend
(1 row)

booktown=# SELECT 'bookend' AS example;
 example

 bookend
(1 row)

As you can see, the semantics of the two statements is equivalent. However, at least one
 newline is required for this interpretation to be possible, as spaces
 alone would result in the following error:
booktown=# SELECT 'book' 'end' AS mistake;
ERROR: parser: parse error at or near "'"
This error occurs because without a newline, PostgreSQL will assume that you are
 referring to two separate constants. If you wish to concatenate two string constants this way
 on a single line, PostgreSQL supports the || operator for text
 concatenation (see Chapter 5, for more details on this
 operator).
booktown=# SELECT 'book' || 'end' AS example;
 example

 bookend
(1 row)

Bit string constants

Bit string constants provide a way to directly represent a binary value with an
 arbitrary sequence of ones and zeroes. Similarly to string constants, they are bound by
 single quotes, but they also must be preceded by a leading B character
 (which may be uppercase or lowercase). This character identifies to PostgreSQL that the
 forthcoming constant is a bit string, and not a normal string of character data.
Syntactically, the opening single quote must follow immediately after the leading
 B, and the bit string may not contain any character other than 0 or 1.
 While there cannot be whitespace within this string of bits, it can be continued across
 multiple lines just like regular string constants, as documented in
 the section titled String constants.
Bit string constants are generally only useful when working with tables or functions
 that require binary values. Example 3-6 demonstrates the use
 of a bit string constant upon a simple table containing raw bytes. A bit string byte is
 inserted into a list of bytes in the my_bytes table, and insertion is
 verified with a simple query.
Example 3-6. Using bit string constants
testdb=# INSERT INTO my_bytes VALUES (B'00000000');
testdb=# SELECT my_byte FROM my_bytes;
 my_byte

 10000000
 10000001
 10000101
 11111111
 00000000
(5 rows)

Integer constants

Integer constants are far more frequently used than bit string constants. PostgreSQL
 identifies an integer constant as any token that consists solely of a sequence of numbers
 (without a decimal point) and that is outside of single-quotes. Technically, SQL defines
 integer constants as a sequence of decimal digits with no decimal point. The range of values
 available for an integer constant depends largely on the context within which it is used, but
 PostgreSQL’s default for the integer data type is a 4-byte signed integer, with range from
 –2147483648 to 2147483647.
Integer constants are used anywhere you wish to represent a literal integer value. They
 are used frequently within mathematical operations, as well as in SQL commands that reference
 a column with an integer data type. Example 3-7 is a simple
 demonstration of the use of integer constants to update an author’s numeric identifier via an
 UPDATE command.
Consider once again the authors table used in previous sections,
 which correlates a numeric author identifier with two character strings representing the
 author’s first and last name. Suppose that, for administrative reasons, it has been deemed
 necessary that any author with an identifier of less than 100 must be modified to a value of
 more than 100.
The first step to correct this would be to locate any author with such an id value. An integer constant can first be used in a SELECT
 statement’s WHERE clause to perform a less-than comparison to
 check.
Example 3-7. Using integer constants
booktown=# SELECT * FROM authors WHERE id < 100;
 id | last_name | first_name
-------+-----------+------------------
 16 | Alcott | Louisa May
(1 row)

booktown=# SELECT * FROM authors WHERE id = 116;
 id | last_name | first_name
-------+-----------+------------------
(0 rows)

booktown=# UPDATE authors
booktown-# SET id = 116
booktown-# WHERE id = 16;
UPDATE 1
booktown=# SELECT * FROM authors WHERE id = 116;
 id | last_name | first_name
-------+-----------+------------------
 116 | Alcott | Louisa May
(1 row)

In Example 3-7, the WHERE clause in the SELECT statement compares the id column identifier against an integer constant of 100, returning one row. Once
 the author with the offending id is found, a second SELECT statement is issued to check for an existing author with an id of 116. This is to verify that the new id is not in use by another author
 within the authors table, as this column has been specified as requiring a
 unique identifier. Finally, an UPDATE statement is executed, again using
 integer constants in both the SET and WHERE
 clauses.

Floating-point constants

A floating-point constant is similar to an integer constant, but it is used to represent
 decimal values as well as whole integers. These are required whenever such a floating-point
 value must be represented literally within a SQL statement.
A floating-point constant can be represented in several forms, as shown in Table 3-4. Each occurrence of ## represents one or more digits.
Table 3-4. Floating-point representations
	
 Representation

 	
 Example

	
 ##.##

 	
 6.4

	
 ##e[+-]##

 	
 8e-8

	
 [##].##[e[+-]##]

 	
 .04e8

	
 ##.[##][e[+-]##]

 	
 4.e5

In the first form, there must be at least one digit before
 or after the decimal point for PostgreSQL to recognize the value as a floating-point constant
 versus an integer constant. The other options involve having at least one digit before or
 after an exponent clause, denoted by the e in the
 list. The presence of either the decimal point, the exponent clause, or both, distinguishes
 an integer constant from a floating-point.
Each of these valid formats is represented in Example 3-8 through a simple SQL SELECT
 statement illustrating a variety of floating-point conventions.
Example 3-8. Valid floating-point values
booktown=# SELECT .04 AS small_float,
booktown-# -16.63 AS negative_float,
booktown-# 4e3 AS exponential_float,
booktown-# 6.1e-2 AS negative_exponent;
 small_float | negative_float | exponential_float | negative_exponent
-------------+----------------+-------------------+-------------------
 0.04 | -16.63 | 4000 | 0.061
(1 row)

Boolean constants

Boolean constants are much simpler than any other constant values recognized by
 PostgreSQL, as they may consist only of two possible values: true and false. When PostgreSQL
 encounters either of these terms outside of single quotes, they are implicitly interpreted as
 Boolean constants, rather than as string constants. Example 3-9 shows this important
 distinction.
Example 3-9. The difference between true and ‘true’
testdb=# SELECT true AS boolean_t,
testdb-# 'true' AS string_t,
testdb-# false AS boolean_f,
testdb-# 'false' AS string_f;
 bool_t | string_t | bool_f | string_f
--------+----------+--------+----------
 t | true | f | false
(1 row)

When the terms true and false are parsed by
 PostgreSQL outside of single quotes, they are implied Boolean values. As shown in Example 3-9, PostgreSQL displays values which are
 literally of the type boolean as t or f, though be careful not to try to use only t or f as Boolean constant values, as this will not be interpreted correctly by
 PostgreSQL, and will cause an error.

Special Character Symbols

Special character symbols are characters with a pre-defined
 syntactic meaning in PostgreSQL. They are typically disallowed from being used in identifier
 names for this reason, though as mentioned in the section on quoted identifiers, this
 restriction can usually be worked around with quotes if need be.
Punctuation symbols

Some special character symbols help to make up the “punctuation” of a SQL statement,
 much like parentheses, periods and commas do in the English language. Table 3-5 shows some common PostgreSQL-recognized syntactic
 symbols.
Table 3-5. Punctuation symbols
	
 Character

 	
 Definition

	
 * (asterisk)

 	
 Used with the SELECT command to query all columns in the table,
 and with the count() aggregate function to count all rows in a table.

	
 () (parentheses)

 	
 Used to group expressions, enforce operator precedence, and to make function calls.
 The use of parentheses is highly subjective to the context in which they are
 used.

	
 [] (brackets)

 	
 Used in the selection of specific elements in an array, or in the declaration of an
 array type (e.g., with the CREATE TABLE command).

	
 ; (semicolon)

 	
 Used to terminate a SQL command. The only place it can be used within a statement
 is within a string constant or quoted identifier.

	
 , (comma)

 	
 Some commands use the comma to separate elements within a list.

	
 . (period)

 	
 Used in floating-point constants (e.g., 3.1415), as well as to reference column
 names as children of tables (e.g., table_name.column_name).

	
 : (colon)

 	
 Used to select slices from arrays.

	
 $ (dollar sign)

 	
 Used in the body of a function definition to represent a positional parameter, or
 argument.

Operator symbols

An operator is another type of special character symbol; it is used to perform
 operations on identifiers or constants, returning resultant values.
 Operators can be used for mathematical operations, such as addition, as well as to perform
 comparison and logical operations.
Consider again the books table, and its numeric author_id field.
 Recall that the author_id column is an integer used to identify an author.
 Now imagine that, due to a system modification, all author identifiers must be incremented by
 1,500. This can be achieved by evaluating the result of an operation (an operator
 expression) in an UPDATE statement upon the author_id column. This requires use of the addition (+) operator. An example of
 this can be seen in Example 3-10.
Example 3-10. Operators in statements
booktown=# SELECT * FROM books;
 id | title | author_id | subject_id
------+-----------------------------+-----------+------------
 7808 | The Shining | 4156 | 9
 156 | The Tell-Tale Heart | 15 | 9
 4513 | Dune | 1866 | 15
 4267 | 2001: A Space Odyssey | 2001 | 15
 1608 | The Cat in the Hat | 1809 | 2
 1590 | Bartholomew and the Oobleck | 1809 | 2
(6 rows)

booktown=# UPDATE books SET author_id = author_id + 1500;
UPDATE 6
booktown=# SELECT * FROM books;
 id | title | author_id | subject_id
------+-----------------------------+-----------+------------
 7808 | The Shining | 5656 | 9
 156 | The Tell-Tale Heart | 1515 | 9
 4513 | Dune | 3366 | 15
 4267 | 2001: A Space Odyssey | 3501 | 15
 1608 | The Cat in the Hat | 3309 | 2
 1590 | Bartholomew and the Oobleck | 3309 | 2
(6 rows)

As you can see in Example 3-10, each author_id record is modified with the results of the + operator’s operation upon
 the previous author_id value.
Common operators that you may already be familiar with include the basic mathematical
 operators: the + sign for the addition of two numeric values, the - sign for the subtraction of one numeric value from another, etc. Some of the
 more esoteric operators include the bitwise & and | operators, which modify binary values
 at the bit level.
In addition to these character symbol operators, it’s important to remember the SQL
 keywords, which are frequently called operators as well. Most notably, this includes the
 logical operators AND, OR, and NOT.
 While technically keywords, these terms are grouped with the operators because of their
 operational effect upon constants and identifiers.
Table 3-6 lists some fundamental PostgreSQL
 operators.
Table 3-6. Fundamental PostgreSQL operators
	
 Category

 	
 Operator

 	
 Definition

	
 Mathematical operators

 	
 + (addition)

 	
 Adds two numeric types

	 	
 - (subtraction)

 	
 Subtracts one numeric type from another

	 	
 / (division)

 	
 Divides one numeric type by another

	 	
 *

 (multiplication)

 	
 Multiplies one numeric type by another

	 	
 ! (factorial)

 	
 Returns an integer’s factorial

	 	
 @ (absolute value)

 	
 Returns the absolute value of a numeric value

	
 Comparison operators

 	
 = (equivalence)

 	
 Compares two values for equivalence

	 	
 < (less than)

 	
 Evaluates whether or not one number is less than another

	 	
 > (greater than)

 	
 Evaluates whether or not one number is larger than another

	 	
 ~ (regular expression)

 	
 Performs a regular expression comparison on text values

	
 Logical operators

 	
 NOT

 	
 Returns the opposite of a Boolean condition

	 	
 AND

 	
 Returns true if both Boolean conditions are true

	 	
 OR

 	
 Returns true if at least one of two Boolean conditions is true

While many operators have various connotations depending on their context, the = operator is an especially important one due to its meaning when used with an
 UPDATE statement’s SET clause.
While in most expressions the = operator is an equivalence operator
 (used to compare two values for equivalence), when following the SET
 clause and an identifier name in an UPDATE statement, the = is read as an assignment operator. This means that it is
 used to assign a new value to an existing identifier, as the SET term
 implies.
For more information on operators, see the section titled Operators.

Comments

Comments are blocks of text that, through special character sequences, can embed non-SQL
 text within SQL code. These can be used within blocks of code, because PostgreSQL removes the
 commented areas from the input stream and treats them as whitespace. There are two styles of
 comments available: single-line comments, and multiline comments.
Single-line comments are preceded by two dashes (--) and may either be
 on a line by themselves, or they may follow valid SQL tokens. (The comments themselves are not
 considered tokens to PostgreSQL’s parser, as any character data following the -- sequence, up to the end of the line, is treated as whitespace.) This is
 demonstrated in Example 3-11.
Example 3-11. Single-line comments
testdb=# SELECT 'Test' -- This can follow valid SQL tokens,
testdb-# -- or be on a line of it own.
testdb-# AS example;
 example

 Test
 (1 row)

Multiline comments begin with a sequential slash-asterisk (/*)
 sequence, and terminate with a sequential asterisk-slash (*/) sequence.
 This style of commenting may already be familiar to C programmers, but there is one key
 difference between PostgreSQL’s interpreter and the C language interpreter: PostgreSQL
 comments may be nested. Therefore, when you create a multiline comment
 within another multiline comment, the */ used to close the inner comment
 does not also close the outer comment. Example 3-12 provides a comment
 explanation.
Example 3-12. Multiline comments
testdb=# SELECT 'Multi' /* This comment extends across
testdb*# * numerous lines, and can be
testdb*# * /* nested safely */ */
testdb-# || '-test' AS example;
 example

 Multi-test
(1 row)

Nesting comments can be useful if you have a file containing SQL syntax of which you wish
 to comment a large portion before sending to PostgreSQL for interpreting and execution. If you
 have already used multiline comments within that document and you wish to comment a large
 section which includes those comments, PostgreSQL is intelligent enough to recognize that a
 closing comment sequence (*/) closes only the most recently opened comment, not the entire
 commented region.
Note
[image: Multiline comments]
The asterisk character by itself (without an adjacent slash character) has no special
 meaning within a comment. The extra asterisks in Example 3-12 on
 multiline comments are provided only for aesthetic purposes and readability.

Putting It All Together

In summary, a SQL statement is comprised of tokens, where each token can represent either
 a keyword, identifier, quoted identifier, constant, or special character symbol. Table 3-7 uses a simple SELECT statement to illustrate
 a basic, but complete, SQL statement and its components.
Table 3-7. A simple SQL query
	 	
 SELECT

 	
 id, name

 	
 FROM

 	
 states

	
 Token Type

 	
 Keyword

 	
 Identifiers

 	
 Keyword

 	
 Identifier

	
 Description

 	
 Command

 	
 Id and name columns

 	
 Clause

 	
 Table name

As shown in the table, the SELECT statement contains the keywords
 SELECT and FROM. Together, the FROM
 keyword and states token compose a clause, as they modify and further
 describe the SELECT command.
The id, name, and states tokens are the identifiers
 of the statement. The id and name identifiers specify
 the selected columns, while the states identifier specifies the table name
 to select from. Therefore, with the preceding SQL query, you are instructing PostgreSQL to
 display the columns named id and name for each row from
 the states table. Example 3-13 shows the output this
 query generates within the booktown database.
Example 3-13. Example SQL query
booktown=# SELECT id, name FROM states;
 id | name
----+------------
 42 | Washington
 51 | Oregon
(2 rows)

booktown=#

Getting more complicated, Table 3-8 and Table 3-9 break down another example statement. This
 statement uses the UPDATE command, along with SET and
 WHERE clauses, which respectively specify with what
 to update the records, and how to find the records to update.
Table 3-8. UPDATE example: the SET clause
	
 UPDATE

 	
 states

 	
 SET

 	
 id

 	
 =

 	
 51

	
 keyword

 	
 identifier

 	
 keyword

 	
 identifier

 	
 operator

 	
 integer constant

	
 command

 	
 table name

 	
 clause

 	
 column

 	
 assignment

 	
 new id value

Table 3-9. UPDATE example: the WHERE clause
	
 WHERE

 	
 name

 	
 =

 	
 'Oregon'

	
 keyword

 	
 identifier

 	
 operator

 	
 string constant

	
 clause

 	
 column name

 	
 equivalence

 	
 string value to match

When executed, this statement examines each record’s name column to
 find matches for the WHERE clause’s stated condition (equivalence to the
 string constant ‘Oregon’). Then, for each row which matches that condition, it updates the
 id column with the value 51.
Breaking it down, this UPDATE statement has three keywords, three
 identifiers, two operators, and two constants. The keywords are UPDATE (the
 SQL command), SET (specifies the updates to make), and WHERE (identifies the rows to update). The identifiers are the states table name, the id column name, and the name column name.
The operators are both represented by the = operator. When used with
 the SET clause, this operator is used for assignment (to assign a new value
 to an existing record’s identified column); this is a special use which is unique to the
 SET clause. In contrast, when used with the WHERE
 clause, the = operator is used to check equivalence between values. In this
 case, this means that the equivalence operator will check the value of a record’s name column against a string constant with the value of
 Oregon.
Finally, the constants in this statement are the integer constant 51 (the new value for
 the id column), and the string constant Oregon
 (compared to the name column through the WHERE
 clause).
Example 3-14 therefore updates the states table by
 setting the id column to 51 whenever the name column
 matches the value Oregon. It then checks the results of that UPDATE statement with another SELECT statement.
Example 3-14. A SQL update
booktown=# UPDATE states
booktown-# SET id = 51
booktown-# WHERE name = 'Oregon';
UPDATE 1
booktown=# SELECT * FROM states
booktown-# WHERE name = 'Oregon';
 id | name | abbreviation
----+--------+--------------
 51 | Oregon | OR
(1 row)

booktown=#

Data Types

SQL is considered a
 strongly typed language. This means that any piece of data represented by
 PostgreSQL has an associated data type, even if it is not plainly obvious. A data value’s type
 both defines and constrains the kinds of operations which may be performed on it.
Not only is every piece of data associated with a type, but types play a large part in the
 construction of tables. As stated in the section titled Introduction to Relational Databases, tables are made up of one or more columns.
 These columns must, in addition to having a name, have a specific data type.
Note
[image: Data Types]
While PostgreSQL provides a wide variety of built-in data types, you also have the option
 to add new data types to PostgreSQL using the CREATE TYPE command. See the
 reference entry on CREATE TYPE for more on this command.

Table 3-10 lists the data types officially
 supported by PostgreSQL, as well as any PostgreSQL recognized aliases
 (alternative names that are identical in connotation). There are many other internal (meaning
 they are no longer intended for normal use) or deprecated (outdated, and discouraged) data
 types available that are unlisted.
Additionally, while most of the data types implemented in PostgreSQL are directly derived
 from SQL standards, there are some actively maintained data types that are non-standard (such
 as the geometric and spacial types). Therefore, you will not always be able to find equivalent
 types on other SQL-capable database management systems.
Table 3-10. PostgreSQL supported data types
	
 Category

 	
 Data type

 	
 Description

 	
 Standardization

	
 Boolean & binary types

 	
 boolean, bool

 	
 A single true or false value.

 	
 SQL99

	 	
 bit(n)

 	
 An n -length bit string (exactly n binary bits).

 	
 SQL92

	 	
 bit varying(n),
 varbit(n)

 	
 A variable n -length bit string (up to
 n binary bits)

 	
 SQL92

	
 Character types

 	
 character (n),
 char(n)

 	
 A fixed n-length character string.

 	
 SQL89

	 	
 character varying(n), varchar(n)

 	
 A variable length character string of up to n
 characters.

 	
 SQL92

	 	
 text

 	
 A variable length character string, of unlimited length.

 	
 PostgreSQL-specific

	
 Numeric types

 	
 smallint, int2

 	
 A signed 2-byte integer.

 	
 SQL89

	 	
 integer, int, int4

 	
 A signed 4-byte integer.

 	
 SQL92

	 	
 bigint, int8

 	
 A signed 8-byte integer, up to 18 digits in length.

 	
 PostgreSQL-specific

	 	
 real, float4

 	
 A 4-byte floating-point number.

 	
 SQL89

	 	
 double precision, float8, float

 	
 An 8-byte floating-point number.

 	
 SQL89

	 	
 numeric(p, s),
 decimal(p, s)

 	
 An exact numeric type with arbitrary precision p, and scale s.

 	
 SQL99

	 	
 money

 	
 A fixed precision, U.S.-style currency.

 	
 PostgreSQL-specific, deprecated.

	 	
 serial

 	
 An auto-incrementing 4-byte integer.

 	
 PostgreSQL-specific

	
 Date and time types

 	
 date

 	
 The calendar date (day, month and year).

 	
 SQL92

	 	
 time

 	
 The time of day.

 	
 SQL92

	 	
 time with time zone

 	
 The time of day, including time zone information.

 	
 SQL92

	 	
 timestamp (includes time zone)

 	
 Both the date and time.

 	
 SQL92

	 	
 interval

 	
 An arbitrarily specified length of time.

 	
 SQL92

	
 Geometric types

 	
 box

 	
 A rectangular box in a 2D plane.

 	
 PostgreSQL-specific

	 	
 line

 	
 An infinite line in a 2D plane.

 	
 PostgreSQL-specific

	 	
 lseg

 	
 A finite line segment in a 2D plane.

 	
 PostgreSQL-specific

	 	
 circle

 	
 A circle with center and radius.

 	
 PostgreSQL-specific

	 	
 path

 	
 Open and closed geometric paths in a two-dimensional plane.

 	
 PostgreSQL-specific

	 	
 point

 	
 geometric point in a 2D plane

 	
 PostgreSQL-specific

	 	
 polygon

 	
 A closed geometric path in a 2D plane.

 	
 PostgreSQL-specific

	
 Network types

 	
 cidr

 	
 An IP network specification.

 	
 PostgreSQL-specific

	 	
 inet

 	
 A network IP address, with optional subnet bits.

 	
 PostgreSQL-specific

	 	
 macaddr

 	
 A MAC address (e.g., an Ethernet card’s hardware address).

 	
 PostgreSQL-specific

	
 System types

 	
 oid

 	
 An object (row) identifier.

 	
 PostgreSQL-specific

	 	
 xid

 	
 A transaction identifier.

 	
 PostgreSQL-specific

Remaining true to theme, the following sections on data types will describe in further
 detail each of the most widely used and practical types. This book will not go into detail on
 the non-standard and/or more esoteric types, such as the geometric, network and bitwise types.
 These sections include information on valid usage, storage considerations, input and output
 formats and general syntactic conventions. Before we go much further on specific data types
 there are a couple of topics worth discussing, including the NULL
 keyword.
NULL Values

Despite the previously discussed rule that a column can have only one data type and
 logically accept only that type, there is a value that all columns can be
 defined as, no matter what their data type. This is the value a column is set to when you use
 the SQL keyword NULL. Essentially, NULL has no data
 value, so it is not considered a type; it is a system value that indicates to the database
 that the field it is located within contains no value. The only exception to the rule that any
 column can contain a NULL is when the NOT NULL
 constraint is specified for a column.
NULL is often used in places where a value is optional. It can be a
 convenient way of omitting data without having to resort to strange or arbitrary conventions,
 such as storing negative values in an integer field to represent omitted data. While your
 system requirements may change over time, the connotation of NULL is always
 NULL.
NULL can be thought of as a meta-value: a value that represents a
 lack of a value, which will never be equivalent to
 a non-NULL value. One problem often encountered when working with NULL values is that they are easily confused with empty character strings, which
 return a blank value to the client when selected. The reason this can be confusing is that
 NULL values also return a blank value when selected; however, they are
 completely different than empty character strings and this must be understood in order to
 avoid creating faulty queries or code. A character string column that contains a blank value
 still contains a string of characters, though the characters that compose the string are
 blank; thus, there is still a value in the column. A NULL value represents
 the complete absence of value within the column, not that it is merely blank.
This is an important distinction, as the rules for SQL operations involving the NULL value are quite different than the rules for operations involving empty
 string values. This internal distinction is especially important in reference to
 joins, which are discussed in Chapter 4.
The return of both NULL and empty values is shown in Example 3-15, which retrieves a set of five books from the books table. The first SELECT query shows that there appear to
 be two books which have been inserted without titles. Upon successive querying, however, it
 becomes clear that while neither have visible titles, one of the books has an
 empty value for its title (id 100), while the other
 has a NULL value.
Example 3-15. Observing NULL values
booktown=# SELECT id, title FROM books;
 id | title
------+---------------------
 7808 | The Shining
 156 | The Tell-Tale Heart
 4513 | Dune
 100 |
 101 |
(5 rows)

booktown=# SELECT id, title FROM books WHERE title = '';
 id | title
-----+-------
 100 |
(1 row)

booktown=# SELECT id, title FROM books WHERE title IS NULL;
 id | title
-----+-------
 101 |
(1 row)

Example 3-16 demonstrates a more practical (and likely) use of NULL in a table called editions, which relates a book’s ISBN
 number to its publication date.
Example 3-16. Using NULL values
booktown=# SELECT isbn, publication FROM editions;
 isbn | publication
------------+-------------
 039480001X | 1957-03-01
 0394800753 | 1949-03-01
 0385121679 |
(3 rows)

booktown=# SELECT isbn, publication FROM editions WHERE publication IS NULL;
 isbn | publication
------------+-------------
 0385121679 |
(1 row)

NULL might be used in this manner in order to represent books with
 editions that are not yet published, or for books whose publication date was unknown when
 entered into the database. It could be misleading to supply some arbitrarily illogical date
 for a book fitting either of these criteria, and in both cases, NULL makes
 sense as a solution.

Boolean Values

A Boolean value is a simple data structure which can only represent
 values of true or false. PostgreSQL supports the SQL99-defined boolean data
 type, with a PostgreSQL-specific alias of bool.
Like all other data types, Boolean values can also be set to NULL. If
 a Boolean is set to NULL, it will never be interpreted as either true or
 false; it will be interpreted as NULL. This may seem obvious, but it is
 significant in situations where you may think to check for NULL Booleans by
 checking for false values (which won’t work). You must use IS NULL to check
 for NULL Booleans. The ability to be true, false, or NULL (and its related rules regarding the designation of NULL
 as not being true or false) is known as three-valued logic.
Table 3-11 shows the valid constant values for a
 true or false state that are recognized by PostgreSQL. Which convention you choose to employ
 is dependent solely on your own preference. All variations of true, as well as all variations
 of false, are interpreted identically by the server.
Table 3-11. Supported true or false constants
	
 True

 	
 False

	
 true

 	
 false

	
 't'

 	
 'f '

	
 'true'

 	
 'false'

	
 'y'

 	
 'n'

	
 'yes'

 	
 'no'

	
 '1'

 	
 '0'

Note
[image: Supported true or false constants]
If you decide to use the constants listed in Table 3-11, every value (except for true and false) must be enclosed within single quotes. Failure
 to do so will result in a server error.

Example 3-17 creates a table named daily_inventory that logs what books are stock and which are not, correlating an
 ISBN number with a Boolean value. Once created, the table is populated with data via a series
 of INSERT statements involving a string constant (the ISBN number), and a
 variety of valid Boolean constants.
Example 3-17. Simple Boolean table
booktown=# CREATE TABLE daily_inventory (isbn text, in_stock boolean);
CREATE
booktown=# INSERT INTO daily_inventory VALUES ('0385121679', true);
INSERT 3390926 1
booktown=# INSERT INTO daily_inventory VALUES ('039480001X', 't');
INSERT 3390927 1
booktown=# INSERT INTO daily_inventory VALUES ('044100590X', 'true');
INSERT 3390928 1
booktown=# INSERT INTO daily_inventory VALUES ('0451198492', false);
INSERT 3390929 1
booktown=# INSERT INTO daily_inventory VALUES ('0394900014', '0');
INSERT 3390930 1
booktown=# INSERT INTO daily_inventory VALUES ('0441172717', '1');
INSERT 3390931 1
booktown=# INSERT INTO daily_inventory VALUES ('0451160916');
INSERT 3390932 1

Now that the table has been populated with records, a SELECT query may
 be issued to easily check which books are in stock, as shown in Example 3-18.
Example 3-18. Checking Boolean values
booktown=# SELECT * FROM daily_inventory WHERE in_stock = 'yes';
 isbn | in_stock
------------+----------
 0385121679 | t
 039480001X | t
 044100590X | t
 0441172717 | t
(4 rows)

With a Boolean column you have the ability to imply a true value by
 referencing the column name without any kind of operator or modifying keyword. This can lead
 to more intuitive looking queries for well-designed tables, as shown in Example 3-19.
Example 3-19. Implying Boolean ‘true’
booktown=# SELECT * FROM daily_inventory WHERE in_stock;
 isbn | in_stock
------------+----------
 0385121679 | t
 039480001X | t
 044100590X | t
 0441172717 | t
(4 rows)

Although the second query does not specify ‘true’ or ‘false’, it implicitly looks for a
 value of ‘true’ by omitting a comparison operator.
Similarly, if you want to search for false values, you may either compare the named
 column’s value against any of the valid boolean constants in Table 3-11, or you may use the SQL keyword NOT just before the column name. Each method is demonstrated in Example 3-20.
Example 3-20. Checking for ‘false’ Boolean values
booktown=# SELECT * FROM daily_inventory WHERE in_stock = 'no';
 isbn | in_stock
------------+----------
 0451198492 | f
 0394900014 | f
(2 rows)

booktown=# SELECT * FROM daily_inventory WHERE NOT in_stock;
 isbn | in_stock
------------+----------
 0451198492 | f
 0394900014 | f
(2 rows)

In this way, you can see how SQL was designed with human readability in mind. By naming
 your tables and columns in well-designed terms, a SQL query can read almost as
 plainly as an English sentence.
For the more programming-oriented readers, it may be of interest that you can use the
 inequality (!=) operator to compare the value of a boolean field against any of the values in Table 3-11 (e.g., WHERE in_stock !=
 't'). As such, the following three syntactic variations are each equivalent:
SELECT * FROM daily_inventory WHERE NOT in_stock;
SELECT * FROM daily_inventory WHERE in_stock = 'no';
SELECT * FROM daily_inventory WHERE in_stock != 't';
You may have noticed that while seven rows were inserted into the table in Example 3-17, only six rows were returned between the books found in
 stock, and those found out of stock. This is due to the last insertion in Example 3-17 not supplying a value at all for the in_stock column, leaving the record for the book with ISBN
 0451160916 with a NULL value in the in_stock column.
As stated previously, NULL will not register as either true or false.
 As such, you may use the SQL phrase IS NULL to check for rows with NULL values. Alternatively, you may use != but you will risk
 portability issues with other databases. The following syntax demonstrates a SQL query which
 uses the IS NULL phrase:
booktown=# SELECT * FROM daily_inventory WHERE in_stock IS NULL;
 isbn | in_stock
------------+----------
 0451160916 |
(1 row)
Since IS NULL is a general SQL phrase, you can use the same WHERE clause in an UPDATE statement to correct any accidental
 NULL values.
Example 3-21. Correcting NULL values
booktown=# UPDATE daily_inventory SET in_stock = 'f' WHERE in_stock IS NULL;
UPDATE 1

Character Types

Character types are required any time that you wish to reference character data, such as
 blocks of ASCII text. They are commonly used for storing names, addresses, and so on.
SQL provides two character types called character, and character varying. In addition to these, a general text type is
 supported by PostgreSQL, which does not require an explicitly declared upper limit on the size
 of the field. Columns of type text are automatically re-sized according to
 the data you put in them, and they may re-size without boundaries (discounting, of course, the
 1GB limit for a single field). Table 3-12 shows the available
 character data types within PostgreSQL.
Table 3-12. Character types
	
 Type

 	
 Storage

 	
 Description

	
 character(n),
 char(n)

 	
 (4 + n) bytes

 	
 A fixed-length character string, padded with spaces so that it is n characters in length.

	
 character varying(n), varchar(n)

 	
 Up to (4 + n) bytes

 	
 A variable-length character string with a limit of n characters

	
 text

 	
 Variable

 	
 A variable, unlimited-length character string

The n in Table 3-12 represents an arbitrarily specified number of characters. This number is specified for a
 column when a table is created.
Note
[image: Character types]
Although the text data type is not part of the ANSI/ISO SQL
 standards, many other Relational Database Management Systems (RDBMS) provide this
 functionality, including Sybase and MS SQL Server.

Numeric Types

PostgreSQL’s numeric types are used to represent both integers and decimal floating-point
 values. From a general perspective, PostgreSQL’s supported numeric types consist of:
	Two-, four-, and eight-byte integers

	Four- and eight-byte floating-point numbers

	Fixed precision decimals

PostgreSQL has support for special types which fall under the family of numeric types,
 including the deprecated money type, and the special serial construct.
Table 3-13. Numeric types overview
	
 Data type

 	
 Storage

 	
 Range

	
 bigint, int8

 	
 8 bytes

 	
 Whole integer values, –9,223,372,036,854,775,807 to
 +9,223,372,036,854,775,807

	
 double precision, float8, float

 	
 8 bytes

 	
 Floating-point integer values, 15 significant digits, unlimited size (with limited
 precision)

	
 integer,
 int, int4

 	
 4 bytes

 	
 Whole integer values, –2147483648 to +2147483647

	
 numeric(p, s), decimal (p, s)

 	
 Variable

 	
 Whole or floating point integers defined as p total digits (including digits to the right of the decimal) with
 s digits to the right of the decimal
 point

	
 real, float4

 	
 4 bytes

 	
 Floating-point integer values, six significant digits, unlimited size (with limited
 precision)

	
 smallint, int2

 	
 2 bytes

 	
 Whole integers, –32768 to +32767

	
 money

 	
 4 bytes

 	
 Floating-point integer values with a scale of two digits to the right of the
 decimal, —21474836.48 to +21474836.47

	
 serial

 	
 4 bytes

 	
 Whole integers, 0 to 2147483647

As shown in Table 3-13, several of PostgreSQL’s data types
 have aliases that are equivalent to their associated data types. This was done for ease of
 use, but at times it can be confusing, due to the fact that some of the aliases sound
 familiar. If you are not careful to understand what data type an alias you are using is
 associated with, you may accidentally reference the wrong data type. For example, in
 PostgreSQL the real and double precision data types
 represent values that in many other languages are referred to as float values; however, they
 both have aliases that contain the word “float” (float and float8 link to double precision; float4 links to real). Problems may result if if you attempt to use the float
 alias, thinking it is linked to real, when in fact it is associated with
 double precision.
The numeric type

The numeric (also known as decimal) type is a
 specially designed numeric data type that can represent arbitrarily large and precise values
 within a fixed length that is given by the user. When you create a table with a column of
 type numeric, you may specify in parentheses two values: the
 precision and the scale.
The precision is the maximum number of digits that the numeric value may hold (including
 digits to the right of the decimal point), while the scale describes how many of those digits
 of precision are to be to the right of the decimal point. If left unspecified, the precision
 will default to 30 digits, and scale to 6 digits. The maximum precision (and, hence, the
 maximum scale) you can set this to is 1,000. Setting the precision to 1,000 would allow a
 maximum 1,000 digits, which should be fairly adequate for most needs.
Note
[image: The numeric type]
PostgreSQL will not always return an error if you violate the precision and scale of a
 numeric column.

Unlike the floating-point data types, you will receive an overflow error if you attempt
 to insert a number that is larger than the allotted precision range. Beside this limitation,
 you should be able to insert any number that fits within the provided precision and scale of
 the numeric type column.
For example, in a numeric(11,6) column, you may
 safely insert the value 9.999999 with two digits too many to the right of the decimal point
 (though the value is rounded up to 10.000000). However, an attempt to insert the value
 99999.99999999 will fail, as shown in Example 3-22.
Problems that arise from trying to insert values that are two large can be avoided by
 using the trunc() numeric truncating function within an INSERT command to make sure a number is truncated to a size suitable for the
 column it is being inserted into. You must provide the length it should be truncated to,
 which means you’ll have to be aware of the precisions you’ve previously specified. The use of
 trunc() is also illustrated within Example 3-22.
Example 3-22. Avoiding overflow errors
booktown=# INSERT INTO numbers VALUES (9.99999999);
INSERT 3390697 1
booktown=# SELECT * FROM numbers;
 number

 10.000000
(1 row)

booktown=# INSERT INTO numbers VALUES (99999.99999999);
ERROR: overflow on numeric ABS(value) >= 10^5 for field with precision 11 scale 6
booktown=# INSERT INTO numbers VALUES (trunc(99999.99999999, 6));
INSERT 3390698 1
booktown=# SELECT * FROM numbers;
 number

 10.000000
 99999.999999
(2 rows)

booktown=# INSERT INTO numbers VALUES (trunc(9.99999999, 6));
INSERT 3390699 1
booktown=# SELECT * FROM numbers;
 number

 10.000000
 99999.999999
 9.999999
(3 rows)

The money type

The money type stores U.S.-style currency
 notation and plain numeric values. As of the writing of this book, the money type is deprecated, and is discouraged from being actively used. It is only
 presented here as it is still a functional data type, and may be in use on existing
 PostgreSQL systems.
The suggested alternative to the money type is the numeric type, with a scale of 2 to represent coin values, and a precision large
 enough to store the largest necessary monetary value (including two digits for the coin
 precision). Formatting similar to that of the money type can be achieved
 with the to_char() function, as shown in Example 3-23. This example demonstrates the text concatenation
 operator, and the ltrim() text formatting function, each described in
 Chapter 4.
Example 3-23. A numeric alternative to money
booktown=# CREATE TABLE money_example (money_cash money,
booktown(# numeric_cash numeric(10,2));
CREATE
booktown=# INSERT INTO money_example VALUES ('$12.24', 12.24);
INSERT 3391095 1
booktown=# SELECT * FROM money_example;
 money_cash | numeric_cash
------------+--------------
 $12.24 | 12.24
(1 row)

booktown=# SELECT money_cash,
booktown-# '$' || ltrim(to_char(numeric_cash, '9999.99'))
booktown-# AS numeric_cashified
booktown-# FROM money_example;
 money_cash | numeric_cashified
------------+-------------------
 $12.24 | $12.24
(1 row)

The serial type

The serial type is a non-standard but useful shortcut which allows
 you to easily create an identifier column within a table that contains a unique value for
 each row. The serial type literally combines the functionality of a 4-byte
 integer data type, an index, and a sequence. Example 3-24 shows the serial type being used to generate a unique
 identifier for each row in a table named auto_identified.
Example 3-25 shows
 the same thing being accomplished using an integer column, the nextval()
 function, and a sequence. As of the writing of this book, these two methods are functionally
 identical.
See Chapter 7, for more information on using sequences.
Example 3-24. Using the serial data type
booktown=# CREATE TABLE auto_identified (id serial);
NOTICE: CREATE TABLE will create implicit sequence 'auto_identified_id_seq'
for SERIAL column 'auto_identified.id'
NOTICE: CREATE TABLE/UNIQUE will create implicit index 'auto_identified_id_key'
for table 'auto_identified'
CREATE

Example 3-25. Accomplishing the same goal manually
booktown=# CREATE SEQUENCE auto_identified_id_seq;
CREATE
booktown=# CREATE TABLE auto_identified
booktown-# (id integer UNIQUE DEFAULT nextval('auto_identified_id_seq'));
NOTICE: CREATE TABLE/UNIQUE will create implicit index 'auto_identified_id_key'
for table 'auto_identified'
CREATE

Note
[image: Accomplishing the same goal manually]
Upon dropping a table, the implicit sequence created for the serial types are not
 automatically dropped. You must clean up after these types of sequences if you destroy a
 table which had a serial column, as shown in Example 3-24,
 with the DROP SEQUENCE command.

Date and Time Types

Date and time types are a convenient way to store date and time related data in a uniform
 SQL data structure, without having to worry about the conventions involved with storage (e.g.,
 if you were to try to store such information in a character data type). PostgreSQL uses Julian
 dates for all date and time calculations. Julian date representation is the commonly used
 January through December calendar that you are most likely familiar with. By fixing the length
 of a year at about 365.24 days, Julian dates can correctly calculate any date after 4713 BC,
 as well as far into the future.
PostgreSQL supports all of the SQL92-defined date and time types shown in Table 3-14, as well as some PostgreSQL-specific extensions to
 help with SQL92’s time-zone limitations.
Table 3-14. Date and time types
	
 Data type

 	
 Storage

 	
 Description

 	
 Range

	
 date

 	
 4 bytes

 	
 A calendar date (year, month, and day)

 	
 4713 BC to 32767 AD

	
 time

 	
 4 bytes

 	
 The time of day only, without time zone information

 	
 00:00:00.00 to 23:59:59.99

	
 time with time zone

 	
 4 bytes

 	
 The time of day only, including a time zone

 	
 00:00:00.00+12 to 23:59:59.99-12

	
 timestamp with time zone, timestamp

 	
 8 bytes

 	
 Both the calendar date and time, with time zone information

 	
 1903 AD to 2037 AD

	
 interval

 	
 12 bytes

 	
 A general time span interval

 	
 –1780000000 years to 17800000 years

Backward compatibility

To ensure compatibility with earlier versions of PostgreSQL, the developers have
 continued to provide the datetime and timespan data
 types. The datetime type is equivalent to timestamp,
 while the timespan is equivalent to the interval
 type.
Other date/time data types include abstime and reltime, which are lower precision types. However, these types are internal to
 PostgreSQL, and any or all of these types may disappear in a future release. It is advised
 therefore to design new applications with the SQL-compliant data types in mind, and to
 convert older applications from any of these data types as soon as is possible.

Date conventions

Date input can be accepted by PostgreSQL in many common formats, including the ISO-8601
 format, the traditional SQL format, the original PostgreSQL format, and more. Table 3-15 lists several of these date formats.
These formats are relevant to the date and the timestamp data types.
Table 3-15. Valid date formats
	
 Format Example

 	
 Description

	
 July 1, 2001

 	
 Named month, day and year

	
 Sunday July 1, 2001

 	
 Named day, named month, day and year

	
 July 15, 01 BC

 	
 Named month, day and year before the Common Era

	
 2001-07-01

 	
 Standard ISO-8601 format: numeric year, month and day

	
 20010715

 	
 ISO-8601: formatted numerically as complete year, month, day

	
 010715

 	
 ISO-8601: formatted numerically as 2-digit year, month, day

	
 7/01/2001

 	
 Non-European (U.S.) format: numeric month, day and year

	
 1/7/2001

 	
 European format: numeric day, month and year

	
 2001.182

 	
 Numeric format, with complete year, and sequential day of the year

When specifying a named month in a date value to PostgreSQL, you may either type the
 complete month name, or choose from a set of defined abbreviations for each month. These
 abbreviations are listed in Table 3-16.
Table 3-16. Month abbreviations
	
 Month

 	
 Abbreviation

	
 January

 	
 Jan

	
 February

 	
 Feb

	
 March

 	
 Mar

	
 April

 	
 Apr

	
 May

 	
 May

	
 June

 	
 Jun

	
 July

 	
 Jul

	
 August

 	
 Aug

	
 September

 	
 Sep, Sept

	
 October

 	
 Oct

	
 November

 	
 Nov

	
 December

 	
 Dec

Similarly, Table 3-17 lists recognized
 abbreviations for weekday names.
Table 3-17. Day of the week abbreviations
	
 Day

 	
 Abbreviation

	
 Sunday

 	
 Sun

	
 Monday

 	
 Mon

	
 Tuesday

 	
 Tue, Tues

	
 Wednesday

 	
 Wed, Weds

	
 Thursday

 	
 Thu, Thur, Thurs

	
 Friday

 	
 Fri

	
 Saturday

 	
 Sat

Despite the wide variety of ways in which PostgreSQL
 can interpret date values, the values are always stored uniformally, and will be returned in
 a consistent format. As such, you have a variety of methods available to you to customize the
 default behavior with which date and time values are returned to you.
Note
[image: Day of the week abbreviations]
While date values can always be formatted during selection via several formatting
 functions (e.g., to_char()), it is more efficient to configure your
 defaults as close to the most commonly used conventions as you can before having to resort
 to manual type conversion and text formatting.

To set the general date/time output format, the SET command can be
 applied to the run-time variable DATESTYLE. This variable may be set to
 one of four available general styles shown in Table 3-18.
Table 3-18. Date output formats
	
 General format

 	
 Description

 	
 Example

	
 ISO

 	
 ISO-8601 standard

 	
 2001-06-25 12:24:00-07

	
 SQL

 	
 Traditional SQL style

 	
 06/25/2001 12:24:00.00 PDT

	
 Postgres

 	
 Original PostgreSQL style

 	
 Mon 25 Jun 12:24:00 2001 PDT

	
 German

 	
 Regional style for Germany

 	
 25.06.2001 12:24:00.00 PDT

As an example, you can use the following SQL statement to set the date style to
 SQL:
booktown=# SET DATESTYLE TO SQL;
SET VARIABLE
If you perform a SELECT current_timestamp query after setting this
 variable, PostgreSQL should return the current time using the ISO format as
 instructed:
booktown=# SELECT current_timestamp;
 timestamp

 08/10/2001 13:25:55.00 PDT
(1 row)
The SHOW command can be used to display the current value of the
 DATESTYLE variable while PostgreSQL is running.
booktown=# SHOW DATESTYLE;
NOTICE: DateStyle is SQL with US (NonEuropean) conventions
SHOW VARIABLE
In addition to these general
 formats, PostgreSQL’s date output format has two other variants which further describe how to
 display the date, shown in Table 3-19: European and
 non-European (U.S.). These determine whether the format is day followed by month, or vice
 versa. This variation can be applied on top of the previous four general formats with the
 same syntax to SET DATESTYLE and will not modify your chosen format except
 for the arrangement of the month and day.
Table 3-19. Extended date output formats
	
 Month/day format

 	
 Description

 	
 Example

	
 European

 	
 day/month/year

 	
 12/07/2001 17:34:50.00 MET

	
 U.S., or Non-European

 	
 month/day/year

 	
 07/12/2001 17:34:50.0 PST

Furthermore, you may set both the general format and day/month convention by supplying
 both variables to the SET command, comma delimited. The order of these
 variables is not important to the SET command as long as the variables are
 not mutually exclusive (e.g., SQL and ISO), as
 shown in Example 3-26.
Example 3-26. Setting date formats
booktown=# SET DATESTYLE TO ISO,US;
SET VARIABLE
booktown=# SHOW DATESTYLE;
NOTICE: DateStyle is ISO with US (NonEuropean) conventions
SHOW VARIABLE
booktown=# SET DATESTYLE TO NONEUROPEAN, GERMAN;
SET VARIABLE
booktown=# SHOW DATESTYLE;
NOTICE: DateStyle is German with European conventions
SHOW VARIABLE

If you do not specify a month/day format, a reasonable default will usually be chosen
 (e.g., European is the default for the German regional format).
While SET DATESTYLE is a convenient way to set the output format, it
 is important to note that this is a run-time variable, which means that
 it exists only for the lifespan of your connected session. There are two methods available
 that allow you to provide a default value for the DATESTYLE variable,
 which lets you avoid explicitly setting the variable for each new session you begin:
	You may change the PGDATESTYLE environment variable on the server
 running postmaster. For example, with the bash shell, you could add
 the export PGDATESTYLE="SQL US" line to the
 postgres user’s .bash_ profile file. When the
 postgres user starts postmaster, the PGDATESTYLE variable will be read and applied globally to all date and time
 formatting performed by PostgreSQL.

	You may change the PGDATESTYLE environment variable used by a client application (assuming it was
 written with the libpq library) on its session start-up, if you wish
 the client rather than the server to configure the output. For example, setting the
 PGDATESTYLE variable at a bash prompt with the export command before starting psql sets the format for
 psql to use.

Time conventions

Time values, like date values, may be entered in to a table in a number of ways.
 Commonly used formats are listed in Table 3-20. These apply to
 values of type time and time with time zone.
Table 3-20. Valid time formats
	
 Format example

 	
 Description

	
 01:24

 	
 ISO-8601, detailed to minutes

	
 01:24 AM

 	
 Equivalent to 01:24 (the “AM” attached is for readability only, and does not affect
 the value)

	
 01:24 PM

 	
 Equivalent to 13:24 (the hour must be less-than or equal to 12 to use “PM”)

	
 13:24

 	
 24-hour time, equivalent to 01:24 PM

	
 01:24:11

 	
 ISO-8601, detailed to seconds

	
 01:24:11.112

 	
 ISO-8601, detailed to microseconds

	
 012411

 	
 ISO-8601, detailed to seconds, formatted numerically

In addition to these formats, PostgreSQL allows for further description of a time value
 which is defined as time with time zone by supporting extra time zone
 parameters following the time value. Supported formats are shown in Table 3-21.
Table 3-21. Valid time zone formats
	
 Format example

 	
 Description

	
 01:24:11-7

 	
 ISO-8601, 7 hours behind GMT

	
 01:24:11-07:00

 	
 ISO-8601, 7 hours, zero minutes behind GMT

	
 01:24:11-0700

 	
 ISO-8601, 7 hours, zero minutes behind GMT

	
 01:24:11 PST

 	
 ISO-8601, Pacific Standard Time (7 hours behind GMT)

Note
[image: Valid time zone formats]
PostgreSQL supports the use of all ISO standard time zone abbreviations.

The time with time
 zone data type is mainly supported by PostgreSQL to adhere to existing SQL
 standards and for portability with other database management systems. If you need to work
 with time zones, it is recommended that you use the timestamp data type
 discussed in the section titled Timestamps. This is primarily because of
 the fact that, due to daylight savings, time zones cannot always be meaningfully interpreted
 without an associated date.
Internally, PostgreSQL keeps track of all time zone information as a numeric offset of
 GMT (Greenwich Mean Time), which is also known as UTC (Universal Coordinated Time). By
 default, PostgreSQL’s time display will use the time zone that your server’s operating system
 is configured for. If you wish the time value to operate under a different time zone, there
 are four ways in which you can modify the output:
	Set the
 TZ
 environment variable on the server
	This variable is found by the backend server as the default time zone when the
 postmaster starts up. It can be set, for example, in the postgres
 user’s .bash_profile file with a bash export
 TZ='zone' command.

	Set the
 PGTZ
 environment variable on the client
	If the PGTZ environment variable is set, it can be read by any
 client written with libpq and interpreted as the client’s default
 time zone.

	Use the
 SET TIMEZONE TO
 SQL statement
	This SQL command sets the time zone for the session to zone
 (e.g., SET TIME-ZONE TO UTC)

	Use the
 AT TIME ZONE
 SQL clause
	This SQL92 clause can be used to specify zone as a text time
 zone (e.g., PST) or as an interval (e.g., interval('—07:00')). This clause may be applied in the middle of a SQL
 statement following a value which contains a timestamp (e.g., SELECT my_timestamp
 AT TIME ZONE 'PST').

Note
[image: Valid time zone formats]
Most systems will default to GMT when a time zone variable is set to an invalid time
 zone. Additionally, if the compiler option USE_AUSTRALIAN_RULES was set
 when PostgreSQL was built, the EST time zone will refer to Australian
 Eastern Standard Time (with an offset of +10:00 hours from GMT) rather than U.S. Eastern
 Standard Time.

Timestamps

The PostgreSQL timestamp combines the functionality of the PostgreSQL
 date and time types into a single data type. The
 syntax of a timestamp value consists of a valid date format, followed by at least one
 whitespace character, and a valid time format. It can be
 followed optionally by a time zone value, if specified.
Combinations of all date and time formats listed in Table 3-15
 and Table 3-20 are each supported in this fashion. Table 3-22 illustrates some examples of valid timestamp input.
Table 3-22. Some valid timestamp formats
	
 Format Example

 	
 Description

	
 1980-06-25 11:11-7

 	
 ISO-8601 date format, detailed to minutes, and PST time zone

	
 25/06/1980 12:24:11.112

 	
 European date format, detailed to microseconds

	
 06/25/1980 23:11

 	
 U.S. date format, detailed to minutes in 24-hour time

	
 25.06.1980 23:11:12 PM

 	
 German regional date format, detailed to seconds, and PM attached

Note
[image: Some valid timestamp formats]
While PostgreSQL supports the syntax of creating a column or value with the type
 timestamp
 without
 time
 zone, as of PostgreSQL 7.1.2 the resultant data type still contains a
 time zone.

Intervals

The SQL92 standard specifies a data typed called an interval, which
 represents a fixed span of time. By itself, an interval represents only a quantity
 of time, and does not begin or end at any set date or time. These intervals can
 be useful when applied to date and time values to calculate a new date or time, either by
 subtracting or adding the quantity. They can also be handy for quickly determining the
 precise interval between two date or time values. This can be achieved by subtracting date
 values, time values or timestamps from one another.
The two syntax variations below can specify an interval within PostgreSQL:
qty unit [ago]
qty1 unit [, qty2 unit2 ...] [ago]
Where:
	qty
	Specifies the quantity of your interval, which may be any whole integer, or
 floating-point number in the case of microseconds. The literal meaning of this number is
 qualified by the subsequent unit.

	unit
	Qualifies
 the qty provided. The unit may be any one of the following keywords: second, minute,
 hour, day, week, month, year, decade, century, millennium. It can also be an abbreviation
 (as short as you want, as long as it cannot be confused with another keyword) or plurals
 of the previously mentioned units.

	ago
	The optional ago keyword of the interval determines whether or not
 you are describing a period of time before the associated time,
 rather than after. You can think of it as a negative sign for date and time types.

Example 3-27 shows functional syntax for date and interval values being meaningfully combined. You can
 see that subtracting an inverted time interval (e.g., one with the term ago) is functionally identical to adding a normal interval. This can be thought
 of as similar to the effect of adding negative numbers to integer values.
Example 3-27. Interpreting interval formats
booktown=# SELECT date('1980-06-25');
 date

 1980-06-25
(1 row)

booktown=# SELECT interval('21 years 8 days');
 interval

 21 years 8 days
(1 row)

booktown=# SELECT date('1980-06-25') + interval('21 years 8 days')
booktown-# AS spanned_date;
 spanned_date

 2001-07-03 00:00:00-07
(1 row)

booktown=# SELECT date('1980-06-25') - interval('21 years 8 days ago')
booktown-# AS twice_inverted_interval_date;
 twice_inverted_interval_date

 2001-07-03 00:00:00-07
(1 row)

Built-in date and time constants

PostgreSQL supports many special constants for use when referencing dates and times.
 These constants represent common date/time values, such as now,
 tomorrow, and yesterday. The predefined date and time
 constants supported by PostgreSQL are listed in Table 3-23.
PostgreSQL also provides three built-in functions for retrieving the current time, date,
 and timestamp. These are aptly named current_date, current_time, and
 current_timestamp.
Table 3-23. Date and time constants
	
 Constant

 	
 Description

	
 current

 	
 The current transaction time, deferred. Unlike a now, current
 is not a timestamp; it represents the current system time and can be used to reference
 whatever that time may be.

	
 epoch

 	
 1970-01-01 00:00:00+00 (Unix’s “Birthday”)

	
 infinity

 	
 An abstract constant later than all other valid dates and times

	
 -infinity

 	
 An abstract constant earlier than all other valid dates and times

	
 now

 	
 The current transaction timestamp

	
 today

 	
 Midnight, on the current day

	
 tomorrow

 	
 Midnight, on the day after the current day

	
 yesterday

 	
 Midnight on the day before the current day

The now and current timestamp constants may
 seem to be identical, looking solely at their names. They are, however, very different in
 terms of storing them in a table. The now constant is
 translated into the timestamp of the system time at the execution of
 whichever command referenced it (e.g., the time of insertion, if now had
 been referenced in an INSERT statement). In contrast, the
 current constant, as it is a deferred identifier, will actually appear
 as the phrase current in the database. From there, it can be translated
 (e.g., via the to_char() function) to the timestamp associated with the
 transaction time of any query which requests that value.
In other words, current will always tell you the “current” time
 when queried, regardless of when it was stored to the table. The current
 constant can be used in special situations, such as process tracking, where you may need to
 calculate the difference between a timestamp made with now and the
 current date and time to find the total time the process has been running. Example 3-28 demonstrates using the
 now and current constants to create a log of
 tasks. First, a table is created to house the task’s name, its start date and time, and its
 finished date and time. Two tasks are then added to the table, using the
 now constant to set the start date and current to
 set the completed date. The reason this is done is to show that both of these tasks are
 uncompleted. If a task were to be completed, the table could be updated to show a
 now timestamp for that task’s timefinished
 column.
Note
[image: Date and time constants]
The use of time/date constants requires the use of single-quotes around their
 respective names. See Example 3-28 for a valid
 representation of single-quoted time/date constants.

Example 3-28. Using the current and now constants
booktown=# CREATE TABLE tasklog
booktown=# (taskname char(15),
booktown=# timebegun timestamp,
booktown=# timefinished timestamp);
CREATE
booktown=# INSERT INTO tasklog VALUES
booktown=# ('delivery', 'now', 'current');
INSERT 169936 1
booktown=# INSERT INTO tasklog VALUES
booktown=# ('remodeling', 'now', 'current');
INSERT 169937 1
booktown=# SELECT taskname, timefinished - timebegun AS timespent FROM tasklog;
 taskname | timespent
-----------------+-----------
 delivery | 00:15:32
 remodeling | 00:04:42
(2 rows)

Therefore, you generally want to use now when storing a transaction
 timestamp in a table, or even the current_timestamp function, which is
 equivalent to the output of now. Example 3-29 shows how this could be a potentially disastrous SQL
 design issue if not properly understood. It shows a pair of INSERT
 statements; one which uses now, another which uses current. If you watch the first row returned from the two queries (the row with a
 current timestamp), you’ll notice it changes in each query to show the
 updated system time, while the second row remains the same (this is the row in which
 now was used).
Example 3-29. Comparing now to current
booktown=# INSERT INTO shipments (customer_id, isbn, ship_date)
booktown-# VALUES (1, '039480001X', 'current');
INSERT 3391221 1
booktown=# INSERT INTO shipments (customer_id, isbn, ship_date)
booktown-# VALUES (2, '0394800753', 'now');
INSERT 3391222 1
booktown=# SELECT isbn, ship_date FROM shipments;
 isbn | ship_date
------------+------------------------
 039480001X | current
 0394800753 | 2001-08-10 18:17:49-07
(2 rows)

booktown=# SELECT isbn,
booktown-# to_char(ship_date, 'YYYY-MM-DD HH24:MI:SS')
booktown-# AS value
booktown-# FROM shipments;
 isbn | value
------------+---------------------
 039480001X | 2001-08-10 18:21:22
 0394800753 | 2001-08-10 18:17:49
(2 rows)

booktown=# SELECT isbn, to_char(ship_date, 'YYYY-MM-DD HH24:MI:SS') AS value
booktown-# FROM shipments;
 isbn | value
------------+---------------------
 039480001X | 2001-08-10 18:22:35
 0394800753 | 2001-08-10 18:17:49
(2 rows)

Geometric Types

Geometric types in PostgreSQL represent
 two dimensional spatial objects. These types are not standard SQL data types, and will not be
 discussed in depth in this book. Table 3-24 gives a brief
 overview of each of the available geometric types.
Table 3-24. Geometric types
	
 Type Name

 	
 Storage

 	
 Description

 	
 Syntax

	
 point

 	
 16 bytes

 	
 A dimensionless object with no properties except for its location, where x and y are
 floating-point numbers.

 	
 (x, y)

	
 lseg

 	
 32 bytes

 	
 Finite line segment. The points specified are the end points of the line
 segment.

 	
 ((x1, y1), (x2,
 y2))

	
 box

 	
 32 bytes

 	
 Rectangular box. The points specified are the opposite corners of the box.

 	
 ((x1, y1), (x2,
 y2))

	
 path

 	
 4 + 32 * n bytes

 	
 Closed path (similar to polygon). A connected set of n points.

 	
 ((x1, y1), ...)

	
 path

 	
 4 + 32 * n bytes

 	
 Open path. A connected set of n
 points.

 	
 [(x1, y1), ...]

	
 polygon

 	
 4 + 32 * n bytes

 	
 Polygon (similar to closed path), with n end
 points defining line segments that makes up the boundary of the polygon.

 	
 ((x1, y1), ...)

	
 circle

 	
 24 bytes

 	
 The point (x, y) is the center, while
 r is the radius of the circle.

 	
 <(x, y), r >

Arrays

The original relational model specifies that the values represented by columns within a
 table be an atomic piece of data, object-relational database systems such as PostgreSQL allow
 non-atomic values to be used through data structures called
 arrays.
An array is a collection of data values referenced through a single identifier. The array
 may be a collection of values of a built-in data type or a user-defined data type, but every
 value in the array must be of the same type. Arrays can be accessed from a table through
 subscript notation via square brackets (e.g., my_array[0]). You can also
 use an array constant via curly braces within single quotes (e.g., '{value_one,value_two,value_three}').
Arrays in tables

When defining an array, the syntax allows for the array to be defined either as
 fixed-length or variable-length; however as of PostgreSQL 7.1.2, the fixed-length size
 restriction is not enforced. This means that you may treat the array as having a fixed number
 of elements at all times, but it can still be dynamically sized. For example, it is perfectly
 acceptable for a single column defined as an array to contain three values in one record,
 four values in another, and no values in a third.
Additionally, arrays may be defined as being multi-dimensional,
 meaning that each element of the array may actually represent another
 array, rather than an atomic value. Values that are selected from a
 multi-dimensional array will consist of nested curly braces in order to show an array within
 an array, as follows:
booktown=# SELECT editions FROM my_notes WHERE title='The Cat in the Hat';
 editions

 {{"039480001X","1st Ed, Hard Cover"},{"0394900014","1st Ed"}}
(1 row)

Array constants

In order to actually insert array values into a table column, you need a way to refer to
 several values as an array in a SQL statement. The formal syntax of an array constant is a
 grouping of values, separated by delimiters (commas, for built-in data types), enclosed by
 curly braces ({}), which are in turn enclosed by single quotes, as follows:
'{ value1, value2 [, ...] }'
The values in this syntax can be any valid
 PostgreSQL data type. As the entire array is constrained by single quotes, the use of single
 quotes within an array value must be escaped, just as they must be
 within a string constant. The use of commas to delimit the values, however, poses an
 interesting problem pertaining to the use of character strings which contain commas
 themselves, as the commas will be interpreted as delimiters if not within single-quotes.
 However, as just mentioned, the singles quotes constrain the array, not
 the array’s values.
PostgreSQL’s method of handling this is to use double-quotes to
 quote string constants where single-quotes would ordinarily be used outside of an array
 context, as follows:
'{"value1", "value 2, which contains a comma" }'
It’s vital to remember that arrays require the single quotes
 surrounding the curly braces in order to be interpreted correctly by PostgreSQL. You can
 think of array constants as being akin to a special type of string constant, which is
 interpreted as an array based on where it is used (e.g., when used to add records to a target
 column which is of an array data type). This is because unless used in an array context, a
 constant of the this format will be interpreted by PostgreSQL as a normal string constant (as
 it is bound by single quotes) which just happens to include curly braces.

Type Coercion

PostgreSQL supports three separate conventions for type coercion (also called
 type casting, or explicit type casting). Type
 coercion is a somewhat ugly looking term which refers to a PostgreSQL method for changing a
 value from one data type to another. In the middle of a SQL statement, this has the net effect
 of explicitly creating a constant of an arbitrary type.
Generally any of the following three methods can be used in order to cast the value
 contained within a string constant to another type:
	type
 'value'

	'value'::type

	CAST ('value'
 AS
 type)

In the case of maintained numeric constants that you wish to cast to a character string,
 you will need to use one of the following syntax forms:
	value::type

	CAST (value
 AS
 type)

The value in this syntax represents the constant
 whose data type you wish to modify, and type
 represents the type that you wish to coerce, or cast, the value to.
Note
[image: Type Coercion]
Remember that the money type is deprecated, and therefore not easily
 cast.

Constants are not the only data values that may be coerced to different types. Columns of
 a data set returned by a SQL query may be cast by using its identifier in one of the following
 syntax forms:
	identifier::type

	CAST (identifier
 AS
 type)

Bear in mind that not every data type can be coerced into every other data type. For
 example, there is no meaningful way to convert the character string abcd
 into a binary bit type. Invalid casting will result in an error from
 PostgreSQL. Common valid casts are from character string, date/time type, or a numeric type to
 text, or character strings to numeric values.
In addition to these type casting conventions, there are some functions that can be
 called to achieve essentially the same effect as an explicit cast of any of the previously
 mentioned forms. These often bear the name of the type itself (such as the text() function), though others are named more specifically (such as bitfromint4()). Example 3-30 shows such a
 function, converting the integer 1000 to a character string of type text
 representing the characters 1000.
Example 3-30. Using type conversion functions
booktown=# SELECT text(1000)
booktown-# AS explicit_text;
 explicit_text

 1000
(1 row)

Because of conflicting semantics recognized by PostgreSQL’s parser, the type coercion
 format of type
 'value' can only be used to specify the data type of a
 single value (e.g., a string constant bound by single quotes). In contrast, the other
 available methods of type coercion ('value'::type, CAST('value'AS
 type) and type conversion functions, where applicable)
 can be used to to specify the type of arbitrary expressions.
This
 is partially because attempting to follow a data type with a grouped expression (e.g., in
 parentheses) will cause PostgreSQL to expect a function with the name of
 the provided data type (which will often cause an error) while each of the other methods are
 syntactically valid upon grouped expressions.
booktown=# SELECT 1 + integer ('1' || '2') AS add_one_to_twelve;
ERROR: Function 'integer(text)' does not exist
 Unable to identify a function that satisfies the given argument types
 You may need to add explicit typecasts
booktown=# SELECT 1 + ('1' || '2')::integer AS add_one_to_twelve;
 add_one_to_twelve

 13

(1 row)

booktown=# SELECT 1 + CAST('1' || '2' AS integer) AS add_on_to_twelve;
 add_on_to_twelve

 13

(1 row)

End of sample

 To search for additional titles please go to

 http://search.overdrive.com.

OEBPS/httpatomoreillycomsourceoreillyimages846339.png.jpg
Table name [Inherits

Constraint check

field name type v size
Default value J field cannot be null

K| field name, | type | options

OEBPS/httpatomoreillycomsourceoreillyimages846341.png.jpg
K Visual query de

Add table

[uthors [pooks
7]

last_name|
irst_name|

Show SQl

uBjects|
)
lsubject
liocation

ubliShers|
7]

ame
ddress

[customers)
I
ast_name
rst_name

OEBPS/httpatomoreillycomsourceoreillyimages846331.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages846343.png.jpg
- Function

Name [get_author Parameters intd
Returs text Language [sql

[SELECT firstnane 11”7 |1 lost nane
FRON quthors WHERE id = $1

Save | Help | Cancel |

OEBPS/httpatomoreillycomsourceoreillyimages846335.png.jpg
K~ Posigre
Database Object

QL access

(=164
Help.

New!

Open |

Design

Tables
Queries.
Views
Sequences
Functions.
Reports
Forms.
Scripts
Users

Schema

| localhost

OEBPS/oreilly_large.gif
O’REILLY

OEBPS/httpatomoreillycomsourceoreillyimages846333.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages846337.png.jpg
Scripts

Users

Schema

[locathost |

osigres
restricted
root
e
illiam

[bookiown

OEBPS/httpatomoreillycomsourceoreillyimages846326.jpg
A Hardened, Robust, Open Sowrce Database

Practical

O'REILLY®

