

 [image: Advanced Rails]

 Advanced Rails

Brad Ediger

Editor
Mike Loukides

Copyright © 2008 Brad Ediger

[image:]

O'Reilly Media

SPECIAL OFFER: Upgrade this ebook with O’Reilly

Click here for more information on this offer!
Please note that upgrade offers are not available from sample content.

Preface

When I started working with Ruby and Rails in late 2004, there was almost
 no documentation on the Rails framework. Since then, there has been a
 tremendous number of books, blogs, and articles written about creating web
 applications with Rails. But many of them seemed to follow a common
 pattern: you could create a blog in 15 minutes; a to-do list application
 was simple. Many of the books I saw devoted an entire chapter to
 installing Ruby and Rails. Today, there is no lack of resources for the
 beginning and intermediate Rails developer.
But Rails is clearly useful for much more than toy blogs and to-do
 lists. The 37signals applications (Basecamp, Highrise, Backpack, and
 Campfire) are all built with Rails; many of the Internet's high-traffic
 sites such as Twitter, Penny Arcade, and Yellowpages.com use it. Rails is
 now used in many high-profile places, yet developers often have to fend
 for themselves when building such large applications, as the most current
 and relevant information is often only found spread across various other
 developers' blogs.
Development and deployment of complex web projects is a
 multidisciplinary task, and it will always remain so. In this book, I seek
 to weave together several different topics relevant to Rails development,
 from the most basic foundations of the Ruby programming language to the
 development of large Rails applications.
Prerequisites

As its title suggests, Advanced Rails is not
 a book for beginners. Readers should have an understanding of the
 architecture of the Web, a good command of Ruby 1.8, and experience
 building web applications with Ruby on Rails. We do not cover
 installation of Rails, the Rails API, or the Ruby language;
 working-level experience with all of these is assumed.
I would recommend the following books as a prelude to this
 one:
	Programming Ruby, Second Edition, by Dave
 Thomas (Pragmatic Bookshelf): Known as "the Pickaxe," this is an
 excellent introduction to Ruby for programmers, and a comprehensive
 reference that will serve you for years. Without a doubt the most
 essential book for Rails developers, no matter what skill
 level.

	The Ruby Programming Language, by David
 Flanagan and Yukihiro Matsumoto (O'Reilly): Scheduled to be released
 in January 2008, this book is a comprehensive introduction and
 reference to Ruby 1.8 as well as 1.9. It does an excellent job of
 covering even the most difficult aspects of Ruby while still being
 accessible to programmers learning it.

	Best of Ruby Quiz by James Edward Gray II
 (Pragmatic Bookshelf): 25 selected quizzes from the Ruby Quiz
 (http://www.rubyquiz.com/); includes both the
 quizzes and a discussion of their solutions. Solving programming
 puzzles and sharing solutions with others is a great way to hone
 your Ruby skills.

	Agile Web Development with Rails, Second
 Edition, by Dave Thomas and David Heinemeier Hansson (Pragmatic
 Bookshelf): The best and most comprehensive book for learning Ruby
 on Rails. The second edition covers Rails 1.2, but most concepts are
 applicable to Rails 2.0.

	Rails Cookbook, by Rob Orsini (O'Reilly):
 This contains "cookbook-style" solutions to common problems in
 Rails, each one of which may be worth the price of the book in time
 saved. Also worth reading are the similar books Rails
 Recipes by Chad Fowler and Advanced Rails
 Recipes by Mike Clark and Chad Fowler (Pragmatic
 Bookshelf).

Many varied subjects are covered in this book; I make an effort to
 introduce subjects that may be unfamiliar (such as decentralized
 revision control) and provide references to external resources that may
 be useful. Each chapter has a "Further Reading" section with references
 that clarify or expand on the text.
I take a bottom-up approach to the concepts in this book. The
 first few chapters cover the mechanics of metaprogramming in Ruby and
 the internals of Rails. As the book progresses, these concepts
 assimilate into larger concepts, and the last several chapters cover the
 "big-picture" concepts of managing large Rails software development
 projects and integrating Rails into other systems.
This book is written for Rails 2.0. At the time of this writing,
 Rails 2.0 has been released as a release candidate, but not in its final
 form. Details are subject to change, but the concepts and techniques
 discussed in this book should be valid for Rails 2.0.

Conventions Used in This Book

The following typographical conventions are used in this
 book:
	Plain text
	Indicates menu titles, menu options, menu buttons, keyboard
 accelerators (such as Alt and Ctrl), plugins, gems, and
 libraries.

	Italic
	Indicates new terms, URLs, email addresses, filenames, file
 extensions, pathnames, directories, controls, and Unix
 utilities.

	Constant width
	Indicates commands, options, switches, variables,
 attributes, keys, functions, types, classes, namespaces, methods,
 modules, properties, parameters, values, objects, events, event
 handlers, interfaces, XML tags, HTML tags, macros, the contents of
 files, or the output from commands.

	Constant width italic
	Shows text that should be replaced with user-supplied
 values.

	Constant width
 bold
	Used to highlight portions of code.
Tip
This icon signifies a tip, suggestion, or general
 note.

Warning
This icon indicates a warning or caution.

Using Code Examples

This book is here to help you get your job done. In general, you
 may use the code in this book in your programs and documentation. You do
 not need to contact us for permission unless you're reproducing a
 significant portion of the code. For example, writing a program that
 uses several chunks of code from this book does not require permission.
 Selling or distributing a CD-ROM of examples from O'Reilly books
 does require permission. Answering a question by
 citing this book and quoting example code does not require permission.
 Incorporating a significant amount of example code from this book into
 your product's documentation does require
 permission.
We appreciate, but do not require, attribution. An attribution
 usually includes the title, author, publisher, and ISBN. For example:
 "Advanced Rails, by Brad Ediger. Copyright 2008
 Brad Ediger, 978-0-596-51032-9."
If you feel your use of code examples falls outside fair use or
 the permission given above, feel free to contact us at
 permissions@oreilly.com.

How to Contact Us

Please address comments and questions concerning this book to the
 publisher:
	O'Reilly Media, Inc.
	1005 Gravenstein Highway North
	Sebastopol, CA 95472
	800-998-9938 (in the United States or Canada)
	707-829-0515 (international or local)
	707-829-0104 (fax)

We have a web page for this book, where we list errata, examples,
 and any additional information. You can access this page at:
http://www.oreilly.com/catalog/9780596510329
To comment or ask technical questions about this book, send email
 to:
bookquestions@oreilly.com
For more information about our books, conferences, Resource
 Centers, and the O'Reilly Network, see the web site:
http://www.oreilly.com

Safari® Books Online

When you see a Safari® Books Online icon on the cover of your
 favorite technology book, that means the book is available online
 through the O'Reilly Network Safari Bookshelf.
Safari offers a solution that's better than e-books. It's a
 virtual library that lets you easily search thousands of top tech books,
 cut and paste code samples, download chapters, and find quick answers
 when you need the most accurate, current information. Try it for free at
 http://safari.oreilly.com.

Acknowledgments

No book is created without the help of many people. I owe a great
 debt of gratitude to the many who helped create this work. Without their
 help and support, these ideas would still be rattling around in my
 head.
Mike Loukides, my editor at O'Reilly, was instrumental in creating
 the idea for this book. He helped me understand the type of book I
 really wanted to write, and provided the encouragement needed to turn
 sketches of ideas into prose. Mike's extensive knowledge of the
 industry, the authorship process, and computer science in general were
 invaluable.
I had an amazing team of technical reviewers, who caught many of
 my errors in the manuscripts. Thanks are due to James Edward Gray II,
 Michael Koziarski, Leonard Richardson, and Zed Shaw for their revisions.
 Any remaining errors were originated and perpetuated on my own. (Should
 you find one of these errors, we'd love to hear about it at http://www.oreilly.com/catalog/9780596510329/errata/).
The production department at O'Reilly was very professional and
 accommodating of my odd schedule; Keith Fahlgren, Rachel Monaghan, Rob
 Romano, Andrew Savikas, Marlowe Shaeffer, and Adam Witwer all helped
 make this book usable and attractive.
I have many friends and colleagues who offered advice, support,
 criticism, and review. Thanks to Erik Berry, Gregory Brown, Pat Eyler,
 James Edward Gray II, Damon Hill, Jim Kane, John Lein, Tim Morgan, Keith
 Nazworth, Rob Norwood, Brian Sage, Jeremy Weathers, and Craig Wilson for
 your input. Thanks also to Gary and Jean Atkins, who, although they know
 nothing about Rails or software development, never failed to ask me
 about my book's progress and offer encouragement.
Others provided inspiration through their books and writings
 online, as well as discussions on mailing lists: François Beausoleil,
 David Black, Avi Bryant, Jamis Buck, Ryan Davis, Mauricio Fernández,
 Eric Hodel, S. Robert James, Jeremy Kemper, Rick Olson, Dave Thomas, and
 why the lucky stiff.
None of this would have been possible without Ruby or Rails.
 Thanks to Yukihiro Matsumoto (Matz) for creating such a beautiful
 language, to David Heinemeier Hansson for creating such a fun framework,
 and to the Ruby and Rails committers and communities for maintaining
 them.
Thanks to my parents for their continual support.
Finally, thanks to my wonderful wife, Kristen, who put up with a
 year-long writing process. She encouraged me to write a book when I
 thought it impossible, and supported me every step of the way.

Chapter 1. Foundational Techniques

Simplicity is prerequisite for
 reliability.

—Edsger W. Dijkstra
Since its initial release in July 2004, the Ruby on Rails web
 framework has been steadily growing in popularity. Rails has been
 converting PHP, Java, and .NET developers to a simpler way: a
 model-view-controller (MVC) architecture, sensible defaults ("convention
 over configuration"), and the powerful Ruby programming language.
Rails had somewhat of a bad reputation for a lack of documentation
 during its first year or two. This gap has since been filled by the
 thousands of developers who use, contribute to, and write about Ruby on
 Rails, as well as by the Rails Documentation project (http://railsdocumentation.org/). There are hundreds of
 blogs that offer tutorials and advice for Rails development.
This book's goal is to collect and distill the best practices and
 knowledge embodied by the community of Rails developers and present
 everything in an easy-to-understand, compact format for experienced
 programmers. In addition, I seek to present facets of web development that
 are often undertreated or dismissed by the Rails community.
What Is Metaprogramming?

Rails brought metaprogramming to the masses. Although it was
 certainly not the first application to use Ruby's extensive facilities
 for introspection, it is probably the most popular. To understand Rails,
 we must first examine the parts of Ruby that make Rails possible. This
 chapter lays the foundation for the techniques discussed in the
 remainder of this book.
Metaprogramming is a programming technique in
 which code writes other code or introspects upon itself. The prefix
 meta-(from Greek) refers to abstraction; code that
 uses metaprogramming techniques works at two levels of abstraction
 simultaneously.
Metaprogramming is used in many languages, but it is most popular
 in dynamic languages because they typically have more runtime
 capabilities for manipulating code as data. Though reflection is
 available in more static languages such as C# and Java, it is not nearly
 as transparent as in the more dynamic languages such as Ruby because the
 code and data are on two separate levels at runtime.
Introspection is typically done on one of two levels.
 Syntactic introspection is the lowest level of
 introspection—direct examination of the program text or token stream.
 Template-based and macro based metaprogramming usually operate at the
 syntactic level.
Lisp encourages this style of metaprogramming by using
 S-expressions (essentially a direct translation of
 the program's abstract syntax tree) for both code and data.
 Metaprogramming in Lisp heavily involves macros,
 which are essentially templates for code. This offers the advantage of
 working on one level; code and data are both represented in the same
 way, and the only thing that distinguishes code from data is whether it
 is evaluated. However, there are some drawbacks to metaprogramming at
 the syntactic level. Variable capture and inadvertent multiple
 evaluation are direct consequences of having code on two levels of
 abstraction in the source evaluated in the same namespace. Although
 there are standard Lisp idioms for dealing with these problems, they
 represent more things the Lisp programmer must learn and think
 about.
Syntactic introspection for Ruby is available through the
 ParseTree library, which translates Ruby source into S-expressions.
 [1] An interesting application of this library is Heckle,
 [2] a test-testing framework that parses Ruby source code and
 mutates it, changing strings and flipping true to false and vice versa. The idea is that if you
 have good test coverage, any mutation of your code should cause your
 unit tests to fail.
The higher-level alternative to syntactic introspection is
 semantic introspection,or examination of a program
 through the language's higher-level data structures. Exactly how this
 looks differs between languages, but in Ruby it generally means working
 at the class and method level: creating, rewriting, and aliasing
 methods; intercepting method calls; and manipulating the inheritance
 chain. These techniques are usually more orthogonal to existing code
 than syntactic methods, because they tend to treat existing methods as
 black boxes rather than poking around inside their
 implementations.
Don't Repeat Yourself

At a high level, metaprogramming is useful in working toward the
 DRY principle (Don't Repeat Yourself). Also
 referred to as "Once and Only Once," the DRY principle dictates that
 you should only need to express a particular piece of information once
 in a system. Duplication is usually unnecessary, especially in dynamic
 languages like Ruby. Just as functional abstraction allows us to avoid
 duplicating code that is the same or nearly the same, metaprogramming
 allows us to avoid duplicating similar concepts when they recur
 throughout an application.
Metaprogramming is primarily about simplicity. One of the
 easiest ways to get a feel for metaprogramming is to look for repeated
 code and factor it out. Redundant code can be factored into functions;
 redundant functions or patterns can often be factored out through the
 use of metaprogramming.
Tip
Design patterns cover overlapping territory here; patterns are
 designed to minimize the number of times you have to solve the same
 problem. In the Ruby community, design patterns have acquired
 something of a negative reputation. To some developers, patterns are
 a common vocabulary for describing solutions to recurring problems.
 To others, they are overengineered.
To be sure, patterns can be overapplied. However, this need
 not be the case if they are used judiciously. Design patterns are
 only useful insofar as they reduce cognitive complexity. In Ruby,
 some of the fine-grained patterns are so transparent that it would
 be counterintuitive to call them "patterns"; they are really idioms,
 and most programmers who "think in Ruby" use them without thinking.
 Patterns should be thought of as a vocabulary for describing
 architecture, not as a library of prepackaged implementation
 solutions. Good Ruby design patterns are vastly different from good
 C++ design patterns in this regard.

In general, metaprogramming should not be used simply to repeat
 code. You should always evaluate the options to see if another
 technique, such as functional abstraction, would better suit the
 problem. However, in a few cases, repeating code via metaprogramming
 is the best way to solve a problem. For example, when several very
 similar methods must be defined on an object, as in ActiveRecord
 helper methods, metaprogramming can be used.

Caveats

Code that rewrites itself can be very hard to write and
 maintain. The programming devices you choose should always serve your
 needs—they should make your life easier, not more difficult. The
 techniques illustrated here should be more tools in your toolbox, not
 the only tools.

Bottom-Up Programming

Bottom-up programming is a concept borrowed
 from the Lisp world. The primary concept in bottom-up programming is
 building abstractions from the lowest level. By writing the
 lowest-level constructs first, you are essentially building your
 program on top of those abstractions. In a sense, you are writing a
 domain-specific language in which you build your programs.
This concept is extremely useful in ActiveRecord. After creating
 your basic schema and model objects, you can begin to build
 abstractions on top of those objects. Many Rails projects start out by
 building abstractions on the model like this, before writing a single
 line of controller code or even designing the web interface:
	class Order < ActiveRecord::Base
	 has_many :line_items

	 def total
	 subtotal + shipping + tax
	 end	

	 def subtotal
	 line_items.sum(:price)
	 end

	 def shipping
	 shipping_base_price + line_items.sum(:shipping)
	 end

	 def tax
	 subtotal * TAX_RATE
	 end
	end

[1] http://www.zenspider.com/ZSS/Products/ParseTree/

[2] http://rubyforge.org/projects/seattlerb

Ruby Foundations

This book relies heavily on a firm understanding of Ruby. This
 section will explain some aspects of Ruby that are often confusing or
 misunderstood. Some of this may be familiar, but these are important
 concepts that form the basis for the metaprogramming techniques covered
 later in this chapter.
Classes and Modules

Classes and modules are the foundation of object-oriented
 programming in Ruby. Classes facilitate encapsulation and separation
 of concerns. Modules can be used as
 mixins—bundles of functionality that are added
 onto a class to add behaviors in lieu of multiple inheritance. Modules
 are also used to separate classes into namespaces.
In Ruby, every class name is a constant. This is why Ruby
 requires class names to begin with an uppercase letter. The constant
 evaluates to the class object, which is an object
 of the class Class. This is
 distinct from the Class object, which represents
 the actual class Class. [3] When we refer to a "class object" (with a lowercase C),
 we mean any object that represents a class (including Class itself). When we refer to the "Class
 object" (uppercase C), we mean the class Class, which is the superclass of all class
 objects.
The class Class inherits from
 Module; every class is also a
 module. However, there is an important distinction. Classes cannot be
 mixed in to other classes, and classes cannot extend objects; only
 modules can.

Method Lookup

Method lookup in Ruby can be very confusing, but it is quite
 regular. The easiest way to understand complicated situations is to
 visualize the data structures that Ruby creates behind the
 scenes.
Every Ruby object[4] has a set of fields in memory:
	klass
	A pointer to the class object of this object. (It is
 klass instead of class because the latter is a reserved
 word in C++ and Ruby; if it were called class, Ruby would compile with a C
 compiler but not with a C++ compiler. This deliberate
 misspelling is used everywhere in Ruby.)

	iv_tbl
	"Instance Variable Table," a hashtable containing the
 instance variables belonging to this object.

	flags
	A bitfield of Boolean flags with some status information,
 such as the object's taint status, garbage collection mark bit,
 and whether the object is frozen.
Every Ruby class or module has the same fields, plus two
 more:

	m_tbl
	"Method Table," a hashtable of this class or module's
 instance methods.

	super
	A pointer to this class or module's superclass.

These fields play a huge role in method lookup, and it is
 important that you understand them. In particular, you should pay
 close attention to the difference between the klass and super pointers of a class object.
The rules

The method lookup rules are very simple, but they depend on an
 understanding of how Ruby's data structures work. When a message is
 sent to an object, [5] the following steps occur:
	Ruby follows the receiver's klass pointer and searches the
 m_tbl of that class object
 for a matching method. (The target of a klass pointer will always be a class
 object.)

	If no method is found, Ruby follows that class object's
 super pointer and continues
 the search in the superclass's m_tbl.

	Ruby progresses in this manner until the method is found
 or the top of the super chain
 is reached.

	If the method is not found in any object on the chain,
 Ruby invokes method_ missing
 on the receiver of the original method. This starts the process
 over again, this time looking for method_missing rather than the
 original method.

These rules apply universally. All of the interesting things
 that method lookup involves (mixins, class methods, and singleton
 classes) are consequences of the structure of the klass and super pointers. We will now examine this
 process in detail.

Class inheritance

The method lookup process can be confusing, so we'll start
 simple. Here is the simplest possible class definition in
 Ruby:
	class A
	end
This code generates the following data structures in memory
 (see Figure 1-1).
[image: Data structures for a single class]

Figure 1-1. Data structures for a single class

The double-bordered boxes represent class objects—objects
 whose klass pointer points to the
 Class object. A's super pointer refers to the Object class object, indicating that
 A inherits from Object. For clarity, from now on we will
 omit default klass pointers to
 Class, Module, and Object where there is no ambiguity.
The next-simplest case is inheritance from one class. Class
 inheritance simply follows the super pointers. For example, we will
 create a B class that descends
 from A:
	class B < A
	end
The resulting data structures are shown in Figure 1-2.
[image: One level of inheritance]

Figure 1-2. One level of inheritance

The super keyword always
 delegates along the method lookup chain, as in the following
 example:
	class B
	 def initialize
	 logger.info "Creating B object"
	 super
	 end
	end
The call to super in
 initialize will follow the
 standard method lookup chain, beginning with A#initialize.

Class instantiation

Now we get a chance to see how method lookup is performed. We
 first create an instance of class B:
obj = B.new
This creates a new object, and sets its klass pointer to B's class object (see Figure 1-3).
[image: Class instantiation]

Figure 1-3. Class instantiation

The single-bordered box around obj represents a plain-old object
 instance. Note that each box in this diagram is an object instance.
 However, the double-bordered boxes represent objects that are
 instances of the Class class
 (hence their klass pointer points
 to the Class object).
When we send obj a
 message:
	obj.to_s
this chain is followed:
	obj's klass pointer is
 followed to B; B's methods
 (in m_tbl) are searched for a
 matching method.

	No methods are found in B.
 B's super pointer
 is followed, and A is
 searched for methods.

	No methods are found in A.
 A's super pointer
 is followed, and Object is
 searched for methods.

	The Object class
 contains a to_s method in
 native code (rb_any_to_s).
 This is invoked, yielding a value like "#<B:0x1cd3c0>". The rb_any_to_s method examines the
 receiver's klass pointer to
 determine what class name to display; therefore, B is shown even though the method
 invoked resides in Object.

Including modules

Things get more complicated when we start mixing in modules.
 Ruby handles module inclusion with ICLASSes,[6] which are proxies for modules. When you include a
 module into a class, Ruby inserts an ICLASS representing the
 included module into the including class object's super chain.
For our module inclusion example, let's simplify things a bit
 by ignoring B for now. We define
 a module and mix it in to A,
 which results in data structures shown in Figure 1-4:
	module Mixin
	 def mixed_method
	 puts "Hello from mixin"
	 end
	end
	
	class A
	 include Mixin
	end
[image: Inclusion of a module into the lookup chain]

Figure 1-4. Inclusion of a module into the lookup chain

Here is where the ICLASS comes into play. The super link pointing from A to Object is intercepted by a new ICLASS
 (represented by the box with the dashed line). The ICLASS is a proxy
 for the Mixin module. It contains
 pointers to Mixin's iv_tbl (instance variables) and m_tbl (methods).
From this diagram, it is easy to see why we need proxy
 classes: the same module may be mixed in to any number of different
 classes—classes that may inherit from different classes (thus having
 different super pointers). We
 could not directly insert Mixin
 into the lookup chain, because its super pointer would have to point to two
 different things if it were mixed in to two classes with different
 parents.
When we instantiate A, the
 structures are as shown in Figure 1-5:
	objA = A.new
[image: Method lookup for a class with an included module]

Figure 1-5. Method lookup for a class with an included module

We invoke the mixed_method
 method from the mixin, with objA
 as the receiver:
	objA.mixed_method
	# >> Hello from mixin
The following method-lookup process takes place:
	objA's class, A, is searched for a matching method.
 None is found.

	A's super pointer is followed to the
 ICLASS that proxies Mixin.
 This proxy object is searched for a matching method. Because the
 proxy's m_tbl is the same as
 Mixin's m_tbl, the mixed_method method is found and
 invoked.

Many languages with multiple inheritance suffer from the
 diamond problem, which is ambiguity in
 resolving method calls on objects whose classes have a
 diamond-shaped inheritance graph, as shown in Figure 1-6.
Given this diagram, if an object of class D calls a method defined in class A that has been overridden in both
 B and C, there is ambiguity about which method
 should be called. Ruby resolves this by linearizing the order of
 inclusion. Upon a method call, the lookup chain is
 searched linearly, including any ICLASSes that have been inserted
 into the chain.
First of all, Ruby does not support multiple inheritance;
 however, multiple modules can be mixed into classes and other
 modules. Therefore, A, B, and
 C must be modules. We see that
 there is no ambiguity here; the method chosen is the latest one that
 was inserted into the lookup chain:
	module A
	 def hello
	 "Hello from A"
	 end
	end
[image: The diamond problem of multiple inheritance]

Figure 1-6. The diamond problem of multiple inheritance

	module B
	 include A
	 def hello
	 "Hello from B"
	 end
	end

	module C
	 include A
	 def hello
	 "Hello from C"
	 end
	end

	class D
	 include B
	 include C
	end

	D.new.hello # => "Hello from C"
And if we change the order of inclusion, the result changes correspondingly:
	class D
	 include C
	 include B
	end
	
	D.new.hello # => "Hello from B"
In this last example, where B is included last, the object graph looks
 like Figure 1-7
 (for simplicity, pointers to Object and Class have been elided).
[image: Ruby's solution for the diamond problem: linearization]

Figure 1-7. Ruby's solution for the diamond problem:
 linearization

The singleton class

Singleton classes (also
 metaclasses or
 eigenclasses; see the upcoming sidebar,
 "Single-ton Class Terminology") allow an object's behavior to be
 different from that of other objects of its class. You've probably seen
 the notation to open up a singleton class before:
	class A
	end

	objA = A.new
	objB = A.new
	objA.to_s # => "#<A:0x1cd0a0>"
	objB.to_s # => "#<A:0x1c4e28>"

	class <<objA # Open the singleton class of objA
	 def to_s; "Object A"; end
	end

	objA.to_s # => "Object A"
	objB.to_s # => "#<A:0x1c4e28>"
The class <<objA
 notation opens objA's singleton
 class. Instance methods added to the singleton class function as
 instance methods in the lookup chain. The resulting data structures are shown
 in Figure 1-8.
[image: Singleton class of an object]

Figure 1-8. Singleton class of an object

Singleton Class Terminology
The term metaclass is not particularly
 accurate when applied to singleton classes. Calling a class "meta" implies
 that it is somehow more abstract than an ordinary class. This is
 not the case; singleton classes are simply classes that belong to
 a particular instance.
True metaclasses are found in languages such as Smalltalk
 that have a rich metaobject protocol. Smalltalk's metaclasses are
 classes whose instances are classes. By parallel, Ruby's only
 metaclass is Class, because all Ruby classes are instances of
 Class.
A somewhat popular alternate term for a singleton class is
 eigenclass, from the German
 eigen ("its own"). An object's singleton
 class is its eigenclass (its own class).

The objB instance is of
 class A, as usual. And if you ask
 Ruby, it will tell you that objA
 is also of class A:
	objA.class # => A
However, something different is going on behind the scenes.
 Another class object has been inserted into the lookup chain. This object is the singleton class of
 objA.We refer to it as "Class:objA" in this documentation. Ruby
 calls it a similar name: #<Class:#<A:0x1cd0a0>>. Like
 all classes, the singleton class's klass pointer (not shown) points to the
 Class object.
The singleton class is marked as a virtual
 class (one of the flags is used to indicate that a class is
 virtual). Virtual classes cannot be instantiated, and we
 generally do not see them from Ruby unless we take pains to do so.
 When we ask Ruby for objA's
 class, it traverses the klass and
 super pointers up the hierarchy
 until it finds the first nonvirtual class.
Therefore, it tells us that objA's class is A. This is important to remember: an object's
 class (from Ruby's perspective) may not match the object pointed to
 by klass.
Singleton classes are called singleton for a reason: there can only be one
 singleton class per object. Therefore, we can refer unambiguously to
 "objA's singleton class" or
 Class:objA. In our code, we can
 assume that the singleton class exists; in reality, for efficiency,
 Ruby creates it only when we first mention it.
Ruby allows singleton classes to be defined on any object
 except Fixnums or symbols.
 Fixnums and symbols are
 immediate values (for efficiency, they're
 stored as themselves in memory, rather than as a pointer to a data
 structure). Because they're stored on their own, they don't have
 klass pointers, so there's no way
 to alter their method lookup chain.
You can open singleton classes for true, false, and nil, but the singleton class returned will
 be the same as the object's class. These values are singleton
 instances (the only instances) of TrueClass, FalseClass, and NilClass, respectively. When you ask for
 the singleton class of true, you
 will get TrueClass, as the
 immediate value true is the only possible instance of that class. In
 Ruby:
	true.class # => TrueClass
	class << true; self; end # => TrueClass
	true.class == (class << true; self; end) # => true

Singleton classes of class objects

Here is where it gets complicated. Keep in mind the basic rule
 of method lookup: first Ruby follows an object's klass pointer and searches for methods; then Ruby keeps following super pointers all the way up the chain
 until it finds the appropriate method or reaches the top.
The important thing to remember is that classes are
 objects, too. Just as a plain-old object can have a
 singleton class, class objects can also have their own singleton
 classes. Those singleton classes, like all other classes, can have
 methods. Since the singleton class is accessed through the klass pointer of its owner's class object,
 the singleton class's instance methods are class methods of the
 singleton's owner.
The full set of data structures for the following code is
 shown in Figure 1-9:
	class A
	end
Class A inherits from
 Object. The A class object is of type Class. Class inherits from Module, which inherits from Object. The methods stored in A's m_tbl are instance methods of A. So what happens when we call a class
 method on A?
	A.to_s # => "A"
The same method lookup rules apply, with A as the receiver. (Remember, A is a constant that evaluates to A's class object.) First, Ruby follows
 A's klass pointer to Class. Class's m_tbl is searched for a function named
 to_s. Finding none, Ruby follows
 Class's super pointer to Module, where the to_s function is found (in native code,
 rb_mod_to_s).
[image: Full set of data structures for a single class]

Figure 1-9. Full set of data structures for a single class

This should not be a surprise. There is no magic here. Class
 methods are found in the exact same way as instance
 methods—the only difference is whether the receiver is
 a class or an instance of a class.
Now that we know how class methods are looked up, it would
 seem that we could define class methods on any class by defining
 instance methods on the Class
 object (to insert them into Class's m_tbl). Indeed, this works:
	class A; end
	# from Module#to_s
	A.to_s # => "A"

	class Class
	 def to_s; "Class#to_s"; end
	end
	
	A.to_s # => "Class#to_s"
That is an interesting trick, but it is of very limited
 utility. Usually we want to define unique class methods on each
 class. This is where singleton classes of class objects are used. To open up a singleton
 class on a class, simply pass the class's name as the object to the
 singleton class notation:
	class A; end
	class B; end

	class <<A
	 def to_s; "Class A"; end
	end

	A.to_s # => "Class A"
	B.to_s # => "B"
The resulting data structures are shown in Figure 1-10. Class B is omitted for
 brevity.
[image: Singleton class of a class]

Figure 1-10. Singleton class of a class

The to_s method has been added to A's singleton class, or Class:A. Now, when A.to_s is called, Ruby will follow
 A's klass pointer to Class:A and invoke the appropriate method
 there.
There is one more wrinkle in method definition. In a class or
 module definition, self always
 refers to the class or module object:
	class A
	 self # => A
	end
So, inside A's class
 definition, class<<A can
 also be written class<<self, since inside that
 definition A and self refer to the same object. This idiom
 is used everywhere in Rails to define class methods. This example shows all of the ways to define
 class methods:
	class A
	 def A.class_method_one; "Class method"; end

	 def self.class_method_two; "Also a class method"; end

	 class <<A
	 def class_method_three; "Still a class method";
	 end
	end

	 class <<self
	 def class_method_four; "Yet another class method"; end
	 end
	end

	 def A.class_method_five
	 "This works outside of the class definition"
	 end

	 class <<A
	 def A.class_method_six
	 "You can open the metaclass outside of the class definition"
	 end
	 end

	 # Print the result of calling each method in turn
	 %w(one two three four five six).each do |number|
	 puts A.send(:"class_method_#{number}")
	 end

	 # >> Class method
	 # >> Also a class method
	 # >> Still a class method
	 # >> Yet another class method
	 # >> This works outside of the class definition
	 # >> You can open the metaclass outside of the class definition
This also means that inside a singleton class definition—as in
 any other class definition—self
 refers to the class object being defined. When we remember that the
 value of a block or class definition is the value of the last
 statement executed, we can see that the value of class <<objA; self; end is objA's singleton class. The class <<objA construct opens up the
 singleton class, and self (the
 singleton class) is returned from the class definition.
Putting this together, we can open up the Object class and add an instance method to
 every object that returns that object's singleton class:
	class Object
 	 def metaclass
	 class <<self
	 self
	 end
	 end
	 end
This method forms the basis of Metaid, which is described
 shortly.

Method missing

After all of that confusion, method_missing is remarkably simple. There
 is one rule: if the whole method lookup procedure fails all the way up to Object, method lookup is tried again,
 looking for a method_missing
 method rather than the original method. If the method is found, it
 is called with the same arguments as the original method, with the
 method name prepended. Any block given is also passed
 through.
The default method_missing
 function in Object
 (rb_method_missing) raises an exception.

Metaid

why the lucky stiff has created a tiny
 library for Ruby metaprogramming called
 metaid.rb. This snippet is useful enough to
 include in any project in which meta-programming is needed:[7]
	class Object
	 # The hidden singleton lurks behind everyone
	 def metaclass; class << self; self; end; end
	 def meta_eval &blk; metaclass.instance_eval &blk; end

	 # Adds methods to a metaclass
	 def meta_def name, &blk
	 meta_eval { define_method name, &blk }
	 end

	 # Defines an instance method within a class
	 def class_def name, &blk
	 class_eval { define_method name, &blk }
	 end	
	end
This library defines four methods on every object:
	metaclass
	Refers to the singleton class of the receiver
 (self).

	meta_eval
	The equivalent of class_eval for singleton classes.
 Evaluates the given block in the context of the receiver's
 singleton class.

	meta_def
	Defines a method within the receiver's singleton class. If
 the receiver is a class or module, this will create a class
 method (instance method of the receiver's singleton
 class).

	class_def
	Defines an instance method in the receiver (which must be
 a class or module).

Metaid's convenience lies in its brevity. By using a shorthand
 for referring to and augmenting metaclasses, your code will become
 clearer rather than being littered with constructs like class << self; self; end. The shorter
 and more readable these techniques are, the more likely you are to use
 them appropriately in your programs.
This example shows how we can use Metaid to examine and simplify
 our singleton class hacking:
	class Person
	 def name; "Bob"; end
	 def self.species; "Homo sapiens"; end
	end
Class methods are added as instance methods of the singleton
 class:
	Person.instance_methods(false) # => ["name"]
	Person.metaclass.instance_methods -
	 Object.metaclass.instance_methods # => ["species"]
Using the methods from Metaid, we could have written the method
 definitions as:
Person.class_def(:name) { "Bob" }
Person.meta_def(:species) { "Homo sapiens" }

Variable Lookup

There are four types of variables in Ruby: global variables, class variables, instance variables, and local variables.[8] Global variables are stored globally, and local variables are stored lexically, so neither of them
 is relevant to our discussion now, as they do not interact with Ruby's
 class system.
Instance variables are specific to a certain object. They are
 prefixed with one @ symbol:
 @price is an instance variable.
 Because every Ruby object has an iv_tbl structure, any object can have
 instance variables.
Since a class is also an object, a class can have instance
 variables. The following code accesses an instance variable of a
 class:
	class A
	 @ivar = "Instance variable of A"
	end

	A.instance_variable_get(:@ivar) # => "Instance variable of A"
Instance variables are always resolved based on the object
 pointed to by self. Because
 self is A's class object in the class A … end definition, @ivar belongs to A's class object.
Class variables are different. Any instance of a class can
 access its class variables (which start with @@). Class variables can also be referenced
 from the class definition itself. While class variables and instance
 variables of a class are similar, they're not the same:
	class A
	 @var = "Instance variable of A"
	 @@var = "Class variable of A"

	 def A.ivar
	 @var
	 end

	 def A.cvar
	 @@var
	 end
	end

	A.ivar # => "Instance variable of A"
	A.cvar # => "Class variable of A"
In this code sample, @var and
 @@var are stored in the same place:
 in A's iv_tbl. However, they are different
 variables, because they have different names (the @ symbols are included in the variable's
 name as stored). Ruby's functions for accessing instance variables and
 class variables check to ensure that the names passed are in the
 proper format:
	A.instance_variable_get(:@@var)
	# ~> -:17:in 'instance_variable_get': '@@var' is not allowed as an instance
	 variable name (NameError)
Class variables can be somewhat confusing to use. They are
 shared all the way down the inheritance hierarchy, so subclasses that
 modify a class variable will modify the parent's class variable as
 well.
	>> class A; @@x = 3 end
	=> 3
	>> class B < A; @@x = 4 end
	=> 4
	>> class A; @@x end
	=> 4
This may be useful, but it may also be confusing. Generally, you
 either want class instance variables—which are independent of the
 inheritance hierarchy—or the class inheritable attributes provided by
 ActiveSupport, which propagate values in a controlled, well-defined
 manner.

Blocks, Methods, and Procs

One powerful feature of Ruby is the ability to work with pieces
 of code as objects. There are three classes that come into play, as
 follows:
	Proc
	A Proc represents a
 code block: a piece of code that can be called with arguments
 and has a return value.

	UnboundMethod
	This is similar to a Proc; it represents an instance method
 of a particular class. (Remember that class methods are instance methods of a class object, so
 UnboundMethods can represent
 class methods, too.) An UnboundMethod must be bound to a class
 before it can be invoked.

	Method
	Method objects are
 UnboundMethods that have been
 bound to an object with UnboundMethod#bind. Alternatively,
 they can be obtained with Object#method.

Let's examine some ways to get Proc and Method objects. We'll use the Fixnum#+ method as an example. We usually
 invoke it using the dyadic syntax:
	3 + 5 # => 8
However, it can be invoked as an instance method of a Fixnum object, like any other instance
 method:
	3.+(5) # => 8
We can use the Object#method
 method to get an object representing this instance method. The method
 will be bound to the object that method was called on, 3.
	add_3 = 3.method(:+)
	add_3 # => #<Method: Fixnum#+>
This method can be converted to a Proc, or called directly with
 arguments:
	add_3.to_proc # => #<Proc:0x00024b08@-:6>
	add_3.call(5) # => 8
	# Method#[] is a handy synonym for Method#call.
	add_3[5] # => 8
There are two ways to obtain an unbound method. We can call
 instance_method on the class
 object:
	add_unbound = Fixnum.instance_method(:+)
	add_unbound # => #<UnboundMethod: Fixnum#+>
We can also unbind a method that has already been bound to an
 object:
	add_unbound == 3.method(:+).unbind # => true
	add_unbound.bind(3).call(5) # => 8
We can bind the UnboundMethod
 to any other object of the same class:
	add_unbound.bind(15)[4] # => 19
However, the object we bind to must be an
 instance of the same class, or else we get a TypeError:
	add_unbound.bind(1.5)[4] # =>
	# ~> -:16:in 'bind': bind argument must be an instance of Fixnum (TypeError)
	# ~> from -:16
We get this error because + is defined in Fixnum; therefore, the UnboundMethod object we receive must be
 bound to an object that is a kind_of?(Fixnum). Had the + method been
 defined in Numeric (from which both
 Fixnum and Float inherit), the preceding code would have returned 5.5.
Blocks to Procs and Procs to blocks

One downside to the current implementation of Ruby: blocks are
 not always Procs, and vice versa.
 Ordinary blocks (created with do…end or {}) must be attached to a method
 call, and are not automatically objects. For example, you cannot say
 code_ block ={puts"abc"}. This is
 what the Kernel#lambda and
 Proc.new functions are for:
 converting blocks to Procs.
 [9]
	block_1 = lambda { puts "abc" } # => #<Proc:0x00024914@-:20>
	block_2 = Proc.new { puts "abc" } # => #<Proc:0x000246a8@-:21>
There is a slight difference between Kernel#lambda and Proc.new. Returning from a Proc created with Kernel#lambda returns the given value to
 the calling function; returning from a Proc created with Proc.new attempts to return
 from the calling function, raising a LocalJumpError if that is impossible. Here
 is an example:
	def block_test
	 lambda_proc = lambda { return 3 }
	 proc_new_proc = Proc.new { return 4 }

	 lambda_proc.call # => 3
	 proc_new_proc.call # =>

	 puts "Never reached"
	end
	
	block_test # => 4
The return statement in lambda_proc returns the value 3 from the
 lambda. Conversely, the return statement in proc_new_proc returns from the calling
 function, block_test— thus, the
 value 4 is returned from block_test. The puts statement is never
 executed, because the proc_new_proc.call statement returns from
 block_test first.
Blocks can also be converted to Procs by passing them to a function, using
 & in the function's formal parameters:
	def some_function(&b)
	 puts "Block is a #{b} and returns #{b.call}"
	end

	some_function { 6 + 3 }
	# >> Block is a #<Proc:0x00025774@-:7> and returns 9
Conversely, you can also substitute a Proc with & when a function expects a
 block:
	add_3 = lambda {|x| x+3}
	(1..5).map(&add_3) # => [4, 5, 6, 7, 8]

Closures

Closures are created when a block or
 Proc accesses variables defined
 outside of its scope. Even though the containing block may go out of
 scope, the variables are kept around until the block or Proc referencing them goes out of scope. A
 simplistic example, though not practically useful, demonstrates the
 idea:
	def get_closure
	 data = [1, 2, 3]
	 lambda { data }
	end
	block = get_closure
	block.call # => [1, 2, 3]
The anonymous function (the lambda) returned from get_closure references the local variable
 data, which is defined outside of its scope. As long as the block variable is in scope, it will hold
 its own reference to data, and
 that instance of data will not be
 destroyed (even though the get_closure function returns). Note that
 each time get_closure is called,
 data references a different
 variable (since it is function-local):
	block = get_closure
	block2 = get_closure

	block.call.object_id # => 76200
	block2.call.object_id # => 76170
A classic example of closures is the make_counter function, which returns a
 counter function (a Proc) that,
 when executed, increments and returns its counter. In Ruby, make_counter can be implemented like
 this:
	def make_counter(i=0)
	 lambda { i += 1 }
	end

	x = make_counter
	x.call # => 1
	x.call # => 2

	y = make_counter
	y.call # => 1
	y.call # => 2
The lambda function creates
 a closure that closes over the current value of the local variable
 i. Not only can the variable be
 accessed, but its value can be modified. Each closure gets a
 separate instance of the variable (because it is a variable local to
 a particular instantiation of make_counter). Since x and y
 contain references to different instances of the local variable
 i, they have different
 state.

[3] If that weren't confusing enough, the Class object has class Class as well.

[4] Except immediate objects (Fixnums,
 symbols, true, false, and nil); we'll get to those
 later.

[5] Ruby often co-opts Smalltalk's message-passing
 terminology: when a method is called, it is said that one is
 sending a message. The receiver is the object that the
 message is sent to.

[6] ICLASS is Mauricio Fernández's term for these proxy
 classes. They have no official name but are of type T_ICLASS in the Ruby source.

[7] "Seeing Metaclasses Clearly." http://whytheluckystiff.net/articles/seeingMetaclassesClearly.html

[8] There are also constants, but they shouldn't vary. (They
 can, but Ruby will complain.)

[9] Kernel#proc is another
 name for Kernel#lambda, but
 its usage is deprecated.

Metaprogramming Techniques

Now that we've covered the fundamentals of Ruby, we can examine
 some of the common metaprogramming techniques that are used in
 Rails.
Although we write examples in Ruby, most of these techniques are
 applicable to any dynamic programming language. In fact, many of Ruby's
 metaprogramming idioms are shamelessly stolen from either Lisp,
 Smalltalk, or Perl.
Delaying Method Lookup Until Runtime

Often we want to create an interface whose methods vary depending on some piece of runtime data.
 The most prominent example of this in Rails is ActiveRecord's
 attribute accessor methods. Method calls on an ActiveRecord object
 (like person.name) are translated
 at runtime to attribute accesses. At the class-method level,
 ActiveRecord offers extreme flexibility: Person.find_all_by_user_id_and_active(42,
 true) is translated into the appropriate SQL query, raising the
 standard NoMethodError exception
 should those attributes not exist.
The magic behind this is Ruby's method_missing method. When a nonexistent
 method is called on an object, Ruby first checks that object's class
 for a method_missing method before
 raising a NoMethodError.
 method_missing's first argument is the name of the method
 called; the remainder of the arguments correspond to the arguments
 passed to the method. Any block passed to the method is passed through
 to method_missing. So, a complete
 method signature is:
	def method_missing(method_id, *args, &block)
	 ...
	end
There are several drawbacks to using method_missing:
	It is slower than conventional method lookup. Simple tests
 indicate that method dispatch with method_missing is at least two to three
 times as expensive in time as conventional dispatch.

	Since the methods being called never actually exist—they are
 just intercepted at the last step of the method lookup
 process—they cannot be documented or introspected as conventional
 methods can.

	Because all dynamic methods must go through the method_missing method, the body of that
 method can become quite large if there are many different aspects
 of the code that need to add methods dynamically.

	Using method_missing
 restricts compatibility with future versions of an API. Once you
 rely on method_missing to do
 something interesting with undefined methods, introducing new
 methods in a future API version can break your users'
 expectations.

A good alternative is the approach taken by ActiveRecord's
 generate_read_methods feature.
 Rather than waiting for method_missing to intercept the calls,
 ActiveRecord generates an implementation for the attribute setter and
 reader methods so that they can be called via conventional method
 dispatch.
This is a powerful method in general, and the dynamic nature of
 Ruby makes it possible to write methods that replace themselves with
 optimized versions of themselves when they are first called. This is
 used in Rails routing, which needs to be very fast; we will see that
 in action later in this chapter.

Generative Programming: Writing Code On-the-Fly

One powerful technique that encompasses some of the others is
 generative programming—code that writes
 code.
This technique can manifest in the simplest ways, such as
 writing a shell script to automate some tedious part of programming.
 For example, you may want to populate your test fixtures with a sample
 project for each user:
	brad_project:
	 id: 1
	 owner_id: 1
	 billing_status_id: 12

	john_project:
	 id: 2
	 owner_id: 2
	 billing_status_id: 4

	...
If this were a language without scriptable test fixtures, you
 might be writing these by hand. This gets messy when the data starts
 growing, and is next to impossible when the fixtures have strange
 dependencies on the source data. Naïve generative programming would
 have you writing a script to generate this fixture from the source.
 Although not ideal, this is a great improvement over writing the
 complete fixtures by hand. But this is a maintenance headache: you
 have to incorporate the script into your build process, and ensure
 that the fixture is regenerated when the source data changes.
This is rarely, if ever, needed in Ruby or Rails (thankfully).
 Almost every aspect of Rails application configuration is scriptable,
 due in large part to the use of internal domain-specific languages (DSLs). In an internal DSL,
 you have the full power of the Ruby language at your disposal, not
 just the particular interface the library author decided you should
 have.
Returning to the preceding example, ERb makes our job a lot
 easier. We can inject arbitrary Ruby code into the YAML file above
 using ERb's <% %> and <%=
 %> tags, including whatever logic we need:
	<% User.find_all_by_active(true).each_with_index do |user, i| %>
	<%= user.login %>_project:
	 id: <%= i %>
	 owner_id: <%= user.id %>
	 billing_status_id: <%= user.billing_status.id %>

	<% end %>
ActiveRecord's implementation of this handy trick couldn't be
 simpler:
	yaml = YAML::load(erb_render(yaml_string))
using the helper method erb_render:
	def erb_render(fixture_content)
	 ERB.new(fixture_content).result
	end
Generative programming often uses either Module#define_method or class_eval and def to create methods on-the-fly.
 ActiveRecord uses this technique for attribute accessors; the generate_read_methods feature defines the setter and reader methods as instance methods on the ActiveRecord class in order to reduce the
 number of times method_missing (a
 relatively expensive technique) is needed.

Continuations

Continuations are a very powerful
 control-flow mechanism. A continuation represents a particular state
 of the call stack and lexical variables. It is a snapshot of a point in time
 when evaluating Ruby code. Unfortunately, the Ruby 1.8 implementation
 of continuations is so slow as to be unusable for many
 applications. The upcoming Ruby 1.9 virtual machines may improve this
 situation, but you should not expect good performance from continuations under Ruby 1.8. However, they are useful
 constructs, and continuation-based web frameworks provide an
 interesting alternative to frameworks like Rails, so we will survey
 their use here.
Continuations are powerful for several reasons:
	Continuations are just objects; they can be passed
 around from function to function.

	Continuations can be invoked from anywhere. If you
 hold a reference to a continuation, you can invoke it.

	Continuations are re-entrant. You can use continuations to return from a function multiple
 times.

Continuations are often described as "structured
 GOTO." As such, they should be
 treated with the same caution as any kind of GOTO construct. Continuations have little or no place inside application
 code; they should usually be encapsulated within libraries. I don't
 say this because I think developers should be protected from
 themselves. Rather, continuations are general enough that it makes
 more sense to build abstractions around them than to use them
 directly. The idea is that a programmer should think "external
 iterator" or "coroutine" (both abstractions built on top of
 continuations) rather than "continuation" when building the
 application software.
Seaside [10] is a Smalltalk web application framework built on top of
 continuations. Continuations are used in Seaside to manage session
 state. Each user session corresponds to a server-side continuation.
 When a request comes in, the continuation is invoked and more code is
 run. The upshot is that entire transactions can be written as a single
 stream of code, even if they span multiple HTTP requests. This power
 comes from the fact that Smalltalk's continuations are serializable;
 they can be written out to a database or to the filesystem, then
 thawed and reinvoked upon a request. Ruby's continuations are
 nonserializable. In Ruby, continuations are in-memory only and cannot
 be transformed into a byte stream.
Borges (http://borges.rubyforge.org/) is a straightforward port
 of Seaside 2 to Ruby. The major difference between Seaside and Borges
 is that Borges must store all current continuations in memory, as they
 are not serializable. This is a huge limitation that unfortunately
 prevents Borges from being successful for web applications with any
 kind of volume. If serializable continuations are implemented in one
 of the Ruby implementations, this limitation can be removed.
The power of continuations is evident in the following Borges
 sample code, which renders a list of items from an online
 store:
	class SushiNet::StoreItemList < Borges::Component

	 def choose(item)
	 call SushiNet::StoreItemView.new(item)
	 end

	 def initialize(items)
	 @batcher = Borges::BatchedList.new items, 8
	 end

	 def render_content_on(r)
	 r.list_do @batcher.batch do |item|
	 r.anchor item.title do choose item end
	 end

	 r.render @batcher
 end

 end # class SushiNet::StoreItemList
The bulk of the action happens in the render_content_on method, which uses a
 BatchedList (a paginator) to render
 a paginated list of links to products. But the fun happens in the call
 to anchor, which stores away the
 call to choose, to be executed when the corresponding link is
 clicked.
However, there is still vast disagreement on how useful
 continuations are for web programming. HTTP was designed
 as a stateless protocol, and continuations for web transactions are the polar
 opposite of statelessness. All of the continuations must be stored on the server, which takes
 additional memory and disk space. Sticky sessions are required, to
 direct a user's traffic to the same server. As a result, if one server
 goes down, all of its sessions are lost. The most popular Seaside
 application, DabbleDB (http://dabbledb.com/),
 actually uses continuations very little.

Bindings

Bindings provide context for evaluation of Ruby code. A binding is the set of variables and methods that are
 available at a particular (lexical) point in the code. Any place in Ruby code where
 statements may be evaluated has a binding, and that binding can be obtained with Kernel#binding. Bindings are just objects of class Binding, and they can
 be passed around as any objects can:
	class C
	 binding # => #<Binding:0x2533c>
	 def a_method
	 binding
	 end
	end
	binding # => #<Binding:0x252b0>
	C.new.a_method # => #<Binding:0x25238>
The Rails scaffold generator provides a good example of the use
 of bindings:
	class ScaffoldingSandbox
	 include ActionView::Helpers::ActiveRecordHelper
	 attr_accessor :form_action, :singular_name, :suffix, :model_instance

	 def sandbox_binding
	 binding
	 end

	 # ...
	end
ScaffoldingSandbox is a class
 that provides a clean environment from which to render a template. ERb
 can render templates within the context of a binding, so that an API
 is available from within the ERb templates.
	part_binding = template_options[:sandbox].call.sandbox_binding
	# ...
	ERB.new(File.readlines(part_path).join,nil,'-').result(part_binding)
Earlier I mentioned that blocks are closures. A closure's
 binding represents its state—the set of variables and methods it has
 access to. We can get at a closure's binding with the Proc#binding method:
	def var_from_binding(&b)
	 eval("var", b.binding)
	end
	
	var = 123
	var_from_binding {} # => 123
	var = 456
	var_from_binding {} # => 456
Here we are only using the Proc as a method by which to get the
 binding. By accessing the binding (context) of those blocks, we can
 access the local variable var with
 a simple eval against the
 binding.

Introspection and ObjectSpace: Examining Data and Methods at
 Runtime

Ruby provides many methods for looking into objects at
 runtime. There are object methods to access instance
 variables. These methods break encapsulation, so use them with
 care.
	class C
	 def initialize
	 @ivar = 1
	 end
	end

	c = C.new
	c.instance_variables # => ["@ivar"]
	c.instance_variable_get(:@ivar) # => 1
	
	c.instance_variable_set(:@ivar, 3) # => 3
	c.instance_variable_get(:@ivar) # => 3
The Object#methods method
 returns an array of instance methods, including singleton methods, defined on the receiver. If the first parameter
 to methods is false, only the object's singleton methods
 are returned.
	class C
	 def inst_method
	 end

	 def self.cls_method
	 end
	end

	c = C.new

	class << c
	 def singleton_method
	 end
	end

	c.methods - Object.methods # => ["inst_method", "singleton_method"]
	c.methods(false) # => ["singleton_method"]
Module#instance_methods
 returns an array of the class or module's instance methods. Note that
 instance_methods is called on the
 class, while methods is called on
 an instance. Passing false to
 instance_methods skips the
 superclasses' methods:
	C.instance_methods(false) # => ["inst_method"]
We can also use Metaid's metaclass method to examine C's class methods:
	C.metaclass.instance_methods(false) # => ["new", "allocate", "cls_method",
	 "superclass"]
In my experience, most of the value from these methods is in
 satisfying curiosity. With the exception of a few well-established
 idioms, there is rarely a need in production code to reflect on an
 object's methods. Far more often, these techniques can be used at a
 console prompt to find methods available on an object—it's usually
 quicker than reaching for a reference book:
	Array.instance_methods.grep /sort/ # => ["sort!", "sort", "sort_by"]
ObjectSpace

ObjectSpace is a module
 used to interact with Ruby's object system. It has a few useful
 module methods that can make low-level hacking easier:
	Garbage-collection methods: define_finalizer (sets up a callback
 to be called just before an object is destroyed), undefine_finalizer (removes those
 call-backs), and garbage_collect (starts garbage collection).

	_id2ref converts an
 object's ID to a reference to that Ruby object.

	each_object iterates
 through all objects (or all objects of a certain class) and
 yields them to a block.

As always, with great power comes great responsibility.
 Although these methods can be useful, they can also be dangerous. Use
 them judiciously.
An example of the proper use of ObjectSpace is found in Ruby's Test::Unit frame-work. This code uses
 ObjectSpace.each_object to
 enumerate all classes in existence that inherit from Test::Unit::TestCase:
	test_classes = []
	ObjectSpace.each_object(Class) {
	 | klass |
	 test_classes << klass if (Test::Unit::TestCase > klass)
	}
ObjectSpace, unfortunately,
 greatly complicates some Ruby virtual machines. In particular, JRuby
 performance suffers tremendously when ObjectSpace is enabled, because the Ruby
 interpreter cannot directly examine the JVM's heap for extant
 objects. Instead, JRuby must keep track of objects manually, which
 adds a great amount of overhead. As the same tricks can be achieved
 with methods like Module.extended
 and Class.inherited, there are
 not many cases where ObjectSpace
 is genuinely necessary.

Delegation with Proxy Classes

Delegation is a form of composition. It is
 similar to inheritance, except with more conceptual "space" between
 the objects being composed. Delegation implies a "has-a" rather than
 an "is-a" relationship. When one object delegates to another, there
 are two objects in existence, rather than the one object that would
 result from an inheritance hierarchy.
Delegation is used in ActiveRecord's associations. The AssociationProxy class delegates most
 methods (including class) to its
 target. In this way, associations can be lazily loaded (not loaded
 until their data is needed) with a completely transparent
 interface.
DelegateClass and Forwardable

Ruby's standard library includes facilities for delegation.
 The simplest is DelegateClass. By inheriting from DelegateClass(klass) and calling super(instance) in the constructor, a
 class delegates any unknown method calls to the provided instance of
 the class klass. As an example,
 consider a Settings class that
 delegates to a hash:
	require 'delegate'
	class Settings < DelegateClass(Hash)
	 def initialize(options = {})
	 super({:initialized_at => Time.now - 5}.merge(options))
	 end

	 def age
	 Time.now - self[:initialized_at]
	 end
	end

	settings = Settings.new :use_foo_bar => true
	
	# Method calls are delegated to the object
	settings[:use_foo_bar] # => true
	settings.age # => 5.000301
The Settings constructor
 calls super to set the delegated
 object to a new hash. Note the difference between composition and
 inheritance: if we had inherited from Hash, then Settings would be a
 hash; in this case, Settings
 has a hash and delegates to it. This
 composition relationship offers increased flexibility, especially
 when the object to be delegated to may change (a function provided
 by SimpleDelegator).
The Ruby standard library also includes Forwardable, which provides a simple
 interface by which individual methods, rather than all undefined methods, can be
 delegated to another object. ActiveSupport in Rails provides similar
 functionality with a cleaner API through Module#delegate:
	class User < ActiveRecord::Base
	 belongs_to :person

	 delegate :first_name, :last_name, :phone, :to => :person
	end

Monkeypatching

In Ruby, all classes are open. Any object or class is fair game
 to be modified at any time. This gives many opportunities for
 extending or overriding existing functionality. This extension can be
 done very cleanly, without modifying the original
 definitions.
Rails takes advantage of Ruby's open class system extensively.
 Opening classes and adding code is referred to as
 monkeypatching (a term from the Python
 community). Though it sounds derogatory, this term is used in a
 decidedly positive light; monkey-patching is, on the whole, seen as an
 incredibly useful technique. Almost all Rails plugins monkeypatch the
 Rails core in some way or another.

Disadvantages of monkeypatching

There are two primary disadvantages to monkeypatching. First,
 the code for one method call may be spread over several files. The
 foremost example of this is in ActionController's process method. This method is intercepted
 by methods in up to five different files during the course of a
 request. Each of these methods adds another feature: filters,
 exception rescue, components, and session management. The end result
 is a net gain: the benefit gained by separating each functional
 component into a separate file outweighs the inflated call
 stack.
Another consequence of the functionality being spread around is that it can be
 difficult to properly document a method. Because the function of the
 process method can change depending
 on which code has been loaded, there is no good place to document what
 each of the methods is adding. This problem exists because the
 actual identity of the process
 method changes as the methods are chained together.

Adding Functionality to Existing Methods

Because Rails encourages the philosophy of separation of
 concerns, you often will have the need to extend the functionality of existing code. Many times you will want
 to "patch" a feature onto an existing function without disturbing that
 function's code. Your addition may not be directly related to the
 function's original purpose: it may add authentication, logging, or
 some other important cross-cutting concern.
We will examine several approaches to the problem of
 cross-cutting concerns, and explain the one (method chaining) that has
 acquired the most momentum in the Ruby and Rails communities.
Subclassing

In traditional object-oriented programming, a class can be
 extended by inheriting from it and changing its data or behavior.
 This paradigm works for many purposes, but it has
 drawbacks:
	The changes you want to make may be small, in which case
 setting up a new class may be overly complex. Each new class in
 an inheritance hierarchy adds to the mental overhead required to
 understand the code.

	You may need to make a series of related changes to
 several otherwise-unrelated classes. Subclassing each one individually would be
 overkill and would separate functionality that should be kept
 together.

	The class may already be in use throughout an application,
 and you want to change its behavior globally.

	You may want to add or remove a feature at runtime, and have it take effect globally. (We
 will explore this technique with a full example later in the
 chapter.)

In more traditional object-oriented languages, these features
 would require complex code. Not only would the code be complex, it
 would be tightly coupled to either the existing code or the code
 that calls it.

Aspect-oriented programming

Aspect-oriented programming (AOP) is one technique that attempts to solve the
 issues of cross-cutting concerns. There has been much talk about the
 applicability of AOP to Ruby, since many of the advantages that AOP
 provides can already be obtained through metaprogramming. There is a Ruby proposal for
 cut-based AOP, [11] but it may be months or years before this is
 incorporated.
In cut-based AOP, cuts are sometimes called "transparent subclasses" because they extend a class's
 functionality in a modular way. Cuts act as subclasses but without
 the need to instantiate the subclass rather than the parent
 class.
The Ruby Facets library (facets.rubyforge.org)
 includes a pure-Ruby cut-based AOP library. http://facets.rubyforge.org/api/more/classes/Cut.html
 It has some limitations due to being written purely in Ruby, but the
 usage is fairly clean:
	class Person
	 def say_hi
	 puts "Hello!"
	 end
	end

	cut :Tracer < Person do
	 def say_hi
	 puts "Before method"
	 super
	 puts "After method"
	 end
	end

	Person.new.say_hi
	# >> Before method
	# >> Hello!
	# >> After method
Here we see that the Tracer
 cut is a transparent subclass: when we create an instance of
 Person, it is affected by
 Tracer without having to know
 about Tracer. We can also change
 Person#say_hi without disrupting
 our cut.
For whatever reason, Ruby AOP techniques have not taken off.
 We will now introduce the standard way to deal with separation of
 concerns in Ruby.

Method chaining

The standard Ruby solution to this problem is method
 chaining: aliasing an existing method to a new name and
 overwriting its old definition with a new body. This new body
 usually calls the old method definition by referring to the aliased
 name (the equivalent of calling super in an inherited overriden method).
 The effect is that a feature can be patched around an existing
 method. Due to Ruby's open class nature, features can be added to
 almost any code from anywhere. Needless to say, this must be done
 wisely so as to retain clarity.
There is a standard Ruby idiom for chaining methods. Assume we have some library code that grabs a
 Person object from across the
 network:
	class Person
	 def refresh
	 # (get data from server)
	 end
	end
This operation takes quite a while, and we would like to time
 it and log the results. Leveraging Ruby's open classes, we can just
 open up the Person class again
 and monkeypatch the logging code into refresh:
	class Person
	 def refresh_with_timing
	 start_time = Time.now.to_f
	 retval = refresh_without_timing
	 end_time = Time.now.to_f
	 logger.info "Refresh: #{"%.3f" % (end_time-start_time)} s."
	 retval
	end
	
	 alias_method :refresh_without_timing, :refresh
	 alias_method :refresh, :refresh_with_timing
	end
We can put this code in a separate file (perhaps alongside
 other timing code), and, as long as we require it after the original definition
 of refresh, the timing code will
 be properly added around the original method call. This aids in
 separation of concerns because we can separate code into different
 files based on its functional concern, not necessarily based on the
 area that it modifies.
The two alias_method calls
 patch around the original call to refresh, adding our timing code. The first
 call aliases the original method as refresh_without_timing (giving us a name
 by which to call the original method from refresh_with_timing); the second method
 points refresh at our new
 method.
This paradigm of using a two alias_method calls to add a feature is
 common enough that it has a name in Rails: alias_method_chain. It takes two
 arguments: the name of the original method and the name of the
 feature.
Using alias_method_chain,
 we can now collapse the two alias_method calls into one simple
 line:
	alias_method_chain :refresh, :timing

Modulization

Monkeypatching affords us a lot of power, but it
 pollutes the namespace of the patched class. Things can often be made
 cleaner by modulizing the additions and inserting the module in the class's lookup chain. Tobias Lütke's
 Active Merchant Rails plugin uses this approach for the view helpers.
 First, a module is created with the helper method:
	module ActiveMerchant
	 module Billing
	 module Integrations
	 module ActionViewHelper
	 def payment_service_for(order, account, options = {}, &proc)
	 ...
	 end
	 end
	 end
	 end
	end
Then, in the plugin's init.rb script, the
 module is included in ActionView::Base:
	require 'active_merchant/billing/integrations/action_view_helper'
	ActionView::Base.send(:include,
	 ActiveMerchant::Billing::Integrations::ActionViewHelper)
It certainly would be simpler in code to directly open ActionView::Base and add the method, but
 this has the advantage of modularity. All Active Merchant code is
 contained within the ActiveMerchant
 module.
There is one caveat to this approach. Because any included
 modules are searched for methods after the class's own methods are searched, you
 cannot directly overwrite a class's methods by including a
 module:
	module M
	 def test_method
	 "Test from M"
	 end
	end

	class C
	 def test_method
	 "Test from C"
	 end
	end

	C.send(:include, M)
	C.new.test_method # => "Test from C"
Instead, you should create a new name in the module and use
 alias_method_chain:
	module M
	 def test_method_with_module
	 "Test from M"
	 end
	end

	class C
	 def test_method
	 "Test from C"
	 end
	end

	# for a plugin, these two lines would go in init.rb
	C.send(:include, M)
	C.class_eval { alias_method_chain :test_method, :module }

	C.new.test_method # => "Test from M"

[10] http://seaside.st/

[11] http://wiki.rubygarden.org/Ruby/page/show/AspectOrientedRuby

Functional Programming

The paradigm of functional programming
 focuses on values rather than the side effects of evaluation. In contrast to
 imperative programming, the functional style deals with the values of
 expressions in a mathematical sense. Function application and
 composition are first-class concepts, and mutable state (although it
 obviously exists at a low level) is abstracted away from the
 programmer.
This is a somewhat confusing concept, and it is often unfamiliar
 even to experienced programmers. The best parallels are drawn from
 mathematics, from which functional programming is derived.
Consider the mathematical equation x = 3. The
 equals sign in that expression indicates equivalence:
 "x is equal to 3." On the contrary, the Ruby
 statement x = 3 is of a completely
 different nature. That equals sign denotes assignment: "assign 3 to x."
 In a functional programming language, equals usually denotes equality
 rather than assignment. The key difference here is that functional
 programming languages specify what is to be
 calculated; imperative programming languages tend to specify
 how to calculate it.
Higher-Order Functions

The cornerstone of functional programming, of course, is
 functions. The primary way that the functional paradigm influences
 mainstream Ruby programming is in the use of higher-order
 functions (also called first-class
 functions, though these two terms are not strictly
 equivalent). Higher-order functions are functions that operate on
 other functions. Higher-order functions usually either take one or
 more functions as an argument or return a function.
Ruby supports functions as mostly first-class objects; they can
 be created, manipulated, passed, returned, and called. Anonymous functions are represented as Proc objects, created with Proc.new or Kernel#lambda:
	add = lambda{|a,b| a + b}
	add.class # => Proc
	add.arity # => 2

	# call a Proc with Proc#call
	add.call(1,2) # => 3

	# alternate syntax
	add[1,2] # => 3
The most common use for blocks in Ruby is in conjunction with
 iterators. Many programmers who come to Ruby from other, more
 imperative-style languages start out writing code like this:
	collection = (1..10).to_a
	for x in collection
	 puts x
	end
The more Ruby-like way to express this is using an iterator,
 Array#each, and passing it a block.
 This is second nature to seasoned Ruby programmers:
	collection.each {|x| puts x}
This method is equivalent to creating a Proc object and passing it to each:
	print_me = lambda{|x| puts x}
	collection.each(&print_me)
All of this is to show that functions are first-class objects
 and can be treated as any other object.

Enumerable

Ruby's Enumerable module
 provides several convenience methods to be mixed in to classes that
 are "enumerable," or can be iterated over. These methods rely on an
 each instance method, and
 optionally the <=> (comparison or "spaceship") method. Enumerable's methods fall into several
 categories.
Predicates

These represent properties of a collection that may be
 true or false.
	all?
	Returns true if the
 given block evaluates to true for all items in the
 collection.

	any?
	Returns true if the
 given block evaluates to true for any item in the
 collection.

	include?(x),
 member?(x)
	Returns true if
 x is a member of the
 collection.

Filters

These methods return a subset of the items in the
 collection.
	detect, find
	Returns the first item in the collection for which the
 block evaluates to true,or
 nil if no such item was
 found.

	select, find_all
	Returns an array of all items in the collection for
 which the block evaluates to true.

	reject
	Returns an array of all items in the collection for which the block evaluates to
 false.

	grep(x)
	Returns an array of all items in the collection for
 which x === item is
 true. This usage is
 equivalent to select{|item| x ===
 item}.

Transformers

These methods transform a collection into another collection
 by one of several rules.
	map, collect
	Returns an array consisting of the result of the given
 block being applied to each element in turn.

	partition
	Equivalent to [select(&block),
 reject(&block)].

	sort
	Returns a new array of the elements in this collection,
 sorted by either the given block (treated as the
 <=> method) or the
 elements' own <=>
 method.

	sort_by
	Like sort, but yields to the given block to obtain the
 values on which to sort. As array comparison is
 performed in element order, you can sort on multiple fields
 with person.sort_by{|p| [p.city,
 p.name]}. Internally, sort_by performs a Schwartzian
 transform, so it is more efficient than sort when the block is expensive to
 compute.

	zip(*others)
	Returns an array of tuples, built up from one element
 each from self and others:
	puts [1,2,3].zip([4,5,6],[7,8,9]).inspect
	# >> [[1, 4, 7], [2, 5, 8], [3, 6, 9]]
When the collections are all of the same size, zip(*others) is equivalent to
 ([self]+others).transpose:
	puts [[1,2,3],[4,5,6],[7,8,9]].transpose.inspect
	# >> [[1, 4, 7], [2, 5, 8], [3, 6, 9]]
When a block is given, it is executed once for each item
 in the resulting array:
	[1,2,3].zip([4,5,6],[7,8,9]) {|x| puts x.inspect}
	# >> [1, 4, 7]
	# >> [2, 5, 8]
	# >> [3, 6, 9]

Aggregators

These methods aggregate or summarize the data.
	inject(initial)
	Folds an operation across a collection. Initially,
 yields an accumulator (initial provides the first value)
 and the first object to the block. The return value is used as
 the accumulator for the next iteration. Collection sum is
 often defined thus:
	module Enumerable
	 def sum
		inject(0){|total, x| total + x}
	 end
	end
If no initial value is given, the first iteration yields
 the first two items.

	max
	Returns the maximum value in the collection, as mined by the same logic as the sort method.

	min
	Like max, but returns
 the minimum value in the collection.

Other

	each_with_index
	Like each, but also
 yields the 0-based index of
 each element.

	entries, to_a
	Pushes each element in turn onto an array, then returns
 the array.

The Enumerable methods are
 fun, and you can usually find a customized method to do exactly what
 you are looking for, no matter how obscure. If these methods fail
 you, visit Ruby Facets (http://facets.rubyforge.org) for some
 inspiration.

Enumerator

Ruby has yet another little-known trick up its sleeve, and that
 is Enumerator from the standard
 library. (As it is in the standard library and not the core language,
 you must require "enumerator" to
 use it.)
Enumerable provides many
 iterators that can be used on any enumerable object, but it has one
 limitation: all of the iterators are based on the each instance
 method. If you want to use some iterator other than each as the basis
 for map, inject, or any of the
 other functions in Enumerable, you
 can use Enumerator as a
 bridge.
The signature of Enumerator.new is
 Enumerator.new(obj, method,*args), where obj is the object to enumerate over,
 method is the base iterator, and
 args are any arguments that the
 iterator receives. As an example, you could write a map_with_index function (a version of
 map that passes the object and its
 index to the given block) with the following code:
	require "enumerator"
	module Enumerable
	 def map_with_index &b
	 enum_for(:each_with_index).map(&b)
	 end
	end

	puts ("a".."f").map_with_index{|letter, i| [letter, i]}.inspect
	# >> [["a", 0], ["b", 1], ["c", 2], ["d", 3], ["e", 4], ["f", 5]]
The enum_for method returns
 an Enumerator object whose each
 method functions like the each_with_index method of the original
 object. That Enumerator object has
 already been extended with the instance methods from Enumerable, so we can just call map on it, passing the given block.
Enumerator also adds some
 convenience methods to Enumerable,
 which are useful to have. Enumerable#each_slice(n) iterates over
 slices of the array, n-at-a-time:
	(1..10).each_slice(3){|slice| puts slice.inspect}
	# >> [1, 2, 3]
	# >> [4, 5, 6]
	# >> [7, 8, 9]
	# >> [10]
Similarly, Enumerable#each_cons(n) moves a "sliding
 window" of size n over the
 col-lection, one at a time:
	(1..10).each_cons(3){|slice| puts slice.inspect}
	# >> [1, 2, 3]
	# >> [2, 3, 4]
	# >> [3, 4, 5]
	# >> [4, 5, 6]
	# >> [5, 6, 7]
	# >> [6, 7, 8]
	# >> [7, 8, 9]
	# >> [8, 9, 10]
Enumeration is getting a facelift in Ruby 1.9. Enumerator is becoming part of the core
 language. In addition, iterators return an Enumerator object automatically if they are
 not given a block. In Ruby 1.8, you would usually do the following to
 map over the values of a hash:
	hash.values.map{|value| ... }
This takes the hash, builds an array of values, and maps over
 that array. To remove the intermediate step, you could use an Enumerator:
	hash.enum_for(:each_value).map{|value| ... }
That way, we have a small Enumerator object whose each method behaves
 just as hash's each_value method
 does. This is preferable to creating a potentially large array and
 releasing it moments later. In Ruby 1.9, this is the default behavior
 if the iterator is not given a block. This simplifies our code:
	hash.each_value.map{|value| ... }

End of sample

 To search for additional titles please go to

 http://search.overdrive.com.

OEBPS/httpatomoreillycomsourceoreillyimages42868.png
Address Book

@ hup:/ /localhost:3000/people/ 1

@ |a(Q- Google

John Smith

Phone Numbers

Home

(123) 456-7890
Office

(123) 456-7890
Mobile

(123) 456-7890

Address

100 W. Main St.
Somewhere, CA 99999
USA

Address Book

OEBPS/httpatomoreillycomsourceoreillyimages42846.png
Profile Report

Thread ID Total Time
2057980 12.69

Thread 2057980
%Total %Self Total Self Wait Child Calls Name Line
100.00% 0.00% 12.69 0.00 0.00 12.69 0 ActionController::RequestProfiler#profile 61
12.69 0.00 0.00 12.69 171 ActionControll equestProfiler# benchmark 61
1269 0.00 000 1269 1/ <Module::Benchmark> #realtime 307
100.00% 0.00% 12.69 0.00 0.00 12.69 1 <Module::Benchmark>#measure 291
0.00 0.00 0.00 0.00 2/2 Struct::Tms#stime 295
12.69 0.00 0.00 12.69 171 Integer#times 21
0.00 0.00 0.00 0.00 2/2 Struct::Tms#cutime 295
0.00 0.00 0.00 0.00 1/19731 Class#new 295
0.00 000 000 0.00 /5 Floats- 205
0.00 000 000 000 2/42 <Class: Time> #now 204
0.00 0.00 0.00 0.00 2/2 Struct::Tms#cstime 295
000 000 000 000 272 <Module::Benchmark> #times 204
0.00 0.00 0.00 0.00 2/2 Time#to f 295
0.00 0.00 0.00 0.00 2/2 Struct::Tms#utime 295
1269 0.00 000 1269 11 <Class::ActionController::RequestProfier;:Sandbox> #benchmark | 21
100.00% 0.00% 12.69 0.00 0.00 12.69 1 <Module::Benchmark>#realtime 306
1269 0.00 0.00 1269 11 <Modules:Benchmark> #measure 307
1269 0.00 0.00 1269 10/10 Integer#times E
100.00% 0.00% 12.69 0.00 0.00 12.69 10 ActionC i rofiler:: 28
0.04 0.00 0.00 0.04 10/10 ActionController: :Routing: :RouteSet # recognize- 34
0.00 0.00 0.00 0.00 40/19731 Class#new 2
1265 0.00 0.00 1265 10/10 <Class::ActionControllrs:Base> # process 35
12.69 0.00 0.00 12.69 171 ActionControll equestProfiler# benchmark 68
100.00% 0.00% 12.69 0.00 0.00 12.69 1 Class::ActionCt 2| il 20
1269 0.00 0.00 1269 1/ <Modules:Benchmark> #realtime 21

and many more rows.

OEBPS/httpatomoreillycomsourceoreillyimages42866.png
000 Address Book

<»](e] @ hutp://localhost:3000/people/new ©)~(Q- Google)

New Person

Firstname [john |
Lastname smn |
Home phone [az3)as6-780 |
Office phone [azsiase-7850 |

Mobile phone [azase7e0 |

Address [100W. Main st
Somewhere, CA 99999

(o —

(Gave)

OEBPS/httpatomoreillycomsourceoreillyimages42820.png

OEBPS/httpatomoreillycomsourceoreillyimages42808.png
Object

super

klass.

]
Class Klass
/'
klass’

OEBPS/oreilly_large.gif
O’REILLY

OEBPS/httpatomoreillycomsourceoreillyimages42810.png
Object

super
1

super

OEBPS/httpatomoreillycomsourceoreillyimages42882.png
Authoritative
repository

hg clone /
hg pull /
hg merge /
hg comnit

Local repository:
Nice

Local repository:
Bob

OEBPS/httpatomoreillycomsourceoreillyimages42876.png
000 Libreta de direcciones

G2l

@ hup:/ /localhost:3000/people/4

@ |a(Q- Google

John Smith

Numeros de teléfono

Casa

(123) 456-7890
Oficina

(123) 456-7890
Movil

(123) 456-7890
Direccion
100 W. Main St.
Somewhere, CA 99999
USA

Libreta de direcciones

eslen

OEBPS/httpatomoreillycomsourceoreillyimages42824.png
Object

super

super

Module

super
|

Klass—| Class |

OEBPS/httpatomoreillycomsourceoreillyimages42852.png
T | T T
(214 1344 0ty Sty (34 144
(s) sysanbai 00| sad 3w asuodsay

Location optimization Refactoring

Before optimization

OEBPS/httpatomoreillycomsourceoreillyimages42880.png
Central repository

svn checkout /
svn update /
svn comnit /

Working Working Working
copy copy copy

OEBPS/httpatomoreillycomsourceoreillyimages42812.png
klass —»

OEBPS/httpatomoreillycomsourceoreillyimages42838.png
Application code

MySQLAPI

ld
(Nngg;quendj

Management node

OEBPS/httpatomoreillycomsourceoreillyimages42848.png
%Total %Self Total Self Wait Child Calls Name

206 126 0.00 080 2730/2730 GeoRuby::SimpleFeatures::HexEWKBParser #parse
16.23% 9.93% 2.06 1.26 0.00 0.80 2730 GeoRuby:SimpleFeatures::HexEWKBParser#decode_hex

010 0.0 0.00 0.00 70980/156540 Eixnum#

0.00 0.00 0.00 0.00 1/84 Proc#cal

015 015 0.00 0.00 68250/68250 String#thex

019 019 0.00 0.00 70980/87410 String#length

019 019 0.00 0.00 68250/71580 String# <<

015 015 0.00 0.00 70980/70980 String#slicel

0.02 0.02 0.00 0.0 2730/3030 Kernel#clone

OEBPS/httpatomoreillycomsourceoreillyimages42884.png
Authoritative
repository

Local repositor) .| Local repository:
Alice g pull / Bob
hg merge

OEBPS/httpatomoreillycomsourceoreillyimages42878.png
Libreta de direcciones

@ http:/ localhost:3000/people

©|a(Q- Google

Libreta de direcciones

« John Smith

Nueva persona

eslen

OEBPS/httpatomoreillycomsourceoreillyimages42834.png
Linux Apache I
Filesystem |

OEBPS/httpatomoreillycomsourceoreillyimages42892.png
Internet

Web server/
load balancer

Optional *;
failover

Web server/
load balancer

Application
server

Application

servers as

OEBPS/httpatomoreillycomsourceoreillyimages42862.png

OEBPS/httpatomoreillycomsourceoreillyimages42832.png
est.
& acts_as_state_machine test.rb
database.ymi

v fixtures

conversation.rb
conversations.ymi
person.rb

@ schema.rb.

o test_helper.rb

OEBPS/httpatomoreillycomsourceoreillyimages42818.png

OEBPS/httpatomoreillycomsourceoreillyimages42840.png
Attacker's
site

1

o ;
GET /instant_purchase?id=123 HTTP/1.1

Cookie: auth_token=ao98gaw4

OEBPS/httpatomoreillycomsourceoreillyimages233224.jpg
Building Industrial-Strength Web Apps in Record Time

O’REILLY® Brad Ediger

OEBPS/httpatomoreillycomsourceoreillyimages42826.png
Object

Class:Object

Kass—| (virtual)

super

[
Kass — (virtual)

OEBPS/httpatomoreillycomsourceoreillyimages42828.png
"SH R

OEBPS/httpatomoreillycomsourceoreillyimages42822.png
objB I»klass—»

objA |~klass—>) I

OEBPS/httpatomoreillycomsourceoreillyimages42886.png
hg comit /
hg update

Authoritative
repository

hg pull /
hg push

Local repository:
Bob

OEBPS/httpatomoreillycomsourceoreillyimages42870.png
000 Address Book

@ http:/ localhost:3000/people

G2l

©|a(Q- Google

Address Book

« John Smith

New person

OEBPS/httpatomoreillycomsourceoreillyimages42836.png
Linux

Filesystem I

Apache I-

Rails

OEBPS/httpatomoreillycomsourceoreillyimages42888.png
uby_extensions
= shared_models

rails _app_1
Trails_app_2

ruby_extensions
shared._models
» [test fixtures

OEBPS/httpatomoreillycomsourceoreillyimages42872.png
Libreta de direcciones

@ http:/ /localhost:3000/people

=(Q- Google

Libreta de direcciones
Libreta de direcciones esta vacia.

Nueva persona

eslen

OEBPS/httpatomoreillycomsourceoreillyimages42894.png
Internet

Apache/

Fast(Gl
worker

Fast(Gl

Lighty +
mod_fastcgi

worker

FastCGl
worker

[1|15

OEBPS/httpatomoreillycomsourceoreillyimages42856.png
000 Products: new

@ http:/ /localhost:3000/products /new

Gi(e)

@ |a(Q- Google

New product

Name

‘Organic cotton T-shirt

Description
Description of the T-shirt

Price
1850

Quantity
15

(Create)

OEBPS/httpatomoreillycomsourceoreillyimages42860.png

OEBPS/httpatomoreillycomsourceoreillyimages42890.png
Internet

Application
server

Web server/

load balancer

Application
server

Application
server

pp!
serversas

OEBPS/httpatomoreillycomsourceoreillyimages42814.png
Object

super

Mixin

super

- _’

OEBPS/httpatomoreillycomsourceoreillyimages42854.png
000

(e
Listing products

Name Description Price Quantity Created at

Products: index

@ hup:/ /localhost:3000/products =(Q- Google)

New product

OEBPS/httpatomoreillycomsourceoreillyimages42816.png
Object

super

super

objA I~klass —>

klass _’

OEBPS/httpatomoreillycomsourceoreillyimages42842.png
@ samplest
@ samples2

OEBPS/httpatomoreillycomsourceoreillyimages42874.png
Libreta de direcciones
@ hup:/ /localhost:3000/people/new @ a(Q- Google

Nueva Persona

Nombre fon |
Apellido [smin |
Teléfono de casa (123 4s6-7830 |
Teléfono oficina (123 4s6-7850 |

Teléfono movil [123) 456-7890

Direcci6n [100 W Main st
Somewhere, CA 99999

Pais 'usa
(Guardar)

eslen

OEBPS/httpatomoreillycomsourceoreillyimages42864.png
Address Book

@ http:/ localhost:3000/people

=(Q- Google

Address Book

Address book i empty.

New person

OEBPS/httpatomoreillycomsourceoreillyimages42830.png
¥ | http_authentication
S initrb
viZin

vi

ttp_authentication
@ basicrb
% digest.rb
% http_authentication.b
Rakefile
README
Vi est
@ basic_test.rb
) digest_test.rb

OEBPS/httpatomoreillycomsourceoreillyimages42844.png

OEBPS/httpatomoreillycomsourceoreillyimages42858.png
000 Products: index

G2l

@ hp:/ /localhost:3000/products

@ |a(Q- Google

Listing products

Name Description Price Quantity
Organic cotton T-shirt Description of the T-shirt 18.5 15

New product

Created at
Sat Sep 08 14:06:08 -0500 2007 Show Edit Destroy

OEBPS/httpatomoreillycomsourceoreillyimages42850.png
%Total %Self Total Self Calls Name

346 0.02 0.00 3.44 2730/2730 <Class::GeoRuby::SimpleFeatures::Geometry> #from_hex_ewkh

27.27% 0.16% 3.46 0.02 0.00 3.44 2730 impleFeatures::HexEWKBParser#parse
206 1.26 000 0.80 2730/2730 GeoRuby::SimpleFeatures::HexEWKBParser# decode_hex
138 0.06 0.00 1.32 2730/2730 GeoRuby::SimpleFeatures::EWKBParser#parse

