

 [image: Ruby Cookbook]

 Ruby Cookbook

Lucas Carlson

Leonard Richardson

Editor
Mike Loukides

Copyright © 2009 O'Reilly Media, Inc.

[image:]

O'Reilly Media

Dedication

For Tess, who sat by me the whole time.
For John and Rael, the best programmers I
 know.
—Lucas Carlson
For Sumana.
—Leonard Richardson

SPECIAL OFFER: Upgrade this ebook with O’Reilly

Click here for more information on this offer!
Please note that upgrade offers are not available from sample content.

A Note Regarding Supplemental Files

Supplemental files and examples for this book can be found at http://examples.oreilly.com/9780596523695/. Please use a standard desktop web browser to access these files, as they may not be accessible from all ereader devices.
All code files or examples referenced in the book will be available online. For physical books that ship with an accompanying disc, whenever possible, we’ve posted all CD/DVD content. Note that while we provide as much of the media content as we are able via free download, we are sometimes limited by licensing restrictions. Please direct any questions or concerns to booktech@oreilly.com.

Preface

1. Life Is Short

This is a book of recipes: solutions to common problems,
 copy-and-paste code snippets, explanations, examples, and short
 tutorials.
This book is meant to save you time. Time, as they say, is money,
 but a span of time is also a piece of your life. Our lives are better
 spent creating new things than fighting our own errors, or trying to
 solve problems that have already been solved. We present this book in
 the hope that the time it saves, distributed across all its readers,
 will greatly outweigh the time we spent creating it.
The Ruby programming language is itself a wonderful time-saving
 tool. It makes you more productive than other programming languages
 because you spend more time making the computer do what you want, and
 less wrestling with the language. But there are many ways for a Ruby
 programmer to spend time without accomplishing anything, and we've
 encountered them all:
	Time spent writing Ruby implementations of common
 algorithms.

	Time spent debugging Ruby implementations
 of common algorithms.

	Time spent discovering and working around Ruby-specific
 pitfalls.

	Time spent on repetitive tasks (including repetitive
 programming tasks!) that could be automated.

	Time spent duplicating work that someone else has already made
 publicly available.

	Time spent searching for a library that does X.

	Time spent evaluating and deciding between the many libraries
 that do X.

	Time spent learning how to use a library because of poor or
 outdated documentation.

	Time lost staying away from a useful technology because it
 seems intimidating.

We, and the many contributors to this book, recall vividly our own
 wasted hours and days. We've distilled our experiences into this book so
 that you don't waste your time—or at least so you enjoyably waste it on
 more interesting problems.
Our other goal is to expand your interests. If you come to this
 book wanting to generate algorithmic music with Ruby then, yes, Recipe 12.14 will save you time
 over starting from scratch. It's more likely that you'd never considered
 the possibility until now. Every recipe in this book was developed and
 written with these two goals in mind: to save you time, and to keep your
 brain active with new ideas.

2. Audience

This cookbook is aimed at people who know at least a little bit of
 Ruby, or who know a fair amount about programming
 in general. This isn't a Ruby tutorial (see the Resources section below
 for some real tutorials), but if you're already familiar with a few
 other programming languages, you should be able to pick up Ruby by
 reading through the first 10 chapters of this book and typing in the
 code listings as you go.
We've included recipes suitable for all skill levels, from those
 who are just starting out with Ruby, to experts who need an occasional
 reference. We focus mainly on generic programming techniques, but we
 also cover specific application frameworks (like Ruby on Rails and GUI
 libraries) and best practices (like unit testing).
Even if you just plan to use this book as a reference, we
 recommend that you skim through it once to get a picture of the problems
 we solve. This is a big book but it doesn't solve every problem. If you
 pick it up and you can't find a solution to your problem, or one that
 nudges you in the right direction, then you've lost
 time.
If you skim through this book once beforehand, you'll get a fair
 idea of the problems we cover in this book, and you'll get a better hit
 rate. You'll know when this book can help you; and when you should
 consult other books, do a web search, ask a friend, or get help some
 other way.

3. The Structure of This Book

Each of this book's 23 chapters focuses on a kind of programming
 or a particular data type. This overview of the chapters should give you
 a picture of how we divided up the recipes. Each chapter also has its
 own, somewhat lengthier introduction, which gives a more detailed view
 of its recipes. At the very least, we recommend you skim the chapter
 introductions and the table of contents.
We start with six chapters covering Ruby's built-in data
 structures.
	Chapter 1,
 Strings, contains recipes for building,
 processing, and manipulating strings of text. We devote a few
 recipes specifically to regular expressions (Recipes 1.17, 1.18 through 1.19), but our focus is on
 Ruby-specific issues, and regular expressions are a very general
 tool. If you haven't encountered them yet, or just find them
 intimidating, we recommend you go through an online tutorial or
 Mastering Regular Expressions by Jeffrey Friedl
 (O'Reilly).

	Chapter 2,
 Numbers, covers the representation of
 different types of numbers: real numbers, complex numbers,
 arbitrary-precision decimals, and so on. It also includes Ruby
 implementations of common mathematical and statistical algorithms,
 and explains some Ruby quirks you'll run into if you create your own
 numeric types (Recipes
 2.13 and 2.14).

	Chapter 3,
 Date and Time, covers Ruby's two interfaces
 for dealing with time: the one based on the C time library, which
 may be familiar to you from other programming languages, and the one
 implemented in pure Ruby, which is more idiomatic.

	Chapter 4,
 Arrays, introduces the array, Ruby's simplest
 compound data type. Many of an array's methods are actually methods
 of the Enumerable mixin; this
 means you can apply many of these recipes to hashes and other data
 types. Some features of Enumerable are covered in this chapter
 (Recipes 4.4 and 4.6), and some are covered in
 Chapter 7.

	Chapter 5,
 Hashes, covers the hash, Ruby's other basic
 compound data type. Hashes make it easy to associate objects with
 names and find them later (hashes are sometimes called "lookup
 tables" or "dictionaries," two telling names). It's easy to use
 hashes along with arrays to build deep and complex data
 structures.

	Chapter 6,
 Files and Directories, covers techniques for
 reading, writing, and manipulating files. Ruby's file access
 interface is based on the standard C file libraries, so it may look
 familiar to you. This chapter also covers Ruby's standard libraries
 for searching and manipulating the filesystem; many of these recipes
 show up again in Chapter
 23.

The first six chapters deal with specific algorithmic problems.
 The next four are more abstract: they're about Ruby idiom and
 philosophy. If you can't get the Ruby language itself to do what you
 want, or you're having trouble writing Ruby code that looks the way Ruby
 "should" look, the recipes in these chapters may help.
	Chapter 7,
 Code Blocks and Iteration, contains recipes
 that explore the possibilities of Ruby's code blocks (also known as
 closures).

	Chapter 8,
 Objects and Classes, covers Ruby's take on
 object-oriented programming. It contains recipes for writing
 different types of classes and methods, and a few recipes that
 demonstrate capabilities of all Ruby objects (such as freezing and
 cloning).

	Chapter 9,
 Modules and Namespaces, covers Ruby's
 modules. These constructs are used to "mix" new behavior into
 existing classes and to segregate functionality into different
 namespaces.

	Chapter 10,
 Reflection and Metaprogramming, covers
 techniques for programatically exploring and modifying Ruby class
 definitions.

Chapter 6 covers basic file
 access, but doesn't touch much on specific file formats. We devote three
 chapters to popular ways of storing data.
	Chapter 11,
 XML and HTML, shows how to handle the most
 popular data interchange formats. The chapter deals mostly with
 parsing other people's XML documents and web pages (but see Recipe 11.9).

	Chapter 12,
 Graphics and Other File Formats, covers data
 interchange formats other than XML and HTML, with a special focus on
 generating and manipulating graphics.

	Chapter 13,
 Databases and Persistence, covers the best
 Ruby interfaces to data storage formats, whether you're serializing
 Ruby objects to disk, or storing structured data in a database. This
 chapter demonstrates everything from different ways of serializing
 data and indexing text, to the Ruby client libraries for popular SQL
 databases, to full-blown abstraction layers like ActiveRecord that
 save you from having to write SQL at all.

Currently the most popular use of Ruby is in network applications
 (mostly through Ruby on Rails). We devote three chapters to different
 types of applications:
	Chapter 14,
 Internet Services, kicks off our networking
 coverage by illustrating a wide variety of clients and servers
 written with Ruby libraries.

	Chapter 15,
 Web Development: Ruby on Rails, covers the
 web application framework that's been driving so much of Ruby's
 recent popularity.

	Chapter 16,
 Web Services and Distributed Programming,
 covers two techniques for sharing information between computers
 during a Ruby program. In order to use a web service, you make an
 HTTP request of a program on some other computer, usually one you
 don't control. Ruby's DRb library lets you share Ruby data
 structures between programs running on a set of computers, all of
 which you control.

We then have three chapters on the auxilliary tasks that surround
 the main programming work of a project.
	Chapter 17,
 Testing, Debugging, Optimizing, and
 Documenting, focuses mainly on handling exception
 conditions and creating unit tests for your code. There are also
 several recipes on the processes of debugging and
 optimization.

	Chapter 18,
 Packaging and Distributing Software, mainly
 deals with Ruby's Gem packaging system and the RubyForge server that
 hosts many gem files. Many recipes in other chapters require that
 you install a particular gem, so if you're not familiar with gems,
 we recommend you read Recipe
 18.2 in particular. The chapter also shows you how to create
 and distribute gems for your own projects.

	Chapter 19,
 Automating Tasks with Rake, covers the most
 popular Ruby build tool. With Rake, you can script common tasks like
 running unit tests or packaging your code as a gem. Though it's
 usually used in Ruby projects, it's a general-purpose build language
 that you can use wherever you might use Make.

We close the book with four chapters on miscellaneous
 topics.
	Chapter 20,
 Multitasking and Multithreading, shows how to
 use threads to do more than one thing at once, and how to use Unix
 subprocesses to run external commands.

	Chapter 21,
 User Interface, covers user interfaces (apart
 from the web interface, which was covered in Chapter 15). We discuss the
 command-line interface, character-based GUIs with Curses and
 HighLine, GUI toolkits for various platforms, and more obscure kinds
 of user interface (Recipe
 21.11).

	Chapter 22,
 Extending Ruby with Other Languages, focuses
 on hooking up Ruby to other languages, either for performance or to
 get access to more libraries. Most of the chapter focuses on getting
 access to C libraries, but there is one recipe about JRuby, the Ruby
 implementation that runs on the Java Virtual Machine (Recipe 22.5).

	Chapter 23,
 System Administration, is full of
 self-contained programs for doing administrative tasks, usually
 using techniques from other chapters. The recipes have a heavy focus
 on Unix administration, but there are some resources for Windows
 users (including Recipe
 23.2), and some cross-platform scripts.

4. How the Code Listings Work

Learning from a cookbook means performing the recipes. Some of our
 recipes define big chunks of Ruby code that you can simply plop into
 your program and use without really understanding them (Recipe 19.8 is a good example).
 But most of the recipes demonstrate techniques, and the best way to
 learn a technique is to practice it.
We wrote the recipes, and their code listings, with this in mind.
 Most of our listings act like unit tests for the concepts described in
 the recipe: they poke at objects and show you the results.
Now, a Ruby installation comes with an interactive interpreter
 called irb. Within an irb session, you can type in lines of Ruby
 code and see the output immediately. You don't have to create a Ruby
 program file and run it through the interpreter.
Most of our recipes are presented in a form that you can type or
 copy/paste directly into an irb
 session. To study a recipe in depth, we recommend that you start an
 irb session and run through the code
 listings as you read it. You'll have a deeper understanding of the
 concept if you do it yourself than if you just read about it. Once
 you're done, you can experiment further with the objects you defined
 while running the code listings.
Sometimes we want to draw your attention to the expected result of
 a Ruby expression. We do this with a Ruby comment containing an ASCII
 arrow that points to the expected value of the expression. This is the
 same arrow irb uses to tell you the
 value of every expression you type.
We also use textual comments to explain some pieces of code.
 Here's a fragment of Ruby code that I've formatted with comments as I
 would in a recipe:
	1 + 2 # => 3
	
	# On a long line, the expected value goes on a new line:
	Math.sqrt(1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10)
	# => 7.41619848709566
To display the expected output of a Ruby
 expression, we use a comment that has no ASCII arrow, and that always
 goes on a new line:
	puts "This string is self-referential."
	# This string is self-referential.
If you type these two snippets of code into irb, ignoring the comments, you can check back
 against the text and verify that you got the same results we did:
	$irb
	irb(main):001:0> 1 + 2
	=> 3
	irb(main):002:0> Math.sqrt(1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10)
	=> 7.41619848709566
	irb(main):003:0> puts "This string is self-referential."
	This string is self-referential.
	=> nil
If you're reading this book in electronic form, you can copy and
 paste the code fragments into irb.
 The Ruby interpreter will ignore the comments, but you can use them to
 make sure your answers match ours, without having to look back at the
 text. (But you should know that typing in the code yourself, at least
 the first time, is better for comprehension.)
	$irb
	irb(main):001:0> 1 + 2 # => 3
	=> 3
	irb(main):002:0>
	irb(main):003:0* # On a long line, the expected value goes on a new line:
	irb(main):004:0* Math.sqrt(1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10)
	=> 7.41619848709566
	irb(main):005:0> # => 7.41619848709566
	irb(main):006:0*
	irb(main):007:0* puts "This string is self-referential."
	This string is self-referential.
	=> nil
	irb(main):008:0> # This string is self-referential.
We don't cut corners. Most of our recipes demonstrate a complete
 irb session from start to finish, and
 they include any imports or initialization necessary to illustrate the
 point we're trying to make. If you run the code exactly as it is in the
 recipe, you should get the same results we did.[1] This fits in with our philosophy that code samples should
 be unit tests for the underlying concepts. In fact, we tested our code
 samples like unit tests, with a Ruby script that parses recipe texts and
 runs the code listings.
The irb session technique
 doesn't always work. Rails recipes have to run within Rails. Curses
 recipes take over the screen and don't play well with irb. So sometimes we show you standalone
 files. We present them in the following format:
	#!/usr/bin/ruby -w
	# sample_ruby_file.rb: A sample file

	1 + 2
	Math.sqrt(1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10)
	puts "This string is self-referential."
Whenever possible, we'll also show what you'll get when you run
 this program: maybe a screenshot of a GUI program, or a record of the
 program's output when run from the Unix command line:
	$ ruby sample_ruby_file.rb
	This string is self-referential.
Note that the output of sample_ruby_file.rb looks different from the
 same code entered into irb. Here,
 there's no trace of the addition and the square root operations, because
 they produce no output.

[1] When a program's behavior depends on the current time, the
 random number generator, or the presence of certain files on disk,
 you might not get the exact same results we did, but it should be
 similar.

5. Installing the Software

Ruby comes preinstalled on Mac OS X and most Linux installations.
 Windows doesn't come with Ruby, but it's easy to get it with the
 One-Click Installer: see http://rubyforge.org/projects/rubyinstaller/.
If you're on a Unix/Linux system and you don't have Ruby installed
 (or you want to upgrade), your distribution's package system may make a
 Ruby package available. On Debian GNU/Linux, it's available as the
 package ruby-[version]: for instance,
 ruby-1.8 or ruby-1.9. Red Hat Linux calls it ruby; so does
 the DarwinParts system on Mac OS X.
If all else fails, download the Ruby source code and compile it
 yourself. You can get the Ruby source code through FTP or HTTP by
 visiting http://www.ruby-lang.org/.
Many of the recipes in this book require that you install
 third-party libraries in the form of Ruby gems. In general, we prefer
 standalone solutions (using only the Ruby standard library) to solutions
 that use gems, and gem-based solutions to ones that require other kinds
 of third-party software.
If you're not familiar with gems, consult Chapter 18 as needed. To get started,
 all you need to know is that you first download the Rubygems library
 from http://rubyforge.org/projects/rubygems/
 (choose the latest release from that page). Unpack the tarball or ZIP
 file, change into the rubygems-[version] directory, and run this
 command as the superuser:
	$ ruby setup.rb
The Rubygems library is included in the Windows One-Click
 Installer, so you don't have to worry about this step on Windows.
Once you've got the Rubygems library installed, it's easy to
 install many other pieces of Ruby code. When a recipe says something
 like "Ruby on Rails is available as the rails gem," you can issue the following
 command from the command line (again, as the superuser):
	$ gem install rails --include-dependencies
The RubyGems library will download the rails gem (and any other gems on which it
 depends) and automatically install them. You should then be able to run
 the code in the recipe, exactly as it appears.
The three most useful gems for new Ruby installations are rails (if you intend to create Rails
 applications) and the two gems provided by the Ruby Facets project:
 facets_core and facets_more. The Facets Core library extends
 the classes of the Ruby standard library with generally useful methods.
 The Facets More library adds entirely new classes and modules. The Ruby
 Facets homepage (http://facets.rubyforge.org/) has
 a complete reference.
Some Ruby libraries (especially older ones) are not packaged as
 gems. Most of the nongem libraries mentioned in this book have entries
 in the Ruby Application Archive (http://raa.ruby-lang.org/), a directory of Ruby programs
 and libraries. In most cases you can download a tarball or ZIP file from
 the RAA, and install it with the technique described in Recipe 18.8.

6. Platform Differences, Version Differences, and Other
 Headaches

Except where noted, the recipes describe cross-platform concepts,
 and the code itself should run the same way on Windows, Linux, and Mac
 OS X. Most of the platform differences and platform-specific recipes
 show up in the final chapters: Chapter
 20, Chapter 21, and Chapter 23 (but see the introduction to
 Chapter 6 for a note about Windows
 filenames).
We wrote and tested the recipes using Ruby version 1.8.4 and Rails
 version 1.1.2, the latest stable versions as of the time of writing. In
 a couple of places we mention code changes you should make if you're
 running Ruby 1.9 (the latest unstable version as of the time of writing)
 or 2.0.
Despite our best efforts, this book may contain unflagged
 platform-specific code, not to mention plain old bugs. We apologize for
 these in advance of their discovery. If you have problems with a recipe,
 check out the eratta for this book (see below).
In several recipes in this book, we modify standard Ruby classes
 like Array to add new methods (see,
 for instance, Recipe 1.10,
 which defines a new method called String#capitalize_first_letter). These methods
 are then available to every instance of that class in your program. This
 is a fairly common technique in Ruby: both Rails and the Facets Core
 library mentioned above do it. It's somewhat controversial, though, and
 it can cause problems (see Recipe
 8.4 for an in-depth discussion), so we felt we should mention it
 here in the Preface, even though it might be too technical for people
 who are new to Ruby.
If you don't want to modify the standard classes, you can put the
 methods we demonstrate into a subclass, or define them in the Kernel namespace: that is, define capitalize_first_letter_of_string instead of
 reopening String and defining
 capitalize_first_letter inside
 it.

7. Other Resources

If you need to learn Ruby, the standard reference is
 Programming Ruby: The Pragmatic Programmer's Guide
 by Dave Thomas, Chad Fowler, and Andy Hunt (Pragmatic Programmers). The
 first edition is available online in HTML format (http://www.rubycentral.com/book/), but it's out of date.
 The second edition is much better and is available as a printed book or
 as PDF (http://www.pragmaticprogrammer.com/titles/ruby/). It's a
 much better idea to buy the second edition and use the first edition as
 a handy reference than to try to read the first edition.
"Why's (Poignant) Guide to Ruby," by "why the lucky stiff,"
 teaches Ruby with stories, like an English primer. Excellent for
 creative beginners (http://poignantguide.net/ruby/).
For Rails, the standard book is Agile Web Development
 with Rails by Dave Thomas, David Hansson, Leon Breedt, and
 Mike Clark (Pragmatic Programmers). There are also two books like this
 one that focus exclusively on Rails: Rails Cookbook
 by Rob Orsini (O'Reilly) and Rails Recipes by Chad
 Fowler (Pragmatic Programmers).
Some common Ruby pitfalls are explained in the Ruby FAQ (http://www.rubycentral.com/faq/, starting in Section 4)
 and in "Things That Newcomers to Ruby Should Know" (http://www.glue.umd.edu/~billtj/ruby.html).
Many people come to Ruby already knowing one or more programming
 languages. You might find it frustrating to learn Ruby with a big book
 that thinks it has to teach you programming and
 Ruby. For such people, we recommend Ruby creator Yukihiro Matsumoto's
 "Ruby User's Guide" (http://www.ruby-doc.org/docs/UsersGuide/rg/). It's a
 short read, and it focuses on what makes Ruby different from other
 programming languages. Its terminology is a little out of date, and it
 presents its code samples through the obsolete eval.rb program (use irb instead), but it's the best short
 introduction we know of.
There are a few articles especially for Java programmers who want
 to learn Ruby: Jim Weirich's "10 Things Every Java Programmer Should
 Know About Ruby" (http://onestepback.org/articles/10things/), Francis
 Hwang's blog entry "Coming to Ruby from Java" (http://fhwang.net/blog/40.html), and Chris Williams's
 collection of links, "From Java to Ruby (With Love)" (http://cwilliams.textdriven.com/pages/java_to_ruby)
 Despite the names, C++ programmers will also benefit from much of what's
 in these pieces.
The Ruby Bookshelf (http://books.rubyveil.com/books/Bookshelf/Introduction/Bookshelf)
 has produced a number of free books on Ruby, including many of the ones
 mentioned above, in an easy-to-read HTML format.
Finally, Ruby's built-in modules, classes, and methods come with
 excellent documentation (much of it originally written for
 Programming Ruby). You can read this documentation
 online at http://www.ruby-doc.org/core/ and http://www.ruby-doc.org/stdlib/. You can also look it up
 on your own Ruby installation by using the ri command. Pass in the name of a class or
 method, and ri will give you the
 corresponding documentation. Here are a few examples:
	$ ri Array # A class
	$ ri Array.new # A class method
	$ ri Array#compact # An instance method

8. Conventions Used in This Book

The following typographical conventions are used in this
 book:
	Plain text
	Indicates menu titles, menu options, menu buttons, and
 keyboard accelerators (such as Alt and Ctrl).

	Italic
	Indicates new terms, URLs, email addresses, and Unix
 utilities.

	Constant width
	Indicates commands, options, switches, variables,
 attributes, keys, functions, types, classes, namespaces, methods,
 modules, properties, parameters, values, objects, events, event
 handlers, XML tags, HTML tags, macros, programs, libraries,
 filenames, pathnames, directories, the contents of files, or the
 output from commands.

	Constant width
 bold
	Shows commands or other text that should be typed literally
 by the user.

	Constant width italic
	Shows text that should be replaced with user-supplied
 values.

9. Using Code Examples

This book is here to help you get your job done. In general, you
 may use the code in this book in your programs and documentation. You do
 not need to contact us for permission unless you're reproducing a
 significant portion of the code. For example, writing a program that
 uses several chunks of code from this book does not require permission.
 Selling or distributing a CD-ROM of examples from O'Reilly books
 does require permission. Answering a question by
 citing this book and quoting example code does not require permission.
 Incorporating a significant amount of example code from this book into
 your product's documentation does require
 permission.
We appreciate, but do not require, attribution. An attribution
 usually includes the title, author, publisher, and ISBN. For example:
 "Ruby Cookbook, by Lucas Carlson and Leonard
 Richardson. Copyright 2006 O'Reilly Media, Inc., 0-596-52369-6."
If you feel your use of code examples falls outside fair use or
 the permission given above, feel free to contact us at
 permissions@oreilly.com.

10. Comments and Questions

Please address comments and questions concerning this book to the
 publisher:
	O'Reilly Media, Inc.
	1005 Gravenstein Highway North
	Sebastopol, CA 95472
	800-998-9938 (in the United States or Canada)
	707-829-0515 (international or local)
	707-829-0104 (fax)

We have a web page for this book, where we list errata, examples,
 and any additional information. You can access this page at:
	http://www.oreilly.com/catalog/rubyckbk

To comment or ask technical questions about this book, send email
 to:
	bookquestions@oreilly.com

For more information about our books, conferences, Resource
 Centers, and the O'Reilly Network, see our web site at:
	http://www.oreilly.com

11. Acknowledgments

First we'd like to thank our editor, Michael Loukides, for his
 help and for acquiescing to our use of his name in recipe code samples,
 even when we turned him into a talking frog. The production editor,
 Colleen Gorman, was also very helpful.
This book would have taken longer to write and been less
 interesting without our contributing authors, who, collectively, wrote
 over 60 of these recipes. The roll of names includes: Steve Arniel, Ben
 Bleything, Antonio Cangiano, Mauro Cicio, Maurice Codik, Thomas Enebo,
 Pat Eyler, Bill Froelich, Rod Gaither, Ben Giddings, Michael Granger,
 James Edward Gray II, Stefan Lang, Kevin Marshall, Matthew Palmer Chetan
 Patil, Alun ap Rhisiart, Garrett Rooney, John-Mason Shackelford, Phil
 Tomson, and John Wells. They saved us time by lending their knowledge of
 various Ruby topics, and they enriched the book with their ideas.
This book would be of appallingly low quality were it not for our
 technical reviewers, who spotted dozens of bugs, platform-specific
 problems, and conceptual errors: John N. Alegre, Dave Burt, Bill
 Dolinar, Simen Edvardsen, Shane Emmons, Edward Faulkner, Dan
 Fitzpatrick, Bill Guindon, Stephen Hildrey, Meador Inge, Eric Jacoboni,
 Julian I. Kamil, Randy Kramer, Alex LeDonne, Steven Lumos, Keith
 Rosenblatt, Gene Tani, and R Vrajmohan.
Finally, to the programmers and writers of the Ruby community;
 from the celebrities like Yukihiro Matsumoto, Dave Thomas, Chad Fowler,
 and "why", to the hundreds of unsung heroes whose work went into the
 libraries we demonstrate throughout the book, and whose skill and
 patience bring more people into the Ruby community all the time.

Chapter 1. Strings

Ruby is a programmer-friendly language. If you are already familiar
 with object oriented programming, Ruby should quickly become second
 nature. If you've struggled with learning object-oriented programming or
 are not familiar with it, Ruby should make more sense to you than other
 object-oriented languages because Ruby's methods are consistently named,
 concise, and generally act the way you expect.
Throughout this book, we demonstrate concepts through interactive
 Ruby sessions. Strings are a good place to start because not only are they
 a useful data type, they're easy to create and use. They provide a simple
 introduction to Ruby, a point of comparison between Ruby
 and other languages you might know, and an approachable way to introduce
 important Ruby concepts like duck typing (see Recipe 1.12), open classes
 (demonstrated in Recipe
 1.10), symbols (Recipe
 1.7), and even Ruby gems (Recipe 1.20).
If you use Mac OS X or a Unix environment with Ruby installed, go to
 your command line right now and type irb. If you're using Windows, you can download
 and install the One-Click Installer from http://rubyforge.org/projects/rubyinstaller/, and do the
 same from a command prompt (you can also run the fxri program, if that's more comfortable for
 you). You've now entered an interactive Ruby shell, and you can follow
 along with the code samples in most of this book's recipes.
Strings in Ruby are much like strings in other dynamic languages
 like Perl, Python and PHP. They're not too much different from strings in
 Java and C. Ruby strings are dynamic, mutable, and flexible. Get started
 with strings by typing this line into your interactive Ruby
 session:
	string = "My first string"
You should see some output that looks like this:
	=> "My first string"
You typed in a Ruby expression that created a string "My first
 string", and assigned it to the variable string. The value of that expression is just the
 new value of string, which is what your
 interactive Ruby session printed out on the right side of the arrow.
 Throughout this book, we'll represent this kind of interaction in the
 following form:[1]
	string = "My first string" # => "My first string"
In Ruby, everything that can be assigned to a variable is an object.
 Here, the variable string points to an
 object of class String. That class
 defines over a hundred built-in methods: named pieces of code that examine and manipulate
 the string. We'll explore some of these throughout the chapter, and indeed
 the entire book. Let's try out one now: String#length, which returns the number of bytes
 in a string. Here's a Ruby method call:
	string.length # => 15
Many programming languages make you put parentheses after a method call:
	string.length() # => 15
In Ruby, parentheses are almost always optional. They're especially
 optional in this case, since we're not passing any arguments into String#length. If you're passing arguments into
 a method, it's often more readable to enclose the argument list in
 parentheses:
	string.count 'i' # => 2 # "i" occurs twice.
	string.count('i') # => 2
The return value of a method call is itself an object. In the case
 of String#length, the return value is
 the number 15, an instance of the Fixnum class. We can call a method on this
 object as well:
	string.length.next # => 16
Let's take a more complicated case: a string that contains non-ASCII
 characters. This string contains the French phrase "il était une fois,"
 encoded as UTF-8:[2]
	french_string = "il \xc3\xa9tait une fois" # => "il \303\251tait une fois"
Many programming languages (notably Java) treat a string as a series
 of characters. Ruby treats a string as a series of bytes. The French
 string contains 14 letters and 3 spaces, so you might think Ruby would say
 the length of the string is 17. But one of the letters (the e with acute
 accent) is represented as two bytes, and that's what Ruby counts:
	french_string.length # => 18
For more on handling different encodings, see Recipe 1.14 and Recipe 11.12. For more on this
 specific problem, see Recipe
 1.8
You can represent special characters in strings (like the binary
 data in the French string) with string escaping. Ruby does different types
 of string escaping depending on how you create the string. When you
 enclose a string in double quotes, you can encode binary data into the string (as in
 the French example above), and you can encode newlines with the code "\n",
 as in other programming languages:
	puts "This string\ncontains a newline"
	# This string
	# contains a newline
When you enclose a string in single quotes, the only special codes you can use are "\'" to get a literal single
 quote, and "\\" to get a literal backslash:
	puts 'it may look like this string contains a newline\nbut it doesn\'t'
	# it may look like this string contains a newline\nbut it doesn't

	puts 'Here is a backslash: \\'
	# Here is a backslash: \
This is covered in more detail in Recipe 1.5. Also see Recipes 1.2 and 1.3 for more examples of the more
 spectacular substitutions double-quoted strings can do.
Another useful way to initialize strings is with the " here documents" style:
	long_string = <<EOF
	Here is a long string
	With many paragraphs
	EOF
	# => "Here is a long string\nWith many paragraphs\n"

	puts long_string
	# Here is a long string
	# With many paragraphs
Like most of Ruby's built-in classes, Ruby's strings define the same
 functionality in several different ways, so that you can use the idiom you
 prefer. Say you want to get a substring of a larger string (as in Recipe 1.13). If you're an
 object-oriented programming purist, you can use the String#slice method:
	string # => "My first string"
	string.slice(3, 5) # => "first"
But if you're coming from C, and you think of a string as an array
 of bytes, Ruby can accommodate you. Selecting a single byte from a string
 returns that byte as a number.
	string.chr + string.chr + string.chr + string.chr + string.chr
	# => "first"
And if you come from Python, and you like that language's slice
 notation, you can just as easily chop up the string that way:
	string[3, 5] # => "first"
Unlike in most programming languages, Ruby strings are mutable: you
 can change them after they are declared. Below we see the difference
 between the methods String#upcase and
 String#upcase!:
	string.upcase # => "MY FIRST STRING"
	string # => "My first string"
	string.upcase! # => "MY FIRST STRING"
	string # => "MY FIRST STRING"
This is one of Ruby's syntactical conventions. "Dangerous" methods
 (generally those that modify their object in place) usually have an
 exclamation mark at the end of their name. Another syntactical convention
 is that predicates, methods that return a true/false
 value, have a question mark at the end of their name (as in some varieties
 of Lisp):
	string.empty? # => false
	string.include? 'MY' # => true
This use of English punctuation to provide the programmer with information is
 an example of Matz's design philosophy: that Ruby is a language primarily
 for humans to read and write, and secondarily for computers to
 interpret.
An interactive Ruby session is an indispensable tool for learning
 and experimenting with these methods. Again, we encourage you to type the
 sample code shown in these recipes into an irb or fxri
 session, and try to build upon the examples as your knowledge of Ruby
 grows.
Here are some extra resources for using strings in Ruby:
	You can get information about any built-in Ruby method with the
 ri command; for instance, to see
 more about the String#upcase!
 method, issue the command ri
 "String#upcase!" from the command line.

	"why the lucky stiff" has written an excellent introduction to
 installing Ruby, and using irb and
 ri: http://poignantguide.net/ruby/expansion-pak-1.html

	For more information about the design philosophy behind Ruby,
 read an interview with Yukihiro "Matz" Matsumoto, creator of Ruby:
 http://www.artima.com/intv/ruby.html

1.1. Building a String from Parts

Problem

You want to iterate over a data structure, building a string from it as you do.

Solution

There are two efficient solutions. The simplest solution is to
 start with an empty string, and repeatedly append substrings onto it
 with the << operator:
	hash = { "key1" => "val1", "key2" => "val2" }
	string = ""
	hash.each { |k,v| string << "#{k} is #{v}\n" }
	puts string
	# key1 is val1
	# key2 is val2
This variant of the simple solution is slightly more efficient,
 but harder to read:
	string = ""
	hash.each { |k,v| string << k << " is " << v << "\n" }
If your data structure is an array, or easily transformed into
 an array, it's usually more efficient to use
 Array#join:
	puts hash.keys.join("\n") + "\n"
	# key1
	# key2

Discussion

In languages like Python and Java, it's very inefficient to
 build a string by starting with an empty string and adding each
 substring onto the end. In those languages, strings are immutable, so
 adding one string to another builds an entirely new string. Doing this
 multiple times creates a huge number of intermediary strings, each of
 which is only used as a stepping stone to the next string. This wastes
 time and memory.
In those languages, the most efficient way to build a string is
 always to put the substrings into an array or another mutable data
 structure, one that expands dynamically rather than by implicitly
 creating entirely new objects. Once you're done processing the
 substrings, you get a single string with the equivalent of Ruby's
 Array#join. In Java, this is the purpose of
 the StringBuffer class.
In Ruby, though, strings are just as mutable as arrays. Just
 like arrays, they can expand as needed, without using much time or
 memory. The fastest solution to this problem in Ruby is usually to
 forgo a holding array and tack the substrings directly onto a base
 string. Sometimes using Array#join
 is faster, but it's usually pretty close, and the << construction is generally easier to
 understand.
If efficiency is important to you, don't build a new string when
 you can append items onto an existing string. Constructs like str << 'a' + 'b' or str << "#{var1} #{var2}" create new
 strings that are immediately subsumed into the larger string. This is
 exactly what you're trying to avoid. Use str
 << var1 <<''<< var2 instead.
On the other hand, you shouldn't modify strings that aren't
 yours. Sometimes safety requires that you create a new string. When
 you define a method that takes a string as an argument, you shouldn't
 modify that string by appending other strings onto it, unless that's
 really the point of the method (and unless the method's name ends in
 an exclamation point, so that callers know it modifies objects in
 place).
Another caveat: Array#join
 does not work precisely the same way as repeated appends to a string.
 Array#join accepts a separator
 string that it inserts between every two elements
 of the array. Unlike a simple string- building iteration over an array, it will not insert
 the separator string after the last element in the array. This example
 illustrates the difference:
	data = ['1', '2', '3']
	s = ''
	data.each { |x| s << x << ' and a '}
	s # => "1 and a 2 and a 3 and a "
	data.join(' and a ') # => "1 and a 2 and a 3"
To simulate the behavior of Array#join across an iteration, you can use
 Enumerable#each_with_index and omit
 the separator on the last index. This only works if you know how long
 the Enumerable is going to
 be:
	s = ""
	data.each_with_index { |x, i| s << x; s << "|" if i < data.length-1 }
	s # => "1|2|3"

[1] Yes, this was covered in the Preface, but not everyone reads the
 Preface.

[2] "\xc3\xa9" is a Ruby string representation of the UTF-8 encoding
 of the Unicode character é.

1.2. Substituting Variables into Strings

Problem

You want to create a string that contains a representation of a
 Ruby variable or expression.

Solution

Within the string, enclose the variable or expression in curly
 brackets and prefix it with a hash character.
	number = 5
	"The number is #{number}." # => "The number is 5."
	"The number is #{5}." # => "The number is 5."
	"The number after #{number} is #{number.next}."
	# => "The number after 5 is 6."
	"The number prior to #{number} is #{number-1}."
	# => "The number prior to 5 is 4."
	"We're ##{number}!" # => "We're #5!"

Discussion

When you define a string by putting it in double quotes, Ruby scans it for special substitution
 codes. The most common case, so common that you might not even think
 about it, is that Ruby substitutes a single newline character every
 time a string contains slash followed by the letter n ("\n").
Ruby supports more complex string substitutions as well. Any
 text kept within the brackets of the special marker
 #{} (that is, #{text in here}) is interpreted as
 a Ruby expression. The result of that expression is substituted into
 the string that gets created. If the result of the expression is not a
 string, Ruby calls its to_s method
 and uses that instead.
Once such a string is created, it is indistinguishable from a
 string created without using the string interpolation feature:
	"#{number}" == '5' # => true
You can use string interpolation to run even large chunks of Ruby code
 inside a string. This extreme example defines a class within a string;
 its result is the return value of a method defined in the class. You
 should never have any reason to do this, but it shows the power of
 this feature.
	%{Here is #{class InstantClass
	 def bar
	 "some text"
	 end
	 end
	 InstantClass.new.bar
	}.}
	# => "Here is some text."
The code run in string interpolations runs in the same context as any other
 Ruby code in the same location. To take the example above, the
 InstantClass class has now been
 defined like any other class, and can be used outside the string that
 defines it.
If a string interpolation calls a method that has side effects,
 the side effects are triggered. If a string definition sets a
 variable, that variable is accessible afterwards. It's bad form to
 rely on this behavior, but you should be aware of it:
	"I've set x to #{x = 5; x += 1}." # => "I've set x to 6."
	x # => 6
To avoid triggering string interpolation, escape the hash
 characters or put the string in single quotes.
	"\#{foo}" # => "\#{foo}"
	'#{foo}' # => "\#{foo}"
The "here document" construct is an alternative to the %{} construct, which is sometimes more
 readable. It lets you define a multiline string that only ends when
 the Ruby parser encounters a certain string on a line by
 iteself:
	name = "Mr. Lorum"
	email = <<END
	Dear #{name},

	Unfortunately we cannot process your insurance claim at this
	time. This is because we are a bakery, not an insurance company.

	Signed,
	 Nil, Null, and None
	 Bakers to Her Majesty the Singleton
	END
Ruby is pretty flexible about the string you can use to end the
 "here document":
	<<end_of_poem
	There once was a man from Peru
	Whose limericks stopped on line two
	end_of_poem
	# => "There once was a man from Peru\nWhose limericks stopped on line two\n"

See Also

	You can use the technique described in Recipe 1.3, " Substituting Variables into an Existing String," to
 define a template string or object, and substitute in variables
 later

1.3. Substituting Variables into an Existing String

Problem

You want to create a string that contains Ruby expressions or
 variable substitutions, without actually performing the substitutions.
 You plan to substitute values into the string later, possibly multiple
 times with different values each time.

Solution

There are two good solutions: printf-style strings, and ERB templates.
Ruby supports a printf-style
 string format like C's and Python's. Put printf directives into a string and it
 becomes a template. You can interpolate values into it later using the
 modulus operator:
	template = 'Oceania has always been at war with %s.'
	template % 'Eurasia' # => "Oceania has always been at war with Eurasia."
	template % 'Eastasia' # => "Oceania has always been at war with Eastasia."

	'To 2 decimal places: %.2f' % Math::PI # => "To 2 decimal places: 3.14"
	'Zero-padded: %.5d' % Math::PI # => "Zero-padded: 00003"
An ERB template looks something like JSP or PHP code. Most
 of it is treated as a normal string, but certain control sequences are
 executed as Ruby code. The control sequence is replaced with either
 the output of the Ruby code, or the value of its last
 expression:
	require 'erb'

	template = ERB.new %q{Chunky <%= food %>!}
	food = "bacon"
	template.result(binding) # => "Chunky bacon!"
	food = "peanut butter"
	template.result(binding) # => "Chunky peanut butter!"
You can omit the call to Kernel#binding if you're not in an irb session:
	puts template.result
	# Chunky peanut butter!
You may recognize this format from the .rhtml files used by Rails views: they use
 ERB behind the scenes.

Discussion

An ERB template can reference variables like food before they're defined. When you call
 ERB#result, or ERB#run, the template is executed according
 to the current values of those variables.
Like JSP and PHP code, ERB templates can contain loops and conditionals.
 Here's a more sophisticated template:
	template = %q{
	<% if problems.empty? %>
	 Looks like your code is clean!
	<% else %>
	 I found the following possible problems with your code:
	 <% problems.each do |problem, line| %>
	 * <%= problem %> on line <%= line %>
	 <% end %>
	<% end %>}.gsub(/^\s+/, '')
	template = ERB.new(template, nil, '<>')

	problems = [["Use of is_a? instead of duck typing", 23],
	 ["eval() is usually dangerous", 44]]
	template.run(binding)
	# I found the following possible problems with your code:
	# * Use of is_a? instead of duck typing on line 23
	# * eval() is usually dangerous on line 44

	problems = []
	template.run(binding)
	# Looks like your code is clean!
ERB is sophisticated, but neither it nor the printf-style strings look like the simple Ruby string substitutions
 described in Recipe 1.2.
 There's an alternative. If you use single quotes instead of double
 quotes to define a string with substitutions, the substitutions won't
 be activated. You can then use this string as a template with eval:
	class String
	 def substitute(binding=TOPLEVEL_BINDING)
	 eval(%{"#{self}"}, binding)
	 end
	end

	template = %q{Chunky #{food}!} # => "Chunky \#{food}!"

	food = 'bacon'
	template.substitute(binding) # => "Chunky bacon!"
	food = 'peanut butter'
	template.substitute(binding) # => "Chunky peanut butter!"
You must be very careful when using eval: if you use a variable in the wrong
 way, you could give an attacker the ability to run arbitrary Ruby code
 in your eval statement. That won't
 happen in this example since any possible value of food gets stuck into a string definition
 before it's interpolated:
	food = '#{system("dir")}'
	puts template.substitute(binding)
	# Chunky #{system("dir")}!

See Also

	This recipe gives basic examples of ERB templates; for more complex examples, see the
 documentation of the ERB class (http://www.ruby-doc.org/stdlib/libdoc/erb/rdoc/classes/ERB.html)

	Recipe 1.2,
 " Substituting Variables into Strings"

	Recipe 10.12,
 "Evaluating Code in an Earlier Context," has more about Binding objects

1.4. Reversing a String by Words or Characters

Problem

The letters (or words) of your string are in the wrong
 order.

Solution

To create a new string that contains a reversed version of your
 original string, use the reverse
 method. To reverse a string in place, use the reverse! method.
	s = ".sdrawkcab si gnirts sihT"
	s.reverse # => "This string is backwards."
	s # => ".sdrawkcab si gnirts sihT"

	s.
reverse! # => "This string is backwards."
	s # => "This string is backwards."
To reverse the order of the words in a string, split the string
 into a list of whitespaceseparated words, then join the list back into
 a string.
	s = "order. wrong the in are words These"
	s.split(/(\s+)/).
reverse!.join('') # => "These words are in the wrong order."
	s.split(/\b/).reverse!.join('') # => "These words are in the wrong. order"

Discussion

The String#split method takes a regular
 expression to use as a separator. Each time the separator matches part
 of the string, the portion of the string before the separator goes
 into a list. split then resumes
 scanning the rest of the string. The result is a list of strings found
 between instances of the separator. The regular expression /(\s+)/ matches one or more whitespace
 characters; this splits the string on word boundaries, which works for
 us because we want to reverse the order of the words.
The regular expression \b
 matches a word boundary. This is not the same as matching whitespace,
 because it also matches punctuation. Note the difference in
 punctuation between the two final examples in the Solution.
Because the regular expression /(\s+)/ includes a set of parentheses, the
 separator strings themselves are included in the returned list.
 Therefore, when we join the strings back together, we've preserved
 whitespace. This example shows the difference between including the
 parentheses and omitting them:
	"Three little words".split(/\s+/) # => ["Three", "little", "words"]
	"Three little words".split(/(\s+)/)
	# => ["Three", " ", "little", " ", "words"]

See Also

	Recipe 1.9,
 "Processing a String One Word at a Time," has some regular
 expressions for alternative definitions of "word"

	Recipe 1.11,
 "Managing Whitespace"

	Recipe 1.17,
 "Matching Strings with Regular Expressions"

1.5. Representing Unprintable Characters

Problem

You need to make reference to a control character, a strange
 UTF-8 character, or some other character that's not on your
 keyboard.

Solution

Ruby gives you a number of escaping mechanisms to refer to
 unprintable characters. By using one of these
 mechanisms within a double-quoted string, you can put any binary
 character into the string.
You can reference any any binary character by encoding its octal
 representation into the format "\000", or its hexadecimal
 representation into the format "\x00".
	octal = "\000\001\010\020"
	octal.each_byte { |x| puts x }
	# 0
	# 1
	# 8
	# 16

	hexadecimal = "\x00\x01\x10\x20"
	hexadecimal.each_byte { |x| puts x }
	# 0
	# 1
	# 16
	# 32
This makes it possible to represent UTF-8 characters even when
 you can't type them or display them in your terminal. Try running this
 program, and then opening the generated file smiley.html in your web browser:
	open('smiley.html', 'wb') do |f|
	 f << '<meta http-equiv="Content-Type" content="text/html;charset=UTF-8">'
	 f << "\xe2\x98\xBA"
	end
The most common unprintable characters (such as newline) have special
 mneumonic aliases consisting of a backslash and a letter.
	"\a" == "\x07" # => true # ASCII 0x07 = BEL (Sound system bell)
	"\b" == "\x08" # => true # ASCII 0x08 = BS (Backspace)
	"\e" == "\x1b" # => true # ASCII 0x1B = ESC (Escape)
	"\f" == "\x0c" # => true # ASCII 0x0C = FF (Form feed)
	"\n" == "\x0a" # => true # ASCII 0x0A = LF (Newline/line feed)
	"\r" == "\x0d" # => true # ASCII 0x0D = CR (Carriage return)
	"\t" == "\x09" # => true # ASCII 0x09 = HT (Tab/horizontal tab)
	"\v" == "\x0b" # => true # ASCII 0x0B = VT (Vertical tab)

Discussion

Ruby stores a string as a sequence of bytes. It makes no
 difference whether those bytes are printable ASCII characters, binary
 characters, or a mix of the two.
When Ruby prints out a human-readable string representation of a
 binary character, it uses the character's \xxx octal representation. Characters with
 special \x mneumonics are printed
 as the mneumonic. Printable characters are output as their printable
 representation, even if another representation was used to create the
 string.
	"\x10\x11\xfe\xff" # => "\020\021\376\377"
	"\x48\145\x6c\x6c\157\x0a" # => "Hello\n"
To avoid confusion with the mneumonic characters, a literal
 backslash in a string is represented by two backslashes. For instance, the two-character string
 consisting of a backslash and the 14th letter of the alphabet is
 represented as "\\n".
	"\\".size # => 1
	"\\" == "\x5c" # => true
	"\\n"[0] == ?\\ # => true
	"\\n"[1] == ?n # => true
	"\\n" =~ /\n/ # => nil
Ruby also provides special shortcuts for representing keyboard
 sequences like Control-C. "\C-_x_"
 represents the sequence you get by holding down the control key and
 hitting the x key, and "\M-_x_"
 represents the sequence you get by holding down the Alt (or Meta) key
 and hitting the x key:
	"\C-a\C-b\C-c" # => "\001\002\003"
	"\M-a\M-b\M-c" # => "\341\342\343"
Shorthand representations of binary characters can be used
 whenever Ruby expects a character. For instance, you can get the
 decimal byte number of a special character by prefixing it with ?, and
 you can use shorthand representations in regular expression character
 ranges.
	?\C-a # => 1
	?\M-z # => 250

	contains_control_chars = /[\C-a-\C-^]/
	'Foobar' =~ contains_control_chars # => nil
	"Foo\C-zbar" =~ contains_control_chars # => 3

	contains_upper_chars = /[\x80-\xff]/
	'Foobar' =~ contains_upper_chars # => nil
	"Foo\212bar" =~ contains_upper_chars # => 3
Here's a sinister application that scans logged keystrokes for
 special characters:
	def snoop_on_keylog(input)
	 input.each_byte do |b|
	 case b
	 when ?\C-c; puts 'Control-C: stopped a process?'
	 when ?\C-z; puts 'Control-Z: suspended a process?'
	 when ?\n; puts 'Newline.'
	 when ?\M-x; puts 'Meta-x: using Emacs?'
	 end
	 end
	end

	snoop_on_keylog("ls -ltR\003emacsHello\012\370rot13-other-window\012\032")
	# Control-C: stopped a process?
	# Newline.
	# Meta-x: using Emacs?
	# Newline.
	# Control-Z: suspended a process?
Special characters are only interpreted in strings delimited by
 double quotes, or strings created with %{} or %Q{}. They are not interpreted in strings
 delimited by single quotes, or strings created with %q{}. You can take advantage of this feature
 when you need to display special characters to the end-user, or create
 a string containing a lot of backslashes.
	puts "foo\tbar"
	# foo bar
	puts %{foo\tbar}
	# foo bar
	puts %Q{foo\tbar}
	# foo bar

	puts 'foo\tbar'
	# foo\tbar
	puts %q{foo\tbar}
	# foo\tbar
If you come to Ruby from Python, this feature can take advantage
 of you, making you wonder why the special characters in your
 single-quoted strings aren't treated as special. If you need to create
 a string with special characters and a lot of embedded double quotes, use the
 %{} construct.

1.6. Converting Between Characters and Values

Problem

You want to see the ASCII code for a character, or transform an
 ASCII code into a string.

Solution

To see the ASCII code for a specific character as an integer,
 use the ? operator:
	?a # => 97
	?! # => 33
	?\n # => 10
To see the integer value of a particular in a string, access it
 as though it were an element of an array:
	'a'[0] # => 97
	'bad sound'[1] # => 97
To see the ASCII character corresponding to a given number, call
 its #chr method. This returns a
 string containing only one character:
	97.chr # => "a"
	33.chr # => "!"
	10.chr # => "\n"
	0.chr # => "\000"
	256.chr # RangeError: 256 out of char range

Discussion

Though not technically an array, a string acts a lot like like
 an array of Fixnum objects: one
 Fixnum for each byte in the string.
 Accessing a single element of the "array" yields a Fixnum for the corresponding byte: for
 textual strings, this is an ASCII code. Calling String#each_byte lets you iterate over the
 Fixnum objects that make up a
 string.

See Also

	Recipe 1.8,
 "Processing a String One Character at a Time"

1.7. Converting Between Strings and Symbols

Problem

You want to get a string containing the label of a Ruby symbol,
 or get the Ruby symbol that corresponds to a given string.

Solution

To turn a symbol into a string, use
 Symbol#to_s, or
 Symbol#id2name, for which to_s is an alias.
	:a_
symbol.to_s # => "a_symbol"
	:AnotherSymbol.id2name # => "AnotherSymbol"
	:"Yet another symbol!".to_s # => "Yet another symbol!"
You usually reference a symbol by just typing its name. If
 you're given a string in code and need to get the corresponding
 symbol, you can use String.intern:
	:dodecahedron.object_id # => 4565262
	symbol_name = "dodecahedron"
	symbol_name.intern # => :dodecahedron
	symbol_name.intern.object_id # => 4565262

Discussion

A Symbol is about the most
 basic Ruby object you can create. It's just a name and an internal ID.
 Symbols are useful becase a given symbol name refers to the same
 object throughout a Ruby program.
Symbols are often more efficient than strings. Two strings with
 the same contents are two different objects (one of the strings might
 be modified later on, and become different), but for any given name
 there is only one Symbol object.
 This can save both time and memory.
	"string".object_id # => 1503030
	"string".object_id # => 1500330
	:symbol.object_id # => 4569358
	:symbol.object_id # => 4569358
If you have n references to a name, you can
 keep all those references with only one symbol, using only one
 object's worth of memory. With strings, the same code would use
 n different objects, all containing the same
 data. It's also faster to compare two symbols than to compare two
 strings, because Ruby only has to check the object IDs.
	"string1" == "string2" # => false
	:symbol1 == :symbol2 # => false
Finally, to quote Ruby hacker Jim Weirich on when to use a
 string versus a symbol:
	If the contents (the sequence of characters) of the object
 are important, use a string.

	If the identity of the object is important, use a
 symbol.

See Also

	See Recipe 5.1,
 "Using Symbols as Hash Keys" for one use of symbols

	Recipe 8.12,
 "Simulating Keyword Arguments," has another

	Chapter 10,
 especially Recipe
 10.4, "Getting a Reference to a Method" and Recipe 10.10, "Avoiding
 Boilerplate Code with Metaprogramming"

	See http://glu.ttono.us/articles/2005/08/19/understanding-ruby-symbols
 for a symbol primer

1.8. Processing a String One Character at a Time

Problem

You want to process each character of a string
 individually.

Solution

If you're processing an ASCII document, then each byte
 corresponds to one character. Use String#each_byte to yield each byte of a
 string as a number, which you can turn into a one-character
 string:
	'foobar'.each_byte { |x| puts "#{x} = #{x.chr}" }
	# 102 = f
	# 111 = o
	# 111 = o
	# 98 = b
	# 97 = a
	# 114 = r
Use String#scan to yield each character of a
 string as a new one-character string:
	'foobar'.scan(/./) { |c| puts c }
	# f
	# o
	# o
	# b
	# a
	# r

Discussion

Since a string is a sequence of bytes, you might think that the
 String#each method would iterate
 over the sequence, the way Array#each does. But String#each is actually used to split a
 string on a given record separator (by default, the newline):
	"foo\nbar".each { |x| puts x }
	# foo
	# bar
The string equivalent of Array#each method is actually each_byte. A string stores its characters as a sequence of Fixnum objects, and
 each_bytes yields that
 sequence.
String#each_byte is faster
 than String#scan, so if you're processing an ASCII
 file, you might want to use String#each_byte and convert to a string
 every number passed into the code block (as seen in the
 Solution).
String#scan works by applying
 a given regular expression to a string, and yielding each match to the
 code block you provide. The regular expression /./ matches every character in the string,
 in turn.
If you have the $KCODE
 variable set correctly, then the scan technique will work on UTF-8 strings as well. This is the simplest way to sneak a
 notion of "character" into Ruby's byte-based strings.
Here's a Ruby string containing the UTF-8 encoding of the French
 phrase "ça va":
	french = "\xc3\xa7a va"
Even if your terminal can't properly display the character "ç",
 you can see how the behavior of String#scan changes when you make the
 regular expression Unicodeaware, or set $KCODE so that Ruby handles all strings as
 UTF-8:
	french.scan(/./) { |c| puts c }
	#
	#
	# a
	#
	# v
	# a

	french.scan(/./u) { |c| puts c }
	# ç
	# a
	#
	# v
	# a

	$KCODE = 'u'
	french.scan(/./) { |c| puts c }
	# ç
	# a
	#
	# v
	# a
Once Ruby knows to treat strings as UTF-8 instead of ASCII, it
 starts treating the two bytes representing the "ç" as a single
 character. Even if you can't see UTF-8, you can write programs that
 handle it correctly.

See Also

	Recipe 11.12,
 "Converting from One Encoding to Another"

1.9. Processing a String One Word at a Time

Problem

You want to split a piece of text into words, and operate on each word.

Solution

First decide what you mean by "word." What separates one word
 from another? Only whitespace? Whitespace or punctuation? Is
 "johnny-come-lately" one word or three? Build a regular expression
 that matches a single word according to whatever definition you need
 (there are some samples are in the Discussion).
Then pass that regular expression into String#scan. Every word it finds, it will
 yield to a code block. The word_count method defined below takes a piece
 of text and creates a histogram of word frequencies. Its regular
 expression considers a "word" to be a string of Ruby identifier
 characters: letters, numbers, and underscores.
	class String
	 def
word_count
	 frequencies = Hash.new(0)
	 downcase.scan(/\w+/) { |word| frequencies[word] += 1 }
	 return frequencies
	 end
	end

	%{Dogs dogs dog dog dogs.}.word_count
	# => {"dogs"=>3, "dog"=>2}
	%{"I have no shame," I said.}.word_count
	# => {"no"=>1, "shame"=>1, "have"=>1, "said"=>1, "i"=>2}

Discussion

The regular expression /\w+/
 is nice and simple, but you can probably do better for your
 application's definition of "word." You probably don't consider two
 words separated by an underscore to be a single word.
 Some English words, like "pan-fried" and "fo'c'sle", contain
 embedded punctuation. Here are a few more definitions of "word" in
 regular expression form:
	# Just like /\w+/, but doesn't consider underscore part of a word.
	/[0-9A-Za-z]/

	# Anything that's not whitespace is a word.
	/[^\S]+/

	# Accept dashes and apostrophes as parts of words.
	/[-'\w]+/

	# A pretty good heuristic for matching English words.
	/(\w+([-'.]\w+)*/
The last one deserves some explanation. It matches embedded
 punctuation within a word, but not at the edges. "Work-in-progress" is
 recognized as a single word, and "—-never—-" is recognized as the word
 "never" surrounded by punctuation. This regular expression can even
 pick out abbreviations and acronyms such as "Ph.D" and "U.N.C.L.E.",
 though it can't distinguish between the final period of an acronym and
 the period that ends a sentence. This means that "E.F.F." will be
 recognized as the word "E.F.F" and then a nonword period.
Let's rewrite our word_count
 method to use that regular expression. We can't use the original
 implementation, because its code block takes only one argument.
 String#scan passes its code block
 one argument for each match group in the regular expression, and our
 improved regular expression has two match groups. The first match
 group is the one that actually contains the word. So we must rewrite
 word_count so that its code block
 takes two arguments, and ignores the second one:
	class String
	 def word_count
	 frequencies = Hash.new(0)
downcase.scan(/(\w+([-'.]\w+)*)/) { |word, ignore| frequencies[word] += 1 }
	 return frequencies
	 end
	end

	%{"That F.B.I. fella--he's quite the man-about-town."}.word_count
	# => {"quite"=>1, "f.b.i"=>1, "the"=>1, "fella"=>1, "that"=>1,
	# "man-about-town"=>1, "he's"=>1}
Note that the "\w" character set matches different things
 depending on the value of $KCODE. By default, "\w" matches only
 characters that are part of ASCII words:
	french = "il \xc3\xa9tait une fois"
	french.word_count
	# => {"fois"=>1, "une"=>1, "tait"=>1, "il"=>1}
If you turn on Ruby's UTF-8 support, the "\w" character set
 matches more characters:
	$KCODE='u'
	french.word_count
	# => {"fois"=>1, "une"=>1, "était"=>1, "il"=>1}
The regular expression group \b matches a word
 boundary: that is, the last part of a word before
 a piece of whitespace or punctuation. This is useful for String#split (see Recipe 1.4), but not so useful
 for String#scan.

See Also

	Recipe 1.4,
 "Reversing a String by Words or Characters"

	The Facets core library defines a String#each_word method, using the
 regular expression /([-'\w]+)/

1.10. Changing the Case of a String

Problem

Your string is in the wrong case, or no particular case at
 all.

Solution

The String class provides a variety of case-shifting
 methods:
	s = 'HELLO, I am not here. I WENT to tHe MaRKEt.'
	s.
upcase # => "HELLO, I AM NOT HERE. I WENT TO THE MARKET."
	s.
downcase # => "hello, i am not here. i went to the market."
	s.swapcase # => "hello, i AM NOT HERE. i went TO ThE mArkeT."
	s.capitalize # => "Hello, i am not here. i went to the market."

Discussion

The upcase and
 downcase methods force all letters in the
 string to upper-or lowercase, respectively. The swapcase method transforms uppercase letters
 into lowercase letters and vice versa. The capitalize method makes the first character
 of the string uppercase, if it's a letter, and makes all other letters
 in the string lowercase.
All four methods have corresponding methods that modify a string
 in place rather than creating a new one: upcase!, downcase!, swapcase!, and capitalize!. Assuming you don't need the
 original string, these methods will save memory, especially if the
 string is large.
	un_banged = 'Hello world.'
	un_banged.upcase # => "HELLO WORLD."
	un_banged # => "Hello world."

	banged = 'Hello world.'
	banged.upcase! # => "HELLO WORLD."
	banged # => "HELLO WORLD."
To capitalize a string without lowercasing the rest of the
 string (for instance, because the string contains proper nouns), you
 can modify the first character of the string in place. This
 corresponds to the capitalize!
 method. If you want something more like capitalize, you can create a new string out
 of the old one.
	class String
	 def capitalize_first_letter
	 self[0].chr.capitalize + self[1, size]
	 end

	 def capitalize_first_letter!
	 unless self[0] == (c = self[0,1].upcase[0])
	 self[0] = c
	 self
	 end
	 # Return nil if no change was made, like upcase! et al.
	 end
	end

	s = 'i told Alice. She remembers now.'
	s.capitalize_first_letter # => "I told Alice. She remembers now."
	s # => "i told Alice. She remembers now."
	s.capitalize_first_letter!
	s # => "I told Alice. She remembers now."
To change the case of specific letters while leaving the rest
 alone, you can use the tr or
 tr! methods, which translate one
 character into another:
	'LOWERCASE ALL VOWELS'.tr('AEIOU', 'aeiou')
	# => "LoWeRCaSe aLL VoWeLS"

	'Swap case of ALL VOWELS'.tr('AEIOUaeiou', 'aeiouAEIOU')
	# => "SwAp cAsE Of aLL VoWeLS"

See Also

	Recipe 1.18,
 "Replacing Multiple Patterns in a Single Pass"

	The Facets Core library adds a String#camelcase method; it also defines
 the case predicates String#lowercase? and String#uppercase?

1.11. Managing Whitespace

Problem

Your string contains too much whitespace, not enough whitespace,
 or the wrong kind of whitespace.

Solution

Use strip to remove whitespace from the beginning
 and end of a string:
	" \tWhitespace at beginning and end. \t\n\n".
strip
Add whitespace to one or both ends of a string with ljust, rjust, and
 center:
	s = "Some text."
	s.
center(15)
	s.
ljust(15)
	s.
rjust(15)
Use the gsub method with a
 string or regular expression to make more complex changes, such as to
 replace one type of whitespace with another.
	#Normalize Ruby source code by replacing tabs with spaces
	rubyCode.gsub("\t", " ")

	#Transform Windows-style newlines to Unix-style newlines
	"Line one\n\rLine two\n\r".gsub(\n\r", "\n")
	# => "Line one\nLine two\n"

	#Transform all runs of whitespace into a single space character
	"\n\rThis string\t\t\tuses\n all\tsorts\nof whitespace.".gsub(/\s+/," ")
	# => " This string uses all sorts of whitespace."

Discussion

What counts as whitespace? Any of these five characters: space, tab (\t), newline (\n), linefeed (\r), and form feed (\f). The regular expression /\s/ matches any one character from that
 set. The strip method strips any
 combination of those characters from the beginning or end of a
 string.
In rare cases you may need to handle oddball "space" characters
 like backspace (\b or \010) and vertical tab (\v or \012). These are not part of the \s character group in a regular expression,
 so use a custom character group to catch these characters.
	" \bIt's whitespace, Jim,\vbut not as we know it.\n".gsub(/[\s\b\v]+/, " ")
	# => "It's whitespace, Jim, but not as we know it."
To remove whitespace from only one end of a string, use the
 lstrip or rstrip method:
	s = " Whitespace madness! "
	s.lstrip # => "Whitespace madness! "
	s.rstrip # => " Whitespace madness!"
The methods for adding whitespace to a string (center, ljust, and rjust) take a single
 argument: the total length of the string they should return, counting
 the original string and any added whitespace. If center can't center a string perfectly,
 it'll put one extra space on the right:
	"four".center(5) # => "four "
	"four".center(6) # => " four "
Like most string-modifying methods, strip, gsub, lstrip, and rstrip have counterparts strip!, gsub!, lstrip!, and rstrip!, which modify the string in
 place.

1.12. Testing Whether an Object Is String-Like

Problem

You want to see whether you can treat an object as a
 string.

Solution

Check whether the object defines the
 to_str method.
	'A string'.respond_to? :to_str # => true
	Exception.new.respond_to? :to_str # => true
	4.respond_to? :to_str # => false
More generally, check whether the object defines the specific
 method of String you're thinking
 about calling. If the object defines that method, the right thing to
 do is usually to go ahead and call the method. This will make your
 code work in more places:
	def join_to_successor(s)
	 raise ArgumentError, 'No successor method!' unless s.respond_to? :succ
	 return "#{s}#{s.succ}"
	end

	join_to_successor('a') # => "ab"	
	join_to_successor(4) # => "45"
	join_to_successor(4.01)
	# ArgumentError: No successor method!
If I'd checked s.is_a? String
 instead of s.respond_to? :succ,
 then I wouldn't have been able to call join_to_successor on an integer.

Discussion

This is the simplest example of Ruby's philosophy of "duck
 typing:" if an object quacks like a duck (or acts like a string), just
 go ahead and treat it as a duck (or a string). Whenever possible, you
 should treat objects according to the methods they define rather than
 the classes from which they inherit or the modules they
 include.
Calling obj.is_a? String will
 tell you whether an object derives from the String class, but it will overlook objects
 that, though intended to be used as strings, don't inherit from
 String.
Exceptions, for instance, are
 essentially strings that have extra information associated with them.
 But they don't subclass class name "String". Code that uses is_a? String to check for stringness will
 overlook the essential stringness of Exceptions. Many add-on Ruby modules define
 other classes that can act as strings: code that calls is_a? String will break when given an
 instance of one of those classes.
The idea to take to heart here is the general rule of duck
 typing: to see whether provided data implements a certain method, use
 respond_to? instead of checking the
 class. This lets a future user (possibly yourself!) create new classes
 that offer the same capability, without being tied down to the
 preexisting class structure. All you have to do is make the method
 names match up.

See Also

	Chapter 8, especially
 the chapter introduction and Recipe 8.3, "Checking Class
 or Module Membership"

1.13. Getting the Parts of a String You Want

Problem

You want only certain pieces of a string.

Solution

To get a substring of a string, call its slice method, or use the array index operator
 (that is, call the [] method).
 Either method accepts a Range
 describing which characters to retrieve, or two Fixnum arguments: the index at which to
 start, and the length of the substring to be extracted.
	s = 'My kingdom for a string!'
	s.
slice(3,7) # => "kingdom"
	s[3,7] # => "kingdom"
	s[0,3] # => "My "
	s[11, 5] # => "for a"
	s[11, 17] # => "for a string!"
To get the first portion of a string that matches a regular
 expression, pass the regular expression into slice or []:
	s[/.ing/] # => "king"
	s[/str.*/] # => "string!"

Discussion

To access a specific byte of a string as a Fixnum, pass only one argument (the
 zerobased index of the character) into String#slice or [] method. To access a specific byte as a
 single-character string, pass in its index and the number 1.
	s.slice(3) # => 107
	s[3] # => 107
	107.chr # => "k"
	s.slice(3,1) # => "k"
	s[3,1] # => "k"
To count from the end of the string instead of the beginning,
 use negative indexes:
	s.slice(-7,3) # => "str"
	s[-7,6] # => "string"
If the length of your proposed substring exceeds the length of
 the string, slice or [] will return the entire string after that
 point. This leads to a simple shortcut for getting the rightmost
 portion of a string:
	s[15…s.length] # => "a string!"

See Also

	Recipe 1.9,
 "Processing a String One Word at a Time"

	Recipe 1.17,
 "Matching Strings with Regular Expressions"

1.14. Handling International Encodings

Problem

You need to handle strings that contain nonASCII characters:
 probably Unicode characters encoded in UTF-8.

Solution

To use Unicode in Ruby, simply add the following to the
 beginning of code.
	$KCODE='u'
	require 'jcode'
You can also invoke the Ruby interpreter with arguments that do
 the same thing:
	$ ruby -Ku -rjcode
If you use a Unix environment, you can add the arguments to the
 shebang line of your Ruby application:
	#!/usr/bin/ruby -Ku -rjcode
The jcode library overrides
 most of the methods of String and
 makes them capable of handling multibyte text. The exceptions are
 String#length, String#count, and
 String#size, which are not
 overridden. Instead jcode defines
 three new methods: String#jlength,
 string#jcount, and String#jsize.

Discussion

Consider a UTF-8 string that encodes six Unicode characters:
 efbca1 (A), efbca2 (B), and so on up to UTF-8 efbca6 (F):
	string = "\xef\xbc\xa1" + "\xef\xbc\xa2" + "\xef\xbc\xa3" +
	 "\xef\xbc\xa4" + "\xef\xbc\xa5" + "\xef\xbc\xa6"
The string contains 18 bytes that encode 6 characters:
	string.size # => 18
	string.jsize # => 6
String#count is a method that
 takes a strong of bytes, and counts how many times those bytes occurs
 in the string. String#jcount takes
 a string of characters and counts how many times
 those characters occur in the string:
	string.count "\xef\xbc\xa2" # => 13
	string.jcount "\xef\xbc\xa2" # => 1
String#count treats "\xef\xbc\xa2" as three separate bytes, and
 counts the number of times each of those bytes shows up in the string.
 String#jcount treats the same
 string as a single character, and looks for that character in the
 string, finding it only once.
	"\xef\xbc\xa2".length # => 3
	"\xef\xbc\xa2".jlength # => 1
Apart from these differences, Ruby handles most Unicode behind
 the scenes. Once you have your data in UTF-8 format, you really don't
 have to worry. Given that Ruby's creator Yukihiro Matsumoto is
 Japanese, it is no wonder that Ruby handles Unicode so
 elegantly.

See Also

	If you have text in some other encoding and need to convert
 it to UTF-8, use the iconv
 library, as described in Recipe 11.2, "Extracting
 Data from a Document's Tree Structure"

	There are several online search engines for Unicode
 characters; two good ones are at http://isthisthingon.org/unicode/ and http://www.fileformat.info/info/unicode/char/search.htm

1.15. Word-Wrapping Lines of Text

Problem

You want to turn a string full of miscellaneous whitespace into
 a string formatted with linebreaks at appropriate intervals, so that
 the text can be displayed in a window or sent as an email.

Solution

The simplest way to add newlines to a piece of text is to use a
 regular expression like the following.
	def wrap(s, width=78)
	 s.gsub(/(.{1,#{width}})(\s+|\Z)/, "\\1\n")
	end

	wrap("This text is too short to be wrapped.")
	# => "This text is too short to be wrapped.\n"

	puts wrap("This text is not too short to be wrapped.", 20)
	# This text is not too
	# short to be wrapped.

	puts wrap("These ten-character columns are stifling my creativity!", 10)
	# These
	# ten-character
	# columns
	# are
	# stifling
	# my
	# creativity!

Discussion

The code given in the Solution preserves the original formatting
 of the string, inserting additional line breaks where necessary. This
 works well when you want to preserve the existing formatting while
 squishing everything into a smaller space:
	poetry = %q{It is an ancient Mariner,
	And he stoppeth one of three.
	"By thy long beard and glittering eye,
	Now wherefore stopp'st thou me?}

	puts wrap(poetry, 20)
	# It is an ancient
	# Mariner,
	# And he stoppeth one
	# of three.
	# "By thy long beard
	# and glittering eye,
	# Now wherefore
	# stopp'st thou me?
But sometimes the existing whitespace isn't important, and
 preserving it makes the result look bad:
	prose = %q{I find myself alone these days, more often than not,
	watching the rain run down nearby windows. How long has it been
	raining? The newspapers now print the total, but no one reads them
	anymore.}

	puts wrap(prose, 60)
	# I find myself alone these days, more often than not,
	# watching the rain run down nearby windows. How long has it
	# been
	# raining? The newspapers now print the total, but no one
	# reads them
	# anymore.
Looks pretty ragged. In this case, we want to get replace the
 original newlines with new ones. The simplest way to do this is to
 preprocess the string with another regular expression:
	def reformat_wrapped(s, width=78)
	 s.gsub(/\s+/, " ").gsub(/(.{1,#{width}})(|\Z)/, "\\1\n")
	end
But regular expressions are relatively slow; it's much more
 efficient to tear the string apart into words and rebuild it:
	def reformat_wrapped(s, width=78)
	 lines = []
	 line = ""
	 s.split(/\s+/).each do |word|
	 if line.size + word.size >= width
	 lines << line
	 line = word
	 elsif line.empty?
	 line = word
	 else
	 line << " " << word
	 end
	 end
	 lines << line if line
	 return lines.join "\n"
	end

	puts reformat_wrapped(prose, 60)
	# I find myself alone these days, more often than not,
	# watching the rain run down nearby windows. How long has it
	# been raining? The newspapers now print the total, but no one
	# reads them anymore.

See Also

	The Facets Core library defines String#word_wrap and String#word_wrap! methods

1.16. Generating a Succession of Strings

Problem

You want to iterate over a series of alphabetically-increasing
 strings as you would over a series of numbers.

Solution

If you know both the start and end points of your succession,
 you can simply create a range and use
 Range#each, as you would for numbers:
	('aa'..'ag').each { |x| puts x }
	# aa
	# ab
	# ac
	# ad
	# ae
	# af
	# ag
The method that generates the successor of a given string is
 String#succ. If you don't know the
 end point of your succession, you can define a generator that uses
 succ, and break from the generator
 when you're done.
	def endless_string_succession(start)
	 while true
	 yield start
	 start = start.succ
	 end
	end
This code iterates over an endless succession of strings,
 stopping when the last two letters are the same:
	endless_string_succession('fol') do |x|
	 puts x
	 break if x[-1] == x[-2]
	end
	# fol
	# fom
	# fon
	# foo

Discussion

Imagine a string as an odometer. Each character position of the
 string has a separate dial, and the current odometer reading is your
 string. Each dial always shows the same kind of character. A dial that
 starts out showing a number will always show a number. A character
 that starts out showing an uppercase letter will always show an
 uppercase letter.
The string succession operation increments the odometer. It
 moves the rightmost dial forward one space. This might make the
 rightmost dial wrap around to the beginning: if that happens, the dial
 directly to its left is also moved forward one space. This might make
 that dial wrap around to the beginning, and so
 on:
	'89999'.succ # => "90000"
	'nzzzz'.succ # => "oaaaa"
When the leftmost dial wraps around, a new dial is added to the
 left of the odometer. The new dial is always of the same type as the
 old leftmost dial. If the old leftmost dial showed capital letters,
 then so will the new leftmost dial:
	'Zzz'.succ # => "AAaa"
Lowercase letters wrap around from "z" to "a". If the first
 character is a lowercase letter, then when it wraps around, an "a" is
 added on to the beginning of the string:
	'z'.succ # => "aa"
	'aa'.succ # => "ab"
	'zz'.succ # => "aaa"
Uppercase letters work in the same way: "Z" becomes "A".
 Lowercase and uppercase letters never mix.
	'AA'.succ # => "AB"
	'AZ'.succ # => "BA"
	'ZZ'.succ # => "AAA"
	'aZ'.succ # => "bA"
	'Zz'.succ # => "AAa"
Digits in a string are treated as numbers, and wrap around from
 9 to 0, just like a car odometer.
	'foo19'.succ # => "foo20"
	'foo99'.succ # => "fop00"
	'99'.succ # => "100"
	'9Z99'.succ # => "10A00"
Characters other than alphanumerics are not incremented unless
 they are the only characters in the string. They are simply ignored
 when calculating the succession, and reproduced in the same positions
 in the new string. This lets you build formatting into the strings you want to increment.
	'10-99'.succ # => "11-00"
When nonalphanumerics are the only characters in the string,
 they are incremented according to ASCII order. Eventually an
 alphanumeric will show up, and the rules for strings containing
 alphanumerics will take over.
	'a-a'.succ # => "a-b"
	'z-z'.succ # => "aa-a"
	'Hello!'.succ # => "Hellp!"
	%q{'zz'}.succ # => "'aaa'"
	%q{z'zz'}.succ # => "aa'aa'"
	'$$$$'.succ # => "$$$%"
	s = '!@-'
	13.times { puts s = s.succ }
	 # !@.
	 # !@/
	 # !@0
	 # !@1
	 # !@2
	 # …
	 # !@8
	 # !@9
	 # !@10
There's no reverse version of String#succ. Matz, and the community as a
 whole, think there's not enough demand for such a method to justify
 the work necessary to handle all the edge cases. If you need to
 iterate over a succession of strings in reverse, your best bet is to transform the
 range into an array and iterate over that in reverse:
	("a".."e").to_a.reverse_each { |x| puts x }
	 # e
	 # d
	 # c
	 # b
	 # a

See Also

	Recipe 2.15,
 "Generating a Sequence of Numbers"

	Recipe 3.4,
 "Iterating Over Dates"

1.17. Matching Strings with Regular Expressions

Problem

You want to know whether or not a string matches a certain
 pattern.

Solution

You can usually describe the pattern as a regular expression.
 The =~ operator tests a string
 against a regular expression:
	string = 'This is a 30-character string.'

	if string =~ /([0-9]+)-character/ and $1.to_i == string.length
	 "Yes, there are #$1 characters in that string."
	end
	# => "Yes, there are 30 characters in that string."
You can also use Regexp#match:
	match = Regexp.compile('([0-9]+)-character').match(string)
	if match && match[1].to_i == string.length
	 "Yes, there are #{match[1]} characters in that string."
	end
	# => "Yes, there are 30 characters in that string."
You can check a string against a series of regular expressions
 with a case statement:
	string = "123"

	case string
	when /^[a-zA-Z]+$/
	 "Letters"
	when /^[0-9]+$/
	 "Numbers"
	else
	 "Mixed"
	end
	# => "Numbers"

Discussion

Regular expressions are a cryptic but powerful minilanguage for
 string matching and substring extraction. They've been around for a
 long time in Unix utilities like sed, but Perl was the first general-purpose
 programming language to include them. Now almost all modern languages
 have support for Perl-style regular expression.
Ruby provides several ways of initializing regular expressions.
 The following are all equivalent and create equivalent Regexp objects:
	/something/
	Regexp.new("something")
	Regexp.compile("something")
	%r{something}
The following modifiers are also of note.
Table 1-1.
	Regexp::IGNORECASE
	i
	Makes matches case-insensitive.

	Regexp::MULTILINE
	m
	Normally, a regexp matches against a single line
 of a string. This will cause a regexp to treat line breaks
 like any other character.

	Regexp::EXTENDED
	x
	This modifier lets you space out your regular
 expressions with whitespace and comments, making them more
 legible.

Here's how to use these modifiers to create regular
 expressions:
	/something/mxi
	Regexp.new('something',
	 Regexp::EXTENDED + Regexp::IGNORECASE + Regexp::MULTILINE)
	%r{something}mxi
Here's how the modifiers work:
	case_insensitive = /mangy/i
	case_insensitive =~ "I'm mangy!" # => 4
	case_insensitive =~ "Mangy Jones, at your service." # => 0

	multiline = /a.b/m
	multiline =~ "banana\nbanana" # => 5
	/a.b/ =~ "banana\nbanana" # => nil
	# But note:
	/a\nb/ =~ "banana\nbanana" # => 5

	extended = %r{ \ was # Match " was"
	 \s # Match one whitespace character
	 a # Match "a" }xi
	extended =~ "What was Alfred doing here?" # => 4
	extended =~ "My, that was a yummy mango." # => 8
	extended =~ "It was\n\n\na fool's errand" # => nil

See Also

	Mastering Regular Expressions by
 Jeffrey Friedl (O'Reilly) gives a concise introduction to regular
 expressions, with many real-world examples

	RegExLib.com provides a searchable database of regular expressions (http://regexlib.com/default.aspx)

	A Ruby-centric regular expression tutorial (http://www.regular-expressions.info/ruby.html)

	ri Regexp

	Recipe 1.19,
 "Validating an Email Address"

1.18. Replacing Multiple Patterns in a Single Pass

Problem

You want to perform multiple, simultaneous search-and-replace
 operations on a string.

Solution

Use the Regexp.union method to aggregate the regular
 expressions you want to match into one big regular expression that
 matches any of them. Pass the big regular expression into String#gsub, along with a code block that
 takes a MatchData object. You can
 detect which of your search terms actually triggered the regexp match,
 and choose the appropriate replacement term:
	class String
	 def mgsub(key_value_pairs=[].freeze)
	 regexp_fragments = key_value_pairs.collect { |k,v| k }
	 gsub(
Regexp.union(*regexp_fragments)) do |match|
	 key_value_pairs.detect{|k,v| k =~ match}[1]
	 end
	 end
	end
Here's a simple example:
	"GO HOME!".mgsub([[/.*GO/i, 'Home'], [/home/i, 'is where the heart is']])
	# => "Home is where the heart is!"
This example replaces all letters with pound signs, and all
 pound signs with the letter P:
	"Here is number #123".mgsub([[/[a-z]/i, '#'], [/#/, 'P']])
	# => "#### ## ###### P123"

Discussion

The naive solution is to simply string together multiple
 gsub calls. The following examples,
 copied from the solution, show why this is often a bad idea:
	"GO HOME!".gsub(/.*GO/i, 'Home').gsub(/home/i, 'is where the heart is')
	# => "is where the heart is is where the heart is!"

	"Here is number #123".gsub(/[a-z]/i, "#").gsub(/#/, "P")
	# => "PPPP PP PPPPPP P123"
In both cases, our replacement strings turned out to match the
 search term of a later gsub call.
 Our replacement strings were themselves subject to search-and-replace.
 In the first example, the conflict can be fixed by reversing the order
 of the substitutions. The second example shows a case where reversing
 the order won't help. You need to do all your replacements in a single
 pass over the string.
The mgsub method will take a
 hash, but it's safer to pass in an array of key-value pairs. This is
 because elements in a hash come out in no particular order, so you
 can't control the order of substution. Here's a demonstration of the
 problem:
	"between".mgsub(/ee/ => 'AA', /e/ => 'E') # Bad code
	# => "bEtwEEn"

	"between".mgsub([[/ee/, 'AA'], [/e/, 'E']]) # Good code
	# => "bEtwAAn"
In the second example, the first substitution runs first. In the
 first example, it runs second (and doesn't find anything to replace)
 because of a quirk of Ruby's Hash
 implementation.
If performance is important, you may want to rethink how you
 implement mgsub. The more search
 and replace terms you add to the array of key-value pairs, the longer
 it will take, because the detect
 method performs a set of regular expression checks for every match
 found in the string.

See Also

	Recipe 1.17,
 "Matching Strings with Regular Expressions"

	Confused by the *regexp_fragments syntax in the call to
 Regexp.union? Take a look at
 Recipe 8.11,
 "Accepting or Passing a Variable Number of Arguments"

1.19. Validating an Email Address

Problem

You need to see whether an email address is valid.

Solution

Here's a sampling of valid email addresses you might encounter:
	test_addresses = [#The following are valid addresses according to RFC822.
	 'joe@example.com', 'joe.bloggs@mail.example.com',
	 'joe+ruby-mail@example.com', 'joe(and-mary)@example.museum',
	 'joe@localhost',
Here are some invalid email addresses you might encounter:
	 # Complete the list with some invalid addresses
	 'joe', 'joe@', '@example.com',
	 'joe@example@example.com',
	 'joe and mary@example.com']
And here are some regular expressions that do an okay job of
 filtering out bad email addresses. The first one does very basic
 checking for ill-formed addresses:
	valid = '[^ @]+' # Exclude characters always invalid in email addresses
	username_and_machine = /^#{valid}@#{valid}$/

	test_addresses.collect { |i| i =~ username_and_machine }
	# => [0, 0, 0, 0, 0, nil, nil, nil, nil, nil]
The second one prohibits the use of local-network addresses like
 "joe@localhost". Most applications should prohibit such
 addresses.
	username_and_machine_with_tld = /^#{valid}@#{valid}\.#{valid}$/

	test_addresses.collect { |i| i =~ username_and_machine_with_tld }
	# => [0, 0, 0, 0, nil, nil, nil, nil, nil, nil]
However, the odds are good that you're solving the wrong
 problem.

Discussion

Most email address validation is done with naive regular
 expressions like the ones given above. Unfortunately, these regular
 expressions are usually written too strictly, and reject many email
 addresses. This is a common source of frustration for people with
 unusual email addresses like
 joe(and-mary)@example.museum, or people taking
 advantage of special features of email, as in
 joe+ruby-mail@example.com. The regular expressions
 given above err on the opposite side: they'll accept some
 syntactically invalid email addresses, but they won't reject valid
 addresses.
Why not give a simple regular expression that always works?
 Because there's no such thing. The definition of the syntax is
 anything but simple. Perl hacker Paul Warren defined an 6343-character
 regular expression for Perl's Mail::RFC822::Address module, and even
 it needs some preprocessing to accept absolutely every allowable email
 address. Warren's regular expression will work unaltered in Ruby, but
 if you really want it, you should go online and find it, because it
 would be foolish to try to type it in.
Check validity, not correctness

Even given a regular expression or other tool that infallibly
 separates the RFC822 compliant email addresses from the others, you can't check the
 validity of an email address just by looking at
 it; you can only check its syntactic correctness.
It's easy to mistype your username or domain name, giving out
 a perfectly valid email address that belongs to someone else. It's
 trivial for a malicious user to make up a valid email address that
 doesn't work at all—I did it earlier with the
 joe@example.com nonsense. !@ is a valid email address
 according to the regexp test, but no one in this universe uses it.
 You can't even compare the top-level domain of an address against a
 static list, because new top-level domains are always being added.
 Syntactic validation of email addresses is an enormous amount of work that
 only solves a small portion of the problem.
The only way to be certain that an email address is valid is
 to successfully send email to it. The only way to be certain that an
 email address is the right one is to send email
 to it and get the recipient to respond. You need to weigh this
 additional work (yours and the user's) against the real value of a
 verified email address.
It used to be that a user's email address was closely
 associated with their online identity: most people had only the
 email address their ISP gave them. Thanks to today's free web-based
 email, that's no longer true. Email verification no longer works to
 prevent duplicate accounts or to stop antisocial behavior online—if
 it ever did.
This is not to say that it's never useful to have a user's
 working email address, or that there's no problem if people mistype
 their email addresses. To improve the quality of the addresses your
 users enter, without rejecting valid addresses, you can do three
 things beyond verifying with the permissive regular expressions
 given above:
	Use a second naive regular expression, more restrictive
 than the ones given above, but don't prohibit addresses that
 don't match. Only use the second regular expression to advise
 the user that they may have mistyped their email address. This
 is not as useful as it seems, because most typos involve
 changing one letter for another, rather than introducing
 nonalphanumerics where they don't belong.
	def probably_valid?(email)
	 valid = '[A-Za-z\d.+-]+' #Commonly encountered email address characters
	 (email =~ /#{valid}@#{valid}\.#{valid}/) == 0
	end

	#These give the correct result.
	probably_valid? 'joe@example.com' # => true
	probably_valid? 'joe+ruby-mail@example.com' # => true
	probably_valid? 'joe.bloggs@mail.example.com' # => true
	probably_valid? 'joe@examplecom' # => false
	probably_valid? 'joe+ruby-mail@example.com' # => true
	probably_valid? 'joe@localhost' # => false

	# This address is valid, but probably_valid thinks it's not.
	probably_valid? 'joe(and-mary)@example.museum' # => false

	# This address is valid, but certainly wrong.
	probably_valid? 'joe@example.cpm' # => true

	Extract from the alleged email address the hostname (the "example.com" of
 joe@example.com), and do a DNS
 lookup to see if that hostname accepts email. A hostname that
 has an MX DNS record is set up to receive mail. The following
 code will catch most domain name misspellings, but it won't
 catch any username misspellings. It's also not guaranteed to
 parse the hostname correctly, again because of the complexity of
 RFC822.
	require 'resolv'
	def valid_email_host?(email)
	 hostname = email[(email =~ /@/)+1..email.length]
	 valid = true
	 begin
	 Resolv::DNS.new.getresource(hostname, Resolv::DNS::Resource::IN::MX)
	 rescue Resolv::ResolvError
	 valid = false
	 end
	 return valid
	end

	#example.com is a real domain, but it won't accept mail
	valid_email_host?('joe@example.com') # => false

	#lcqkxjvoem.mil is not a real domain.
	valid_email_host?('joe@lcqkxjvoem.mil') # => false

	#oreilly.com exists and accepts mail, though there might not be a 'joe' there.
	valid_email_host?('joe@oreilly.com') # => true

	Send email to the address the user input, and ask the user
 to verify receipt. For instance, the email might contain a
 verification URL for the user to click on. This is the only way
 to guarantee that the user entered a valid email address that
 they control. See Recipes
 14.5 and 15.19 for this.
This is overkill much of the time. It requires that you
 add special workflow to your application, it significantly
 raises the barriers to use of your application, and it won't
 always work. Some users have spam filters that will treat your
 test mail as junk, or whitelist email systems that reject all
 email from unknown sources. Unless you really need a user's
 working email address for your application to work, very simple
 email validation should suffice.

See Also

	Recipe 14.5,
 "Sending Mail"

	Recipe 15.19,
 "Sending Mail with Rails"

	See the amazing colossal regular expression for email
 addresses at http://www.ex-parrot.com/~pdw/Mail-RFC822-Address.html

1.20. Classifying Text with a Bayesian Analyzer

Problem

You want to classify chunks of text by example: an email message
 is either spam or not spam, a joke is either funny or not funny, and
 so on.

Solution

Use Lucas Carlson's Classifier library, available as the classifier gem. It provides a naive Bayesian
 classifier, and one that implements Latent Semantic
 Indexing, a more advanced technique.
The interface for the naive Bayesian classifier is very straightforward. You create a
 Classifier::Bayes object with some
 classifications, and train it on text chunks whose classification is
 known:
	require 'rubygems'
	require 'classifier'

	classifier = Classifier::Bayes.new('Spam', 'Not spam')

	classifier.train_spam 'are you in the market for viagra? we sell viagra'
	classifier.train_not_spam 'hi there, are we still on for lunch?'
You can then feed the classifier text chunks whose
 classification is unknown, and have it guess:
	classifier.classify "we sell the cheapest viagra on the market"
	# => "Spam"
	classifier.classify "lunch sounds great"
	# => "Not spam"

Discussion

Bayesian analysis is based on probablities. When you train the
 classifier, you are giving it a set of words and the classifier keeps
 track of how often words show up in each category. In the simple spam
 filter built in the Solution, the frequency hash looks like the
 @categories variable below:
	classifier
	# => #<Classifier::Bayes:0xb7cec7c8
	# @categories={:"Not spam"=>
	# { :lunch=>1, :for=>1, :there=>1,
	# :"?"=>1, :still=>1, :","=>1 },
	# :Spam=>
	# { :market=>1, :for=>1, :viagra=>2, :"?"=>1, :sell=>1 }
	# },
	# @total_words=12>
These hashes are used to build probability calculations. Note
 that since we mentioned the word "viagra" twice in spam messages,
 there is a 2 in the "Spam" frequency hash for that word. That makes it
 more spam-like than other words like "for" (which also shows up in
 nonspam) or "sell" (which only shows up once in spam). The classifier
 can apply these probabilities to previously unseen text and guess at a
 classification for it.
The more text you use to train the classifier, the better it
 becomes at guessing. If you can verify the classifier's guesses (for
 instance, by asking the user whether a message really was spam), you
 should use that information to train the classifier with new data as
 it comes in.
To save the state of the classifier for later use, you can use
 Madeleine persistence (Recipe
 13.3), which writes the state of your classifier to your hard
 drive.
A few more notes about this type of classifier. A Bayesian
 classifier supports as many categories as you want. "Spam" and "Not
 spam" are the most common, but you are not limited to two. You can
 also use the generic train method
 instead of calling train_[category_name]. Here's a classifier
 that has three categories and uses the generic train method:
	classifier = Classifier::Bayes.new('Interesting', 'Funny', 'Dramatic')

	classifier.train 'Interesting', "Leaving reminds us of what we can part
	 with and what we can't, then offers us something new to look forward
	 to, to dream about."
	classifier.train 'Funny', "Knock knock. Who's there? Boo boo. Boo boo
	 who? Don't cry, it is only a joke."
	classifier.train 'Dramatic', 'I love you! I hate you! Get out right
	 now.'

	classifier.classify 'what!'
	# => "Dramatic"
	classifier.classify "who's on first?"
	# => "Funny"
	classifier.classify 'perchance to dream'
	# => "Interesting"
It's also possible to "untrain" a category if you make a mistake
 or change your mind later.
	classifier.untrain_funny "boo"
	classifier.untrain "Dramatic", "out"

See Also

	Recipe 13.3,
 "Persisting Objects with Madeleine"

	The README file for the Classifier library has an example of
 an LSI classifier

	Bishop (http://bishop.rubyforge.org/)
 is another Bayesian classifier, a port of Python's Reverend; it's
 available as the bishop
 gem

	http://en.wikipedia.org/wiki/Naive_Bayes_classifier

	http://en.wikipedia.org/wiki/Latent_Semantic_Analysis

Chapter 2. Numbers

Numbers are as fundamental to computing as breath is to human life.
 Even programs that have nothing to do with math need to count the items in
 a data structure, display average running times, or use numbers as a
 source of randomness. Ruby makes it easy to represent numbers, letting you
 breathe easy and tackle the harder problems of programming.
An issue that comes up when you're programming with numbers is that
 there are several different implementations of "number," optimized for
 different purposes: 32bit integers, floating-point numbers, and so on.
 Ruby tries to hide these details from you, but it's important to know
 about them because they often manifest as mysteriously incorrect
 calculations.[1]
The first distinction is between small numbers and large ones. If
 you've used other programming languages, you probably know that you must
 use different data types to hold small numbers and large numbers (assuming
 that the language supports large numbers at all). Ruby has different
 classes for small numbers (Fixnum) and
 large numbers (Bignum), but you don't
 usually have to worry about the difference. When you type in a number,
 Ruby sees how big it is and creates an object of the appropriate
 class.
	1000.class # => Fixnum
	10000000000.class # => Bignum
	(2**30 - 1).class # => Fixnum
	(2**30).class # => Bignum
When you perform arithmetic, Ruby automatically does any needed
 conversions. You don't have to worry about the difference between small
 and large numbers:[2]
	small = 1000
	big = small ** 5 # => 1000000000000000
	big.class # => Bignum
	smaller = big / big # => 1
	smaller.class # => Fixnum
The other major distinction is between whole numbers (integers) and fractional numbers. Like all modern
 programming languages, Ruby implements the IEEE floating-point standard
 for representing fractional numbers. If you type a number that includes a
 decimal point, Ruby creates a Float
 object instead of a Fixnum or Bignum:
	0.01.class # => Float
	1.0.class # => Float
	10000000000.00000000001.class # => Float
But floating-point numbers are imprecise (see Recipe 2.2), and they have their
 own size limits, so Ruby also provides a class that can represent any
 number with a finite decimal expansion (Recipe 2.3). There's also a class
 for numbers like two-thirds, which have an infinite decimal expansion
 (Recipe 2.4), and a class for
 complex or "irrational" numbers (Recipe 2.12).
Every kind of number in Ruby has its own class (Integer, Bignum, Complex, and so on), which inherits from the
 Numeric class. All these classes
 implement the basic arithmetic operations, and in most cases you can mix
 and match numbers of different types (see Recipe 8.9 for more on how this
 works). You can reopen these classes to add new capabilities to numbers
 (see, for instance, Recipe
 2.17), but you can't usefully subclass them.
Ruby provides simple ways of generating random numbers (Recipe 2.5) and sequences of
 numbers (Recipe 2.15). This
 chapter also covers some simple mathematical algorithms (Recipes 2.7 and 2.11) and statistics (Recipe 2.8).
2.1. Parsing a Number from a String

Problem

Given a string that contains some representation of a number,
 you want to get the corresponding integer or floating-point
 value.

Solution

Use String#to_i to turn a string into an integer.
 Use String#to_f to turn a string into a
 floating-point number.
	'400'.to_i # => 400
	'3.14'.to_f # => 3.14
	'1.602e-19'.to_f # => 1.602e-19

Discussion

Unlike Perl and PHP, Ruby does not automatically make a number
 out of a string that contains a number. You must explicitly call a
 conversion method that tells Ruby how you want
 the string to be converted.
Along with to_i and to_f, there are other ways to convert
 strings into numbers. If you have a string that represents a hex or
 octal string, you can call String#hex or String#oct to get the decimal equivalent.
 This is the same as passing the base of the number into to_i:
	'405'.oct # => 261
	'405'.to_i(8) # => 261
	'405'.hex # => 1029
	'405'.to_i(16) # => 1029
	'fed'.hex # => 4077
	'fed'.to_i(16) # => 4077
If to_i, to_f, hex,or oct find a character that can't be part of
 the kind of number they're looking for, they stop processing the
 string at that character and return the number so far. If the string's
 first character is unusable, the result is zero.
	"13: a baker's dozen".to_i # => 13
	'1001 Nights'.to_i # => 1001
	'The 1000 Nights and a Night'.to_i # => 0
	'60.50 Misc. Agricultural Equipment'.to_f # => 60.5
	'$60.50'.to_f # => 0.0
	'Feed the monster!'.hex # => 65261
	'I fed the monster at Canoga Park Waterslides'.hex # => 0
	'0xA2Z'.hex # => 162
	'-10'.oct # => -8
	'-109'.oct # => -8
	'3.14'.to_i # => 3
Note especially that last example: the decimal point is just one
 more character that stops processing of a string representing an
 integer.
If you want an exception when a string can't be completely
 parsed as a number, use Integer()
 or Float():
	Integer('1001') # => 1001
	Integer('1001 nights')
	# ArgumentError: invalid value for Integer: "1001 nights"

	Float('99.44') # => 99.44
	Float('99.44% pure')
	# ArgumentError: invalid value for Float(): "99.44% pure"
To extract a number from within a larger string, use a regular expression.
 The NumberParser class below
 contains regular expressions for extracting floating-point strings, as
 well as decimal, octal, and hexadecimal numbers. Its extract_numbers method uses String#scan to find all the numbers of a
 certain type in a string.
	class NumberParser
	 @@number_regexps = {
	 :to_i => /([+-]?[0-9]+)/,
	 :to_f => /([+-]?([0-9]*\.)?[0-9]+(e[+-]?[0-9]+)?)/i,
	 :oct => /([+-]?[0-7]+)/,
	 :hex => /\b([+-]?(0x)?[0-9a-f]+)\b/i
	 #The \b characters prevent every letter A-F in a word from being
	 #considered a hexadecimal number.
	 }

	 def NumberParser.re(
parsing_method=:to_i)
	 re = @@number_regexps[
parsing_method]
	 raise ArgumentError, "No regexp for #{parsing_method.inspect}!" unless re
	 return re
	 end

	 def extract(s, parsing_method=:to_i)
	
numbers = []
	 s.scan(NumberParser.re(parsing_method)) do |match|
	 numbers << match[0].send(parsing_method)
	 end
	 numbers
	 end
	end
Here it is in action:
	p = NumberParser.new

	pw = "Today's numbers are 104 and 391."
	NumberParser.re(:to_i).match(pw).captures # => ["104"]
	p.extract(pw, :to_i) # => [104, 391]

	p.extract('The 1000 nights and a night') # => [1000]
	p.extract('$60.50', :to_f) # => [60.5]
	p.extract('I fed the monster at Canoga Park Waterslides', :hex)
	# => [4077]
	p.extract('In octal, fifteen is 017.', :oct) # => [15]

	p.extract('From 0 to 10e60 in -2.4 seconds', :to_f)
	# => [0.0, 1.0e+61, -2.4]
	p.extract('From 0 to 10e60 in -2.4 seconds')
	# => [0, 10, 60, -2, 4]
If you want to extract more than one kind of number from a
 string, the most reliable strategy is to stop using regular
 expressions and start using the scanf module, a free third-party module that
 provides a parser similar to C's scanf function.
	require 'scanf'
	s = '0x10 4.44 10'.scanf('%x %f %d') # => [16, 4.44, 10]

See Also

	Recipe 2.6,
 "Converting Between Numeric Bases"

	Recipe 8.9,
 "Converting and Coercing Objects to Different Types"

	The scanf module (http://www.rubyhacker.com/code/scanf/)

[1] See, for instance, the Discussion section of Recipe 2.11, where it's
 revealed that Matrix#inverse
 doesn't work correctly on a matrix full of integers. This is because
 Matrix#inverse uses division, and
 integer division works differently from floating-point
 division.

[2] Python also has this feature.

2.2. Comparing Floating-Point Numbers

Problem

 Floating-point numbers are not suitable for exact comparison. Often,
 two numbers that should be equal are actually slightly different. The
 Ruby interpreter can make seemingly nonsensical assertions when
 floating-point numbers are involved:
	1.8 + 0.1 # => 1.9
	1.8 + 0.1 == 1.9 # => false
	1.8 + 0.1 > 1.9 # => true
You want to do comparison operations approximately, so that
 floating-point numbers infintesimally close together can be treated
 equally.

Solution

You can avoid this problem altogether by using BigDecimal numbers instead of floats (see
 Recipe 2.3). BigDecimal numbers are completely precise,
 and work as well as as floats for representing numbers that are
 relatively small and have few decimal places: everyday numbers like
 the prices of fruits. But math on BigDecimal numbers is much slower than math
 on floats. Databases have native support for floating-point numbers,
 but not for BigDecimals. And
 floating-point numbers are simpler to create (simply type 10.2 in an interactive Ruby shell to get a
 Float object). BigDecimals can't totally replace floats,
 and when you use floats it would be nice not to have to worry about
 tiny differences between numbers when doing comparisons.
But how tiny is "tiny"? How large can the difference be between
 two numbers before they should stop being considered equal? As numbers
 get larger, so does the range of floating-point values that can
 reasonably be expected to model that number. 1.1 is probably not
 "approximately equal" to 1.2, but 1020 +
 0.1 is probably "approximately equal" to
 1020 + 0.2.
The best solution is probably to compare the relative magnitudes
 of large numbers, and the absolute magnitudes of small numbers. The
 following code accepts both two thresholds: a relative threshold and
 an absolute threshold. Both default to Float::EPSILON, the smallest possible
 difference between two Float
 objects. Two floats are considered approximately equal if they are
 within absolute_epsilon of each
 other, or if the difference between them is relative_epsilon times the magnitude of the
 larger one.
	class Float
	 def approx(other, relative_epsilon=Float::EPSILON, epsilon=Float::EPSILON)
	 difference = other - self
	 return true if difference.abs <= epsilon
	 relative_error = (difference / (self > other ? self : other)).abs
	 return relative_error <= relative_epsilon
	 end
	end

	100.2.approx(100.1 + 0.1) # => true
	10e10.approx(10e10+1e-5) # => true
	100.0.approx(100+1e-5) # => false

Discussion

 Floating-point math is very precise but, due to the
 underlying storage mechanism for Float objects, not very accurate. Many real
 numbers (such as 1.9) can't be represented by the floating-point standard. Any attempt to represent such
 a number will end up using one of the nearby numbers that does have a
 floating-point representation.
You don't normally see the difference between 1.9 and 1.8 +
 0.1, because Float#to_s
 rounds them both off to "1.9". You can see the difference by using
 Kernel#printf to display the two expressions
 to many decimal places:
	printf("%.55f", 1.9)
	# 1.8999999999999999111821580299874767661094665527343750000
	printf("%.55f", 1.8 + 0.1)
	# 1.9000000000000001332267629550187848508358001708984375000
Both numbers straddle 1.9 from opposite ends, unable to
 accurately represent the number they should both equal. Note that the
 difference between the two numbers is precisely Float::EPSILON:
	Float::EPSILON # => 2.22044604925031e-16
	(1.8 + 0.1) - 1.9 # => 2.22044604925031e-16
This EPSILON's worth of
 inaccuracy is often too small to matter, but it does when you're doing
 comparisons. 1.9+Float::EPSILON is not equal to 1.9-Float::EPSILON, even if (in this case)
 both are attempts to represent the same number. This is why most
 floating-point numbers are compared in relative
 terms.
The most efficient way to do a relative comparison is to see
 whether the two numbers differ by more than an specified error range,
 using code like this:
	class Float
	 def absolute_approx(other, epsilon=Float::EPSILON)
	 return (other-self).abs <= epsilon
	 end
	end

	(1.8 + 0.1).absolute_approx(1.9) # => true
	10e10.absolute_approx(10e10+1e-5) # => false
The default value of epsilon
 works well for numbers close to 0, but for larger numbers the default
 value of epsilon will be too small.
 Any other value of epsilon you
 might specify will only work well within a certain range.
Thus, Float#approx, the recommended solution,
 compares both absolute and relative magnitude. As numbers get bigger,
 so does the allowable margin of error for two numbers to be considered
 "equal." Its default relative_epsilon allows numbers between 2
 and 3 to differ by twice the value of Float::EPSILON. Numbers between 3 and 4 can
 differ by three times the value of Float::EPSILON, and so on.
A very small value of relative_epsilon is good for mathematical
 operations, but if your data comes from a real-world source like a
 scientific instrument, you can increase it. For instance, a Ruby
 script may track changes in temperature read from a thermometer that's
 only 99.9% accurate. In this case, relative_epsilon can be set to 0.001, and
 everything beyond that point discarded as noise.
	98.6.approx(98.66) # => false
	98.6.approx(98.66, 0.001) # => true

See Also

	Recipe 2.3,
 "Representing Numbers to Arbitrary Precision," has more information on BigDecimal numbers

	If you need to represent a fraction with an infinite decimal
 expansion, use a Rational
 number (see Recipe
 2.4, "Representing Rational Numbers")

	"Comparing floating-point numbers" by Bruce Dawson has an
 excellent (albeit C-centric) overview of the tradeoffs involved in
 different ways of doing floating-point comparisons (http://www.cygnus-software.com/papers/comparingfloats/comparingfloats.htm)

2.3. Representing Numbers to Arbitrary Precision

Problem

You're doing high- precision arithmetic, and floating-point numbers are
 not precise enough.

Solution

A BigDecimal number can
 represent a real number to an arbitrary number of decimal
 places.
	require 'bigdecimal'

	BigDecimal("10").to_s # => "0.1E2"
	BigDecimal("1000").to_s # => "0.1E4"
	BigDecimal("1000").to_s("F") # => "1000.0"

	BigDecimal("0.123456789").to_s # => "0.123456789E0"
Compare how Float and
 BigDecimal store the same
 high-precision number:
	nm = "0.123456789012345678901234567890123456789"
	nm.to_f # => 0.123456789012346
	BigDecimal(nm).to_s
	# => "0.123456789012345678901234567890123456789E0"

Discussion

BigDecimal numbers store
 numbers in scientific notation format. A BigDecimal consists of a sign (positive or
 negative), an arbitrarily large decimal fraction, and an arbitrarily
 large exponent. This is similar to the way floating-point numbers are
 stored, but a double- precision floating-point implementation like Ruby's
 cannot represent an exponent less than Float::MIN_EXP (–1021) or greater than
 Float::MAX_EXP (1024). Float
 objects also can't represent numbers at a greater precision than Float::EPSILON, or about
 2.2*10-16.
You can use BigDecimal#split
 to split a BigDecimal object into
 the parts of its scientific-notation representation. It returns an
 array of four numbers: the sign (1 for positive numbers,–1 for
 negative numbers), the fraction (as a string), the base of the
 exponent (which is always 10), and the exponent itself.
	BigDecimal("105000").split
	# => [1, "105", 10, 6]
	# That is, 0.105*(10**6)

	BigDecimal("-0.005").split
	# => [-1, "5", 10, -2]
	# That is, -1 * (0.5*(10**-2))
A good way to test different precision settings is to create an infinitely repeating
 decimal like 2/3, and see how much of it gets stored. By default,
 BigDecimals give 16 digits of
 precision, roughly comparable to what a Float can give.
	(BigDecimal("2") / BigDecimal("3")).to_s
	# => "0.6666666666666667E0"

	2.0/3
	# => 0.666666666666667
You can store additional significant digits by passing in a
 second argument n to the BigDecimal constructor. BigDecimal precision is allocated in chunks
 of four decimal digits. Values of n
 from 1 to 4 make a BigDecimal use
 the default precision of 16 digits. Values from 5 to 8 give 20 digits
 of precision, values from 9 to 12 give 24 digits, and so on:
	def two_thirds(precision)
	 (BigDecimal("2", precision) / BigDecimal("3")).to_s
	end

	two_thirds(1) # => "0.6666666666666667E0"
	two_thirds(4) # => "0.6666666666666667E0"
	two_thirds(5) # => "0.66666666666666666667E0"
	two_thirds(9) # => "0.666666666666666666666667E0"
	two_thirds(13) # => "0.6666666666666666666666666667E0"
Not all of a number's significant digits may be used. For
 instance, Ruby considers BigDecimal("2") and BigDecimal("2.000000000000") to be equal,
 even though the second one has many more significant digits.
You can inspect the precision of a number with BigDecimal#precs. This method returns an
 array of two elements: the number of significant digits actually being
 used, and the toal number of significant digits. Again, since
 significant digits are allocated in blocks of four, both of these
 numbers will be multiples of four.
	BigDecimal("2").precs # => [4, 8]
	BigDecimal("2.000000000000").precs # => [4, 20]
	BigDecimal("2.000000000001").precs # => [16, 20]
If you use the standard arithmetic operators on BigDecimals, the result is a BigDecimal accurate to the largest possible
 number of digits. Dividing or multiplying one BigDecimal by another yields a BigDecimal with more digits of precision than either of its parents, just as would
 happen on a pocket calculator.
	(a = BigDecimal("2.01")).precs # => [8, 8]
	(b = BigDecimal("3.01")).precs # => [8, 8]

	(product = a * b).to_s("F") # => "6.0501"
	product.precs # => [8, 24]
To specify the number of significant digits that should be
 retained in an arithmetic operation, you can use the methods add, sub,
 mul, and div instead of the arithmetic
 operators.
	two_thirds = (BigDecimal("2", 13) / 3)
	two_thirds.to_s # => "0.666666666666666666666666666666666667E0"

	(two_thirds + 1).to_s # => "0.1666666666666666666666666666666666667E1"

	two_thirds.add(1, 1).to_s # => "0.2E1"
	two_thirds.add(1, 4).to_s # => "0.1667E1"
Either way, BigDecimal math
 is significantly slower than floating-point math. Not only are
 BigDecimals allowed to have more
 significant digits than floats, but BigDecimals are stored as an array of
 decimal digits, while floats are stored in a binary encoding and
 manipulated with binary arithmetic.
The BigMath module in the
 Ruby standard library defines methods for performing
 arbitrary- precision mathematical operations on BigDecimal objects. It defines power-related
 methods like sqrt, log, and exp, and trigonometric methods like sin, cos,
 and atan.
All of these methods take as an argument a number prec indicating how many digits of precision
 to retain. They may return a BigDecimal with more than prec significant digits, but only prec of those digits are guaranteed to be
 accurate.
	require 'bigdecimal/math'
	include BigMath
	two = BigDecimal("2")
	BigMath::sqrt(two, 10).to_s("F") # => "1.4142135623730950488016883515"
That code gives 28 decimal places, but only 10 are guaranteed
 accurate (because we passed in an n
 of 10), and only 24 are actually accurate. The square root of 2 to 28
 decimal places is actually 1.4142135623730950488016887242. We can get
 rid of the inaccurate digits with BigDecimal#round:
	BigMath::sqrt(two, 10).round(10).to_s("F") # => "1.4142135624"
We can also get a more precise number by increasing n:
	BigMath::sqrt(two, 28).round(28).to_s("F") # => "1.4142135623730950488016887242"
BigMath also annotates
 BigDecimal with class methods
 BigDecimal.PI and BigDecimal.E. These methods construct
 BigDecimals of those transcendental
 numbers at any level of precision.
	Math::PI # => 3.14159265358979
	Math::PI.class # => Float
	BigDecimal.PI(1).to_s # => "0.31415926535897932364198143965603E1"
	BigDecimal.PI(20).to_s
	# => "0.3141592653589793238462643383279502883919859293521427E1"

See Also

	At the time of writing, BigMath::log was very slow for BigDecimals larger than about 10; see
 Recipe 2.7, "Taking
 Logarithms," for a much faster implementation

	See Recipe 2.4,
 "Representing Rational Numbers," if you need to exactly represent
 a rational number with an infinite decimal expansion,
 like 2/3

	The BigDecimal library
 reference is extremely useful; if you look at the generated RDoc
 for the Ruby standard library, BigDecimal looks almost undocumented,
 but it actually has a comprehensive reference file (in English and
 Japanese): it's just not in RDoc format, so it doesn't get picked
 up; this document is available in the Ruby source package, or do a
 web search for "BigDecimal: An extension library for Ruby"

2.4. Representing Rational Numbers

Problem

You want to precisely represent a rational number like 2/3, one that has no finite
 decimal expansion.

Solution

Use a Rational object; it
 represents a rational number as an integer numerator and
 denominator.
	float = 2.0/3.0 # => 0.666666666666667
	float * 100 # => 66.6666666666667
	float * 100 / 42 # => 1.58730158730159

	require 'rational'
	rational = Rational(2, 3) # => Rational(2, 3)
	rational.to_f # => 0.666666666666667
	rational * 100 # => Rational(200, 3)
	rational * 100 / 42 # => Rational(100, 63)

Discussion

Rational objects can store
 numbers that can't be represented in any other form, and arithmetic on
 Rational objects is completely
 precise.
Since the numerator and denominator of a Rational can be Bignums, a Rational object can also represent numbers
 larger and smaller than those you can represent in floating-point. But
 math on BigDecimal objects is
 faster than on Rationals. BigDecimal objects are also usually easier
 to work with than Rationals,
 because most of us think of numbers in terms of their decimal
 expansions.
You should only use Rational
 objects when you need to represent rational numbers with perfect
 accuracy. When you do, be sure to use only Rationals, Fixnums, and Bignums in your calculations. Don't use any
 BigDecimals or floating-point
 numbers: arithmetic operations between a Rational and those types will return
 floating-point numbers, and you'll have lost precision forever.
	10 + Rational(2,3) # => Rational(32, 3)
	require 'bigdecimal'
	BigDecimal('10') + Rational(2,3) # => 10.6666666666667
The methods in Ruby's Math
 module implement operations like square root, which usually give
 irrational results. When you pass a Rational number into one of the methods in
 the Math module, you get a
 floating-point number back:
	Math::sqrt(Rational(2,3)) # => 0.816496580927726
	Math::sqrt(Rational(25,1)) # => 5.0
	Math::log10(Rational(100, 1)) # => 2.0
The mathn library adds
 miscellaneous functionality to Ruby's math functions. Among other
 things, it modifies the Math::sqrt
 method so that if you pass in a square number, you get a Fixnum back instead of a Float. This preserves precision whenever
 possible:
	require 'mathn'
	Math::sqrt(Rational(2,3)) # => 0.816496580927726
	Math::sqrt(Rational(25,1)) # => 5
	Math::sqrt(25) # => 5
	Math::sqrt(25.0) # => 5.0

See Also

	The rfloat third-party
 library lets you use a Float-like interface that's actually
 backed by Rational (http://blade.nagaokaut.ac.jp/~sinara/ruby/rfloat/)

	RCR 320 proposes better interoperability between Rationals and floating-point numbers,
 including a Rational#approximate method that will
 let you convert the floating-point number 0.1 into Rational(1, 10) (http://www.rcrchive.net/rcr/show/320)

2.5. Generating Random Numbers

Problem

You want to generate pseudorandom numbers, select items from a
 data structure at random, or repeatedly generate the same "random"
 numbers for testing purposes.

Solution

Use the Kernel#rand function with no arguments to
 select a psuedorandom floating-point number from a uniform
 distribution between 0 and 1.
	rand # => 0.517297883846589
	rand # => 0.946962603814814
Pass in a single integer argument n to
 Kernel#rand, and it returns an
 integer between 0 and n–1:
	rand(5) # => 0
	rand(5) # => 4
	rand(5) # => 3
	rand(1000) # => 39

Discussion

You can use the single-argument form of Kernel#rand to build many common tasks based
 on randomness. For instance, this code selects a random item from an
 array.
	a = ['item1', 'item2', 'item3']
	a[rand(a.size)] # => "item3"
To select a random key or value from a hash, turn the keys or
 values into an array and select one at random.
	m = { :key1 => 'value1',
	 :key2 => 'value2',
	 :key3 => 'value3' }
	values = m.values
	values[rand(values.size)] # => "value1"
This code generates pronounceable nonsense words:
	def random_word
	 letters = { ?v => 'aeiou',
	 ?c => 'bcdfghjklmnprstvwyz' }
	 word = ''
	 'cvcvcvc'.each_byte do |x|
	 source = letters[x]
	 word << source[rand(source.length)].chr
	 end
	 return word
	end

	random_word # => "josuyip"
	random_word # => "haramic"
The Ruby interpreter initializes its random number generator on
 startup, using a seed derived from the current time and the process
 number. To reliably generate the same random numbers over and over
 again, you can set the random number seed manually by calling the
 Kernel#srand function with the
 integer argument of your choice. This is useful when you're writing
 automated tests of "random" functionality:
	#Some random numbers based on process number and current time
	rand(1000) # => 187
	rand(1000) # => 551
	rand(1000) # => 911

	#Start the seed with the number 1
	srand 1
	rand(1000) # => 37
	rand(1000) # => 235
	rand(1000) # => 908

	#Reset the seed to its previous state
	srand 1
	rand(1000) # => 37
	rand(1000) # => 235
	rand(1000) # => 908

See Also

	Recipe 4.10,
 "Shuffling an Array"

	Recipe 5.11,
 "Choosing Randomly from a Weighted List"

	Recipe 6.9,
 "Picking a Random Line from a File"

	The Facets library implements many methods for making random
 selections from data structures: Array#pick, Array#rand_subset, Hash#rand_pair, and so on; it also
 defines String.random for
 generating random strings

	Christian Neukirchen's rand.rb also implements many random
 selection methods (http://chneukirchen.org/blog/static/projects/rand.html)

2.6. Converting Between Numeric Bases

Problem

You want to convert numbers from one base to another.

Solution

You can convert specific binary, octal, or hexadecimal numbers
 to decimal by representing them with the 0b, 0o,
 or 0x prefixes:
	0b100 # => 4
	0o100 # => 64
	0x100 # => 256
You can also convert between decimal numbers and string
 representations of those numbers in any base from 2 to 36. Simply pass
 the base into String#to_i or
 Integer#to_s.
Here are some conversions between string representations of
 numbers in various bases, and the corresponding decimal numbers:
	"1045".to_i(10) # => 1045
	"-1001001".to_i(2) # => -73
	"abc".to_i(16) # => 2748
	"abc".to_i(20) # => 4232
	"number".to_i(36) # => 1442151747
	"zz1z".to_i(36) # => 1678391
	"abcdef".to_i(16) # => 11259375
	"AbCdEf".to_i(16) # => 11259375
Here are some reverse conversions of decimal numbers to the
 strings that represent those numbers in various bases:
	42.to_s(10) # => "42"
	-100.to_s(2) # => "-1100100"
	255.to_s(16) # => "ff"
	1442151747.to_s(36) # => "number"
Some invalid conversions:
	"6".to_i(2) # => 0
	"0".to_i(1) # ArgumentError: illegal radix 1
	40.to_s(37) # ArgumentError: illegal radix 37

Discussion

String#to_i can parse and
 Integer#to_s can create a string
 representation in every common integer base: from binary (the familiar
 base 2, which uses only the digits 0 and 1) to hexatridecimal (base
 36). Hexatridecimal uses the digits 0–9 and the letters a–z; it's
 sometimes used to generate alphanumeric mneumonics for long
 numbers.
The only commonly used counting systems with bases higher than
 36 are the variants of base-64 encoding used in applications like MIME
 mail attachments. These usually encode strings, not numbers; to encode
 a string in MIME-style base-64, use the base64 library.

See Also

	Recipe 12.5,
 "Adding Graphical Context with Sparklines," and Recipe 14.5, "Sending
 Mail," show how to use the base64 library

2.7. Taking Logarithms

Problem

You want to take the logarithm of a number, possibly a huge
 one.

Solution

 Math.log calculates the natural log of a
 number: that is, the log base e.
	Math.log(1) # => 0.0
	Math.log(Math::E) # => 1.0
	Math.log(10) # => 2.30258509299405
	Math::E ** Math.log(25) # => 25.0
Math.log10 calculates the log
 base 10 of a number:
	Math.log10(1) # => 0.0
	Math.log10(10) # => 1.0
	Math.log10(10.1) # => 1.00432137378264
	Math.log10(1000) # => 3.0
	10 ** Math.log10(25) # => 25.0
To calculate a logarithm in some other base, use the fact that,
 for any bases b1 and
 b2 ,
 logb1(x) = logb2(x) /
 logb2(k).
	module Math
	 def Math.logb(num, base)
	 log(num) / log(base)
	 end
	end

Discussion

A logarithm function inverts an exponentiation function. The log
 base k of x,or
 logk(x), is the number that gives
 x when raised to the k
 power. That is, Math.
 log10(1000)==3.0 because 10 cubed is 1000.Math.log(Math::E)==1 because
 e to the first power is
 e.
The logarithm functions for all numeric bases are related (you
 can get from one base to another by dividing by a constant factor),
 but they're used for different purposes.
Scientific applications often use the natural log: this is the
 fastest log implementation in Ruby. The log base 10 is often used to
 visualize datasets that span many orders of magnitude, such as the pH
 scale for acidity and the Richter scale for earthquake intensity.
 Analyses of algorithms often use the log base 2, or binary
 logarithm.
If you intend to do a lot of algorithms in a base that Ruby
 doesn't support natively, you can speed up the calculation by
 precalculating the dividend:
	dividend = Math.log(2)
	(1..6).collect { |x| Math.log(x) / dividend }
	# => [0.0, 1.0, 1.58496250072116, 2.0, 2.32192809488736, 2.58496250072116]
The logarithm functions in Math will only accept integers or
 floating-point numbers, not BigDecimal or Bignum objects. This is inconvenient since
 logarithms are often used to make extremely large numbers managable.
 The BigMath module has a function
 to take the natural logarithm of a BigDecimal number, but it's very
 slow.
Here's a fast drop-in replacement for BigMath::log that exploits the logarithmic
 identity log(x*y)==log(x) + log(y).
 It decomposes a BigDecimal into
 three much smaller numbers, and operates on those numbers. This avoids
 the cases that give BigMath::log
 such poor performance.
	require 'bigdecimal'
	require 'bigdecimal/math'
	require 'bigdecimal/util'

	module BigMath
	 alias :log_slow :log
	 def log(x, prec)
	 if x <= 0 || prec <= 0
	 raise ArgumentError, "Zero or negative argument for log"
	 end
	 return x if x.infinite? || x.nan?
	 sign, fraction, power, exponent = x.split
	 fraction = BigDecimal(".#{fraction}")
	 power = power.to_s.to_d
	 log_slow(fraction, prec) + (log_slow(power, prec) * exponent)
	 end
	end
Like BigMath::log, this
 implementation returns a BigMath
 accurate to at least prec digits,
 but containing some additional digits which might not be accurate. To
 avoid giving the impression that the result is more accurate than it
 is, you can round the number to prec digits with BigDecimal#round.
	include BigMath

	number = BigDecimal("1234.5678")
	Math.log(number) # => 7.11847622829779

	prec = 50
BigMath.log_slow(number, prec).round(prec).to_s("F")
	# => "7.11847622829778629250879253638708184134073214145175"

	BigMath.log(number, prec).round(prec).to_s("F")
	# => "7.11847622829778629250879253638708184134073214145175"
	BigMath.log(number ** 1000, prec).round(prec).to_s("F")
	# => "7118.47622829778629250879253638708184134073214145175161"
As before, calculate a log other than the natural log by
 dividing by BigMath.log(base) or
 BigMath.log_slow(base).
	huge_number = BigDecimal("1000") ** 1000
	base = BigDecimal("10")
	BigMath.log(huge_number, 100) / BigMath.log(base, 100)).to_f
	# => 3000.0
How does it work? The internal representation of a BigDecimal is as a number in scientific
 notation: fraction*10**power.
 Because log(x*y)=log(x) + log(y),
 the log of such a number is log(fraction) +
 log(10**power).
10**power is just 10
 multiplied by itself power times
 (that is, 10*10*10*…*10). Again,
 log(x*y)=log(x) + log(y), so
 log(10*10*10*…*10)=log(10)+log(10) +
 log(10)+…+log(10),or log(10)*power
 . This means we can take the logarithm of a huge BigDecimal by taking the logarithm of its
 (very small) fractional portion and the logarithm of 10.

See Also

	Mathematicians used to spend years constructing tables of
 logarithms for scientific and engineering applications; so if you
 find yourself doing a boring job, be glad you don't have to do
 that (see http://en.wikipedia.org/wiki/Logarithm#Tables_of_logarithms)

2.8. Finding Mean, Median, and Mode

Problem

You want to find the average of an array of numbers: its mean,
 median, or mode.

Solution

Usually when people speak of the "average" of a set of numbers
 they're referring to its mean, or arithmetic mean. The mean is the sum
 of the elements divided by the number of elements.
	def mean(array)
	 array.inject(array.inject(0) { |sum, x| sum += x } / array.size.to_f
	end

	mean([1,2,3,4]) # => 2.5
	mean([100,100,100,100.1]) # => 100.025
	mean([-100, 100]) # => 0.0
	mean([3,3,3,3]) # => 3.00
The median is the item x such that half the
 items in the array are greater than x and the
 other half are less than x. Consider a sorted
 array: if it contains an odd number of elements, the median is the one
 in the middle. If the array contains an even number of elements, the
 median is defined as the mean of the two middle elements.
	def median(array, already_sorted=false)
	 return nil if array.empty?
	 array = array.sort unless already_sorted
	 m_pos = array.size / 2
	 return array.size % 2 == 1 ? array[m_pos] : mean(array[m_pos-1..m_pos])
	end

	median([1,2,3,4,5]) # => 3
	median([5,3,2,1,4]) # => 3
	median([1,2,3,4]) # => 2.5
	median([1,1,2,3,4]) # => 2
	median([2,3,-100,100]) # => 2.5
	median([1, 1, 10, 100, 1000]) # => 10
The mode is the single most popular item in the array. If a list
 contains no repeated items, it is not considered to have a mode. If an
 array contains multiple items at the maximum frequency, it is
 "multimodal." Depending on your application, you might handle each
 mode separately, or you might just pick one arbitrarily.
	def modes(array, find_all=true)
	 histogram = array.inject(Hash.new(0)) { |h, n| h[n] += 1; h }
	 modes = nil
	 histogram.each_pair do |item, times|
	 modes << item if modes && times == modes[0] and find_all
	 modes = [times, item] if (!modes && times>1) or (modes && times>modes[0])
	 end
	 return modes ? modes[1…modes.size] : modes
	end

	modes([1,2,3,4]) # => nil
	modes([1,1,2,3,4]) # => [1]
	modes([1,1,2,2,3,4]) # => [1, 2]
	modes([1,1,2,2,3,4,4]) # => [1, 2, 4]
	modes([1,1,2,2,3,4,4], false) # => [1]
	modes([1,1,2,2,3,4,4,4,4,4]) # => [4]

Discussion

The mean is the most popular type of average. It's simple to
 calculate and to understand. The implementation of mean given above always returns a
 floating-point number object. It's a good general-purpose
 implementation because it lets you pass in an array of Fixnums and get a fractional average,
 instead of one rounded to the nearest integer. If you want to find the
 mean of an array of BigDecimal or
 Rational objects, you should use an
 implementation of mean that omits
 the final to_f call:
	def mean_without_float_conversion(array)
	 array.inject(0) { |x, sum| sum += x } / array.size
	end
	require 'rational'
	numbers = [Rational(2,3), Rational(3,4), Rational(6,7)]
	mean(numbers)
	# => 0.757936507936508
	mean_without_float_conversion(numbers)
	# => Rational(191, 252)
The median is mainly useful when a small proportion of outliers
 in the dataset would make the mean misleading. For instance,
 government statistics usually show "median household income" instead
 of "mean household income." Otherwise, a few super-wealthy households
 would make everyone else look much richer than they are. The example
 below demonstrates how the mean can be skewed by a few very high or
 very low outliers.
	mean([1, 100, 100000]) # => 33367.0
	median([1, 100, 100000]) # => 100

	mean([1, 100, -1000000]) # => -333299.666666667
	median([1, 100, -1000000]) # => 1
The mode is the only definition of "average" that can be applied
 to arrays of arbitrary objects. Since the mean is calculated using
 arithmetic, an array can only be said to have a mean if all of its
 members are numeric. The median involves only comparisons, except when
 the array contains an even number of elements: then, calculating the
 median requires that you calculate the mean.
If you defined some other way to take the median of an array
 with an even number of elements, you could take the median of Arrays of strings:
	median(["a", "z", "b", "l", "m", "j", "b"])
	# => "j"
	median(["a", "b", "c", "d"])
	# TypeError: String can't be coerced into Fixnum
The standard deviation

A concept related to the mean is the standard deviation, a quantity that measures how
 close the dataset as a whole is to the mean. When a mean is
 distorted by high or low outliers, the corresponding standard
 deviation is high. When the numbers in a dataset cluster closely
 around the mean, the standard deviation is low. You won't be fooled
 by a misleading mean if you also look at the standard
 deviation.
	def mean_and_standard_deviation(array)
	 m = mean(array)
	 variance = array.inject(0) { |variance, x| variance += (x - m) ** 2 }
	 return m, Math.sqrt(variance/(array.size-1))
	end

	#All the items in the list are close to the mean, so the standard
	#deviation is low.
	mean_and_standard_deviation([1,2,3,1,1,2,1])
	# => [1.57142857142857, 0.786795792469443]
	#The outlier increases the mean, but also increases the standard deviation.
	mean_and_standard_deviation([1,2,3,1,1,2,1000])
	# => [144.285714285714, 377.33526837801]
A good rule of thumb is that two-thirds (about 68 percent) of
 the items in a dataset are within one standard deviation of the
 mean, and almost all (about 95 percent) of the items are within two
 standard deviations of the mean.

See Also

	"Programmers Need to Learn Statistics or I Will Kill Them
 All," by Zed Shaw (http://www.zedshaw.com/blog/programming/programmer_stats.html)

	More Ruby implementations of simple statistical measures
 (http://dada.perl.it/shootout/moments.ruby.html)

	To do more complex statistical analysis in Ruby, try the
 Ruby bindings to the GNU Scientific Library (http://ruby-gsl.sourceforge.net/)

	The Stats class in the
 Mongrel web server (http://mongrel.rubyforge.org) implements other
 algorithms for calculating mean and standard deviation, which are
 faster if you need to repeatedly calculate the mean of a growing
 series

2.9. Converting Between Degrees and Radians

Problem

The trigonometry functions in Ruby's Math library take input in radians (2π
 radians in a circle). Most real-world applications measure angles in
 degrees (360 degrees in a circle). You want an easy way to do
 trigonometry with degrees.

Solution

The simplest solution is to define a conversion method in
 Numeric that will convert a number
 of degrees into radians.
	class Numeric
	 def degrees
	 self * Math::PI / 180
	 end
	end
You can then treat any numeric object as a number of degrees and convert it into the corresponding number of
 radians, by calling its degrees
 method. Trigonometry on the result will work as you'd expect:
	90.degrees # => 1.5707963267949
	Math::tan(45.degrees) # => 1.0
	Math::cos(90.degrees) # => 6.12303176911189e-17
	Math::sin(90.degrees) # => 1.0
	Math::sin(89.9.degrees) # => 0.999998476913288

	Math::sin(45.degrees) # => 0.707106781186547
	Math::cos(45.degrees) # => 0.707106781186548

Discussion

I named the conversion method degrees by analogy to the methods like
 hours defined by Rails. This makes
 the code easy to read, but if you look at the actual numbers, it's not
 obvious why 45.degrees should equal
 the floating-point number 0.785398163397448.
If this troubles you, you could name the method something like
 degrees_to_radians. Or you could
 use Lucas Carlson's units gem,
 which lets you define customized unit conversions, and tracks which
 unit is being used for a particular number.
	require 'rubygems'
	require 'units/base'

	class Numeric
	 remove_method(:degrees) # Remove the implementation given in the Solution
	 add_unit_conversions(:angle => { :radians => 1, :degrees => Math::PI/180 })
	 add_unit_aliases(:angle => { :degrees => [:degree], :radians => [:radian] })
	end

	90.degrees # => 90.0
	90.degrees.unit # => :degrees
	90.degrees.to_radians # => 1.5707963267949
	90.degrees.to_radians.unit # => :radians

	1.degree.to_radians # => 0.0174532925199433
	1.radian.to_degrees # => 57.2957795130823
The units you define with the units gem do nothing but make your code more
 readable. The trigonometry methods don't understand the units you've
 defined, so you'll still have to give them numbers in radians.
	# Don't do this:
	Math::sin(90.degrees) # => 0.893996663600558

	# Do this:
	Math::sin(90.degrees.to_radians) # => 1.0
Of course, you could also change the trigonometry methods to be
 aware of units:
	class << Math
	 alias old_sin sin
	 def sin(x)
	 old_sin(x.unit == :degrees ? x.to_radians : x)
	 end
	end

	90.degrees # => 90.0
	Math::sin(90.degrees) # => 1.0
	Math::sin(Math::PI/2.radians) # => 1.0
	Math::sin(Math::PI/2) # => 1.0
That's probably overkill, though.

See Also

	Recipe 8.9,
 "Converting and Coercing Objects to Different Types"

	The Facets More library (available as the facets_more gem) also has a Units module

2.10. Multiplying Matrices

Problem

You want to turn arrays of arrays of numbers into mathematical
 matrices, and multiply the matrices together.

Solution

You can create Matrix objects from arrays of arrays, and
 multiply them together with the *
 operator:
	require '
matrix'
	require 'mathn'

	a1 = [[1, 1, 0, 1],
	 [2, 0, 1, 2],
	 [3, 1, 1, 2]]
	m1 =
Matrix[*a1]
	# =>
Matrix[[1, 1, 0, 1], [2, 0, 1, 2], [3, 1, 1, 2]]

	a2 = [[1, 0],
	 [3, 1],
	 [1, 0],
	 [2, 2.5]]
	m2 = Matrix[*a2]
	# => Matrix[[1, 0], [3, 1], [1, 0], [2, 2.5]]

	m1 * m2
	# => Matrix[[6, 3.5], [7, 5.0], [11, 6.0]]
Note the unusual syntax for creating a Matrix object: you pass the rows of the
 matrix into the array indexing operator, not into Matrix#new (which is private).

Discussion

Ruby's Matrix class overloads
 the arithmetic operators to support all the basic matrix arithmetic
 operations, including multiplication, between matrices of compatible
 dimension. If you perform an arithmetic operation on incompatible
 matrices, you'll get an ExceptionForMatrix::ErrDimensionMismatch.
Multiplying one matrix by another is simple enough, but
 multiplying a chain of matrices together can be faster or slower
 depending on the order in which you do the multiplications. This
 follows from the fact that multiplying a matrix with dimensions K x M,
 by a matrix with dimensions MxN, requires K * M * N operations and
 gives a matrix with dimension K * N. If K is large for some matrix,
 you can save time by waiting til the end before doing multiplications
 involving that matrix.
Consider three matrices A, B, and C, which you want to multiply
 together. A has 100 rows and 20 columns. B has 20 rows and 10 columns.
 C has 10 rows and one column.
Since matrix multiplication is associative, you'll get the same
 results whether you multiply A by B and then the result by C, or
 multiply B by C and then the result by A. But multiplying A by B
 requires 20,000 operations (100 * 20 * 10), and multiplying (AB) by C
 requires another 1,000 (100 * 10 * 1). Multiplying B by C only
 requires 200 operations (20 * 10 * 1), and multiplying the result by A
 requires 2,000 more (100 * 20 * 1). It's almost 10 times faster to
 multiply A(BC) instead of the naive order of (AB)C.
That kind of potential savings justifies doing some up-front
 work to find the best order for the multiplication. Here is a method
 that recursively figures out the most efficient multiplication order
 for a list of Matrix objects, and
 another method that actually carries out the multiplications. They
 share an array containing information about where to divide up the
 list of matrices: where to place the parentheses, if you
 will.
	class Matrix
	 def self.multiply(*matrices)
	 cache = []
	 matrices.size.times { cache << [nil] * matrices.size }
	 best_split(cache, 0, matrices.size-1, *matrices)
	 multiply_following_cache(cache, 0, matrices.size-1, *matrices)
	 end
Because the methods that do the actual work pass around
 recursion arguments that the end user doesn't care about, I've created
 Matrix.multiply, a wrapper method
 for the methods that do the real work. These methods are defined below
 (Matrix.best_split and Matrix.multiply_following_cache). Matrix.multiply_following_cache assumes that
 the optimal way to multiply that list of Matrix objects has already been found and
 encoded in a variable cache. It
 recursively performs the matrix multiplications in the optimal order,
 as determined by the cache.
	:private
	def self.multiply_following_cache(cache, chunk_start, chunk_end, *matrices)
	 if chunk_end == chunk_start
	 # There's only one matrix in the list; no need to multiply.
	 return matrices[chunk_start]
	 elsif chunk_end-chunk_start == 1
	 # There are only two matrices in the list; just multiply them together.
	 lhs, rhs = matrices[chunk_start..chunk_end]
	 else
	 # There are more than two matrices in the list. Look in the
	 # cache to see where the optimal split is located. Multiply
	 # together all matrices to the left of the split (recursively,
	 # in the optimal order) to get our equation's left-hand
	 # side. Similarly for all matrices to the right of the split, to
	 # get our right-hand side.
	 split_after = cache[chunk_start][chunk_end][1]
	 lhs = multiply_following_cache(cache, chunk_start, split_after, *
matrices)
	 rhs = multiply_following_cache(cache, split_after+1, chunk_end, *
matrices)
	 end

	 # Begin debug code: this illustrates the order of multiplication,
	 # showing the matrices in terms of their dimensions rather than their
	 # (possibly enormous) contents.
	 if $DEBUG
	 lhs_dim = "#{lhs.row_size}x#{lhs.column_size}"
	 rhs_dim = "#{rhs.row_size}x#{rhs.column_size}"
	 cost = lhs.row_size * lhs.column_size * rhs.column_size
	 puts "Multiplying #{lhs_dim} by #{rhs_dim}: cost #{cost}"
	 end

	 # Do a matrix multiplication of the two matrices, whether they are
	 # the only two matrices in the list or whether they were obtained
	 # through two recursive calls.
	 return lhs * rhs
	end
Finally, here's the method that actually figures out the best
 way of splitting up the multiplcations. It builds the cache used by
 the multiply_following_cache method
 defined above. It also uses the cache as it builds it, so that it
 doesn't solve the same subproblems over and over again.
	 def self.best_split(cache, chunk_start, chunk_end, *matrices)
	 if chunk_end == chunk_start
	 cache[chunk_start][chunk_end] = [0, nil]
	 end
	 return cache[chunk_start][chunk_end] if cache[chunk_start][chunk_end]

	 #Try splitting the chunk at each possible location and find the
	 #minimum cost of doing the split there. Then pick the smallest of
	 #the minimum costs: that's where the split should actually happen.
	 minimum_costs = []
	 chunk_start.upto(chunk_end-1) do |split_after|
	 lhs_cost = best_split(cache, chunk_start, split_after, *matrices)[0]
	 rhs_cost = best_split(cache, split_after+1, chunk_end, *matrices)[0]

	 lhs_rows = matrices[chunk_start].row_size
	 rhs_rows = matrices[split_after+1].row_size
	 rhs_cols = matrices[chunk_end].column_size
	 merge_cost = lhs_rows * rhs_rows * rhs_cols
	 cost = lhs_cost + rhs_cost + merge_cost
	 minimum_costs << cost
	 end
	 minimum = minimum_costs.min
	 minimum_index = chunk_start + minimum_costs.index(minimum)
	 return cache[chunk_start][chunk_end] = [minimum, minimum_index]
	 end
	end
A simple test confirms the example set of matrices spelled out
 earlier. Remember that we had a 100 x 20 matrix (A), a 20 x 10 matrix
 (B), and a 20 x 1 matrix (C). Our method should be able to figure out
 that it's faster to multiply A(BC) than the naive multiplication
 (AB)C. Since we don't care about the contents of the matrices, just the dimensions, we'll first define some
 helper methods that make it easy to generate matrices with specific dimensions but random
 contents.
	class Matrix
	 # Creates a randomly populated matrix with the given dimensions.
	 def self.with_dimensions(rows, cols)
	 a = []
	 rows.times { a << []; cols.times { a[-1] << rand(10) } }
	 return Matrix[*a]
	 end

	 # Creates an array of
matrices that can be multiplied together
	 def self.multipliable_chain(*rows)
	 matrices = []
	 0.upto(rows.size-2) do |i|
	 matrices << Matrix.with_dimensions(rows[i], rows[i+1])
	 end
	 return matrices
	 end
	end
After all that, the test is kind of anticlimactic:
	# Create an array of matrices 100x20, 20x10, 10x1.
	chain = Matrix.multipliable_chain(100, 20, 10, 1)

	# Multiply those matrices two different ways, giving the same result.
	Matrix.multiply(*chain) == (chain[0] * chain[1] * chain[2])
	# Multiplying 20x10 by 10x1: cost 200
	# Multiplying 100x20 by 20x1: cost 2000
	# => true
We can use the Benchmark
 library to verify that matrix multiplication goes much faster when we
 do the multiplications in the right order:
	# We'll generate the dimensions and contents of the matrices randomly,
	# so no one can accuse us of cheating.
	dimensions = []
	10.times { dimensions << rand(90)+10 }
	chain = Matrix.multipliable_chain(*dimensions)

	require 'benchmark'
	result_1 = nil
	result_2 = nil
	Benchmark.bm(11) do |b|
	 b.report("Unoptimized") do
	 result_1 = chain[0]
	 chain[1..chain.size].each { |c| result_1 *= c }
	 end
	 b.report("Optimized") { result_2 = Matrix.multiply(*chain) }
	end
	# user system total real
	# Unoptimized 4.350000 0.400000 4.750000 (11.104857)
	# Optimized 1.410000 0.110000 1.520000 (3.559470)

	# Both multiplications give the same result.
	result_1 == result_2 # => true

See Also

	Recipe 2.11,
 "Solving a System of Linear Equations," uses matrices to solve linear equations

	For more on benchmarking, see Recipe 17.13,
 "Benchmarking Competing Solutions"

2.11. Solving a System of Linear Equations

Problem

You have a number of linear equations (that is, equations that
 look like "2x + 10y + 8z = 54"), and you want to figure out the
 solution: the values of x, y, and z. You have as many equations as you
 have variables, so you can be certain of a unique solution.

Solution

Create two Matrix objects.
 The first Matrix should contain the
 coefficients of your equations (the 2, 10, and 8 of "2x + 10y + 8z =
 54"), and the second should contain the constant results (the 54 of
 the same equation). The numbers in both matrices should be represented as floating-point
 numbers, rational numbers, or BigDecimal objects: anything other than
 plain Ruby integers.
Then invert the coefficient matrix with Matrix#inverse, and multiply the result by
 the matrix full of constants. The result will be a third Matrix containing the solutions to your
 equations.
For instance, consider these three linear equations in three
 variables:
	2x + 10y + 8z = 54
	7y + 4z = 30
	5x + 5y + 5z = 35
To solve these equations, create the two matrices:
	require 'matrix'
	require 'rational'
	coefficients = [[2, 10, 8], [0, 7, 4], [5, 5, 5]].collect! do |row|
	 row.collect! { |x| Rational(x) }
	end
	coefficients = Matrix[*coefficients]
	# => Matrix[[Rational(2, 1), Rational(10, 1), Rational(8, 1)],
	# => [Rational(0, 1), Rational(7, 1), Rational(4, 1)],
	# => [Rational(5, 1), Rational(5, 1), Rational(5, 1)]]

	constants = Matrix[[Rational(54)], [Rational(30)], [Rational(35)]]
Take the inverse of the coefficient matrix, and multiply it by
 the results matrix. The result will be a matrix containing the values
 for your variables.
	solutions = coefficients.inverse * constants
	# => Matrix[[Rational(1, 1)], [Rational(2, 1)], [Rational(4, 1)]]
This means that, in terms of the original equations, x=1, y=2, and z=4.

Discussion

This may seem like magic, but it's analagous to how you might
 use algebra to solve a single equation in a single variable. Such an
 equation looks something like Ax = B: for
 instance, 6x = 18. To solve for
 x, you divide both sides by the
 coefficient:[image:]
The sixes on the left side of the equation cancel out, and you
 can show that x is 18/6, or 3.
In that case there's only one coefficient and one constant. With
 n equations in n variables, you have
 n2 coefficients and
 n constants, but by packing them into matrices
 you can solve the problem in the same way.
Here's a side-by-side comparision of the set of equations from
 the Solution, and the corresponding matrices created in order to solve
 the system of equations.
	2x + 10y + 8z = 54 | [2 10 8] [x] [54]
	x + 7y + 4z = 31 | [1 7 4] [y] = [31]
	5x + 5y + 5z = 35 | [5 5 5] [z] [35]
If you think of each matrix as a single value, this looks
 exactly like an equation in a single variable. It's Ax = B, only this
 time A, x, and B are matrices. Again you can solve the problem by
 dividing both sides by A: x = B/A. This time, you'll use matrix
 division instead of scalar division, and your result will be a matrix
 of solutions instead of a single solution.
For numbers, dividing B by A is equivalent to multiplying B by
 the inverse of A. For instance, 9/3 equals 9 * 1/3. The same is true
 of matrices. To divide a matrix B by another matrix A, you multiply B
 by the inverse of A.
The Matrix class overloads
 the division operator to do multiplication by the inverse, so you
 might wonder why we don't just use that. The problem is that Matrix#/ calculates B/A as B*A.inverse, and what we want is A.inverse*B. Matrix multiplication isn't
 commutative, and so neither is division. The developers of the
 Matrix class had to pick an order
 to do the multiplication, and they chose the one that won't work for
 solving a system of equations.
For the most accurate results, you should use Rational or BigDecimal numbers to represent your
 coefficients and values. You should never use integers. Calling
 Matrix#inverse on a matrix full of
 integers will do the inversion using integer division. The result will
 be totally inaccurate, and you won't get the right solutions to your
 equations.
Here's a demonstration of the problem. Multiplying a matrix by
 its inverse should get you an identity matrix, full of zeros but with
 ones going down the right diagonal. This is analagous to the way
 multiplying 3 by 1/3 gets you 1.
When the matrix is full of rational numbers, this works
 fine:
	matrix = Matrix[[Rational(1), Rational(2)], [Rational(2), Rational(1)]]
	matrix.inverse
	# => Matrix[[Rational(-1, 3), Rational(2, 3)],
	# => [Rational(2, 3), Rational(-1, 3)]]

	matrix * matrix.inverse
	# => Matrix[[Rational(1, 1), Rational(0, 1)],
	# => [Rational(0, 1), Rational(1, 1)]]
But if the matrix is full of integers, multiplying it by its
 inverse will give you a matrix that looks nothing like an identity
 matrix.
	matrix = Matrix[[1, 2], [2, 1]]
	matrix.inverse
	# => Matrix[[-1, 1],
	# => [0, -1]]

	matrix * matrix.inverse
	# => Matrix[[-1, -1],
	# => [-2, 1]]
Inverting a matrix that contains floating-point numbers is a
 lesser mistake: Matrix#inverse
 tends to magnify the inevitable floating-point rounding errors.
 Multiplying a matrix full of floating-point numbers by its inverse
 will get you a matrix that's almost, but not quite, an identity
 matrix.
	float_matrix = Matrix[[1.0, 2.0], [2.0, 1.0]]
	float_matrix.inverse
	# => Matrix[[-0.333333333333333, 0.666666666666667],
	# => [0.666666666666667, -0.333333333333333]]

	float_matrix * float_matrix.inverse
	# => Matrix[[1.0, 0.0],
	# => [1.11022302462516e-16, 1.0]]

See Also

	Recipe 2.10,
 "Multiplying Matrices"

	Another way of solving systems of linear equations is with Gauss-Jordan elimination;
 Shin-ichiro Hara has written an algebra library for Ruby, which includes
 a module for doing Gaussian elimination, along with lots of other
 linear algebra libraries (http://blade.nagaokaut.ac.jp/~sinara/ruby/math/algebra/)

	There is also a package, called linalg, which provides Ruby bindings to
 the C/Fortran LAPACK library for linear algebra (http://rubyforge.org/projects/linalg/)

2.12. Using Complex Numbers

Problem

You want to represent complex ("imaginary") numbers and perform math on
 them.

Solution

Use the Complex class, defined in the complex library. All mathematical and
 trigonometric operations are supported.
	require 'complex'

	Complex::I # => Complex(0, 1)

	a = Complex(1, 4) # => Complex(1, 4)
	a.real # => 1
	a.image # => 4

	b = Complex(1.5, 4.25) # => Complex(1.5, 4.25)
	b + 1.5 # => Complex(3.0, 4.25)
	b + 1.5*Complex::I # => Complex(1.5, 5.75)

	a - b # => Complex(-0.5, -0.25)
	a * b # => Complex(-15.5, 10.25)
	b.conjugate # => Complex(1.5, -4.25)
	Math::sin(b) # => Complex(34.9720129257216, 2.47902583958724)

Discussion

You can use two floating-point numbers to keep track of the real
 and complex parts of a complex number, but that makes it complicated
 to do mathematical operations such as multiplication. If you were to
 write functions to do these operations, you'd have more or less
 reimplemented the Complex class.
 Complex simply keeps two instances
 of Numeric, and implements the
 basic math operations on them, keeping them together as a complex
 number. It also implements the complex-specific mathematical operation
 Complex#conjugate.
 Complex numbers have many uses in scientific
 applications, but probably their coolest application is in drawing
 certain kinds of fractals. Here's a class that uses complex numbers to
 calculate and draw a character-based representation of the Mandelbrot
 set, scaled to whatever size your screen can handle.
	class Mandelbrot

	 # Set up the Mandelbrot generator with the basic parameters for
	 # deciding whether or not a point is in the set.

	 def initialize(bailout=10, iterations=100)
	 @bailout, @iterations = bailout, iterations
	 end
A point (x,y) on the complex plane is in the Mandelbrot set unless a certain iterative calculation
 tends to infinity. We can't calculate "tends towards infinity"
 exactly, but we can iterate the calculation a certain number of times
 waiting for the result to exceed some "bail-out" value.
If the result ever exceeds the bail-out value, Mandelbrot assumes the calculation goes all
 the way to infinity, which takes it out of the Mandelbrot set.
 Otherwise, the iteration will run through without exceeding the
 bail-out value. If that happens, Mandelbrot makes the opposite assumption:
 the calculation for that point will never go to infinity, which puts
 it in the Mandelbrot set.
The default values for bailout and iterations are precise enough for small,
 chunky ASCII renderings. If you want to make big posters of the
 Mandelbrot set, you should increase these numbers.
Next, let's define a method that uses bailout and iterations to guess whether a specific point
 on the complex plane belongs to the Mandelbrot set. The variable
 x is a position on the real axis of
 the complex plane, and y is a
 position on the imaginary axis.
	# Performs the Mandelbrot operation @iterations times. If the
	# result exceeds @bailout, assume this point goes to infinity and
	# is not in the set. Otherwise, assume it is in the set.
	def mandelbrot(x, y)
	 c = Complex(x, y)
	 z = 0
	 @iterations.times do |i|
	 z = z**2 + c # This is the Mandelbrot operation.
	 return false if z > @bailout
	 end
	 return true
	end
The most interesting part of the Mandelbrot set lives between–2
 and 1 on the real axis of the complex plane, and between–1 and 1 on
 the complex axis. The final method in Mandelbrot produces an ASCII map of that
 portion of the complex plane. It maps each point on an ASCII grid to a
 point on or near the Mandelbrot set. If Mandelbrot estimates that point to be in the
 Mandelbrot set, it puts an asterisk in that part of the grid.
 Otherwise, it puts a space there. The larger the grid, the more points
 are sampled and the more precise the map.
	def render(x_size=80, y_size=24, inside_set="*", outside_set=" ")
	 0.upto(y_size) do |y|
	 0.upto(x_size) do |x|
	 scaled_x = -2 + (3 * x / x_size.to_f)
	 scaled_y = 1 + (-2 * y / y_size.to_f)
	 print mandelbrot(scaled_x, scaled_y) ? inside_set : outside_set
	 end
	 puts
	 end
	 end
	end
Even at very small scales, the distinctive shape of the
 Mandelbrot set is visible.
	Mandelbrot.new.render(25, 10)
	# **
	# ****
	# ********
	# *** *********
	# *******************
	# *** *********
	# ********
	# ****
	# **

See Also

	The scaling equation, used to map the complex plane onto the
 terminal screen, is similar to the equations used to scale data in
 Recipe 12.5, "Adding
 Graphical Context with Sparklines," and Recipe 12.14,
 "Representing Data as MIDI Music"

2.13. Simulating a Subclass of Fixnum

Problem

You want to create a class that acts like a subclass of Fixnum, Float, or one of Ruby's other built-in
 numeric classes. This wondrous class can be used in arithmetic along
 with real Integer or Float objects, and it will usually act like
 one of those objects, but it will have a different representation or
 implement extra functionality.

Solution

Let's take a concrete example and consider the possibilities.
 Suppose you wanted to create a class that acts just like Integer, except its string representation is
 a hexadecimal string beginning with "0x". Where a Fixnum's string representation might be
 "208", this class would represent 208 as "0xc8".
You could modify Integer#to_s
 to output a hexadecimal string. This would probably drive you insane
 because it would change the behavior for all
 Integer objects. From that point
 on, nearly all the numbers you use would have hexadecimal string
 representations. You probably want hexadecimal string representations
 only for a few of your numbers.
This is a job for a subclass, but you can't usefully subclass
 Fixnum (the Discussion explains why
 this is so). The only alternative is delegation. You need to create a
 class that contains an instance of Fixnum, and almost always delegates method
 calls to that instance. The only method calls it doesn't delegate
 should be the ones that it wants to override.
The simplest way to do this is to create a custom delegator
 class with the delegate library. A
 class created with DelegateClass
 accepts another object in its constructor, and delegates all methods
 to the corresponding methods of that object.
	require 'delegate'
	class HexNumber < DelegateClass(
Fixnum)
	 # The string representations of this class are hexadecimal numbers
	 def to_s
	 sign = self < 0 ? "-" : ""
	 hex = abs.to_s(16)
	 "#{sign}0x#{hex}"
	 end

	 def inspect
	 to_s
	 end
	end

	HexNumber.new(10) # => 0xa
	HexNumber.new(-10) # => -0xa
	HexNumber.new(1000000) # => 0xf4240
	HexNumber.new(1024 ** 10) # => 0x10000000000000000000000000

	HexNumber.new(10).succ # => 11
	HexNumber.new(10) * 2 # => 20

Discussion

Some object-oriented languages won't let you subclass the
 "basic" data types like integers. Other languages implement those data
 types as classes, so you can subclass them, no questions asked. Ruby
 implements numbers as classes (Integer, with its concrete subclasses
 Fixnum and Bignum), and you can subclass those classes.
 If you try, though, you'll quickly discover that your subclasses are
 useless: they don't have constructors.
Ruby jealously guards the creation of new Integer objects. This way it ensures that,
 for instance, there can be only one Fixnum instance for a given number:
	100.object_id # => 201
	(10 * 10).object_id # => 201
	Fixnum.new(100)
	# NoMethodError: undefined method `new' for Fixnum:Class
You can have more than one Bignum object for a given number, but you
 can only create them by exceeding the bounds of Fixnum. There's no Bignum constructor, either. The same is true
 for Float.
	(10 ** 20).object_id # => -606073730
	((10 ** 19) * 10).object_id # => -606079360
	Bignum.new(10 ** 20)
	# NoMethodError: undefined method `new' for Bignum:Class
If you subclass Integer or
 one of its subclasses, you won't be able to create any instances of
 your class—not because those classes aren't "real" classes, but
 because they don't really have constructors. You might as well not
 bother.
So how can you create a custom number-like class without
 redefining all the methods of Fixnum? You can't, really. The good news is
 that in Ruby, there's nothing painful about redefining all the methods
 of Fixnum. The delegate library takes care of it for you.
 You can use this library to generate a class that responds to all the
 same method calls as Fixnum. It
 does this by delegating all those method calls to a Fixnum object it holds as a member. You can
 then override those classes at your leisure, customizing
 behavior.
Since most methods are delegated to the member Fixnum, you can perform math on HexNumber objects, use succ and upto, create ranges, and do almost anything
 else you can do with a Fixnum.
 Calling HexNumber#is_a?(Fixnum)
 will return false, but you can change even that by manually overriding
 is_a?.
Alas, the illusion is spoiled somewhat by the fact that when you
 perform math on HexNumber objects,
 you get Fixnum objects back.
	HexNumber.new(10) * 2 # => 20
	HexNumber.new(10) + HexNumber.new(200) # => 210
Is there a way to do math with HexNumber objects and get HexNumber objects as results? There is, but
 it requires moving a little bit beyond the comfort of the delegate library. Instead of simply
 delegating all our method calls to an Integer object, we want to delegate the
 method calls, then intercept and modify the return values. If a method
 call on the underlying Integer
 object returns an Integer or a
 collection of Integers, we want to
 convert it into a HexNumber object
 or a collection of HexNumbers.
The easiest way to delegate all methods is to create a class
 that's nearly empty and define a method_missing method. Here's a second
 HexNumber class that silently
 converts the results of mathematical operations (and any other
 Integer result from a method of
 Integer) into HexNumber objects. It uses the BasicObject class from the Facets More
 library (available as the facets-more gem): a class that defines
 almost no methods at all. This lets us delegate almost everything to
 Integer.
	require 'rubygems'
	require 'facet/basicobject'

	class BetterHexNumber < BasicObject

	 def initialize(integer)
	 @value = integer
	 end

	 # Delegate all methods to the stored integer value. If the result is a
	 # Integer, transform it into a BetterHexNumber object. If it's an
	 # enumerable containing Integers, transform it into an enumerable
	 # containing BetterHexNumber objects

	 def method_missing(m, *args)
	 super unless @value.respond_to?(m)
	 hex_args = args.collect do |arg|
	 arg.kind_of?(BetterHexNumber) ? arg.to_int : arg
	 end
	 result = @value.send(m, *hex_args)
	 return result if m == :coerce
	 case result
	 when Integer
	 BetterHexNumber.new(result)
	 when Array
	 result.collect do |element|
	 element.kind_of?(Integer) ? BetterHexNumber.new(element) : element
	 end
	 else
	 result
	 end
	 end

	 # We don't actually define any of the
Fixnum methods in this class,
	 # but from the perspective of an outside object we do respond to
	 # them. What outside objects don't know won't hurt them, so we'll
	 # claim that we actually implement the same methods as our delegate
	 # object. Unless this method is defined, features like ranges won't
	 # work.
	 def respond_to?(method_name)
	 super or @value.respond_to? method_name
	 end

	 # Convert the number to a hex string, ignoring any other base
	 # that might have been passed in.
	 def to_s(*args)
	 hex = @value.abs.to_s(16)
	 sign = self < 0 ? "-" : ""
	 "#{sign}0x#{hex}"
	 end

	 def inspect
	 to_s
	 end
	end
Now we can do arithmetic with BetterHexNumber objects, and get BetterHexNumber object back:
	hundred = BetterHexNumber.new(100) # => 0x64
	hundred + 5 # => 0x69
	hundred + BetterHexNumber.new(5) # => 0x69
	hundred.succ # => 0x65
	hundred / 5 # => 0x14
	hundred * -10 # => -0x3e8
	hundred.divmod(3) # => [0x21, 0x1]
	(hundred…hundred+3).collect # => [0x64, 0x65, 0x66]
A BetterHexNumber even claims
 to be a Fixnum, and to respond to all the methods of
 Fixnum! The only way to know it's
 not is to call is_a?.
	hundred.class # => Fixnum
	hundred.respond_to? :succ # => true
	hundred.is_a? Fixnum # => false

See Also

	Recipe 2.6,
 "Converting Between Numeric Bases"

	Recipe 2.14,
 "Doing Math with Roman Numbers"

	Recipe 8.8,
 "Delegating Method Calls to Another Object"

	Recipe 10.8,
 "Responding to Calls to Undefined Methods"

2.14. Doing Math with Roman Numbers

Problem

You want to convert between Arabic and Roman numbers, or do
 arithmetic with Roman numbers and get Roman numbers as your
 result.

Solution

The simplest way to define a Roman class that acts like Fixnum is to have its instances delegate
 most of their method calls to a real Fixnum (as seen in the previous recipe,
 Recipe 2.13). First
 we'll implement a container for the Fixnum delegate, and methods to convert
 between Roman and Arabic numbers:
	class Roman
	 # These arrays map all distinct substrings of Roman numbers
	 # to their Arabic equivalents, and vice versa.
	 @@roman_to_arabic = [['M', 1000], ['CM', 900], ['D', 500], ['CD', 400],
	 ['C', 100], ['XC', 90], ['L', 50], ['XL', 40], ['X', 10], ['IX', 9],
	 ['V', 5], ['IV', 4], ['I', 1]]
	 @@arabic_to_roman = @@roman_to_arabic.collect { |x| x.reverse }.reverse

	 # The Roman symbol for 5000 (a V with a bar over it) is not in
	 # ASCII nor Unicode, so we won't represent numbers larger than 3999.
	 MAX = 3999

	 def initialize(number)
	 if number.respond_to? :to_str
	 @value = Roman.to_arabic(number)
	 else
	 Roman.assert_within_range(number)
	 @value = number
	 end
	 end

	 # Raise an exception if a number is too large or small to be represented
	 # as a
Roman number.
	 def
Roman.assert_within_range(number)
	 unless number.between?(1, MAX)
	 msg = "#{number} can't be represented as a Roman number."
	 raise RangeError.new(msg)
	 end
	 end

	 #Find the Fixnum value of a string containing a Roman number.
	 def Roman.to_arabic(s)
	 value = s
	 if s.respond_to? :to_str
	 c = s.dup
	 value = 0
	 invalid = ArgumentError.new("Invalid Roman number: #{s}")
	 value_of_previous_number = MAX+1
	 value_from_previous_number = 0
	 @@roman_to_arabic.each_with_index do |(roman, arabic), i|
	 value_from_this_number = 0
	 while c.index(roman) == 0
	 value_from_this_number += arabic
	 if value_from_this_number >= value_of_previous_number
	 raise invalid
	 end
	 c = c[roman.size..s.size]
	 end

	 #This one's a little tricky. We reject numbers like "IVI" and
	 #"IXV", because they use the subtractive notation and then
	 #tack on a number that makes the total overshoot the number
	 #they'd have gotten without using the subtractive
	 #notation. Those numbers should be V and XIV, respectively.
	 if i > 2 and @@roman_to_arabic[i-1][0].size > 1 and
	 value_from_this_number + value_from_previous_number >=
	 @@roman_to_arabic[i-2][1]
	 raise invalid
	 end

	 value += value_from_this_number
	 value_from_previous_number = value_from_this_number
	 value_of_previous_number = arabic
	 break if c.size == 0
	 end
	 raise invalid if c.size > 0
	 end
	 return value
	 end

	 def to_arabic
	 @value
	 end
	 #Render a Fixnum as a string depiction of a
Roman number
	 def to_
roman
	 value = to_arabic
	 Roman.assert_within_range(value)
	 repr = ""
	 @@arabic_to_roman.reverse_each do |arabic, roman|
	 num, value = value.divmod(arabic)
	 repr << roman * num
	 end
	 repr
	 end
Next, we'll make the class respond to all of Fixnum's methods by implementing a method_missing that delegates to our
 internal Fixnum object. This is
 substantially the same method_missing as in Recipe 2.13 Whenever possible,
 we'll transform the results of a delegated method into Roman objects, so that operations on
 Roman objects will yield other
 Roman objects.
	# Delegate all methods to the stored integer value. If the result is
	# a Integer, transform it into a Roman object. If it's an array
	# containing Integers, transform it into an array containing Roman
	# objects.
	def method_missing(m, *args)
	 super unless @value.respond_to?(m)
	 hex_args = args.collect do |arg|
	 arg.kind_of?(Roman) ? arg.to_int : arg
	 end
	 result = @value.send(m, *hex_args)
	 return result if m == :coerce
	 begin
	 case result
	 when Integer
	 Roman.new(result)
	 when Array
	 result.collect do |element|
	 element.kind_of?(Integer) ? Roman.new(element) : element
	 end
	 else
	 result
	 end
	 rescue RangeError
	 # Too big or small to fit in a Roman number. Use the original number
	 result
	 end
	end
The only methods that won't trigger method_missing are methods like to_s, which we're going to override with our
 own implementations:
	 def respond_to?(method_name)
	 super or @value.respond_to? method_name
	 end

	 def to_s
	 to_
roman
	 end

	 def inspect
	 to_s
	 end
	end
We'll also add methods to Fixnum and String that make it easy to create Roman objects:
	class Fixnum
	 def to_roman
	 Roman.new(self)
	 end
	end

	class String
	 def to_roman
	 Roman.new(self)
	 end
	end
Now we're ready to put the Roman class through its paces:
	72.to_roman # => LXXII
	444.to_roman # => CDXLIV
	1979.to_roman # => MCMLXXIX
	'MCMXLVIII'.to_roman # => MCMXLVIII

	Roman.to_arabic('MCMLXXIX') # => 1979
	'MMI'.to_roman.to_arabic # => 2001

	'MMI'.to_roman + 3 # => MMIV
	'MCMXLVIII'.to_roman # => MCMXLVIII
	612.to_roman * 3.to_roman # => MDCCCXXXVI
	(612.to_roman * 3).divmod('VII'.to_roman) # => [CCLXII, II]
	612.to_roman * 10000 # => 6120000 # Too big
	612.to_roman * 0 # => 0 # Too small

	'MCMXCIX'.to_roman.succ # => MM

	('I'.to_roman..'X'.to_roman).collect
	# => [I, II, III, IV, V, VI, VII, VIII, IX, X]
Here are some invalid Roman numbers that the Roman class rejects:
	'IIII'.to_roman
	# ArgumentError: Invalid Roman number: IIII
	'IVI'.to_roman
	# ArgumentError: Invalid Roman number: IVI
	'IXV'.to_roman
	# ArgumentError: Invalid Roman number: IXV
	'MCMM'.to_roman
	# ArgumentError: Invalid Roman number: MCMM
	'CIVVM'.to_
roman
	# ArgumentError: Invalid
Roman number: CIVVM
	-10.to_roman
	# RangeError: -10 can't be represented as a Roman number.
	50000.to_roman
	# RangeError: 50000 can't be represented as a Roman number.

Discussion

The rules for constructing Roman numbers are more complex than
 those for constructing positional numbers such as the Arabic numbers
 we use. An algorithm for parsing an Arabic number can scan from the
 left, looking at each character in isolation. If you were to scan a
 Roman number from the left one character at a time, you'd often find
 yourself having to backtrack, because what you thought was "XI" (11)
 would frequently turn out to be "XIV" (14).
The simplest way to parse a Roman number is to adapt the
 algorithm so that (for instance) "IV" as treated as its own
 "character," distinct from "I" and "V". If you have a list of all
 these "characters" and their Arabic values, you can scan a Roman
 number from left to right with a greedy algorithm that keeps a running
 total. Since there are few of these "characters" (only 13 of them, for
 numbers up to 3,999), and none of them are longer than 2 letters, this
 algorithm is workable. To generate a Roman number from an Arabic
 number, you can reverse the process.
The Roman class given in the
 Solution works like Fixnum, thanks
 to the method_missing strategy
 first explained in Recipe
 2.13. This lets you do math entirely in Roman numbers, except
 when a result is out of the supported range of the Roman class.
Since this Roman
 implementation only supports 3999 distinct numbers, you could make the
 implementation more efficient by pregenerating all of them and
 retrieving them from a cache as needed. The given implementation lets
 you extend the implementation to handle larger numbers: you just need
 to decide on a representation for the larger Roman characters that
 will work for your encoding.
The Roman numeral for 5,000 (a V with a bar over it) isn't
 present in ASCII, but there are Unicode characters U+2181 (the Roman
 numeral 5,000) and U+2182 (the Roman numeral 10,000), so that's the
 obvious choice for representing Roman numbers up to 39,999. If you're
 outputting to HTML, you can use a CSS style to put a bar above "V",
 "X", and so on. If you're stuck with ASCII, you might choose "_V" to
 represent 5,000, "_X" to represent 10,000, and so on. Whatever you
 chose, you'd add the appropriate "characters" to the roman_to_arabic array (remembering to add
 "M_V" and "_V_X" as well as "_V" and "_X"), increment MAX, and suddenly be able to instantiate
 Roman objects for large
 numbers.
The Roman#to_arabic method
 implements the "new" rules for Roman numbers: that is, the ones
 standardized in the Middle Ages. It rejects certain number
 representations, like IIII, used by the Romans themselves.
 Roman numbers are common as toy or contest problems, but it's
 rare that a programmer will have to treat a Roman number as a number, as opposed to a funny-looking
 string. In parts of Europe, centuries and the month section of dates
 are written using Roman numbers. Apart from that, outline generation
 is probably the only real-world application where a programmer needs
 to treat a Roman number as a number. Outlines need several of visually
 distinct ways to represent the counting numbers, and Roman numbers
 (upper- and lowercase) provide two of them.
If you're generating an outline in plain text, you can use
 Roman#succ to generate a succession
 of Roman numbers. If your outline is in HTML format, though, you don't
 need to know anything about Roman numbers at all. Just give an
 tag a CSS style of
 list-style-type:lower-roman or
 list-style-type:upper-roman. Output
 the elements of your outline as tags inside the tag. All modern browsers will do
 the right thing:
	<ol style="list-style-type:lower-roman">
	Primus
	Secundis
	Tertius
	

See Also

	Recipe 2.13,
 "Simulating a Subclass of Fixnum"

	An episode of the Ruby Quiz focused on algorithms for
 converting between Roman and Arabic numbers; one solution uses an
 elegant technique to make it easier to create Roman numbers from
 within Ruby: it overrides Object#const_
 missing to convert any undefined constant into a Roman
 number; this lets you issue a statement like XI + IX, and get XX as the result (http://www.rubyquiz.com/quiz22.html)

End of sample

 To search for additional titles please go to

 http://search.overdrive.com.

OEBPS/httpatomoreillycomsourceoreillyimages21862.jpg
Survey: the value of pi

M 31415 314 W 2217 "About three’

OEBPS/httpatomoreillycomsourceoreillyimages21908.jpg
(English)

Instances | Classes | Images = Sounds Nib

Search
NMovie
NSResponder
NsSound
NSTableColumn

NSTabViewtem

Qinspector
SCNibObjectinfo
SCNibObjectinfoManage [y

1t Timer

OEBPS/httpatomoreillycomsourceoreillyimages21858.jpg

OEBPS/httpatomoreillycomsourceoreillyimages21886.jpg
=lolx|

| acon vew [| & > [E[m & D62 || >§- I o
Tee | e Tpescrption ANStatus | Startup Type

T — rar service

TLogonss

[e Cocaystem
croris Schecler? . Alows A, Started Adomatic Locatystem
% erter o e Vol Locssystem

8 sopiction anage..._provees s ol Lcdsyaten |

OEBPS/httpatomoreillycomsourceoreillyimages21890.jpg
Program Reset

00:00:11:6

stop

OEBPS/httpatomoreillycomsourceoreillyimages21852.jpg
Parent

Child 1 Child 2

Grandchild ~ Grandchild Grandchild

1.1 12 21

OEBPS/oreilly_large.gif
O’REILLY

OEBPS/httpatomoreillycomsourceoreillyimages21872.jpg
BlogPost

Join table
(tags_blog_posts)

Tag

OEBPS/httpatomoreillycomsourceoreillyimages251568.jpg
R R RRRBRBRBRNSSEESEEESESSSEEERRRBR&%
Recipes for Object Oriented Scripting

"

Ruby
Cookbook

o’ REILLY® Lucas Carlson & Leonard Richardson

OEBPS/httpatomoreillycomsourceoreillyimages21850.jpg

OEBPS/httpatomoreillycomsourceoreillyimages21888.jpg
LT e

You are a trout!

OEBPS/httpatomoreillycomsourceoreillyimages21878.jpg

OEBPS/httpatomoreillycomsourceoreillyimages21868.jpg
LOST
DINOSAUR

ool
Three-year-old Tyrannosaurus rex

Spayed
Responds to "Sue"

(555) 010-7829

OEBPS/httpatomoreillycomsourceoreillyimages21866.jpg
This country faces a crisis and a crossroads. W Our taxes are too high &
and our poodies are too well-groomed. @ Our children learn less in school
@ and listen to louder music at home. ® The Internet scares me. &

OEBPS/httpatomoreillycomsourceoreillyimages21860.jpg
640

480

320

160

Algorithm running times

B O(nlogn)

o(n) M Oflogn)

Gonstant

n=100

OEBPS/httpatomoreillycomsourceoreillyimages21846.jpg
o
2

%

OEBPS/httpatomoreillycomsourceoreillyimages21896.jpg
g /i eV el

OEBPS/httpatomoreillycomsourceoreillyimages21906.jpg
RubyStopWatch File Edit Program Reset Window Help

O 06O Timer

OEBPS/httpatomoreillycomsourceoreillyimages21874.jpg
Person

BlogPost

vy

(tags_blog_posts)

Join table

f

Tag

OEBPS/httpatomoreillycomsourceoreillyimages21894.jpg
i) i e

Program Feset

00:13:02:3

OEBPS/httpatomoreillycomsourceoreillyimages21884.jpg
1.3.|6

Revision/build number
Minor version number
Major version number

OEBPS/httpatomoreillycomsourceoreillyimages21880.jpg
Just a simple file that defines a sum method,

Methods

sum

Public Instance methods

sum(*terms)

Takes any number of numeric terms and retums the sum.

sum(1,2,3) # =8
sum(1,-1, 10) # => 10
sum(1.5, 0.2, 0.3, 1) #=>3.0

alcate]

OEBPS/httpatomoreillycomsourceoreillyimages21864.jpg
Is EvilCorp (NASDAQ:EVIL) poised for a comeback?

OEBPS/httpatomoreillycomsourceoreillyimages21856.jpg

OEBPS/httpatomoreillycomsourceoreillyimages21876.jpg
Your headers

Status: 200 0K
Server: Apache/2.0.49 (Unix) mod_ss1/2.0.49 OpenSSL/0.9.7a DAV/2 PHP/4.3.9 mo
Content-Type: text/html

Set-Cookie: rubycookbook=hits%3DE0S1ast%3DWed+Mar+08+11%3A46%3A33+PST+2006; p
Recipe Name: Setting HTTP Response Headers

Refresh: 2

Number of times your browser hit this cgi: 59
Last connected: Wed Mar 08 11:46:31 PST 2006

OEBPS/httpatomoreillycomsourceoreillyimages21882.jpg
A whirlwind tour of SimpleMarkup

You can mark up text

+ Bold a single word or a section
« Emphasize a single word or a section

+ Use a fixed-width font for a section or aword

« URLS are automatically linked: wuv.exxample.corn/foo il

Or create lists

Types of ists;

» Unordered lists (like this one, and the one above)
+ Ordered ists
1. Line
2. Square
3. Cube
+ Definition-style labelled lsts (useful for argument ists)
pos
Coordinates of the center of the circle ([)
radius
Radius of the circle, in pixels
+ Table-style labelled lists
Author: Sophie Aurus

Hormepage: www.exarmple.corm

OEBPS/httpatomoreillycomsourceoreillyimages21900.jpg
806

@ simpleRub... Development 1)

[8) rb_main.rb ~ simpleRubyCocoa

N o 0 F

Q- wildcard Pattern

o

Active Target Active Bulld Configuration _ Bulld__Build and Go _Info _ Quick Model Search
Groups &Files I TR thmain.brd1 £ @ tb_main im0 S.[=[m¢.[a
v S simpleRubyCocoa m—Ts
b [Classes # xouain.r
stpleRibytocoa
w) main.m :
= . # Created by _User. on 01/63/2686.
B 3 Comrran, o 356 Sybompampins_.. ML rights xeserved.
b3 Resources +

b Frameworks
b products
» @ Targers
b & Brecutables
b [Errors and Warnings
b Q Find Results
18 Bookmarks
>3 scm
@ Project Symbols
b Implementation Files
i NIB Files
» I8 MainMenu.nib

require 'osx/cocon

aot PbLmain init
path = OSK: :NSBundle.mainBundle. resourcePath. to_s
rbfiles = Dir.glob(File.join(path, *.ro)) - [_rxze_]
rbfiles.each {Ipathl require(path) }

0SX.NSApplicationMain(o, ai1)
ond

OEBPS/httpatomoreillycomsourceoreillyimages21848.jpg

OEBPS/httpatomoreillycomsourceoreillyimages21892.jpg
(L o) g biszizian)

Vouare a trautl

OEBPS/httpatomoreillycomsourceoreillyimages21870.jpg
Certificate of Achievement

Tricia Ball

in recognition of achicving the satus of

Ruby Hacker

OEBPS/httpatomoreillycomsourceoreillyimages21902.jpg
000 Cocoa-Text (=]

: - i Sysem FonTexe Lo Tpsam Gaor 9 &1]
© O © Tiny RubyCocoa Appl Label Font Text lamer, consectetaur clium

SmalSystem Font Tex: | 2piking pecu sed do| X
System Font Text |5y"iTr, S Aciorn- manna

01/01/2001 00:00 (3}
token | Field1: 5]
e 1@)

r‘nl_ 55 [Sepi Field2: CY

00O NsTextfield Inspector

(b @ @

itle: [You are a trout!

© O O MainMenu.nib (English) - MainMenu

Tiny RubyCocoaApp File Edit _Window _Help

Placeholder
[® OO @ MainMenu.nib (English) | Text Color: | [N
Instances Classes Images Sounds Nib Backgrnd Color: || [Draw
e Tag: [0
A L Alignment: | o= [+fe *1-}01
File's Owner First Responder MainMenu Tocorter [3] =

. Text Directon: (Nemral _—T8)
Lne sresking: (Worawrap 1%)
Layout: O Scrollable @ Wraps

Send Action On: () Enteronly (&) End editing

Options: (J Editable (] Rounded
@ Enabled (] Hidden
O selectable

OEBPS/httpatomoreillycomsourceoreillyimages21904.jpg
© O O Tiny RubyCocoa Application

You are a trout!

OEBPS/httpatomoreillycomsourceoreillyimages21854.jpg
Aquarium

Small blue fish

Large orange fish

Small green fish

Tiny red fish

Gaudy castle

Greenalgae

OEBPS/httpatomoreillycomsourceoreillyimages21898.jpg
Brogram Reset

00:00:08:8

Stop

