

 [image: Fourth Edition]

 CSS Pocket Reference

Eric A. Meyer

Editor
Simon St. Laurent

Copyright © 2011 O'Reilly Media, Inc.

O’Reilly books may be purchased for educational, business, or sales
 promotional use. Online editions are also available for most titles
 (http://my.safaribooksonline.com).
 For more information, contact our corporate/institutional sales
 department: (800) 998-9938 or corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo
 are registered trademarks of O’Reilly Media, Inc. CSS Pocket
 Reference, the images of salmon, and related trade dress are
 trademarks of O’Reilly Media, Inc.
Many of the designations used by manufacturers and sellers to
 distinguish their products are claimed as trademarks. Where those
 designations appear in this book, and O’Reilly Media, Inc., was aware of a
 trademark claim, the designations have been printed in caps or initial
 caps.

While every precaution has been taken in the preparation of this
 book, the publisher and authors assume no responsibility for errors or
 omissions, or for damages resulting from the use of the information
 contained herein.

[image:]

O'Reilly Media

SPECIAL OFFER: Upgrade this ebook with O’Reilly

Click here for more information on this offer!
Please note that upgrade offers are not available from sample content.

Preface

Cascading Style Sheets (CSS) is the W3C standard for the visual
 presentation of web pages (although it can be used in other settings as
 well). After a short introduction to the key concepts of CSS, this pocket
 reference provides an alphabetical reference to all CSS3 selectors, followed
 by an alphabetical reference to CSS3 properties.
Conventions Used in This Book

The following typographical conventions are used in this
 book:
	Italic
	Used to indicate new terms, URLs, filenames, file extensions,
 directories, commands and options, and program names. For example, a
 path in the filesystem will appear as
 C:\windows\system.

	Constant width
	Used to show the contents of files or the output from
 commands.

	Constant width italic
	Shows text that should be replaced with user-supplied values
 or by values determined by context.

Using Code Examples

This book is here to help you get your job done. In general, you may
 use the code in this book in your programs and documentation. You do not
 need to contact us for permission unless you’re reproducing a significant
 portion of the code. For example, writing a program that uses several
 chunks of code from this book does not require permission. Selling or
 distributing a CD-ROM of examples from O’Reilly books does require
 permission. Answering a question by citing this book and quoting example
 code does not require permission. Incorporating a significant amount of
 example code from this book into your product’s documentation does require
 permission.
We appreciate, but do not require, attribution. An attribution
 usually includes the title, author, publisher, and ISBN. For example:
 “CSS Pocket Reference by Eric A. Meyer (O’Reilly).
 Copyright 2011 O’Reilly Media, Inc., 978-1-449-39903-0.”
If you feel your use of code examples falls outside fair use or the
 permission given above, feel free to contact us at
 permissions@oreilly.com.

Safari® Books Online

Note
Safari Books Online is an on-demand digital library that lets you easily search over
 7,500 technology and creative reference books and videos to find the
 answers you need quickly.

With a subscription, you can read any page and watch any video from
 our library online. Read books on your cell phone and mobile devices.
 Access new titles before they are available for print, and get exclusive
 access to manuscripts in development and post feedback for the authors.
 Copy and paste code samples, organize your favorites, download chapters,
 bookmark key sections, create notes, print out pages, and benefit from
 tons of other time-saving features.
O’Reilly Media has uploaded this book to the Safari Books Online
 service. To have full digital access to this book and others on similar
 topics from O’Reilly and other publishers, sign up for free at http://my.safaribooksonline.com.

How to Contact Us

Visit Eric A. Meyer’s website at http://meyerweb.com/ or follow @meyerweb on Twitter.
Please address comments and questions concerning this book to the
 publisher:
	O’Reilly Media, Inc.
	1005 Gravenstein Highway North
	Sebastopol, CA 95472
	800-998-9938 (in the United States or Canada)
	707-829-0515 (international or local)
	707-829-0104 (fax)

We have a web page for this book, where we list errata, examples,
 and any additional information. You can access this page at:
	http://oreilly.com/catalog/9781449399030/

To comment or ask technical questions about this book, send email
 to:
	bookquestions@oreilly.com

For more information about our books, courses, conferences, and
 news, see our website at http://www.oreilly.com.
Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia
Watch us on YouTube: http://www.youtube.com/oreillymedia

Chapter 1. Basic Concepts

Adding Styles to HTML and XHTML

Styles can be applied to documents in three distinct ways, as
 discussed in the following sections.
Inline Styles

In HTML and XHTML, style information can be specified for an individual
 element via the style attribute. The
 value of a style attribute is a
 declaration block (see the section Rule Structure)
 without the curly braces:
<p style="color: red; background: yellow;">Look out!
This text is alarmingly presented!</p>
Note that, as of this writing, a full style sheet cannot be placed
 into a style attribute. Only the
 content of a single declaration block can be used as a style attribute value. For example, it is not
 possible to place hover styles (using :hover) in a style attribute, nor can one use @import in this context.
Although typical XML document languages (e.g., XHTML 1.0, XHTML
 1.1, and SVG) support the style
 attribute, it is unlikely that all
 XML languages will support a similar capability. Because of this and
 because it encourages poor authoring practices, authors are generally
 discouraged from using the style
 attribute.

Embedded Style Sheets

A style sheet can be embedded at the top of an HTML or XHTML document using the
 style element, which must appear
 within the head element:
<html><head><title>Stylin'!</title>
<style type="text/css">
h1 {color: purple;}
p {font-size: smaller; color: gray;}
</style>
</head>
 ...
</html>
XML languages may or may not provide an equivalent capability;
 always check the language DTD to be certain.

External Style Sheets

Styles can be listed in a separate file. The primary advantage to a separate file is that by
 collecting commonly used styles in a single file, all pages using that
 style sheet can be updated by editing a single style sheet. Another key
 advantage is that external style sheets are cached, which can help
 reduce bandwidth usage. An external style sheet can be referenced in one
 of the following three ways:
@import directive

One or more @import directives
 can be placed at the beginning of any style sheet. For HTML and XHTML
 documents, this would be done within an embedded style sheet:
<head><title>My Document</title>
<style type="text/css">
@import url(site.css);
@import url(navbar.css);
@import url(footer.css);
body {background: yellow;}
</style>
</head>
Note that @import directives
 can appear at the top (and, according to the specification,
 only at the top) of any style sheet. Thus, one
 style sheet could import another, which in turn would import a
 third.

link element

In HTML and XHTML documents, the link element can
 be used to associate a style sheet with a document. Multiple link elements are permitted. The media attribute
 can be used to restrict a style sheet to one or more media:
<head>
<title>A Document</title>
<link rel="stylesheet" type="text/css" href="basic.css"
 media="all">
<link rel="stylesheet" type="text/css" href="web.css"
 media="screen">
<link rel="stylesheet" type="text/css" href="paper.css"
 media="print">
</head>
It is also possible to link to alternate style sheets.
 If alternate style sheets are supplied, it is up to the
 user agent (or the author) to provide a means for the user to select
 one of the alternates:
<head>
<title>A Document</title>
<link rel="stylesheet" type="text/css" href="basic.css">
<link rel="alternate stylesheet" title="Classic"
 type="text/css" href="oldschool.css">
<link rel="alternate stylesheet" title="Futuristic"
 type="text/css" href="3000ad.css">
</head>
As of this writing, most or all known user agents load all
 linked style sheets, including the alternate style sheets, regardless
 of whether the user ever implements them. This can have implications
 for bandwidth use and server load.

xml-stylesheet processing instruction

In XML documents (such as XHTML documents sent with a mime-type
 of “text/xml,” “application/xml,” or “application/xhtml+xml”),
 an xml-stylesheet
 processing instruction can be used to associate a style sheet with a
 document. Any xml-stylesheet
 processing instructions must be placed in the prolog of an XML
 document. Multiple xml-stylesheet
 processing instructions are permitted. The media pseudo-attribute can be used to restrict a style sheet to one or more
 forms of media:
<?xml-stylesheet type="text/css" href="basic.css"
 media="all"?>
<?xml-stylesheet type="text/css" href="web.css"
 media="screen"?>
<?xml-stylesheet type="text/css" href="paper.css"
 media="print"?>
It is also possible to link to alternate style sheets with the
 xml-stylesheet processing
 instruction:
<?xml-stylesheet type="text/css" href="basic.css"?>
<?xml-stylesheet alternate="yes" title="Classic"
 type="text/css" href="oldschool.css"?>
<?xml-stylesheet alternate="yes" title="Futuristic"
 type="text/css" href="3000ad.css"?>

HTTP Link headers

The last (and least common by far) way of associating an
 external style sheet with your pages is to use an HTTP
 Link header. In CSS terms, this is a way of replicating the effects of
 a link element using HTTP
 headers.
Adding a line such as this to the .htaccess file at the root level of your server will make this
 happen for all pages on the site:
Header add Link
 "</style.css>;rel=stylesheet;type=text/css;media=all"
As an alternative to using .htaccess, which has been known to cause
 performance hits, you can edit your httpd.conf file to
 do the same thing:
<Directory /usr/local/username/httpdocs>
Header add Link
 "</ style.css>;rel=stylesheet;type=text/css;media=all"
</Directory>
...where /usr/local/username/httpdocs is replaced
 with the UNIX pathname of your website’s actual home directory.
As of this writing, HTTP headers were not supported by all user
 agents, most notably Internet Explorer and Safari. Thus, this
 technique is usually limited to production environments based on other
 user agents and the occasional Easter egg for Firefox and Opera
 users.

Rule Structure

A style sheet consists of one or more rules that describe how page elements should be presented. Every
 rule has two fundamental parts: the selector and the
 declaration block. Figure 1-1 illustrates the structure of a
 rule.
[image: Rule structure]

Figure 1-1. Rule structure

On the left side of the rule, we find the selector, which selects
 the parts of the document to which the rule should be applied. On the
 right side of the rule, we have the declaration block. A declaration block is made up of one or
 more declarations; each declaration is a
 combination of a CSS property and a
 value of that property.
The declaration block is always enclosed in curly braces. A
 declaration block can contain several declarations; each declaration must
 be terminated with a semicolon (;). The exception is the
 final declaration in a declaration block, for which the semicolon is
 optional.
Each property, which represents a particular stylistic parameter, is
 separated from its value by a colon (:). Property names in
 CSS are not case-sensitive. Legal values for a property are defined by the property description.
 Chapter 4 provides details on acceptable
 values for CSS properties.

Comments

Including comments in CSS is simple. You open with /* and end
 with */, like this:
/* This is a comment! */
Comments can be multiple lines long:
/* This is a comment!
 This is a continuation of the comment.
 And so is this. */
They can also occur anywhere within a style sheet except in the
 middle of a token (property name or value):
h1/* heading-level-1 */ {color /* foreground color */:
 rgba(23,58,89,0.42) /* RGB + opacity */;}
HTML (properly SGML) comments (<!-- such as this
 -->) are permitted in style sheets so as to hide the styles
 from browsers so old that they don’t understand HTML 3.2. They do
 not act as CSS comments; that is, anything contained
 in an HTML comment will be seen and interpreted by the CSS parser.

Style Precedence

A single HTML or XHTML document can import and link to multiple
 external style sheets, contain one or more embedded style sheets, and make use of
 inline styles. In the process, it is quite possible that some rules will
 conflict with one another. CSS uses a mechanism called the cascade to resolve any such conflicts
 and arrive at a final set of styles to be applied to the document. Two key
 components of the cascade are specificity and
 inheritance.
Specificity Calculations

Specificity describes the weight of a selector and any declarations
 associated with it. The following table summarizes the components of
 specificity summation.
	Selector
 type
	Example
	Specificity

	Universal selector

 Combinator
	*
 +
	0,0,0,0

	Element identifier

 Pseudo-element identifier
	div
 ::first-line
	0,0,0,1

	Class identifier

 Pseudo-class identifier
 Attribute
 identifier
	.warning
 :hover
 [type="checkbox"]
	0,0,1,0

	ID
 identifier
	#content
	0,1,0,0

	Inline style attribute
	style="color: red;"
	1,0,0,0

Specificity values are cumulative; thus, a selector containing two
 element identifiers and a class identifier (e.g., div.aside p) has a specificity of
 0,0,1,2. Specificity values are
 sorted in right-to-left precedence; thus, a selector containing 11
 element identifiers (0,0,0,11) has a
 lower specificity than a selector containing just a single class
 identifier (0,0,1,0).
The !important directive
 gives a declaration more weight than nonimportant
 declarations. The declaration retains the specificity of its selectors
 and is used only in comparison with other important declarations.

Inheritance

The elements in a document form a treelike hierarchy with the root element
 at the top and the rest of the document structure spreading out below it
 (which makes it look more like a tree root system, really). In an HTML
 document, the html element is at the
 top of the tree, with the head and
 body elements descending from it. The rest of the
 document structure descends from those elements. In such a structure,
 elements lower down in the tree are descendants of the ancestors, which
 are higher in the tree.
CSS uses the document tree for the mechanism of
 inheritance, in which a style applied to an element
 is inherited by its descendants. For example, if the body element is set to have a color of red, that value propagates down the document
 tree to the elements that descend from the body element. Inheritance is interrupted only
 by a style rule that applies directly to an element. Inherited values
 have no specificity at all (which is not the same
 as having zero specificity).
Note that some elements are not inherited. A property will always
 define whether it is inherited. Some examples of noninherited properties
 are padding, border, margin, and background.

The Cascade

The cascade is how CSS resolves conflicts between styles; in other words, it
 is the mechanism by which a user agent decides, for example, what color
 to make an element when two different rules apply to it and each one
 tries to set a different color. The following steps constitute the
 cascade:
	Find all declarations that contain a selector that matches a
 given element.

	Sort by explicit weight all declarations applying to the
 element. Those rules marked !important are given greater weight than
 those that are not. Also, sort by origin all declarations applying to a given
 element. There are three origins: author, reader, and user agent.
 Under normal circumstances, the author’s styles win out over the
 reader’s styles. !important
 reader styles are stronger than any other styles, including !important author styles. Both author and
 reader styles override the user agent’s default styles.

	Sort by specificity all declarations applying to a given
 element. Those elements with a higher specificity have more weight
 than those with lower specificity.

	Sort by order all declarations applying to a given element.
 The later a declaration appears in a style sheet or a document, the
 more weight it is given. Declarations that appear in an imported
 style sheet are considered to come before all declarations within
 the style sheet that imports them, and have a lower weight than
 those in the importing style sheet.

Any presentational hints that come from non-CSS sources (e.g., the
 preference dialog within a browser) are given the same weight as the
 user agent’s default styles (see step 2 above).

Element Classification

Broadly speaking, CSS groups elements into two types:
 nonreplaced and replaced.
 Although the types may seem rather abstract, there actually are some
 profound differences in how the two types of elements are presented. These
 differences are explored in detail
 in Chapter 7 of CSS: The Definitive
 Guide, third edition (O’Reilly).
Nonreplaced Elements

The majority of HTML and XHTML elements are nonreplaced elements, which means
 their content is presented by the user agent inside a box generated by
 the element itself. For example, hi
 there is a nonreplaced element, and the text
 hi there will be displayed by the
 user agent. Paragraphs, headings, table cells, lists, and almost
 everything else in HTML and XHTML are nonreplaced elements.

Replaced Elements

In contrast, replaced elements are those whose
 content is replaced by something not directly represented by document
 content. The most familiar HTML example is the img element, which is replaced by an image
 file external to the document itself. In fact, img itself has no actual content, as we can
 see by considering a simple example:

There is no content contained in the element—only an element name
 and attributes. Only by replacing the element’s lack of content with
 content found through other means (in this case, loading an external
 image specified by the src attribute)
 can the element have any presentation at all. Another example is the
 input element, which may be replaced
 with a radio button, checkbox, or text input box, depending on its type.
 Replaced elements also generate boxes in their display.

Element Display Roles

In addition to being replaced or not, there are two basic types of element display roles in CSS3:
 block-level and inline-level.
 All CSS3 display values fall into one
 of these two categories. It can be important to know which general role a
 box falls into, since some properties only apply to one type or the
 other.
Block-Level

Block-level boxes are those where the element box (by default) fills its
 parent element’s content area width and cannot have other elements to
 its sides. In other words, block-level elements generate “breaks” before
 and after the element box. The most familiar block elements from HTML
 are p and div. Replaced elements can be block-level
 elements but usually are not.
List items are a special case of block-level elements. In addition to
 behaving in a manner consistent with other block elements, they generate
 a marker—typically a bullet for unordered lists or a number for ordered
 lists—which is “attached” to the element box. Except for the presence of
 this marker, list items are identical to other block elements.
The display values that create
 block boxes are: block, list-item, table, table-row-group, table-header-group, table-footer-group, table-row, table-column-group, table-column, table-cell, table-caption, and (as of this writing) all
 CSS Advanced Layout
 templates.

Inline-Level

Inline-level boxes are those where an element box is generated within a line
 of text and does not break up the flow of that line. Perhaps the
 best-known inline element is the a
 element in HTML and XHTML. Other examples are span and em. These elements do not generate a break
 before or after themselves, so they can appear within the content of
 another element without disrupting its display.
Note that although the CSS block and inline elements have a great
 deal in common with HTML and XHTML block- and inline-level elements,
 there is an important difference. In HTML and XHTML, block-level
 elements cannot descend from inline-level elements, whereas in CSS,
 there is no restriction on how display roles can be nested within each
 other.
The display values that create
 inline boxes are: inline, inline-block, inline-table, and ruby. As of this writing, it was not
 explicitly defined that the various Ruby-related values (e.g., ruby-text) also generate inline boxes, but
 this seems the most likely outcome.

Run-In

A special case is run-in boxes, defined by display:
 run-in, which can generate either a block or an inline box
 depending on the situation. The rules that decide the outcome
 are:
	If the run-in itself contains a block box, the run-in
 generates a block box.

	If that’s not the case, and the run-in is immediately followed
 by a sibling block box that is neither floated nor absolutely
 positioned, the run-in box becomes the first inline box of the
 sibling block box.

	If neither condition applies, the run-in generates a block
 box.

In the case where a run-in is inserted as the first inline of its
 sibling block box (rule 2 above), it does not
 inherit property values from that block box. Instead, it continues to
 inherit from its structural parent element. Thus, if the sibling block
 box has color: green applied to it,
 the green will not be inherited by the run-in element even though it is
 visually a part of the block box.

Basic Visual Layout

CSS defines algorithms for laying out any element in a
 document. These algorithms form the underpinnings of visual
 presentation in CSS. There are two primary kinds of layout, each with very
 different behaviors: block-level and inline-level layout.
Block-Level Layout

A block-level box in CSS generates a rectangular box called the
 element box, which describes the amount of space
 occupied by an element. Figure 1-2 shows the
 various components of an element box. The following rules apply to an
 element box:
	The background of the element box extends to the outer edge of
 the border, thus filling the content, padding, and border areas. If
 the border has any transparent portions (e.g., it is dotted or
 dashed), the background will be visible in those portions. The
 background does not extend into the margin areas of the box. Any
 outlines are drawn in the margin area and do not affect
 layout.

	Only the margins, height,
 and width of an element box may
 be set to auto.

	Only margins can be given negative values.

	The padding and border widths of the element box default to
 0 (zero) and none, respectively.

	If box-sizing is content-box (the
 default value), the property width defines only the width of the
 content area; any padding, borders, or margins are added to it. The
 same is true for height with
 respect to the height.

	If box-sizing is border-box, the property width defines the total width of the
 content, padding, and borders; any margins are added to it. The same
 is true for height with respect
 to the height.

[image: Box model details]

Figure 1-2. Box model details

Inline Layout

An inline-level box in CSS generates one or more rectangular boxes called
 inline boxes, depending on whether the inline box
 is broken across multiple lines. The following rules apply to inline
 box:
	For the properties left,
 right, top, bottom, margin-left, margin-right, margin-top, and margin-bottom, any value of auto
 is converted to 0 (zero).

	width and height do not apply to nonreplaced inline
 boxes.

	For replaced inline boxes, the following rules apply:
	If height and width are both auto and the element has an intrinsic
 width (e.g., an image), that value of width is equal to the element’s
 intrinsic width. The same holds true for height.

	If height and width are both auto and the element does not have an
 intrinsic width but does have an intrinsic height and layout
 ratio, then width is set to
 be the intrinsic height times the ratio.

	If height and width are both auto and the element does not have an
 intrinsic height but does have an intrinsic width and layout
 ratio, then height is set to
 be the intrinsic width divided by the ratio.

There are a few rules even more obscure than those last two, which
 are too lengthy to include here; see http://w3.org/TR/css3-box/#inline-replaced for
 details.
All inline elements have a line-height, which has
 a great deal to do with how the elements are displayed. The height of a
 line of text is determined by taking into account the following factors:
	Anonymous text
	Any string of characters not contained within an inline
 element. Thus, in the markup:
<p> I'm so happy!</p>
…the sequences “I’m ” and “ happy!” are anonymous text. Note
 that the spaces are part of the anonymous text, as a space is a
 character like any other.

	Em-box
	The em-box defined in the given font; otherwise known as the
 character box. Actual glyphs can be taller or shorter than their
 em-boxes, as discussed in Chapter 5 of CSS: The
 Definitive Guide, third edition (O’Reilly). In
 CSS, the value of font-size
 determines the height of each em-box.

	Content area
	In nonreplaced elements, the content area can be the box
 described by the em-boxes of every character in the element,
 strung together, or else the box described by the character glyphs
 in the element. The CSS2.1 specification allows user agents to
 choose either. This text uses the em-box definition for
 simplicity’s sake. In replaced elements, the content area is the
 intrinsic height of the element plus any margins, borders, or
 padding.

	Leading
	The leading is the difference between the values of font-size and line-height. Half this difference is
 applied to the top and half to the bottom of the content area.
 These additions to the content area are called, not surprisingly,
 half-leading. Leading is applied only to nonreplaced elements.

	Inline box
	The box described by the addition of the leading to the
 content area. For nonreplaced elements, the height of the inline
 box of an element will be equal to the value for line-height. For replaced elements, the
 height of the inline box of an element will be equal to the
 content area, as leading is not applied to replaced
 elements.

	Line box
	The shortest box that bounds the highest and lowest points
 of the inline boxes that are found in the line. In other words,
 the top edge of the line box will be placed along the top of the
 highest inline box top, and the bottom of the line box is placed
 along the bottom of the lowest inline box bottom. (See Figure 1-3.)

[image: Inline layout details]

Figure 1-3. Inline layout details

Floating

Floating allows an element to be placed to the left or right of its
 containing block (which is the nearest block-level ancestor element), with
 following content flowing around the element. Any floated element
 automatically generates a block box, regardless of what type of box it
 would generate if not floated. A floated element is placed according to
 the following rules:
	The left (or right) outer edge of a floated element may not be
 to the left (or right) of the inner edge of its containing
 block.

	The left (or right) outer edge of a floated element must be to
 the right (or left) of the right (left) outer edge of a left-floating
 (or right-floating) element that occurs earlier in the document’s
 source, unless the top of the later element is below the bottom of the
 former.

	The right outer edge of a left-floating element may not be to
 the right of the left outer edge of any right-floating element to its
 right. The left outer edge of a right-floating element may not be to
 the left of the right outer edge of any left-floating element to its
 left.

	A floating element’s top may not be higher than the inner top of
 its containing block.

	A floating element’s top may not be higher than the top of any
 earlier floating or block-level element.

	A floating element’s top may not be higher than the top of any
 line box with content that precedes the floating element.

	A left (or right) floating element that has another floating
 element to its left (right) may not have its right (left) outer edge
 to the right (left) of its containing block’s right (left)
 edge.

	A floating element must be placed as high as possible.

	A left-floating element must be put as far to the left as
 possible, and a right-floating element as far to the right as
 possible. A higher position is preferred to one that is farther to the
 right or left.

Positioning

When elements are positioned, a number of special rules come into play. These rules govern
 not only the containing block of the element, but also how it is laid out
 within that element.
Types of Positioning

	Static positioning
	The element’s box is generated as normal. Block-level elements generate a rectangular box that
 is part of the document’s flow, and inline-level boxes generate
 one or more line boxes that flow within their parent
 element.

	Relative positioning
	The element’s box is offset by some distance. Its containing block can be considered to be the
 area that the element would occupy if it were not positioned. The
 element retains the shape it would have had were it not
 positioned, and the space that the element would ordinarily have
 occupied is preserved.

	Absolute positioning
	The element’s box is completely removed from the flow of the document and
 positioned with respect to its containing block, which may be
 another element in the document or the initial containing block
 (described in the next section). Whatever space the element might
 have occupied in the normal document flow is closed up, as though
 the element did not exist. The positioned element generates a
 block box, regardless of the type of box it would generate if it
 were in the normal flow.

	Fixed positioning
	The element’s box behaves as though set to absolute, but its containing block is
 the viewport itself.

The Containing Block

The containing block of a positioned element is determined as
 follows:
	The containing block of the root element
 (also called the initial containing block) is
 established by the user agent. In HTML, the root element is the
 html element, although some
 browsers may use body.

	For nonroot elements, if an element’s position value is relative or static, its containing block is formed by
 the content edge of the nearest block-level, table-, cell-, or
 inline-block ancestor box.
 Despite this rule, relatively positioned elements are still simply
 offset, not positioned with respect to the containing block
 described here, and statically positioned elements do not move from
 their place in the normal flow.

	For nonroot elements that have a position value of absolute, the containing block is set
 to the nearest ancestor (of any kind) that has a position value other than static. This happens as follows:
	If the ancestor is block-level, the containing block is
 that element’s outer padding edge; in other words, it is the
 area bounded by the element’s border.

	If the ancestor is inline-level, the containing block is
 set to the content edge of the ancestor. In left-to-right
 languages, the top and left of the containing block are the top
 and left content edges of the first box in the ancestor, and the
 bottom and right edges are the bottom and right content edges of
 the last box. In right-to-left languages, the right edge of the
 containing block corresponds to the right content edge of the
 first box, and the left is taken from the last box. The top and
 bottom are the same.

	If there are no ancestors as described in 3a and 3b, the
 absolutely positioned element’s containing block is defined to
 be the initial containing block.

Layout of Absolutely Positioned Elements

In the following sections, these terms are used:
	Shrink-to-fit
	Similar to calculating the width of a table cell using the automatic table
 layout algorithm. In general, the user agent attempts to find the
 minimum element width that will contain the content and wrap to
 multiple lines only if wrapping cannot be avoided.

	Static position
	The place where an element’s edge would have been placed if its
 position were static.

Horizontal layout of absolutely positioned elements

The equation that governs the layout of these elements
 is:
left + margin-left + border-left-width + padding-left +
width + padding-right + border-right-width +
margin-right + right + vertical scrollbar width (if any) =
width of containing block
The width of any vertical scrollbar is determined by the user
 agent and cannot be affected with CSS.
For nonreplaced elements, the steps used to determine horizontal layout
 are:
	If all of left, width, and right are auto, first reset any auto values for margin-left and margin-right to 0. Then, if direction is ltr, set left to the static position and apply
 the rule given in step 3c. Otherwise, set right to the static position and apply
 the rule given in step 3a.

	If none of left, width, and right is auto, pick the rule that applies from
 the following list:
	If both margin-left
 and margin-right are set to
 auto, solve the equation
 under the additional constraint that the two margins get equal
 values.

	If only one of margin-left or margin-right is set to auto, solve the equation for that
 value.

	If the values are overconstrained (none is set to
 auto), ignore the value for
 left if direction is rtl (ignore right if direction is ltr) and solve for that
 value.

	If some of left, width, and right are auto, but others are not, reset any
 auto values for margin-left and margin-right to 0. From the following list, pick the one
 rule that applies:
	If left and width are auto and right is not, the width is
 shrink-to-fit. Solve the equation for left.

	If left and right are auto and width is not, then if direction is ltr, set left to the static position
 (otherwise, set right to
 the static position). Solve the equation for left (if direction is rtl) or right (if direction is ltr).

	If width and right are auto and left is not, the width is
 shrink-to-fit. Solve the equation for right.

	If left is auto and width and right are not, solve the equation
 for left.

	If width is auto and left and right are not, solve the equation
 for width.

	If right is auto and left and width are not, solve the equation
 for right.

For replaced elements, the steps used to
 determine horizontal layout are:
	Determine the value of width as described for inline replaced
 elements (see Inline Layout).

	If both left and right are set to auto, then if direction is ltr, set left to the static left position. If
 direction is rtl, set right to the static right
 position.

	If either or both of left
 and right are set to auto, reset any auto values for margin-left and margin-right to 0.

	If neither left nor
 right is set to auto and both margin-left and margin-right are set to auto, solve the equation under the
 additional constraint that the two margins get equal
 values.

	If the values are overconstrained (none is set to auto), ignore the value for left if direction is rtl (ignore right if direction is ltr) and solve for that value.

Vertical layout of absolutely positioned elements

The equation that governs the layout of these elements
 is:
top + margin-top + border-top-width + padding-top + height
+ padding-bottom + border-bottom-width + margin-bottom +
bottom + horizontal scrollbar height (if any) =
height of containing block
The height of any horizontal scrollbar is determined by the user
 agent and cannot be affected with CSS.
For nonreplaced elements, the steps used to
 determine vertical layout are:
	If all of top, height, and bottom are auto, set top to the static position and apply the rule
 given in step 3c.

	If none of top, height, and bottom is auto, pick the one rule that applies
 from the following list:
	If both margin-top
 and margin-bottom are set
 to auto, solve the equation
 under the additional constraint that the two margins get equal
 values.

	If only one of margin-top or margin-bottom is set to auto, solve the equation for that
 value.

	If the values are overconstrained (none is set to
 auto), ignore the value for
 bottom and solve for that
 value.

	If some of top, height, and bottom are auto, but others are not, pick the one
 rule that applies from the following list:
	If top and height are auto and bottom is not, the height is based
 on the element’s content (as it would be in the static flow).
 Reset any auto values for
 margin-top and margin-bottom to 0 and solve the equation for
 top.

	If top and bottom are auto and height is not, set top to the static position. Reset
 any auto values for
 margin-top and margin-bottom to 0 and solve the equation for
 bottom.

	If height and
 bottom are auto and top is not, the height is based on
 the element’s content (as it would be in the static flow).
 Reset any auto values for
 margin-top and margin-bottom to 0 and solve the equation for
 bottom.

	If top is auto and height and bottom are not, reset any auto values for margin-top and margin-bottom to 0 and solve the equation for
 top.

	If height is auto and top and bottom are not, reset any auto values for margin-top and margin-bottom to 0 and solve the equation for
 height.

	If bottom is auto and top and height are not, reset any auto values for margin-top and margin-bottom to 0 and solve the equation for
 bottom.

For replaced elements, the steps used to
 determine vertical layout are:
	Determine the value of height as described for inline replaced
 elements (see Inline Layout).

	If both top and bottom are set to auto, set top to the static top position.

	If the values are overconstrained, ignore the value for
 bottom and
 solve for that value.

End of sample

 To search for additional titles please go to

 http://search.overdrive.com.

OEBPS/oreilly_large.gif
O’REILLY

OEBPS/httpatomoreillycomsourceoreillyimages866008.png
top outer edge

topmargin g
top border
. top padding R
; T
B ES i
; 8 geatg
ottom inner edge
. ‘bottom padding -
bottom border
bottommargin .
7 bottom outeredge o

*fthe alueofbox-s1z1ng s content-box; otherwise widthsditancebetwen leftandright
outer border edges and height & distance between between top and bottom outer border edges.

OEBPS/httpatomoreillycomsourceoreillyimages866006.png
Selector

eclaration
Dtda‘mlion block Dedaration
1

H1

{color: redj [background: yellow]

T T T T
Property Value Property Value

OEBPS/httpatomoreillycomsourceoreillyimages866014.png
e EB.I

Grid line

Table width

WpIm 13piog
Suppeq_

cell
width

Bupped_
WP 19PI0G_

OEBPS/httpatomoreillycomsourceoreillyimages866012.png
Cells

Rows.

Row groups

OEBPS/httpatomoreillycomsourceoreillyimages866010.png
I5px
ontent
aea

inlineTel

ement
L2

T T
contentarea halfleading

21
ininebox

i n/SUEONElY ePHASIZEd i vt s | 5prinebo

ontentarea
inline box

OEBPS/httpatomoreillycomsourceoreillyimages866001.jpg
Visual Presentation
Jor the Web

O’REILLY® Eric A. Meyer

