

 [image: Managing and Using MySQL, 2nd Edition]

 Managing and Using MySQL, 2nd Edition

Tim King

George Reese

Randy Yarger

Hugh E. Williams

Editor
Andy Oram

Copyright © 2009 O'Reilly Media, Inc.

[image:]

O'Reilly Media

SPECIAL OFFER: Upgrade this ebook with O’Reilly

Click here for more information on this offer!
Please note that upgrade offers are not available from sample content.

A Note Regarding Supplemental Files

Supplemental files and examples for this book can be found at http://examples.oreilly.com/9780596002114/. Please use a standard desktop web browser to access these files, as they may not be accessible from all ereader devices.
All code files or examples referenced in the book will be available online. For physical books that ship with an accompanying disc, whenever possible, we’ve posted all CD/DVD content. Note that while we provide as much of the media content as we are able via free download, we are sometimes limited by licensing restrictions. Please direct any questions or concerns to booktech@oreilly.com.

Preface

Programmers have always put together software on their own time to
"scratch their own itches." Until
the 1990s, however, programmers lacked distribution mediums for mass
marketing their creations. The Internet changed that and gave life to
grass-roots software distribution philosophies that have challenged
those of the software giants. These philosophies include the Free
Software and Open Software movements.

Though significant differences cause endless debate between the Free
Software and Open Software camps, they share a core belief in the
freedom to access and modify the source code of any legally licensed
software. Though neither philosophy revolves directly around price,
both have had the ultimate effect of reducing the cost of some
traditionally high-cost software. The most famous example of this
effect is, of course, the Linux operating system.

Database software has always been notoriously overpriced. The entire
fortune of Oracle is largely founded on a single product—the
Oracle database engine. Consequently, only large corporations have
had the financial resources to leverage the power of relational
databases. While database vendors struggled with how to license their
software on the Internet, however, several groups of people were busy
developing free and low-cost database solutions based on Free and
Open Software philosophies. Our focus is one of these databases:
MySQL.

MySQL is powerful and flexible, while at the same time lightweight
and efficient. It packs a large feature set into a very small, fast
engine. While it does not have anywhere near the full feature set of
expensive corporate databases, it easily offers enough to meet the
needs of mid-range database management.

Audience

This book is primarily for two classes of readers. The most obvious
is the reader interested in using MySQL from either a database
administration perspective or from a database programmer perspective.
In addition, anyone who wants to learn about relational database
administration and programming without paying out the nose for a
license from one of the big guys will find MySQL an excellent
starting point.

From a database administrator's perspective, we
cover the basic methods of creating and managing databases and tables
in MySQL. We go beyond the simple tasks and provide performance
tuning and troubleshooting tips to help you make sure your MySQL
applications are running at their best. We assume no prior knowledge
of SQL or relational databases.

Database programmers will find that we have covered all the major
programming interfaces from the most popular client/server and web
programming languages. When we cover the interface for a particular
language, we assume the reader has a basic grasp of the language in
question. For example, in the
Java™ chapter, we assume
the reader knows how to write basic Java applications, and we show
how to make those Java applications talk to MySQL databases.

The immense popularity of MySQL on the Web has made it natural to
provide a focus on CGI programming with Managing and Using
MySQL. Web developers should therefore find this book
useful in describing how to drive their web sites with a MySQL
database. For these chapters, very little CGI knowledge is needed,
but we still assume that the reader is familiar with the basics of
the programming language in question.

Purpose

At first glance, the purpose of this book seems obvious: MySQL is one
of the most popular open source applications of all time. One of the
biggest complaints about open source projects is the lack of
comprehensive and comprehensible documentation. In the case of MySQL,
however, lack of online documentation is rarely a problem.

MySQL has a wonderfully complete and free online reference manual
available from the web site, at http://www.mysql.com. This manual covers the
full MySQL SQL syntax, installation, and its C API, as well as
database administration and performance tuning.

To make matters even more complex, MySQL is a moving target because
of rapid development. In fact, "moving
target" is a euphemism. Thanks mainly to the efforts
of Michael "Monty" Widenius, MySQL
is moving about as fast as an SST. So be prepared; you may find that
some of the information in this book is either ahead of older
versions or behind newer versions.

Using This Book

We have divided this book into four sections. Part I introduces the world of relational databases
and MySQL's place in that world. Part II supports database administrators by covering
all the elements of MySQL database administration. Part III builds upon the basic understanding of MySQL
from the first section by demonstrating how to build applications
that use your MySQL database. Finally, in Part IV, we provide a reference section as a resource
for quickly looking up APIs we cover in the first three sections.

 Part I is naturally aimed at people new to
relational databases and/or MySQL. It begins with a basic
introduction to MySQL and relational databases and covers getting
started with MySQL. You might want to skip Part I if you are an experienced MySQL user or
simply skim it if you have experience with other database engines.

The job of the database administrator is to make certain that the
database is up and running efficiently and supporting its
applications. If this is your job, Part II is
for you. We cover security, performance tuning, and database design.
Proper database design is essential for database architects if the
goal is to build database applications flexible enough to scale as
their needs change. You also need a proper database design if you
want your database to actually perform well.

 Part III is aimed at database architects and
programmers. It contains chapters devoted to programming in specific
languages or using specific tools. Of particular interest to web
programmers will be the chapters on Perl, Java, Python, and PHP.

The book closes with a reference section covering elements of MySQL
and some APIs.

Conventions Used in This Book

The following conventions are used in this book:
	
 Constant width

	Used to indicate anything that might appear in a program, including
keywords, function names, SQL commands, and variable names. This font
is also used for code examples, output displayed by commands, and
system configuration files.

	
 Constant width bold

	Used to indicate user input.

	
 Constant width italic

	Used to indicate an element (e.g., a filename or variable) that you
supply.

	
 Italic

	Used to indicate directory names, filenames, program names, Unix
commands, and URLs. This font is also used to introduce new terms and
for emphasis.

Note
This icon is used to indicate a tip, suggestion, or general note.

Warning
This icon is used to indicate a warning.

Comments and Questions

Please address comments and questions concerning this book to the
publisher:

	O'Reilly & Associates, Inc.
	1005 Gravenstein Highway North
	Sebastopol, CA 95472
	(800) 998-9938 (in the U.S. or Canada)
	(707) 829-0515 (international or local)
	(707) 829-0104 (fax)

To ask technical questions or comment on the book, send email to:
	
 bookquestions@oreilly.com

Before submitting a bug report concerning MySQL, please check the
online manual (and particularly the list of problems and common
errors) at:

	
 http://www.mysql.com/Manual_chapter/manual_toc.html

You can search the MySQL mailing list at:
	
 http://www.mysql.com/doc.html

and the MySQL web site at:
	
 http://www.mysql.com/search.html

We have a web site for the book, where we'll list
examples, errata, and any plans for future editions. You can access
this page at:

	
 http://www.oreilly.com/catalog/msql2/

For more information about this book and others, see the
O'Reilly web site:

	
 http://www.oreilly.com

Acknowledgments

The authors would first like to thank their editors, Andy Oram and
Ellen Siever, for both their skill at making our work look more
professional and for the less obvious and likely less enjoyable task
of putting us back on focus when our minds would wander.

Hugh Williams contributed the two chapters on PHP.
We also owe a huge debt of gratitude to those who provided us with
critical looks at both editions of the book. Anyone familiar with
MySQL knows the name Michael Widenius, the head of the MySQL project.
He and another member of the MySQL team, Paul DuBois, sent in many
valuable comments. Brian Jepson, Glenn MacGregor, Michael Schecter,
and Jeremy Zawodny provided useful comments on the book overall.

Tim Allwine intensively reviewed the Perl material in Chapter 9 and provided some new examples and ideas.
Chris Brooks and Tim Bunce also made corrections to the Perl code.

From Randy Yarger

I would like to thank my fiancée, Stacie Sheldon, for the
support and love that has kept me sane. I would also like to thank
Andy Oram for encouraging a relatively unknown author. Finally, but
definitely not lastly, I would like to thank those who made it
possible for me to be here: my mother, my father, and my creator.

From George Reese

I would specifically like to thank my wife, Monique, for using her
professional proof-reading abilities on each one of my chapters.
Leigh Caldwell also provided some critical eleventh-hour feedback on
the first edition of the MySQL chapters. Finally, I have to mention
my cats, Misty, Gypsy, and Tia.

From Tim King

I wish to acknowledge Professor John Carlis, for getting me
interested in database technology and data modeling in the first
place; Mark Kale, for teaching me more about it than I ever learned
in college; the lovely Ann Soter, for her moral support and patience;
and my mother and father, for encouraging my interest in computers
before it was cool to be a geek!

Part I. Introduction

Getting started with MySQL requires you to install the database and
configure it for use with your applications. In Part I, we will
provide an introduction to relational databases and MySQL. By the end
of this section, you should have MySQL installed and running and be
ready to tackle system administration tasks.

Chapter 1. MySQL

Anyone can relate to the gap in usefulness between piles of paper on
a desktop and those same papers organized in a filing cabinet. The
former is a mess. If you actually want a particular paper, you need
to dig through the piles to find it. If you are lucky, you will just
happen to start with the pile in which the desired paper is located.
It could, however, require you to go through each piece of paper in
each pile to find what you are seeking. With a filing cabinet,
however, you know exactly where to look and will fumble through just
a few papers to find your goal.

Relational databases have been acting as the electronic filing
cabinets for the voluminous and complex data storage needs of large
companies for over two decades. A relational database is simply the
only tool capable of structuring most data so that it is actually
usable—not just piles of bits on a hard drive. Until recently,
you were simply out of luck if you wanted to build an application
backed by a robust database on a small budget. Your choices were
quite simple: shell out thousands—or even tens or hundreds of
thousands—of dollars on Oracle or Sybase or build the
application against "toy" databases
such as Access and FileMakerPro. Thanks to such databases as mSQL,
PostgreSQL, and MySQL, however, you now have a variety of choices
that suit different needs. This book, of course, is the story of
MySQL.[1]

Relational Databases

In the simplest terms, a database is a
collection of data. An example of a nonelectronic database is the
public library. The library stores books, periodicals, and other
documents. When you need to locate some data at the library, you
search through the card catalog or the periodicals index, or maybe
you even ask the librarian. Those unsorted piles of papers on your
desk also form a database. This database can potentially work,
because the size of the database is incredibly small. A stack of
papers certainly would not work with a larger set of data, such as
the collections in the library. The library would still be a database
without the card catalog, periodicals index, and librarian; it would
just be an unusable database. A database generally requires some sort
of organization to be of value. The paper pile, for example, is of
greater value when organized into filing cabinets. So, restating our
definition, a database is an organized
collection of data.

The library and the stack of papers have many similarities. They are
both databases of documents. It makes no sense, however, to combine
them because your papers are interesting only to you, and the library
contains documents of general interest. Both databases have specific
purposes and are organized according to those purposes. We will
therefore amend our definition a bit further: a database is a
collection of data that is organized and stored according
to some purpose.

Traditional paper-based databases have many disadvantages. They
require a tremendous amount of physical space. Libraries occupy
entire buildings, and searching a library is relatively slow. Anyone
who has spent time in a library knows that it can consume a
nontrivial amount of time to find the information you seek. Libraries
are also tedious to maintain, and an inordinate amount of time is
spent keeping the catalogs and shelves consistent. Electronic storage
of a database helps to address these issues.

MySQL is not a database, per se. It is computer software that enables
you to create, maintain, and manage electronic databases. This
category of software is known as a
 database management system (DBMS). A
DBMS acts as a broker between the physical database and the users of
that database.

When you began managing electronic information, you almost certainly
used a flat file, such as a spreadsheet. The filesystem file is the
electronic version of the pile of papers on your desk. You likely
came to the conclusion that this sort of ad hoc electronic database
did not meet your needs anymore. A DBMS is the logical next step for
your database needs, and MySQL is the first stepping stone into the
world of relational DBMSs.

A relational database is a special kind of database that organizes
data into tables and
represents relationships among those tables. These relationships
enable you to combine data from multiple tables to provide different
"views" of that data. Table 1-1 describes a table that might appear in a
library's database.

Table 1-1. A table of books
	
 ISBN

 	
 Title

 	
 Author

	
 0-446-67424-9

 	
 L.A. Confidential

 	
 James Ellroy

	
 0-201-54239-X

 	
 An Introduction to Database Systems

 	
 C.J. Date

	
 0-87685-086-7

 	
 Post Office

 	
 Charles Bukowski

	
 0-941423-38-7

 	
 The Man with the Golden Arm

 	
 Nelson Algren

Tables Table 1-2 and Table 1-3
are two tables that might appear in an NBA database.

Table 1-2. A table of NBA teams
	
 Team #

 	
 Name

 	
 Coach

	
 1

 	
 Sacramento Kings

 	
 Rick Adelman

	
 2

 	
 Minnesota Timberwolves

 	
 Flip Saunders

	
 3

 	
 L.A. Lakers

 	
 Phil Jackson

	
 4

 	
 Portland Trailblazers

 	
 Mike Dunleavy

Table 1-3. A table of NBA players
	
 Name

 	
 Position

 	
 Team #

	
 Vlade Divac

 	
 Center

 	
 1

	
 Kevin Garnett

 	
 Forward

 	
 2

	
 Kobe Bryant

 	
 Guard

 	
 3

	
 Rasheed Wallace

 	
 Forward

 	
 4

	
 Damon Stoudamire

 	
 Guard

 	
 4

	
 Shaquille O'Neal

 	
 Center

 	
 3

We will get into the specifics about tables later on, but you should
note a few things about these examples. Each table has a name,
several columns, and rows containing data for each of the columns. A
relational database represents all of your data in tables just like
this and provides you with retrieval operations that generate new
tables from existing ones. Consequently, the user sees the entire
database in the form of tables.

Also note that the "Team #" column
appears in both tables. It encodes a relationship between a player
and a team. By linking the "Team #"
columns you can determine that Vlade Divac plays for the Sacramento
Kings. You could also figure out all the players on the Portland
Trailblazers. This linking of tables is called a
relational join

 , or
join for short.

A DBMS for a relational system is often called a relational database
management system (RDBMS). MySQL is an RDBMS.

[1] SQL is pronounced either
"sequel" or
"ess-que-ell," though the preferred
form is "ess-que-ell."

The History of MySQL

This story actually goes back to 1979 when MySQL's
inventor, Michael Widenius (a.k.a. Monty)
developed an in-house database tool called UNIREG for managing databases.
UNIREG is a tty interface builder that uses a low-level connection to
an ISAM storage with indexing. Since then, UNIREG has been rewritten
in several different languages and extended to handle big databases.
It is still available today, but is largely supplanted by MySQL.

The Swedish company TcX
began developing web-based applications in 1994 and used UNIREG to
support this effort.[2] Unfortunately,
UNIREG created too much overhead to be successful in dynamically
generating web pages. TcX thus began looking at alternatives.

TcX looked at SQL and mSQL.[3] mSQL was a cheap DBMS
that gave away its source code with database licenses—almost
open source. At the time, mSQL was still in its 1.x releases and had
even fewer features than the currently available version. Most
important to Monty, it did not support any indexes.
mSQL's performance was therefore poor in comparison
to UNIREG.

Monty contacted David Hughes, the author of mSQL, to see if
Hughes would be interested in connecting mSQL to
UNIREG's B+ ISAM handler to provide indexing to
mSQL. Hughes was already well on his way to mSQL 2, however, and had
his indexing infrastructure in place. TcX decided to create a
database server that was more compatible with its requirements.

TcX was smart enough not to try to reinvent the wheel. It built upon
UNIREG and capitalized on the growing number of third-party mSQL
utilities by writing an API into its system that was, at least
initially, practically identical to the mSQL API. Consequently, an
mSQL user who wanted to move to TcX's more
feature-rich database server would only have to make trivial changes
to any existing code. The code supporting this new database, however,
was completely original.

By May 1995, TcX had a database that met its internal needs: MySQL
3.11. A business partner, David Axmark at Detron HB, began pressing TcX to
release this server on the Internet and follow a business model
pioneered by Aladdin's L. Peter
Deutsch.
Specifically, this business model enabled TcX developers to work on
projects of their own choosing and release the results as free
software. Commercial support for the software generated enough income
to create a comfortable lifestyle. The result is a very flexible
copyright that makes MySQL "more
free" than mSQL. Eventually, Monty released MySQL
under the GPL so that MySQL is now "free as in
speech" and "free as in
beer."

As for the name MySQL, Monty says, "It is not
perfectly clear where the name MySQL derives from.
TcX's base directory and a large amount of their
libraries and tools have had the prefix
'My' for well over ten years.
However, my daughter (some years younger) is also named My. So which
of the two gave its name to MySQL is still a
mystery."

A few years ago, TcX evolved into the company
MySQL AB, at
http://www.mysql.com. This change
better enabled its commercial control of the development and support
of MySQL. MySQL AB, a Swedish company run by MySQL's
core developers, owns the copyright to MySQL, as well as the
trademark "MySQL." Since the
initial Internet release of MySQL, it has been ported to a host of
Unix operating systems (including Linux, FreeBSD, and Mac OS X),
Win32, and OS/2. MySQL AB estimates that MySQL runs on about four
million servers.

[2] For most of its existence, TcX
had a single employee: Monty.

[3] mSQL is miniSQL,
from Hughes Technologies.

MySQL Design

Working from the legacy of mSQL, TcX decided MySQL had to be at least
as fast as mSQL with a much greater feature set. At that time, mSQL
defined good database performance, so TcX's goal was
no small task. MySQL's specific design goals were
speed, robustness, and ease of use. To get this sort of performance,
TcX decided to make MySQL a multithreaded database
engine. A multithreaded application performs many tasks at the same
time as if multiple instances of that application were running
simultaneously. Fortunately, multithreaded applications do not pay
the very expensive cost of starting up new processes.

In being multithreaded, MySQL has many advantages. A separate thread
handles each incoming connection with an extra thread that is always
running to manage the connections. Multiple clients can perform read
operations simultaneously without impacting one another. But write
operations, to a degree that depends on the type of table in use,
only hold up other clients that need access to the data being
updated. While any thread is writing to a table, all other threads
requesting access to that table simply wait until the table is free.
Your client can perform any allowed operation without concern for
other concurrent connections. The connection-managing thread prevents
other threads from reading or writing to a table in the middle of an
update.

Another advantage of this architecture is inherent to all
multithreaded applications: even though the threads share the same
process space, they execute individually. Because of this separation,
multiprocessor machines can spread the threads across many CPUs as
long as the host operating system supports multiple CPUs.

In addition to the performance gains introduced by multithreading,
MySQL has a richer subset of SQL than mSQL. MySQL supports over a
dozen data types and additionally supports SQL functions. Your
application can access these functions through the American National
Standards Institute (ANSI) SQL statements.

The Great Transaction Debate
Transactions are important for applications that
support complex rules for concurrent updating of data. They prevent
concurrent updates from putting the database in an inconsistent state
at any point in the database's life.

Transactions are a relatively new feature of the MySQL database
engine. In fact, the transaction features are not present unless you
set up your tables to support them. Many people wondered what use
MySQL was without transactions and why someone would set up a table
without supporting them. The answer is one word: performance.

The minute you introduce transactions into the picture, the database
takes a performance hit. Transactions add the overhead of complex
locking and transaction logging. The complex locking includes support
for transaction isolation levels, discussed in Chapter 8. Basically, however, increasing transaction
isolation levels requires an increasing amount of work by the
database to support the same functionality. The more work the
database has to do for a task, the slower it performs that task.

MySQL actually extends ANSI SQL with a few features. These features
include new functions (ENCRYPT,
WEEKDAY, IF, and others), the
ability to increment fields (AUTO_INCREMENT and
LAST_INSERT_ID), and case sensitivity.

Some SQL features found in the major database engines were omitted
intentionally from MySQL. For the longest time, transaction support
was the most notable omission. The latest releases of MySQL, however,
provide support for transactions. Stored procedures, another notable
omission, are scheduled for the 4.1 release that should be available
at the same time as this book. Finally, MySQL does not support most
additions to the SQL standard as of SQL3. The most important SQL3
feature missing from MySQL is support for object-oriented data types.

Since 1996, MySQL AB has been using MySQL internally in an
environment with more than 40 databases containing 10,000 tables. Of
these 10,000 tables, more than 500 contain over 7 million
records—about 100 GB of data.

MySQL Features

We have already mentioned multithreading as a key feature to support
MySQL's performance design goals. It is the core
feature around which MySQL is built. Other features include:

	Openness
	MySQL is open in every sense of the term. Its SQL dialect uses ANSI
SQL2 as its foundation. The database engine runs on countless
platforms, including Windows 2000, Mac OS X, Linux, FreeBSD, and
Solaris. If no binary is available for your platform, you have access
to the source to compile to that platform.

	Application support
	MySQL has an API for just about any programming language.
Specifically, you can write
database
applications
that access MySQL in C, C++, Eiffel, Java, Perl, PHP, Python, and
Tcl. In this book, we cover C, Java, Python, Perl, and PHP.

	Cross-database joins
	You can
 construct
MySQL queries that can join tables from different databases.

	Outer join support
	MySQL supports both left and right

 outer joins
using both ANSI and ODBC syntax.

	Internationalization
	MySQL supports several different
character sets, including ISO-8859-1,
Big5, and Shift-JIS. It also supports sorting for different character
sets and can be customized easily. Error messages can be provided in
different languages as well.

Above all else, MySQL is cheap and fast. Other features of MySQL may
attract you, but cost and performance are its greatest benefits. The
other relational databases fall into two categories:

	Low-cost database engines such as mSQL, PostgreSQL, and InstantDB

	Commercial vendors such as Oracle, Microsoft, and Sybase

MySQL compares well with other free database engines. It blows them
away, however, in terms of
performance. In fact, mSQL
does not compare with MySQL on any level. InstantDB compares
reasonably on a feature level, but MySQL is still much faster.
PostgreSQL has some cool SQL3 features,
but it carries the bloat of commercial database engines. If you are
looking at low-cost database engines and are using advanced SQL3
features, you probably want PostgresSQL; use MySQL if you are doing
anything else.

Oddly enough, comparing MySQL with Oracle or some other commercial database
is a lot like comparing MySQL with PostgreSQL. The commercial
database engines support just about every feature you can think of,
but all those features come at a performance cost. None of these
database engines can compete with MySQL for read-heavy database
applications. They certainly cannot compete on price. They really
compete only in terms of SQL3 feature set and commercial support.
MySQL AB is working to close the gap on both counts.

Like many applications, MySQL has a test suite that
verifies that a newly compiled system does indeed support all the
features it is supposed to support without breaking. The MySQL team
calls its test suite "crash-me"
because one of its features is to try to crash MySQL.

Somewhere along the way, someone noticed that crash-me was a portable
program. Not only could it work on different operating systems, but
you could use it to test different database engines. Since that
discovery, crash-me has evolved from a simple test suite into a
comparison program. The tests encompass all of standard SQL as well
as extensions offered by many servers. In addition, the program tests
the reliability of the server under stress. A complete test run gives
a thorough picture of the capabilities of the database engine being
tested.

You can use crash-me to compare two or more database engines online.
The crash-me page is http://www.mysql.com/information/crash-me.php.

MySQL Applications

According
to
our definition, a database is an organized collection of data that
serves some purpose. Simply having MySQL up and running is not
sufficient to give your database a purpose. How you use the data you
put in your MySQL database defines its purpose. Imagine a library
where nobody ever reads the books. There would not be much point in
storing and organizing all those books if they're
never used. Now, imagine a library where you could not change or add
to the collection. The utility of the library as a database would
decrease over time since obsolete books could never be replaced and
new books could never be added. In short, a library exists so that
people may read the books and find the information they seek.

Databases exist so that people can interact with them. In the case of
electronic databases, the interaction occurs not directly with the
database, but indirectly through software applications. Before the
emergence of the World Wide Web, databases typically were used by
large corporations to support various business functions: accounting
and finance, shipping and inventory control, manufacturing planning,
human resources, and so on. The Web and more complex home computing
tasks have helped move the need for database applications outside the
realm of the large corporation.

Therefore, it is not surprising that the area in which databases have
experienced the most explosive growth—an area where MySQL
excels—is web application development. As the demand for more
complex and robust web applications grows, so does the need for
databases. A database backend can support many critical functions on
the Web. Virtually any web content can be driven by a database.

Consider the example of a catalog retailer who wants to publish on
the Web and accept orders online. If the contents of the catalog are
entered directly into one or more HTML files, someone has to hand
edit the files each time a new item is added to the catalog or a
price is changed. If the catalog information is instead stored in a
relational database, it is possible to publish real-time catalog
updates simply by changing the product or price data in the database.
It is also possible to integrate the online catalog with existing
electronic order-processing systems. Using a database to drive such a
web site has obvious advantages for both the retailer and the
customer.

Here is how a simple web application typically interacts with a
database. The database is on
your web server or another machine to which your server can talk (a
good DBMS makes this kind of distributed responsibility easy). You
put a form on one web page that the user fills in with a query or
data to submit. When the user submits the form to your server, the
server runs a program that you've written to extract
the data from the form. These programs are most often written as CGI
scripts and Java servlets, but they can also be implemented by
embedding programming commands directly inside the HTML page. We will
look at all of these methods later in this book.

Now your program knows what the user is asking for or wishes to add
to the database. The program issues an SQL query or update, and the
database magically takes care of the rest. Any results obtained from
the database can be formatted by your program into a new HTML page to
send back to the user.

What You Get

 MySQL is a relational database management
system. It includes not only a server process to manage databases,
but also tools for accessing the databases and building applications
against those databases. Among these tools are:

	mysql
	
 Executes SQL
against MySQL, and can be used to execute SQL commands stored in a
file

	mysqlaccess
	
 Manages
users

	mysqladmin
	
 Enables you
to manage the database server, including the creation and deletion of
databases

	mysqld
	
 The
actual MySQL server process

	mysqldump
	
 Dumps the
definition and contents of a MySQL database or table to a file

	mysqlhotcopy
	
 Performs a hot backup of a MySQL
database

	mysqlimport
	
 Imports
data in different file formats into a MySQL table

	mysqlshow
	
 Shows
information about the MySQL server and any objects (such as databases
and tables) in that server

	
 safe_mysqld or mysqld_safe

	
 Safely
starts up and manages the mysqld process on a
Unix machine

Over the course of this book, we will go into the details of each of
these tools. How you use these tools and this book will depend on how
you want to use MySQL.

Are you a database administrator (DBA) responsible for the MySQL
runtime environment? The chief concerns of a DBA are the
installation, maintenance, security, and performance of MySQL. We
tackle these issues in Part II.

Are you a database or application architect responsible for the
design of solid database applications? We address the impact of MySQL
on these issues in the first few chapters of Part III.

Are you a database application developer responsible for building
applications that rely on a database? Database application developers
need tools for providing their applications with data from MySQL.
Most of Part III covers the various programming
APIs that support application interaction with MySQL.

No matter who you are, you need to know the language spoken by MySQL:
SQL. Like most database engines, MySQL supports the ANSI SQL2
standard with proprietary extensions. Chapter 3 is
a comprehensive tutorial on MySQL's dialect of SQL.
The details of the language are covered in Part IV.

Chapter 2. Installation

This chapter
describes how to download and install MySQL. MySQL is available for a
wide variety of target operating systems. In this chapter, we provide
an overview of how to install MySQL in binary and source formats for
Solaris and Linux as well as binary installation for
Windows 9x/NT/2000/XP. Though we specifically address only Solaris,
Linux, and Win32, the Solaris/Linux instructions apply to most
Unix-based operating systems, including Mac OS X, FreeBSD, and AIX.

Preparation

Before you begin installing MySQL, you must answer the following
questions:

	Which
 version will you install?

This is typically a decision between the latest stable release and
the latest development release. In general, we recommended that you
go with the latest stable release, unless you need specific features
in a development release that are not available in the stable
release.

The current stable versions are MySQL 3.23 and MySQL-Max 3.23.
MySQL-Max is a beta release of the MySQL software with support for
transactions (via BerkeleyDB and InnoDB tables). The standard MySQL
binary does not include support for these types of tables.

The current development versions are MySQL 4.0 and MySQL-Max 4.0. The
installation instructions provided here will work with either Version
3.23 or 4.0.

	Are you going to install MySQL as root or as another user?
MySQL does not require root access to run, but installing it
as root will enable you to make one copy available to everyone on
your system. If you do not have root access, you must install it in
your home directory. However, even if you install MySQL as root, it
is a good idea to run it as a different user. In this way, all data
in the database can be protected from all other users by setting the
permissions on the datafiles to be readable by only the special MySQL
user. In addition, if the security of the database becomes
compromised, the attacker has access only to the special MySQL user
account, which has no privileges beyond the database.

	Do you want to install a source or
binary
distribution?

In general, we recommend that you install a binary distribution if
one is available for your platform. In most cases, a binary
distribution is easier to install than a source distribution and
provides the fastest and most reliable way to get MySQL up and
running. The MySQL team and contributors have gone to great lengths
to ensure that the binary distributions on their site are built with
the best possible options. However, you may encounter cases in which
you need to build your MySQL distribution from scratch. For example,
here are a few reasons why you would need to install a source
distribution:

	You are unable to locate a binary distribution for your target system.

	You want to configure MySQL with some combination of options that is
not available in any of the binary distributions.

	You want to compile in support for additional character sets.

	You want to optimize your MySQL installation by modifying compiler
options or by using a different compiler.

	You need to apply a bug fix patch.

Having decided on a version and whether to use a binary or source
distribution, you can complete the first step in installing

 MySQL:
downloading it. The best place to obtain MySQL source or binary
distributions is from the MySQL downloads page, at http://www.mysql.com/downloads. You can
alternately find MySQL on one of the many mirror sites, at
http://www.mysql.com/downloads/mirrors.html.

Unix Installation

MySQL
 is available for a wide variety of Unix
platforms. In this chapter, we go over the steps necessary to install
binary and source distributions on Solaris and Linux. These can also
be used as a general guide to installation on other operating
systems, which should be very similar to our examples.

Binary (Tarball) Distributions

To install a

 binary distribution, you need the
tar utility and the GNU gunzip
utility. These tools are now a part of the standard
distribution of many Unix systems.

Warning
Solaris tar is known to have problems with some
of the long filenames in the MySQL binary distribution. To unpack the
binary distribution successfully on a Solaris system, you may need to
obtain GNU

 gtar. A binary
distribution version of this is available from http://www.mysql.com/downloads/os-solaris.html.

The binary distributions are all named using
the following convention:
mysql-
 version-os
 .tar.gz.
The version placeholder is the version number of
the software contained in the distribution. The
os placeholder is the operating system for which
the binary distribution is built. Binary distributions named
mysql-max-
 version-os
 .tar.gz
contain a version of MySQL compiled with support for transaction-safe
tables.

Assume, for example, that we have chosen to install MySQL 3.23.40 on
a Sun Solaris server. Also assume the distribution file
mysql-3.23.40-sun-solaris2.7-sparc.tar.gz has
been downloaded into the /tmp directory.

We recommend that you create a user and group for MySQL
administration. This user should be used to run the
mysql server and perform administrative tasks.
It is possible to run the server as root, but this is not
recommended.

The first step is to create a user to run the MySQL server. On
Solaris and Linux, this can be done with the
useradd

 and
groupadd utilities. In our example, we create a
user called mysql

 . In
practice, you can choose any username you like. Typically, you will
need to be the root user to successfully perform these tasks, so
before anything else, use the su command to
become root:

$ su - root
$ groupadd mysql
$ useradd -g mysql mysql
Select the desired location for the mysql
software and change your current directory to that location. In this
example, we install into /usr/local, which is
the standard install location assumed by the MySQL software. You can,
of course, install it wherever you like. If you choose an install
location other than /usr/local, you will need to
modify some of the scripts provided by MySQL. See the MySQL
installation instructions at http://www.mysql.com/documentation for more
details.

$ cd /usr/local
Now unpack the software:
$ gunzip -c /tmp/mysql-3.23.40-sun-solaris2.7-sparc.tar.gz | tar -xf -
Since we are installing on a Solaris server, the previous command may
not work if GNU tar is installed as a separate
version of tar. In this case, use the command:

$ gunzip -c /tmp/mysql-3.23.40-sun-solaris2.7-sparc.tar.gz | gtar -xf -
You should now see a new directory.
$ ls -ld mysql*
total 1
drwxr-xr-x 28 user users 1024 Jul 18 14:29 mysql-3.23.40-sun-solaris2.7-sparc/
The next step is to create a symbolic link so that the installation
can be referred to as /usr/local/mysql:

$ ln -s mysql-3.23.40-sun-solaris2.7-sparc mysql
$ ls -ld mysql*
lrwxrwxrwx 1 user users 31 Jul 26 18:32 mysql -> mysql-3.23.40-sun-solaris2.7-sparc/
drwxr-xr-x 12 user users 1024 Jul 18 17:07 mysql-3.23.40-sun-solaris2.7-sparc/
Now, let's go into the
mysql directory and have a look around:

$ cd mysql
$ ls -l
total 4476
-rw-r--r-- 1 user users 19076 Jul 18 14:21 COPYING
-rw-r--r-- 1 user users 28011 Jul 18 14:21 COPYING.LIB
-rw-r--r-- 1 user users 122213 Jul 18 14:19 ChangeLog
-rw-r--r-- 1 user users 14842 Jul 18 14:21 INSTALL-BINARY
-rw-r--r-- 1 user users 1976 Jul 18 14:19 README
drwxr-xr-x 2 user users 1024 Jul 18 17:07 bin/
-rwxr-xr-x 1 user users 773 Jul 18 17:07 configure*
drwxr-x--- 4 user users 1024 Jul 26 18:27 data/
drwxr-xr-x 2 user users 1024 Jul 18 17:07 include/
drwxr-xr-x 2 user users 1024 Jul 18 17:07 lib/
-rw-r--r-- 1 user users 2321255 Jul 18 14:21 manual.html
-rw-r--r-- 1 user users 1956858 Jul 18 14:21 manual.txt
-rw-r--r-- 1 user users 80487 Jul 18 14:21 manual_toc.html
drwxr-xr-x 6 user users 1024 Jul 18 17:07 mysql-test/
drwxr-xr-x 2 user users 1024 Jul 18 17:07 scripts/
drwxr-xr-x 3 user users 1024 Jul 18 17:07 share/
drwxr-xr-x 7 user users 1024 Jul 18 17:07 sql-bench/
drwxr-xr-x 2 user users 1024 Jul 18 17:07 support-files/
drwxr-xr-x 2 user users 1024 Jul 18 17:07 tests/
Although the software is now installed, we have a few set-up tasks
left to do. Run scripts/mysql_install_db to
create the MySQL grant tables:

$ scripts/mysql_install_db
Preparing db table
Preparing host table
Preparing user table
Preparing func table
Preparing tables_priv table
Preparing columns_priv table
Installing all prepared tables
010726 19:40:05 ./bin/mysqld: Shutdown Complete
Set up the ownership of the binaries so they are owned
by root in the MySQL adminstrator group that you created earlier (in
our case, mysql):

$ chown -R root /usr/local/mysql
$ chgrp -R mysql /usr/local/mysql
Set the ownership of the data directories to the MySQL administrative
user you created earlier (for this example,
mysql):

$ chown -R mysql /usr/local/mysql/data
MySQL is now installed and ready to go. To start the
server, run
safe_mysqld
 :

$ bin/safe_mysqld --user=mysql &
Typically, you will want to start up MySQL at server boot. To do
this, you can copy support-files/mysql.server to
the appropriate location on your system. This is covered

 in Chapter 5.

Binary (RPM) Distributions

The

 recommended way to

 install MySQL on an Intel
Linux system is via RedHat Package
Manager (RPM). Table 2-1 lists the files that
comprise a full MySQL installation.

Table 2-1. The files in a full MySQL RPM distribution
	
 Filename

 	
 Description

	

 MySQL-version.i386.rpm

 	
 MySQL server software

	

 MySQL-client-version.i386.rpm

 	
 MySQL client software

	

 MySQL-bench-version.i386.rpm

 	
 MySQL tests and benchmarks; requires the Perl and
msql-mysql RPMs

	

 MySQL-devel-version.i386.rpm

 	
 Libraries and include files for compiling other MySQL clients

	

 MySQL-shared-version.i386.rpm

 	
 MySQL client shared libraries

The procedure for installing an RPM distribution is simple. First,
obtain the RPMs you wish to install. At a minimum, you should install
the server and client software. Second, use the
rpm
 utility to install the packages.

For this example, we assume that all the RPM packages for Version
3.23.40 on an Intel Linux system will be installed. Also, assume the
following RPM files have been downloaded to
/tmp:

	
 MySQL-3.23.40-1.i386.rpm

	
 MySQL-client-3.23.40-1.i386.rpm

	
 MySQL-devel-3.23.40-1.i386.rpm

	
 MySQL-bench-3.23.40-1.i386.rpm

	
 MySQL-shared-3.23.40-1.i386.rpm

Execute this sequence of commands to install them:
$ rpm -i /tmp/MySQL-3.23.40-1.i386.rpm
$ rpm -i /tmp/MySQL-client-3.23.40-1.i386.rpm
$ rpm -i /tmp/MySQL-devel-3.23.40-1.i386.rpm
$ rpm -i /tmp/MySQL-bench-3.23.40-1.i386.rpm
$ rpm -i /tmp/MySQL-shared-3.23.40-1.i386.rpm
The RPM creates the appropriate entries in
/etc/rc.d to automatically start and stop the
server at system boot and shutdown. The RPM also starts the
mysql server, so after the RPM install is
complete, you are ready to start using MySQL.

The RPM distributions place the files in different locations from the
tarball distributions. To examine an RPM to determine where the files
were placed, use the RPM query option:

$ rpm -qpl MySQL-version.i386.rpm
If you wish to determine the location but have discarded the RPM
files already, you can query the RPM database:

$ rpm -ql MySQL-version
Also note that the RPM places data in
/var/lib/data instead of
/usr/local/mysql/data.

Source Distributions

Installing

 from a source distribution is
different from installing a binary distribution. Since you will be
building the software from source code, you will need a full set of
tools, including:

	GNU gunzip

	
 tar or GNU tar

	An ANSI C++ compiler: GNU gcc 2.95.2 (or higher) is recommended; egcs
1.0.2/egcs 2.91.66, SGI C++, and SunPro C++ are known to work (for
the Mac OS X, gcc is part of the OS X Developers Tools at http://www.apple.com/developer)

	
 make (GNU make
is recommended)

Compiling from source is an intricate process with many possible
variations depending upon your operating system, your desired
configuration, your toolset, etc. As a result, we provide an overview
of the process to get you started. However, we assume that you are
experienced with building software from source. If you encounter
problems building or installing MySQL, please refer to the full MySQL
install documentation set at http://www.mysql.com/documentation.

The source distributions are named using the
following convention:
mysql-
 version.
 tar.gz.
There is no special MySQL-Max version of the MySQL source, because
all versions are compiled from the same code base.

For our example, assume that
mysql-3.23.40.tar.gz has been downloaded to
/tmp.

As with the binary install, the first step is to create a user who
will run the MySQL server:

$ su - root
$ groupadd mysql
$ useradd -g mysql mysql
In
 your filesystem, move to the
location where you would like to unpack the source. Unpack the
bundle:

$ gunzip -c /tmp/mysql-3.23.40.tar.gz | tar -xf -
Move into the newly created mysql directory. You
must configure and build MySQL from this location:

$ cd mysql-3.23.40
Now, use the
configure
 script to configure your build. In this
example, we use the prefix option to set the
install location to /usr/local/mysql:

$./configure --prefix=/usr/local/mysql
The configure utility offers a host of options
that you can use to control how your build is set up. For more help
on the available options, run:

$./configure --help
Also, check the full install documentation at
http://www.mysql.com/documentation for a list of
common configure options.

The configure utility may take a few minutes to
complete. Once it is done, it is time to build the binaries:

$ make
If all goes well, you now have a binary version of MySQL. The last
thing you need to do is install it:

$ make install
The software is now installed. We have a few set-up tasks left to do.
Run mysql_install_db to create the MySQL grant
tables:

$ cd /usr/local/mysql
$ scripts/mysql_install_db
Preparing db table
Preparing host table
Preparing user table
Preparing func table
Preparing tables_priv table
Preparing columns_priv table
Installing all prepared tables
010726 19:40:05 ./bin/mysqld: Shutdown Complete
Set up the ownership of the binaries so they are owned
by root and in the MySQL adminstrator group that you created earlier
(in this case, mysql):

$ chown -R root /usr/local/mysql
$ chgrp -R mysql /usr/local/mysql
Set the ownership of the data directories to the MySQL administrative
user you created earlier (for this example,
mysql):

$ chown -R mysql /usr/local/mysql/data
MySQL is now installed and ready to go. To start the server, run
safe_mysqld

 :

$ bin/safe_mysqld --user=mysql &
Typically, you will want to start up MySQL at server boot. To do
this, you can copy support-files/mysql.server to
the appropriate location on your system. This is covered in greater
detail

 in Chapter 5.

Windows Installation

The
 distributions for Windows can be found in the same place
as the distributions for Unix: at http://www.mysql.com/downloads or at one of
the mirror sites. Windows installation is simply a matter of
downloading the
mysql
 -version.
 zip,
unzipping it, and running the set-up program.

The default install location for MySQL Windows is
c:\mysql. The installer will allow you to change
the location. However, if you choose to do so, you may need to modify
some configuration files to get everything working correctly. Refer
to the full MySQL installation documentation at http://www.mysql.com/documentation for more
information.

The installer will give you the choice between a typical, compact, or
custom install. You should use the typical install unless you wish to
modify the list of components that are installed. In that case, use
the custom install.

The Windows binary distribution contains several
servers from which to choose.
Table 2-2 lists these servers.

Table 2-2. Servers that come with the Windows distribution
	
 Server name

 	
 Description

	

 mysqld

 	
 Debug binary with memory allocation checking, symbolic link support,
and transactional table support (InnoDB and DBD)

	

 mysqld-opt

 	
 Optimized binary with no support for transactional tables

	

 mysqld-nt

 	
 Optimized binary with support for NT named pipes

	

 mysqld-max

 	
 Optimized binary with support for transactional tables

	

 mysqld-max-nt

 	
 Optmized binary with support for NT named pipes and transactional
tables

Once you have the software installed, the next step is to start the
server. Though the binaries are
the same, the procedure for running the server is different depending
on whether you are using Windows 95/98 or Windows NT/2000. Each is
covered separately.

Windows 9x Startup

To run MySQL on a Windows 9x system, you need TCP/IP support
installed. This can be found on your Windows CD-ROM, if you have not
installed it already. If your computer can connect to the Internet in
any way, it already has TCP/IP support installed.

Tip
If you are running Windows 95, make sure you have the right version
of Winsock. MySQL requires Winsock 2. Obtain the latest version of
Winsock from http://www.microsoft.com. This is not an
issue for users of Windows 98 or Windows Me.

You will need to choose which server you would like to run from those
described in Table 2-2. Note that you can run the
'-nt' binaries, but you
don't benefit from it, because named pipes are not
supported on the Windows 9x platform. Assume for our example we have
decided to run mysql-opt. To get the server
started, open an MS-DOS window and type:

C:\> c:\mysql\bin\mysqld-opt
To stop the server, in an MS-DOS window type:
C:\> c:\mysql\bin\mysqladmin -u root shutdown
To get MySQL to start automatically with the operating system, stick
a shortcut to the
winmysqladmin.exe
 application in the
StartUp folder. This will also have MySQL shut
down automatically when you restart or shut down Windows.

Windows NT/2000 Startup

On Windows NT, you should have at least service pack 3
to get the right level of TCP/IP support for MySQL.

We recommend that you run the MySQL server as an NT service. The
simplest way to install MySQL as a service is to use the
winmysqladmin.exe utility that comes with a
Windows installation of MySQL. You can use this tool to configure
MySQL and install it as a service.

To install MySQL as a service by hand, open up an MS-DOS window and
type:

C:\> c:\mysql\bin\mysqld-nt -install
This will create an NT service called MySQL.
This service is now available from the Services control panel. To access
this, open your control panel and double-click on the Services
icon.[1]
 Figure 2-1 shows the
Services control panel from a Windows NT box with MySQL installed as
a service.

[image: A Windows NT Services control panel with MySQL installed]

Figure 2-1. A Windows NT Services control panel with MySQL installed

Now you can start MySQL by clicking on the Start button. If you would
like to change the command-line options for the
MySql service, you can type them in the Startup
Parameters text box before starting the service. In Figure 2-2, after the service has started, the status
shows as Started.

[image: The Started MySQL service]

Figure 2-2. The Started MySQL service

To stop the service, click on Stop. You can also start and stop the
service from an MS-DOS prompt using the net
start
 and net stop
commands. To start it this way, open an MS-DOS window and type:

C:\> net start mysql
The MySql service is starting.
The MySql service was started successfully.

 To

 stop
it
again,
type:

C:\> net stop mysql
The MySql service is stopping............
The MySql service was stopped successfully.

[1] On Windows 2000, click on the Administrative
Tools icon in the control panel to open the Services control
panel.

Chapter 3. SQL According to MySQL

The Structured Query Language (SQL) is used to read and write to
MySQL databases. Using SQL, you can search for, enter, modify, or
delete data. SQL is the most fundamental tool you will need for your
interactions with MySQL. Even if you are using some application or
graphical user interface to access the database, somewhere under the
hood that application is generating SQL.

SQL is a sort of "natural"
language. In other words, an SQL statement should read—at least
on the surface—like a sentence of English text. This approach
has both benefits and drawbacks, but the end result is a language
unlike traditional programming languages such as C, Java, or Perl.

SQL Basics

SQL is "structured" in the sense
that it follows a very specific set of rules. A computer program can
parse a formulated SQL query easily. In fact, the
O'Reilly book lex &
yacc
 by John
Levine, Tony
Mason, and Doug
Brown implements
an SQL grammar to demonstrate the process of writing a program to
interpret language! A query

 is
a fully specified command sent to the database server, which then
performs the requested action. Here's an example of
an SQL query:

SELECT name FROM people WHERE name LIKE 'Stac%'
As you can see, this statement reads almost like a form of broken
English: "Select names from a list of people where
the names are like Stac." SQL uses few of the
formatting and special characters that are typically associated with
computer languages.

The SQL Story

 IBM invented SQL in the 1970s shortly after
Dr. E. F. Codd invented the concept of a
relational database. From the beginning,
SQL was an easy-to-learn, yet powerful language. It resembles a
natural language such as English, so it is less daunting to a
nontechnical person. In the 1970s, even more than today, this
advantage was important.

There were no casual hackers in the early 1970s. No one grew up
learning BASIC or building web pages in HTML. The people programming
computers were people who knew everything about how a computer
worked. SQL was aimed at the army of nontechnical accountants and
business and administrative staff who would benefit from being able
to access the power of a relational database.

SQL was so popular with its target audience, in fact, that in the
1980s, Oracle Corporation launched the world's first
publicly available commercial SQL system. Oracle SQL was a huge hit and spawned an
entire industry built around SQL. Sybase, Informix, Microsoft, and
several other companies have since come forward with their
implementations of SQL-based relational database management systems
(RDBMSs).

When Oracle and its first competitors hit the scene, SQL was still
relatively new and there was no standard. It was not until 1989 that
the ANSI standards body issued the first public SQL standard. These
days, the standard is referred to as SQL89. That new standard,
unfortunately, did not go far enough into defining the technical
structure of the language. Thus, even though the various commercial
SQL languages were drawing closer together, differences in syntax
still made it nontrivial to switch among implementations. It was not
until 1992 that the ANSI SQL standard came into its own.

The 1992 standard is called both SQL92 and SQL2. The
SQL2 standard
expanded the language to accommodate as many of the proprietary
extensions added by the commercial implementations as possible. Most
cross-DBMS tools have standardized on SQL2 as the way in which they
talk to relational databases. Due to the extensive nature of the SQL2
standard, however, relational databases that implement the full
standard are very complex and resource intensive.

Tip
SQL2 is not the last word on the SQL standard. With the growing
popularity of
 object-oriented database management
systems (OODBMS) and
 object-relational database management
systems (ORDBMS), there has been increasing pressure to capture
support for object-oriented database access in the SQL standard. The
recent SQL3
standard is the answer to this problem.

When MySQL came along, it took a new approach to the business of
database server development. Instead of manufacturing another giant
RDBMS and risk having nothing more to offer than the big guys, Monty
created a small, fast implementation of the most commonly used SQL
functionality. Over the years, that basic functionality has grown to
support just about anything you might want to do with most database
applications.

The Design of SQL

 As we mentioned earlier, SQL resembles a
human language more than a computer language because it has a simple,
defined imperative structure. Much like an English sentence,
individual SQL commands,

 called
"queries," can be broken down into
language parts. Consider
the
following examples:

CREATE TABLE people (name CHAR(10))
verb object adjective phrase

INSERT INTO people VALUES ('me')
verb indirect object direct object

SELECT name FROM people WHERE name LIKE '%e'
verb direct object indirect object adjective phrase
Most implementations of

 SQL, including MySQL, are case
insensitive. Specifically, it does not matter how you type SQL
keywords as long as the spelling is correct. The previous
CREATE example could just as well be:

cREatE TAblE people (name cHaR(10))
The case insensitivity extends only to SQL keywords.[1] In MySQL, names of databases, tables, and columns are
case-sensitive. This case sensitivity is not necessarily true for all
database engines. Thus, if you are writing an application that should
work against all databases, you should assume that names are case
sensitive.

This first element of an SQL query is always a verb. The verb
expresses the action you wish the database engine to take. While the
rest of the statement varies from verb to verb, they all follow the
same general format: you name the object upon which you are acting
and then describe the data you are using for the action. For example,
the query CREATE TABLE people (name CHAR(10)) uses
the verb CREATE, followed by the object
TABLE. The rest of the query describes the table
to be created.

An SQL query originates with a client (the application that provides
the façade through which a user interacts with the
database). The client constructs a query based on user actions and
sends the query to the SQL server. The server must then process the
query and perform the specified action. Once the server has done its
job, it returns some value or set of values to the client.

Because the primary focus of SQL is to communicate actions to the
database server, it does not have the flexibility of a
general-purpose language. Most of the functionality of SQL concerns
input to and output from the database: adding, changing, deleting,
and reading data. SQL provides other functionality, but always with
an eye towards how it can be used to manipulate the data within the
database.

Sending SQL to MySQL

You can send
 SQL to MySQL using a variety of mechanisms.
The most common way is through one of the programming APIs described
in Part III. For the purposes of this chapter,
however, we recommend you use the interactive command-line tool,
mysql
 . When you run this program at the
command line, it prompts you for SQL:

[09:04pm] carthage$ mysql -u root -p
Enter password:
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 3 to server version: 3.22.29

Type 'help' for help.

mysql>
The previous mysql command says to connect to
the MySQL server on the local machine as the user root (the
-u option) with the client prompting you for a
password (the -p option). Another option,
-h, enables you to connect to MySQL servers on
remote machines:

[09:04pm] carthage$ mysql -u root -h db.imaginary.com -p
There is absolutely no relationship between operating-system
usernames and MySQL usernames. In other words, MySQL keeps its own
list of users, and a MySQL administrator needs to add new users to
MySQL independently of the host on which they reside. No one,
therefore, has an account on a clean MySQL installation except
root. This root is not the same root as
your Unix root account. As a general rule, you should never connect
to MySQL as root except when performing database administration
tasks. If you have a clean installation of MySQL that you can afford
to throw away, it is useful to connect as root for the purposes of
this chapter so you can create and drop databases. Otherwise, you
will have to connect to MySQL as whatever username has been assigned
to you.

Once mysql is running, you can enter your SQL
commands all on a single line or split them across multiple lines.
MySQL waits for a semicolon before executing the SQL:[2]

mysql> SELECT book_number
 -> FROM book
 -> ;
+-------------+
| book_number |
+-------------+
| 1 |
| 2 |
| 3 |
+-------------+
3 rows in set (0.00 sec)
With the mysql command line, you generally get a
command history depending on how your client tools were compiled. If
a command history is compiled into your mysql
client, you can use the up and down arrows on your keyboard to
navigate through previously executed SQL commands.

[1] For the sake of readability, we capitalize all SQL keywords in
this book. We recommend this convention as a solid
"best practice" technique.

[2] MySQL also accepts \g at the end of an SQL
statement to indicate that the SQL should be executed.

Database Creation

To get started using MySQL, you need to create a
database.
First, let's take a look at the databases that come
with a clean MySQL installation using the SHOW
DATABASES
 command. Upon installation of MySQL
3.23.40, the following tables already exist:

mysql> SHOW DATABASES;
+----------+
| Database |
+----------+
| mysql |
| test |
+----------+
2 rows in set (0.37 sec)
The first database, mysql, is
MySQL's system database, which you will learn more
about in Chapter 5. The second database,
test, is a play database you can use to learn
MySQL and run tests against. You may find other databases on your
server if you are not dealing with a clean installation. For now,
however, we want to create a new database to illustrate the use of
the MySQL CREATE
 statement:

CREATE DATABASE TEMPDB;
and then to work with the new database TEMPDB:
USE TEMPDB;
Finally, you can delete that database by issuing the DROP
DATABASE
 command:

DROP DATABASE TEMPDB;
You can create new objects using the CREATE
statement and destroy things using the DROP
statement, just as we used them here.

Table Management

You should
now feel comfortable connecting to a database on a MySQL server. For
the rest of the chapter, you can use either the
test database that comes with MySQL or your own
play database. Using the SHOW command, you can
display a list of tables in the current database the same way you
used it to show databases. In a brand new installation, the
test database has no tables. The following shows
the output of the SHOW
TABLES
 command when connected to the
mysql system database:

mysql> USE mysql;
Database changed
mysql> SHOW TABLES;
+-----------------+
| Tables_in_mysql |
+-----------------+
| columns_priv |
| db |
| func |
| host |
| tables_priv |
| user |
+-----------------+
6 rows in set (0.00 sec)
These are the six system tables MySQL requires to do its work. To see
what one of these tables looks like, you can use the
DESCRIBE
 command:

mysql> DESCRIBE db;
+-----------------+-----------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-----------------+-----------------+------+-----+---------+-------+
Host	char(60) binary		PRI		
Db	char(64) binary		PRI		
User	char(16) binary		PRI		
Select_priv	enum('N','Y')			N	
Insert_priv	enum('N','Y')			N	
Update_priv	enum('N','Y')			N	
Delete_priv	enum('N','Y')			N	
Create_priv	enum('N','Y')			N	
Drop_priv	enum('N','Y')			N	
Grant_priv	enum('N','Y')			N	
References_priv	enum('N','Y')			N	
Index_priv	enum('N','Y')			N	
Alter_priv	enum('N','Y')			N	
+-----------------+-----------------+------+-----+---------+-------+
13 rows in set (0.36 sec)
This output describes each
column in the table showing its data type,
whether it can contain null values, what kind of key it is, any
default values, and extra information. If all this means nothing to
you, don't worry. We will describe each of these
elements as the chapter progresses.

You should now be ready to create your first table.
First, connect back to the test database that
comes with a clean MySQL install:

USE test;
Make sure you connect to the test database first,
because you definitely do not want to add tables to the
mysql database. The table, a
structured container of data, is the most basic concept of a
relational database. Before adding data to a table, you must define
the table's structure. Consider the following
layout:

+---------------------------------+
| people |
+-------------+-------------------+
name	char(10) not null
address	text(100)
id	int
+-------------+-------------------+
Not only does the table contain the names of the columns, but it also
contains the types of each field as well as any additional
information the fields may have. A field's data type
specifies what kind of data the field can hold. SQL data types are
similar to data types in other programming languages. The full SQL
standard allows for a large range of data types. MySQL implements
most of them as well as a few MySQL-specific types.

The general syntax for table creation is:
CREATE TABLE table_name (
 column_name1
 type
 [modifiers]
 [, column_name2
 type
 [modifiers]]
)
Tip
What constitutes a valid
identifier (a name for a table
or column) varies between DBMSs. MySQL allows up to 64 characters in
an identifier, supports the character $ in
identifiers, and lets identifiers start with a valid number. More
importantly, however, MySQL considers any valid letter for your local
character set to be a valid letter for identifiers.

A
column
 is the individual unit of data
for a row within a table. A table may have any number of columns, but
too many columns can make a table inefficient. This is where good
database design, discussed in Chapter 7, becomes
important. By creating properly normalized tables, you can join
tables to perform searches across data housed in more than one table.
We discuss the mechanics of a join later in the chapter.

Consider the following
CREATE
 statement:

CREATE TABLE USER (
 USER_ID BIGINT UNSIGNED NOT NULL PRIMARY KEY,
 USER_NAME CHAR(10) NOT NULL,
 LAST_NAME VARCHAR(30),
 FIRST_NAME VARCHAR(30),
 OFFICE CHAR(2) NOT NULL DEFAULT 'NY');
This statement creates a table called USER with
five columns: USER_ID,
USER_NAME, LAST_NAME,
FIRST_NAME, and OFFICE. After
each column name comes the data type for that column, followed by any
modifiers.

The NOT NULL
 modifier indicates that the column
may not contain any null values. If you try to assign a null value to
that column, SQL will generate an error. Actually, there are a couple
of exceptions to this rule. First, if the column is defined as
AUTO_INCREMENT
 , a null value will cause a value to be
generated automatically. (We cover auto-incrementing later in the
chapter.) The second exception is when you specify a default value
for a column, as we have for the OFFICE column in
the previous example. In this case, the OFFICE
column is assigned the default value of 'NY' when
you assign a null value. (We will discuss data types and the
PRIMARY KEY modifier later in this chapter.)

Like most things in life, destruction is much easier than creation.
The command to drop a table from the

 database is:

DROP TABLE table_name
This command completely removes all traces of that table from the
database. MySQL removes all data within the specified table from
existence. If you have no backups of the table, you absolutely cannot
recover from this action. The moral of this story is to always keep
backups and be very careful about dropping tables. You will thank
yourself for it someday.

With MySQL, you can specify more than one table to delete by
separating the table names with commas. For example,
DROP
 TABLE
 people,
 animals,
 plants would delete the three named tables. You
can also use the IF EXISTS
 modifier to avoid an error,
should the table not exist when you try to drop it. This modifier is
useful for huge scripts designed to create a database and all its
tables. Before creating the database, run a DROP
TABLE
 IF EXISTS
 table_name
 command.

MySQL Data Types

 In a table, each
column has a type. As we mentioned earlier, an SQL data type is
similar to a data type in traditional programming languages. While
many languages define a bare-minimum set of types necessary for
completeness, SQL goes out of its way to provide types such as
DATE that will be useful to everyday users. You
could store a DATE type in a more basic numeric
type, but having a type specifically dedicated to the nuances of date
processing adds to SQL's ease of use—one of
SQL's primary goals.

 Chapter 16 provides a full reference of SQL types
supported by MySQL. Table 3-1 is an abbreviated
listing of the most common types.

Table 3-1. Common MySQL data types (see Chapter 16 for a full list)
	
 Data type

 	
 Description

	

 INT

 	
 An integer value. MySQL allows an INT to be either
signed or unsigned.

	

 REAL

 	
 A floating-point value. This type offers a greater range and more
precision than the INT type, but it does not have
the exactness of an INT.

	

 CHAR
 (length)

 	
 A fixed-length character value. No CHAR fields can
hold strings greater in length than the specified value. Fields of
lesser length are padded with spaces. This type is the most commonly
used in any SQL implementation.

	

 VARCHAR
 (length)

 	
 A variable-length character value.

	

 TEXT
 (length)

 	
 A variable-length character value.

	

 DATE

 	
 A standard date value. The DATE type stores
arbitrary dates for the past, present, and future.

	

 TIME

 	
 A standard time value. This type stores the time of day independent
of a particular date. When used together with a date, a specific date
and time can be stored. MySQL additionally supplies a
DATETIME
 type that stores date and time together in
one field.

MySQL supports the
UNSIGNED
 attribute for all numeric types. This
modifier forces the column to accept only positive (unsigned)
numbers. Unsigned fields have an upper limit that is double that of
their signed counterparts. For instance, an unsigned
TINYINT—MySQL's single-byte
numeric type—has a range of 0 to 255 instead of the -128 to 127
range of its signed counterpart.

MySQL provides more types than those mentioned in Table 3-1. In day-to-day programming, however, you will
use these types most often. The size of the data you wish to store
plays a large role in the design of your MySQL tables.

Numeric Types

Before you create a table, you should know what
kind of data you wish to store in the table. Beyond obvious decisions
about whether your data is character-based or numeric, you should
know the approximate size of the data to be stored. If it is a
numeric field, what is its maximum possible value? What is its
minimum possible value? Could that change in the future? If the
minimum is always positive or zero, you should consider an unsigned
type. You should always choose the smallest numeric type that can
support your largest conceivable value. If, for example, you have a
field that represents the population of a state, use an unsigned
INT field. No state can have a negative
population. Furthermore, an unsigned INT field is
certainly large enough to represent a state's
population, unless that population grows to be roughly the current
population of the entire Earth.

Character Types

Managing character types is a little more
complicated. Not only do you have to worry about the minimum and
maximum string lengths, but you also have to worry about the average
size and the amount of variation. For our current purposes, an
index

 is a field or combination of fields
on which you plan to search—basically, the fields in your
WHERE clause. Indexing is, however, much more
complicated, so we will provide further details later in the chapter.
What's important to note here is that indexing on
character fields works best when the field is a fixed length. If
there is little or, preferably, no variation in the length of your
character-based fields, then a CHAR type is
appropriate. An example of a good candidate for a
CHAR field is a country code. The

 ISO provides a
comprehensive list of standard two-character representations of
country codes (US for the U.S., FR for
France, etc.).[3] Because these codes are always exactly two characters, a
CHAR(2)
 is the
best way to maintain the country code based on the ISO representation

A value does not need to be constant length to use a
CHAR field. It should, however, have very little
variance. Phone numbers, for example, can be stored safely in a
CHAR(13) field even though phone number lengths
vary from nation to nation. The variance is little enough that there
is no point in making a phone number field variable in length. Keep
in mind that with a CHAR field, no matter how big
the actual string being stored is, the field always takes up exactly
the number of characters specified as the field's
size—no more, no less. Any difference between the length of the
text being stored and the length of the field is made up by padding
the value with spaces. While the few potential extra characters being
wasted on a subset of the phone number data is not anything to worry
about, you do not want to be wasting much more.

Variable-length text fields are appropriate for text fields with
widely varying lengths. A good, common example of a field that
demands a variable-length data type is a web URL.
Most web addresses are relatively short (e.g., http://www.ora.com, http://www.imaginary.com, http://www.mysql.com) and consequentially do
not pose problems. Occasionally, however, you will run into web
addresses such as:

	
 http://www.winespectator.com/Wine/Spectator/

	
 _notes|5527293926834323221480431354?Xv11=&Xr5=&Xv1=&type-region-

	
 search-code=&Xa14=flora+springs&Xv4=

If you construct a CHAR field large enough to hold
this URL, you will be wasting a significant amount of space for
almost every other URL being stored. A variable-length field lets you
define a field length that can store the odd, long-length value while
not wasting all that space for the common, short-length values.

Variable-length text fields in MySQL use only as much space as
necessary to store an individual value into the field. A
VARCHAR(255)
 field
that holds the string "hello
world," for example, takes up only 12 bytes (1 byte
for each character plus an extra byte to store the length).

Tip
MySQL varies from the ANSI standard by not padding
VARCHAR fields. Any extra spaces are removed from
a value before it is stored.

You cannot store strings with lengths greater than the field length
you have specified. With a VARCHAR(4) field, you
can store at most a string with four characters. If you attempt to
store the string "happy birthday,"
MySQL will truncate the string to
"happ." The downside is that there
is no way to store the odd string that exceeds your designated field
size. Table 3-2 shows the
storage space required by the different
text data types to store the 144-character Wine Spectator URL shown
earlier, the space required to store an average-sized 30-character
URL, and the maximum string size for that data type.

Table 3-2. The storage space required by the different MySQL character types
	
 Data type

 	
 Storage for 144-char string

 	
 Storage for 30-char string

 	
 Maximum string size

	

 CHAR
 (150)

 	
 150

 	
 150

 	
 255

	

 VARCHAR
 (150)

 	
 145

 	
 31

 	
 255

	

 TINYTEXT
 (150)

 	
 145

 	
 31

 	
 255

	

 TEXT
 (150)

 	
 146

 	
 32

 	
 65535

	

 MEDIUMTEXT
 (150)

 	
 147

 	
 33

 	
 16777215

	

 LONGTEXT
 (150)

 	
 148

 	
 34

 	
 4294967295

In this table, note that storage requirements grow 1 byte at a time
for the variable-length types of MEDIUMTEXT and
LONGTEXT. This growth is due to the space required
to store the size in variable-length fields. TEXT
uses an extra byte to store the potentially greater length of the
text it contains. Similarly, MEDIUMTEXT uses an
extra 2 bytes over VARCHAR, and
LONGTEXT uses an extra 3 bytes.

If after years of uptime with your database, you find that the world
has changed and a field that once comfortably existed as a
VARCHAR(25) must now hold strings as long as 30
characters, you are not out of luck. MySQL provides a command called
ALTER TABLE
 that enables you to redefine a field
type without losing any data:

ALTER TABLE mytable MODIFY mycolumn
 LONGTEXT

Binary Data Types

MySQL provides a set of binary data types that closely mirror
their character counterparts. The MySQL binary types are

 CHAR BINARY,
VARCHAR BINARY
 ,
TINYBLOB
 ,
BLOB
 ,
MEDIUMBLOB
 , and
LONGBLOB
 . The practical distinction between
character types and their binary counterparts is the concept of
encoding. Binary data
is basically a chunk of data that MySQL makes no effort to interpret.
Character data, on the other hand, is assumed to
represent textual data from human alphabets. It is thus encoded and
sorted based on rules appropriate to the character set in question.
On an ASCII system, MySQL sorts binary data in a case-sensitive,
ASCII order.

Enumerations and Sets

MySQL provides two other special kinds of types. The
ENUM
 type allows you specify (enumerate) at
table creation a list of possible values that can be inserted into
that field. For example, if you have a column named
fruit into which you want to allow only the values
apple, orange,
kiwi, or banana, you would
assign this column the type ENUM:

CREATE TABLE meal(meal_id INT NOT NULL PRIMARY KEY,
 fruit ENUM('apple', 'orange', 'kiwi',
 'banana'))
When you insert a value into that column, it must be one of the
specified fruits. Because MySQL knows ahead of time which values are
valid for the column, it can abstract them to some underlying numeric
type. In other words, instead of storing apple in
the column as a string, MySQL stores it internally as a single-byte
number. However, you still refer to it as apple in
a query or when you retrieve the value from MySQL. You also use
apple when you call the table or view results from
the table.

The MySQL ET
 type works in the same way, except it lets
you store multiple values in a field at the same time and uses bits
instead of bytes.

Other Kinds of Data

Every piece of data you will ever encounter can be stored using
numeric or character types. Technically, you could even store numbers
as character types. Just because you can do so, however, does not
mean you should. Consider, for example, storing a date in the
database. You could store that value as a Unix-style
BIGINT or as a combination of several columns for
the day, month, and year. How do you look for rows with a date value
greater than two days after a specific date? Either you calculate the
numeric representation of that date or employ a complex operation for
a simple query mixing day, month, and year values.

Isn't all of that a major pain?
Wouldn't it be nice if MySQL handled all of these
issues for you? In fact, MySQL does. It provides several complex data
types to help with abstract common concepts. It supports the concept
of dates through the DATE
 data type. Other such data types
include DATETIME

 and
TIMESTAMP
 .

[3] States and provinces do not work the
same way in internationalized applications. If you want to write an
application that works in an international environment, make the
columns for state and province codes CHAR(3),
because Australia uses three-character state codes. Also note that
there is a three-character ISO country-code standard.

Indexing

 While MySQL has better performance than
any of the larger database servers, some problems still call for
careful database design. For instance, if we had a table with
millions of rows of data, a search for a specific row would take a
long time. Most database engines allow indexes to aid in such
searches.

Indexes help the database store data in a way that makes for quicker
searches. Unfortunately, you sacrifice disk space and modification
speed for the benefit of quicker searches. The most efficient use of
indexes is to create an index for columns on which you tend to search
the most. MySQL supports the following syntax for creating an
index
for a table:

CREATE INDEX index_name ON tablename (column1,
 column2,
 ...,
 columnN)
MySQL also lets you create an index at the same time you create a
table using the following syntax:

CREATE TABLE material (id INT NOT NULL,
 name CHAR(50) NOT NULL,
 resistance INT,
 melting_pt REAL,
 INDEX index1 (id, name),
 UNIQUE INDEX index2 (name))
The previous example creates two indexes for the table. The first
index—named index1—consists of both
the id and name fields. The
second index includes only the name field and
specifies that values for the name field must
always be unique. If you try to insert a field with a
name held by a row already in the database, the
insert will fail. Generally, you should declare all fields in a
unique index as NOT NULL
 .

Even though we created an index for name by
itself, we did not create an index for just id. If
we did want such an index, we would not need to create it—it is
already there. When an index contains more than one column (for
example: name, rank, and
serial_number), MySQL reads the columns in order
from left to right. Because of the structure of the index MySQL uses,
any subset of the columns from left to right are automatically
created as indexes within the
"main" index. For example,
name by itself and name and
rank together are both indexes created
"for free" when you create the
index name, rank,
serial_number. An index of rank
by itself or name and
serial_number together, however, is not created
unless you explicitly create it yourself.

MySQL also supports the ANSI SQL semantics of a special index
called a primary key. In MySQL, a primary key is a
unique key with the name PRIMARY. By calling a
column a primary key at creation, you are naming it as a unique index
that will support table joins. The following example creates a
cities table with a primary key of
id:

CREATE TABLE cities (id INT NOT NULL PRIMARY KEY,
 name VARCHAR(100),
 pop MEDIUMINT,
 founded DATE)
Before you create a table, you should determine which fields, if any,
should be keys. As we mentioned above, any fields that will support
joins are good candidates for primary keys. See Chapter 7 for a detailed discussion on how to design
your tables with good primary keys.

Tip
ANSI SQL supports a special kind of key called a
foreign key.
Foreign keys help protect database integrity by enabling the database
to manage things such as the deletion of rows with dependent
relationships in other tables. Though MySQL supports the ANSI syntax
for foreign keys, it does not actually use them to perform integrity
checking in the database. This is a situation in which the
introduction of a feature would cause a slowdown in performance with
little real benefit. Applications themselves should generally worry
about foreign key integrity.

Managing Data

The first
thing you will probably want to do with a newly created table is add
data to it. Once the data is in place, you need to maintain
it—add to it, modify it, and perhaps even delete it.

Inserts

Adding a
row to a
 table is one of the more
straightforward concepts in SQL. You have already seen several
examples of it in this book. MySQL supports the standard SQL
INSERT syntax:

INSERT INTO table_name (column1, column2, ..., columnN)
VALUES (value1, value2, ..., valueN)
Under this syntax, you specify the columns followed by the values to
populate those columns for the new row. When inserting data into
numeric fields, you can insert the value as is; for all other fields,
you must wrap them in single quotes. For example, to insert a row of
data into a table of addresses, you might issue the following
command:

INSERT INTO addresses (name, address, city, state, phone, age)
VALUES('Irving Forbush', '123 Mockingbird Lane', 'Corbin', 'KY',
 '(800) 555-1234', 26)
In addition, the

 escape
character—\, by default—enables you to
escape single quotes and other literal instances of the escape
character:

Insert info for the directory Stacie's Directory which
is in c:\Personal\Stacie
INSERT INTO files (description, location)
VALUES ('Stacie\'s Directory', 'C:\\Personal\\Stacie')
MySQL allows you to leave out the column names as long as you specify
a value for every column in the table in the order they were
specified in the table's CREATE
call. If you want to use the default values for a column, however,
you must specify the names of the columns for which you intend to
insert nondefault data. For example, if the earlier
files table had contained a column called
size, the default value would be used for
Stacie's Directory. MySQL
allows you to specify a custom default value in the
table's CREATE call. If you do
not have a default value set up for a column, and that column is
NOT NULL, you must include that column in the
INSERT statement with a
non-NULL value.

Newer versions of MySQL support a nonstandard
INSERT call for inserting multiple rows at once:

INSERT INTO foods VALUES (NULL, 'Oranges', 133, 0, 2, 39),
 (NULL, 'Bananas', 122, 0, 4, 29),
 (NULL, 'Liver', 232, 3, 15, 10)
Tip
While these

 nonstandard syntaxes supported by
MySQL are useful for quick system administration tasks, you should
not use them when writing database applications unless you really
need the speed benefit they offer. As a general rule, you should
stick as close to the ANSI SQL2 standard as MySQL will let you. By
doing so, you make certain that your application can run against any
other database in the future. Being flexible is especially critical
for people with mid-range database needs because such users generally
hope to become people with high-end database needs.

Another nonstandard syntax supported by MySQL enables you to specify
the column name and value together:

INSERT INTO book SET title='The Vampire Lestat', author='Anne Rice';
Finally, you can insert data by using the data from some other table
(or group of tables) to populate your new table. For example:

INSERT INTO foods (name, fat)
SELECT food_name, fat_grams FROM recipes
You should note that the number of columns in the
INSERT call matches the number of columns in the
SELECT call. In addition, the data types for the
INSERT columns must match the data types for the
corresponding SELECT columns. Finally, the
SELECT clause in an INSERT
statement cannot contain an ORDER BY modifier and
cannot be selected from the same table where the
INSERT occurs.

Sequence Generation

 The
best
kind of primary key is one that has absolutely no meaning in the
database except to act as a primary key. Primary keys are the tools
used to identify
rows uniquely in a relational
database. When you use information such as a username or an email
address as a primary key, you are in effect saying that the username
or email address is somehow an intrinsic part of who that person is.
If that person ever changes his username or email address, you will
have to go to great lengths to ensure the integrity of the data in
the database. Consequently, it is a better design principle to use
meaningless numbers as primary keys.

To achieve this, simply make a numeric primary key that increments
every time you insert a new row. Looking at the
cities table shown earlier, the first city you
insert would have an id of 1, the second 2, the
third 3, and so on. To successfully manage this primary key
sequencing, you need some way to guarantee that a number can be read
and incremented by only one client at a time. You accomplish this
task by making the primary key field
AUTO_INCREMENT.

When you create a
table in
MySQL, you can specify at most one
column as
AUTO_INCREMENT. When you do this, you can have
this column automatically insert the highest current value plus 1 for
that column when you insert a row and specify NULL
or 0 for that row's value. The
AUTO_INCREMENT columns must be indexed. The
following command creates the cities table with an
AUTO_INCREMENT id field:
 [4]

CREATE TABLE cities (id INT NOT NULL PRIMARY KEY AUTO_INCREMENT,
 name VARCHAR(100),
 pop INT,
 founded DATE)
The first time you insert a row, the id field for
your first row will be 1 as long as you use NULL
or 0 for that field in the INSERT statement. For
example, this command takes advantage of the
AUTO_INCREMENT feature:

INSERT INTO cities (id, name, pop)
VALUES (NULL, 'Houston', 3000000)
If no other values are in that table when you issue this command,
MySQL will set this field to 1, not NULL
(remember, it cannot be NULL). If other values are
present in the table, the value inserted will be one greater than the
largest current value for id.

You can also implement sequences by referring to the value returned
by the LAST_INSERT_ID(
)
 function and doing your own
incrementing:

UPDATE table_name SET id=LAST_INSERT_ID(id+1);
The AUTO_INCREMENT attribute may be supplied for
at most one column of an integer type in a table. In addition to
being an integer type, the column must be either a primary key or the
sole column in a unique index. When you attempt an insert into a
table with such an integer field and fail to specify a value for that
field (or specify a NULL value), a value of one
greater than the column's current maximum value will
be automatically inserted.

 Chapter 17 contains reference material on the
LAST_INSERT_ID() function.

Updates

The

 insertion
of new rows into a database is just the start of data management.
Unless your database is read-only, you will probably also need to
make periodic changes to the data. The standard SQL modification
statement looks like this:

UPDATE table_name
SET column1=value1, column2=value2, ..., columnN=valueN
[WHERE clause]
You specifically name the table you want to update and the values you
want to assign in the SET

clause, and then identify the rows to be affected in the
WHERE clause. If you fail to specify a
WHERE clause, MySQL will update every row in the
table.

In addition to assigning literal values to a column, you can also
calculate the values. You can even calculate the value based on a
value in another column:

UPDATE years
SET end_year = begin_year+5
This command sets the value in the end_year column
equal to the value in the begin_year column plus 5
for each row in that table.

The WHERE Clause

The previous section introduced one of the most important SQL
concepts, the WHERE
 clause. In SQL, a WHERE
clause enables you to pick out specific rows in a table by specifying
a value that must be matched by the column in question. For example:

UPDATE bands
SET lead_singer = 'Ian Anderson'
WHERE band_name = 'Jethro Tull'
This UPDATE specifies that you should change only
the lead_singer column for the row where
band_name is identical to
Jethro
 Tull. If the
band_name column is not a unique index, that
WHERE clause may match multiple rows. Many SQL
commands employ WHERE clauses to help pick out the
rows on which you wish to operate. Because the columns in the
WHERE clause are columns on which you search, you
should generally have indexes created around whatever combinations
you commonly use. We discuss the kinds of comparisons you can perform
in the WHERE clause later in the chapter.

Deletes

Deleting

 data
is a straightforward operation. You simply specify the table followed
by a WHERE clause that identifies the rows you
want to delete:

DELETE FROM table_name [WHERE clause]
As with other commands that accept a WHERE clause,
the WHERE clause is optional. If you omit it, you
will delete all of the records in the table! Of all the destructive
commands in SQL, this is the easiest one to issue by mistake.

MySQL 4.0 has introduced a new, dangerous form of
DELETE that supports the ability to delete from
multiple tables with a single command:

DELETE table1, table2, ..., tablen
FROM table1, table2, ... tablen
[WHERE clause]
The FROM
 clause in this syntax does not mean the
same thing as it does in the simpler form. In other words, it does
not list the tables from which rows are deleted—it lists the
tables referenced in the WHERE clause. If you are
familiar with the SELECT statement, it works
exactly the same as the FROM clause in
SELECT statements. The tables you are deleting
from are listed directly after the DELETE
statement:

DELETE Author, Address
FROM Author, Book, Address
WHERE Author.author_id = Addess.address_id
AND Author.author_id = Book.author_id
AND Book.publish_date < 1980;
This statement deletes all the authors and any address information
you have for those authors in the Address table
for every author with books published before 1980. The old books will
remain in the Book table, because
Book was not named after the
DELETE keyword. We further cover the complexities
of the WHERE clause later in the chapter.

[4] You can seed AUTO_INCREMENT to start at any
arbitrary number by specifying the seed value at the end of the
CREATE statement. To start incrementing at 1025,
for example, you would add AUTO_INCREMENT = 1025
after the closing parentheses of the CREATE TABLE
statement.

End of sample

 To search for additional titles please go to

 http://search.overdrive.com.

OEBPS/httpatomoreillycomsourceoreillyimages72523.png
person 4P
addrss i
fanily_name
gien mame
maiden name

adress 4P
ineone
line_two
e three

postal_cade

OEBPS/httpatomoreillycomsourceoreillyimages72507.png
artist Song P

auitin = a5

Initiame o an
Songlegth

Recordlabel

OEBPS/httpatomoreillycomsourceoreillyimages72513.png
artst song [
i s an
v hame <] sogtne orie

Songlength

state

Record Label

Stateln
StateName
Statebreition

RecordLabellD.
Recordabelame

OEBPS/httpatomoreillycomsourceoreillyimages72535.png
test

st id:L0NG
st val:CHARSS)

OEBPS/httpatomoreillycomsourceoreillyimages72519.png
3

Distributed
Application
Services

Dutabase

Database

OEBPS/httpatomoreillycomsourceoreillyimages72529.png
-

23 28 s23 @
B e e e et S g

[
e
Pl e

[nr—

, |
- s ez

OEBPS/httpatomoreillycomsourceoreillyimages72509.png
artist song [
a0 songlD o
rsthane —<] Songame 23
SongLegth
Recordlabel
hecrdtabel0

RecrdLabe ame

OEBPS/httpatomoreillycomsourceoreillyimages72533.png
| I S ——
JBCAPI JDBCAPI JDBCAPI
MysaLI0BCariver | [oradespBCdriver | [MssaLIDBCdriver

OEBPS/oreilly_large.gif
O’REILLY

OEBPS/httpatomoreillycomsourceoreillyimages72503.png
artst

)

)
Irtitame

@n
orite
Recrdlabel

Song
songi0

Songame
Songlength

OEBPS/httpatomoreillycomsourceoreillyimages72505.png
Artist 1D oD
it D—<Jome
eeritel

Song

songi0
Sangllame
Songlength

OEBPS/httpatomoreillycomsourceoreillyimages72527.png
Functions supported by Model dass.
G P

o
ovedty stmets)

=
v !

vy p et [[Gover |

mpliget i vae]

bt

e g
! | ! 1
i e Gl =

SEET bt

=))

Sapie] wa
LI M 1 1
o) [) 5) (G e e
i
S]

oo

]

30000 [il o]

Dhiget typel]

OEBPS/httpatomoreillycomsourceoreillyimages72495.png
@

Song

e
Bandame
Recordlabel

Songame
Songlongth

OEBPS/httpatomoreillycomsourceoreillyimages72489.png
Client application

MysQL server

8

Parsing phase

Optimization phase

+ ©

»

Execution phase

o

OEBPS/orm_front_cover.jpg
A Database Optimized for Speed & Interactivit]

O,REILLYO George Reese, Randy Jay Yarger & Tim King
with Hugh E. Williams

OEBPS/httpatomoreillycomsourceoreillyimages72499.png
[CTETD e D)

Entity 1 Entity2

OEBPS/httpatomoreillycomsourceoreillyimages72493.png
@

e
BandName
Recordlabel

OEBPS/httpatomoreillycomsourceoreillyimages72525.png
person Address
famiyame: tring ineone:tring
aiventame:tring ieTwo:tring
middehames:ving || nelhee:suing
maidename:soing
itessing posaade:sting

changedires()

OEBPS/httpatomoreillycomsourceoreillyimages72487.png
Smen s [

[ierer Marsal &

Catoksuve e

Cons o St ot

orc Sl o -

| Directory Repicator Manus o

e St o

poiywiees

[NV Ao Sated Manod] oo |
g

[T

OEBPS/httpatomoreillycomsourceoreillyimages72497.png
@

an
@i
Sondhame
Hrndiail

SonglD
Songame
Songlength

OEBPS/httpatomoreillycomsourceoreillyimages72521.png
Browser
esape I Onnihe)

e

WebServer Contallr

tputeiy [oA
Hodel

(er58)

mysal

OEBPS/httpatomoreillycomsourceoreillyimages72515.png
L e e

OEBPS/httpatomoreillycomsourceoreillyimages72491.png
@

OEBPS/httpatomoreillycomsourceoreillyimages72511.png
arist

®

nitD
st Name

| =

Songlength

on
orie

Record Label

RecordLabellD.
Recordabelame

StateName
Statebbreition

OEBPS/httpatomoreillycomsourceoreillyimages72485.png
Smea s [

[terer Marsal &

ook suve e st

Cons o St ot

orc Sl o

vy heicsn i

e St o

peiywes

[NV Ao Sated Manod] oo |
g

[|

OEBPS/httpatomoreillycomsourceoreillyimages72517.png
\!~l!

OEBPS/httpatomoreillycomsourceoreillyimages72531.png
Medding Gift. Registry

v'lf&»@dia

U Reow o Sewh Nesca i Secumy Stop
Sam and Rowe’s Wedding Gift Registry

[—

=

ey s

OEBPS/httpatomoreillycomsourceoreillyimages72501.png
)

n
e
Bandlame
Recordlabel

Song

songi0
Songame
Songongth

