

[image: e9781250024589_cover.jpg]

[image: e9781250024589_i0001.jpg]

For Nancy

To my father

With unending gratitude for the help of

Clara Basile and Jeanette Gurevitch.

Table of Contents

Title Page

Introduction

[0] SPACE IS NUMERIC

[1] TRANSACTIONS

[2] SUSHI

[3] REAL ESTATE

[4] SOFTWARE AND SUBURBIA

[5] NEW, OLD, AND MIDDLE AGE

[6] VIRTUALITY

[7] MONEY

[8] THE PASSIONATE ENGINEER

[9] DRIVING

Also by

About the Author

Notes

Copyright Page

Introduction

THIS PIERCING BOOK RECORDS WHAT IT FELT LIKE when humans were first engulfed by artificial computation.

There are precious few opportunities to peer through digital noise. Digital experience becomes so baroque as to become virtually opaque. Close to the Machine presses “Control+Z” and undoes some of the filigree, peeling back time to expose clear origins.

When people are interested in twentieth-century music, they are likely to become fascinated with moments of origin, like when Robert Johnson approached the crossroads. It is hard to read the literature of the twentieth century without becoming curious about what Paris was like in the 1920s. In the same way, anyone immersed in social networking or any of the rest of life on the Internet at present might naturally be curious about what Silicon Valley was really like just before it all got so big and important.

We all know about the famous players, but what was the texture of experience on the ground? Seeing that
purely is how we can see beyond the encompassing clichés that always blind people to the present.

Try to do this online and you’ll fall into a void. The Internet remembers its own digital traces, though less perfectly than is widely understood. As the digital sphere began to rise, the old world didn’t know what was important enough to record in the emergent nerdosphere, and the Internet wasn’t really there yet to start its own sort of obsessive quantity-oriented recording. So there is a lost lull from just before the storm. It’s hard to get a fix on what computer culture was like in the years before it was networked and went pop. Yet that is where we must look if we are to find the fetal dragon, the fractal seed that would soon overwhelm the interstices between all recordable experiences.

For all the global roar of the Internet’s regard of the Internet, a plain account of living with computation is hard to come by. There are precious few.

Fred Brooks wrote a book called The Mythical Man-Month from the perspective of a manager of programmers back in 1975, which was the first book to be honest about what computers are really like, and what it’s like to cope with that. There have been a handful of other examples, but almost none from a personal perspective.

Awaiting your eyes is a remarkable document that is both the best account of the intimate experience of computation by a person, and a saved slice of historical memory, of that almost lost moment before everything went digitally nuts.

I remember being amazed when the first edition was published. It proved that at last there was a bridge between reality at large and the empire of nerds, which seemed nonreactive and immune to subjectivity, beauty, love, or the acknowledgment of fundamental frailty. Here was a computer nerd who could write. Beyond that, Ullman could write about computers and her true life within a unified narrative. No one had done it before, and no one’s done it as deeply since.

To see clearly you have to have the access of an insider, but also be an outsider. You have to be right there and still have enough distance to see. Ullman had just the right mix of there and not there when she wrote this book. She was attached to Silicon Valley, but at a bit of distance, living in San Francisco. And she is a grown-up woman in a culture favoring youth, in a world where women programmers were all too rare.

Women’s contributions to computing, a series of “firsts,” have mostly been erased from our collective memory. We might recall Ada Lovelace, who was the first to grasp and articulate the promise of a general-purpose computer. During World War II, it was six women who set by hand the thousands of switches on ENIAC, the first all-electronic digital computer. These women were called “computers,” a term that had been applied for centuries to the profession of tedious tabulation and calculation by hand.

Grace Hopper, a computer scientist and Naval officer, led a team of women who created the first modern
programming language, as well as the compiler, a now indispensible tool that translates code to machine-readable bits.

I met Grace while she was alive, and she was one no-nonsense, tough broad. No one was ever going to mess with her. She coined the term “bug,” and if I were a computer bug, I would fix myself before I’d face her.

After World War II, the men came home, took jobs, and the women were expected to forget how to code. Baby Boom nerds grew up in a world where code was a male thing. Baby Boom programmers grew up in a world where code was a boy-nerd thing. There were precious few girl-nerds in pre-Internet Silicon Valley.

The particular quality of male nerdiness might be described as a whiff of autism spectrum disorder. Not full-on communal Asperger’s syndrome, but just a bite, as Ullman describes it in a scene with the ultra-nerd Brian. She asks him if he’d like to listen to Palestrina or Beethoven. And Brian replies, “Classical music is not yet in my data banks.”

The autistic spectrum is somewhat correlated with men, and in a way, the nerd world is a world made by men for men. The nerd flavor of masculinity has overwhelmed the macho kind in real-life power dynamics, and therefore in popular culture.

What is nerdism like? There is a tendency to reject outward appearances, which has its kindnesses. There is a purpose of life in the nerd world, which is treating reality as code, and optimizing it. Life becomes a problem-solving
activity, and the problem is some sort of lack of optimization. Of course this imperative breaks down on close examination, but they all do.

Back when Close to the Machine came out, one of my reactions was that it might portend the beginning of a consilience many of us expected. We expected the real world, the world of relationships, experience, and mortality, to overtake the abstract little nerdy bubble of Silicon Valley. Our little era of computer-modulated living would be remembered as one of those exceptional chapters in human affairs, kind of like lesbian warrior empires or gypsy migrations. Instead what happened was the opposite. The whole world bought in to our nerdy way of life. Everyone now uses UNIX-speak to socialize and spread news. We define ourselves as being in relationships, or not, on social-networking sites as if we are setting bits in a program. The nerds took over.

So instead of this book serving as a memorial to a peculiar time, it has come to serve as a rarified glimpse into the source point of what has become too familiar to notice.

I now find myself using the phrase “close to the machine” to mean “rich and powerful.” The closer you are to a big server on the Internet, the richer you are. The server might run high frequency trades, a search engine, a social network, a supply chain (Walmart, I’m looking at you), a botnet, or a traditional national spy agency. Unless you have an oil field, it is the means to wealth in modernity.

The culture of computation has always been a cult of youth, which doesn’t prioritize remembering. Youthfulness is a natural enough fit, since young minds are better at the tedious side of dealing with computation. What is remembered tends to be seductive stories about kids who made good with computers: Steve Jobs, Bill Gates, Sergey Brin, and so on.

Another reason for the neotenous quality of computation is that the trifecta of sex, drugs, and rock and roll had failed right around the time computers got plentiful, leaving a vacuum to be filled. Sex and drugs became authentically dangerous at that time of AIDS and underworlds, and rock and roll, while ever popular, could hardly be associated exclusively with youth anymore.

Computer culture, while often fashioned to be anarchistic, populist, and anti-elitist, seems to unfortunately secure its memories around iconic heroes instead of the experiences of ordinary people. But it is only the history of the ordinary that can help us understand the present of the ordinary. To not seek out that history is to choose a form of blindness.

It is imperative that we care about the past of computer culture. This is because computers, while they seem ever new, actually have a mechanistic way of limiting what we see and know, locking us into the present, all the while creating an illusion that we’re all-seeing.

To illustrate with an example, let’s consider what computers do to words. When you (my reader being a person, I presume) want to understand a word well, it’s
useful to look into its past. I find it helpful to remember the origins of the word “computer,” for instance.

A modern, digital computer can be programmed to “understand” a word. “Then something different happens,” Ullman writes. “The irregularities of human thinking start to emerge … . The human mind, as it turns out, is messy.”

Natural-language software mines the vast databases of existing translations and usage patterns found online, and from that automated research, statistical correlations are derived. Whether this constitutes something that should be called “understanding” at all is a matter of debate, but at any rate, the combination of big data and statistics yields useful effects like discernible, though imperfect, automatic translation between natural languages.

As computers mediate human language more and more over time, will language itself start to change?

Suppose it becomes commonplace to use Internet services to translate between Chinese and English. Is it not likely that native speakers of either language might, after a while, start to emphasize those turns of phrase that translate most reliably? Might the grooves of the translation software start to gradually alter the languages that are being translated?

We don’t know the answer, since the experiment is only now beginning and its effects must take place on a massive scale to have meaning.

Should it turn out that widespread use of computer
translation transforms languages even when spoken privately between native speakers, then an odd, present-tense feedback loop will be instantiated.

This is what I mean about how computers can lock us into the present. We create programs using the ideas we can feed into them, the ideas in circulation at the time of programming, but then we live through the program, so we can forget the arbitrariness of the moment. We accept the ideas imbedded in the program as facts of nature.

This happens all the time with computers. People fashion their social identities around the particular multiple-choice database entries a programmer placed in a social networking service like Facebook. What could feel more natural than something that engulfs?

Whether this is a bad thing or not is not my concern here, but I do want to promote the quest for truth, as best we can approximate it, and surely we ought to do our best to be aware of the ways we’ve chosen to be engulfed.

The Internet can give you an illusion of omniscience, but you are in a mirror bubble. To get context, to see where you are, you must find a way out of the thing that sometimes seems to be everything.

There are two ways to find your bearings. One way to approach the puzzle is to go back in time, as with understanding the origin of the word “computer.”

There is another way, however, which is to go internal. Find the quiet to report honestly what you feel, to escape the iron force field of social expectation for just a
moment. That’s amazingly hard to do. It can be helpful to read the words of someone else who has done it, and that’s one reason literature is so important. Rather than the mash-up of the social web, it’s the truth of the individual voice.

Amazingly, this book takes both paths at once. Here is a personal voice, a true and articulate voice, and the story is about that dawn moment, just when computation engulfed us.

This book provides a unique and beautiful way to set aside the power and status games of the moment in order to consider what it means to repattern your life within the strange logic Grace Hopper made up so long ago.

—Jaron Lanier

[0] SPACE IS NUMERIC

I HAVE NO IDEA WHAT TIME IT IS. There are no windows in this office and no clock, only the blinking red LED display of a microwave, which flashes 12:00, 12:00, 12:00, 12:00. Joel and I have been programming for days. We have a bug, a stubborn demon of a bug. So the red pulse no-time feels right, like a read-out of our brains, which have somehow synchronized themselves at the same blink rate.

“But what if they select all the text and—”

“—hit Delete.”

“Damn! The NULL case!”

“And if not we’re out of the text field and they hit space—”

“—yeah, like for—”

“—no parameter—”

“Hell!”

“So what if we space-pad?”

“I don’t know … . Wait a minute!”

“Yeah, we could space-pad—”

“—and do space as numeric.”

“Yes! We’ll call SendKey(space) to—?

“—the numeric object.”

“My God! That fixes it!”

“Yeah! That’ll work if—”

“—space is numeric!”

“—if space is numeric!”

We lock eyes. We barely breathe. For a slim moment, we are together in a universe where two human beings can simultaneously understand the statement “if space is numeric!”

Joel and I started this round of debugging on Friday morning. Sometime later, maybe Friday night, another programmer, Danny, came to work. I suppose it must be Sunday by now because it’s been a while since we’ve seen my client’s employees around the office. Along the way, at odd times of day or night that have completely escaped us, we’ve ordered in three meals of Chinese food, eaten six large pizzas, consumed several beers, had innumerable bottles of fizzy water, and finished two entire bottles of wine. It has occurred to me that if people really knew how software got written, I’m not sure if they’d give their money to a bank or get on an airplane ever again.

What are we working on? An artificial intelligence project to find “subversive” talk over international phone lines? Software for the second start-up of a Silicon Valley executive banished from his first company? A system to help AIDS patients get services across a city? The details escape me just now. We may be helping poor sick people
or tuning a set of low-level routines to verify bits on a distributed database protocol—I don’t care. I should care; in another part of my being—later, perhaps when we emerge from this room full of computers—I will care very much why and for whom and for what purpose I am writing software. But just now: no. I have passed through a membrane where the real world and its uses no longer matter. I am a software engineer, an independent contractor working for a department of a city government. I’ve hired Joel and three other programmers to work with me. Down the hall is Danny, a slim guy in wire-rimmed glasses who comes to work with a big, wire-haired dog. Across the bay in his converted backyard shed is Mark, who works on the database. Somewhere, probably asleep by now, is Bill the network guy. Right now, there are only two things in the universe that matter to us. One, we have some bad bugs to fix. Two, we’re supposed to install the system on Monday, which I think is tomorrow.

“Oh, no, no!” moans Joel, who is slumped over his keyboard. “No-o-o-o.” It comes out in a long wail. It has the sound of lost love, lifetime regret. We’ve both been programmers long enough to know that we are at that place. If we find one more serious problem we can’t solve right away, we will not make it. We won’t install. We’ll go the terrible, familiar way of all software: we’ll be late.

“No, no, no, no. What if the members of the set start with spaces. Oh, God. It won’t work.”

He is as near to naked despair as has ever been shown to me by anyone not in a film. Here, in that place,
we have no shame. He has seen me sleeping on the floor, drooling. We have both seen Danny’s puffy white midsection—young as he is, it’s a pity—when he stripped to his underwear in the heat of the machine room. I have seen Joel’s dandruff, light coating of cat fur on his clothes, noticed things about his body I should not. And I’m sure he’s seen my sticky hair, noticed how dull I look without make-up, caught sight of other details too intimate to mention. Still, none of this matters anymore. Our bodies were abandoned long ago, reduced to hunger and sleeplessness and the ravages of sitting for hours at a keyboard and a mouse. Our physical selves have been battered away. Now we know each other in one way and one way only: the code.

Besides, I know I can now give him pleasure of an order which is rare in any life: I am about to save him from despair.

“No problem,” I say evenly. I put my hand on his shoulder, intending a gesture of reassurance. “The parameters never start with a space.”

It is just as I hoped. His despair vanishes. He becomes electric, turns to the keyboard and begins to type at a rapid speed. Now he is gone from me. He is disappearing into the code—now that he knows it will work, now that I have reassured him that, in our universe, the one we created together, space can indeed be forever and reliably numeric.

The connection, the shared thought-stream, is cut. It has all the frustration of being abandoned by a lover just
before climax. I know this is not physical love. He is too young, he works for me; he’s a man and I’ve been tending toward women; in any case, he’s too prim and business-schooled for my tastes. I know this sensation is not real attraction: it is only the spillover, the excess charge, of the mind back into the abandoned body. Only. Ha. This is another real-world thing that does not matter. My entire self wants to melt into this brilliant, electric being who has shared his mind with me for twenty seconds.

Restless, I go into the next room where Danny is slouched at his keyboard. The big, wire-haired dog growls at me. Danny looks up, scowls like his dog, then goes back to typing. I am the designer of this system, his boss on this project. But he’s not even trying to hide his contempt. Normal programmer, I think. He has fifteen windows full of code open on his desktop. He has overpopulated his eyes, thoughts, imagination. He is drowning in bugs and I know I could help him, but he wants me dead just at the moment. I am the last-straw irritant. Talking: Shit! What the hell is wrong with me? Why would I want to talk to him? Can’t I see that his stack is overflowing?

“Joel may have the overlapping controls working,” I say.

“Oh, yeah?” He doesn’t look up.

“He’s been using me as a programming dummy,” I say. “Do you want to talk me through the navigation errors?” Navigation errors: bad. You click to go somewhere but get somewhere else. Very, very bad.

“What?” He pretends not to hear me.

“Navigation errors. How are they?”

“I’m working on them.” Huge, hateful scowl. Contempt that one human being should not express to another under any circumstances. Hostility that should kill me, if I were not used to it, familiar with it, practiced in receiving it. Besides, we are at that place. I know that this hateful programmer is all I have between me and the navigation bug. “I’ll come back later,” I say.

Later: how much later can it get? Daylight can’t be far off now. This small shoal of pre-installation madness is washing away even as I wander back down the hall to Joel.

“Yes! It’s working!” says Joel, hearing my approach.

He looks up at me. “You were right,” he says. The ultimate one programmer can say to another, the accolade given so rarely as to be almost unknown in our species. He looks right at me as he says it: “You were right. As always.”

This is beyond rare. Right: the thing a programmer desires above, beyond all. As always: unspeakable, incalculable gift.

“I could not have been right without you,” I say. This is true beyond question. “I only opened the door. You figured out how to go through.”

I immediately see a certain perfume advertisement: a man holding a violin embraces a woman at a piano. I want to be that ad. I want efficacies of reality to vanish, and I want to be the man with violin, my programmer to be the woman at the piano. As in the ad, I want the teacher to interrupt the lesson and embrace the student. I want the rules to be broken. Tabu. That is the name of the
perfume. I want to do what is taboo. I am the boss, the senior, the employer, the person in charge. So I must not touch him. It is all taboo. Still—

Danny appears in the doorway.

“The navigation bug is fixed. I’m going home.”

“I’ll test it—”

“It’s fixed.”

He leaves.

It is sometime in the early morning. Joel and I are not sure if the night guard is still on duty. If we leave, we may not get back up the elevator. We leave anyway.

We find ourselves on the street in a light drizzle. He has on a raincoat, one that he usually wears over his too-prim, too-straight, good-biz-school suits. I have on a second-hand-store leather bomber jacket, black beret, boots. Someone walking by might wonder what we were doing together at this still-dark hour of the morning.

“Goodnight,” I say. We’re still charged with thought energy. I don’t dare extend my hand to shake his.

“Goodnight, “he says.

We stand awkwardly for two beats more. “This will sound strange,” he says, “but I hope I don’t see you tomorrow.”

We stare at each other, still drifting in the wake of our shared mind-stream. I know exactly what he means. We will only see each other tomorrow if I find a really bad bug.

“Not strange at all,” I say, “I hope I don’t see you, either.”

I don’t see him. The next day, I find a few minor bugs, fix them, and decide the software is good enough. Mind-meld fantasies recede as the system goes live. We install the beginnings of a city-wide registration system for AIDS patients. Instead of carrying around soiled and wrinkled eligibility documents, AIDS clients only have to prove once that they are really sick and really poor. It is an odd system, if I think of it, certifying that people are truly desperate in the face of possible death.

Still, this time I’m working on a “good” project, I tell myself. We are helping people, say the programmers over and over, nearly in disbelief at their good fortune. Three programmers, the network guy, me—fifty-eight years of collective technical experience—and the idea of helping people with a computer is a first for any of us.

Yet I am continually anxious. How do we protect this database full of the names of people with AIDS? Is a million-dollar computer system the best use of continually shrinking funds? It was easier when I didn’t have to think about the real-world effect of my work. It was easier—and I got paid more—when I was writing an “abstracted interface to any arbitrary input device.” When I was designing a “user interface paradigm,” defining a “test-bed methodology.” I could disappear into weird passions of logic. I could stay in a world peopled entirely by programmers, other weird logic-dreamers like myself, all caught up in our own inner electricities. It was easier and more valued. In my profession, software engineering, there is something almost shameful in this helpful, social-services
system we’re building. The whole project smacks of “end users”—those contemptible, oblivious people who just want to use the stuff we write and don’t care how we did it.

“What are you working on?” asked an acquaintance I ran into at a book signing. She’s a woman with her own start-up company. Her offices used to be in the loft just below mine, two blocks from South Park, in San Francisco’s Multimedia Gulch. She is tall and strikingly attractive; she wears hip, fashionable clothes; her company already has its first million in venture-capital funding. “What are you working on,” she wanted to know, “I mean, that isn’t under non-D?”

Under non-D. Nondisclosure. That’s the cool thing to be doing: working on a system so new, so just started-up, that you can’t talk about it under pain of lawsuit.

“Oh, not much,” I answered, trying to sound breezy. A city-wide network for AIDS service providers: how unhip could I get? If I wanted to do something for people with AIDS, I should make my first ten million in stock options, then attend some fancy party where I wear a red ribbon on my chest. I should be a sponsor for Digital Queers. But actually working on a project for end users? Where my client is a government agency? In the libertarian world of computing, where “creating wealth” is all, I am worse than uncool: I am aiding and abetting the bureaucracy, I am a net consumer of federal taxes—I’m what’s wrong with this country.

“Oh, I’m basically just plugging in other people’s
software these days. Not much engineering. You know,” I waved vaguely, “plumbing mostly.”

My vagueness paid off. The woman winked at me. “Networks,” she said.

“Yeah. Something like that,” I said. I was disgusted with myself, but, when she walked away, I was relieved.

The end users I was so ashamed of came late in the system development process. I didn’t meet them until the software was half-written. This is not how these things are supposed to go—the system is not supposed to predate the people who will use it—but it often goes that way anyhow.

The project was eight months old when my client-contact, a project manager in a city department, a business-like woman of fifty, finally set up a meeting. Representatives of several social-service agencies were invited; eight came. A printed agenda was handed around the conference table. The first item was “Review agenda.” My programmer-mind whirred at the implication of endless reiteration: Agenda. Review agenda. Agenda. Forever.

“Who dreamed up this stuff?” asked a woman who directed a hospice and home-care agency. “This is all useless!” We had finally come to item four on the agenda: “Review System Specifications.” The hospice director waved a big stack of paper—the specifications arrived at by a “task force”—then tossed it across the table. A heavyset woman apparently of Middle-Eastern descent, she had
probably smoked a very large number of cigarettes in the course of her fifty-odd years on earth. Her laugh trailed off into a chesty rumble, which she used as a kind of drum roll to finish off her scorn.

The other users were no more impressed. A black woman who ran a shelter—elegant, trailing Kente cloth. She kept folding and draping her acres of fabric as some sort of displacement for her boredom. Each time I started talking, I had to speak over a high jangle of her many bracelets set playing as she rearranged herself and ignored me with something that was not quite hostility. A woman who ran a clinic for lesbians, a self-described “femme” with hennaed hair and red fingernails: “Why didn’t someone come talk to us first?” she asked. A good question. My client sat shamefaced. A young, handsome black man, assistant to the hospice director, quick and smart: he simply shook his head and kept a skeptical smile on his face. Finally a dentist and a doctor, two white males who looked pale and watery in this sea of diversity: they worried that the system would get in the way of giving services. And around the table they went, complaint by complaint.

I started to panic. Before this meeting, the users existed only in my mind, projections, all mine. They were abstractions, the initiators of tasks that set off remote procedure calls; triggers to a set of logical and machine events that ended in an update to a relational database on a central server. Now I was confronted with their fleshly existence. And now I had to think about the actual existence
of the people who used the services delivered by the users’ agencies, sick people who were no fools, who would do what they needed to do to get pills, food vouchers, a place to sleep.

I wished, earnestly, I could just replace the abstractions with the actual people. But it was already too late for that. The system pre-existed the people. Screens were prototyped. Data elements were defined. The machine events already had more reality, had been with me longer, than the human beings at the conference table. Immediately, I saw it was a problem not of replacing one reality with another but of two realities. I was there at the edge: the interface of the system, in all its existence, to the people, in all their existence.

I talked, asked questions, but I saw I was operating at a different speed from the people at the table. Notch down, I told myself. Notch down. The users were bright, all too sensitive to each other’s feelings. Anyone who was the slightest bit cut off was gotten back to sweetly: “You were saying?” Their courtesy was structural, built into their “process.” I had to keep my hand over my mouth to keep from jumping in. Notch down, I told myself again. Slow down. But it was not working. My brain whirred out a stream of logic-speak: “The agency sees the client records if and only if there is a relationship defined between the agency and the client,” I heard myself saying. “By definition, as soon as the client receives services from the agency, the system considers the client to have a relationship with the provider. An internal index is created which
represents the relationship.” The hospice director closed her eyes to concentrate. She would have smoked if she could have; she looked at me as if through something she had just exhaled.

I took notes, pages of revisions that had to be done immediately or else doom the system to instant disuse. The system had no life without the user, I saw. I’d like to say that I was instantly converted to the notion of real human need, to the impact I would have on the working lives of these people at the table, on the people living with AIDS; I’d like to claim a sudden sense of real-world responsibility. But that would be lying. What I really thought was this: I must save the system.

I ran off to call the programmers. Living in my hugely different world from the sick patients, the forbearing service providers, the earnest and caring users at the meeting, I didn’t wait to find a regular phone. I went into the next room, took out my cell phone, began punching numbers into it, and hit the “send” button: “We have to talk,” I said.

By the time I saw Joel, Danny, and Mark, I had reduced the users’ objections to a set of five system changes. I would like to use the word “reduce” like a cook: something boiled down to its essence. But I was aware that the real human essence was already absent from the list I’d prepared. An item like “How will we know if the clients have TB?”—the fear of sitting in a small, poorly ventilated room with someone who has medication-resistant TB, the normal and complicated biological urgency of that question—became a list of data elements to be added to the
screens and the database. I tried to communicate some of the sense of the meeting to the programmers. They were interested, but in a mild, backgrounded way. Immediately, they seized the list of changes and, as I watched, they turned them into further abstractions.

“We can add a parameter to the remote procedure call.”

“We should check the referential integrity on that.”

“Should the code be attached to that control or should it be in global scope?”

“Global, because this other object here needs to know about the condition.”

“No! No globals. We agreed. No more globals!”

We have entered the code zone. Here thought is telegraphic and exquisitely precise. I feel no need to slow myself down. On the contrary, the faster the better. Joel runs off a stream of detail, and halfway through a sentence, Mark, the database programmer, completes the thought. I mention a screen element, and Danny, who programs the desktop software, thinks of two elements I’ve forgotten. Mark will later say all bugs are Danny’s fault, but, for now, they work together like cheerful little parallel-processing machines, breaking the problem into pieces that they attack simultaneously. Danny will later become the angry programmer scowling at me from behind his broken code, but now he is still a jovial guy with wire-rimmed glasses and a dog that accompanies him everywhere. “Neato,” he says to something Mark has proposed, grinning, patting the dog, happy as a clam.

“Should we modify the call to AddUser—”

“—to check for User Type—”

“Or should we add a new procedure call—”

“—something like ModifyPermissions.”

“But won’t that add a new set of data elements that repeat—”

“Yeah, a repeating set—”

“—which we’ll have to—”

“—renormalize!”

Procedure calls. Relational database normalization. Objects going in and out of scope. Though my mind is racing, I feel calm. It’s the spacey calm of satellites speeding over the earth at a thousand miles per second: relative to each other, we float. The images of patients with AIDS recede, the beleaguered service providers are forgotten, the whole grim reality of the epidemic fades. We give ourselves over to the sheer fun of the technical, to the nearly sexual pleasure of the clicking thought-stream.

Some part of me mourns, but I know there is no other way: human needs must cross the line into code. They must pass through this semipermeable membrane where urgency, fear, and hope are filtered out, and only reason travels across. There is no other way. Real, death-inducing viruses do not travel here. Actual human confusions cannot live here. Everything we want accomplished, everything the system is to provide, must be denatured in its crossing to the machine, or else the system will die.

[1] TRANSACTIONS

“SOFTWARE IS TEAMWORK,” SAID THE WOMAN IN THE beautiful black outfit. The pants were wide-legged and had a lacy, vaguely see-through surface; the jacket was of wool that draped like silk. In her hand was a glass of twelve-year-old Bordeaux. We were at a wine-tasting party. “Systems analysts, user representatives, department managers, programming managers, programmers, testers” —the woman’s wine glass moved slowly left to right—“an organized team of players working in cooperation to meet well-defined objectives.”

I thought about Danny and Mark and Joel. Somehow I couldn’t see them in this well-run team of players. But the woman was a vice president at a very large credit-card corporation. She got paid to talk this way. “Corporate users,” I thought. They live where software edges into business. Corporate end users: wildebeests of the programming food chain, consumers, roaming perilously far from the machine.

I realized I was thinking this because I was practically
an end user myself, working on the AIDS project, and I had a deep need to distance myself from anything remotely resembling corporate systems. I’m a software engineer, I kept telling myself, an engineer. I had spent too long at this—nineteen years—to give up my technical credentials just yet.

But beyond any techno-ego considerations, I was simply terrified of this woman. She reminded me of everything I’m not: WASP, pleasant in social situations, effective at corporate meetings. Next to her, I felt hopelessly Jewish, obsessed, driven. A woman like this would never display obsession, would never panic the first time she met her end users across a conference table. I used to be amazed at high-level corporate managers and officers. I wondered, “How do they suppress their complications, doubts, and worries? How do they present this mild, certain, straightforward demeanor?” After many years, I understood there was no suppression to it: they really were people without many complications.

The vice president went on to describe her development process. “Everything we do starts from a complete requirements analysis.”

I imagined months, years of meetings; reams of paper. Flowcharts. Spreadsheets.

“Then it moves to the systems analysts, who turn those requirements into system objectives and timelines.”

More meetings, documents, flowcharts, spreadsheets. Dataset listings. Equipment requirements. Proposed configuration drawings.

“User departments then review the system functional specification.”

Contentious meetings. Users trying to articulate needs that don’t fit neatly into all the flowcharts and drawings. Compromises. Promises of “future development” to take unaddressed needs into account.

“Then it moves to programming,” said the vice president.

She swirled the glass, inhaled the nose, took a sip of the Bordeaux. “For us, programming is the smallest part of the process. Lovely wine,” she said. I nodded vague agreement out of courtesy. The vice president and I at least shared a taste for red wine and a fondness for wearing all black. “Since we go through all the right steps, eighty to ninety percent of the systems we specify go on to successful deployment.”

She was triumphant. She drained her glass.

Still, I thought of the place where “it moves to programming.” I asked and found out that the vice president didn’t see much of the programmers; they were levels beneath her; they worked in a building a ten-minute drive from her office. When “it moved to programming,” it literally moved, far away from her, into some realm where other managers had to deal with the special species of human being known as programmers. I noticed how, perhaps unconsciously, the movement to programming was where the vice president stopped to drink the wine. I noticed how quickly she moved from programming to “deployment”—there, done, success. In that place she ran
over so quickly was a dimly understood process: programmers turning the many pages of specifications into a foreign language called code.

“If managing programmers were so easy, there wouldn’t be so many books on the subject,” I said, trying not to sound defensive.

“Uhmm,” she demurred. “Quite possibly.”

Here I was on more certain ground. I knew no one can manage programmers. “A project leader I know once said that managing programmers is like trying to herd cats.”

“Uhmm,” she demurred again. “Clever.”

“I mean, you don’t want them to stop being cats,” I kept on bravely. “You don’t want obedient dogs. You want all that weird strangeness that makes a good programmer. On the other hand, you do have to get them somehow moving in the same direction.”

“Clever,” she murmured again, her focus beginning to roam around the room.

There it was: the thing that makes me so afraid of high-level managers. That impenetrable surface, the apparent lack of complication, doubt, even curiosity. Was she covering discomfort, ignorance, fear of appearing ignorant? Or was she simply bored by me? There was no way I could know. Extrapolating from myself, I thought: What a marvelous ability to affect self-assurance! What superb management of professionally undesirable traits! I longed for such ability to hide my feelings. I imagined someday I would sit in a meeting and be transparent as water, quietly emanating authority.

Then I remembered that she probably had no fears or doubts around me. All she knew about me is what I’d told her: that I’m a software engineer. I’m no one.

I thought of her programmers sitting in their cubicles, surrounded by the well-dressed swirl of analysts and managers. The “system” comes to them done on paper, in English. “All” they have to do is write the code. But somewhere in that translation between the paper and the code, the clarity breaks down. The world as humans understand it and the world as it must be explained to computers come together in the programmer in a strange state of disjunction.

The project begins in the programmer’s mind with the beauty of a crystal. I remember the feel of a system at the early stages of programming, when the knowledge I am to represent in code seems lovely in its structuredness. For a time, the world is a calm, mathematical place. Human and machine seem attuned to a cut-diamond-like state of grace. Once in my life I tried methamphetamine: that speed high is the only state that approximates the feel of a project at its inception. Yes, I understand. Yes, it can be done. Yes, how straightforward. Oh yes. I see.

Then something happens. As the months of coding go on, the irregularities of human thinking start to emerge. You write some code, and suddenly there are dark, unspecified areas. All the pages of careful documents, and still, between the sentences, something is missing.
Human thinking can skip over a great deal, leap over small misunderstandings, can contain ifs and buts in untroubled corners of the mind. But the machine has no corners. Despite all the attempts to see the computer as a brain, the machine has no foreground or background. It cannot simultaneously do something and withhold for later something that remains unknown.1 In the painstaking working out of the specification, line by code line, the programmer confronts all the hidden workings of human thinking.

Now begins a process of frustration. The programmer goes back to the analysts with questions, the analysts to the users, the users to their managers, the managers back to the analysts, the analysts to the programmers. It turns out that some things are just not understood. No one knows the answers to some questions. Or worse, there are too many answers. A long list of exceptional situations is revealed, things that occur very rarely but that occur all the same. Should these be programmed? Yes, of course. How else will the system do the work human beings need to accomplish? Details and exceptions accumulate. Soon the
beautiful crystal must be recut. This lovely edge and that one are gone. The whole graceful structure loses coherence. What began in a state of grace soon reveals itself to be a jumble. The human mind, as it turns out, is messy.

What has happened to the team so affably described by the vice president? The process moving so smoothly from left to right that it could be described without spilling a drop of red wine? It has become a struggle against disorder. A battle of wills. A testing of endurance. Requirements muddle up; changes are needed immediately. Meanwhile, no one has changed the system deadline.

The programmer, who needs clarity, who must talk all day to a machine that demands declarations, hunkers down into a low-grade annoyance. It is here that the stereotype of the programmer, sitting in a dim room, growling from behind Coke cans, has its origins. The disorder of the desk, the floor; the yellow Post-it notes everywhere; the whiteboards covered with scrawl: all this is the outward manifestation of the messiness of human thought. The messiness cannot go into the program; it piles up around the programmer.

Soon the programmer has no choice but to retreat into some private interior space, closer to the machine, where things can be accomplished. The machine begins to seem friendlier than the analysts, the users, the managers. The real-world reflection of the program—who cares anymore? Guide an X-ray machine or target a missile; print a budget or a dossier; run a city subway or a disk-drive read/write arm: it all begins to blur. The
system has crossed the membrane—the great filter of logic, instruction by instruction—where it has been cleansed of its linkages to actual human life.

The goal now is not whatever all the analysts first set out to do; the goal becomes the creation of the system itself. Any ethics or morals or second thoughts, any questions or muddles or exceptions, all dissolve into a junky Nike-mind: Just do it. If I just sit here and code, you think, I can make something run. When the humans come back to talk changes, I can just run the program. Show them: Here. Look at this. See? This is not just talk. This runs. Whatever you might say, whatever the consequences, all you have are words and what I have is this, this thing I’ve built, this operational system. Talk all you want, but this thing here: it works.

Weeks later, I visited the vice president in her office. Behind her desk was a view of the salt fields edging San Francisco Bay. A watery atmosphere hovered over the bay, and the eastern hills were just visible through mist. I watched seabirds out fishing, planes lowering over the water on their way to the airport. High up in this tower, past the protocols of guards and security badges, was a sense of wideness and largeness, calm and distance.

The vice president was in charge of reengineering the company’s global transaction processing. The vast network of banks, automated tellers, clearinghouses, computers, phone lines—all of which go into sending a
single credit-card transaction around the globe—was her domain. Last Christmas Eve, her department processed seventy two million transactions. Three billion dollars whirred electronically across states, nations, oceans, and air. The very electronic backbone of capitalism: a universe of transactions, imagined money circulating on a planetary scale.

“If it all breaks down,” she said, “the banks can’t balance their accounts.” She was surprisingly matter-of-fact about this catastrophe. “They might do business for a day, but they won’t know what they’re doing.”

A wave of nausea washed over me: I imagined what it would feel like to leave a bug lying around and wind up being responsible for shutting down banks around the world.

“Can I meet the programmers who work on this system?”

She was uncertain for a moment. Then: “Well, yes. Maybe. Why not?”

“How many of them are there?”

“Three.”

“Only three?” Another wave of nausea: the odds of being the one responsible for shutting down world banking were just increased to one in three.

The vice president laughed. “We’re lucky to have them. The system is written in assembler.”

“It’s in assembler?” I felt a true, physical sickness. “Assembler?” Low-level code. One step above machine language. Hard to write, harder to change. Over time, the
comments begin to outnumber the programming statements, but it does no good. No one can read it anyway. “How old is the system?”

“Fifteen years.”

“Fifteen years! Oh, my God … .”

I reconsidered the vice president, in her plain but excellent suit, whose billions in electronic funds were riding around the planet atop fifteen-year-old assembler code. Suddenly, I forgave her for saying that “programming is the smallest part of the process.” I understood her not wanting to dwell on the slip-space between the seventy two million transactions and the tangled human-built logic they must traverse. No, it’s best just not to think too much about the people who wrote the code. Just let it all “go off to programming.” Let three lucky programmers take care of it. There: Gone. Done. Deployed.

When the vice president saw my sympathies, she relaxed. Now she wanted to talk to me about all the “groovy new technologies” being tried out by a special programming group. Multitiered client-server, object-oriented systems, consumer networks—all the cool stuff that was on the opposite side of the universe from her fifteen-year-old assembler code.

“We need all that new technology to handle the complexity,” she said. “The number of transactions is growing geometrically. The number of variables—the banks, their needs—keeps accelerating. We want the programmers to go off and be creative with all this new stuff,” she said.

She was happy for a moment, imagining her domain
growing yet wider, yet busier, yet groovier. We both sat back and let the sexy glow of new technology overtake us. Then her mood took an abrupt shift. “But the programmers, the programmers … .”

She stopped, a dark look on her face.

“The problem is the programmers. Especially the ones working with the new stuff. Nobody can figure out how to manage them.”

We sat quietly. The slip-space opened before us. The world and its transactions sat on one side. The programmers, the weird strange unherdable cats, roamed freely on the other. The vice president had peered into the abyss. Then she stepped back.

“Don’t tell anyone I said that,” she said.

Twenty years before my meeting with the vice president, I was a communist. I joined an underground party.2 I took a nom de guerre. If I had been clever enough to write a bug fatal to world banking, I would have been promoted to party leadership, hailed as a heroine of the revolution. Nothing would have pleased me more than
slipping in a well-placed bit of mislogic and—crash!—down comes Transnational Capitalism one Christmas Eve.

Now the thought terrifies me. The wave of nausea I felt in the vice president’s office, the real fear of being responsible for her system, followed me around for days. And still, try as I might, I can’t envision a world where all the credit cards stop working. The life of normal people —buying groceries, paying bills—would unravel into confusion overnight. What has happened to me, and what has happened to the world? My old leftist beliefs now seem as anomalous and faintly ridiculous as a masked Sub-commandante Marcos, Zapatista rebel, son of a furniture-store owner, emerging from the Mexican jungles to post his demands on the Internet.

We are all hooked on the global network now, I tell myself, hooked to it and hooked on it. The new drug: the instant, the now, the worldwide. A line from an old Rolling Stones’ song and an ad for an on-line newspaper keep running through my head:

War, children,
it’s just a shot away, it’s just a shot away.3

The entire world
is just a click away.4

The global network is only the newest form of revolution, I think. Maybe it’s only revolution we’re addicted to. Maybe the form never matters—socialism, rock and roll, drugs, market capitalism, electronic commerce—who cares, as long as it’s the edgy thing that’s happening in one’s own time. Maybe every generation produces a certain number of people who want change—change in its most drastic form. And socialism, with its quaint decades of guerrilla war, its old-fashioned virtues of steadfastness, its generation-long construction of a “new man”—is all too hopelessly pokey for us now. Everything goes faster these days. Electronic product cycles are six months long; commerce thinks in quarters. Is patience still a virtue? Why wait? Why not make ten million in five years at a software company, then create your own personal, private world on a hill atop Seattle? Then everything you want, the entire world, will be just a click away.

And maybe, when I think of it, it’s not such a great distance from communist cadre to software engineer. I may have joined the party to further social justice, but a deeper attraction could have been to a process, a system, a program. I’m inclined to think I always believed in the machine. For what was Marx’s “dialectic” of history in all its inevitability but a mechanism surely rolling toward the future? What were his “stages” of capitalism but the algorithm of a program that no one could ever quite get to run?

And who was Karl Marx but the original technophile? Wasn’t he the great materialist—the man who believed that our thoughts are determined by our
machinery? Work in a factory on machines that divide the work into pieces, and—voilà!—you are ready to see the social nature of labor, ready to be converted from wage slave to proletarian soldier. Consciousness is superstructure, we leftists used to say, and the machinery of economic life is the “base.” The machines decide where we are in history, and what we can be.

During my days in the party, we used to say that Marxism-Leninism was a “science.” And the party was its “machine.” And when the world did not conform to our ideas of it—when we had to face the chaotic forces that made people believe something or want something or do something—we behaved just like programmers. We moved closer to the machine. Confronting the messiness of human life, we tried to simplify it. Encountering the dark corners of the mind, where all sorts of things lived in a jumble, we tightened the rules, controlled our behavior, watched what we said. We were supposed to want to be “cogs in a wheel.”5

When the Soviet Union began to crumble, and the newspapers wrote about the men who controlled the
empire, I couldn’t help noticing how many of them had been trained as engineers. Our country is ruled by lawyers, I thought, theirs by engineers. Engineers. Of course. If socialism must be “constructed” (as we said in the party), if history is a force as irrefutable as gravity, if a “new man” must be built over generations, if the machine of state must be smashed and replaced with a better one, who better to do the job than an engineer?

“I’m a software engineer,” I reassured myself when I met the vice president, “an engineer.”

A week after seeing the vice president, I had lunch with the old friend who had recruited me into the party. We were talking about grown-up things—houses, relationships—when suddenly I couldn’t stand it anymore. I reached across the table and asked her, “Did we ever really believe in the dictatorship of the proletariat?”

She looked at me like I was crazy.

I drove home through a tunnel and over a bridge, thinking about San Francisco earthquakes. I went home and thought about the gas line in the old Victorian flat where I used to live. We can’t live without cash machines the way we can’t live without natural gas, I thought. There is no way back. This is the fragility of what passes for regular life in the electronic era. We may surround that gas line with fancy moldings, all decorated with curlicues, yet it remains what it is: a slim pipe full of explosives.

What worried me, though, was that the failure of the global electronic system will not need anything so dramatic as an earthquake, as diabolical as a revolutionary. In
fact, the failure will be built into the system in the normal course of things. A bug. Every system has a bug. The more complex the system, the more bugs. Transactions circling the earth, passing through the computer systems of tens or hundreds of corporate entities, thousands of network switches, millions of lines of code, trillions of integrated-circuit logic gates. Somewhere there is a fault. Sometime the fault will be activated. Now or next year, sooner or later, by design, by hack, or by onslaught of complexity. It doesn’t matter. One day someone will install ten new lines of assembler code, and it will all come down.6

Brian can bring it all down. At least he’d like you to think so. He hangs out with a group of cryptographers7 dedicated to knowing how to bring it all down. Cypherpunks: that’s what they call themselves. And if they have not yet brought the vice president’s network to its knees, it may only be because Brian has advised an odd sort of patience. He has counseled his fellow rebel cryptographers to practice their skills quietly, watch while global networks get huge, and let system managers get complacent.

“You actually said that to a reporter!” I told him, “You said everyone should wait until there was really something big worth stealing!”

“Yeah,” he answered with a grin, “I did say that, didn’t I?”

Brian looks like a skateboarder. Or maybe he’s what the devil would look like if the devil decided to move around among us disguised as a skateboarder. Brian has long dark hair, pale eyes covered by thick glasses, and a pointy little beard. He wears baggy jeans, a motorcycle jacket, and a black cowboy hat. At thirty-one, he has devoted what there is of his adult life to the absolute electronic privacy of money. His obsession about the privacy of wealth is like my generation’s obsession about the privacy of identity, or sexuality, or belief, or the self.

In our industry, Brian is perfect. In appearing to be a genius on a skateboard, he couldn’t be playing his part better. He looks exactly the way today’s computing genius is supposed to look: boyish, brilliant, and scary. These traits alone almost recommend him for success, for Brian is in management in his second start-up company. Rebel cryptographers are just the sort of people venture capitalists want to give money to these days.

There’s no good reason I should know any of this about Brian. If I had been going about my life in a sensible way, I should have done no more than notice him as once of those whiz-kid crypto types with their libertarian, multiple-partner lifestyles. In the normal course of things, when Brian approached me, I would have followed my first impulses and fled. Besides, in some cultures, he’s young enough to be my son. But it was not a normal course of time for me, and I was not in a mood to be sensible. When I’m lonely for soul company, as I was then, I have a tendency to believe I’m open to anything. And
sometimes this sense that I have nothing to lose makes me take risks I should not take, do things I should not do.

And I was in one of those risky moods. I’d spent two years in a series of loose-ended relationships. Before that, I parted ways with the woman I’d been with for eight years, and my father died, the two events coming within weeks of each other. All this is only to explain how, yes, I was lonely for soul company and, yes, I felt open to anything. And despite the known dangers of cavorting with libertarian cryptographers, I went off to a conference with the idea that anything might happen to me and why should I care.

Of course, such things have always happened at conventions. Even at conventions like this one: a meeting of programmers, hackers, EU policy wonks, German data privacy commissioners, representatives of the FTC, law enforcement geeks, software industry media stars—all there to debate issues of computers and civil liberties. But no one says that conventioneering techno-freaks are much different from conventioneering dentists. Both have their appropriate forms of funny hats, secret handshakes, and debauchery. Our form of debauchery was talk.

The real conference, the place to talk, was the hotel bar. There, on a very uncomfortable sofa, a mildly famous computing lawyer held forth night after night. And there, sitting knee-to-knee with him at the bar, I had late-night drinks with the Commissioner of Data Policy for Berlin. And over there, on the far side of the wide circular bar one late afternoon, is where I had my first real notice of Brian.

Brian was leaning on the bar, drizzling his long hair through his fingers as dreamily as any teenage girl. He was there doing what we all were doing: haunting the place to find some interesting talk. Maybe this was the one thing Brian and I had in common—this hunger for conversation, this hunt for an intelligent being with whom we might share our brain for twenty seconds.

At the time, I wasn’t much interested in meeting Brian. Next to him was a man I really did want to meet, a writer of science fiction who had just spoken in the conference hall. After all the dull talk about data policies, he had delivered a jeremiad: about dirty words and dirty thoughts and the freedom for sons of bitches like himself to exist on the Internet. This writer was a grown-up man, a rebel of the kind I recognized: someone for whom saying “Fuck you!” into a microphone was the very essence of freedom. Besides, he was a man of words, not a technoid, and someone who clearly had his passions. But Brian, no. Brian could not be mistaken for a man with passions.

I recognized Brian as one of the cypherpunk crowd that had been sitting in a clump near the back of the conference hall. Whenever someone from the government or law enforcement spoke, they put up a wall of backtalk, a sort of peanut gallery of the cryptologically hip. Someone from law enforcement would inveigh against exporting encryption products with keys longer than 40 bits, and a guffaw would rise up from the cypher gallery. “We can break that,” a voice would say, “No problem!”

“We need to be able to catch the bad guys,” said the guy from the FBI.

Guffaws. Backtalk. Much flipping of long hair and pony tails.

“We cannot give powerful encryption keys to our enemies,” said the commissioner from the Federal Trade Commission. “Exports must be limited to 40 bits.”

“40 bits. No problem!”

Could they really crack any message encrypted with keys up to 40 bits, or would they just like everyone to think they could?8 Something in the whole cypherpunk presentation invited skepticism. The name they’d given themselves: punks. Their self-promotion. Their manifestos posted on the Web. The whole hip-boy-rebel thing. The idea that they could outsmart anyone: global superpowers, international law enforcement, giant transnational corporations—they hated any and all authority and no one was safe from their brilliant cypherpunkdom. And they were having way too much fun making everyone deeply nervous. Something about all this was just too familiar. Despite the techno-future glow of it all, something seemed old and recycled. It took me a while but it soon came to me: Yippies. They were latter-day Yippies. Jerry Rubin
and company with higher mathematics skills. Steal this book! Crack this network! Boys being bad: what else is new.

So it was that I had no particular interest in meeting Brian. When he drizzled his hair at me, I made my eyes slide off his immediately. When I kept running into him and he twice invited me to dinner, I declined, both times claiming to have already eaten. “It seems we are perpetually one meal out of phase, Brian,” I said, which seemed to delight the mathematician in him. So I went elsewhere, several other elsewheres in fact, to indulge my openness to anything.

Why then did I return Brian’s calls when I got back home? Maybe, despite those several elsewheres, I still had not played enough Russian roulette with my emotional life. Maybe I underestimated my own perversity. Most likely loneliness was a factor—and let’s not forget flattery, because after all I am a woman of a certain age and Brian, to me, is a boy.

But these days, I tell myself a more intriguing story: that my interest in Brian had something to do with my being an old communist who builds software for hire. That it was somehow related to my attack of nausea over the vulnerabilities of international banking. That Brian—representative of everything my profession admires—was something I couldn’t keep ignoring forever. And that this boy, with his pointy beard and octopus hair, was sent into my life as some sort of strange messenger, and his mission was to test me on what I believe in now.

End of sample

 To search for additional titles please go to

 http://search.overdrive.com.

OEBPS/e9781250024589_img_9642.gif

OEBPS/thumb.jpg

OEBPS/e9781250024589_cover.jpg
CLOSE TO
THE MACHINE

TECHNOPHILIA AND ITS DISCONTENTS

ELLEN ULLMAN

PICADOR

OEBPS/e9781250024589_i0001.jpg
Close to the Machine
Technophilia
and Its

Discontents

With an Introduction by Jaron Lanier

Ellen Ullman

PICADOR

Farrar, Straus and Giroux
New York

OEBPS/e9781250024589_i0002.jpg

OEBPS/thumbPPC.jpg

