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A NOTE ON THE TEXTS
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INTRODUCTION

WE ARE LUCKY TO LIVE IN AN AGE LN WHICH WE ARE STILL MAKING DISCOVERIES. IT IS LIKE THE DISCOVERY OF AMERICA-YOU ONLY DISCOVER IT ONCE. THE AGE IN WHICH WE LIVE IS THE AGE IN WHICH WE ARE DISCOVERING THE FUNDAMENTAL LAWS OF NATURE . . .

—AMERICAN PHYSICIST RICHARD FEYNMAN, SPOKEN IN 1964

Showcasing excerpts from thirty-one of the most important works in the history of mathematics (four of which have been translated into English for the very first time), this book is a celebration of the mathematicians who helped move us forward in our understanding of the world and who paved the way for our current age of science and technology.

Over the centuries, the efforts of these mathematicians have helped the human race to achieve great insight into nature, such as the realization that the earth is round, that the same force that causes an apple to fall here on earth is also responsible for the motions of the heavenly bodies, that space is finite and not eternal, that time and space are intertwined and warped by matter and energy, and that the future can only be determined probabilistically. Such revolutions in the way we perceive the world have always gone hand in hand with revolutions in mathematical thought. Isaac Newton could never have formulated his laws without the analytic geometry of René Descartes and Newton’s own invention of calculus. It is hard to imagine the development of either electrodynamics or quantum theory without the methods of Jean Baptiste Joseph Fourier or the work on calculus and the theory of complex functions pioneered by Carl Friedrich Gauss and Augustin-Louis Cauchy—and it was Henri Lebesgue’s work on the theory of measure that enabled John von Neumann to formulate the rigorous understanding of quantum theory that we have today. Albert Einstein could not have completed his general theory of relativity had it not been for the geometric ideas of Bernhard Riemann. And practically all of modern science would be far less potent (if it existed at all) without the concepts of probability and statistics pioneered by Pierre Simon Laplace.

All through the ages, no intellectual endeavor has been more important to those studying physical science than has the field of mathematics. But mathematics is more than a tool and language for science. It is also an end in itself, and as such, it has, over the centuries, affected our worldview in its own right. Karl Weierstrass provided a new idea of what it means for a function to be continuous, and Georg Cantors work revolutionized peoples idea of infinity. George Boole’s Laws of Thought revealed logic as a system of processes subject to laws identical to the laws of algebra, thus illuminating the very nature of thought and eventually enabling to some degree its mechanization, that is, modern digital computing. Alan Turing illuminated the power and the limits of digital computing, long before sophisticated computations were even possible. Kurt Gödel proved a theorem troubling to many philosophers, as well as anyone else believing in absolute truth: that in any sufficiently complex logical system (such as arithmetic) there must exist statements that can neither be proven nor disproven. And if that weren’t bad enough, he also showed that the question of whether the system itself is logically consistent cannot be proven within the system.

This fascinating volume presents all these and other groundbreaking developments, the central ideas in twenty-five centuries of mathematics, employing the original texts to trace the evolution, and sometimes revolution, in mathematical thinking from its beginnings to today.

Though the first work presented here is that of Euclid, C.300 B.C., the Egyptians and Babylonians had developed an impressive ability to perform mathematical calculations as early as 3,500 B.C. The Egyptians employed this skill to build the great pyramids and to accomplish other impressive ends, but their computations lacked one quality considered essential to mathematics ever since: rigor. For example, the ancient Egyptians equated the area of a circle to the area of a square whose sides were 8/9 the diameter of the circle. This method amounts to employing a value of the mathematical constant pi that is equal to 256/81. In one sense this is impressive—it is only about one half of one percent off of the exact answer. But in another sense it is completely wrong. Why worry about an error of one half of one percent? Because the Egyptian approximation overlooks one of the deep and fundamental mathematical properties of the true number π: that it cannot be written as any fraction. That is a matter of principle, unrelated to any issue of mere quantitative accuracy. Though the irrationality of π wasn’t proved until the late eighteenth century, the early Greeks did discover that numbers existed which could not be written as fractions, and this was both puzzling and shocking to them. This was the brilliance of the Greeks: to recognize the importance of principle plura in mathematics, and that in its essence mathematics is a subject in which one begins with a set of concepts and rules and then rigorously works out their precise consequences.

Euclid detailed the Greek understanding of geometry in his Elements, in Alexandria, around 300 B.C. In the ensuing centuries the Greeks made great strides in both algebra and geometry. Archimedes, the greatest mathematician of antiquity, studied the properties of geometric shapes and created ingenious methods of finding areas and volumes and new approximations for π. Another Alexandrian, Diophantus, looking over the clutter of words and numbers in algebraic problems, saw that an abstraction could be a great simplification. And so, Diophantus took the first step toward introducing symbolism into algebra. Over a millennium later, Frenchman René Descartes united the two fields: geometry and algebra, with his creation of analytic geometry. His work paved the way for Isaac Newton to invent calculus, and with it, a new way of doing science. Since Newton’s day, the pace of mathematical innovation has been almost frenetic, as the fundamental mathematical fields of algebra, geometry, and calculus (or function theory) have fed on and in turn nourished one another, yielding insights into applications as diverse as probability, numbers, and the theory of heat. And as mathematics matured, so did the range of questions it addresses: Kurt Gödel and Alan Turing, the last two thinkers represented in this volume, address perhaps the deepest issue—the question of what is knowable. Like those of the past, future developments in mathematics are sure to affect, directly or indirectly, our ways of living and thinking. The wonders of the ancient world were physical, like the pyramids in Egypt. As this volume illustrates, the greatest wonder of the modern world is our own understanding.
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Euclid

(c.325B.C.–c.265B.C.)

HIS LIFE AND WORK

With the possible exception of Isaac Newton, Euclid is the best known mathematician of all time. Until sometime in the twentieth century, his one and only surviving work, The Elements, was the second best selling book of all time, surpassed only by the Bible. Yet there is no reason to believe that Euclid was anything other than a compiler of the mathematics known in his times—akin to Noah Webster, the great nineteenth-century lexicographer who gave his name to the leading American dictionary.

There is very little known about Euclid. He taught at an academy in Alexandria, the Hellenic city that Alexander the Great founded at the mouth of the Nile in Egypt. Because of his work as a compiler, Euclid was familiar with all of the Greek mathematics that had preceded him, and especially familiar with the first crisis in mathematics: the crisis of the irrational.

Pythagoras (died c.475 B.C.) is a mysterious figure from early Greek mathematics. If we know little of Euclid, we know even less of Pythagoras. We do, however, know something about the Pythagorean School. The Pythagoreans thought that the whole of the cosmos could be described in terms of the whole numbers: 1, 2, 3, etc. As Aristotle wrote, “The Pythagoreans . . . having been brought up in the study of mathematics, thought that things are numbers . . . and that the whole cosmos is a scale and a number.”

The Pythagorean theorem (presented in this chapter) demonstrated this. Small whole numbers, like 3, 4, and 5, could be found that not only described the lengths of a right triangle but also had the property that when the areas of the squares erected on the two smaller sides were added together they equaled the area of the square erected on the longest side, the hypotenuse, the side opposite the right angle. Notice how the ancient Greeks phrased the Pythagorean theorem in terms of geometric objects and not in terms of numbers!

Then someone asked an interesting question. If there were a square with each side a unit in length, and a second square with double the area of the first square, how would the side of the second square compare to the side of the first square? This was how the question of the square root of 2 was originally proposed.

The ancient Egyptians found a good approximation to the answer. The side of the second square was to the side of the first square almost as 7 is to 5. This should certainly be no surprise to us since we know [image: image] can also be expressed as 1.4, which is very close to what to we know to be the decimal expansion of [image: image]. But close wasn’t good enough for the Pythagoreans. After all, the Pythagorean theorem didn’t assert that the areas of the squares were close to being equal. It asserted that they were, in fact, equal.

Then, someone (whose name we don’t know) hit upon a deep insight. Suppose that the square root of 2 can be expressed as the ratio of two whole numbers and that these two whole numbers share no common divisors except 1, their common unit. Call these whole numbers p and q with the property that the square P erected on a side of length p is exactly twice the area of a square Q erected on a side of length q. Now if P contains twice the number of units than Q, then P must contain an even number of units! The Pythagoreans already knew that if a square contains an even number of units, the number of units the square contains must be a multiple of 4 units of area and its sides must contain an even number of whole units of length.

Still, everyone knew how, given one square, you could find another with one fourth the area: Just erect a square on a side equal to half of that side. In this case, erect a square T whose side t is one half of the side p. Because p contains an even number of whole units of length, the side t must still contain some number of whole units of length. But then, if the square T has one fourth the area of the square P, the square Q must contain twice the number of units of area as the square T. So because the square T contains an even number of units of area, then, just like the square P, the square Q must also contain a multiple of 4 units of area. So, its side q had to contain an even number of units of length. So far, this mathematical argument has been like a tennis match—going back and forth between the players.

Eventually, the argument reaches its climax. It began by supposing that the sides p and q had no divisor in common except 1 and ended up with a contradiction: that they shared the divisor 2! Try as they might, the Pythagoreans could not find a flaw with the argument. Knowing that no one had in fact ever found a way to express the square root of 2 as the ratio of two whole numbers, the Pythagoreans faced up to the reality that they had proven that the square root of 2 could not be expressed as the ratio of two whole numbers.

Thus were born the irrational numbers, mathematical objects that could not be expressed by means of whole numbers, at least not for two millennia: the first of what Kronecker called the works of man.

The Pythagoreans carefully guarded this great discovery because it created a crisis that reached to the very roots of their cosmology. When the Pythagoreans learned that one of their members had divulged the secret to someone outside their circle, they quickly made plans to throw the betrayer overboard and drown him while on the high seas. Whoever he was, this man was the first martyr for mathematics!

The crisis of the irrational also instructed the ancient Greeks that they could not look to arithmetic to form the foundation for the rest of mathematics and with it an explanation for the structure of the cosmos. They had to look elsewhere. They turned to geometry.

Euclid’s Elements is most remembered for its geometry, and especially remembered for its treatment of parallel lines in the definition of parallel lines:

Parallel straight lines are straight lines which, being in the same plane and produced indefinitely in both directions, do not meet one another in either direction.

And in the fifth postulate, the parallel postulate:

That, if a straight line falling on two straight lines makes the interior angles on the same side less than two right angles, the straight lines, if produced indefinitely, meet on that side on which are the angles less than the two right angles.

This is very different from the form in which it is often presented:

Given a line and a point not on the line, it is possible to draw exactly one line through the given point parallel to the line.

This is an equivalent, but different form given by the Scottish mathematician John Playfair in 1795.

During the height of the Newtonian era, philosophers, such as Immanuel Kant, never doubted the truth of Euclid’s parallel postulate. They merely inquired about the nature of its truth. Was the parallel postulate necessarily true of the cosmos or only contingently true? Of course, since the advent of the Einsteinian revolution, we know that the parallel postulate isn’t true at all about the cosmos. The Einsteinian space-time cosmos that we inhabit is curved. Euclidean geometry and Newtonian physics are only approximations.

So, we may ask, what did the Greeks think about the nature of the parallel postulate? I believe that a brief consideration of the ancient Greek conception of the world will explain that they too viewed the parallel postulate as a useful fiction rather than as a true description of the physical world. After all, the Greeks believed that we inhabited what the historian of science Alexandre Koyré has called a “closed world,” a spherical cosmos in which there were no straight lines actually extending to infinity. Below the moon’s orbits, bodies moved in straight lines either towards the center of the earth or away from it. Above the moon’s orbit, bodies orbited in perfect circles around the center of the earth. In this cosmos, there weren’t actually any straight lines at all.

But the Greeks had a problem. They needed to find a foundation for their mathematics. The Pythagoreans had pursued arithmetic as a foundation and reached a crisis. Needing to find an alternative, another school descending from Thales (died c.547 B.C.) sought to base mathematics on geometry. This school found that they could achieve very little without the parallel postulate! They couldn’t prove the Pythagorean theorem, for example. In fact, they couldn’t prove much geometry at all. This should come as no surprise to us moderns who have the benefit of 2,500 years of hindsight and know that the Pythagorean theorem is false in non-Euclidean geometries. I believe that the ancient Greeks knew that the parallel postulate was only a useful, no, let me say a very useful, approximation.

If the proof of the irrationality of the square root gave us the first crisis in mathematics, it also gave us the first example of the form of argument known since ancient times as reductio ad absurdum, reduction to absurdity. A second example of this form of argument can be seen in Euclid’s proof the infinitude of prime numbers, another proof that certainly originated with someone else.

A prime number is a positive integer, such as 3 or 23, whose only positive integer divisors are 1 and itself. Proving the infinitude of prime numbers is stunningly simple. Suppose there is a largest prime number P. Multiply together all of the prime numbers up to an including P. Now add 1. The result is not divisible by P, nor is it divisible by any of the prime numbers less than P, because P and all of the prime numbers less than it evenly divides into their product before 1 is added to it. Supposing that there is a largest prime number leads to a contradiction. Reductio ad absurdum!

The Greeks noticed that many prime numbers come together in pairs: 11 and 13, 17 and 19, 29 and 31, for example. These are called twin primes. Some have belleves that the Greeks speculated that there were not only an infinitude of prime numbers but also an infinitude of twin primes. But they weren’t able to prove that, nor has any mathematician since.

Neither has any mathematician been able to disprove the existence of an odd perfect number. A perfect number: That sounds quite odd indeed! What is a perfect number? A perfect number is the sum of its integer divisors greater than or equal to 1 but less than itself, what are called its proper divisors. The ancient Greeks found all of the even perfect numbers as follows:

Notice that the sum of the powers of 2 from 1, which is 20, to 2n−1 is equal to 2n−1. In a very simple case, for n = 3, 1 + 2 + 4 = 7 = 8 − 1. Now let’s do some simple arithmetic.








	7
	= 1 + 2 + 4
	= 20 + 21 + 22



	7
	= 8 − 1
	= 23 − 20



	14
	= 16 − 2
	= 24 − 21




These columns all add up to 28. Writing that sum in yet another we see that

28 = 1 + 2 + 4 + 7 + 14 = 22 + 23 + 24 = 22 × (20 + 21 + 22) = 22 × (23 − 1)

28 is the sum of its divisors. Notice how these divisors are first all the powers of 2 up to a given exponent, then 1 less than the next power of 2, call this the turning point divisor, and then the turning point divisor times all of the powers of 2 up to that given exponent. And notice that if 7 were not a prime number, then 28 would not be equal to the sum of its proper divisors. If the turning divisor had just one prime aliquot divisor that would cause the sum of all the proper divisors to overflow.

With these observations the Greeks had proven that

If (2n − 1) is a prime number then 2n−1 x (2n − 1) is a perfect number and that even perfect numbers must have this form.

More than two millennia later, no one has ever discovered an odd perfect number. No mathematician believes that an odd perfect number exists. But none has been able to prove that no odd perfect number exists!

The Pythagoreans tried and failed to found all of mathematics on arithmetic. Re-founding mathematics on geometry meant founding arithmetic on geometry.

Quick, which is larger: [image: image] or [image: image]? That may be too easy for you. Try this one instead, without a calculator: which is larger: [image: image] or [image: image]? Try doing it just using multiplication and not division. The Eudoxian theory of proportion, presented in Book V of Euclid’s Elements provides the tools, namely, multiplication, for arriving at an answer.

Following Eudoxus (died c.355 B.C.), Euclid posed the problem as follows: consider 4 magnitudes of length—a, b, c, and d. How can one determine whether the ratio of a to b is greater than, less than, or equal to the ratio of c to d? Eudoxus began by asserting that “magnitudes are said to have a ratio to one another which is capable, when a multiple of either may exceed the other.” He recognized that if the ratio of a to b is greater than the ratio of c to d, all multiples of the ratio of a to b are greater than the same number of multiples of the ratio of c to d. Recognizing this fact, Eudoxus realized that all he had to do was to find one multiple to use and he could solve the problem. The multiple he chose was the product of b and d. Multiplying the ratio of a to b by the product of b and d, gave the ratio of the product of a, b and d to b, or the area of the rectangle with sides of length a and d. Similarly, multiplying the ratio of c to d by the product of b and d gave the ratio of the product of c, b, and d to d, or the area of a rectangle with sides of c and b.

Thus, the area of the rectangle with side a and d is greater than the area of the rectangle with sides of length c and b, if and only if the ratio of a to b is greater than the ratio of c to d. Whereas the Pythagoreans had tried to arithmetize geometry and failed, when Eudoxus tried to geometrize arithmetic he succeeded! By the way, since 19 × 19 is greater than 30 × 12, [image: image] is greater than [image: image]!

Euclid is the greatest mathematical encyclopediast of all times. Today, when mathematicians from different specialties have difficulty understanding work at the frontiers of each others’ specialty, no one mathematician could hope to edit a compendium of all known mathematics. Yet it remains an ideal in the mathematical community. In the second half of the twentieth century, the French mathematical community offered a pale imitation of Euclid in the person of Nicholas Bourbaki. In fact, Nicholas Bourbaki wasn’t even a person. He was the fictitious nom de plume of a collective of more than twenty French mathematicians working in diverse branches of mathematics! Euclid remains, to this day, our model for mathematical texts.


SELECTIONS FROM EUCLID’S ELEMENTS

BOOK I

BASIC GEOMETRY—DEFINITIONS, POSTULATES, COMMON NOTIONS AND PROPOSITION 47 (LEADING UP TO THE PYTHAGOREAN THEOREM)

DEFINITIONS

1. A point is that which has no part.

2. A line is breadthless length.

3. The extremities of a line are points.

4. A straight line is a line which lies evenly with the points on itself.

5. A surface is that which has length and breadth only.

6. The extremities of a surface are lines.

7. A plane surface is a surface which lies evenly with the straight lines on itself.

8. A plane angle is the inclination to one another of two lines in a plane which meet one another and do not lie in a straight line.

9. And when the lines containing the angle are straight, the angle is called rectilineal.

10. When a straight line set up on a straight line makes the adjacent angles equal to one another, each of the equal angles is right, and the straight line standing on the other is called a perpendicular to that on which it stands.

11. An obtuse angle is an angle greater than a right angle.

12. An acute angle is an angle less than a right angle.

13. A boundary is that which is an extremity of anything.

14. A figure is that which is contained by any boundary or boundaries.

15. A circle is a plane figure contained by one line such that all the straight lines falling upon it from one point among those lying within the figure are equal to one another;

16. And the point is called the centre of the circle.

17. A diameter of the circle is any straight line drawn through the centre and terminated in both directions by the circumference of the circle, and such a straight line also bisects the circle.

18. A semicircle is the figure contained by the diameter and the circumference cut off by it. And the centre of the semicircle is the same as that of the circle.

19. Rectilineal figures are those which are contained by straight lines, trilateral figures being those contained by three, quadrilateral those contained by four, and multilateral those contained by more than four straight lines.

20. Of trilateral figures, an equilateral triangle is that which has its three sides equal, an isosceles triangle that which has two of its sides alone equal, and a scalene triangle that which has its three sides unequal.

21. Further, of trilateral figures, a right-angled triangle is that which has a right angle, an obtuse-angled triangle that which has an obtuse angle, and an acute-angled triangle that which has its three angles acute.

22. Of quadrilateral figures, a square is that which is both equilateral and right-angled; an oblong that which is right-angled but not equilateral; a rhombus that which is equilateral but not right-angled; and a rhomboid that which has its opposite sides and angles equal to one another but is neither equilateral nor right-angled. And let quadrilaterals other than these be called trapezia.

23. Parallel straight lines are straight lines which, being in the same plane and being produced indefinitely in both directions, do not meet one another in either direction.

POSTULATES

Let the following be postulated:

1. To draw a straight line from any point to any point.

2. To produce a finite straight line continuously in a straight line.

3. To describe a circle with any centre and distance.

4. That all right angles are equal to one another.

5. That, if a straight line falling on two straight lines make the interior angles on the same side less than two right angles, the two straight lines, if produced indefinitely, meet on that side on which are the angles less than the two right angles.

COMMON NOTIONS

1. Things which are equal to the same thing are also equal to one another.

2. If equals be added to equals, the wholes are equal.

3. If equals be subtracted from equals, the remainders are equal.

4. Things which coincide with one another are equal to one another.

5. The whole is greater than the part.

PROPOSITION 47

In right-angled triangles the square on the side subtending the right angle is equal to the squares on the sides containing the right angle. [1]

Let ABC be a right-angled triangle having the angle BAC right;

I say that the square on BC is equal to the squares on BA, AC.

For let there be described on BC the square BDEC,

and on BA, AC the squares GB, HC;

[i. 46]

through A let AL be drawn parallel to either BD or CE, and let AD, FC be joined.

[image: image]

Then, since each of the angles BAC, BAG is right, it follows that with a straight line BA, and at the point A on it, the two straight lines AC, AG not lying on the same side make the adjacent angles equal to two right angles;

therefore CA is in a straight line with AG.

[i. 14]

For the same reason

BA is also in a straight line with AH.

And, since the angle DBC is equal to the angle FBA: for each is right: let the angle ABC be added to each;

therefore the whole angle DBA is equal to the whole angle FBC.

[C. N. 2]

And, since DB is equal to BC, and FB to BA,

the two sides AB, BD are equal to the two sides FB, BC respectively, [2]

and the angle ABD is equal to the angle FBC;

therefore the base AD is equal to the base FC,

and the triangle ABD is equal to the triangle FBC.

[i. 4]

Now the parallelogram BL is double of the triangle ABD, for they have the same base BD and are in the same parallels BD, AL.

[i. 41]

And the square GB is double of the triangle FBC,

for they again have the same base FB and are in the same parallels FB, GC.

[i. 41]

[But the doubles of equals are equal to one another.] [3]

Therefore the parallelogram BL is also equal to the square GB.

Similarly, if AE, BK be joined,

the parallelogram CL can also be proved equal to the square HC;

therefore the whole square BDEC is equal to the two squares GB, HC.

[C. N. 2]

And the square BDEC is described on BC,

and the squares GB, HC on BA, AC.

Therefore the square on the side BC is equal to the squares on the sides BA, AC.

Therefore etc.

Q.E.D.

“If we listen,” says Proclus, “to those who wish to recount ancient history, we may find some of them referring this theorem to Pythagoras and saying that he sacrificed an ox in honour of his discovery. But for my part, while I admire those who first observed the truth of this theorem, I marvel more at the writer of the Elements, not only because he made it fast ([image: image]) by a most lucid demonstration, but because he compelled assent to the still more general theorem by the irrefragable arguments of science in the sixth Book. For in that Book he proves generally that, in right-angled triangles, the figure on the side subtending the right angle is equal to the similar and similarly situated figures described on the sides about the right angle.”

In addition, Plutarch, Diogenes Laertius (viii. 12) and Athenaeus (x. 13) agree in attributing this proposition to Pythagoras. It is easy to point out, as does G. Junge (“Wann haben die Griechen das Irrationale entdeckt?” in Novae Symbolae Joachimicae, Halle a. S., 1907), that these are late witnesses, and that the Greek literature which we possess belonging to the first five centuries after Pythagoras contains no statement specifying this or any other particular great geometrical discovery as due to him. Yet the distich of Apollodorus the “calculator,” whose date (though it cannot be fixed) is at least earlier than that of Plutarch and presumably of Cicero, is quite definite as to the existence of one “famous proposition” discovered by Pythagoras, whatever it was. Nor does Cicero, in commenting apparently on the verses (De nat. deor. iii. C. 36, § 88), seem to dispute the fact of the geometrical discovery, but only the story of the sacrifice. Junge naturally emphasises the apparent uncertainty in the statements of Plutarch and Proclus. But, as I read the passages of Plutarch, I see nothing in them inconsistent with the supposition that Plutarch unhesitatingly accepted as discoveries of Pythagoras both the theorem of the square of the hypotenuse and the problem of the application of an area, and the only doubt he felt was as to which of the two discoveries was the more appropriate occasion for the supposed sacrifice. There is also other evidence not without bearing on the question. The theorem is closely connected with the whole of the matter of Eucl. Book II., in which one of the most prominent features is the use of the gnomon. Now the gnomon was a well-understood term with the Pythagoreans. Aristotle also (Physics iii. 4, 203 a 10–15) clearly attributes to the Pythagoreans the placing of odd numbers as gnomons round successive squares beginning with 1, thereby forming new squares, while in another place (Categ. 14, 15 a 30) the word gnomon occurs in the same (obviously familiar) sense: “e.g. a square, when a gnomon is placed round it, is increased in size but is not altered in form.” The inference must therefore be that practically the whole doctrine of Book II. is Pythagorean. Again Heron (First century. A.D.), like Proclus, credits Pythagoras with a general rule for forming right-angled triangles with rational whole numbers for sides. Lastly, the “summary” of Proclus appears to credit Pythagoras with the discovery of the theory, or study, of irrationals ([image: image]). But it is now more or less agreed that the reading here should be, not [image: image], but [image: image], or rather [image: image] (“of proportionals”), and that the author intended to attribute to Pythagoras a theory of proportion, i.e. the (arithmetical) theory of proportion applicable only to commensurable magnitudes, as distinct from the theory of Eucl. Book V., which was due to Eudoxus. It is not however disputed that the Pythagoreans discovered the irrational (cf. the scholium No. 1 to Book X.). Now everything goes to show that this discovery of the irrational was made with reference to [image: image], the ratio of the diagonal of a square to its side. It is clear that this presupposes the knowledge that i. 47 is true of an isosceles right-angled triangle; and the fact that some triangles of which it had been discovered to be true were rational right-angled triangles was doubtless what suggested the inquiry whether the ratio between the lengths of the diagonal and the side of a square could also be expressed in whole numbers. On the whole, therefore, I see no sufficient reason to question the tradition that, so far as Greek geometry is concerned (the possible priority of the discovery of the same proposition in India will be considered later), Pythagoras was the first to introduce the theorem of i. 47 and to give a general proof of it.

On this assumption, how was Pythagoras led to this discovery? It has been suggested and commonly assumed that the Egyptians were aware that a triangle with its sides in the ratio 3, 4, 5 was right-angled. Cantor inferred this from the fact that this was precisely the triangle with which Pythagoras began, if we may accept the testimony of Vitruvius (ix. 2) that Pythagoras taught how to make a right angle by means of three lengths measured by the numbers 3, 4, 5. If then he took from the Egyptians the triangle 3, 4, 5, he presumably learnt its property from them also. Now the Egyptians must certainly be credited from a period at least as far back as 2000 B.C. with the knowledge that 42 + 32 = 52. Cantor finds proof of this in a fragment of papyrus belonging to the time of the 12th Dynasty newly discovered at Kahun. In this papyrus we have extractions of square roots: e.g. that of 16 is 4, that of [image: image] is [image: image], that of [image: image] is [image: image], and the following equations can be traced:

[image: image]

It will be seen that 42 + 32 = 52 can be derived from each of these by multiplying, or dividing out, by one and the same factor. We may therefore admit that the Egyptians knew that 32 + 42 = 52. But there seems to be no evidence that they knew that the triangle (3, 4, 5) is right-angled; indeed, according to the latest authority (T. Eric Peet, The Rhind Mathematical Papyrus, 1923), nothing in Egyptian mathematics suggests that the Egyptians were acquainted with this or any special cases of the Pythagorean theorem.

How then did Pythagoras discover the general theorem? Observing that 3, 4, 5 was a right-angled triangle, while 32 + 42 = 52, he was probably led to consider whether a similar relation was true of the sides of right-angled triangles other than the particular one. The simplest case (geometrically) to investigate was that of the isosceles right-angled triangle; and the truth of the theorem in this particular case would easily appear from the mere construction of a figure. Cantor and Allman (Greek Geometry from Thales to Euclid) illustrate by a figure in which the squares are drawn outwards, as in i. 47, and divided by diagonals into equal triangles; but I think that the truth was more likely to be first observed from a figure of the kind suggested by Bürk (Das Āpastamba-Śulba-Sūtra in Zeitschrift der deuts hen morgenländ. Gesellschaft, LV., 1901) to explain how the Indians arrived at the same thing. The two figures are as shown above. When the geometrical consideration of the figure had shown that the isosceles right-angled triangle had the property in question, the investigation of the same fact from the arithmetical point of view would ultimately lead to the other momentous discovery of the irrationality of the length of the diagonal of a square expressed in terms of its side.

[image: image]

The irrational will come up for discussion later; and our next question is: Assuming that Pythagoras had observed the geometrical truth of the theorem in the case of the two particular triangles, and doubtless of other rational right-angled triangles, how did he establish it generally?

There is no positive evidence on this point. Two possible lines are however marked out. (1) Tannery says (La Géométrie grecque) that the geometry of Pythagoras was sufficiently advanced to make it possible for him to prove the theorem by similar triangles. He does not say in what particular manner similar triangles would be used, but their use must apparently have involved the use of proportions, and, in order that the proof should be conclusive, of the theory of proportions in its complete form applicable to incommensurable as well as commensurable magnitudes. Now Eudoxus was the first to make the theory of proportion independent of the hypothesis of commensurability; and as, before Eudoxus’ time, this had not been done, any proof of the general theorem by means of proportions given by Pythagoras must at least have been inconclusive. But this does not constitute any objection to the supposition that the truth of the general theorem may have been discovered in such a manner; on the contrary, the supposition that Pythagoras proved it by means of an imperfect theory of proportions would better than anything else account for the fact that Euclid had to devise an entirely new proof, as Proclus says he did in i. 47. This proof had to be independent of the theory of proportion even in its rigorous form, because the plan of the Elements postponed that theory to Books V. and VI., while the Pythagorean theorem was required as early as Book II. On the other hand, if the Pythagorean proof had been based on the doctrine of Books I. and II. only, it would scarcely have been necessary for Euclid to supply a new proof.

The possible proofs by means of proportion would seem to be practically limited to two.

(a) One method is to prove, from the similarity of the triangles ABC, DBA, that the rectangle CB, BD is equal to the square on BA, and, from the similarity of the triangles ABC, DAC, that the rectangle BC, CD is equal to the square on CA; whence the result follows by addition.

[image: image]

It will be observed that this proof is in substance identical with that of Euclid, the only difference being that the equality of the two smaller squares to the respective rectangles is inferred by the method of Book VI. instead of from the relation between the areas of parallelograms and triangles on the same base and between the same parallels established in Book I. It occurred to me whether, if Pythagoras’ proof had come, even in substance, so near to Euclid’s, Proclus would have emphasised so much as he does the originality of Euclid’s, or would have gone so far as to say that he marvelled more at that proof than at the original discovery of the theorem. But on the whole I see no difficulty; for there can be little doubt that the proof by proportion is what suggested to Euclid the method of i. 47, and the transformation of the method of proportions into one based on Book I. only, effected by a construction and proof so extraordinarily ingenious, is a veritable tour de force which compels admiration, notwithstanding the ignorant strictures of Schopenhauer, who wanted something as obvious as the second figure in the case of the isosceles right-angled triangle, and accordingly (Sämmtliche. Werke, iii. § 39 and i. § 15) calls Euclid’s proof “a mouse-trap proof” and “a proof walking on stilts, nay, a mean, underhand, proof” (“Des Eukleides stelzbeiniger, ja, hinterlistiger Beweis”).

(b) The other possible method is this. As it would be seen that the triangles into which the original triangle is divided by the perpendicular from the right angle on the hypotenuse are similar to one another and to the whole triangle, while in these three triangles the two sides about the right angle in the original triangle, and the hypotenuse of the original triangle, are corresponding sides, and that the sum of the two former similar triangles is identically equal to the similar triangle on the hypotenuse, it might be inferred that the same would also be true of squares described on the corresponding three sides respectively, because squares as well as similar triangles are to one another in the duplicate ratio of corresponding sides. But the same thing is equally true of any similar rectilineal figures, so that this proof would practically establish the extended theorem of Eucl. vi. 31, which theorem, however, Proclus appears to regard as being entirely Euclid’s discovery.

On the whole, the most probable supposition seems to me to be that Pythagoras used the first method (a) of proof by means of the theory of proportion as he knew it, i.e. in the defective form which was in use up to the date of Eudoxus.

(2) I have pointed out the difficulty in the way of the supposition that Pythagoras’ proof depended upon the principles of Eucl. Books I. and II. only. Were it not for this difficulty, the conjecture of Bretschneider, followed by Hankel, would be the most tempting hypothesis. According to this suggestion, we are to suppose a figure like that of Eucl. II. 4 in which a, b are the sides of the two inner squares respectively, and a + b is the side of the complete square. Then, if the two complements, which are equal, are divided by their two diagonals into four equal triangles of sides a, b, c, we can place these triangles round another square of the same size as the whole square, in the manner shown in the second figure, so that the sides a, b of successive triangles make up one of the sides of the square and are arranged in cyclic order. It readily follows that the remainder of the square when the four triangles are deducted is, in the one case, a square whose side is c, and in the other the sum of two squares whose sides are a, b respectively. Therefore the square on c is equal to the sum of the squares on a, b. All that can be said against this conjectural proof is that it has no specifically Greek colouring but rather recalls the Indian method. Thus Bhāskara (born 1114 A.D.) simply draws four right-angled triangles equal to the original one inwards, one on each side of the square on the hypotenuse, and says “see!”, without even adding that inspection shows that

[image: image]

[image: image]

[image: image]

Though, for the reason given, there is difficulty in supposing that Pythagoras used a general proof of this kind, which applies of course to right-angled triangles with sides incommensurable as well as commensurable, there is no objection, I think, to supposing that the truth of the proposition in the case of the first rational right-angled triangles discovered, e.g. 3, 4, 5, was proved by a method of this sort. Where the sides are commensurable in this way, the squares can be divided up into small (unit) squares, which would much facilitate the comparison between them. That this subdivision was in fact resorted to in adding and subtracting squares is made probable by Aristotle’s allusion to odd numbers as gnomons placed round unity to form successive squares in Physics III. 4; this must mean that the squares were represented by dots arranged in the form of a square and a gnomon formed of dots put round, or that (if the given square was drawn in the usual way) the gnomon was divided up into unit squares. Zeuthen has shown (“Théorème de Pythagore,” Origine de la Géométrie scientifique in Comptes rendus du IIme Congrès international de Philosophie, Genève, 1904), how easily the proposition could be proved by a method of this kind for the triangle 3, 4, 5. To admit of the two smaller squares being shown side by side, take a square on a line containing 7 units of length (4 + 3), and divide it up into 49 small squares. It would be obvious that the whole square could be exhibited as containing four rectangles of sides 4, 3 cyclically arranged round the figure with one unit square in the middle. (This same figure is given by Cantor to illustrate the method given in the Chinese “Chóu-peï”.) It would be seen that

(I) the whole square (72) is made up of two squares 32 and 42, and two rectangles 3, 4;

(II) the same square is made up of the square EFGH and the halves of four of the same rectangles 3, 4, whence the square EFGH, being equal to the sum of the squares 32 and 42, must contain 25 unit squares and its side, or the diagonal of one of the rectangles, must contain 5 units of length.

[image: image]

Or the result might equally be seen by observing that

(I) the square EFGH on the diagonal of one of the rectangles is made up of the halves of four rectangles and the unit square in the middle, while

(II) the squares 32 and 42 placed at adjacent corners of the large square make up two rectangles 3, 4 with the unit square in the middle.

The procedure would be equally easy for any rational right-angled triangle, and would be a natural method of trying to prove the property when it had once been empirically observed that triangles like 3, 4, 5 did in fact contain a right angle.

Zeuthen has, in the same paper, shown in a most ingenious way how the property of the triangle 3, 4, 5 could be verified by a sort of combination of the second possible method by similar triangles, (b) on p. 13 above, with subdivision of rectangles into similar small rectangles. I give the method on account of its interest, although it is no doubt too advanced to have been used by those who first proved the property of the particular triangle.

Let ABC be a triangle right-angled at A, and such that the lengths of the sides AB, AC are 4 and 3 units respectively.

[image: image]

Draw the perpendicular AD, divide up AB, AC into unit lengths, complete the rectangle on BC as base and with AD as altitude, and subdivide this rectangle into small rectangles by drawing parallels to BC, AD through the points of division of AB, AC.

Now, since the diagonals of the small rectangles are all equal, each being of unit length, it follows by similar triangles that the small rectangles are all equal. And the rectangle with AB for diagonal contains 16 of the small rectangles, while the rectangle with diagonal AC contains 9 of them.

But the sum of the triangles ABD, ADC is equal to the triangle ABC.

Hence the rectangle with BC as diagonal contains 9 + 16 or 25 of the small rectangles; and therefore BC = 5.

Rational right-angled triangles from the arithmetical standpoint.

Pythagoras investigated the arithmetical problem of finding rational numbers which could be made the sides of right-angled triangles, or of finding square numbers which are the sum of two squares; and herein we find the beginning of the indeterminate analysis which reached so high a stage of development in Diophantus. Fortunately Proclus has preserved Pythagoras’ method of solution in the following passage. “Certain methods for the discovery of triangles of this kind are handed down, one of which they refer to Plato, and another to Pythagoras. [The latter] starts from odd numbers. For it makes the odd number the smaller of the sides about the right angle; then it takes the square of it, subtracts unity, and makes half the difference the greater of the sides about the right angle; lastly it adds unity to this and so forms the remaining side, the hypotenuse. For example, taking 3, squaring it, and subtracting unity from the 9, the method takes half of the 8, namely 4; then, adding unity to it again, it makes 5, and a right-angled triangle has been found with one side 3, another 4 and another 5. But the method of Plato argues from even numbers. For it takes the given even number and makes it one of the sides about the right angle; then, bisecting this number and squaring the half, it adds’ unity to the square to form the hypotenuse, and subtracts unity from the square to form the other side about the right angle. For example, taking 4, the method squares half of this, or 2, and so makes 4; then, subtracting unity; it produces 3, and adding unity it produces 5. Thus it has formed the same triangle as that which was obtained by the other method.”

The formula of Pythagoras amounts, if m be an odd number, to

[image: image]

the sides of the right-angled triangle being m, [image: image]. Cantor, taking up an idea of Röth (Geschichte der abendländischen Philosophie, II. 527), gives the following as a possible explanation of the way in which Pythagoras arrived at his formula. If c2 = a2 + b2, it follows that

a2 = c2 − b2 = (c + b) (c − b).

Numbers can be found satisfying the first equation if (1) c + b and c − b are either both even or both odd, and if further (2) c + b and c − b are such numbers as, when multiplied together, produce a square number. The first condition is necessary because, in order that c and b may both be whole numbers, the sum and difference of c + b and c − b must both be even. The second condition is satisfied if c + b and c − b are what were called similar numbers ([image: image]); and that such numbers were most probably known in the time before Plato may be inferred from their appearing in Theon of Smyrna (Expositio rerum mathematicarum ad legendum Platonem utilium, ed. Hiller), who says that similar plane numbers are, first, all square numbers and, secondly, such oblong numbers as have the sides which contain them proportional. Thus 6 is an oblong number with length 3 and breadth 2; 24 is another with length 6 and breadth 4. Since therefore 6 is to 3 as 4 is to 2, the numbers 6 and 24 are similar.

Now the simplest case of two similar numbers is that of 1 and a2, and, since 1 is odd, the condition (1) requires that a2, and therefore a, is also odd. That is, we may take 1 and (2n + 1)2 and equate them respectively to c − b and c + b, whence we have

[image: image]

while

As Cantor remarks, the form in which c and b appear correspond sufficiently closely to the description in the text of Proclus.

Another obvious possibility would be, instead of equating c − b to unity, to put c − b = 2, in which case the similar number c + b must be equated to double of some square, i.e. to a number of the form 2n2, or to the half of an even square number, say [image: image]. This would give






	a = 2n,



	b = n2 − 1,



	c = n2 + 1,




which is Plato’s solution, as given by Proclus.

The two solutions supplement each other. It is interesting to observe that the method suggested by Röth and Cantor is very like that of Eucl. x. (Lemma 1 following Prop. 28). We shall come to this later, but it may be mentioned here that the problem is to find two square numbers such that their sum is also a square. Euclid there uses the property of ii. 6 to the effect that, if AB is bisected at C and produced to D,

[image: image]

In order that uv may be a square, Euclid points out that u and ν must be similar numbers, and further that u and ν must be either both odd or both even in order that b may be a whole number. We may then put for the similar numbers, say, αβ2 and αγ2, whence (if αβ2, αγ2 are either both odd or both even) we obtain the solution

[image: image]

But I think a serious, and even fatal, objection to the conjecture of Cantor and Röth is the very fact that the method enables both the Pythagorean and the Platonic series of triangles to be deduced with equal ease. If this had been the case with the method used by Pythagoras, it would not, I think, have been left to Plato to discover the second series of such triangles. It seems to me therefore that Pythagoras must have used some method which would produce his rule only; and further it would be some less recondite method, suggested by direct observation rather than by argument from general principles.

One solution satisfying these conditions is that of Bretschneider, who suggests the following simple method. Pythagoras was certainly aware that the successive odd numbers are gnomons, or the differences between successive square numbers. It was then a simple matter to write down in three rows (a) the natural numbers, (b) their squares, (c) the successive odd numbers constituting the differences between the successive squares in (b), thus:

[image: image]

Pythagoras had then only to pick out the numbers in the third row which are squares, and his rule would be obtained by finding the formula connecting the square in the third line with the two adjacent squares in the second line. But even this would require some little argument; and I think a still better suggestion, because making pure observation play a greater part, is that of P. Treutlein (Zeitschrift für Mathematik und Physik, XXVIII., 1883, Hist.-litt. Abtheilung).

We have the best evidence (e.g. in Theon of Smyrna) of the practice of representing square numbers and other figured numbers, e.g. oblong, triangular, hexagonal, by dots or signs arranged in the shape of the particular figure. (Cf. Aristotle, Metaph. 1092 b 12). Thus, says Treutlein, it would be easily seen that any square number can be turned into the next higher square by putting a single row of dots round two adjacent sides, in the form of a gnomon (see figures on next page).

If a is the side of a particular square, the gnomon round it is shown by simple inspection to contain 2a + 1 dots or units. Now, in order that 2a + 1 may itself be a square, let us suppose

[image: image]

In order that a and a + 1 may be integral, n must be odd, and we have at once the Pythagorean formula

[image: image]

I think Treutlein’s hypothesis is shown to be the correct one by the passage in Aristotle’s Physics already quoted, where the reference is undoubtedly to the Pythagoreans, and odd numbers are clearly identified with gnomons “placed round 1.” But the ancient commentaries on the passage make the matter clearer still. Philoponus says: “As a proof. . . the Pythagoreans refer to what happens with the addition of numbers; for when the odd numbers are successively added to a square number they keep it square and equilateral.. . . Odd numbers are accordingly called gnomons because, when added to what are already squares, they preserve the square form.. . . Alexander has excellently said in explanation that the phrase ‘when gnomons are placed round’ means making a figure with the odd numbers ([image: image]) . . . for it is the practice with the Pythagoreans to represent things in figures ([image: image]).”

[image: image]

The next question is: assuming this explanation of the Pythagorean formula, what are we to say of the origin of Plato’s? It could of course be obtained as a particular case of the general formula of Eucl. x. already referred to; but there are two simple alternative explanations in this case also. (1) Bretschneider observes that, to obtain Plato’s formula, we have only to double the sides of the squares in the Pythagorean formula,

[image: image]

where however n is not necessarily odd.

(2) Treutlein would explain by means of an extension of the gnomon idea. As, he says, the Pythagorean formula was obtained by placing a gnomon consisting of a single row of dots round two adjacent sides of a square, it would be natural to try whether another solution could not be found by placing round the square a gnomon consisting of a double row of dots. Such a gnomon would equally turn the square into a larger square; and the question would be whether the double-row gnomon itself could be a square. If the side of the original square was a, it would easily be seen that the number of units in the double-row gnomon would be 4a + 4, and we have only to put

[image: image]

[image: image]

and we have the Platonic formula

(2n)2 + (n2 − 1)2 = (n2 + 1)2.

I think this is, in substance, the right explanation, but, in form, not quite correct. The Greeks would not, I think, have treated the double row as a gnomon. Their comparison would have been between (1) a certain square plus a single-row gnomon and (2) the same square minus a single-row gnomon. As the application of Eucl. ii. 4 to the case where the segments of the side of the square are a, 1 enables the Pythagorean formula to be obtained as Treutlein obtains it, so I think that Eucl. ii. 8 confirms the idea that the Platonic formula was obtained by comparing a square plus a gnomon with the same square minus a gnomon. For ii. 8 proves that

4ab + (a − b)2 = (a + b)2,

[image: image]

whence, substituting 1 for b, we have

4a + (a − 1)2 = (a + 1)2,

and we have only to put a = n2 to obtain Plato’s formula.

The “theorem of Pythagoras” in India.

This question has been discussed anew in the last few years as the result of the publication of two important papers by Albert Bürk on Das Āpastamba-Sulba-Sūtra in the Zeitschrift der deutschen morgenländischen Gesellschaft (lv, 1901, and lvi., 1902). The first of the two papers contains the introduction and the text, the second the translation with notes. A selection of the most important parts of the material was made and issued by G. Thibaut in the Journal of the Asiatic Society of Bengal, XLIV., 1875, Part I. (reprinted also at Calcutta, 1875, as The Śulvasūtras, by G. Thibaut). Thibaut in this work gave a most valuable comparison of extracts from the three Āulvasūtras by Bāudhāyana, Āpastamba and Kātyāyana respectively, with a running commentary and an estimate of the date and originality of the geometry of the Indians. Bürk has however done good service by making the Āpastamba-Ś.-S. accessible in its entirety and investigating the whole subject afresh. With the natural enthusiasm of an editor for the work he is editing, he roundly maintains, not only that the Pythagorean theorem was known and proved in all its generality by the Indians long before the date of Pythagoras (about 580—500 B.C.), but that they had also discovered the irrational; and further that, so far from Indian geometry being indebted to the Greek, the much-travelled Pythagoras probably obtained his theory from India. Three important notices and criticisms of Bürk’s work have followed, by H. G. Zeuthen (“Théorème de Pythagore,” Origine de la Géométrie scientifique, 1904, already quoted), by Moritz Cantor (Über die älteste indische Mathematik in the Archiv der Mathematik und Physik, VIII., 1905) and by Heinrich Vogt (Haben die alten Inder den Pythagoreischen Lehrsatz und das Irrationale gekannt? in the Bibliotheca Mathematica, VII3, 1906. See also Cantor’s Geschichte der Mathematik, I3.

The general effect of the criticisms is, I think, to show the necessity for the greatest caution, to say the least, in accepting Bürks conclusions.

I proceed to give a short summary of the portions of the contents of the Āpastamba-Ś.-S. which are important in the present connexion. It may be premised that the general object of the book is to show how to construct altars of certain shapes, and to vary the dimensions of altars without altering the form. It is a collection of rules for carrying out certain constructions. There are no proofs, the nearest approach to a proof being in the rule for obtaining the area of an isosceles trapezium, which is done by drawing a perpendicular from one extremity of the smaller of the two parallel sides to the greater, and then taking away the triangle so cut off and placing it, the other side up, adjacent to the other equal side of the trapezium, thereby transforming the trapezium into a rectangle. It should also be observed that Āpastamba does not speak of right-angled triangles, but of two adjacent sides and the diagonal of a rectangle. For brevity, I shall use the expression “rational rectangle” to denote a rectangle the two sides and the diagonal of which can be expressed in terms of rational numbers. The references in brackets are to the chapters and numbers of Āpastamba’s work.

(1) Constructions of right angles by means of cords of the following relative lengths respectively:

[image: image]

(2) A general enunciation of the Pythagorean theorem thus: “The diagonal of a rectangle produces [i.e. the square on the diagonal is equal to] the sum of what the longer and shorter sides separately produce [i.e. the squares on the two sides].”

(i. 4)

(3) The application of the Pythagorean theorem to a square instead of a rectangle [i.e. to an isosceles right-angled triangle]: “The diagonal of a square produces an area double [of the original square].”

(i. 5)

(4) An approximation to the value of [image: image]; the diagonal of a square is [image: image] times the side.

(i. 6)

(5) Application of this approximate value to the construction of a square with side of any length.

(ii. 1)

(6) The construction of a [image: image], by means of the Pythagorean theorem, as the diagonal of a rectangle with sides a and a [image: image]

(ii. 2)

(7) Remarks equivalent to the following:

[image: image]

(c) Generally, the square on any length contains as many rows (of small, unit, squares) as the length contains units.

(iii. 7)

(8) Constructions, by means of the Pythagorean theorem, of

(a) the sum of two squares as one square,

(ii. 4)

(b) the difference of two squares as one square.

(ii. 5)

(9) A transformation of a rectangle into a square.

(ii. 7)

[This is not directly done as by Euclid in II. 14, but the rectangle is first transformed into a gnomon, i.e. into the difference between two squares, which difference is then transformed into one square by the preceding rule. If ABCD be the given rectangle of which BC is the longer side, cut off the square ABEF, bisect the rectangle DE left over by HG parallel to FE, move the upper half DG and place it on AF as base in the position AK. Then the rectangle ABCD is equal to the gnomon which is the difference between the square LB and the square LF. In other words, Āpastamba transforms the rectangle ab into the difference between the squares [image: image] and [image: image].]

[image: image]

(10) An attempt at a transformation of a square (a2) into a rectangle which shall have one side of given length (b).

(iii. 1)

[This shows no sign of such a procedure as that of Eucl. I. 44, and indeed does no more than say that we must subtract ab from a2 and then adapt the remainder a2 − ab so that it may “fit on” to the rectangle ab. The problem is therefore only reduced to another of the same kind, and presumably it was only solved arithmetically in the case where a, b are given numerically. The Indian was therefore far from the general, geometrical, solution.]

(11) Increase of a given square into a larger square.

(iii. 9)

[This amounts to saying that you must add two rectangles (a, b) and another square (b2) in order to transform a square a2 into a square (a + b)2. The formula is therefore that of Eucl. ii. 4, a2 + 2ab + b2 = (a + b)2.]

The first important question in relation to the above is that of date. Bürk assigns to the Āpastamba-Śulba-Sūtra a date at least as early as the 5th or 4th century B.C. He observes however (what is likely enough) that the matter of it must have been much older than the book itself. Further, as regards one of the constructions for right angles, that by means of cords of lengths 15, 36, 39, he shows that it was known at the time of the Tāittirīya-Samhitā and the Satapatha-Brāhmana, still older works belonging to the 8th century B.C. at latest. It may be that (as Bürk maintains) the discovery that triangles with sides (a, b, c) in rational numbers such that a2 + b2 = c2 are right-angled was nowhere made so early as in India. We find however in two ancient Chinese treatises (1) a statement that the diagonal of the rectangle (3, 4) is 5 and (2) a rule for finding the hypotenuse of a “right triangle” from the sides, while tradition connects both works with the name of Chou Kung who died 1105 B.C. (D. E. Smith, History of Mathematics).

As regards the various “rational rectangles” used by Āpastamba, it is to be observed that two of the seven, viz. 8, 15, 17 and 12, 35, 37, do not belong to the Pythagorean series, the others consist of two which belong to it, viz. 3, 4, 5 and 5, 12, 13, and multiples of these. It is true, as remarked by Zeuthen, that the rules of ii. 7 and iii. 9, numbered (9) and (11) above respectively, would furnish the means of finding any number of “rational rectangles.” But it would not appear that the Indians had been able to formulate any general rule; otherwise their list of such rectangles would hardly have been so meagre. Āpastamba mentions seven only, really reducible to four (though one other, 7, 24, 25, appears in the Bāudhāyana-Ś.-S., supposed to be older than Āpastamba). These are all that Āpastamba knew of, for he adds (v. 6): “So many recognisable (erkennbare) constructions are there,” implying that he knew of no other “rational rectangles” that could be employed. But the words also imply that the theorem of the square on the diagonal is also true of other rectangles not of the “recognisable” kind, i.e. rectangles in which the sides and the diagonal are not in the ratio of integers; this is indeed implied by the constructions for [image: image], [image: image] etc. up to [image: image] (cf. ii. 2, viii. 5). This is all that can be said. The theorem is, it is true, enunciated as a general proposition, but there is no sign of anything like a general proof; there is nothing to show that the assumption of its universal truth was founded on anything better than an imperfect induction from a certain number of cases, discovered empirically, of triangles with sides in the ratio of whole numbers in which the property (1) that the square on the longest side is equal to the sum of the squares on the other two sides was found to be always accompanied by the property (2) that the latter two sides include a right angle.

It remains to consider Bürk’s claim that the Indians had discovered the irrational. This is based upon the approximate value of [image: image] given by Āpastamba in his rule i. 6 numbered (4) above. There is nothing to show how this was arrived at, but Thibaut’s suggestion certainly seems the best and most natural. The Indians may have observed that 172 = 289 is nearly double of 122 = 144. If so, the next question which would naturally occur to them would be, by how much the side 17 must be diminished in order that the square on it may be 288 exactly. If, in accordance with the Indian fashion, a gnomon with unit area were to be subtracted from a square with 17 as side, this would approximately be secured by giving the gnomon the breadth [image: image], for [image: image]. The side of the smaller square thus arrived at would be [image: image], whence, dividing out by 12, we have

[image: image]

But it is a far cry from this calculation of an approximate value to the discovery of the irrational. First, we ask, is there any sign that this value was known to be inexact? It comes directly after the statement (i. 6) that the square on the diagonal of a square is double of that square, and the rule is quite boldly stated without any qualification: “lengthen the unit by one-third and the latter by one-quarter of itself less one-thirty-fourth of this part.” Further, the approximate value is actually used for the purpose of constructing a square when the side is given (ii. 1). So familiar was the formula that it was apparently made the basis of a sub-division of measures of length. Thibaut observes (Journal of the Asiatic Society of Bengal, XLIX.) that, according to Bāudhāyana, the unit of length was divided into 12 fingerbreadths, and that one of two divisions of the fingerbreadth was into 34 sesame-corns, and he adds that he has no doubt that this division, which he has not elsewhere met, owes its origin to the formula for [image: image]. The result of using this subdivision would be that, in a square with side equal to 12 fingerbreadths, the diagonal would be 17 fingerbreadths less 1 sesame-corn. Is it conceivable that a sub-division of a measure of length would be based on an evaluation known to be inexact? No doubt the first discoverer would be aware that the area of a gnomon with breadth [image: image] and outer side 17 is not exactly equal to 1 but less than it by the square of [image: image]or by [image: image], and therefore that, in taking that gnomon as the proper area to be subtracted from 172, he was leaving out of account the small fraction [image: image]; as, however, the object of the whole proceeding was purely practical, he would, without hesitation, ignore this as being of no practical importance, and, thereafter, the formula would be handed down and taken as a matter of course without arousing suspicion as to its accuracy. This supposition is confirmed by reference to the sort of rules which the Indians allowed themselves to regard as accurate. Thus Āpastamba himself gives a construction for a circle equal in area to a given square, which is equivalent to taking π = 3.09, and yet observes that it gives the required circle “exactly” (iii. 2), while his construction of a square equal to a circle, which he equally calls “exact,” makes the side of the square equal to [image: image]ths of the diameter of the circle (iii. 3), and is equivalent to taking π = 3.004. But, even if some who used the approximation for [image: image] were conscious that it was not quite accurate (of which there is no evidence), there is an immeasurable difference between arrival at this consciousness and the discovery of the irrational. As Vogt says, three stages had to be passed through before the irrationality of the diagonal of a square was discovered in any real sense. (1) All values found by direct measurement or calculations based thereon have to be recognised as being inaccurate. Next (2) must supervene the conviction that it is impossible to arrive at an accurate arithmetical expression of the value. And lastly (3) the impossibility must be proved. Now there is no real evidence that the Indians, at the date in question, had even reached the first stage, still less the second or third.

The net results then of Bürks papers and of the criticisms to which they have given rise appear to be these. (1) It must be admitted that Indian geometry had reached the stage at which we find it in Āpastamba quite independently of Greek influence. But (2) the old Indian geometry was purely empirical and practical, far removed from abstractions such as the irrational. The Indians had indeed, by-trial in particular cases, persuaded themselves of the truth of the Pythagorean theorem and enunciated it in all its generality; but they had not established it by scientific proof.

Alternative proofs.

I. The well-known proof of i. 47 obtained by putting two squares side by side, with their bases continuous, and cutting off right-angled triangles which can then be put on again in different positions, is attributed by an-Nairīzī to Thābit b. Qurra (826–901 A.D.).

His actual construction proceeds thus.

Let ABC be the given triangle right-angled at A.

Construct on AB the square AD;

produce AC to F so that EF may be equal to AC.

Construct on EF the square EG, and produce DH to K so that DK may be equal to AC.

It is then proved that, in the triangles BAC, CFG, KHG, BDK, the sides BA, CE, KH, BD are all equal, and the sides AC, EG, HG, DK are all equal.

The angles included by the equal sides are all right angles; hence the four triangles are equal in all respects.

[i. 4]

Hence BC, CG, GK, KB are all equal.

Further the angles DBK, ABC are equal; hence, if we add to each the angle DBC, the angle KBC is equal to the angle ABD and is therefore a right angle.

[image: image]

In the same way the angle CGK is right;

therefore BCGK is a square, i.e. the square on BC.

Now the sum of the quadrilateral GCLH and the triangle LDB together with two of the equal triangles make the squares on AB, AC, and together with the other two make the square on BC.

Therefore etc.

II. Another proof is easily arrived at by taking the particular case of Pappus’ more general proposition given below in which the given triangle is right-angled and the parallelograms on the sides containing the right angles are squares. If the figure is drawn, it will be seen that, with no more than one additional line inserted, it contains Thābit’s figure, so that Thābit’s proof may have been practically derived from that of Pappus.

III. The most interesting of the remaining proofs seems to be that shown in the accompanying figure. It is given by J. W. Müller, Systematische Zusammenstellung der wichtigsten bisher bekannten Beweise des Pythag. Lehrsatzes (Nürnberg, 1819), and in the second edition (Mainz, 1821) of Ign. Hoffmann, Der Pythag. Lehrsatz mit 32 theils bekannten theils neuen Beweisen [3 more in second edition]. It appears to come from one of the scientific papers of Lionardo da Vinci (1452–1519).

The triangle HKL is constructed on the base KH with the side KL equal to BC and the side LH equal to AB.

Then the triangle HLK is equal in all respects to the triangle ABC, and to the triangle EBF.

[image: image]

Now DB, BG, which bisect the angles ABE, CBF respectively, are in a straight line. Join BL.

It is easily proved that the four quadrilaterals ADGC, EDGE, ABLK, HLBC are all equal.

Hence the hexagons ADEFGC, ABCHLK are equal.

Subtracting from the former the two triangles ABC, EBF, and from the latter the two equal triangles ABC, HLK, we prove that the square CK is equal to the sum of the squares AE, CF.

Pappus’ extension of i. 47.

In this elegant extension the triangle may be any triangle (not necessarily right-angled), and any parallelograms take the place of squares on two of the sides.

Pappus enunciates the theorem as follows:

If ABC be a triangle, and any parallelograms whatever ABED, BCFG be described on AB, BC, and if DE, FG be produced to H, and HB be joined, the parallelograms ABED, BCFG are equal to the parallelogram contained by AC, HB in an angle which is equal to the sum of the angles BAC, DHB.

Produce HB to K; through A, C draw AL, CM parallel to HK, and join LM.

Then, since ALHB is a parallelogram, AL, HB are equal and parallel.

[image: image]

Similarly MC, HB are equal and parallel.

Therefore AL, MC are equal and parallel;

whence LM, AC are also equal and parallel,

and ALMC is a parallelogram.

Further, the angle LAC of this parallelogram is equal to the sum of the angles BAC, DHB, since the angle DHB is equal to the angle LAB.

Now, since the parallelogram DABE is equal to the parallelogram LABH (for they are on the same base AB and in the same parallels AB, DH),

and likewise LABH is equal to LAKN (for they are on the same base LA and in the same parallels LA, HK),

the parallelogram DABE is equal to the parallelogram LAKN.

For the same reason,

the parallelogram BGFC is equal to the parallelogram NKCM.

Therefore the sum of the parallelograms DABE, BGFC is equal to the parallelogram LACM, that is, to the parallelogram which is contained by AC, HB in an angle LAC which is equal to the sum of the angles BAC, BHD.

“And this is far more general than what is proved in the Elements about squares in the case of right-angled (triangles).”

Heron’s proof that AL, BK, CF in Euclid’s figure meet in a point.

The final words of Proclus’ note on i. 47 are historically interesting. He says: “The demonstration by the writer of the Elements being clear, I consider that it is unnecessary to add anything further, and that we may be satisfied with what has been written, since in fact those who have added anything more, like Pappus and Heron, were obliged to draw upon what is proved in the sixth Book, for no really useful object.” These words cannot of course refer to the extension of i. 47 given by Pappus; but the key to them, so far as Heron is concerned, is to be found in the commentary of an-Nairīzī on i. 47, wherein he gives Heron’s proof that the lines AL, FC, BK in Euclid’s figure meet in a point. Heron proved this by means of three lemmas which would most naturally be proved from the principle of similitude as laid down in Book VI., but which Heron, as a tour de force, proved on the principles of Book I. only. The first lemma is to the following effect.

If, in a triangle ABC, DE be drawn parallel to the base BC, and if AF be drawn from the vertex A to the middle point F of BC, then AF will also bisect DE.

This is proved by drawing HK through A parallel to DE or BC, and HDL, KEM through D, E respectively parallel to AGF, and lastly joining DF, EF.

Then the triangles ABE, AFC are equal (being on equal bases), and the triangles DBF, EEC are also equal (being on equal bases and between the same parallels).

Therefore, by subtraction, the triangles ADF, AEF are equal, and hence the parallelograms AL, AM are equal.

These parallelograms are between the same parallels LM, HK; therefore LF, FM are equal, whence DG, GE are also equal.

[image: image]

The second lemma is an extension of this to the case where DE meets BA, CA produced beyond A.

The third lemma proves the converse of Euclid i. 43, that, If a parallelogram AB is cut into four others ADGE, DF, FGCB, CE, so that DF, CE are equal, the common vertex G will be on the diagonal AB.

Heron produces AG till it meets CF in H. Then, if we join HB, we have to prove that AHB is one straight line. The proof is as follows. Since the areas DF, EC are equal, the triangles DGF, ECG are equal.

If we add to each the triangle GCF,

the triangles ECF, DCF are equal;

therefore ED, CF are parallel.

Now it follows from i. 34, 29 and 26 that the triangles AKE, GKD are equal in all respects;

therefore EK is equal to KD.

[image: image]

Hence, by the second lemma,

CH is equal to HF.

Therefore, in the triangles FHB, CHG,

the two sides BF, FH are equal to the two sides GC, CH,

and the angle BFH is equal to the angle GCH;

hence the triangles are equal in all respects,

and the angle BHF is equal to the angle GHC.

Adding to each the angle GHF, we find that the angles BHF, FHG are equal to the angles CHG, GHF,

and therefore to two right angles.

Therefore AHB is a straight line.

Heron now proceeds to prove the proposition that, in the accompanying figure, if AKL perpendicular to BC meet

EC in M, and if BM, MG be joined,

BM, MG are in one straight line.

Parallelograms are completed as shown in the figure, and the diagonals OA, FH of the parallelogram FH are drawn.

Then the triangles FAH, BAC are clearly equal in all respects;

therefore the angle HFA is equal to the angle ABC, and therefore to the angle CAK (since AK is perpendicular to BC).

[image: image]

But, the diagonals of the rectangle FH cutting one another in Y,

FY is equal to YA,

and the angle HFA is equal to the angle OAF.

Therefore the angles OAF, CAK are equal, and accordingly

OA, AK are in a straight line.

Hence OM is the diagonal of SQ;

therefore AS is equal to AQ,

and, if we add AM to each,

FM is equal to MH.

But, since EC is the diagonal of the parallelogram FN,

FM is equal to MN.

Therefore MH is equal to MN;

and, by the third lemma, BM, MG are in a straight line.

1. the square on, [image: image], the word [image: image] or [image: image] being understood.

subtending the right angle. Here [image: image], “subtending,” is used with the simple accusative ([image: image]) instead of being followed by [image: image] and the accusative, which seems to be the original and more orthodox construction.

2. the two sides AB, BD.. . . Euclid actually writes “DB, BA” and therefore the equal sides in the two triangles are not mentioned in corresponding order, though he adheres to the words [image: image] “respectively.” Here DB is equal to BC and BA to FB.

3. [But the doubles of equals are equal to one another.] Heiberg brackets these words as an interpolation, since it quotes a Common Notion which is itself interpolated.


BOOK V

THE EUDOXIAN THEORY OF PROPORTION—DEFINITIONS AND PROPOSITIONS

DEFINITIONS

1. A magnitude is a part of a magnitude, the less of the greater, when it measures the greater.

2. The greater is a multiple of the less when it is measured by the less.

3. A ratio is a sort of relation in respect of size between two magnitudes of the same kind.

4. Magnitudes are said to have a ratio to one another which are capable, when multiplied, of exceeding one another.

5. Magnitudes are said to be in the same ratio, the first to the second and the third to the fourth, when, if any equimultiples whatever be taken of the first and third, and any equimultiples whatever of the second and fourth, the former equimultiples alike exceed, are alike equal to, or alike fall short of, the latter equimultiples respectively taken in corresponding order.

6. Let magnitudes which have the same ratio be called proportional.

7. When, of the equimultiples, the multiple of the first magnitude exceeds the multiple of the second, but the multiple of the third does not exceed the multiple of the fourth, then the first is said to have a greater ratio to the second than the third has to the fourth.

8. A proportion in three terms is the least possible.

9. When three magnitudes are proportional, the first is said to have to the third the duplicate ratio of that which it has to the second.

10. When four magnitudes are <continuously> proportional, the first is said to have to the fourth the triplicate ratio of that which it has to the second, and so on continually, whatever be the proportion.

11. The term corresponding magnitudes is used of antecedents in relation to antecedents, and of consequents in relation to consequents.

12. Alternate ratio means taking the antecedent in relation to the antecedent and the consequent in relation to the consequent.

13. Inverse ratio means taking the consequent as antecedent in relation to the antecedent as consequent.

14. Composition of a ratio means taking the antecedent together with the consequent as one in relation to the consequent by itself.

15. Separation of a ratio means taking the excess by which the antecedent exceeds the consequent in relation to the consequent by itself.

16. Conversion of a ratio means taking the antecedent in relation to the excess by which the antecedent exceeds the consequent.

17. A ratio ex aequali arises when, there being several magnitudes and another set equal to them in multitude which taken two and two are in the same proportion, as the first is to the last among the first magnitudes, so is the first to the last among the second magnitudes;

Or, in other words, it means taking the extreme terms by virtue of the removal of the intermediate terms.

18. A perturbed proportion arises when, there being three magnitudes and another set equal to them in multitude, as antecedent is to consequent among the first magnitudes, so is antecedent to consequent among the second magnitudes, while, as the consequent is to a third among the first magnitudes, so is a third to the antecedent among the second magnitudes.

Proposition 1

If there be any number of magnitudes whatever which are, respectively, equimultiples of any magnitudes equal in multitude, then, whatever multiple one of the magnitudes is of one, that multiple also will all be of all.

Let any number of magnitudes whatever AB, CD be respectively equimultiples of any magnitudes E, F equal in multitude;

I say that, whatever multiple AB is of E, that multiple will AB, CD also be of E, F.

[image: image]

For, since AB is the same multiple of E that CD is of F, as many magnitudes as there are in AB equal to E, so many also are there in CD equal to F.

Let AB be divided into the magnitudes AG, GB equal to E,

and CD into CH, HD equal to F;

then the multitude of the magnitudes AG, GB will be equal to the multitude of the magnitudes CH, HD.

Now, since AG is equal to E, and CH to F,

therefore AG is equal to E, and AG, CH to E, F.

For the same reason

GB is equal to E, and GB, HD to E, F;

therefore, as many magnitudes as there are in AB equal to E,

so many also are there in AB, CD equal to E, F;

therefore, whatever multiple AB is of E, that multiple will AB, CD also be of E, F.

Therefore etc.

Q.E.D.

De Morgan remarks of v. 1–6 that they are “simple propositions of concrete arithmetic, covered in language which makes them unintelligible to modern ears. The first, for instance, states no more than that ten acres and ten roods make ten times as much as one acre and one rood.” One aim therefore of notes on these as well as the other propositions of Book V. should be to make their purport clearer to the learner by setting them side by side with the same truths expressed in the much shorter and more familiar modern (algebraical) notation. In doing so, we shall express magnitudes by the first letters of the alphabet, a, b, c etc., adopting small instead of capital letters so as to avoid confusion with Euclid’s lettering; and we shall use the small letters m, n, p etc. to represent integral numbers. Thus ma will always mean m times a or the mth multiple of a (counting 1. a as the first, 2. a as the second multiple, and so on).

Prop. 1 then asserts that, if ma., mb, mc etc. be any equimultiples of a, b, c etc., then

ma + mb + mc + . . . = m(a + b + c + . . .).

Proposition 2

If a first magnitude be the same multiple of a second that a third is of a fourth, and a fifth also be the same multiple of the second that a sixth is of the fourth, the sum of the first and fifth will also be the same multiple of the second that the sum of the third and sixth is of the fourth.

Let a first magnitude, AB, be the same multiple of a second, C, that a third, DE, is of a fourth, F, and let a fifth, BG, also be the same multiple of the second, C, that a sixth, EH, is of the fourth F;

[image: image]

I say that the sum of the first and fifth, AG, will be the same multiple of the second, C, that the sum of the third and sixth, DH, is of the fourth, F.

For, since AB is the same multiple of C that DE is of F, therefore, as many magnitudes as there are in AB equal to C, so many also are there in DE equal to F.

For the same reason also,

as many as there are in BG equal to C, so many are there also in EH equal to F; therefore, as many as there are in the whole AG equal to C, so many also are there in the whole DH equal to F.

Therefore, whatever multiple AG is of C, that multiple also is DH of F.

Therefore the sum of the first and fifth, AG, is the same multiple of the second, C, that the sum of the third and sixth, DH, is of the fourth, F.

Therefore etc.

Q.E.D.

To find the corresponding formula for the result of this proposition, we may suppose a to be the “second” magnitude and b the “fourth.” If now the “first” magnitude is ma, the “third” is, by hypothesis, mb; and, if the “fifth” magnitude is na, the “sixth” is nb. The proposition then asserts that ma + na is the same multiple of a that mb + nb is of b.

More generally, if pa, qa . . . and pb, qb . . . be any further equimultiples of a, b respectively, ma + na + pa + qa + . . . is the same multiple of a that mb + nb + pb + qb + . . . is of b. This extension is stated in Simson’s corollary to v. 2 thus:

“From this it is plain that, if any number of magnitudes AB, BG, GH be multiples of another C; and as many DE, EK, KL be the same multiples of F, each of each; the whole of the first, viz. AH, is the same multiple of C that the whole of the last, viz. DL, is of F.”

The course of the proof which separates m into its units and also n into its units, practically tells us that the multiple of a arrived at by adding the two multiples is the (m + n)th multiple; or practically we are shown that

ma + na = (m + n)a,

or, more generally, that

ma + na + pa + . . . = (m + n + p + . . .)a.

Proposition 3

If a first magnitude be the same multiple of a second that a third is of a fourth, and if equimultiples be taken of the first and third, then also ex aequali the magnitudes taken will be equimultiples respectively, the one of the second and the other of the fourth.

Let a first magnitude A be the same multiple of a second B that a third C is of a fourth D, and let equimultiples EF, GH be taken of A, C;

I say that EF is the same multiple of ? that GH is of D.

For, since EF is the same multiple of A that GH is of C, therefore, as many magnitudes as there are in EF equal to A, so many also are there in GH equal to C.

Let EF be divided into the magnitudes EK, KF equal to A, and GH into the magnitudes GL, LH equal to C;

then the multitude of the magnitudes EK, KF will be equal to the multitude of the magnitudes GL, LH.

[image: image]

And, since A is the same multiple of B that C is of D, while EK is equal to A, and GL to C,

therefore EK is the same multiple of B that GL is of D.

For the same reason

KF is the same multiple of B that LH is of D.

Since, then, a first magnitude EK is the same multiple of a second B that a third GL is of a fourth D,

and a fifth KF is also the same multiple of the second B that a sixth LH is of the fourth D,

therefore the sum of the first and fifth, EF, is also the same multiple of the second B that the sum of the third and sixth, GH, is of the fourth D.

[v. 2]

Therefore etc.

Q.E.D.

Heiberg remarks of the use of ex aequali in the enunciation of this proposition that, strictly speaking, it has no reference to the definition (17) of a ratio ex aequali. But the uses of the expression here and in the definition are, I think, sufficiently parallel, as may he seen thus. The proposition asserts that, if

[image: image]

then m · na is the same multiple of a that m · nb is of b. Clearly the proposition can he extended by taking further equimultiples of the last equimultiples and so on; and we can prove that

p · q . . . m · na is the same multiple of a that p · q . . . m · nb is of b,

where the series of numbers p · q . . . m · n is exactly the same in both expressions;

and ex aequali ([image: image]) expresses the fact that the equimultiples are at the same distance from a, b in the series na, m · na . . . and nb, m · nb . . . respectively.

Here again the proof breaks m into its units, and then breaks n into its units; and we are practically shown that the multiple of a arrived at, viz. m · na, is the multiple denoted by the product of the numbers m, n, i.e. the (mn)th multiple, or in other words that

m · na = mn · a.

Proposition 4

If a first magnitude have to a second the same ratio as a third to a fourth, any equimultiples whatever of the first and third will also have the same ratio to any equimultiples whatever of the second and fourth respectively, taken in corresponding order.

For let a first magnitude A have to a second B the same ratio as a third C to a fourth D; and let equimultiples E, F be taken of A, C, and G, H other, chance, equimultiples of B, D;

I say that, as E is to G, so is F to H.

[image: image]

For let equimultiples K, L be taken of E, F, and other, chance, equimultiples M, N of G, H.

Since B is the same multiple of A that F is of C,

and equimultiples K, L of E, F have been taken,

therefore K is the same multiple of A that L is of C.

[v. 3]

For the same reason

M is the same multiple of B that N is of D.

And, since, as A is to B, so is C to D,

and of A, C equimultiples K, L have been taken,

and of B, D other, chance, equimultiples M, N,

therefore, if K is in excess of M, L also is in excess of N,

if it is equal, equal, and if less, less.

[v. Def. 5]

And K, L are equimultiples of E, F,

and M, N other, chance, equimultiples of G, H;

therefore, as E is to G, so is F to H.

[v. Def. 5]

Therefore etc.

Q.E.D.

This proposition shows that, if a, b, c, d are proportionals, then

ma is to nb as mc is to nd;

and the proof is as follows:

Take pma, pmc any equimultiples of ma, mc, and qnb, qnd any equimultiples of nb, nd.

Since a : b = c : d, it follows [v. Def. 5] that,

according as pma > = < qnb, pmc > = < qnd.

But the p- and q-equimultiples are any equimultiples;

therefore [v. Def 5]

ma : nb = mc : nd.

It will be observed that Euclid’s phrase for taking any equimultiples of A, C and any other equimultiples of B, D is “let there be taken equimultiples E, F of A, C, and G, H other, chance, equimultiples of B, D,” E, F being called [image: image] simply, and G, H [image: image]. And similarly, when any equimultiples (K, L) of E, F come to be taken, and any other equimultiples (M, N) of G, H. But later on Euclid uses the same phrases about the new equimultiples with reference to the original magnitudes, reciting that “there have been taken, of A, C, equimultiples K, L and of B, D, other, chance, equimultiples M, N”; whereas M, N are not any equimultiples whatever of B, D, but are any equimultiples of the particular multiples (G, H) which have been taken of B, D respectively, though these latter have been taken at random. Simson would, in the first place, add [image: image] in the passages where any equimultiples E, F are taken of A, C and any equimultiples K, L are taken of E, F, because the words are “wholly necessary” and, in the second place, would leave them out where M, N are called [image: image] of B, D, because it is not true that of B, D have been taken “any equimultiples whatever ([image: image]), M, N.” Simson adds: “And it is strange that neither Mr. Briggs, who did right to leave out these words in one place of Prop. 13 of this book, nor Dr. Gregory, who changed them into the word ‘some’ in three places, and left them out in a fourth of that same Prop. 13, did not also leave them out in this place of Prop. 4 and in the second of the two places where they occur in Prop. 17 of this book, in neither of which they can stand consistent with truth: And in none of all these places, even in those which they corrected in their Latin translation, have they cancelled the words [image: image] in the Greek text, as they ought to have done. The same words α [image: image] are found in four places of Prop. 11 of this book, in the first and last of which they are necessary, but in the second and third, though they are true, they are quite superfluous; as they likewise are in the second of the two places in which they are found in the 12th prop. and in the like places of Prop. 22, 23 of this book; but are wanting in the last place of Prop. 23, as also in Prop. 25, Book XI.”

As will be seen, Simson’s emendations amount to alterations of the text so considerable as to suggest doubt whether we should be justified in making them in the absence of MS. authority. The phrase “equimultiples of A, C and other, chance, equimultiples of B, D” recurs so constantly as to suggest that it was for Euclid a quasi-stereotyped phrase, and that it is equally genuine wherever it occurs. Is it then absolutely necessary to insert [image: image] in places where it does not occur, and to leave it out in the places where Simson holds it to be wrong? I think the text can be defended as it stands. In the first place to say “take equimultiples of A, C” is a fair enough way of saying take any equimultiples whatever of A, C. The other difficulty is greater, but may, I think, be only due to the adoption of any whatever as the translation of [image: image]. As a matter of fact, the words only mean chance equimultiples, equimultiples which are the result of random selection. Is it not justifiable to describe the product of two chance numbers, numbers selected at random, as being a “chance number,” since it is the result of two random selections? I think so, and I have translated [image: image] accordingly as implying, in the case in question, “other equimultiples whatever they may happen to be.”

To this proposition Theon added the following:

“Since then it was proved that, if K is in excess of M, L is also in excess of N, if it is equal, (the other is) equal, and if less, less,

it is clear also that,

if M is in excess of K, N is also in excess of L, if it is equal, (the other is) equal, and if less, less; and for this reason,

as G is to E, so also is H to F.

PORISM. From this it is manifest that, if four magnitudes be proportional, they will also be proportional inversely.”

Simson rightly pointed out that the demonstration of what Theon intended to prove, viz. that, if E, G, F, H be proportionals, they are proportional inversely, i.e. G is to E as H is to F, does not in the least depend upon this 4th proposition or the proof of it; for, when it is said that, “if K exceeds M, L also exceeds N etc.,” this is not proved from the fact that E, G, F, H are proportionals (which is the conclusion of Prop. 4), but from the fact that A, B, C, D are proportionals.

The proposition that, if A, B, C, D are proportionals, they are also proportionals inversely is not given by Euclid, but Simson supplies the proof in his Prop. B. The fact is really obvious at once from the 5th definition of Book V., and Euclid probably omitted the proposition as unnecessary.

Simson added, in place of Theon’s corollary, the following:

“Likewise, if the first has the same ratio to the second which the third has to the fourth, then also any equimultiples whatever of the first and third have the same ratio to the second and fourth : And, in like manner, the first and the third have the same ratio to any equimultiples whatever of the second and fourth.”

The proof, of course, follows exactly the method of Euclid’s proposition itself, with the only difference that, instead of one of the two pairs of equimultiples, the magnitudes themselves are taken. In other words, the conclusion that

ma is to nb as mc is to nd

is equally true when either m or n is equal to unity.

As De Morgan says, Simson’s corollary is only necessary to those who will not admit M into the list M, 2M, 3M etc.; the exclusion is grammatical and nothing else. The same may be said of Simson’s Prop. A to the effect that, “If the first of four magnitudes has to the second the same ratio which the third has to the fourth: then, if the first be greater than the second, the third is also greater than the fourth; and if equal, equal; if less, less.” This is needless to those who believe once A to be a proper component of the list of multiples, in spite of multus signifying many.

Proposition 5

If a magnitude be the same multiple of a magnitude that a part subtracted is of a part subtracted, the remainder will also be the same multiple of the remainder that the whole is of the whole.

For let the magnitude AB be the same multiple of the magnitude CD that the part AE subtracted is of the part CF subtracted;

I say that the remainder EB is also the same multiple of the remainder FD that the whole AB is of the whole CD.

[image: image]

For, whatever multiple AE is of CF, let EB be made that multiple of CG. [4]

Then, since AE is the same multiple of CF that EB is of GC,

therefore AE is the same multiple of CF that AB is of GF.

[v. 1]

But, by the assumption, AE is the same multiple of CF that AB is of CD.

Therefore AB is the same multiple of each of the magnitudes GF, CD;

therefore GF is equal to CD.

Let CF be subtracted from each;

therefore the remainder GC is equal to the remainder FD.

And, since AE is the same multiple of CF that EB is of GC,

and GC is equal to DF,

therefore AE is the same multiple of CF that EB is of FD.

But, by hypothesis,

AE is the same multiple of CF that AB is of CD;

therefore EB is the same multiple of FD that AB is of CD.

That is, the remainder EB will be the same multiple of the remainder FD that the whole AB is of the whole CD.

Therefore etc.

Q.E.D.

This proposition corresponds to v. 1, with subtraction taking the place of addition. It proves the formula

ma − mb = m(a − b).

Euclid’s construction assumes that, if AE is any multiple of CF, and EB is any other magnitude, a fourth straight line can he found such that EB is the same multiple of it that AE is of CF, or in other words that, given any magnitude, we can divide it into any number of equal parts. This is however not proved, even of straight lines, much less other magnitudes, until vi. 9. Peletarius had already seen this objection to the construction. The difficulty is not got over by regarding it merely as a hypothetical construction; for hypothetical constructions are not in Euclid’s manner. The remedy is to substitute the alternative construction given by Simson, after Peletarius and Campanus’ translation from the Arabic, which only requires us to add a magnitude to itself a certain number of times. The demonstration follows Euclid’s line exactly.

“Take AG the same multiple of FD that AE is of CF;

therefore AE is the same multiple of CF that EG is of CD.

[v. 1]

But AE, by hypothesis, is the same multiple of CF that AB is of CD; therefore EG is the same multiple of CD that KB, is of CD;

wherefore EG is equal to AB.

Take from them the common magnitude AE; the remainder AG is equal to the remainder EB.

Wherefore, since AE is the same multiple of CF that AG is of FD, and since AG is equal to EB,

therefore AE is the same multiple of CF that EB is of FD.

But AE is the same multiple of CF that AB is of CD;

therefore EB is the same multiple of FD that AB is of CD.”

Q.E.D.

[image: image]

Euclid’s proof amounts to this.

Suppose a magnitude x taken such that

ma − mb = mx, say.

Add mb to each side, whence (by v. 1)

[image: image]

Simson’s proof on the other hand, argues thus.

Take x = m (a − b), the same multiple of (a − b) that mb is of b.

Then, by addition of mb to both sides, we have [v. 1]

[image: image]

Proposition 6

If two magnitudes be equimultiples of two magnitudes, and any magnitudes subtracted from them be equimultiples of the same, the remainders also are either equal to the same or equimultiples of them.

For let two magnitudes AB, CD be equimultiples of two magnitudes E, F, and let AG, CH subtracted from them be equimultiples of the same two E, F;

I say that the remainders also, GB, HD, are either equal to E, F or equimultiples of them.

[image: image]

For, first, let GB be equal to E; I say that HD is also equal to F.

For let CK be made equal to F.

Since AG is the same multiple of E that CH is of F,

while GB is equal to E and KC to F,

therefore AB is the same multiple of E that KH is of F.

[v. 2]

But, by hypothesis, AB is the same multiple of E that CD is of F;

therefore KH is the same multiple of F that CD is of F.

Since then each of the magnitudes KH, CD is the same multiple of F,

therefore KH is equal to CD.

Let CH be subtracted from each;

therefore the remainder KC is equal to the remainder HD.

But F is equal to KC;

therefore HD is also equal to F.

Hence, if GB is equal to E, HD is also equal to F.

Similarly we can prove that, even if GB be a multiple of E, HD is also the same multiple of F.

Therefore etc.

Q.E.D.

This proposition corresponds to v. 2, with subtraction taking the place of addition. It asserts namely that, if n is less than m, ma − na is the same multiple of a that mb − nb is of b. The enunciation distinguishes the cases in which m − n is equal to 1 and greater than 1 respectively.

Simson observes that, while only the first case (the simpler one) is proved in the Greek, both are given in the Latin translation from the Arabic; and he supplies accordingly the proof of the second case, which Euclid leaves to the reader. The fact is that it is exactly the same as the other except that, in the construction, CK is made the same multiple of F that GB is of F, and at the end, when it has been proved that KC is equal to HD, instead of concluding that HD is equal to F, we have to say “Because GB is the same multiple of E that KC is of F, and KC is equal to HD, therefore HD is the same multiple of F that GB is of E.”

Proposition 7

Equal magnitudes have to the same the same ratio, as also has the same to equal magnitudes.

Let A, B be equal magnitudes and C any other, chance, magnitude;

I say that each of the magnitudes A, B has the same ratio to C, and C has the same ratio to each of the magnitudes A, B.

[image: image]

For let equimultiples D, E of A, B be taken, and of C another, chance, multiple F.

Then, since D is the same multiple of A that E is of B,

while A is equal to B,

therefore D is equal to E.

But F is another, chance, magnitude.

If therefore D is in excess of F, E is also in excess of F, if equal to it, equal; and, if less, less.

And D, E are equimultiples of A, B,

while F is another, chance, multiple of C;

therefore, as A is to C, so is B to C.

[v. Def. 5]

I say next that C also has the same ratio to each of the magnitudes A, B.

For, with the same construction, we can prove similarly that D is equal to E; and F is some other magnitude.

If therefore F is in excess of D, it is also in excess of E, if equal, equal; and, if less, less.

And F is a multiple of C, while D, E are other, chance, equimultiples of A, B;

therefore, as C is to A, so is C to B.

[v. Def. 5]

Therefore etc.

PORISM. From this it is manifest that, if any magnitudes are proportional, they will also be proportional inversely.

Q.E.D.

In this proposition there is a similar use of [image: image] to that which has been discussed under Prop. 4. Any multiple F of C is taken and then, four lines lower down, we are told that “F is another, chance, magnitude. “It is of course not any magnitude whatever, and Simson leaves out the sentence, but this time without calling attention to it.

Of the Porism to this proposition Heiberg says that it is properly put here in the best MS.; for, as August had already observed, if it was in its right place where Theon put it (at the end of v. 4), the second part of the proof of this proposition would be unnecessary. But the truth is that the Porism is no more in place here. The most that the proposition proves is that, if A, B are equal, and C any other magnitude, then two conclusions are simultaneously established, (1) that A is to C as B is to C and (2) that C is to A as C is to B. The second conclusion is not established from the first conclusion (as it ought to be in order to justify the inference in the Porism), but from a hypothesis on which the first conclusion itself depends; and moreover it is not a proportion in its general form, i. e. between four magnitudes, that is in question, but only the particular case in which the consequents are equal.

Aristotle tacitly assumes inversion (combined with the solution of the problem of Eucl. vi. 11) in Meteorologica iii. 5, 376 a 14–16.

Proposition 8

Of unequal magnitudes, the greater has to the same a greater ratio than the less has; and the same has to the less a greater ratio than it has to the greater.

Let AB, C be unequal magnitudes, and let AB be greater; let D be another, chance, magnitude;

I say that AB has to D a greater ratio than C has to D, and D has to C a greater ratio than it has to AB.

[image: image]

For, since AB is greater than C, let BE be made equal to C;

then the less of the magnitudes AE, EB, if multiplied, will sometime be greater than D.

[v. Def. 4]

[Case 1.]

First, let AE be less than EB;

let AE be multiplied, and let FG be a multiple of it which is greater than D; then, whatever multiple FG is of AE, let GH be made the same multiple of EB and K of C;

and let L be taken double of D, M triple of it, and successive multiples increasing by one, until what is taken is a multiple of D and the first that is greater than K. Let it be taken, and let it be N which is quadruple of D and the first multiple of it that is greater than K.

Then, since K is less than N first,

therefore K is not less than M.

And, since FG is the same multiple of AE that GH is of EB,

therefore FG is the same multiple of AE that FH is of AB.

[v. 1]

But FG is the same multiple of AE that K is of C;

therefore FH is the same multiple of AB that K is of C;

therefore FH, K are equimultiples of AB, C.

Again, since GH is the same multiple of EB that K is of C, and EB is equal to C,

therefore GH is equal to K.

But K is not less than M;

therefore neither is GH less than M.

And FG is greater than D;

therefore the whole FH is greater than D, M together.

But D, M together are equal to N, inasmuch as M is triple of D, and M, D together are quadruple of D, while N is also quadruple of D; whence M, D together are equal to N.

But FH is greater than M, D;

therefore FH is in excess of N,

while K is not in excess of N.

And FH, K are equimultiples of AB, C, while N is another, chance, multiple of D;

[v. Def. 7]

therefore AB has to D a greater ratio than C has to D.

I say next, that D also has to C a greater ratio than D has to AB.

For, with the same construction, we can prove similarly that N is in excess of K, while N is not in excess of FH.

And N is a multiple of D,

while FH, K are other, chance, equimultiples of AB, C;

therefore D has to C a greater ratio than D has to AB.

[v. Def. 7]

[Case 2.]

Again, let AE be greater than EB.

Then the less, EB, if multiplied, will sometime be greater than D.

[v. Def. 4]

Let it be multiplied, and let GH be a multiple of EB and greater than D;

and, whatever multiple GH is of EB, let FG be made the same multiple of AE, and K of C.

Then we can prove similarly that FH, K are equimultiples of AB, C;

and, similarly, let N be taken a multiple of D but the first that is greater than FG,

so that FG is again not less than M.

But GH is greater than D;

therefore the whole FH is in excess of D, M, that is, of N.

[image: image]

Now K is not in excess of N, inasmuch as FG also, which is greater than GH, that is, than K, is not in excess of N.

And in the same manner, by following the above argument, we complete the demonstration.

Therefore etc.

Q.E.D.

The two separate cases found in the Greek text of the demonstration can practically be compressed into one. Also the expositor of the two cases makes them differ more than they need. It is necessary in each case to select the smaller of the two segments AE, EB of AB with a view to taking a multiple of it which is greater than D; in the first case therefore AE is taken, in the second EB. But, while in the first case successive multiples of D are taken in order to find the first multiple that is greater than GH (or K), in the second case the multiple is taken which is the first that is greater than FG. This difference is not necessary; the first multiple of D that is greater than GH would equally serve in the second case. Lastly, the use of the magnitude K might have been dispensed with in both cases; it is of no practical use and only lengthens the proofs. For these reasons Simson considers that Theon, or some other unskilful editor, has vitiated the proposition. This however seems an unsafe assumption; for, while it was not the habit of the great Greek geometers to discuss separately a number of different cases (e.g. in i. 7 and i. 35 Euclid proves one case and leaves the others to the reader), there are many exceptions to prove the rule, e.g. Eucl. iii. 25 and 33; and we know that many fundamental propositions, afterwards proved generally, were first discovered in relation to particular cases and then generalised, so that Book V., presenting a comparatively new theory, might fairly be expected to exhibit more instances than the earlier books do of unnecessary subdivision. The use of the K is no more conclusive against the genuineness of the proofs.

Nevertheless Simson’s version of the proof is certainly shorter, and moreover it takes account of the case in which AE is equal to EB, and of the case in which AE, EB are both greater than D (though these cases are scarcely worth separate mention).

“If the magnitude which is not the greater of the two AE, EB be (1) not less than D, take FG, GH the doubles of AE, EB.

But if that which is not the greater of the two AE, EB be (2) less than D, this magnitude can be multiplied so as to become greater than D whether it be AE or EB.

Let it be multiplied until it becomes greater than D, and let the other be multiplied as often; let FG be the multiple thus taken of AE and GH the same multiple of EB,

therefore FG and GH are each of them greater than D.

And, in every one of the cases, take L the double of D, M its triple and so on, till the multiple of D be that which first becomes greater than GH.

Let N be that multiple of D which is first greater than GH, and M the multiple of D which is next less than N.

Then, because N is the multiple of D which is the first that becomes greater than GH,

the next preceding multiple is not greater than GH;

that is, GH is not less than M.

And, since FG is the same multiple of AE that GH is of EB,

GH is the same multiple of EB that FH is of AB;

[v. 1]

wherefore FH, GH are equimultiples of AB, EB.

And it was shown that GH was not less than M;

and, by the construction, FG is greater than D;

therefore the whole FH is greater than M, D together.

But M, D together are equal to N;

therefore FH is greater than N.

But GH is not greater than N;

and FH, GH are equimultiples of AB, BE,

and N is a multiple of D;

therefore AB has to D a greater ratio than BE (or C) has to D.

[v. Def. 7]

Also D has to BE a greater ratio than it has to AB.

For, having made the same construction, it may he shown, in like manner, that N is greater than GH but that it is not greater than FH;

and N is a multiple of D,

and GH, FH are equimultiples of EB, AB;

Therefore D has to EB a greater ratio than it has to AB.”

[v. Def. 7]

The proof may perhaps be more readily grasped in the more symbolical form thus.

Take the mth equimultiples of C, and of the excess of AB over C (that is, of AE ), such that each is greater than D;

and, of the multiples of D, let pD be the first that is greater than mC, and nD the next less multiple of D.

Then, since mC is not less than nD,

and, by the construction, m(AE) is greater than D,

the sum of mC and m(AE) is greater than the sum of nD and D.

That is, m(AB) is greater than pD.

And, by the construction, mC is less than pD.

Therefore [v. Def. 7] AB has to D a greater ratio than C has to D.

Again, since pD is less than m(AB),

and pD is greater than mC,

D has to C a greater ratio than D has to AB.

Proposition 9

Magnitudes which have the same ratio to the same are equal to one another; and magnitudes to which the same has the same ratio are equal.

For let each of the magnitudes A, B have the same ratio to C;

I say that A is equal to B.

For, otherwise, each of the magnitudes A, B would not have had the same ratio to C; but it has;

[image: image]

[v. 8]

therefore A is equal to B.

Again, let C have the same ratio to each of the magnitudes A, B;

I say that A is equal to B.

For, otherwise, C would not have had the same ratio to each of the magnitudes A, B;

[v. 8]

but it has;

therefore A is equal to B.

Therefore etc.

Q.E.D.

If A is to C as B is to C,

or if C is to A as C is to B, then A is equal to B.

Simson gives a more explicit proof of this proposition which has the advantage of referring back to the fundamental 5th and 7th definitions, instead of quoting the results of previous propositions, which, as will he seen from the next note, may be, in the circumstances, unsafe.

“Let A, B have each of them the same ratio to C;

A is equal to B.

For, if they are not equal, one of them is greater than the other;

let A he the greater.

Then, by what was shown in the preceding proposition, there are some equimultiples of A and B, and some multiple of C, such that the multiple of A is greater than the multiple of C, but the multiple of B is not greater than that of C.

Let such multiples be taken, and let D, E be the equimultiples of A, B, and F the multiple of C, so that D may be greater than F, and E not greater than F.

But, because A is to C as B is to C,

and of A, B are taken equimultiples D, E, and of C is taken a multiple F, and D is greater than F,

E must also be greater than F.

[v. Def. 5]

But E is not greater than F: which is impossible.

Next, let C have the same ratio to each of the magnitudes A and B;

A is equal to B.

For, if not, one of them is greater than the other;

let A be the greater.

Therefore, as was shown in Prop. 8, there is some multiple F of C, and some equimultiples E and D of B and A, such that F is greater than E and not greater than D.

But, because C is to B as C is to A,

and F the multiple of the first is greater than E the multiple of the second,

F the multiple of the third is greater than D the multiple of the fourth.

[v. Def. 5]

But F is not greater than D: which is impossible.

Therefore A is equal to B.”

Proposition 10

Of magnitudes which have a ratio to the same, that which has a greater ratio is greater; and that to which the same has a greater ratio is less.

For let A have to C a greater ratio than B has to C;

I say that A is greater than B.

[image: image]

For, if not, A is either equal to B or less.

Now A is not equal to B;

for in that case each of the magnitudes A, B would have had the same ratio to C;

[v. 7]

but they have not;

therefore A is not equal to B.

Nor again is A less than B;

for in that case A would have had to C a less ratio than B has to C;

[v. 8]

but it has not;

therefore A is not less than B.

But it was proved not to be equal either;

therefore A is greater than B.

Again, let C have to B a greater ratio than C has to A;

I say that B is less than A.

For, if not, it is either equal or greater.

Now B is not equal to A;

for in that case C would have had the same ratio to each of the magnitudes A, B;

[v. 7]

but it has not;

therefore A is not equal to B.

Nor again is B greater than A;

for in that case C would have had to B a less ratio than it has to A;

[v. 8]

but it has not;

therefore B is not greater than A.

But it was proved that it is not equal either;

therefore B is less than A.

Therefore etc.

Q.E.D.

No better example can, I think, be found of the acuteness which Simson brought to bear in his critical examination of the Elements, and of his great services to the study of Euclid, than is furnished by the admirable note on this proposition where he points out a serious flaw in the proof as given in the text.

For the first time Euclid is arguing about greater and less ratios, and it will be found by an examination of the steps of the proof that he assumes more with regard to the meaning of the terms than he is entitled to assume, having regard to the fact that the definition of greater ratio (Def. 7) is all that, as yet, he has to go upon. That we cannot argue, at present, about greater and less as applied to ratios in the same way as about the same terms in relation to magnitudes is indeed sufficiently indicated by the fact that Euclid does not assume for ratios what is in Book I. an axiom, viz. that things which are equal to the same thing are equal to one another; on the contrary he proves, in Prop. 11, that ratios which are the same with the same ratio are the same with one another.

Let us now examine the steps of the proof in the text. First we are told that

“A is greater than B.

For, if not, it is either equal to B or less than it.

Now A is not equal to B;

for in that case each of the two magnitudes A, B would have had the same ratio to C:

[v. 7]

but they have not:

therefore A is not equal to B.”

As Simson remarks, the force of this reasoning is as follows.

If A has to C the same ratio as B has to C,

then—supposing any equimultiples of A, B to be taken and any multiple of C—

by Def. 5, if the multiple of A be greater than the multiple of C, the multiple of B is also greater than that of C.

But it follows from the hypothesis (that A has a greater ratio to C than B has to C) that,

by Def. 7, there must be some equimultiples of A, B and some multiple of C such that the multiple of A is greater than the multiple of C, but the multiple of B is not greater than the same multiple of C.

And this directly contradicts the preceding deduction from the supposition that A has to C the same ratio as B has to C;

therefore that supposition is impossible.

The proof now goes on thus:

Nor again is A less than B;

for, in that case, A would have had to C a less ratio than B has to C;

[v. 8]

but it has not;

therefore A is not less than B.”

It is here that the difficulty arises. As before, we must use Def. 7. “A would have had to C a less ratio than B has to C,” or the equivalent statement that B would have had to C a greater ratio than A has to C, means that there would have been some equimultiples of B, A and some multiple of C such that

(1) the multiple of B is greater than the multiple of C, but

(2) the multiple of A is not greater than the multiple of C,

and it ought to have been proved that this can never happen if the hypothesis of the proposition is true, viz. that A has to C a greater ratio than B has to C: that is, it should have been proved that, in the latter case, the multiple of A is always greater than the multiple of C whenever the multiple of B is greater than the multiple of C (for, when this is demonstrated, it will be evident that B cannot have a greater ratio to C than A has to C). But this is not proved (cf. the remark of De Morgan quoted in the note on v. Def. 7, p. 130), and hence it is not proved that the above inference from the supposition that A is less than B is inconsistent with the hypothesis in the enunciation. The proof therefore fails.

Simson suggests that the proof is not Euclid’s, but the work of some one who apparently “has been deceived in applying what is manifest, when understood of magnitudes, unto ratios, viz. that a magnitude cannot be both greater and less than another.”

The proof substituted by Simson is satisfactory and simple.

“Let A have to C a greater ratio than B has to C;

A is greater than B.

For, because A has a greater ratio to C than B has to C, there are some equimultiples of A, B and some multiple of C such that

the multiple of A is greater than the multiple of C, but the multiple of B is not greater than it.

[v. Def. 7]

Let them be taken, and let D, E be equimultiples of A, B, and F a multiple of C, such that

[image: image]

Therefore D is greater than E.

And, because D and E are equimultiples of A and B, and D is greater than E,

therefore A is greater than B.

[Simson’s 4th Ax.]

Next, let C have a greater ratio to B than it has to A;

B is less than A.

For there is some multiple F of C and some equimultiples E and D of B and A such that

F is greater than E but not greater than D.

[v. Def. 7]

Therefore E is less than D;

and, because E and D are equimultiples of B and A,

therefore B is less than A.”

Proposition 11

Ratios which are the same with the same ratio are also the same with one another.

For, as A is to B, so let C be to D,

and, as C is to D, so let B be to F;

I say that, as A is to B, so is E to F.

[image: image]

For of A, C, E let equimultiples G, H, K be taken, and of B, D, F other, chance, equimultiples L, M, N.

Then since, as A is to B, so is C to D,

and of A, C equimultiples G, H have been taken,

and of B, D other, chance, equimultiples L, M,

therefore, if G is in excess of L, H is also in excess of M,

if equal, equal,

and if less, less.

Again, since, as C is to D, so is E to F,

and of C, E equimultiples H, K have been taken,

and of D, F other, chance, equimultiples M, N,

therefore, if H is in excess of M, K is also in excess of N,

if equal, equal,

and if less, less.

But we saw that, if H was in excess of M, G was also in excess of L; if equal, equal; and if less, less;

so that, in addition, if G is in excess of L, K is also in excess of N,

if equal, equal,

and if less, less.

And G, K are equimultiples of A, E,

while L, N are other, chance, equimultiples of B, F;

therefore, as A is to B, so is E to F.

Therefore etc.

Q.E.D.

[image: image]

The idiomatic use of the imperfect in quoting a result previously obtained is noteworthy. Instead of saying “But it was proved that, if H is in excess of M, G is also in excess of L”, the Greek text has “But if H was in excess of M, G was also in excess of L” [image: image].

This proposition is tacitly used in combination with v. 16 and v. 24 in the geometrical passage in Aristotle, Meteorologica iii. 5, 376 a 22–26.

Proposition 12

If any number of magnitudes be proportional, as one of the antecedents is to one of the consequents, so will all the antecedents be to all the consequents.

Let any number of magnitudes A, B, C, D, E, F be proportional, so that, as A is to B, so is C to D and E to F;

I say that, as A is to B, so are A, C, E to B, D, F

[image: image]

For of A, C, E let equimultiples G, H, K be taken,

and of B, D, F other, chance, equimultiples L, M, N.

Then since, as A is to B, so is C to D, and E to F,

and of A, C, E equimultiples G, H, K have been taken,

and of B, D, F other, chance, equimultiples L, M, N,

therefore, if G is in excess of L, H is also in excess of M,

and K of N,

if equal, equal,

and if less, less;

so that, in addition,

if G is in excess of L, then G, H, K are in excess of L, M, N,

if equal, equal,

and if less, less.

Now G and G, H, K are equimultiples of A and A, C, E, since, if any number of magnitudes whatever are respectively equimultiples of any magnitudes equal in multitude, whatever multiple one of the magnitudes is of one, that multiple also will all be of all.

[v. 1]

For the same reason

L and L, M, N are also equimultiples of B and B, D, F;

therefore, as A is to B, so are A, C, E to B, D, F.

[v. Def. 5]

Therefore etc.

Q.E.D.

Algebraically, if a:a′ = b:b′ = c:c′ etc., each ratio is equal to the ratio (a + b + c + . . .):(a′ + b′ + c′ + . . .).

This theorem is quoted by Aristotle, Eth. Nic. v. 7, 1131 b 14, in the shortened form “the whole is to the whole what each part is to each part (respectively).”

Proposition 13

If a first magnitude have to a second the same ratio as a third to a fourth, and the third have to the fourth a greater ratio than a fifth has to a sixth, the first will also have to the second a greater ratio than the fifth to the sixth.

For let a first magnitude A have to a second B the same ratio as a third C has to a fourth D,

and let the third C have to the fourth D a greater ratio than a fifth E has to a sixth F; I say that the first A will also have to the second B a greater ratio than the fifth E to the sixth F.

[image: image]

For, since there are some equimultiples of C, E,

and of D, F other, chance, equimultiples, such that the multiple of C is in excess of the multiple of D,

while the multiple of E is not in excess of the multiple of F,

[v. Def. 7]

let them be taken,

and let G, H be equimultiples of C, E,

and K, L other, chance, equimultiples of D, F,

so that G is in excess of K, but H is not in excess of L;

and, whatever multiple G is of C, let M be also that multiple of A,

and, whatever multiple K is of D, let N be also that multiple of B.

Now, since, as A is to B, so is C to D,

and of A, C equimultiples M, G have been taken,

and of B, D other, chance, equimultiples N, K,

therefore, if M is in excess of N, G is also in excess of K,

if equal, equal,

and if less, less.

[v. Def. 5]

But G is in excess of K;

therefore M is also in excess of N.

But H is not in excess of L;

and M, H are equimultiples of A, E,

and N, L other, chance, equimultiples of B, F;

therefore A has to B a greater ratio than E has to F.

[v. Def. 7]

Therefore etc.

Q.E.D.

[image: image]

Alter the words “for, since” in the first line of the proof, Theon added “C has to D a greater ratio than E has to F,” so that “there are some equimultiples” began, with him, the principal sentence.

The Greek text has, after “of D, F other, chance, equimultiples,” “and the multiple of C is in excess of the multiple of D. . . .” The meaning being “such that,” I have substituted this for “and,” after Simson.

The following will show the method of Euclid’s proof.

[image: image]

there will he some equimultiples mc, me of c, e, and some equimultiples nd, nf of d, f, such that

[image: image]

Simson adds as a corollary the following:

“If the first have a greater ratio to the second than the third has to the fourth, but the third the same ratio to the fourth which the fifth has to the sixth, it may be demonstrated in like manner that the first has a greater ratio to the second than the fifth has to the sixth.”

This however scarcely seems to be worth separate statement, since it only amounts to changing the order of the two parts of the hypothesis.

Proposition 14

If a first magnitude have to a second the same ratio as a third has to a fourth, and the first be greater than the third, the second will also be greater than the fourth; if equal, equal; and if less, less.

For let a first magnitude A have the same ratio to a second B as a third C has to a fourth D; and let A be greater than C;

I say that B is also greater than D.

[image: image]

For, since A is greater than C,

and B is another, chance, magnitude,

therefore A has to B a greater ratio than C has to B.

[v. 8]

But, as A is to B, so is C to D;

therefore C has also to D a greater ratio than C has to B.

[v. 13]

But that to which the same has a greater ratio is less;

[v. 10]

therefore D is less than B;

so that B is greater than D.

Similarly we can prove that, if A be equal to C, B will also be equal to D; and, if A be less than C, B will also be less than D.

Therefore etc.

Q.E.D.

Algebraically, if a : b = c : d,

then, according as a > = < c, b > = < d.

Simson adds the specific proof of the second and third parts of this proposition, which Euclid dismisses with “Similarly we can prove. . . .”

“Secondly if A be equal to C, B is equal to D; for A is to B as C, that is A, is to D;

therefore B is equal to D.

[v. 9]

Thirdly, if A be less than C, B shall be less than D.

For C is greater than A;

and, because C is to D as A is to B,

D is greater than B, by the first case.

Wherefore B is less than D.”

Aristotle, Meteorol. iii. 5, 376 a 11–14, quotes the equivalent proposition that, if a > b, c > d.

Proposition 15

Parts have the same ratio as the same multiples of them taken in corresponding order.

For let AB be the same multiple of C that DE is of F; I say that, as C is to F, so is AB to DE.

[image: image]

For, since AB is the same multiple of C that DE is of F, as many magnitudes as there are in AB equal to C, so many are there also in DE equal to F.

Let AB be divided into the magnitudes AG, GH, HB equal to C,

and DE into the magnitudes DK, KL, LE equal to F;

then the multitude of the magnitudes AG, GH, HB will be equal to the multitude of the magnitudes DK, KL, LE.

And, since AG, GH, HB are equal to one another,

and DK, KL, LE are also equal to one another,

therefore, as AG is to DK, so is GH to KL, and HB to LE.

[v. 7]

Therefore, as one of the antecedents is to one of the consequents, so will all the antecedents be to all the consequents;

[v. 12]

therefore, as AG is to DK, so is AB to DE.

But AG is equal to C and DK to F;

therefore, as C is to F, so is AB to DE.

Therefore etc.

Q.E.D.

[image: image]

Proposition 16

If four magnitudes be proportional, they will also be proportional alternately.

Let A, B, C, D be four proportional magnitudes, [5]

so that, as A is to B, so is C to D;

I say that they will also be so alternately, that is, as A is to C, so is B to D.

[image: image]

For of A, B let equimultiples E, F be taken,

and of C, D other, chance, equimultiples G, H.

Then, since E is the same multiple of A that F is of B,

and parts have the same ratio as the same multiples of them,

[v. 15]

therefore, as A is to B, so is E to F.

But as A is to B, so is C to D;

therefore also, as C is to D, so is E to F.

[v. 11]

Again, since G, H are equimultiples of C, D,

therefore, as C is to D, so is G to H.

[v. 15]

But, as C is to D, so is E to F;

therefore also, as E is to F, so is G to H.

[v. 11]

But, if four magnitudes be proportional, and the first be greater than the third, the second will also be greater than the fourth;

if equal, equal;

and if less, less.

[v. 14]

Therefore, if E is in excess of G, F is also in excess of H,

if equal, equal,

and if less, less.

Now E, F are equimultiples of A, B,

and G, H other, chance, equimultiples of C, D;

therefore, as A is to C, so is B to D.

[v. Def. 5]

Therefore etc.

Q.E.D.

[image: image]

Taking equimultiples ma, mb of a, b, and equimultiples nc, nd of c, d, we have, by v. 15,

[image: image]

Aristotle tacitly uses the theorem in Meteorologica iii. 5, 376 a 22–24.

The four magnitudes in this proposition must all be of the same kind, and Simson inserts “of the same kind” in the enunciation.

This is the first of the propositions of Eucl. v. which Smith and Bryant (Euclid’s Elements of Geometry, 1901) prove by means of vi. 1 so far as the only geometrical magnitudes in question are straight lines or rectilineal areas; and certainly the proofs are more easy to follow than Euclid’s. The proof of this proposition is as follows.

To prove that, If four magnitudes of the same kind [straight lines or rectilineal areas] be proportionals, they will be proportionals when taken alternately.

Let P, Q, R, S be the four magnitudes of the same kind such that

P : Q = R : S;

then it is required to prove that

P : R = Q : S.

First, let all the magnitudes be areas.

Construct a rectangle abcd equal to the area P, and to bc apply the rectangle bcef equal to Q.

Also to ab, bf apply rectangles ag, bk equal to R, S respectively.

Then, since the rectangles ac, be have the same height, they are to one another as their bases.

[vi. 1]

[image: image]

Hence (by the converse of vi. 1 ) the rectangles ag, bk have the same height, so that k is on the line hg.

Hence the rectangles ac, ag have the same height, namely ab; also be, bk have the same height, namely bf.

[image: image]

[image: image]

Secondly, let the magnitudes be straight lines AB, BC, CD, DE.

Construct the rectangles Ab, Bc, Cd, De with the same height.

[image: image]

[image: image]

Proposition 17

If magnitudes be proportional componendo, they will also be proportional separando.

Let AB, BE, CD, DF be magnitudes proportional componendo, so that, as AB is to BE, so is CD to DF;

I say that they will also be proportional separando, that is, as AE is to EB, so is CF to DF.

For of AE, EB, CF, FD let equimultiples GH, HK, LM, MN be taken,

and of EB, FD other, chance, equimultiples, KO, NP.

Then, since GH is the same multiple of AE that HK is of EB,

therefore GH is the same multiple of AE that GK is of AB.

[v. 1]

But GH is the same multiple of AE that LM is of CF;

therefore GK is the same multiple of AB that LM is of CF.

[image: image]

Again, since LM is the same multiple of CF that MN is of FD,

therefore LM is the same multiple of CF that LN is of CD.

[v. 1]

But LM was the same multiple of CF that GK is of AB;

therefore GK is the same multiple of AB that LN is of CD.

Therefore GK, LN are equimultiples of AB, CD.

Again, since HK is the same multiple of EB that MN is of FD,

and KO is also the same multiple of EB that NP is of FD,

therefore the sum HO is also the same multiple of EB that MP is of FD.

[v. 2]

And, since, as AB is to BE, so is CD to DF,

and of AB, CD equimultiples GK, LN have been taken,

and of EB, FD equimultiples HO, MP,

therefore, if GK is in excess of HO, LN is also in excess of MP,

if equal, equal,

and if less, less.

Let GK be in excess of HO;

then, if HK be subtracted from each,

GH is also in excess of KO.

But we saw that, if GK was in excess of HO, LN was also in excess of MP;

therefore LN is also in excess of MP,

and, if MN be subtracted from each,

LM is also in excess of NP;

so that, if GH is in excess of KO, LM is also in excess of NP.

Similarly we can prove that,

if GH be equal to KO, LM will also be equal to NP,

and if less, less.

And GH, LM are equimultiples of AE, CF,

while KO, NP are other, chance, equimultiples of EB, FD;

therefore, as AE is to EB, so is CF to FD.

Therefore etc.

Q.E.D.

[image: image]

I have already noted the somewhat strange me of the participles of [image: image] and [image: image] to convey the sense of the technical [image: image] and [image: image], or what we denote by componendo and separando. [image: image] is, literally “if magnitudes compounded he proportional, they will also be proportional separated,” by which is meant “if one magnitude made up of two parts is to one of its parts as another magnitude made up of two parts is to one of its parts, the remainder of the first whole is to the part of it first taken as the remainder of the second whole is to the part of it first taken.” In the algebraical formula above a, c are the wholes and b, a − b and d, c − d are the parts and remainders respectively. The formula might also he stated thus:

[image: image]

in which case a + b, c + d are the wholes and b, a and d, c the parts and remainders respectively. Looking at the last formula, we observe that “separated,” [image: image] is used with reference not to the magnitudes a, b, c, d but to the compounded magnitudes a + b, b, c + d, d.

As the proof is somewhat long, it will be useful to give a conspectus of it in the more symbolical form. To avoid minuses, we will take for the hypothesis the form

a + b is to b as c + d is to d.

Take any equimultiples of the four magnitudes a, b, c, d, viz.

ma, mb, mc, md,

and any other equimultiples of the consequents, viz.

nb and nd.

Then, by v. 1, m(a + b), m(c + d) are equimultiples of a + b, c + d,

and, by v. 2, (m + n)b, (m + n)d are equimultiples of b, d.

Therefore, by Def. 5, since a + b is to b as c + d is to d,

according as m (a + b) > = < (m + n) b, m (c + d) > = < (m + n) d.

Subtract from m (a + b), (m + n) b the common part mb, and from m (c + d), (m + n) d the common part md; and we have,

according as ma > = < nb, mc > = < nd.

But ma, mc are any equimultiples of a, c, and nb, nd any equimultiples of b, d,

therefore, by v. Def 5,

a is to b as c is to d.

Smith and Bryant’s proof follows, mutatis mutandis, their alternative proof of the next proposition.

Proposition 18

If magnitudes be proportional separando, they will also be proportional componendo.

Let AE, EB, CF, FD be magnitudes proportional separando, so that, as AE is to EB, so is CF to FD;

[image: image]

I say that they will also be proportional componendo, that is, as AB is to BE, so is CD to FD.

For, if CD be not to DF as AB to BE, then, as AB is to BE, so will CD be either to some magnitude less than DF or to a greater.

First, let it be in that ratio to a less magnitude DG.

Then, since, as AB is to BE, so is CD to DG,

they are magnitudes proportional componendo;

so that they will also be proportional separando.

[v. 17]

Therefore, as AE is to EB, so is CG to GD.

But also, by hypothesis,

as AE is to EB, so is CF to FD.

Therefore also, as CG is to GD, so is CF to FD.

[v. 11]

But the first CG is greater than the third CF;

therefore the second GD is also greater than the fourth FD.

[v. 14]

But it is also less: which is impossible.

Therefore, as AB is to BE, so is not CD to a less magnitude than FD.

Similarly we can prove that neither is it in that ratio to a greater;

it is therefore in that ratio to FD itself.

Therefore etc.

Q.E.D.

[image: image]

In the enunciation of this proposition there is the same special use of [image: image] and [image: image] as there was of [image: image] and [image: image] in the last enunciation. Practically, as the algebraical form shows, [image: image] might have been lefi out.

The following is the method of proof employed by Euclid.

[image: image]

which relations respectively contradict v. 14.

Simson pointed out (as Saccheri before him saw) that Euclid’s demonstration is not legitimate, because it assumes without proof that to any three magnitudes, two of which, at least, are of the same kind, there exists a fourth proportional. Clavius and, according to him, other editors made this an axiom. But it is far from axiomatic; it is not till vi. 12 that Euclid shows, by construction, that it is true even in the particular case where the three given magnitudes are all straight lines.

In order to remove the defect it is necessary either (1) to prove beforehand the proposition thus assumed by Euclid or (2) to prove v. 18 independently of it.

Saccheri ingeniously proposed that the assumed proposition should be proved, for areas and straight lines, by means of Euclid vi. 1, 2 and 12. As he says, there was nothing to prevent Euclid from interposing these propositions immediately after v. 17 and then proving v. 18 by means of them. vi. 12 enables us to construct the fourth proportional when the three given magnitudes are straight lines; and vi. 12 depends only on vi. 1 and 2. “Now,” says Saccheri, “when we have once found the means of constructing a straight line which is a fourth proportional to three given straight lines, we obviously have the solution of the general problem ‘To construct a straight line which shall have to a given straight line the same ratio which two polygons have (to one another).’” For it is sufficient to transform the polygons into two triangles of equal height and then to construct a straight line which shall be a fourth proportional to the bases of the triangles and the given straight line.

The method of Saccheri is, as will be seen, similar to that adopted by Smith and Bryant in proving the theorems of Euclid v. 16, 17, 18, 22, so far as straight lines and rectilineal areas are concerned, by means of vi. 1.

De Morgan gives a sketch of a general proof of the assumed proposition that, B being any magnitude, and P and Q two magnitudes of the same kind, there does exist a magnitude A which is to B in the same ratio as P to Q.

“The right to reason upon any aliquot part of any magnitude is assumed; though, in truth, aliquot parts obtained by continual bisection would suffice: and it is taken as previously proved that the tests of greater and of less ratio are never both presented in any one scale of relation as compared with another.”

“(1) If M be to B in a greater ratio than P to Q, so is every magnitude greater than M, and so are some less magnitudes; and if M be to B in a less ratio than P to Q, so is every magnitude less than M, and so are some greater magnitudes. Part of this is in every system: the rest is proved thus. If M be to B in a greater ratio than P to Q, say, for instance, we find that 15M lies between 22B and 23B, while 15P lies before 22Q. Let 15M exceed 22B by Z; then, if N be less than M by anything less than the 15th part of Z, 15N is between 22B and 23B: or N, less than M, is in a greater ratio to B than P to Q. And similarly for the other case.

(2) M can certainly be taken so small as to be in a less ratio to B than P to Q, and so large as to be in a greater; and since we can never pass from the greater ratio back again to the smaller by increasing M, it follows that, while we pass from the first designated value to the second, we come upon an intermediate magnitude A such that every smaller is in a less ratio to B than P to Q, and every greater in a greater ratio. Now A cannot he in a less ratio to B than P to Q, for then some greater magnitudes would also be in a less ratio; nor in a greater ratio, for then some less magnitudes would be in a greater ratio; therefore A is in the same ratio to B as P to Q. The previously proved proposition above mentioned shows the three alternatives to be the only ones.”

Alternative proofs of V 18.

Simson bases his alternative on v. 5, 6. As the 18th proposition is the converse of the 17th, and the latter is proved by means of v. 1 and 2, of which v. 5 and 6 are converses, the proof of v. 18 by v. 5 and 6 would be natural; and Simson holds that Euclid must have proved v. 18 in this way because “the 5th and 6th do not enter into the demonstration of any proposition in this book as we have it, nor can they he of any use in any proposition of the Elements,” and “the 5th and 6th have undoubtedly been put into the 5th book for the sake of some propositions in it, as all the other propositions about equimultiples have been.”

Simson’s proof is however, as it seems to me, intolerably long and difficult to follow unless it be put in the symbolical form as follows.

Suppose that a is to b as c is to d;

it is required to prove that a + b is to b as c + d is to d.

Take any equimultiples of the last four magnitudes, say

m (a + b), mb, m (c + d), md,

and any equimultiples of b, d, as

[image: image]

if equal, equal; and if less, less.

I. Suppose nb not greater than mb, so that nd is also not greater than md.

[image: image]

II. Suppose nb greater than mb.

Since m(a + b), mb, m(c + d), md are equimultiples of (a + b), b, (c + d), d,

[image: image]

so that ma, mc are equimultiples of a, c.

[v. 5]

Again nb, nd are equimultiples of b, d,

and so are mb, md;

therefore (n − m) b, (n − m) d are equimultiples of b, d and, whether n − m is equal to unity or to any other integer [v. 6], it follows, by Def. 5, that since a, b, c, d are proportionals,

[image: image]

if equal, equal; and if less, less.

(1) If now m (a + b) is greater than nb, subtracting mb from each, we have

[image: image]

(2) Similarly it may be proved that,

[image: image]

But (under 1. above) it was proved that, in the case where nb is not greater than mb,

[image: image]

Hence, whatever be the values of m and n, m (c + d) is always greater than, equal to, or less than nd according as m (a + b) is greater than, equal to, or less than nb.

Therefore, by Def. 5,

a + b is to b as c + d is to d.

Todhunter gives the following short demonstration from Austin (Examination of the first six books of Euclid’s Elements).

“Let AE be to EB as CF is to FD:

AB shall be to BE as CD is to DF.

For, because AE is to EB as CF is to FD,

therefore, alternately,

AE is to CF as EB is to FD.

[v. 16]

And, as one of the antecedents is to its consequent, so is the sum of the antecedents to the sum of the consequents:

[v. 12]

therefore, as EB is to FD, so are AE, EB together to CF, FD together;

[image: image]

Therefore, alternately,

AB is to BE as CD is to FD.”

[image: image]

The objection to this proof is that it is only valid in the case where the proposition v. 16 used in it is valid, i.e. where all four magnitudes are of the same kind.

Smith and Bryant’s proof avails where all four magnitudes are straight lines, where all four magnitudes are rectilineal areas, or where one antecedent and its consequent are straight lines and the other antecedent and its consequent rectilineal areas.

[image: image]

First, let all the magnitudes be areas.

Construct a rectangle abcd equal to A, and to be apply the rectangle bcef equal to B.

Also to ab, bf apply the rectangles ag, bk equal to C, D respectively.

Then, since the rectangles ac, be have equal heights bc, they are to one another as their bases.

[vi. 1]

[image: image]

[image: image]

Therefore [vi. 1, converse] the rectangles ag, bk have the same height, so that k is on the straight line hg.

[image: image]

Secondly, let the magnitudes A, B be straight lines and the magnitudes C, D areas.

Let ab, bf be equal to the straight lines A, B, and to ab, bf apply the rectangles ag, bk equal to C, D respectively.

Then, as before, the rectangles ag, bk have the same height.

[image: image]

Thirdly, let all the magnitudes be straight lines.

Apply to the straight lines C, D rectangles P, Q having the same height.

[image: image]

[image: image]

Proposition 19

If, as a whole is to a whole, so is a part subtracted to a part subtracted, the remainder will also be to the remainder as whole to whole.

For, as the whole AB is to the whole CD, so let the part AE subtracted be to the part CF subtracted;

I say that the remainder EB will also be to the remainder FD as the whole AB to the whole CD.

[image: image]

For since, as AB is to CD, so is AE to CF,

alternately also, as BA is to AE, so is DC to CF.

[v. 16]

And, since the magnitudes are proportional componendo, they will also be proportional separando,

[v. 17]

that is, as BE is to EA, so is DF to CF,

and, alternately,

as BE is to DF, so is EA to FC.

[v. 16]

But, as AE is to CF, so by hypothesis is the whole AB to the whole CD.

Therefore also the remainder EB will be to the remainder FD as the whole AB is to the whole CD.

[v. 11]

Therefore etc.

[PORISM. From this it is manifest that, if magnitudes be proportional componendo, they will also be proportional convertendo.]

Q.E.D.

Algebraically, if a : b = c : d (where c < a and d < b), then

(a − c):(b − d) = a : b.

The “Porism” at the end of this proposition is led up to by a few lines which Heiberg brackets because it is not Euclid’s habit to explain a Porism, and indeed a Porism, from its very nature, should not need any explanation, being a sort of by-product appearing without effort or trouble, [image: image] (Proclus). But Heiberg thinks that Simson does wrong in finding fault with the argument leading to the “Porism,” and that it does contain the true demonstration of conversion of a ratio. In this it appears to me that Heiberg is clearly mistaken, the supposed proof on the basis of Prop. 19 being no more correct than the similar attempt to prove the inversion of a ratio from Prop. 4. The words are: “And since it was proved that, as AB is to CD, so is EB to FD,

alternately also, as AB is to BE, so is CD to FD:
therefore magnitudes when compounded are proportional.

But it was proved that, as BA is to AE, so is DC to CF, and this is convertendo.”

It will be seen that this amounts to proving from the hypothesis a : b = c : d that the following transformations are simultaneously true, viz.:

[image: image]

The former is not proved from the latter as it ought to be if it were intended to prove conversion.

The inevitable conclusion is that both the “Porism” and the argument leading up to it are interpolations, though no doubt made, as Heiberg says, before Theon’s time.

The conversion of ratios does not depend upon v. 19 at all but, as Simson shows in his Proposition E (containing a proof already given by Clavius), on Props. 17 and 18. Prop. E is as follows.

If four magnitudes be proportionals, they are also proportionals by conversion, that is, the first is to its excess above the second as the third is to its excess above the fourth.

Let AB be to BE as CD to DF:

then BA is to AE as DC to CF.

Because AB is to BE as CD to DF,

by division [separando],

AE is to EB as CF to FD,

[v. 17]

and, by inversion,

BE is to EA as DF to FC.

[Simson’s Prop. B directly obtained from v. Def. 5]

Wherefore, by composition [componendo],

BA is to AE as DC to CF.

[v. 18]

[image: image]

Proposition 20

If there be three magnitudes, and others equal to them in multitude, which taken two and two are in the same ratio, and if ex aequali the first be greater than the third, the fourth will also be greater than the sixth; if equal, equal; and, if less, less.

Let there be three magnitudes A, B, C, and others D, E, F equal to them in multitude, which taken two and two are in the same ratio, so that,

[image: image]

and let A be greater than C ex aequali;

I say that D will also be greater than F; if A is equal to C, equal; and, if less, less.

[image: image]

For, since A is greater than C,

and B is some other magnitude,

and the greater has to the same a greater ratio than the less has,

[v. 8]

therefore A has to B a greater ratio than C has to B.

But, as A is to B, so is D to E,

and, as C is to B, inversely, so is F to E;

therefore D has also to E a greater ratio than F has to E.

[v. 13]

But, of magnitudes which have a ratio to the same, that which has a greater ratio is greater;

[v. 10]

therefore D is greater than F.

Similarly we can prove that, if A be equal to C, D will also be equal to F; and if less, less.

Therefore etc.

Q.E.D.

Though, as already remarked, Euclid has not yet given us any definition of compounded ratios, Props. 20–23 contain an important part of the theory of such ratios. The term “compounded ratio” is not used, but the propositions connect themselves with the definitions of ex aequali in its two forms, the ordinary form defined in Def. 17 and that called perturbed proportion in Def. 18. The compounded ratios dealt with in these propositions are those compounded of successive ratios in which the consequent of one is the antecedent of the next, or the antecedent of one is the consequent of the next.

Prop. 22 states the fundamental proposition about the ratio ex aequali in its ordinary form, to the effect that,

[image: image]

with the extension to any number of such ratios; Prop. 23 gives the corresponding theorem for the case of perturbed proportion, namely that,

[image: image]

Each depends on a preliminary proposition, Prop. 22 on Prop. 20 and Prop. 23 on Prop. 21. The course of the proof will be made most clear by using the algebraic notation.

The preliminary Prop. 20 asserts that,

[image: image]

For, according as a is greater than, equal to, or less than c,

the ratio a : b is greater than, equal to, or less than the ratio c : b,

[v. 8 or v. 7]

[image: image]

the ratio d : e is greater than, equal to, or less than the ratio, f : e,

[by aid of v. 13 and v. 11]

and therefore d is greater than, equal to, or less than f.

[v. 10 or v. 9]

It is next proved in Prop. 22 that, by v. 4, the given proportions can be transformed into

[image: image]

whence, by v. 20,

[image: image]

so that, by Def. 5,

a : c = d : f.

Prop. 23 depends on Prop. 21 in the same way as Prop. 22 on Prop. 20, but the transformation of the ratios in Prop. 23 is to the following:

[image: image]

[image: image]

and Prop. 21 is then used.

Simson makes the proof of Prop. 20 slightly more explicit, but the main difference from the text is in the addition of the two other cases which Euclid dismisses with “Similarly we can prove.” These cases are:

“Secondly, let A be equal to C; then shall D be equal to F.

Because A and C are equal to one another,

[image: image]

Next, let A be less than C; then shall D be less than F.

For C is greater than A,

and, as was shown in the first case,

C is to B as F to E,

and, in like manner,

B is to A as E to D;

therefore F is greater than D, by the first case; and therefore D is less than F.”

Proposition 21

If there be three magnitudes, and others equal to them in multitude, which taken two and two together are in the same ratio, and the proportion of them be perturbed, then, if ex aequali the first magnitude is greater than the third, the fourth will also be greater than the sixth; if equal, equal; and if less, less.

Let there be three magnitudes A, B, C, and others D, E, F equal to them in multitude, which taken two and two are in the same ratio, and let the proportion of them be perturbed, so that,

[image: image]

and let A be greater than C ex aequali;

I say that D will also be greater than F; if A is equal to C, equal; and if less, less.

[image: image]

For, since A is greater than C,

and B is some other magnitude,

therefore A has to B a greater ratio than C has to B.

[v. 8]

But, as A is to B, so is E to F,

and, as C is to B, inversely, so is E to D.

Therefore also E has to F a greater ratio than E has to D.

[v. 13]

But that to which the same has a greater ratio is less;

[v. 10]

therefore F is less than D;

therefore D is greater than F.

Similarly we can prove that,

if A be equal to C, D will also be equal to F;

and if less, less.

Therefore etc.

Q.E.D.

[image: image]

Simson’s alterations correspond to those which he makes in Prop. 20. After the first case he proceeds thus.

“Secondly, let A be equal to C; then shall D be equal to F.

Because A and C are equal,

[image: image]

Next, let A be less than C; then shall D be less than F.

For C is greater than A,

and, as was shown,

C is to B as E, to D,

and, in like manner,

B is to A as F to E;

therefore F is greater than D, by the first case,

and therefore D is less than F.”

The proof may be shown thus.

According as a > = < c, a : b > = < c : b.

But a : b = e : f, and, by inversion, c : b = e : d.

Therefore, according as a > = < c, e : f > = < e : d,

and therefore d > = < f.

Proposition 22

If there be any number of magnitudes whatever, and others equal to them in multitude, which taken two and two together are in the same ratio, they will also be in the same ratio ex aequali.

Let there be any number of magnitudes A, B, C, and others D, E, F equal to them in multitude, which taken two and two together are in the same ratio, so that,

[image: image]

I say that they will also be in the same ratio ex aequali,

< that is, as A is to C, so is D to F >.

For of A, D let equimultiples G, H be taken,

and of B, E other, chance, equimultiples K, L;

and, further, of C, F other, chance, equimultiples M, N.

[image: image]

Then, since, as A is to B, so is D to E,

and of A, D equimultiples G, H have been taken,

and of B, E other, chance, equimultiples K, L,

therefore, as G is to K, so is H to L.

[v. 4]

For the same reason also,

as K is to M, so is L to N.

Since, then, there are three magnitudes G, K, M, and others H, L, N equal to them in multitude, which taken two and two together are in the same ratio, therefore, ex aequali, if G is in excess of M, H is also in excess of N;

if equal, equal; and if less, less.

[v. 20]

And G, H are equimultiples of A, D,

and M, N other, chance, equimultiples of C, F.

Therefore, as A is to C, so is D to F.

[v. Def. 5]

Therefore etc.

Q.E.D.

Euclid enunciates this proposition as true of any number of magnitudes whatever forming two sets connected in the manner described, but his proof is confined to the case where each set consists of three magnitudes only. The extension to any number of magnitudes is, however, easy, as shown by Simson.

“Next let there be four magnitudes A, B, C, D, and other four E, F, G, H, which two and two have the same ratio, viz.:

[image: image]

Because A, B, C are three magnitudes, and E, F, G other three, which taken two and two have the same ratio,

by the foregoing case,

A is to C as E to G.

But C is to D as G is to H;

wherefore again, by the first case,

A is to D as E to H.

And so on, whatever be the number of magnitudes.”

Proposition 23

If there be three magnitudes, and others equal to them in multitude, which taken two and two together are in the same ratio, and the proportion of them be perturbed, they will also be in the same ratio ex aequali.

Let there be three magnitudes A, B, C, and others equal to them in multitude, which, taken two and two together, are in the same proportion, namely D, E, F; and let the proportion of them be perturbed, so that,

[image: image]

I say that, as A is to C, so is D to F.

[image: image]

Of A, B, D let equimultiples G, H, K be taken,

and of C, E, F other, chance, equimultiples L, M, N.

Then, since G, H are equimultiples of A, B,

and parts have the same ratio as the same multiples of them,

[v. 15]

therefore, as A is to B, so is G to H.

For the same reason also,

as E is to F, so is M to N.

And, as A is to B, so is E to F;

therefore also, as G is to H, so is M to N.

[v. 11]

Next, since, as B is to C, so is D to E,

alternately, also, as B is to D, so is C to E.

[v. 16]

And, since H, K are equimultiples of B, D,

and parts have the same ratio as their equimultiples,

therefore, as B is to D, so is H to K.

[v. 15]

But, as B is to D, so is C to E;

therefore also, as H is to K, so is C to E.

[v. 11]

Again, since L, M are equimultiples of C, E,

therefore, as C is to E, so is L to M.

[v. 15]

But, as C is to E, so is H to K;

therefore also, as H is to K, so is L to M,

[v. 11]

and, alternately, as H is to L, so is K to M.

[v. 16]

But it was also proved that,

as G is to H, so is M to N.

Since, then, there are three magnitudes G, H, L, and others equal to them in multitude K, M, N, which taken two and two together are in the same ratio, and the proportion of them is perturbed,

therefore, ex aequali, if G is in excess of L, K is also in excess of N;

if equal, equal; and if less, less.

[v. 21]

And G, K are equimultiples of A, D,

and L, N of C, F.

Therefore, as A is to C, so is D to F.

Therefore etc.

Q.E.D.

There is an important difference between the version given by Simson of one part of the proof of this proposition and that found in the Greek text of Heiberg. Peyrard’s MS. has the version given by Heiberg, but Simson’s version has the authority of other MSS. The Basel editio princeps gives both versions (Simson’s being the first). After it has been proved by means of v. 15 and v. 11 that,

as G is to H, so is M to N,

or, with the notation used in the note on Prop. 20,

ma : mb = ne : nf,

it has to be proved further that,

[image: image]

and it is clear that the latter result may be directly inferred from v. 4. The reading translated by Simson makes this inference:

“And because, as B is to C, so is D to E,

and H, K are equimultiples of B, D,

and L, M of C, E,

therefore, as H is to L, so is K to M.”

[v. 4]

The version in Heiberg’s text is not only much longer (it adopts the roundabout method of using each of three Propositions v. 11, 15, 16 twice over), but it is open to the objection that it uses v. 16 which is only applicable if the four magnitudes are of the same kind; whereas v. 23, the proposition now in question, is not subject to this restriction.

Simson rightly observes that in the last step of the proof it should be stated that “G, K are any equimultiples whatever of A, D, and L, N any whatever of C, F.”

He also gives the extension of the proposition to any number of magnitudes, enunciating it thus:

“If there be any number of magnitudes, and as many others, which, taken two and two, in a cross order, have the same ratio; the first shall have to the last of the first magnitudes the same ratio which the first of the others has to the last”; and adding to the proof as follows:

“Next, let there be four magnitudes A, B, C, D, and other four E, F, G, H, which, taken two and two in a cross order, have the same ratio, viz.:

[image: image]

then A is to D as E to H.

Because A, B, C are three magnitudes, and F, G, H other three which, taken two and two in a cross order, have the same ratio,

[image: image]

wherefore again, by the first case,

A is to D as E to H.

And so on, whatever be the number of magnitudes.”

Proposition 24

If a first magnitude have to a second the same ratio as a third has to a fourth, and also a fifth have to the second the same ratio as a sixth to the fourth, the first and fifth added together will have to the second the same ratio as the third and sixth have to the fourth.

Let a first magnitude AB have to a second C the same ratio as a third DE has to a fourth F;

and let also a fifth BG have to the second C the same ratio as a sixth EH has to the fourth F;

I say that the first and fifth added together, AG, will have to the second C the same ratio as the third and sixth, DH, has to the fourth F.

[image: image]

For since, as BG is to C, so is EH to F,

inversely, as C is to BG, so is F to EH.

Since, then, as AB is to C, so is DE to F,

and, as C is to BG, so is F to EH,

therefore, ex aequali, as AB is to BG, so is DE to EH.

[v. 22]

And, since the magnitudes are proportional separando, they will also be proportional componendo;

[v. 18]

therefore, as AG is to GB, so is DH to HE.

But also, as BG is to C, so is EH to F;

therefore, ex aequali, as AG is to C, so is DH to F.

[v. 22]

Therefore etc.

Q.E.D.

[image: image]

This proposition is of the same character as those which precede the propositions relating to compounded ratios; but it could not be placed earlier than it is because v. 22 is used in the proof of it.

Inverting the second proportion to

[image: image]

and from this and the second of the two given proportions we obtain, by a fresh application of v. 22,

(a + b) : c = (d + e) : f.

The first use of v. 22 is important as showing that the opposite process to compounding ratios, or what we should now call division of one ratio by another, does not require any new and separate propositions.

Aristotle tacitly uses v. 24 in combination with v. 11 and v. 16, Meteorologica iii. 5, 376 a 22–26.

Simson adds two corollaries, one of which (Cor. 2) notes the extension to any number of magnitudes.

“The proposition holds true of two ranks of magnitudes whatever be their number, of which each of the first rank has to the second magnitude the same ratio that the corresponding one of the second rank has to a fourth magnitude; as is manifest.”

Simson’s Cor. 1 states the corresponding proposition to the above with separando taking the place of componendo, viz., that corresponding to the algebraical form

(a − b) : c = (d − e) : f.

“COR. 1. If the same hypothesis be made as in the proposition, the excess of the first and fifth shall be to the second as the excess of the third and sixth to the fourth. The demonstration of this is the same with that of the proposition if division be used instead of composition.” That is, we use v. 17 instead of v. 18, and conclude that

(a − b) : b = (d − e) : e.

Proposition 25

If four magnitudes be proportional, the greatest and the least are greater than the remaining two.

Let the four magnitudes AB, CD, E, F be proportional so that, as AB is to CD, so is E to F, and let AB be the greatest of them and F the least;

I say that AB, F are greater than CD, E.

For let AG be made equal to E, and CH equal to F.

Since, as AB is to CD, so is E to F,

[image: image]

and E is equal to AG, and F to CH,

therefore, as AB is to CD, so is AG to CH.

And since, as the whole AB is to the whole CD, so is the part AG subtracted to the part CH subtracted,

the remainder GB will also be to the remainder HD as the whole AB is to the whole CD.

[v. 19]

But AB is greater than CD;

therefore GB is also greater than HD.

And, since AG is equal to E, and CH to F, therefore AG, F are equal to CH, E.

And if, GB, HD being unequal, and GB greater, AG, F be added to GB and CH, E be added to HD,

it follows that AB, F are greater than CD, E.

Therefore etc.

Q.E.D.

[image: image]

and a is the greatest of the four magnitudes and d the least,

a + d > b + c.

Simson is right in inserting a word in the setting-out, “let AB be the greatest of them and <consequently> F the least.” This follows from the particular case, really included in Def. 5, which Simson makes the subject of his proposition A, the case namely where the equimultiples taken are once the several magnitudes.

The proof is as follows.

[image: image]

There is an important particular case of this proposition, which is, however, not mentioned here, viz. the case where b = c. The result shows, in this case, that the arithmetic mean between two magnitudes is greater than their geometric mean. The truth of this is proved for straight lines in vi. 27 by “geometrical algebra,” and the theorem forms the [image: image] for equations of the second degree.

Simson adds at the end of Book V. four propositions, F, G, H, K, which, however, do not seem to be of sufficient practical use to justify their inclusion here. But he adds at the end of his notes to the Book the following paragraph which deserves quotation word for word.

“The 5th book being thus corrected, I most readily agree to what the learned Dr. Barrow says, ‘that there is nothing in the whole body of the elements of a more subtile invention, nothing more solidly established, and more accurately handled than the doctrine of proportionals.’ And there is some ground to hope that geometers will think that this could not have been said with as good reason, since Theon’s time till the present.”

Simson’s claim herein will readily be admitted by all readers who are competent to form a judgment upon his criticisms and elucidations of Book V.

4. let EB be made that multiple of CG, [image: image]. From this way of stating the construction one might suppose that CG was given and EB had to be found equal to a certain multiple of it. But in fact EB is what is given and CG has to be found, i.e. CG has to be constructed as a certain submultiple of EB.

5. “Let A, B, C, D be four proportional magnitudes, so that, as A is to B, so is C to D.” In a number of expressions like this it is absolutely necessary, when translating into English, to interpolate words which are not in the Greek. Thus the Greek here is: “[image: image], literally “Let A, B, C, D be four proportional magnitudes, as A to B, so C to D.” The same remark applies to the corresponding expressions in the next propositions, v. 17, 18, and to other forms of expression in v. 20–23 and later propositions: e.g. in v. 20 we have a phrase meaning literally “Let there be magnitudes. . .which taken two and two are in the same ratio, as A to B, so D to E,” etc.: in v. 21 “(magnitudes). . .which taken two and two are in the same ratio, and let the proportion of them be perturbed, as A to B, so E to F,” etc. In all such cases (where the Greek is so terse as to be almost-ungrammatical) I shall insert the words necessary in English, without further remark.


BOOK VII

ELEMENTARY NUMBER THEORY—DEFINITIONS AND PROPOSITIONS

DEFINITIONS

1. An unit is that by virtue of which each of the things that exist is called one.

2. A number is a multitude composed of units.

3. A number is a part of a number, the less of the greater, when it measures the greater;

4. but parts when it does not measure it.

5. The greater number is a multiple of the less when it is measured by the less.

6. An even number is that which is divisible into two equal parts.

7. An odd number is that which is not divisible into two equal parts, or that which differs by an unit from an even number.

8. An even-times even number is that which is measured by an even number according to an even number.

9. An even-times odd number is that which is measured by an even number according to an odd number.

10. An odd-times odd number is that which is measured by an odd number according to an odd number.

11. A prime number is that which is measured by an unit alone.

12. Numbers prime to one another are those which are measured by an unit alone as a common measure.

13. A composite number is that which is measured by some number.

14. Numbers composite to one another are those which are measured by some number as a common measure.

15. A number is said to multiply a number when that which is multiplied is added to itself as many times as there are units in the other, and thus some number is produced.

16. And, when two numbers having multiplied one another make some number, the number so produced is called plane, and its sides are the numbers which have multiplied one another.

17. And, when three numbers having multiplied one another make some number, the number so produced is solid, and its sides are the numbers which have multiplied one another.

18. A square number is equal multiplied by equal, or a number which is contained by two equal numbers.

19. And a cube is equal multiplied by equal and again by equal, or a number which is contained by three equal numbers.

20. Numbers are proportional when the first is the same multiple, or the same part, or the same parts, of the second that the third is of the fourth.

21. Similar plane and solid numbers are those which have their sides proportional.

22. A perfect number is that which is equal to its own parts.

Proposition 1

Two unequal numbers being set out, and the less being continually subtracted in turn from the greater, if the number which is left never measures the one before it until an unit is left, the original numbers will be prime to one another.

For, the less of two unequal numbers AB, CD being continually subtracted from the greater, let the number which is left never measure the one before it until an unit is left;

I say that AB, CD are prime to one another, that is, that an unit alone measures AB, CD.

[image: image]

For, if AB, CD are not prime to one another, some number will measure them.

Let a number measure them, and let it be E; let CD, measuring BF, leave FA less than itself,

let AF, measuring DG, leave GC less than itself,

and let GC, measuring FH, leave an unit HA.

Since, then, E measures CD, and CD measures BF,

therefore E also measures BF.

But it also measures the whole BA;

therefore it will also measure the remainder AF.

But AF measures DG;

therefore E also measures DG.

But it also measures the whole DC;

therefore it will also measure the remainder CG.

But CG measures FH;

therefore E also measures FH.

But it also measures the whole FA;

therefore it will also measure the remainder, the unit AH, though it is a number: which is impossible.

Therefore no number will measure the numbers AB, CD; therefore AB, CD are prime to one another.

[vii. Def. 12]

Q.E.D.

It is proper to remark here that the representation in Books VII. to IX. of numbers by straight lines is adopted by Heiberg from the MSS. The method of those editors who substitute points for lines is open to objection because it practically necessitates, in many cases, the use of specific numbers, which is contrary to Euclid’s manner.

“Let CD, measuring BF, leave FA less than itself.” This is a neat abbreviation for saying, measure along BA successive lengths equal to CD until a point F is reached such that the length FA remaining is less than CD; in other words, let BF be the largest exact multiple of CD contained in BA.

Euclid’s method in this proposition is an application to the particular case of prime numbers of the method of finding the greatest common measure of two numbers not prime to one another, which we shall find in the next proposition. With our notation, the method may be shown thus. Supposing the two numbers to be a, b, we have, say,

[image: image]

If now a, b are not prime to one another, they must have a common measure e, where e is some integer, not unity.

And since e measures a, b, it measures a − pb, i.e. c.

Again, since e measures b, c, it measures b − qc, i.e. d,

and lastly, since e measures c, d, it measures c − rd, i.e. 1:

which is impossible.

Therefore there is no integer, except unity, that measures a, b, which are accordingly prime to one another.

Observe that Euclid assumes as an axiom that, if a, b are both divisible by c, so is a − pb. In the next proposition he assumes as an axiom that c will in the case supposed divide a + pb.

Proposition 2

Given two numbers not prime to one another, to find their greatest common measure.

Let AB, CD be the two given numbers not prime to one another.

Thus it is required to find the greatest common measure of AB, CD.

If now CD measures AB—and it also measures itself—CD is a common measure of CD, AB.

[image: image]

And it is manifest that it is also the greatest; for no greater number than CD will measure CD.

But, if CD does not measure AB, then, the less of the numbers AB, CD being continually subtracted from the greater, some number will be left which will measure the one before it.

For an unit will not be left; otherwise AB, CD will be prime to one another [vii. 1], which is contrary to the hypothesis.

Therefore some number will be left which will measure the one before it.

Now let CD, measuring BE, leave EA less than itself,

let EA, measuring DF, leave FC less than itself,

and let CF measure AE.

Since then, CF measures AE, and AE measures DF,

therefore CF will also measure DF.

But it also measures itself;

therefore it will also measure the whole CD.

But CD measures BE;

therefore CF also measures BE.

But it also measures EA;

therefore it will also measure the whole BA.

But it also measures CD;

therefore CF measures AB, CD.

Therefore CF is a common measure of AB, CD.

I say next that it is also the greatest.

For, if CF is not the greatest common measure of AB, CD, some number which is greater than CF will measure the numbers AB, CD.

Let such a number measure them, and let it be G.

Now, since G measures CD, while CD measures BE, G also measures BE.

But it also measures the whole BA;

therefore it will also measure the remainder AE.

But AE measures DF;

therefore G will also measure DF.

But it also measures the whole DC;

therefore it will also measure the remainder CF, that is, the greater will measure the less: which is impossible.

Therefore no number which is greater than CF will measure the numbers AB, CD;

therefore CF is the greatest common measure of AB, CD.

PORISM. From this it is manifest that, if a number measure two numbers, it will also measure their greatest common measure.

Q.E.D.

Here we have the exact method of finding the greatest common measure given in the text-books of algebra, including the reductio ad absurdum proof that the number arrived at is not only a common measure but the greatest common measure. The process of finding the greatest common measure is simply shown thus:

[image: image]

We shall arrive, says Euclid, at some number, say d, which measures the one before it, i.e. such that c = rd. Otherwise the process would go on until we arrived at unity. This is impossible because in that case a, b would be prime to one another, which is contrary to the hypothesis.

Next, like the text-books of algebra, he goes on to show that d will be some common measure of a, b. For d measures c; therefore it measures qc + d, that is, b,

and hence it measures pb + c, that is, a.

Lastly, he proves that d is the greatest common measure of a, b as follows.

Suppose that e is a common measure greater than d.

Then e, measuring a, b, must measure a − pb, or c.

Similarly e must measure b − qc, that is, d: which is impossible, since e is by hypothesis greater than d.

Therefore etc.

Euclid’s proposition is thus identical with the algebraical proposition as generally given, e.g. in Todhunter’s algebra, except that of course Euclid’s numbers are integers.

Nicomachus gives the same rule (though without proving it) when he shows how to determine whether two given odd numbers are prime or not prime to one another, and, if they are not prime to one another, what is their common measure. We are, he says, to compare the numbers in turn by continually taking the less from the greater as many times as possible, then taking the remainder as many times as possible from the less of the original numbers, and so on; this process “will finish either at an unit or at some one and the same number,” by which it is implied that the division of a greater number by a less is done by separate subtractions of the less. Thus, with regard to 21 and 49, Nicomachus says, “I subtract the less from the greater; 28 is left; then again I subtract from this the same 21 (for this is possible); 7 is left; I subtract this from 21, 14 is left; from which I again subtract 7 (for this is possible); 7 will be left, but 7 cannot be subtracted from 7.” The last phrase is curious, but the meaning of it is obvious enough, as also the meaning of the phrase about ending “at one and the same number.”

The proof of the Porism is of course contained in that part of the proposition which proves that G, a common measure different from CF, must measure CF. The supposition, thereby proved to be false, that G is greater than CF does not affect the validity of the proof that G measures CF in any case.

Proposition 3

Given three numbers not prime to one another, to find their greatest common measure.

Let A, B, C be the three given numbers not prime to one another; thus it is required to find the greatest common measure of A, B, C.

[image: image]

For let the greatest common measure, D, of the two numbers A, B be taken;

[vii. 2]

then D either measures, or does not measure, C.

First, let it measure it.

But it measures A, B also;

therefore D measures A, B, C;

therefore D is a common measure of A, B, C.

I say that it is also the greatest.

For, if D is not the greatest common measure of A, B, C, some number which is greater than D will measure the numbers A, B, C.

Let such a number measure them, and let it be E.

Since then E measures A, B, C,

it will also measure A, B;

therefore it will also measure the greatest common measure of A, B.

[vii. 2, Por.]

But the greatest common measure of A, B is D;

therefore E measures D, the greater the less: which is impossible.

Therefore no number which is greater than D will measure the numbers A, B, C;

therefore D is the greatest common measure of A, B, C.

Next, let D not measure C;

I say first that C, D are not prime to one another.

For, since A, B, C are not prime to one another, some number will measure them.

Now that which measures A, B, C will also measure A, B, and will measure D, the greatest common measure of A, B.

[vii. 2, Por.]

But it measures C also;

therefore some number will measure the numbers D, C;

therefore D, C are not prime to one another.

Let then their greatest common measure E be taken.

[vii. 2]

Then, since E measures D,

and D measures A, B,

therefore E also measures A, B.

But it measures C also;

therefore E measures A, B, C;

therefore E is a common measure of A, B, C.

I say next that it is also the greatest.

For, if E is not the greatest common measure of A, B, C, some number which is greater than E will measure the numbers A, B, C.

Let such a number measure them, and let it be F.

Now, since F measures A, B, C,

it also measures A, B;

therefore it will also measure the greatest common measure of A, B.

[vii. 2, Por.]

But the greatest common measure of A, B is D;

therefore F measures D.

And it measures C also;

therefore F measures D, C;

therefore it will also measure the greatest common measure of D, C.

[vii. 2, Por.]

But the greatest common measure of D, C is E;

therefore F measures E, the greater the less: which is impossible.

Therefore no number which is greater than E will measure the numbers A, B, C;

therefore E is the greatest common measure of A, B, C.

Q.E.D.

Euclid’s proof is here longer than we should make it because he distinguishes two cases, the simpler of which is really included in the other.

Having taken the greatest common measure, say d, of a, b, two of the three given numbers a, b, c, he distinguishes the cases

(1) in which d measures c,

(2) in which d does not measure c.

In the first case the greatest common measure of d, c is d itself; in the second case it has to be found by a repetition of the process of vii. 2. In either case the greatest common measure of a, b, c is the greatest common measure of d, c.

But, after disposing of the simpler case, Euclid thinks it necessary to prove that, if d does not measure c, d and c must necessarily have a greatest common measure. This he does by means of the original hypothesis that a, b, c are not prime to one another. Since they are not prime to one another, they must have a common measure; any common measure of a, b is a measure of d, and therefore any common measure of a, b, c is a common measure of d, c; hence d, c must have a common measure, and are therefore not prime to one another.

The proofs of cases (1) and (2) repeat exactly the same argument as we saw in vii. 2, and it is proved separately for d in case (1) and e in case (2), where e is the greatest common measure of d, c,

(α)that it is a common measure of a, b, c,

(β)that it is the greatest common measure.

Heron remarks (an-Nairīzī, ed. Curtze) that the method does not only enable us to find the greatest common measure of three numbers; it can be used to find the greatest common measure of as many numbers as we please. This is because any number measuring two numbers also measures their greatest common measure; and hence we can find the G.C.M. of pairs, then the G.C.M. of pairs of these, and so on, until only two numbers are left and we find the G.C.M. of these. Euclid tacitly assumes this extension in vii. 33, where he takes the greatest common measure of as many numbers as we please.

Proposition 4

Any number is either a part or parts of any number, the less of the greater.

Let A, BC be two numbers, and let BC be the less;

I say that BC is either a part, or parts, of A.

For A, BC are either prime to one another or not.

First, let A, BC be prime to one another.

Then, if BC be divided into the units in it, each unit of those in BC will be some part of A; so that BC is parts of A.

Next let A, BC not be prime to one another; then BC either measures, or does not measure, A.

[image: image]

If now BC measures A, BC is a part of A.

But, if not, let the greatest common measure D of A, BC be taken;

[vii. 2]

and let BC be divided into the numbers equal to D, namely BE, EF, FC.

Now, since D measures A, D is a part of A.

But D is equal to each of the numbers BE, EF, FC;

therefore each of the numbers BE, EF, FC is also a part of A; so that BC is parts of A.

Therefore etc.

Q.E.D.

The meaning of the enunciation is of course that, if a, b be two numbers of which b is the less, then b is either a submultiple or some proper fraction of a.

(1) If a, b are prime to one another, divide each into its units; then b contains b of the same parts of which a contains a. Therefore b is “parts” or a proper fraction of a.

(2) If a, b be not prime to one another, either b measures a, in which case b is a submultiple or “part” of a, or, if g be the greatest common measure of a, b, we may put a = mg and b = ng, and b will contain n of the same parts (g) of which a contains m, so that b is again “parts,” or a proper fraction, of a.

Proposition 5

If a number be a part of a number, and another be the same part of another, the sum will also be the same part of the sum that the one is of the one.

For let the number A be a part of BC,

and another, D, the same part of another EF that A is of BC;

I say that the sum of A, D is also the same part of the sum of BC, EF that A is of BC.

For since, whatever part A is of BC, D is also the same part of EF, therefore, as many numbers as there are in BC equal to A, so many numbers are there also in EF equal to D.

[image: image]

Let BC be divided into the numbers equal to A, namely BG, GC, and EF into the numbers equal to D, namely EH, HF;

then the multitude of BG, GC will be equal to the multitude of EH, HF.

And, since BG is equal to A, and EH to D,

therefore BG, EH are also equal to A, D.

For the same reason

GC, HF are also equal to A, D.

Therefore, as many numbers as there are in BC equal to A, so many are there also in BC, EF equal to A, D.

Therefore, whatever multiple BC is of A, the same multiple also is the sum of BC, EF of the sum of A, D.

Therefore, whatever part A is of BC, the same part also is the sum of A, D of the sum of BC, EF.

Q.E.D.

[image: image]

The proposition is of course true for any quantity of pairs of numbers similarly related, as is the next proposition also; and both propositions are used in the extended form in vii. 9, 10.

Proposition 6

If a number be parts of a number, and another be the same parts of another, the sum will also be the same parts of the sum that the one is of the one.

For let the number AB be parts of the number C, and another, DE, the same parts of another, F, that AB is of C;

I say that the sum of AB, DE is also the same parts of the sum of C, F that AB is of C.

For since, whatever parts AB is of C, DE is also the same parts of F,

[image: image]

therefore, as many parts of C as there are in AB, so many parts of F are there also in DE.

Let AB be divided into the parts of C, namely AG, GB, and DE into the parts of F, namely DH, HE;

thus the multitude of AG, GB will be equal to the multitude of DH, HE.

And since, whatever part AG is of C, the same part is DH of F also,

therefore, whatever part AG is of C, the same part also is the sum of AG, DH of the sum of C, F.

[vii. 5]

For the same reason,

whatever part GB is of C, the same part also is the sum of GB, HE of the sum of C, F.

Therefore, whatever parts AB is of C, the same parts also is the sum of AB, DE of the sum of C, F.

Q.E.D.

[image: image]

In Euclid’s proposition m < n, but the generality of the result is of course not affected. This proposition and the last are complementary to v. 1, which proves the corresponding result with multiple substituted for “part” or “parts.”

Proposition 7

If a number be that part of a number, which a number subtracted is of a number subtracted, the remainder will also be the same part of the remainder that the whole is of the whole.

For let the number AB be that part of the number CD which AE subtracted is of CF subtracted;

I say that the remainder EB is also the same part of the remainder FD that the whole AB is of the whole CD.

[image: image]

For, whatever part AE is of CF, the same part also let EB be of CG.

Now since, whatever part AE is of CF, the same part also is EB of CG, therefore, whatever part AE is of CF, the same part also is AB of GF.

[vii. 5]

But, whatever part AE is of CF, the same part also, by hypothesis, is AB of CD; therefore, whatever part AB is of GF, the same part is it of CD also;

therefore GF is equal to CD.

Let CF be subtracted from each;

therefore the remainder GC is equal to the remainder FD.

Now since, whatever part AE is of CF, the same part also is EB of GC,

while GC is equal to FD,

therefore, whatever part AE is of CF, the same part also is EB of FD.

But, whatever part AE is of CF, the same part also is AB of CD;

therefore also the remainder EB is the same part of the remainder FD that the whole AB is of the whole CD.

Q.E.D.

If [image: image] and [image: image], we are to prove that

[image: image]

a result differing from that of vii. 5 in that minus is substituted for plus. Euclid’s method is as follows.

Suppose that e is taken such that

[image: image]

and, substituting this value of e in (1), we have

[image: image]

Proposition 8

If a number be the same parts of a number that a number subtracted is of a number subtracted, the remainder will also be the same parts of the remainder that the whole is of the whole.

For let the number AB be the same parts of the number CD that AE subtracted is of CF subtracted;

I say that the remainder EB is also the same parts of the remainder FD that the whole AB is of the whole CD.

[image: image]

For let GH be made equal to AB.

Therefore, whatever parts GH is of CD, the same parts also is AE of CF.

Let GH be divided into the parts of CD, namely GK, KH, and AE into the parts of CF, namely AL, LE;

thus the multitude of GK, KH will be equal to the multitude of AL, LE.

Now since, whatever part GK is of CD, the same part also is AL of CF,

while CD is greater than CF,

therefore GK is also greater than AL.

Let GM be made equal to AL.

Therefore, whatever part GK is of CD, the same part also is GM of CF;

therefore also the remainder MK is the same part of the remainder FD that the whole GK is of the whole CD.

[vii. 7]

Again, since, whatever part KH is of CD, the same part also is EL of CF,

while CD is greater than CF,

therefore HK is also greater than EL.

Let KN be made equal to EL.

Therefore, whatever part KH is of CD, the same part also is KN of CF;

therefore also the remainder NH is the same part of the remainder FD that the whole KH is of the whole CD.

[vii. 7]

But the remainder MK was also proved to be the same part of the remainder FD that the whole GK is of the whole CD;

therefore also the sum of MK, NH is the same parts of DF that the whole HG is of the whole CD.

But the sum of MK, NH is equal to EB,

and HG is equal to BA;

therefore the remainder EB is the same parts of the remainder FD that the whole AB is of the whole CD.

Q.E.D.

[image: image]

Repeat this for all the parts equal to e and f that there are in a, b respectively, and we have, by addition (a, b containing m of such parts respectively),

[image: image]

The propositions vii. 7, 8 are complementary to v. 5 which gives the corresponding result with multiple in the place of “part” or “parts.”

Proposition 9

If a number be a part of a number, and another be the same part of another, alternately also, whatever part or parts the first is of the third, the same part, or the same parts, will the second also be of the fourth.

For let the number A be a part of the number BC, and another, D, the same part of another, EF, that A is of BC;

I say that, alternately also, whatever part or parts A is of D, the same part or parts is BC of EF also.

For since, whatever part A is of BC, the same part also is D of EF, therefore, as many numbers as there are in BC equal to A, so many also are there in EF equal to D.

[image: image]

Let BC be divided into the numbers equal to A, namely BG, GC,

and EF into those equal to D, namely EH, HF;

thus the multitude of BG, GC will be equal to the multitude of EH, HF.

Now, since the numbers BG, GC are equal to one another, and the numbers EH, HF are also equal to one another,

while the multitude of BG, GC is equal to the multitude of EH, HF,

therefore, whatever part or parts BG is of EH, the same part or the same parts is GC of HF also;

so that, in addition, whatever part or parts BG is of EH, the same part also, or the same parts, is the sum BC of the sum EF.

[vii. 5, 6]

But BG is equal to A, and EH to D;

therefore, whatever part or parts A is of D, the same part or the same parts is BC of EF also.

Q.E.D.

If [image: image] and [image: image], then, whatever fraction (“part” or “parts”) a is of c, the same fraction will b be of d.

Dividing b into each of its parts equal to a, and d into each of its parts equal to c, it is clear that, whatever fraction one of the parts a is of one of the parts c, the same fraction is any other of the parts a of any other of the parts c.

And the number of the parts a is equal to the number of the parts c, viz. n.

Therefore, by vii. 5, 6, na is the same fraction of nc that a is of c, i.e. b is the same fraction of d that a is of c.

Proposition 10

If a number be parts of a number, and another be the same parts of another, alternately also, whatever parts or part the first is of the third, the same parts or the same part will the second also be of the fourth.

For let the number AB be parts of the number C, and another, DE, the same parts of another, F;

I say that, alternately also, whatever parts or part AB is of DE, the same parts or the same part is C of F also.

[image: image]

For since, whatever parts AB is of C, the same parts also is DE of F,

therefore, as many parts of C as there are in AB, so many parts also of F are there in DE.

Let AB be divided into the parts of C, namely AG, GB, and DE into the parts of F, namely DH, HE;

thus the multitude of AG, GB will be equal to the multitude of DH, HE.

Now since, whatever part AG is of C, the same part also is DH of F,

alternately also, whatever part or parts AG is of DH,

the same part or the same parts is C of F also.

[vii. 9]

For the same reason also,

whatever part or parts GB is of HE, the same part or the same parts is C of F also; so that, in addition, whatever parts or part AB is of DE, the same parts also, or the same part, is C of F.

[vii. 5, 6]

Q.E.D.

If [image: image] and [image: image], then, whatever fraction a is of c, the same fraction is b of d.

To prove this, a is divided into its m parts equal to b/n, and c into its m parts equal to d/n.

Then, by vii. 9, whatever fraction one of the m parts of a is of one of the m parts of c, the same fraction is b of d.

And, by vii. 5, 6, whatever fraction one of the m parts of a is of one of the m parts of c, the same fraction is the sum of the parts of a (that is, a) of the sum of the parts of c (that is, c).

Whence the result follows.

In the Greek text, after the words “so that, in addition” in the last line but one, is an additional explanation making the reference to vii. 5, 6 clearer, as follows: “whatever part or parts AG is of DH, the same part or the same parts isGB of HE also;

therefore also, whatever part or parts AG is of DH, the same part or the same parts is AB of DE also.

[vii. 5, 6]

But it was proved that, whatever part or parts AG is of DH, the same part or the same parts is C of F also;

therefore also” etc. as in the last two lines of the text.

Heiberg concludes, on the authority of P, which only has the words in the margin in a later hand, that they may be attributed to Theon.

Proposition 11

If, as whole is to whole, so is a number subtracted to a number subtracted, the remainder will also be to the remainder as whole to whole.

As the whole AB is to the whole CD, so let AE subtracted be to CF subtracted;

I say that the remainder EB is also to the remainder FD as the whole AB to the whole CD.

[image: image]

Since, as AB is to CD so is AE to CF,

whatever part or parts AB is of CD, the same part or the same parts is AE of CF also;

[vii. Def. 20]

Therefore also the remainder EB is the same part or parts of FD that AB is of CD.

[vii. 7, 8]

Therefore, as EB is to FD, so is AB to CD.

[vii. Def. 20]

Q.E.D.

It will be observed that, in dealing with the proportions in Props. 11–13, Euclid only contemplates the case where the first number is “a part” or “parts” of the second, while in Prop. 13 he assumes the first to be “a part” or “parts” of the third also; that is, the first number is in all three propositions assumed to be less than the second, and in Prop. 13 less than the third also. Yet the figures in Props. 11 and 13 are inconsistent with these assumptions. If the facts are taken to correspond to the figures in these propositions, it is necessary to take account of the other possibilities involved in the definition of proportion (vii. Def. 20), that the first number may also be a multiple, or a multiple plus “a part” or “parts” (including once as a multiple in this case), of each number with which it is compared. Thus a number of different cases would have to be considered. The remedy is to make the ratio which is in the lower terms the first ratio, and to invert the ratios, if necessary, in order to make “a part” or “parts” literally apply.

[image: image]

This proposition for numbers corresponds to v. 19 for magnitudes. The enunciation is the same except that the masculine (agreeing with [image: image]) takes the place of the neuter (agreeing with [image: image]).

The proof is no more than a combination of the arithmetical definition of proportion (vii. Def. 20) with the results of vii. 7, 8. The language of proportions is turned into the language of fractions by Def. 20; the results of vii. 7, 8 are then used and the language retransformed by Def. 20 into the language of proportions.

Proposition 12

If there be as many numbers as we please in proportion, then, as one of the antecedents is to one of the consequents, so are all the antecedents to all the consequents.

Let A, B, C, D be as many numbers as we please in proportion, so that,

as A is to B, so is C to D;

I say that, as A is to B, so are A, C to B, D.

For since, as A is to B, so is C to D,

whatever part or parts A is of B, the same part or parts is C of D also.

[vii. Def. 20]

[image: image]

Therefore also the sum of A, C is the same part or the same parts of the sum of B, D that A is of B.

[vii. 5, 6]

Therefore, as A is to B, so are A, C to B, D.

[vii. Def. 20]

[image: image]

then each ratio is equal to (a + b + c + . . .) : (a′ + b′ + c′ + . . .).

The proposition corresponds to v. 12, and the enunciation is word for word the same with that of v. 12 except that [image: image] takes the place of [image: image].

Again the proof merely connects the arithmetical definition of proportion (vii. def. 20) with the results of vii. 5, 6, which are quoted as true for any number of numbers, and not merely for two numbers as in the enunciations of vii. 5, 6.

Proposition 13

If four numbers be proportional, they will also be proportional alternately.

Let the four numbers A, B, C, D be proportional, so that,

as A is to B, so is C to D;

I say that they will also be proportional alternately, so that,

as A is to C, so will B be to D.

For since, as A is to B, so is C to D,

therefore, whatever part or parts A is of B,

the same part or the same parts is C of D also.

[vii. Def. 20]

[image: image]

Therefore, alternately, whatever part or parts A is of C, the same part or the same parts is B of D also.

[vii. 10]

Therefore, as A is to C, so is B to D.

[vii. Def. 20]

Q.E.D.

[image: image]

The proposition corresponds to v. 16 for magnitudes, and the proof consists in connecting vii. Def. 20 with the result of vii. 10.

Proposition 14

If there be as many numbers as we please, and others equal to them in multitude, which taken two and two are in the same ratio, they will also be in the same ratio ex aequali.

Let there be as many numbers as we please A, B, C, and others equal to them in multitude D, E, F, which taken two and two are in the same ratio, so that,

[image: image]

I say that, ex aequali,

as A is to C, so also is D to F.

[image: image]

For, since, as A is to B, so is D to E,

therefore, alternately,

as A is to D, so is B to E.

[vii. 13]

Again, since, as B is to C, so is E to F,

therefore, alternately,

as B is to E, so is C to F.

[vii. 13]

But, as B is to E, so is A to D;

therefore also, as A is to D, so is C to F.

Therefore, alternately,

as A is to C, so is D to F.

[id.]

[image: image]

and the same is true however many successive numbers are so related.

The proof is simplicity itself.

[image: image]

Observe that this simple method cannot be used to prove the corresponding proposition for magnitudes, v. 22, although v. 22 has been preceded by the two propositions in that Book corresponding to the propositions used here, viz. v. 16 and v.11. The reason of this is that this method would only prove v. 22 for six magnitudes all of the same kind, whereas the magnitudes in v. 22 are not subject to this limitation.

Heiberg remarks in a note on vii.19 that, while Euclid has proved several propositions of Book V. over again, by a separate proof, for numbers, he has neglected to do so in certain cases; e.g., he often uses v. 11 in these propositions of Book VII., v. 9 in vii. 19, v. 7 in the same proposition, and so on. Thus Heiberg would apparently suppose Euclid to use v. 11 in the last step of the present proof (Ratios which are the same with the same ratio are also the same with one another). I think it preferable to suppose that Euclid regarded the last step as axiomatic; since, by the definition of proportion, the first number is the same multiple or the same part or the same parts of the second that the third is of the fourth: the assumption is no more than an assumption that the numbers or proper fractions which are respectively equal to the same number or proper fraction are equal to one another.

Though the proposition is only proved of six numbers, the extension to as many as we please (as expressed in the enunciation) is obvious.

Proposition 15

If an unit measure any number, and another number measure any other number the same number of times, alternately also, the unit will measure the third number the same number of times that the second measures the fourth.

For let the unit A measure any number BC, and let another number D measure any other number EF the same number of times;

I say that, alternately also, the unit A measures the number D the same number of times that BC measures EF.

[image: image]

For, since the unit A measures the number BC the same number of times that D measures EF,

therefore, as many units as there are in BC, so many numbers equal to D are there in EF also.

Let BC be divided into the units in it, BG, GH, HC,

and EF into the numbers EK, KL, LF equal to D.

Thus the multitude of BG, GH, HC will be equal to the multitude of EK, KL, LF.

And, since the units BG, GH, HC are equal to one another, and the numbers EK, KL, LF are also equal to one another, while the multitude of the units BG, GH,HC is equal to the multitude of the numbers EK, KL, LF,

therefore, as the unit BG is to the number EK, so will the unit GH be to the number KL, and the unit HC to the number LF.

Therefore also, as one of the antecedents is to one of the consequents, so will all the antecedents be to all the consequents;

[vii. 12]

therefore, as the unit BG is to the number EK, so is BC to EF.

But the unit BG is equal to the unit A,

and the number EK to the number D.

Therefore, as the unit A is to the number D, so is BC to EF.

Therefore the unit A measures the number D the same number of times that BC measures EF.

Q.E.D.

If there be four numbers 1, m,a, ma (such that 1 measures m the same number of times that a measures ma), 1 measures a the same number of times that m measures ma.

Except that the first number is unity and the numbers are said to measure instead of being a part of others, this proposition and its proof do not differ from vii. 9; in fact this proposition is a particular case of the other.

Proposition 16

If two numbers by multiplying one another make certain numbers, the numbers so produced will be equal to one another. [6]

Let A, B be two numbers, and let A by multiplying B make C, and B by multiplying A make D;

I say that C is equal to D.

[image: image]

For, since A by multiplying B has made C, therefore B measures C according to the units in A.

But the unit E also measures the number A according to the units in it;

therefore the unit E measures A the same number of times that B measures C.

Therefore, alternately, the unit E measures the number B the same number of times that A measures C.

[vii. 15]

Again, since B by multiplying A has made D,

therefore A measures D according to the units in B.

But the unit E also measures B according to the units in it;

therefore the unit E measures the number B the same number of times that A measures D.

But the unit E measured the number B the same number of times that A measures C;

therefore A measures each of the numbers C, D the same number of times.

Therefore C is equal to D.

Q.E.D.

This proposition proves that, if any numbers be multiplied together, the order of multiplication is indifferent, or ab = ba.

It is important to get a clear understanding of what Euclid means when he speaks of one number multiplying another. vii. Def. 15 states that the effect of “a multiplying b” is taking a times b. We shall always represent “a times b” by ab and “b times a” by ba. This being premised, the proof that ab ba may be represented as follows in the language of proportions.

[image: image]

Euclid does not use the language of proportions but that of fractions or their equivalent measures, quoting vii. 15, a particular case of vii. 13 differently expressed, instead of vii. 13 itself.

Proposition 17

If a number by multiplying two numbers make certain numbers, the numbers so produced will have the same ratio as the numbers multiplied.

For let the number A by multiplying the two numbers B, C make D, E;

I say that, as B is to C, so is D to E.

For, since A by multiplying B has made D,

therefore B measures D according to the units in A.

[image: image]

But the unit F also measures the number A according to the units in it; therefore the unit F measures the number A the same number of times that B measures D.

Therefore, as the unit F is to the number A, so is B to D.

[vii. Def. 20]

For the same reason,

as the unit F is to the number A, so also is C to E;

therefore also, as B is to D, so is C to E.

Therefore, alternately, as B is to C, so is D to E.

[vii. 13]

Q.E.D.

b : c = ab : ac.

In this case Euclid translates the language of measures into that of proportions, and the proof is exactly like that set out in the last note.

[image: image]

Proposition 18

If two numbers by multiplying any number make certain numbers, the numbers so produced will have the same ratio as the multipliers.

For let two numbers A, B by multiplying any number C make D, E;

I say that, as A is to B, so is D to E.

For, since A by multiplying C has made D,

therefore also C by multiplying A has made D.

[vii. 16]

[image: image]

For the same reason also

C by multiplying B has made E.

Therefore the number C by multiplying the two numbers A, B has made D, E.

Therefore, as A is to B, so is D to E.

[vii. 17]

[image: image]

Proposition 19

If four numbers be proportional, the number produced from the first and fourth will be equal to the number produced from the second and third; and, if the number produced from the first and fourth be equal to that produced from the second and third, the four numbers will be proportional.

Let A, B, C, D be four numbers in proportion, so that,

as A is to B, so is C to D;

and let A by multiplying D make E, and let B by multiplying C make F;

I say that E is equal to F.

For let A by multiplying C make G.

Since, then, A by multiplying C has made G, and by multiplying D has made E, the number A by multiplying the two numbers C, D has made G, E.

Therefore, as C is to D, so is G to E.

[vii. 17]

But, as C is to D, so is A to B;

therefore also, as A is to B, so is G to E.

[image: image]

Again, since A by multiplying C has made G,

but, further, B has also by multiplying C made F,

the two numbers A, B by multiplying a certain number C

have made G, F.

Therefore, as A is to B, so is G to F.

[vii. 18]

But further, as A is to B, so is G to E also;

therefore also, as G is to E, so is G to F.

Therefore G has to each of the numbers E, F the same ratio;

therefore E is equal to F.

[cf. v. 9]

Again, let E be equal to F;

I say that, as A is to B, so is C to D.

For, with the same construction,

since E is equal to F,

therefore, as G is to E, so is G to F.

[cf. v. 7]

But, as G is to E, so is C to D,

[vii. 17]

and, as G is to F, so is A to B.

[vii. 18]

Therefore also, as A is to B, so is C to D.

Q.E.D.

[image: image]

As indicated in the note on vii. 14 above, Heiberg regards Euclid as basing the inferences contained in the last step of part (1) of this proof and in the first step of part (2) on the propositions v. 9 and v. 7 respectively, since he has not proved those propositions separately for numbers in this Book. I prefer to suppose that he regarded the inferences as obvious and not needing proof, in view of the definition of numbers which are in proportion. E.g., if ac is the same fraction (“part” or “parts”) of ad that ac is of bc, it is obvious that ad must be equal to bc.

Heiberg omits from his text here, and relegates to an Appendix, a proposition appearing in the manuscripts v, p, ϕ to the effect that, if three numbers be proportional, the product of the extremes is equal to the square of the median, and conversely. It does not appear in P in the first hand, B has it in the margin only, and Campanus omits it, remarking that Euclid does not give the proposition about three proportionals as he does in vi. 17, since it is easily proved by the proposition just given. Moreover an-Nairīzī quotes the proposition about three proportionals as an observation on vii. 19 probably due to Heron (who is mentioned by name in the preceding paragraph).

Proposition 20

The least numbers of those which have the same ratio with them measure those which have the same ratio the same number of times, the greater the greater and the less the less.

For let CD, EF be the least numbers of those which have the same ratio with A, B; I say that CD measures A the same number of times that EF measures B.

Now CD is not parts of A.

For, if possible, let it be so;

therefore EF is also the same parts of B that CD is of A.

[vii. 13 and Def. 20]

[image: image]

Therefore, as many parts of A as there are in CD, so many parts of B are there also in EF.

Let CD be divided into the parts of A, namely CG, GD, and EF into the parts of B, namely EH, HF;

thus the multitude of CG, GD will be equal to the multitude of EH, HF.

Now, since the numbers CG, GD are equal to one another, and the numbers EH, HF are also equal to one another,

while the multitude of CG, GD is equal to the multitude of EH, HF,

therefore, as CG is to EH, so is GD to HF.

Therefore also, as one of the antecedents is to one of the consequents, so will all the antecedents be to all the consequents.

[vii. 12]

Therefore, as CG is to EH, so is CD to EF.

Therefore CG, EH are in the same ratio with CD, EF, being less than they:

which is impossible, for by hypothesis CD, EF are the least numbers of those which have the same ratio with them.

Therefore CD is not parts of A;

therefore it is a part of it.

[vii. 4]

And EF is the same part of B that CD is of A;

[vii. 13 and Def. 20]

therefore CD measures A the same number of times that EF measures B.

Q.E.D.

If a, b are the least numbers among those which have the same ratio (i.e. if a/b is a fraction in its lowest terms), and c, d are any others in the same ratio, i.e. if

a : b = c : d,

then [image: image], [image: image] where n is some integer.

The proof is by reductio ad absurdum, thus.

[Since a<c, a is some proper fraction (“part” or “parts”) of c, by vii. 4.]

Now a cannot be equal to [image: image], where m is an integer less than n but greater than 1.

For, if [image: image], [image: image] also.

[vii. 13 and Def. 20]

Take each of the m parts of a with each of the m parts of b, two and two; the ratio of the members of all pairs is the same ratio [image: image].

Therefore

[image: image]

But [image: image] and [image: image] are respectively less than a, b and they are in the same ratio: which contradicts the hypothesis.

H. E. 11.

Hence a can only be “a part” of c, or

[image: image]

Here also Heiberg omits a proposition which was no doubt interpolated by Theon (B, V, p, ϕ have it as vii. 22, but P only has it in the margin and in a later hand; Campanus also omits it) proving for numbers the ex aequali proposition when “the proportion is perturbed,” i.e. (cf. enunciation of v. 22) if

[image: image]

Proposition 21

Numbers prime to one another are the least of those which have the same ratio with them.

Let A, B be numbers prime to one another;

I say that A, B are the least of those which have the same ratio with them.

[image: image]

For, if not, there will be some numbers less than A, B which are in the same ratio with A, B.

Let them be C, D.

Since, then, the least numbers of those which have the same ratio measure those which have the same ratio the same number of times, the greater the greater and the less the less, that is, the antecedent the antecedent and the consequent the consequent,

[vii. 20]

therefore C measures A the same number of times that D measures B.

Now, as many times as C measures A, so many units let there be in E.

Therefore D also measures B according to the units in E.

And, since C measures A according to the units in E, therefore E also measures A according to the units in C.

[vii. 16]

For the same reason

E also measures B according to the units in D.

[vii. 16]

Therefore E measures A, B which are prime to one another: which is impossible.

[vii. Def. 12]

Therefore there will be no numbers less than A, B which are in the same ratio with A, B.

Therefore A, B are the least of those which have the same ratio with them.

Q.E.D.

In other words, if a, b are prime to one another, the ratio a : b is “in its lowest terms.”

The proof is equivalent to the following.

If not, suppose that c, d are the least numbers for which

a : b = c : d.

[Euclid only supposes some numbers c, d in the ratio of a to b such that c < a, and (consequently) d < b. It is however necessary to suppose that c, d are the least numbers in that ratio in order to enable vii. 20 to be used in the proof.]

Then [vii. 20] a = mc, and b = md, where m is some integer.

[image: image]

and m is a common measure of a, b, though these are prime to one another which is impossible.

[vii. Def. 12]

Thus the least numbers in the ratio of a to b cannot be less than a, b themselves.

Where I have quoted vii. 16 Heiberg regards the reference as being to vii. 15. I think the phraseology of the text combined with that of Def. 15 suggests the former rather than the latter.

Proposition 22

The least numbers of those which have the same ratio with them are prime to one another.

Let A, B be the least numbers of those which have the same ratio with them;

I say that A, B are prime to one another.

For, if they are not prime to one another, some number will measure them.

[image: image]

Let some number measure them, and let it be C.

And, as many times as C measures A, so many units let there be in D,

and, as many times as C measures B, so many units let there be in E

Since C measures A according to the units in D,

therefore C by multiplying D has made A.

[vii. Def. 15]

For the same reason also

C by multiplying E has made B.

Thus the number C by multiplying the two numbers D, E has made A, B;

therefore, as D is to E, so is A to B;

[vii. 17]

therefore D, E are in the same ratio with A, B, being less than they: which is impossible.

Therefore no number will measure the numbers A, B.

Therefore A, B are prime to one another.

Q.E.D.

If a : b is “in its lowest terms,” a, b are prime to one another.

Again the proof is indirect.

If a, b are not prime to one another, they have some common measure c,

and

[image: image]

But m, n are less than a, b respectively, so that a : b is not in its lowest terms: which is contrary to the hypothesis.

Therefore etc.

Proposition 23

If two numbers be prime to one another, the number which measures the one of them will be prime to the remaining number.

Let A, B be two numbers prime to one another, and let any number C measure A; I say that C, B are also prime to one another.

For, if C, B are not prime to one another, some number will measure C, B.

Let a number measure them, and let it be D.

Since D measures C, and C measures A,

therefore D also measures A.

[image: image]

But it also measures B;

therefore D measures A, B which are prime to one another: which is impossible.

[vii. Def. 12]

Therefore no number will measure the numbers C, B.

Therefore C, B are prime to one another.

Q.E.D.

If a, mb are prime to one another, b is prime to a. For, if not, some number d will measure both a and b, and therefore both a and mb: which is contrary to the hypothesis.

Therefore etc.

Proposition 24

If two numbers be prime to any number, their product also will be prime to the same. [7]

For let the two numbers A, B be prime to any number C, and let A by multiplying B make D;

I say that C, D are prime to one another.

For, if C, D are not prime to one another, some number will measure C, D.

[image: image]

Let a number measure them, and let it be E.

Now, since C, A are prime to one another,

and a certain number E measures C,

therefore A, E are prime to one another.

[vii. 23]

As many times, then, as E measures D, so many units let there be in F;

therefore F also measures D according to the units in E.

[vii. 16]

Therefore E by multiplying F has made D.

[vii. Def. 15]

But, further, A by multiplying B has also made D;

therefore the product of E, F is equal to the product of A, B.

But, if the product of the extremes be equal to that of the means, the four numbers are proportional;

[vii. 19]

therefore, as E is to A, so is B to F.

But A, E are prime to one another,

numbers which are prime to one another are also the least of those which have the same ratio,

[vii. 21]

and the least numbers of those which have the same ratio with them measure those which have the same ratio the same number of times, the greater the greater and the less the less, that is, the antecedent the antecedent and the consequent the consequent;

[vii. 20]

therefore E measures B.

But it also measures C;

therefore E measures B, C which are prime to one another:

which is impossible.

[vii. Def. 12]

Therefore no number will measure the numbers C, D.

Therefore C, D are prime to one another.

Q.E.D.

If a, b are both prime to c, then ab, c are prime to one another.

The proof is again by reductio ad absurdum.

If ab, c are not prime to one another, let them be measured by a and be equal to md, nd, say, respectively.

Now, since a, c are prime to one another and d measures c,

[image: image]

Therefore d measures both b and c, which are therefore not prime to one another: which is impossible.

Therefore etc.

Proposition 25

If two numbers be prime to one another, the product of one of them into itself will be prime to the remaining one. [8]

Let A, B be two numbers prime to one another,

and let A by multiplying itself make C:

I say that B, C are prime to one another.

For let D be made equal to A.

Since A, B are prime to one another, and A is equal to D,

therefore D, B are also prime to one another.

[image: image]

Therefore each of the two numbers D, A is prime to B;

therefore the product of D, A will also be prime to B.

[vii. 24]

But the number which is the product of D, A is C.

Therefore C, B are prime to one another.

Q.E.D.

If a, b are prime to one another,

a2 is prime to b.

Euclid takes d equal to a, so that d, a are both prime to b.

Hence, by vii. 24, da, i.e. a2, is prime to b.

The proposition is a particular case of the preceding proposition; and the method of proof is by substitution of different numbers in the result of that proposition.

Proposition 26

If two numbers be prime to two numbers, both to each, their products also will be prime to one another.

For let the two numbers A, B be prime to the two numbers C, D; both to each, and let A by multiplying B make E, and let C by multiplying D make F;

I say that E, F are prime to one another.

[image: image]

For, since each of the numbers A, B is prime to C, therefore the product of A, B will also be prime to C.

[vii. 24]

But the product of A, B is E;

therefore E, C are prime to one another.

For the same reason

E, D are also prime to one another.

Therefore each of the numbers C, D is prime to E.

Therefore the product of C, D will also be prime to E.

[vii. 24]

But the product of C, D is F.

Therefore E, F are prime to one another.

Q.E.D.

If both a and b are prime to each of two numbers c, d, then ab, cd will be prime to one another.

Since a, b are both prime to c,

[image: image]

Proposition 27

If two numbers be prime to one another, and each by multiplying itself make a certain number, the products will be prime to one another; and, if the original numbers by multiplying the products make certain numbers, the latter will also be prime to one another [and this is always the case with the extremes].

Let A, B be two numbers prime to one another, let A by multiplying itself make C, and by multiplying C make D,

and let B by multiplying itself make E, and by multiplying E make F;

I say that both C, E and D, F are prime to one another.

[image: image]

For, since A, B are prime to one another, and A by multiplying itself has made C,

therefore C, B are prime to one another.

[vii. 25]

Since then C, B are prime to one another, and B by multiplying itself has made E,

therefore C, E are prime to one another.

[id.]

Again, since A, B are prime to one another,

and B by multiplying itself has made E,

therefore A, E are prime to one another.

[id.]

Since then the two numbers A, C are prime to the two numbers B, E, both to each, therefore also the product of A, C is prime to the product of B, E.

[vii. 26]

And the product of A, C is D, and the product of B, E is F.

Therefore D, F are prime to one another.

Q.E.D.

If a, b are prime to one another, so are a2, b2 and so are a3, b3; and, generally, an, bn are prime to one another.

The words in the enunciation which assert the truth of the proposition for any powers are suspected and bracketed by Heiberg because (1) in [image: image] the use of [image: image] is peculiar, for it can only mean “the last products,” and (2) the words have nothing corresponding to them in the proof, much less is the generalisation proved. Campanus omits the words in the enunciation, though he adds to the proof a remark that the proposition is true of any, the same or different, powers of a, b. Heiberg concludes that the words are an interpolation of date earlier than Theon.

Euclid’s proof amounts to this.

Since a, b are prime to one another, so are a2, b [vii. 25], and therefore also a2, b2.

[vii. 25]

Similarly [vii. 25] a, b2are prime to one another.

Therefore a, a2and b, b2satisfy the description in the enunciation of vii. 26.

Hence a3, b3are prime to one another.

Proposition 28

If two numbers be prime to one another, the sum will also be prime to each of them; and, if the sum of two numbers be prime to any one of them, the original numbers will also be prime to one another.

For let two numbers AB, BC prime to one another be added;

I say that the sum AC is also prime to each of the numbers AB, BC.

[image: image]

For, if CA, AB are not prime to one another,

some number will measure CA, AB.

Let a number measure them, and let it be D.

Since then D measures CA, AB,

therefore it will also measure the remainder BC.

But it also measures BA;

therefore D measures AB, BC which are prime to one another: which is impossible.

[vii. Def. 12]

Therefore no number will measure the numbers CA, AB; therefore CA, AB are prime to one another.

For the same reason

AC, CB are also prime to one another.

Therefore CA is prime to each of the numbers AB, BC.

Again, let CA, AB be prime to one another;

I say that AB, BC are also prime to one another.

For, if AB, BC are not prime to one another,

some number will measure AB, BC.

Let a number measure them, and let it be D.

Now, since D measures each of the numbers AB, BC, it will also measure the whole CA.

But it also measures AB;

therefore D measures CA, AB which are prime to one another: which is impossible.

[vii. Def. 12]

Therefore no number will measure the numbers AB, BC.

Therefore AB, BC are prime to one another.

Q.E.D.

If a, b are prime to one another, a + b will be prime to both a and b; and conversely.

For suppose (a + b), a are not prime to one another. They must then have some common measure d.

Therefore d also divides the difference (a + b) − a, or b, as well as a; and therefore a, b are not prime to one another: which is contrary to the hypothesis.

[image: image]

The converse is proved in the same way.

Heiberg remarks on Euclid’s assumption that, if c measures both a and b, it also measures a ± b. But it has already (vii. 1, 2) been assumed, more generally, as an axiom that, in the case supposed, c measures a ± pb.

Proposition 29

Any prime number is prime to any number which it does not measure.

Let A be a prime number, and let it not measure B;

I say that B, A are prime to one another.

For, if B, A are not prime to one another,

some number will measure them.

[image: image]

Let C measure them.

Since C measures B,

and A does not measure B,

therefore C is not the same with A.

Now, since C measures B, A,

therefore it also measures A which is prime, though it is not the same with it:

which is impossible.

Therefore no number will measure B, A.

Therefore A, B are prime to one another.

Q.E.D.

If a is prime and does not measure b, then a, b are prime to one another. The proof is self-evident.

Proposition 30

If two numbers by multiplying one another make some number, and any prime number measure the product, it will also measure one of the original numbers.

For let the two numbers A, B by multiplying one another make C, and let any prime number D measure C;

I say that D measures one of the numbers A, B.

[image: image]

For let it not measure A.

Now D is prime;

therefore A, D are prime to one another.

[vii. 29]

And, as many times as D measures C, so many units let there be in E.

Since then D measures C according to the units in E,

therefore D by multiplying E has made C.

[vii. Def. 15]

Further, A by multiplying B has also made C;

therefore the product of D, E is equal to the product of A, B.

Therefore, as D is to A, so is B to E.

[vii. 19]

But D, A are prime to one another,

primes are also least,

[vii. 21]

and the least measure the numbers which have the same ratio the same number of times, the greater the greater and the less the less, that is, the antecedent the antecedent and the consequent the consequent;

[vii. 20]

therefore D measures B.

Similarly we can also show that, if D do not measure B, it will measure A.

Therefore D measures one of the numbers A, B.

Q.E.D.

If c, a prime number, measure ab, c will measure either a or b.

Suppose c does not measure a.

Therefore c, a are prime to one another.

[vii. 29]

[image: image]

Similarly, if c does not measure b, it measures c.

Therefore it measures one or other of the two numbers a, b.

Proposition 31

Any composite number is measured by some prime number.

Let A be a composite number;

I say that A is measured by some prime number.

For, since A is composite, some number will measure it.

Let a number measure it, and let it be B.

[image: image]

Now, if B is prime, what was enjoined will have been done. [9]

But if it is composite, some number will measure it.

Let a number measure it, and let it be C.

Then, since C measures B,

and B measures A,

therefore C also measures A.

And, if C is prime, what was enjoined will have been done.

But if it is composite, some number will measure it.

Thus, if the investigation be continued in this way, some prime number will be found which will measure the number before it, which will also measure A. [10]

For, if it is not found, an infinite series of numbers will measure the number A, each of which is less than the other: which is impossible in numbers.

Therefore some prime number will be found which will measure the one before it, which will also measure A.

Therefore any composite number is measured by some prime number.

Heiberg relegates to the Appendix an alternative proof of this proposition, to the following effect. Since A is composite, some number will measure it. Let B be the least such number. I say that B is prime. For, if not, B is composite, and some number will measure it, say C; so that C is less than B. But, since C measures B, and B measures A, C must measure A. And C is less than B: which is contrary to the hypothesis.

Proposition 32

Any number either is prime or is measured by some prime number.

Let A be a number;

I say that A either is prime or is measured by some prime number.

If now A is prime, that which was enjoined will have been done.

[image: image]

But if it is composite, some prime number will measure it.

[vii. 31]

Therefore any number either is prime or is measured by some prime number.

Q.E.D.

Proposition 33

Given as many numbers as we please, to find the least of those which have the same ratio with them.

Let A, B, C be the given numbers, as many as we please; thus it is required to find the least of those which have the same ratio with A, B, C.

A, B, C are either prime to one another or not.

[image: image]

Now, if A, B, C are prime to one another, they are the least of those which have the same ratio with them.

[vii. 21]

But, if not, let D the greatest common measure of A, B, C be taken,

[vii. 3]

and, as many times as D measures the numbers A, B, C respectively, so many units let there be in the numbers E, F, G respectively.

Therefore the numbers E, F, G measure the numbers A, B, C respectively according to the units in D. [11]

[vii. 16]

Therefore E, F, G measure A, B, C the same number of times;

therefore E, F, G are in the same ratio with A, B, C.

[vii. Def. 20]

I say next that they are the least that are in that ratio.

For, if E, F, G are not the least of those which have the same ratio with A, B, C, there will be numbers less than E, F, G which are in the same ratio with A, B, C.

Let them be H, K, L;

therefore H measures A the same number of times that the numbers K, L measure the numbers B, C respectively.

Now, as many times as H measures A, so many units let there be in M;

therefore the numbers K, L also measure the numbers B, C respectively according to the units in M.

And, since H measures A according to the units in M,

therefore M also measures A according to the units in H.

[vii. 16]

For the same reason

M also measures the numbers B, C according to the units in the numbers K, L respectively;

Therefore M measures A, B, C.

Now, since H measures A according to the units in M,

therefore H by multiplying M has made A.

[vii. Def. 15]

For the same reason also

E by multiplying D has made A.

Therefore the product of E, D is equal to the product of H, M.

Therefore, as E is to H, so is M to D.

[vii. 19]

But E is greater than H;

therefore M is also greater than D.

And it measures A, B, C:

which is impossible, for by hypothesis D is the greatest common measure of A, B, C.

Therefore there cannot be any numbers less than E, F, G which are in the same ratio with A, B, C.

Therefore E, F, G are the least of those which have the same ratio with A, B, C.

Q.E.D.

Given any numbers a, b, c, . . ., to find the least numbers that are in the same ratio.

Euclid’s method is the obvious one, and the result is verified by reductio ad absurdum.

We will, like Euclid, take three numbers only, a, b, c.

Let g, their greatest common measure, be found [vii. 3], and suppose that

[image: image]

It follows, by vii. Def. 20, that

m : n : p = a : b : c.

m, n, p shall be the numbers required.

For, if not, let x, y, z be the least numbers in the same ratio as a, b, c, being less than m, n, p.

[image: image]

Since then k measures a, b, c, it follows that g is not the greatest common measure: which contradicts the hypothesis.

Therefore etc.

It is to be observed that Euclid merely supposes that x, y, z are smaller numbers than m, n, p in the ratio of a, b, c; but, in order to justify the next inference, which apparently can only depend on vii. 20, x, y, z must also be assumed to be the least numbers in the ratio of a, b, c.

The inference from the last proportion that, since m > x, k > g is supposed by Heiberg to depend upon vii. 13 and v. 14 together. I prefer to regard Euclid as making the inference quite independently of Book V. E.g., the proportion could just as well be written

x : m = g : k,

when the definition of proportion in Book VII. (Def. 20) gives all that we want, since, whatever proper fraction x is of m, the same proper fraction is g of k.

Proposition 34

Given two numbers, to find the least number which they measure.

Let A, B be the two given numbers;

thus it is required to find the least number which they measure.

Now A, B are either prime to one another or not.

First, let A, B be prime to one another, and let A by multiplying B make C;

therefore also B by multiplying A has made C.

[vii. 16]

[image: image]

Therefore A, B measure C.

I say next that it is also the least number they measure.

For, if not, A, B will measure some number which is less than C.

Let them measure D.

Then, as many times as A measures D, so many units let there be in E,

and, as many times as B measures D, so many units let there be in F;

therefore A by multiplying E has made D,

and B by multiplying F has made D;

[vii. Def. 15]

therefore the product of A, E is equal to the product of B, F.

Therefore, as A is to B, so is F to E.

[vii. 19]

But A, B are prime,

primes are also least,

[vii. 21]

and the least measure the numbers which have the same ratio the same number of times, the greater the greater and the less the less;

[vii. 20]

therefore B measures E, as consequent consequent.

And, since A by multiplying B, E has made C, D,

therefore, as B is to E, so is C to D.

[vii. 17]

But B measures E;

therefore C also measures D, the greater the less:

which is impossible.

Therefore A, B do not measure any number less than C; therefore C is the least that is measured by A, B.

Next, let A, B not be prime to one another,

and let F, E, the least numbers of those which have the same ratio with A, B, be taken;

[vii. 33]

therefore the product of A, E is equal to the product of B, F.

[vii. 19]

And let A by multiplying E make C;

therefore also B by multiplying F has made C;

therefore A, B measure C.

I say next that it is also the least number that they measure.

For, if not, A, B will measure some number which is less than C.

[image: image]

Let them measure D.

And, as many times as A measures D, so many units let there be in G,

and, as many times as B measures D, so many units let there be in H.

Therefore A by multiplying G has made D,

and B by multiplying H has made D.

Therefore the product of A, G is equal to the product of B, H;

therefore, as A is to B, so is H to G.

[vii. 19]

But, as A is to B, so is F to E,

Therefore also, as F is to E, so is H to G.

But F, E are least,

and the least measure the numbers which have the same ratio the same number of times, the greater the greater and the less the less;

[vii. 20]

therefore E measures G.

And, since A by multiplying E, G has made C, D,

therefore, as E is to G, so is C to D. [vii. 17]

But E measures G;

therefore C also measures D, the greater the less:

which is impossible.

Therefore A, B will not measure any number which is less than C.

Therefore C is the least that is measured by A, B.

Q.E.D.

This is the problem of finding the least common multiple of two numbers, as a, b.

I. If a, b be prime to one another, the L.C.M. is ab.

For, if not, let it be d, some number less than ab.

[image: image]

and hence, a, b being prime to one another,

[image: image]

Therefore ab measures d: which is impossible.

II. If a, b be not prime to one another, find the numbers which are the least of those having the ratio of a to b, say m, n;

[vii. 33]

[image: image]

Proposition 35

If two numbers measure any number, the least number measured by them will also measure the same.

For let the two numbers A, B measure any number CD, and let E be the least that they measure;

I say that E also measures CD.

[image: image]

For, if E does not measure CD, let E, measuring DF, leave CF less than itself.

Now, since A, B measure E,

and E measures DF,

therefore A, B will also measure DF.

But they also measure the whole CD;

therefore they will also measure the remainder CF which is less than E:

which is impossible.

Therefore E cannot fail to measure CD; therefore it measures it.

Q.E.D.

The least common multiple of any two numbers must measure any other common multiple.

The proof is obvious, depending on the fact that, if any number divides a and b, it also divides a − pb.

Proposition 36

Given three numbers, to find the least number which they measure.

Let A, B, C be the three given numbers;

thus it is required to find the least number which they measure.

Let D, the least number measured by the two numbers A, B, be taken.

[vii. 34]

Then C either measures, or does not measure, D.

First, let it measure it.

[image: image]

But A, B also measure D;

therefore A, B, C measure D.

I say next that it is also the least that they measure.

For, if not, A, B, C will measure some number which is less than D.

Let them measure E.

Since A, B, C measure E,

therefore also A, B measure E.

Therefore the least number measured by A, B will also measure E.

[vii. 35]

But D is the least number measured by A, B;

therefore D will measure E, the greater the less:

which is impossible.

Therefore A, B, C will not measure any number which is less than D;

therefore D is the least that A, B, C measure.

Again, let C not measure D,

and let E, the least number measured by C, D, be taken.

[vii. 34]

Since A, B measure D,

and D measures E,

therefore also A, B measure E.

But C also measures E;

therefore also A, B, C measure E.

[image: image]

I say next that it is also the least that they measure.

For, if not, A, B, C will measure some number which is less than E.

Let them measure F.

Since A, B, C measure F,

therefore also A, B measure F;

therefore the least number measured by A, B will also measure F.

[vii. 35]

But D is the least number measured by A, B;

therefore D measures F.

But C also measures F;

therefore D, C measure F,

so that the least number measured by D, C will also measure F.

But E is the least number measured by C, D;

therefore E measures F, the greater the less:

which is impossible.

Therefore A, B, C will not measure any number which is less than E.

Therefore E is the least that is measured by A, B, C.

Q. E. D.

Euclid’s rule for finding the L.C.M. of three numbers a, b, c is the rule with which we are familiar. The L.C.M. of a, b is first found, say d, and then the L.C.M. of d and c is found.

Euclid distinguishes the cases (1) in which c measures d, (2) in which c does not measure d. We need only reproduce the proof of the general case (2). The method is that of reductio ad absurdum.

Let e be the L.C.M. of d, c.

Since a, b both measure d, and d measures e,

a, b both measure e.

So does c.

Therefore e is some common multiple of a, b, c.

If it is not the least, let f be the L.C.M.

Now a, b both measure f;

therefore d, their L.C.M., also measures f.

[vii. 35]

Thus d, c both measure f;

therefore e, their L.C.M., measures f:

which is impossible, since f < e.

[vii. 35]

Therefore etc.

The process can be continued ad libitum, so that we can find the L.C.M., not only of three, but of as many numbers as we please.

Proposition 37

If a number be measured by any number, the number which is measured will have a part called by the same name as the measuring number.

For let the number A be measured by any number B;

I say that A has a part called by the same name as B.

For, as many times as B measures A, so many units let there be in C.

[image: image]

Since B measures A according to the units in C,

and the unit D also measures the number C according to the units in it,

therefore the unit D measures the number C the same number of times as B measures A.

Therefore, alternately, the unit D measures the number B the same number of times as C measures A;

[vii. 15]

therefore, whatever part the unit D is of the number B, the same part is C of A also.

But the unit D is a part of the number B called by the same name as it;

therefore C is also a part of A called by the same name as B, so that A has a part C which is called by the same name as B.

Q.E.D.

If b measures a, then [image: image] of a is a whole number.

[image: image]

Thus 1, m, b, a satisfy the enunciation of vii. 15;

therefore m measures a the same number of times that 1 measures b.

[image: image]

Proposition 38

If a number have any part whatever, it will be measured by a number called by the same name as the part.

For let the number A have any part whatever, B,

and let C be a number called by the same

name as the part B;

I say that C measures A.

[image: image]

For, since B is a part of A called by

the same name as C,

and the unit D is also a part of C called

by the same name as it,

therefore, whatever part the unit D is of the number C,

the same part is B of A also;

therefore the unit D measures the number C the same number of times that B measures A.

Therefore, alternately, the unit D measures the number B the same number of times that C measures A.

[vii. 15]

Therefore C measures A.

Q.E.D.

This proposition is practically a restatement of the preceding proposition. It asserts that, if b is [image: image]th part of a,

[image: image]

Therefore 1, m, b, a, satisfy the enunciation of vii.

15, and therefore m measures a the same number of times as 1 measures b, or

[image: image]

Proposition 39

To find the number which is the least that will have given parts.

Let A, B, C be the given parts;

thus it is required to find the number which is the least that will have the parts A, B, C.

[image: image]

Let D, E, F be numbers called by the same name as the parts A, B, C,

and let G, the least number measured by D, E, F, be taken.

[vii. 36]

Therefore G has parts called by the same name as D, E, F.

[vii. 37]

But A, B, C are parts called by the same name as D, E, F; therefore G has the parts A, B, C.

I say next that it is also the least number that has.

For, if not, there will be some number less than G which will have the parts A, B, C.

Let it be H.

Since H has the parts A, B, C,

therefore H will be measured by numbers called by the same name as the parts A, B, C.

[vii. 38]

But D, E, F are numbers called by the same name as the parts A, B, C;

therefore H is measured by D, E, F.

And it is less than G: which is impossible.

Therefore there will be no number less than G that will have the parts A, B, C.

Q.E.D.

This again is practically a restatement in another form of the problem of finding the L.C.M.

To find a number which has [image: image]th, [image: image]th and [image: image]th parts.

Let d be the L.C.M. of a, b, c.

Thus d has [image: image]th, [image: image]th and [image: image]th parts.

[vii. 37]

If it is not the least number which has, let the least such number be e.

Then, since e has those parts,

e is measured by a, b, c; and e < d:

which is impossible.

6. The numbers so produced. The Greek has [image: image], “the (numbers) produced from them.” By “from them” Euclid means “from the original numbers,” though this is not very clear even in the Greek. I think ambiguity is best avoided by leaving out the words.

7. their product. [image: image], literally “the (number) produced from them,” will henceforth be translated as “their product.”

8. the product of one of them into itself. The Greek, [image: image], literally “the number produced from the one of them,” leaves “multiplied into itself “ to be understood.

9. if B is prime, what was enjoined will have been done, i.e. the implied problem of finding a prime number which measures A.

10. some prime number will be found which will measure. In the Greek the sentence stops here, but it is necessary to add the words “the number before it, which will also measure A,” which are found a few lines further down. It is possible that the words may have fallen out of P here by a simple mistake due to [image: image] (Heiberg).

11. the numbers E, F, G measure the numbers A, B, C respectively, literally (as usual) “each of the numbers E, F, G measures each of the numbers A, B, C.”


BOOK IX

THE INFINITUDE OF PRIME NUMBERS
PROPOSITION 20

Prime numbers are more than any assigned multitude of prime numbers.

Let A, B, C be the assigned prime numbers;

I say that there are more prime numbers than A, B, C.

[image: image]

For let the least number measured by A, B, C be taken,

and let it be DE;

let the unit DF be added to DE.

Then EF is either prime or not.

First, let it be prime;

then the prime numbers A, B, C, EF have been found which are more than A, B, C.

Next, let EF not be prime;

therefore it is measured by some prime number.

[vii. 31]

Let it be measured by the prime number G.

I say that G is not the same with any of the numbers A, B, C.

For, if possible, let it be so.

Now A, B, C measure DE;

therefore G also will measure DE.

But it also measures EF.

Therefore G, being a number, will measure the remainder, the unit DF:

which is absurd.

Therefore G is not the same with any one of the numbers A, B, C.

And by hypothesis it is prime.

Therefore the prime numbers A, B, C, G have been found which are more than the assigned multitude of A, B, C.

Q.E.D.


BOOK IX

EVEN PERFECT NUMBERS
PROPOSITION 36

If as many numbers as we please beginning from an unit be set out continuously in double proportion, until the sum of all becomes prime, and if the sum multiplied into the last make some number, the product will be perfect.

For let as many numbers as we please, A, B, C, D, beginning from an unit be set out in double proportion, until the sum of all becomes prime,

let E be equal to the sum, and let E by multiplying D make FG;

I say that FG is perfect.

For, however many A, B, C, D are in multitude, let so many E, HK, L, M be taken in double proportion beginning from E;

therefore, ex aequali, as A is to D, so is E to M.

[vii. 14]

Therefore the product of E, D is equal to the product of A, M.

[vii. 19]

And the product of E, D is FG;

therefore the product of A, M is also FG.

Therefore A by multiplying M has made FG;

therefore M measures FG according to the units in A.

And A is a dyad;

therefore FG is double of M.

[image: image]

But M, L, HK, E are continuously double of each other; therefore E, HK, L, M, FG are continuously proportional in double proportion.

Now let there be subtracted from the second HK and the last FG the numbers HN, FO, each equal to the first E;

therefore, as the excess of the second is to the first, so is the excess of the last to all those before it.

[ix. 35]

Therefore, as NK is to E, so is OG to M, L, KH, E.

And NK is equal to E;

therefore OG is also equal to M, L, HK, E.

But FO is also equal to E,

and E is equal to A, B, C, D and the unit.

Therefore the whole FG is equal to E, HK, L, M and A, B, C, D and the unit; and it is measured by them.

I say also that FG will not be measured by any other number except A, B, C, D, E, HK, L, M and the unit.

For, if possible, let some number P measure FG, and let P not be the same with any of the numbers A, B, C, D, E, HK, L, M.

And, as many times as P measures FG, so many units let there be in Q;

therefore Q by multiplying P has made FG.

But, further, E has also by multiplying D made FG;

therefore, as E is to Q, so is P to D.

[vii. 19]

And, since A, B, C, D are continuously proportional beginning from an unit,

therefore D will not be measured by any other number except A, B, C.

[ix. 13]

And, by hypothesis, P is not the same with any of the numbers A, B, C;

therefore P will not measure D.

But, as P is to D, so is E to Q;

therefore neither does E measure Q.

[vii. Def. 20]

And E is prime;

and any prime number is prime to any number which it does not measure.

[vii. 29]

Therefore E, Q are prime to one another.

But primes are also least,

[vii. 21]

and the least numbers measure those which have the same ratio the same number of times, the antecedent the antecedent and the consequent the consequent;

[vii. 20]

and, as E is to Q, so is P to D;

therefore E measures P the same number of times that Q measures D.

But D is not measured by any other number except A, B, C;

therefore Q is the same with one of the numbers A, B, C.

Let it be the same with B.

And, however many B, C, D are in multitude, let so many E, HK, L be taken beginning from E.

Now E, HK, L are in the same ratio with B, C, D;

therefore, ex aequali, as B is to D, so is E to L.

[vii. 14]

Therefore the product of B, L is equal to the product of D, E.

[vii. 19]

But the product of D, E is equal to the product of Q, P; therefore the product of Q, P is also equal to the product of B, L.

Therefore, as Q is to B, so is L to P.

[vii. 19]

And Q is the same with B;

therefore L is also the same with P:

which is impossible, for by hypothesis P is not the same with any of the numbers set out.

Therefore no number will measure FG except A, B, C, D, E, HK, L, M and the unit.

And FG was proved equal to A, B, C, D, E, HK, L, M and the unit;

and a perfect number is that which is equal to its own parts;

[vii. Def. 22]

therefore FG is perfect.

Q.E.D.


[image: image]

BOOK X

COMMENSURABLE AND INCOMMENSURABLE MAGNITUDES

DEFINITIONS

1. Those magnitudes are said to be commensurable which are measured by the same measure, and those incommensurable which cannot have any common measure.

2. Straight lines are commensurable in square when the squares on them are measured by the same area, and incommensurable in square when the squares on them cannot possibly have any area as a common measure.

3. With these hypotheses, it is proved that there exist straight lines infinite in multitude which are commensurable and incommensurable respectively, some in length only, and others in square also, with an assigned straight line. Let then the assigned straight line be called rational, and those straight lines which are commensurable with it, whether in length and in square or in square only, rational, but those which are incommensurable with it irrational.

4. And let the square on the assigned straight line be called rational and those areas which are commensurable with it rational, but those which are incommensurable with it irrational, and the straight lines which produce them irrational, that is, in case the areas are squares, the sides themselves, but in case they are any other rectilineal figures, the straight lines on which are described squares equal to them.

Proposition 1

Two unequal magnitudes being set out, if from the greater there be subtracted a magnitude greater than its half, and from that which is left a magnitude greater than its half, and if this process be repeated continually, there will be left some magnitude which will be less than the lesser magnitude set out.

Let AB, C be two unequal magnitudes of which AB is the greater:

I say that, if from AB there be subtracted a magnitude greater than its half, and from that which is left a magnitude greater than its half, and if this process be repeated continually, there will be left some magnitude which will be less than the magnitude C.

[image: image]

For C if multiplied will sometime be greater than AB.

[cf. v. Def. 4]

Let it be multiplied, and let DE be a multiple of C, and greater than AB;

let DE be divided into the parts DF, FG, GE equal to C,

from AB let there be subtracted BH greater than its half,

and, from AH, HK greater than its half,

and let this process be repeated continually until the divisions in AB are equal in multitude with the divisions in DE.

Let, then, AK, KH, HB be divisions which are equal in multitude with DF, FG, GE.

Now, since DE is greater than AB,

and from DE there has been subtracted EG less than its half,

and, from AB, BH greater than its half,

therefore the remainder GD is greater than the remainder HA.

And, since GD is greater than HA,

and there has been subtracted, from GD, the half GF,

and, from HA, HK greater than its half,

therefore the remainder DF is greater than the remainder AK.

But DF is equal to C;

therefore C is also greater than AK.

Therefore AK is less than C.

Therefore there is left of the magnitude AB the magnitude AK which is less than the lesser magnitude set out, namely C.

Q.E.D.

And the theorem can be similarly proved even if the parts subtracted be halves.

This proposition will be remembered because it is the lemma required in Euclid’s proof of xii. 2 to the effect that circles are to one another as the squares on their diameters. Some writers appear to be under the impression that xii. 2 and the other propositions in Book XII. in which the method of exhaustion is used are the only places where Euclid makes use of x. 1; and it is commonly remarked that x. 1 might just as well have been deferred till the beginning of Book XII. Even Cantor (Gesch. d. Math.) remarks that “Euclid draws no inference from it [x. 1], not even that which we should more than anything else expect, namely that, if two magnitudes are incommensurable, we can always form a magnitude commensurable with the first which shall differ from the second magnitude by as little as we please.” But, so far from making no use of x. 1 before xii. 2, Euclid actually uses it in the very next proposition, x. 2. This being so, as the next note will show, it follows that, since x. 2 gives the criterion for the incommensurability of two magnitudes (a very necessary preliminary to the study of incommensurables), x. 1 comes exactly where it should be.

Euclid uses x. 1 to prove not only xii. 2 but xii. 5 (that pyramids with the same height and triangular bases are to one another as their bases), by means of which he proves (xii. 7 and Por.) that any pyramid is a third part of the prism which has the same base and equal height, and xii. 10 (that any cone is a third part of the cylinder which has the same base and equal height), besides other similar propositions. Now xii. 7 Por. and xii. 10 are theorems specifically attributed to Eudoxus by Archimedes (On the Sphere and Cylinder, Preface), who says in another place (Quadrature of the Parabola, Preface) that the first of the two, and the theorem that circles are to one another as the squares on their diameters, were proved by means of a certain lemma which he states as follows: “Of unequal lines, unequal surfaces, or unequal solids, the greater exceeds the less by such a magnitude as is capable, if added [continually] to itself, of exceeding any magnitude of those which are comparable with one another,” i.e. of magnitudes of the same kind as the original magnitudes. Archimedes also says (loc. cit.) that the second of the two theorems which he attributes to Eudoxus (Eucl. xii. 10) was proved by means of “a lemma similar to the aforesaid.” The lemma stated thus by Archimedes is decidedly different from x. 1, which, however, Archimedes himself uses several times, while he refers to the use of it in xii. 2 (On the Sphere and Cylinder, i. 6). As I have before suggested (The Works of Archimedes), the apparent difficulty caused by the mention of two lemmas in connexion with the theorem of Eucl. xii. 2 may be explained by reference to the proof of x. 1. Euclid there takes the lesser magnitude and says that it is possible, by multiplying it, to make it some time exceed the greater, and this statement he clearly bases on the 4th definition of Book V., to the effect that “magnitudes are said to bear a ratio to one another which can, if multiplied, exceed one another.” Since then the smaller magnitude in x. 1 may be regarded as the difference between some two unequal magnitudes, it is clear that the lemma stated by Archimedes is in substance used to prove the lemma in x. 1, which appears to play so much larger a part in the investigations of quadrature and cubature which have come down to us.

Besides being employed in Eucl. x. 1, the “Axiom of Archimedes” appears in Aristotle, who also practically quotes the result of x. 1 itself. Thus he says, Physics viii. 10, 266 b 2, “By continually adding to a finite (magnitude) I shall exceed any definite (magnitude), and similarly by continually subtracting from it I shall arrive at something less than it,” and ibid. iii. 7, 207 b 10 “For bisections of a magnitude are endless.” It is thus somewhat misleading to use the term “Archimedes’ Axiom” for the “lemma” quoted by him, since he makes no claim to be the discoverer of it, and it was obviously much earlier.

Stolz (see G. Vitali in Questioni riguardanti le matematiche elementari, 1.) showed how to prove the so-called Axiom or Postulate of Archimedes by means of the Postulate of Dedekind, thus. Suppose the two magnitudes to be straight lines. It is required to prove that, given two straight lines, there always exists a multiple of the smaller which is greater than the other.

Let the straight lines be so placed that they have a common extremity and the smaller lies along the other on the same side of the common extremity.

If AC be the greater and AB the smaller, we have to prove that there exists an integral number n such that n · AB > AC.

Suppose that this is not true but that there are some points, like B, not coincident with the extremity A, and such that, n being any integer however great, n · AB < AC; and we have to prove that this assumption leads to an absurdity.

[image: image]

The points of AC may be regarded as distributed into two “parts,” namely

(1) points H for which there exists no integer n such that n · AH > AC,

(2) points K for which an integer n does exist such that n · AK > AC.

This division into parts satisfies the conditions for the application of Dedekind’s Postulate, and therefore there exists a point M such that the points of AM belong to the first part and those of MC to the second part.

Take now a point Y on MC such that MY < AM. The middle point (X) of A Y will fall between A and M and will therefore belong to the first part; but, since there exists an integer n such that n · AY > AC, it follows that 2n · AX > AC: which is contrary to the hypothesis.

Proposition 2

If, when the less of two unequal magnitudes is continually subtracted in turn from the greater, that which is left never measures the one before it, the magnitudes will be incommensurable.

For, there being two unequal magnitudes AB, CD, and AB being the less, when the less is continually subtracted in turn from the greater, let that which is left over never measure the one before it;

I say that the magnitudes AB, CD are incommensurable.

[image: image]

For, if they are commensurable, some magnitude will measure them.

Let a magnitude measure them, if possible, and let it be E;

let AB, measuring FD, leave CF less than itself,

let CF measuring BG, leave AG less than itself,

and let this process be repeated continually, until there is left some magnitude which is less than E.

Suppose this done, and let there be left AG less than E.

Then, since E measures AB,

while AB measures DF,

therefore E will also measure FD.

But it measures the whole CD also;

therefore it will also measure the remainder CF.

But CF measures BG;

therefore E also measures BG.

But it measures the whole AB also;

therefore it will also measure the remainder AG, the greater the less:

which is impossible.

Therefore no magnitude will measure the magnitudes AB, CD;

therefore the magnitudes AB, CD are incommensurable.

[x. Def. 1]

Therefore etc.

Q.E.D.

This proposition states the test for incommensurable magnitudes, founded on the usual operation for finding the greatest common measure. The sign of the incommensurability of two magnitudes is that this operation never comes to an end, while the successive remainders become smaller and smaller until they are less than any assigned magnitude.

Observe that Euclid says “let this process be repeated continually until there is left some magnitude which is less than E.” Here he evidently assumes that the process will some time produce a remainder less than any assigned magnitude E. Now this is by no means self-evident, and yet Heiberg (though so careful to supply references) and Lorenz do not refer to the basis of the assumption, which is in reality x. 1, as Billingsley and Williamson were shrewd enough to see. The fact is that, if we set off a smaller magnitude once or oftener along a greater which it does not exactly measure, until the remainder is less than the smaller magnitude, we take away from the greater more than its half. Thus, in the figure, FD is more than the half of CD, and BG more than the half of AB. If we continued the process, AG marked off along CF as many times as possible would cut off more than its half; next, more than half AG would be cut off, and so on. Hence along CD, AB alternately the process would cut off more than half, then more than half the remainder and so on, so that on both lines we should ultimately arrive at a remainder less than any assigned length.

The method of finding the greatest common measure exhibited in this proposition and the next is of course again the same as that which we use and which may be shown thus:

[image: image]

The proof too is the same as ours, taking just the same form, as shown in the notes to the similar propositions vii. 1, 2 above. In the present case the hypothesis is that the process never stops, and it is required to prove that a, b cannot in that case have any common measure, as f. For suppose that f is a common measure, and suppose the process to be continued until the remainder e, say, is less than f.

Then, since f measures a, b, it measures a − pb, or c.

Since f measures b, c, it measures b − qc, or d; and, since f measures c, d, it measures c − rd, or e: which is impossible, since e < f.

Euclid assumes as axiomatic that, if f measures a, b, it measures ma ± nb.

In practice, of course, it is often unnecessary to carry the process far in order to see that it will never stop, and consequently that the magnitudes are incommensurable. A good instance is pointed out by Allman (Greek Geometry from Thales to Euclid). Euclid proves in xiii. 5 that, if AB be cut in extreme and mean ratio at C, and if DA equal to AC be added, then DB is also cut in extreme and mean ratio at A. This is indeed obvious from the proof of ii. 11. It follows conversely that, if BD is cut into extreme and mean ratio at A, and AC, equal to the lesser segment AD, be subtracted from the greater AB, AB is similarly divided at C. We can then mark off from AC a portion equal to CB, and AC will then be similarly divided, and so on. Now the greater segment in a line thus divided is greater than half the line, but it follows from xiii. 3 that it is less than twice the lesser segment, i.e. the lesser segment can never be marked off more than once from the greater. Our process of marking off the lesser segment from the greater continually is thus exactly that of finding the greatest common measure. If, therefore, the segments were commensurable, the process would stop. But it clearly does not; therefore the segments are incommensurable.

[image: image]

Allman expresses the opinion that it was rather in connexion with the line cut in extreme and mean ratio than with reference to the diagonal and side of a square that the Pythagoreans discovered the incommensurable. But the evidence seems to put it beyond doubt that the Pythagoreans did discover the incommensurability of [image: image] and devoted much attention to this particular case. The view of Allman does not therefore commend itself to me, though it is likely enough that the Pythagoreans were aware of the incommensurability of the segments of a line cut in extreme and mean ratio. At all events the Pythagoreans could hardly have carried their investigations into the incommensurability of the segments of this line very far, since Theaetetus is said to have made the first classification of irrationals, and to him is also, with reasonable probability, attributed the substance of the first part of Eucl. xiii., in the sixth proposition of which occurs the proof that the segments of a rational straight line cut in extreme and mean ratio are apotomes.

Again, the incommensurability of [image: image] can be proved by a method practically equivalent to that of x. 2, and without carrying the process very far. This method is given in Chrystal’s Textbook of Algebra. Let d, a be the diagonal and side respectively of a square ABCD. Mark off AF along AC equal to a. Draw FE at right angles to AC meeting BC in E.

[image: image]

It is easily proved that

[image: image]

Suppose, if possible, that d, a are commensurable. If d, a are both commensurably expressible in terms of any finite unit, each must be an integral multiple of a certain finite unit.

But from (1) it follows that CF, and from (2) it follows that CE, is an integral multiple of the same unit.

And CF, CE are the side and diagonal of a square CFEG, the side of which is less than half the side of the original square. If a1, d1 are the side and diagonal of this square,

[image: image]

Similarly we can form a square with side a2 and diagonal d2 which are less than half a1, d1 respectively, and a2, d2 must be integral multiples of the same unit, where

[image: image]

and this process may be continued indefinitely until (x. 1) we have a square as small as we please, the side and diagonal of which are integral multiples of a finite unit: which is absurd.

Therefore a, d are incommensurable.

It will be observed that this method is the opposite of that shown in the Pythagorean series of side- and diagonal-numbers, the squares being successively smaller instead of larger.

Proposition 3

Given two commensurable magnitudes, to find their greatest common measure.

Let the two given commensurable magnitudes be AB, CD of which AB is the less; thus it is required to find the greatest common measure of AB, CD.

Now the magnitude AB either measures CD or it does not.

If then it measures it—and it measures itself also—AB is a common measure of AB, CD.

And it is manifest that it is also the greatest;

for a greater magnitude than the magnitude AB will not measure AB.

[image: image]

Next, let AB not measure CD.

Then, if the less be continually subtracted in turn from the greater, that which is left over will sometime measure the one before it, because AB, CD are not incommensurable;

[cf. x. 2]

let AB, measuring ED, leave EC less than itself,

let EC, measuring FB, leave AF less than itself,

and let AF measure CE.

Since, then, AF measures CE,

while CE measures FB,

therefore AF will also measure FB.

But it measures itself also;

therefore AF will also measure the whole AB.

But AB measures DE;

therefore AF will also measure ED.

But it measures CE also;

therefore it also measures the whole CD.

Therefore AF is a common measure of AB, CD.

I say next that it is also the greatest.

For, if not, there will be some magnitude greater than AF which will measure AB, CD.

Let it be G.

Since then G measures AB,

while AB measures ED,

therefore G will also measure ED.

But it measures the whole CD also;

therefore G will also measure the remainder CE.

But CE measures FB;

therefore G will also measure FB.

But it measures the whole AB also,

and it will therefore measure the remainder AF, the greater the less:

which is impossible.

Therefore no magnitude greater than AF will measure AB, CD;

therefore AF is the greatest common measure of AB, CD.

Therefore the greatest common measure of the two given commensurable magnitudes AB, CD has been found.

Q.E.D.

PORISM. From this it is manifest that, if a magnitude measure two magnitudes, it will also measure their greatest common measure.

This proposition for two commensurable magnitudes is, mutatis mutandis, exactly the same as vii. 2 for numbers. We have the process

[image: image]

where c is equal to rd and therefore there is no remainder.

It is then proved that d is a common measure of a, b; and next, by a reductio ad absurdum, that it is the greatest common measure, since any common measure must measure d, and no magnitude greater than d can measure d. The reductio ad absurdum is of course one of form only.

The Porism corresponds exactly to the Porism to vii. 2.

The process of finding the greatest common measure is probably given in this Book, not only for the sake of completeness, but because in x. 5 a common measure of two magnitudes A, B is assumed and used, and therefore it is important to show that such a measure can be found if not already known.

Proposition 4

Given three commensurable magnitudes, to find their greatest common measure.

Let A, B, C be the three given commensurable magnitudes;

thus it is required to find the greatest common measure of A, B, C.

Let the greatest common measure of the two magnitudes A, B be taken, and let it be D;

[x. 3]

then D either measures C, or does not measure it.

First, let it measure it.

[image: image]

Since then D measures C,

while it also measures A, B,

therefore D is a common measure of A, B, C.

And it is manifest that it is also the greatest;

for a greater magnitude than the magnitude D does not measure A, B.

Next, let D not measure C.

I say first that C, D are commensurable.

For, since A, B, C are commensurable,

some magnitude will measure them,

and this will of course measure A, B also;

so that it will also measure the greatest common measure of A, B, namely D.

[x. 3, Por.]

But it also measures C;

so that the said magnitude will measure C, D;

therefore C, D are commensurable.

Now let their greatest common measure be taken, and let it be E.

[x. 3]

Since then E measures D,

while D measures A, B,

therefore E will also measure A, B.

But it measures C also;

therefore E measures A, B, C;

therefore E is a common measure of A, B, C.

I say next that it is also the greatest.

For, if possible, let there be some magnitude F greater than E, and let it measure A, B, C.

Now, since F measures A, B, C,

it will also measure A, B,

and will measure the greatest common measure of A, B.

[x. 3, Por.]

But the greatest common measure of A, B is D;

therefore F measures D.

But it measures C also;

therefore F measures C, D;

therefore F will also measure the greatest common measure of C, D.

[x. 3, Por.]

But that is E;

therefore F will measure E, the greater the less:

which is impossible.

Therefore no magnitude greater than the magnitude E will measure A, B, C; therefore E is the greatest common measure of A, B, C if D do not measure C, and, if it measure it, D is itself the greatest common measure.

Therefore the greatest common measure of the three given commensurable magnitudes has been found.

PORISM. From this it is manifest that, if a magnitude measure three magnitudes, it will also measure their greatest common measure.

Similarly too, with more magnitudes, the greatest common measure can be found, and the porism can be extended.

Q.E.D.

This proposition again corresponds exactly to vii. 3 for numbers. As there Euclid thinks it necessary to prove that, a, b, c not being prime to one another, d and c are also not prime to one another, so here he thinks it necessary to prove that d, c are commensurable, as they must be since any common measure of a, b must be a measure of their greatest common measure d (x. 3, Por.).

The argument in the proof that e, the greatest common measure of d, c, is the greatest common measure of a, b, c, is the same as that in vii. 3 and x. 3.

The Porism contains the extension of the process to the case of four or more magnitudes, corresponding to Heron’s remark with regard to the similar extension of vii. 3 to the case of four or more numbers.

Proposition 5

Commensurable magnitudes have to one another the ratio which a number has to a number.

Let A, B be commensurable magnitudes;

I say that A has to B the ratio which a number has to a number.

For, since A, B are commensurable, some magnitude will measure them.

Let it measure them, and let it be C.

[image: image]

And, as many times as C measures A, so many units let there be in D;

and, as many times as C measures B, so many units let there be in E.

Since then C measures A according to the units in D,

while the unit also measures D according to the units in it,

therefore the unit measures the number D the same number of times as the magnitude C measures A;

therefore, as C is to A, so is the unit to D;

[vii. Def. 20]

therefore, inversely, as A is to C, so is D to the unit.

[cf. v. 7, Por.]

Again, since C measures B according to the units in E,

while the unit also measures E according to the units in it,

therefore the unit measures E the same number of times as C measures B;

therefore, as C is to B, so is the unit to E.

But it was also proved that,

as A is to C, so is D to the unit;

therefore, ex aequali,

as A is to B, so is the number D to E.

[v. 22]

Therefore the commensurable magnitudes A, B have to one another the ratio which the number D has to the number E.

Q.E.D.

The argument is as follows. If a, b be commensurable magnitudes, they have some common measure c, and

[image: image]

It will be observed that, in stating the proportion (1), Euclid is merely expressing the fact that a is the same multiple of c that m is of 1. In other words, he rests the statement on the definition of proportion in vii. Def. 20. This, however, is applicable only to four numbers, and c, a are not numbers but magnitudes. Hence the statement of the proportion is not legitimate unless it is proved that it is true in the sense of v. Def. 5 with regard to magnitudes in general, the numbers 1, m being magnitudes. Similarly with regard to the other proportions in the proposition.

There is, therefore, a hiatus. Euclid ought to have proved that magnitudes which are proportional in the sense of vii. Def. 20 are also proportional in the sense of v. Def. 5, or that the proportion of numbers is included in the proportion of magnitudes as a particular case. Simson has proved this in his Proposition C inserted in Book V. The portion of that proposition which is required here is the proof that,

[image: image]

Proposition 6

If two magnitudes have to one another the ratio which a number has to a number, the magnitudes will be commensurable.

For let the two magnitudes A, B have to one another the ratio which the number D has to the number E;

I say that the magnitudes A, B are commensurable.

[image: image]

For let A be divided into as many equal parts as there are units in D,

and let C be equal to one of them;

and let F be made up of as many magnitudes equal to C as there are units in E.

Since then there are in A as many magnitudes equal to C as there are units in D, whatever part the unit is of D, the same part is C of A also; therefore, as C is to A, so is the unit to D.

[vii. Def. 20]

But the unit measures the number D;

therefore C also measures A. [12]

And since, as C is to A, so is the unit to D,

therefore, inversely, as A is to C, so is the number D to the unit.

[cf. v. 7, Por.]

Again, since there are in F as many magnitudes equal to C as there are units in E, therefore, as C is to F, so is the unit to E.

[vii. Def. 20]

But it was also proved that,

as A is to C, so is D to the unit;

therefore, ex aequali, as A is to F, so is D to E.

[v. 22]

But, as D is to E, so is A to B;

therefore also, as A is to B, so is it to F also.

[v. 11]

Therefore A has the same ratio to each of the magnitudes B, F;

therefore B is equal to F.

[v. 9]

But C measures F;

therefore it measures B also.

Further it measures A also;

therefore C measures A, B.

Therefore A is commensurable with B.

Therefore etc.

PORISM. From this it is manifest that, if there be two numbers, as D, E, and a straight line, as A, it is possible to make a straight line [F ] such that the given straight line is to it as the number D is to the number E.

And, if a mean proportional be also taken between A, F, as B,

as A is to F, so will the square on A be to the square on B, that is, as the first is to the third, so is the figure on the first to that which is similar and similarly described on the second.

[vi. 19, Por.]

But, as A is to F, so is the number D to the number E; therefore it has been contrived that, as the number D is to the number E, so also is the figure on the straight line A to the figure on the straight line B.

Q.E.D.

The same link to connect the proportion of numbers with the proportion of magnitudes as was necessary in the last proposition is necessary here. This being premised, the argument is as follows.

[image: image]

where m, n are (integral) numbers.

Divide a into m parts, each equal to c, say,

[image: image]

so that c measures b n times, and a, b are commensurable.

The Porism is often used in the later propositions. It follows (1) that, if a be a given straight line, and m, n any numbers, a straight line x can be found such that

a : x = m : n.

(2) We can find a straight line y such that

a2 : y2 = m : n.

For we have only to take y, a mean proportional between a and x, as previously found, in which case a, y, x are in continued proportion and

[v. Def. 9]

[image: image]

Proposition 7

Incommensurable magnitudes have not to one another the ratio which a number has to a number.

Let A, B be incommensurable magnitudes;

I say that A has not to B the ratio which a number has to a number.

For, if A has to B the ratio which a number has to a number, A will be commensurable with B.

[x. 6]

But it is not;

therefore A has not to B the ratio which a number has to a number.

Therefore etc.

[image: image]

Proposition 8

If two magnitudes have not to one another the ratio which a number has to a number, the magnitudes will be incommensurable.

For let the two magnitudes A, B not have to one another the ratio which a number has to a number;

I say that the magnitudes A, B are incommensurable.

[image: image]

For, if they are commensurable, A will have to B the ratio which a number has to a number.

[x. 5]

But it has not;

therefore the magnitudes A, B are incommensurable.

Therefore etc.

Proposition 9

The squares on straight lines commensurable in length have to one another the ratio which a square number has to a square number; and squares which have to one another the ratio which a square number has to a square number will also have their sides commensurable in length. But the squares on straight lines incommensurable in length have not to one another the ratio which a square number has to a square number; and squares which have not to one another the ratio which a square number has to a square number will not have their sides commensurable in length either.

For let A, B be commensurable in length;

I say that the square on A has to the square on B the ratio which a square number has to a square number.

[image: image]

For, since A is commensurable in length with B,

therefore A has to B the ratio which a number has to a number.

[x. 5]

Let it have to it the ratio which C has to D.

Since then, as A is to B, so is C to D,

while the ratio of the square on A to the square on B is duplicate of the ratio of A to B,

for similar figures are in the duplicate ratio of their corresponding sides;

[vi. 20, Por.]

and the ratio of the square on C to the square on D is duplicate of the ratio of C to D,

for between two square numbers there is one mean proportional number, and the square number has to the square number the ratio duplicate of that which the side has to the side;

[viii. 11]

therefore also, as the square on A is to the square on B, so is the square on C to the square on D.

Next, as the square on A is to the square on B, so let the square on C be to the square on D;

I say that A is commensurable in length with B.

For since, as the square on A is to the square on B, so is the square on C to the square on D,

while the ratio of the square on A to the square on B is duplicate of the ratio of A to B,

and the ratio of the square on C to the square on D is duplicate of the ratio of C to D,

therefore also, as A is to B, so is C to D.

Therefore A has to B the ratio which the number C has to the number D;

therefore A is commensurable in length with B.

[x. 6]

Next, let A be incommensurable in length with B;

I say that the square on A has not to the square on B the ratio which a square number has to a square number.

For, if the square on A has to the square on B the ratio which a square number has to a square number, A will be commensurable with B.

But it is not;

therefore the square on A has not to the square on B the ratio which a square number has to a square number.

Again, let the square on A not have to the square on B the ratio which a square number has to a square number;

I say that A is incommensurable in length with B.

For, if A is commensurable with B, the square on A will have to the square on B the ratio which a square number has to a square number.

But it has not;

therefore A is not commensurable in length with B.

Therefore etc.

PORISM. And it is manifest from what has been proved that straight lines commensurable in length are always commensurable in square also, but those commensurable in square are not always commensurable in length also.

[LEMMA. It has been proved in the arithmetical books that similar plane numbers have to one another the ratio which a square number has to a square number,

[viii. 26]

and that, if two numbers have to one another the ratio which a square number has to a square number, they are similar plane numbers.

[Converse of viii. 26]

And it is manifest from these propositions that numbers which are not similar plane numbers, that is, those which have not their sides proportional, have not to one another the ratio which a square number has to a square number.

For, if they have, they will be similar plane numbers: which is contrary to the hypothesis.

Therefore numbers which are not similar plane numbers have not to one another the ratio which a square number has to a square number.]

A scholium to this proposition (Schol. X. No. 62) says categorically that the theorem proved in it was the discovery of Theaetetus.

If a, b be straight lines, and

[image: image]

and conversely.

12. But the unit measures the number D; therefore C also measures A. These words are redundant, though they are apparently found in all the MSS.
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