

[image: cover-image]

What others in the trenches say about The Pragmatic Programmer...

"The cool thing about this book is that it's great for keeping the programming process fresh. [The book] helps you to continue to grow and clearly comes from people who have been there."

• Kent Beck, author of Extreme Programming Explained: Embrace Change

"I found this book to be a great mix of solid advice and wonderful analogies!"

• Martin Fowler, author of Refactoring and UML Distilled

"I would buy a copy, read it twice, then tell all my colleagues to run out and grab a copy. This is a book I would never loan because I would worry about it being lost."

• Kevin Ruland, Management Science, MSG-Logistics

"The wisdom and practical experience of the authors is obvious. The topics presented are relevant and useful. . . . By far its greatest strength for me has been the outstanding analogies—tracer bullets, broken windows, and the fabulous helicopter-based explanation of the need for orthogonality, especially in a crisis situation. I have little doubt that this book will eventually become an excellent source of useful information for journeymen programmers and expert mentors alike."

• John Lakos, author of Large-Scale C++ Software Design

"This is the sort of book I will buy a dozen copies of when it comes out so I can give it to my clients."

• Eric Vought, Software Engineer

"Most modern books on software development fail to cover the basics of what makes a great software developer, instead spending their time on syntax or technology where in reality the greatest leverage possible for any software team is in having talented developers who really know their craft well. An excellent book."

• Pete McBreen, Independent Consultant

"Since reading this book, I have implemented many of the practical suggestions and tips it contains. Across the board, they have saved my company time and money while helping me get my job done quicker! This should be a desktop reference for everyone who works with code for a living."

• Jared Richardson, Senior Software Developer, iRenaissance, Inc.

"I would like to see this issued to every new employee at my company. . . ."

• Chris Cleeland, Senior Software Engineer, Object Computing, Inc.

The Pragmatic Programmer

From Journeyman to Master

Andrew Hunt
David Thomas

[image: image]

Reading, Massachusetts Harlow, England Menlo Park, California
Berkeley, California Don Mills, Ontario Sydney
Bonn Amsterdam Tokyo Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in this book, and Addison-Wesley was aware of a trademark claim, the designations have been printed in initial capital letters or in all capitals.

Lyrics from the song "The Boxer" on page 157 are Copyright © 1968 Paul Simon. Used by permission of the Publisher: Paul Simon Music. Lyrics from the song "Alice's Restaurant" on page 220 are by Arlo Guthrie, ©1966, 1967 (renewed) by Appleseed Music Inc. All Rights Reserved. Used by Permission.

The authors and publisher have taken care in the preparation of this book, but make no express or implied warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential damages in connection with or arising out of the use of the information or programs contained herein.

The publisher offers discounts on this book when ordered in quantity for special sales. For more information, please contact:

 AWL Direct Sales
 Addison Wesley Longman, Inc.
 One Jacob Way
 Reading, Massachusetts 01867
 (781) 944-3700

Visit AWL on the Web: www.awl.com/cseng

Library of Congress Cataloging-in-Publication Data

 Hunt, Andrew, 1964–
 The Pragmatic Programmer / Andrew Hunt, David Thomas.
 p. cm.
 Includes bibliographical references.
 ISBN 0-201-61622-X
 1. Computer programming. I. Thomas, David, 1956– .
 II. Title.
 QA76.6.H857 1999
 005.1--dc21 99–43581
 CIP

Copyright © 2000 by Addison Wesley Longman, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher. Printed in the United States of America. Published simultaneously in Canada.

ISBN 0-201-61622-X
Text printed in the United States on recycled paper at Courier Stoughton in Stoughton, Massachusetts.
25th Printing February 2010

For Ellie and Juliet,
Elizabeth and Zachary,
Stuart and Henry

Contents

Foreword

Preface

1 A Pragmatic Philosophy

1. The Cat Ate My Source Code

2 Software Entropy

3. Stone Soup and Boiled Frogs

4. Good-Enough Software

5. Your Knowledge Portfolio

6. Communicate!

2 A Pragmatic Approach

7. The Evils of Duplication

8. Orthogonality

9. Reversibility

10. Tracer Bullets

11. Prototypes and Post-it Notes

12. Domain Languages

13. Estimating

3 The Basic Tools

14. The Power of Plain Text

15. Shell Games

16. Power Editing

17. Source Code Control

18. Debugging

19. Text Manipulation

20. Code Generators

4 Pragmatic Paranoia

21. Design by Contract

22. Dead Programs Tell No Lies

23. Assertive Programming

24. When to Use Exceptions

25. How to Balance Resources

5 Bend, or Break

26. Decoupling and the Law of Demeter

27. Metaprogramming

 28. Temporal Coupling

29. It's Just a View

30. Blackboards

6 While You Are Coding

31. Programming by Coincidence

32. Algorithm Speed

33. Refactoring

34. Code That's Easy to Test

35. Evil Wizards

7 Before the Project

36. The Requirements Pit

37. Solving Impossible Puzzles

38. Not Until You're Ready

39. The Specification Trap

40. Circles and Arrows

8 Pragmatic Projects

41. Pragmatic Teams

42. Ubiquitous Automation

43. Ruthless Testing

44. It's All Writing

45. Great Expectations

46. Pride and Prejudice

Appendices

A Resources

Professional Societies

Building a Library

Internet Resources

Bibliography

B Answers to Exercises

Index

Foreword

As a reviewer I got an early opportunity to read the book you are holding. It was great, even in draft form. Dave Thomas and Andy Hunt have something to say, and they know how to say it. I saw what they were doing and I knew it would work. I asked to write this foreword so that I could explain why.

Simply put, this book tells you how to program in a way that you can follow. You wouldn't think that that would be a hard thing to do, but it is. Why? For one thing, not all programming books are written by programmers. Many are compiled by language designers, or the journalists who work with them to promote their creations. Those books tell you how to talk in a programming language—which is certainly important, but that is only a small part of what a programmer does.

What does a programmer do besides talk in programming language? Well, that is a deeper issue. Most programmers would have trouble explaining what they do. Programming is a job filled with details, and keeping track of those details requires focus. Hours drift by and the code appears. You look up and there are all of those statements. If you don't think carefully, you might think that programming is just typing statements in a programming language. You would be wrong, of course, but you wouldn't be able to tell by looking around the programming section of the bookstore.

In The Pragmatic Programmer Dave and Andy tell us how to program in a way that we can follow. How did they get so smart? Aren't they just as focused on details as other programmers? The answer is that they paid attention to what they were doing while they were doing it—and then they tried to do it better.

Imagine that you are sitting in a meeting. Maybe you are thinking that the meeting could go on forever and that you would rather be programming. Dave and Andy would be thinking about why they were having the meeting, and wondering if there is something else they could do that would take the place of the meeting, and deciding if that something could be automated so that the work of the meeting just happens in the future. Then they would do it.

That is just the way Dave and Andy think. That meeting wasn't something keeping them from programming. It was programming. And it was programming that could be improved. I know they think this way because it is tip number two: Think About Your Work.

So imagine that these guys are thinking this way for a few years. Pretty soon they would have a collection of solutions. Now imagine them using their solutions in their work for a few more years, and discarding the ones that are too hard or don't always produce results. Well, that approach just about defines pragmatic. Now imagine them taking a year or two more to write their solutions down. You might think, That information would be a gold mine. And you would be right.

The authors tell us how they program. And they tell us in a way that we can follow. But there is more to this second statement than you might think. Let me explain.

The authors have been careful to avoid proposing a theory of software development. This is fortunate, because if they had they would be obliged to warp each chapter to defend their theory. Such warping is the tradition in, say, the physical sciences, where theories eventually become laws or are quietly discarded. Programming on the other hand has few (if any) laws. So programming advice shaped around wanna-be laws may sound good in writing, but it fails to satisfy in practice. This is what goes wrong with so many methodology books.

I've studied this problem for a dozen years and found the most promise in a device called a pattern language. In short, a pattern is a solution, and a pattern language is a system of solutions that reinforce each other. A whole community has formed around the search for these systems.

This book is more than a collection of tips. It is a pattern language in sheep's clothing. I say that because each tip is drawn from experience, told as concrete advice, and related to others to form a system. These are the characteristics that allow us to learn and follow a pattern language. They work the same way here.

You can follow the advice in this book because it is concrete. You won't find vague abstractions. Dave and Andy write directly for you, as if each tip was a vital strategy for energizing your programming career. They make it simple, they tell a story, they use a light touch, and then they follow that up with answers to questions that will come up when you try.

And there is more. After you read ten or fifteen tips you will begin to see an extra dimension to the work. We sometimes call it QWAN, short for the quality without a name. The book has a philosophy that will ooze into your consciousness and mix with your own. It doesn't preach. It just tells what works. But in the telling more comes through. That's the beauty of the book: It embodies its philosophy, and it does so unpretentiously.

So here it is: an easy to read—and use—book about the whole practice of programming. I've gone on and on about why it works. You probably only care that it does work. It does. You will see.

—Ward Cunningham

Preface

This book will help you become a better programmer.

It doesn't matter whether you are a lone developer, a member of a large project team, or a consultant working with many clients at once. This book will help you, as an individual, to do better work. This book isn't theoretical—we concentrate on practical topics, on using your experience to make more informed decisions. The word pragmatic comes from the Latin pragmaticus—"skilled in business"—which itself is derived from the Greek [image: image], meaning "to do." This is a book about doing.

Programming is a craft. At its simplest, it comes down to getting a computer to do what you want it to do (or what your user wants it to do). As a programmer, you are part listener, part advisor, part interpreter, and part dictator. You try to capture elusive requirements and find a way of expressing them so that a mere machine can do them justice. You try to document your work so that others can understand it, and you try to engineer your work so that others can build on it. What's more, you try to do all this against the relentless ticking of the project clock. You work small miracles every day.

It's a difficult job.

There are many people offering you help. Tool vendors tout the miracles their products perform. Methodology gurus promise that their techniques guarantee results. Everyone claims that their programming language is the best, and every operating system is the answer to all conceivable ills.

Of course, none of this is true. There are no easy answers. There is no such thing as a best solution, be it a tool, a language, or an operating system. There can only be systems that are more appropriate in a particular set of circumstances.

This is where pragmatism comes in. You shouldn't be wedded to any particular technology, but have a broad enough background and experience base to allow you to choose good solutions in particular situations. Your background stems from an understanding of the basic principles of computer science, and your experience comes from a wide range of practical projects. Theory and practice combine to make you strong.

You adjust your approach to suit the current circumstances and environment. You judge the relative importance of all the factors affecting a project and use your experience to produce appropriate solutions. And you do this continuously as the work progresses. Pragmatic Programmers get the job done, and do it well.

Who Should Read This Book?

This book is aimed at people who want to become more effective and more productive programmers. Perhaps you feel frustrated that you don't seem to be achieving your potential. Perhaps you look at colleagues who seem to be using tools to make themselves more productive than you. Maybe your current job uses older technologies, and you want to know how newer ideas can be applied to what you do.

We don't pretend to have all (or even most) of the answers, nor are all of our ideas applicable in all situations. All we can say is that if you follow our approach, you'll gain experience rapidly, your productivity will increase, and you'll have a better understanding of the entire development process. And you'll write better software.

What Makes a Pragmatic Programmer?

Each developer is unique, with individual strengths and weaknesses, preferences and dislikes. Over time, each will craft his or her own personal environment. That environment will reflect the programmer's individuality just as forcefully as his or her hobbies, clothing, or haircut. However, if you're a Pragmatic Programmer, you'll share many of the following characteristics:

	Early adopter/fast adapter. You have an instinct for technologies and techniques, and you love trying things out. When given something new, you can grasp it quickly and integrate it with the rest of your knowledge. Your confidence is born of experience.

	Inquisitive. You tend to ask questions. That's neat—how did you do that? Did you have problems with that library? What's this BeOS I've heard about? How are symbolic links implemented? You are a pack rat for little facts, each of which may affect some decision years from now.

	Critical thinker. You rarely take things as given without first getting the facts. When colleagues say "because that's the way it's done," or a vendor promises the solution to all your problems, you smell a challenge.

	Realistic. You try to understand the underlying nature of each problem you face. This realism gives you a good feel for how difficult things are, and how long things will take. Understanding for yourself that a process should be difficult or will take a while to complete gives you the stamina to keep at it.

	Jack of all trades. You try hard to be familiar with a broad range of technologies and environments, and you work to keep abreast of new developments. Although your current job may require you to be a specialist, you will always be able to move on to new areas and new challenges.

We've left the most basic characteristics until last. All Pragmatic Programmers share them. They're basic enough to state as tips:

Tip 1

Care About Your Craft

We feel that there is no point in developing software unless you care about doing it well.

Tip 2

Think! About Your Work

In order to be a Pragmatic Programmer, we're challenging you to think about what you're doing while you're doing it. This isn't a one-time audit of current practices—it's an ongoing critical appraisal of every decision you make, every day, and on every development. Never run on auto-pilot. Constantly be thinking, critiquing your work in real time. The old IBM corporate motto, THINK!, is the Pragmatic Programmer's mantra.

If this sounds like hard work to you, then you're exhibiting the realistic characteristic. This is going to take up some of your valuable time—time that is probably already under tremendous pressure. The reward is a more active involvement with a job you love, a feeling of mastery over an increasing range of subjects, and pleasure in a feeling of continuous improvement. Over the long term, your time investment will be repaid as you and your team become more efficient, write code that's easier to maintain, and spend less time in meetings.

Individual Pragmatists, Large Teams

Some people feel that there is no room for individuality on large teams or complex projects. "Software construction is an engineering discipline," they say, "that breaks down if individual team members make decisions for themselves."

We disagree.

The construction of software should be an engineering discipline. However, this doesn't preclude individual craftsmanship. Think about the large cathedrals built in Europe during the Middle Ages. Each took thousands of person-years of effort, spread over many decades. Lessons learned were passed down to the next set of builders, who advanced the state of structural engineering with their accomplishments. But the carpenters, stonecutters, carvers, and glass workers were all craftspeople, interpreting the engineering requirements to produce a whole that transcended the purely mechanical side of the construction. It was their belief in their individual contributions that sustained the projects:

We who cut mere stones must always be envisioning cathedrals.
—Quarry worker's creed

Within the overall structure of a project there is always room for individuality and craftsmanship. This is particularly true given the current state of software engineering. One hundred years from now, our engineering may seem as archaic as the techniques used by medieval cathedral builders seem to today's civil engineers, while our craftsmanship will still be honored.

It's a Continuous Process

A tourist visiting England's Eton College asked the gardener how he got the lawns so perfect. "That's easy," he replied, "You just brush off the dew every morning, mow them every other day, and roll them once a week."

"Is that all?" asked the tourist.

"Absolutely," replied the gardener. "Do that for 500 years and you'll have a nice lawn, too."

Great lawns need small amounts of daily care, and so do great programmers. Management consultants like to drop the word kaizen in conversations. "Kaizen" is a Japanese term that captures the concept of continuously making many small improvements. It was considered to be one of the main reasons for the dramatic gains in productivity and quality in Japanese manufacturing and was widely copied throughout the world. Kaizen applies to individuals, too. Every day, work to refine the skills you have and to add new tools to your repertoire. Unlike the Eton lawns, you'll start seeing results in a matter of days. Over the years, you'll be amazed at how your experience has blossomed and your skills have grown.

How the Book Is Organized

This book is written as a collection of short sections. Each section is self-contained, and addresses a particular topic. You'll find numerous cross references, which help put each topic in context. Feel free to read the sections in any order—this isn't a book you need to read front-to-back.

Occasionally you'll come across a box labeled Tip nn (such as Tip 1, "Care About Your Craft" on page xix). As well as emphasizing points in the text, we feel the tips have a life of their own—we live by them daily. You'll find a summary of all the tips on a pull-out card inside the back cover.

Appendix A contains a set of resources: the book's bibliography, a list of URLs to Web resources, and a list of recommended periodicals, books, and professional organizations. Throughout the book you'll find references to the bibliography and to the list of URLs—such as [KP99] and [URL 18], respectively.

We've included exercises and challenges where appropriate. Exercises normally have relatively straightforward answers, while the challenges are more open-ended. To give you an idea of our thinking, we've included our answers to the exercises in Appendix B, but very few have a single correct solution. The challenges might form the basis of group discussions or essay work in advanced programming courses.

What's in a Name?

"When I use a word," Humpty Dumpty said, in rather a scornful tone, "it means just what I choose it to mean—neither more nor less."

• Lewis Carroll, Through the Looking-Glass

Scattered throughout the book you'll find various bits of jargon—either perfectly good English words that have been corrupted to mean something technical, or horrendous made-up words that have been assigned meanings by computer scientists with a grudge against the language. The first time we use each of these jargon words, we try to define it, or at least give a hint to its meaning. However, we're sure that some have fallen through the cracks, and others, such as object and relational database, are in common enough usage that adding a definition would be boring. If you do come across a term you haven't seen before, please don't just skip over it. Take time to look it up, perhaps on the Web, or maybe in a computer science textbook. And, if you get a chance, drop us an e-mail and complain, so we can add a definition to the next edition.

Having said all this, we decided to get revenge against the computer scientists. Sometimes, there are perfectly good jargon words for concepts, words that we've decided to ignore. Why? Because the existing jargon is normally restricted to a particular problem domain, or to a particular phase of development. However, one of the basic philosophies of this book is that most of the techniques we're recommending are universal: modularity applies to code, designs, documentation, and team organization, for instance. When we wanted to use the conventional jargon word in a broader context, it got confusing—we couldn't seem to overcome the baggage the original term brought with it. When this happened, we contributed to the decline of the language by inventing our own terms.

Source Code and Other Resources

Most of the code shown in this book is extracted from compilable source files, available for download from our Web site:

www.pragmaticprogrammer.com

There you'll also find links to resources we find useful, along with updates to the book and news of other Pragmatic Programmer developments.

Send Us Feedback

We'd appreciate hearing from you. Comments, suggestions, errors in the text, and problems in the examples are all welcome. E-mail us at

ppbook@pragmaticprogrammer.com

Acknowledgments

When we started writing this book, we had no idea how much of a team effort it would end up being.

Addison-Wesley has been brilliant, taking a couple of wet-behind-the-ears hackers and walking us through the whole book-production process, from idea to camera-ready copy. Many thanks to John Wait and Meera Ravindiran for their initial support, Mike Hendrickson, our enthusiastic editor (and a mean cover designer!), Lorraine Ferrier and John Fuller for their help with production, and the indefatigable Julie DeBaggis for keeping us all together.

Then there were the reviewers: Greg Andress, Mark Cheers, Chris Cleeland, Alistair Cockburn, Ward Cunningham, Martin Fowler, Thanh T. Giang, Robert L. Glass, Scott Henninger, Michael Hunter, Brian Kirby, John Lakos, Pete McBreen, Carey P. Morris, Jared Richardson, Kevin Ruland, Eric Starr, Eric Vought, Chris Van Wyk, and Deborra Zukowski. Without their careful comments and valuable insights, this book would be less readable, less accurate, and twice as long. Thank you all for your time and wisdom.

The second printing of this book benefited greatly from the eagle eyes of our readers. Many thanks to Brian Blank, Paul Boal, Tom Ekberg, Brent Fulgham, Louis Paul Hebert, Henk-Jan Olde Loohuis, Alan Lund, Gareth McCaughan, Yoshiki Shibata, and Volker Wurst, both for finding the mistakes and for having the grace to point them out gently.

Over the years, we have worked with a large number of progressive clients, where we gained and refined the experience we write about here. Recently, we've been fortunate to work with Peter Gehrke on several large projects. His support and enthusiasm for our techniques are much appreciated.

This book was produced using LATEX, pic, Perl, dvips, ghostview, ispell, GNU make, CVS, Emacs, XEmacs, EGCS, GCC, Java, iContract, and SmallEiffel, using the Bash and zsh shells under Linux. The staggering thing is that all of this tremendous software is freely available. We owe a huge "thank you" to the thousands of Pragmatic Programmers worldwide who have contributed these and other works to us all. We'd particularly like to thank Reto Kramer for his help with iContract.

Last, but in no way least, we owe a huge debt to our families. Not only have they put up with late night typing, huge telephone bills, and our permanent air of distraction, but they've had the grace to read what we've written, time after time. Thank you for letting us dream.

Andy Hunt
Dave Thomas

Chapter 1

A Pragmatic Philosophy

What distinguishes Pragmatic Programmers? We feel it's an attitude, a style, a philosophy of approaching problems and their solutions. They think beyond the immediate problem, always trying to place it in its larger context, always trying to be aware of the bigger picture. After all, without this larger context, how can you be pragmatic? How can you make intelligent compromises and informed decisions?

Another key to their success is that they take responsibility for everything they do, which we discuss in The Cat Ate My Source Code. Being responsible, Pragmatic Programmers won't sit idly by and watch their projects fall apart through neglect. In Software Entropy, we tell you how to keep your projects pristine.

Most people find change difficult to accept, sometimes for good reasons, sometimes because of plain old inertia. In Stone Soup and Boiled Frogs, we look at a strategy for instigating change and (in the interests of balance) present the cautionary tale of an amphibian that ignored the dangers of gradual change.

One of the benefits of understanding the context in which you work is that it becomes easier to know just how good your software has to be. Sometimes near-perfection is the only option, but often there are trade-offs involved. We explore this in Good-Enough Software.

Of course, you need to have a broad base of knowledge and experience to pull all of this off. Learning is a continuous and ongoing process. In Your Knowledge Portfolio, we discuss some strategies for keeping the momentum up.

Finally, none of us works in a vacuum. We all spend a large amount of time interacting with others. Communicate! lists ways we can do this better.

Pragmatic programming stems from a philosophy of pragmatic thinking. This chapter sets the basis for that philosophy.

1. The Cat Ate My Source Code

The greatest of all weaknesses is the fear of appearing weak.

• J. B. Bossuet, Politics from Holy Writ, 1709

One of the cornerstones of the pragmatic philosophy is the idea of taking responsibility for yourself and your actions in terms of your career advancement, your project, and your day-to-day work. A Pragmatic Programmer takes charge of his or her own career, and isn't afraid to admit ignorance or error. It's not the most pleasant aspect of programming, to be sure, but it will happen—even on the best of projects. Despite thorough testing, good documentation, and solid automation, things go wrong. Deliveries are late. Unforeseen technical problems come up.

These things happen, and we try to deal with them as professionally as we can. This means being honest and direct. We can be proud of our abilities, but we must be honest about our shortcomings—our ignorance as well as our mistakes.

Take Responsibility

Responsibility is something you actively agree to. You make a commitment to ensure that something is done right, but you don't necessarily have direct control over every aspect of it. In addition to doing your own personal best, you must analyze the situation for risks that are beyond your control. You have the right not to take on a responsibility for an impossible situation, or one in which the risks are too great. You'll have to make the call based on your own ethics and judgment.

When you do accept the responsibility for an outcome, you should expect to be held accountable for it. When you make a mistake (as we all do) or an error in judgment, admit it honestly and try to offer options.

Don't blame someone or something else, or make up an excuse. Don't blame all the problems on a vendor, a programming language, management, or your coworkers. Any and all of these may play a role, but it is up to you to provide solutions, not excuses.

If there was a risk that the vendor wouldn't come through for you, then you should have had a contingency plan. If the disk crashes—taking all of your source code with it—and you don't have a backup, it's your fault. Telling your boss "the cat ate my source code" just won't cut it.

Tip 3

Provide Options, Don't Make Lame Excuses

Before you approach anyone to tell them why something can't be done, is late, or is broken, stop and listen to yourself. Talk to the rubber duck on your monitor, or the cat. Does your excuse sound reasonable, or stupid? How's it going to sound to your boss?

Run through the conversation in your mind. What is the other person likely to say? Will they ask, "Have you tried this..." or "Didn't you consider that?" How will you respond? Before you go and tell them the bad news, is there anything else you can try? Sometimes, you just know what they are going to say, so save them the trouble.

Instead of excuses, provide options. Don't say it can't be done; explain what can be done to salvage the situation. Does code have to be thrown out? Educate them on the value of refactoring (see Refactoring, page 184). Do you need to spend time prototyping to determine the best way to proceed (see Prototypes and Post-it Notes, page 53)? Do you need to introduce better testing (see Code That's Easy to Test, page 189, and Ruthless Testing, page 237) or automation (see Ubiquitous Automation, page 230) to prevent it from happening again? Perhaps you need additional resources. Don't be afraid to ask, or to admit that you need help.

Try to flush out the lame excuses before voicing them aloud. If you must, tell your cat first. After all, if little Tiddles is going to take the blame....

Related sections include:

	Prototypes and Post-it Notes, page 53

	Refactoring, page 184

	Code That's Easy to Test, page 189

	Ubiquitous Automation, page 230

	Ruthless Testing, page 237

Challenges

	How do you react when someone—such as a bank teller, an auto mechanic, or a clerk—comes to you with a lame excuse? What do you think of them and their company as a result?

2. Software Entropy

While software development is immune from almost all physical laws, entropy hits us hard. Entropy is a term from physics that refers to the amount of "disorder" in a system. Unfortunately, the laws of thermodynamics guarantee that the entropy in the universe tends toward a maximum. When disorder increases in software, programmers call it "software rot."

There are many factors that can contribute to software rot. The most important one seems to be the psychology, or culture, at work on a project. Even if you are a team of one, your project's psychology can be a very delicate thing. Despite the best laid plans and the best people, a project can still experience ruin and decay during its lifetime. Yet there are other projects that, despite enormous difficulties and constant setbacks, successfully fight nature's tendency toward disorder and manage to come out pretty well.

What makes the difference?

In inner cities, some buildings are beautiful and clean, while others are rotting hulks. Why? Researchers in the field of crime and urban decay discovered a fascinating trigger mechanism, one that very quickly turns a clean, intact, inhabited building into a smashed and abandoned derelict [WK82].

A broken window.

One broken window, left unrepaired for any substantial length of time, instills in the inhabitants of the building a sense of abandonment—a sense that the powers that be don't care about the building. So another window gets broken. People start littering. Graffiti appears. Serious structural damage begins. In a relatively short space of time, the building becomes damaged beyond the owner's desire to fix it, and the sense of abandonment becomes reality.

The "Broken Window Theory" has inspired police departments in New York and other major cities to crack down on the small stuff in order to keep out the big stuff. It works: keeping on top of broken windows, graffiti, and other small infractions has reduced the serious crime level.

Tip 4

Don't Live with Broken Windows

Don't leave "broken windows" (bad designs, wrong decisions, or poor code) unrepaired. Fix each one as soon as it is discovered. If there is insufficient time to fix it properly, then board it up. Perhaps you can comment out the offending code, or display a "Not Implemented" message, or substitute dummy data instead. Take some action to prevent further damage and to show that you're on top of the situation.

We've seen clean, functional systems deteriorate pretty quickly once windows start breaking. There are other factors that can contribute to software rot, and we'll touch on some of them elsewhere, but neglect accelerates the rot faster than any other factor.

You may be thinking that no one has the time to go around cleaning up all the broken glass of a project. If you continue to think like that, then you'd better plan on getting a dumpster, or moving to another neighborhood. Don't let entropy win.

Putting Out Fires

By contrast, there's the story of an obscenely rich acquaintance of Andy's. His house was immaculate, beautiful, loaded with priceless antiques, objets d'art, and so on. One day, a tapestry that was hanging a little too close to his living room fireplace caught on fire. The fire department rushed in to save the day—and his house. But before they dragged their big, dirty hoses into the house, they stopped—with the fire raging—to roll out a mat between the front door and the source of the fire.

They didn't want to mess up the carpet.

A pretty extreme case, to be sure, but that's the way it must be with software. One broken window—a badly designed piece of code, a poor management decision that the team must live with for the duration of the project—is all it takes to start the decline. If you find yourself working on a project with quite a few broken windows, it's all too easy to slip into the mindset of "All the rest of this code is crap, I'll just follow suit." It doesn't matter if the project has been fine up to this point. In the original experiment leading to the "Broken Window Theory," an abandoned car sat for a week untouched. But once a single window was broken, the car was stripped and turned upside down within hours.

By the same token, if you find yourself on a team and a project where the code is pristinely beautiful—cleanly written, well designed, and elegant—you will likely take extra special care not to mess it up, just like the firefighters. Even if there's a fire raging (deadline, release date, trade show demo, etc.), you don't want to be the first one to make a mess.

Related sections include:

	Stone Soup and Boiled Frogs, page 7

	Refactoring, page 184

	Pragmatic Teams, page 224

Challenges

	Help strengthen your team by surveying your computing "neighborhood." Choose two or three "broken windows" and discuss with your colleagues what the problems are and what could be done to fix them.

	Can you tell when a window first gets broken? What is your reaction? If it was the result of someone else's decision, or a management edict, what can you do about it?

3. Stone Soup and Boiled Frogs

The three soldiers returning home from war were hungry. When they saw the village ahead their spirits lifted—they were sure the villagers would give them a meal. But when they got there, they found the doors locked and the windows closed. After many years of war, the villagers were short of food, and hoarded what they had.

Undeterred, the soldiers boiled a pot of water and carefully placed three stones into it. The amazed villagers came out to watch.

"This is stone soup," the soldiers explained. "Is that all you put in it?" asked the villagers. "Absolutely—although some say it tastes even better with a few carrots...." A villager ran off, returning in no time with a basket of carrots from his hoard.

A couple of minutes later, the villagers again asked "Is that it?"

"Well," said the soldiers, "a couple of potatoes give it body." Off ran another villager.

Over the next hour, the soldiers listed more ingredients that would enhance the soup: beef, leeks, salt, and herbs. Each time a different villager would run off to raid their personal stores.

Eventually they had produced a large pot of steaming soup. The soldiers removed the stones, and they sat down with the entire village to enjoy the first square meal any of them had eaten in months.

There are a couple of morals in the stone soup story. The villagers are tricked by the soldiers, who use the villagers' curiosity to get food from them. But more importantly, the soldiers act as a catalyst, bringing the village together so they can jointly produce something that they couldn't have done by themselves—a synergistic result. Eventually everyone wins.

Every now and then, you might want to emulate the soldiers.

You may be in a situation where you know exactly what needs doing and how to do it. The entire system just appears before your eyes—you know it's right. But ask permission to tackle the whole thing and you'll be met with delays and blank stares. People will form committees, budgets will need approval, and things will get complicated. Everyone will guard their own resources. Sometimes this is called "start-up fatigue."

It's time to bring out the stones. Work out what you can reasonably ask for. Develop it well. Once you've got it, show people, and let them marvel. Then say "of course, it would be better if we added...." Pretend it's not important. Sit back and wait for them to start asking you to add the functionality you originally wanted. People find it easier to join an ongoing success. Show them a glimpse of the future and you'll get them to rally around.[1]

[1] While doing this, you may be comforted by the line attributed to Rear Admiral Dr. Grace Hopper: "It's easier to ask forgiveness than it is to get permission."

Tip 5

Be a Catalyst for Change

The Villagers' Side

On the other hand, the stone soup story is also about gentle and gradual deception. It's about focusing too tightly. The villagers think about the stones and forget about the rest of the world. We all fall for it, every day. Things just creep up on us.

We've all seen the symptoms. Projects slowly and inexorably get totally out of hand. Most software disasters start out too small to notice, and most project overruns happen a day at a time. Systems drift from their specifications feature by feature, while patch after patch gets added to a piece of code until there's nothing of the original left. It's often the accumulation of small things that breaks morale and teams.

Tip 6

Remember the Big Picture

We've never tried this—honest. But they say that if you take a frog and drop it into boiling water, it will jump straight back out again. However, if you place the frog in a pan of cold water, then gradually heat it, the frog won't notice the slow increase in temperature and will stay put until cooked.

Note that the frog's problem is different from the broken windows issue discussed in Section 2. In the Broken Window Theory, people lose the will to fight entropy because they perceive that no one else cares. The frog just doesn't notice the change.

Don't be like the frog. Keep an eye on the big picture. Constantly review what's happening around you, not just what you personally are doing.

Related sections include:

	Software Entropy, page 4

	Programming by Coincidence, page 172

	Refactoring, page 184

	The Requirements Pit, page 202

	Pragmatic Teams, page 224

Challenges

	While reviewing a draft of this book, John Lakos raised the following issue: The soldiers progressively deceive the villagers, but the change they catalyze does them all good. However, by progressively deceiving the frog, you're doing it harm. Can you determine whether you're making stone soup or frog soup when you try to catalyze change? Is the decision subjective or objective?

4. Good-Enough Software

Striving to better, oft we mar what's well.

• King Lear 1.4

There's an old(ish) joke about a U.S. company that places an order for 100,000 integrated circuits with a Japanese manufacturer. Part of the specification was the defect rate: one chip in 10,000. A few weeks later the order arrived: one large box containing thousands of ICs, and a small one containing just ten. Attached to the small box was a label that read: "These are the faulty ones."

If only we really had this kind of control over quality. But the real world just won't let us produce much that's truly perfect, particularly not bug-free software. Time, technology, and temperament all conspire against us.

However, this doesn't have to be frustrating. As Ed Yourdon described in an article in IEEE Software [You95], you can discipline yourself to write software that's good enough—good enough for your users, for future maintainers, for your own peace of mind. You'll find that you are more productive and your users are happier. And you may well find that your programs are actually better for their shorter incubation.

Before we go any further, we need to qualify what we're about to say. The phrase "good enough" does not imply sloppy or poorly produced code. All systems must meet their users' requirements to be successful. We are simply advocating that users be given an opportunity to participate in the process of deciding when what you've produced is good enough.

Involve Your Users in the Trade-Off

Normally you're writing software for other people. Often you'll remember to get requirements from them.[2] But how often do you ask them how good they want their software to be? Sometimes there'll be no choice. If you're working on pacemakers, the space shuttle, or a low-level library that will be widely disseminated, the requirements will be more stringent and your options more limited. However, if you're working on a brand new product, you'll have different constraints. The marketing people will have promises to keep, the eventual end users may have made plans based on a delivery schedule, and your company will certainly have cash-flow constraints. It would be unprofessional to ignore these users' requirements simply to add new features to the program, or to polish up the code just one more time. We're not advocating panic: it is equally unprofessional to promise impossible time scales and to cut basic engineering corners to meet a deadline.

[2] That was supposed to be a joke!

The scope and quality of the system you produce should be specified as part of that system's requirements.

Tip 7

Make Quality a Requirements Issue

Often you'll be in situations where trade-offs are involved. Surprisingly, many users would rather use software with some rough edges today than wait a year for the multimedia version. Many IT departments with tight budgets would agree. Great software today is often preferable to perfect software tomorrow. If you give your users something to play with early, their feedback will often lead you to a better eventual solution (see Tracer Bullets, page 48).

Know When to Stop

In some ways, programming is like painting. You start with a blank canvas and certain basic raw materials. You use a combination of science, art, and craft to determine what to do with them. You sketch out an overall shape, paint the underlying environment, then fill in the details. You constantly step back with a critical eye to view what you've done. Every now and then you'll throw a canvas away and start again.

But artists will tell you that all the hard work is ruined if you don't know when to stop. If you add layer upon layer, detail over detail, the painting becomes lost in the paint.

Don't spoil a perfectly good program by overembellishment and over-refinement. Move on, and let your code stand in its own right for a while. It may not be perfect. Don't worry: it could never be perfect. (In Chapter 6, page 171, we'll discuss philosophies for developing code in an imperfect world.)

Related sections include:

	Tracer Bullets, page 48

	The Requirements Pit, page 202

	Pragmatic Teams, page 224

	Great Expectations, page 255

Challenges

	Look at the manufacturers of the software tools and operating systems that you use. Can you find any evidence that these companies are comfortable shipping software they know is not perfect? As a user, would you rather (1) wait for them to get all the bugs out, (2) have complex software and accept some bugs, or (3) opt for simpler software with fewer defects?

	Consider the effect of modularization on the delivery of software. Will it take more or less time to get a monolithic block of software to the required quality compared with a system designed in modules? Can you find commercial examples?

5. Your Knowledge Portfolio

An investment in knowledge always pays the best interest.

• Benjamin Franklin

Ah, good old Ben Franklin—never at a loss for a pithy homily. Why, if we could just be early to bed and early to rise, we'd be great programmers—right? The early bird might get the worm, but what happens to the early worm?

In this case, though, Ben really hit the nail on the head. Your knowledge and experience are your most important professional assets.

Unfortunately, they're expiring assets.[3] Your knowledge becomes out of date as new techniques, languages, and environments are developed. Changing market forces may render your experience obsolete or irrelevant. Given the speed at which Web-years fly by, this can happen pretty quickly.

[3] An expiring asset is something whose value diminishes over time. Examples include a warehouse full of bananas and a ticket to a ball game.

As the value of your knowledge declines, so does your value to your company or client. We want to prevent this from ever happening.

Your Knowledge Portfolio

We like to think of all the facts programmers know about computing, the application domains they work in, and all their experience as their Knowledge Portfolios. Managing a knowledge portfolio is very similar to managing a financial portfolio:

	Serious investors invest regularly—as a habit.

	Diversification is the key to long-term success.

	Smart investors balance their portfolios between conservative and high-risk, high-reward investments.

	Investors try to buy low and sell high for maximum return.

	Portfolios should be reviewed and rebalanced periodically.

To be successful in your career, you must manage your knowledge portfolio using these same guidelines.

Building Your Portfolio

	Invest regularly. Just as in financial investing, you must invest in your knowledge portfolio regularly. Even if it's just a small amount, the habit itself is as important as the sums. A few sample goals are listed in the next section.

	Diversify. The more different things you know, the more valuable you are. As a baseline, you need to know the ins and outs of the particular technology you are working with currently. But don't stop there. The face of computing changes rapidly—hot technology today may well be close to useless (or at least not in demand) tomorrow. The more technologies you are comfortable with, the better you will be able to adjust to change.

	Manage risk. Technology exists along a spectrum from risky, potentially high-reward to low-risk, low-reward standards. It's not a good idea to invest all of your money in high-risk stocks that might collapse suddenly, nor should you invest all of it conservatively and miss out on possible opportunities. Don't put all your technical eggs in one basket.

	Buy low, sell high. Learning an emerging technology before it becomes popular can be just as hard as finding an undervalued stock, but the payoff can be just as rewarding. Learning Java when it first came out may have been risky, but it paid off handsomely for the early adopters who are now at the top of that field.

	Review and rebalance. This is a very dynamic industry. That hot technology you started investigating last month might be stone cold by now. Maybe you need to brush up on that database technology that you haven't used in a while. Or perhaps you could be better positioned for that new job opening if you tried out that other language....

Of all these guidelines, the most important one is the simplest to do:

Tip 8

Invest Regularly in Your Knowledge Portfolio

Goals

Now that you have some guidelines on what and when to add to your knowledge portfolio, what's the best way to go about acquiring intellectual capital with which to fund your portfolio? Here are a few suggestions.

	Learn at least one new language every year. Different languages solve the same problems in different ways. By learning several different approaches, you can help broaden your thinking and avoid getting stuck in a rut. Additionally, learning many languages is far easier now, thanks to the wealth of freely available software on the Internet (see page 267).

	Read a technical book each quarter. Bookstores are full of technical books on interesting topics related to your current project. Once you're in the habit, read a book a month. After you've mastered the technologies you're currently using, branch out and study some that don't relate to your project.

	Read nontechnical books, too. It is important to remember that computers are used by people—people whose needs you are trying to satisfy. Don't forget the human side of the equation.

	Take classes. Look for interesting courses at your local community college or university, or perhaps at the next trade show that comes to town.

	Participate in local user groups. Don't just go and listen, but actively participate. Isolation can be deadly to your career; find out what people are working on outside of your company.

	Experiment with different environments. If you've worked only in Windows, play with Unix at home (the freely available Linux is perfect for this). If you've used only makefiles and an editor, try an IDE, and vice versa.

	Stay current. Subscribe to trade magazines and other journals (see page 262 for recommendations). Choose some that cover technology different from that of your current project.

	Get wired. Want to know the ins and outs of a new language or other technology? Newsgroups are a great way to find out what experiences other people are having with it, the particular jargon they use, and so on. Surf the Web for papers, commercial sites, and any other sources of information you can find.

It's important to continue investing. Once you feel comfortable with some new language or bit of technology, move on. Learn another one.

It doesn't matter whether you ever use any of these technologies on a project, or even whether you put them on your resume. The process of learning will expand your thinking, opening you to new possibilities and new ways of doing things. The cross-pollination of ideas is important; try to apply the lessons you've learned to your current project. Even if your project doesn't use that technology, perhaps you can borrow some ideas. Get familiar with object orientation, for instance, and you'll write plain C programs differently.

Opportunities for Learning

So you're reading voraciously, you're on top of all the latest breaking developments in your field (not an easy thing to do), and somebody asks you a question. You don't have the faintest idea what the answer is, and freely admit as much.

Don't let it stop there. Take it as a personal challenge to find the answer. Ask a guru. (If you don't have a guru in your office, you should be able to find one on the Internet: see the box on on the facing page.) Search the Web. Go to the library.[4]

[4] In this era of the Web, many people seem to have forgotten about real live libraries filled with research material and staff.

If you can't find the answer yourself, find out who can. Don't let it rest. Talking to other people will help build your personal network, and you may surprise yourself by finding solutions to other, unrelated problems along the way. And that old portfolio just keeps getting bigger....

All of this reading and researching takes time, and time is already in short supply. So you need to plan ahead. Always have something to read in an otherwise dead moment. Time spent waiting for doctors and dentists can be a great opportunity to catch up on your reading—but be sure to bring your own magazine with you, or you might find yourself thumbing through a dog-eared 1973 article about Papua New Guinea.

Critical Thinking

The last important point is to think critically about what you read and hear. You need to ensure that the knowledge in your portfolio is accurate and unswayed by either vendor or media hype. Beware of the zealots who insist that their dogma provides the only answer—it may or may not be applicable to you and your project.

Never underestimate the power of commercialism. Just because a Web search engine lists a hit first doesn't mean that it's the best match; the content provider can pay to get top billing. Just because a bookstore features a book prominently doesn't mean it's a good book, or even popular; they may have been paid to place it there.

Tip 9

Critically Analyze What You Read and Hear

Unfortunately, there are very few simple answers anymore. But with your extensive portfolio, and by applying some critical analysis to the torrent of technical publications you will read, you can understand the complex answers.

Care and Cultivation of Gurus

With the global adoption of the Internet, gurus suddenly are as close as your Enter key. So, how do you find one, and how do you get one to talk with you?

We find there are some simple tricks.

	Know exactly what you want to ask, and be as specific as you can be.

	Frame your question carefully and politely. Remember that you're asking a favor; don't seem to be demanding an answer.

	Once you've framed your question, stop and look again for the answer. Pick out some keywords and search the Web. Look for appropriate FAQs (lists of frequently asked questions with answers).

	Decide if you want to ask publicly or privately. Usenet news-groups are wonderful meeting places for experts on just about any topic, but some people are wary of these groups' public nature. Alternatively, you can always e-mail your guru directly. Either way, use a meaningful subject line. ("Need Help!!!" doesn't cut it.)

	Sit back and be patient. People are busy, and it may take days to get a specific answer.

Finally, please be sure to thank anyone who responds to you. And if you see people asking questions you can answer, play your part and participate.

Challenges

	Start learning a new language this week. Always programmed in C++? Try Smalltalk [URL 13] or Squeak [URL 14]. Doing Java? Try Eiffel [URL 10] or TOM [URL 15]. See page 267 for sources of other free compilers and environments.

	Start reading a new book (but finish this one first!). If you are doing very detailed implementation and coding, read a book on design and architecture. If you are doing high-level design, read a book on coding techniques.

	Get out and talk technology with people who aren't involved in your current project, or who don't work for the same company. Network in your company cafeteria, or maybe seek out fellow enthusiasts at a local user's group meeting.

6. Communicate!

I believe that it is better to be looked over than it is to be overlooked.

• Mae West, Belle of the Nineties, 1934

Maybe we can learn a lesson from Ms. West. It's not just what you've got, but also how you package it. Having the best ideas, the finest code, or the most pragmatic thinking is ultimately sterile unless you can communicate with other people. A good idea is an orphan without effective communication.

As developers, we have to communicate on many levels. We spend hours in meetings, listening and talking. We work with end users, trying to understand their needs. We write code, which communicates our intentions to a machine and documents our thinking for future generations of developers. We write proposals and memos requesting and justifying resources, reporting our status, and suggesting new approaches. And we work daily within our teams to advocate our ideas, modify existing practices, and suggest new ones. A large part of our day is spent communicating, so we need to do it well.

We've put together a list of ideas that we find useful.

Know What You Want to Say

Probably the most difficult part of the more formal styles of communication used in business is working out exactly what it is you want to say. Fiction writers plot out their books in detail before they start, but people writing technical documents are often happy to sit down at a keyboard, enter "1. Introduction," and start typing whatever comes into their heads next.

Plan what you want to say. Write an outline. Then ask yourself, "Does this get across whatever I'm trying to say?" Refine it until it does.

This approach is not just applicable to writing documents. When you're faced with an important meeting or a phone call with a major client, jot down the ideas you want to communicate, and plan a couple of strategies for getting them across.

Know Your Audience

You're communicating only if you're conveying information. To do that, you need to understand the needs, interests, and capabilities of your audience. We've all sat in meetings where a development geek glazes over the eyes of the vice president of marketing with a long monologue on the merits of some arcane technology. This isn't communicating: it's just talking, and it's annoying.[5]

[5] The word annoy comes from the Old French enui, which also means "to bore."

Form a strong mental picture of your audience. The acrostic WISDOM, shown in Figure 1.1 on the following page, may help.

Figure 1.1. The wisdom acrostic—understanding an audience

[image: image]

Say you want to suggest a Web-based system to allow your end users to submit bug reports. You can present this system in many different ways, depending on your audience. End users will appreciate that they can submit bug reports 24 hours a day without waiting on the phone. Your marketing department will be able to use this fact to boost sales. Managers in the support department will have two reasons to be happy: fewer staff will be needed, and problem reporting will be automated. Finally, developers may enjoy getting experience with Web-based client-server technologies and a new database engine. By making the appropriate pitch to each group, you'll get them all excited about your project.

Choose Your Moment

It's six o'clock on Friday afternoon, following a week when the auditors have been in. Your boss's youngest is in the hospital, it's pouring rain outside, and the commute home is guaranteed to be a nightmare. This probably isn't a good time to ask her for a memory upgrade for your PC.

As part of understanding what your audience needs to hear, you need to work out what their priorities are. Catch a manager who's just been given a hard time by her boss because some source code got lost, and you'll have a more receptive listener to your ideas on source code repositories. Make what you're saying relevant in time, as well as in content. Sometimes all it takes is the simple question "Is this a good time to talk about...?"

Choose a Style

Adjust the style of your delivery to suit your audience. Some people want a formal "just the facts" briefing. Others like a long, wide-ranging chat before getting down to business. When it comes to written documents, some like to receive large bound reports, while others expect a simple memo or e-mail. If in doubt, ask.

Remember, however, that you are half of the communication transaction. If someone says they need a paragraph describing something and you can't see any way of doing it in less than several pages, tell them so. Remember, that kind of feedback is a form of communication, too.

Make It Look Good

Your ideas are important. They deserve a good-looking vehicle to convey them to your audience.

Too many developers (and their managers) concentrate solely on content when producing written documents. We think this is a mistake. Any chef will tell you that you can slave in the kitchen for hours only to ruin your efforts with poor presentation.

There is no excuse today for producing poor-looking printed documents. Modern word processors (along with layout systems such as LATEX and troff) can produce stunning output. You need to learn just a few basic commands. If your word processor supports style sheets, use them. (Your company may already have defined style sheets that you can use.) Learn how to set page headers and footers. Look at the sample documents included with your package to get ideas on style and layout. Check the spelling, first automatically and then by hand. After awl, their are spelling miss steaks that the chequer can knot ketch.

Involve Your Audience

We often find that the documents we produce end up being less important than the process we go through to produce them. If possible, involve your readers with early drafts of your document. Get their feedback, and pick their brains. You'll build a good working relationship, and you'll probably produce a better document in the process.

Be a Listener

There's one technique that you must use if you want people to listen to you: listen to them. Even if this is a situation where you have all the information, even if this is a formal meeting with you standing in front of 20 suits—if you don't listen to them, they won't listen to you.

Encourage people to talk by asking questions, or have them summarize what you tell them. Turn the meeting into a dialog, and you'll make your point more effectively. Who knows, you might even learn something.

Get Back to People

If you ask someone a question, you feel they're impolite if they don't respond. But how often do you fail to get back to people when they send you an e-mail or a memo asking for information or requesting some action? In the rush of everyday life, it's easy to forget. Always respond to e-mails and voice mails, even if the response is simply "I'll get back to you later." Keeping people informed makes them far more forgiving of the occasional slip, and makes them feel that you haven't forgotten them.

Tip 10

It's Both What You Say and the Way You Say It

Unless you work in a vacuum, you need to be able to communicate. The more effective that communication, the more influential you become.

E-Mail Communication

Everything we've said about communicating in writing applies equally to electronic mail. E-mail has evolved to the point where it is a main-stay of intra- and intercorporate communications. E-mail is used to discuss contracts, to settle disputes, and as evidence in court. But for some reason, people who would never send out a shabby paper document are happy to fling nasty-looking e-mail around the world.

Our e-mail tips are simple:

	Proofread before you hit [image: image].

	Check the spelling.

	Keep the format simple. Some people read e-mail using proportional fonts, so the ASCII art pictures you laboriously created will look to them like hen-scratchings.

	Use rich-text or HTML formatted mail only if you know that all your recipients can read it. Plain text is universal.

	Try to keep quoting to a minimum. No one likes to receive back their own 100-line e-mail with "I agree" tacked on.

	If you're quoting other people's e-mail, be sure to attribute it, and quote it inline (rather than as an attachment).

	Don't flame unless you want it to come back and haunt you later.

	Check your list of recipients before sending. A recent Wall Street Journal article described an employee who took to distributing criticisms of his boss over departmental e-mail, without realizing that his boss was included on the distribution list.

	Archive and organize your e-mail—both the important stuff you receive and the mail you send.

As various Microsoft and Netscape employees discovered during the 1999 Department of Justice investigation, e-mail is forever. Try to give the same attention and care to e-mail as you would to any written memo or report.

Summary

	Know what you want to say.

	Know your audience.

	Choose your moment.

	Choose a style.

	Make it look good.

	Involve your audience.

	Be a listener.

	Get back to people.

Related sections include:

	Prototypes and Post-it Notes, page 53

	Pragmatic Teams, page 224

Challenges

	There are several good books that contain sections on communications within development teams [Bro95, McC95, DL99]. Make it a point to try to read all three over the next 18 months. In addition, the book Dinosaur Brains [Ber96] discusses the emotional baggage we all bring to the work environment.

	The next time you have to give a presentation, or write a memo advocating some position, try working through the WISDOM acrostic on page 20 before you start. See if it helps you understand how to position what you say. If appropriate, talk to your audience afterward and see how accurate your assessment of their needs was.

Chapter 2

A Pragmatic Approach

There are certain tips and tricks that apply at all levels of software development, ideas that are almost axiomatic, and processes that are virtually universal. However, these approaches are rarely documented as such; you'll mostly find them written down as odd sentences in discussions of design, project management, or coding.

In this chapter we'll bring these ideas and processes together. The first two sections, The Evils of Duplication and Orthogonality, are closely related. The first warns you not to duplicate knowledge throughout your systems, the second not to split any one piece of knowledge across multiple system components.

As the pace of change increases, it becomes harder and harder to keep our applications relevant. In Reversibility, we'll look at some techniques that help insulate your projects from their changing environment.

The next two sections are also related. In Tracer Bullets, we talk about a style of development that allows you to gather requirements, test designs, and implement code at the same time. If this sounds too good to be true, it is: tracer bullet developments are not always applicable. When they're not, Prototypes and Post-it Notes shows you how to use prototyping to test architectures, algorithms, interfaces, and ideas.

As computer science slowly matures, designers are producing increasingly higher-level languages. While the compiler that accepts "make it so" hasn't yet been invented, in Domain Languages we present some more modest suggestions that you can implement for yourself.

Finally, we all work in a world of limited time and resources. You can survive both of these scarcities better (and keep your bosses happier) if you get good at working out how long things will take, which we cover in Estimating.

By keeping these fundamental principles in mind during development, you can write code that's better, faster, and stronger. You can even make it look easy.

7. The Evils of Duplication

Giving a computer two contradictory pieces of knowledge was Captain James T. Kirk's preferred way of disabling a marauding artificial intelligence. Unfortunately, the same principle can be effective in bringing down your code.

As programmers, we collect, organize, maintain, and harness knowledge. We document knowledge in specifications, we make it come alive in running code, and we use it to provide the checks needed during testing.

Unfortunately, knowledge isn't stable. It changes—often rapidly. Your understanding of a requirement may change following a meeting with the client. The government changes a regulation and some business logic gets outdated. Tests may show that the chosen algorithm won't work. All this instability means that we spend a large part of our time in maintenance mode, reorganizing and reexpressing the knowledge in our systems.

Most people assume that maintenance begins when an application is released, that maintenance means fixing bugs and enhancing features. We think these people are wrong. Programmers are constantly in maintenance mode. Our understanding changes day by day. New requirements arrive as we're designing or coding. Perhaps the environment changes. Whatever the reason, maintenance is not a discrete activity, but a routine part of the entire development process.

When we perform maintenance, we have to find and change the representations of things—those capsules of knowledge embedded in the application. The problem is that it's easy to duplicate knowledge in the specifications, processes, and programs that we develop, and when we do so, we invite a maintenance nightmare—one that starts well before the application ships.

We feel that the only way to develop software reliably, and to make our developments easier to understand and maintain, is to follow what we call the DRY principle:

EVERY PIECE OF KNOWLEDGE MUST HAVE A SINGLE, UNAMBIGUOUS, AUTHORITATIVE REPRESENTATION WITHIN A SYSTEM.

Why do we call it DRY?

Tip 11

DRY—Don't Repeat Yourself

The alternative is to have the same thing expressed in two or more places. If you change one, you have to remember to change the others, or, like the alien computers, your program will be brought to its knees by a contradiction. It isn't a question of whether you'll remember: it's a question of when you'll forget.

You'll find the DRY principle popping up time and time again throughout this book, often in contexts that have nothing to do with coding. We feel that it is one of the most important tools in the Pragmatic Programmer's tool box.

In this section we'll outline the problems of duplication and suggest general strategies for dealing with it.

How Does Duplication Arise?

Most of the duplication we see falls into one of the following categories:

	Imposed duplication. Developers feel they have no choice—the environment seems to require duplication.

	Inadvertent duplication. Developers don't realize that they are duplicating information.

	Impatient duplication. Developers get lazy and duplicate because it seems easier.

	Interdeveloper duplication. Multiple people on a team (or on different teams) duplicate a piece of information.

Let's look at these four i's of duplication in more detail.

Imposed Duplication

Sometimes, duplication seems to be forced on us. Project standards may require documents that contain duplicated information, or documents that duplicate information in the code. Multiple target platforms each require their own programming languages, libraries, and development environments, which makes us duplicate shared definitions and procedures. Programming languages themselves require certain structures that duplicate information. We have all worked in situations where we felt powerless to avoid duplication. And yet often there are ways of keeping each piece of knowledge in one place, honoring the DRY principle, and making our lives easier at the same time. Here are some techniques:

Multiple representations of information. At the coding level, we often need to have the same information represented in different forms. Maybe we're writing a client-server application, using different languages on the client and server, and need to represent some shared structure on both. Perhaps we need a class whose attributes mirror the schema of a database table. Maybe you're writing a book and want to include excerpts of programs that you also will compile and test.

With a bit of ingenuity you can normally remove the need for duplication. Often the answer is to write a simple filter or code generator. Structures in multiple languages can be built from a common metadata representation using a simple code generator each time the software is built (an example of this is shown in Figure 3.4, page 106). Class definitions can be generated automatically from the online database schema, or from the metadata used to build the schema in the first place. The code extracts in this book are inserted by a preprocessor each time we format the text. The trick is to make the process active: this cannot be a one-time conversion, or we're back in a position of duplicating data.

Documentation in code. Programmers are taught to comment their code: good code has lots of comments. Unfortunately, they are never taught why code needs comments: bad code requires lots of comments.

The DRY principle tells us to keep the low-level knowledge in the code, where it belongs, and reserve the comments for other, high-level explanations. Otherwise, we're duplicating knowledge, and every change means changing both the code and the comments. The comments will inevitably become out of date, and untrustworthy comments are worse than no comments at all. (See It's All Writing, page 248, for more information on comments.)

Documentation and code. You write documentation, then you write code. Something changes, and you amend the documentation and update the code. The documentation and code both contain representations of the same knowledge. And we all know that in the heat of the moment, with deadlines looming and important clients clamoring, we tend to defer the updating of documentation.

Dave once worked on an international telex switch. Quite understandably, the client demanded an exhaustive test specification and required that the software pass all tests on each delivery. To ensure that the tests accurately reflected the specification, the team generated them programmatically from the document itself. When the client amended their specification, the test suite changed automatically. Once the team convinced the client that the procedure was sound, generating acceptance tests typically took only a few seconds.

Language issues. Many languages impose considerable duplication in the source. Often this comes about when the language separates a module's interface from its implementation. C and C++ have header files that duplicate the names and type information of exported variables, functions, and (for C++) classes. Object Pascal even duplicates this information in the same file. If you are using remote procedure calls or CORBA [URL 29], you'll duplicate interface information between the interface specification and the code that implements it.

There is no easy technique for overcoming the requirements of a language. While some development environments hide the need for header files by generating them automatically, and Object Pascal allows you to abbreviate repeated function declarations, you are generally stuck with what you're given. At least with most language-based issues, a header file that disagrees with the implementation will generate some form of compilation or linkage error. You can still get things wrong, but at least you'll be told about it fairly early on.

Think also about comments in header and implementation files. There is absolutely no point in duplicating a function or class header comment between the two files. Use the header files to document interface issues, and the implementation files to document the nitty-gritty details that users of your code don't need to know.

Inadvertent Duplication

Sometimes, duplication comes about as the result of mistakes in the design.

Let's look at an example from the distribution industry. Say our analysis reveals that, among other attributes, a truck has a type, a license number, and a driver. Similarly, a delivery route is a combination of a route, a truck, and a driver. We code up some classes based on this understanding.

But what happens when Sally calls in sick and we have to change drivers? Both Truck and DeliveryRoute contain a driver. Which one do we change? Clearly this duplication is bad. Normalize it according to the underlying business model—does a truck really have a driver as part of its underlying attribute set? Does a route? Or maybe there needs to be a third object that knits together a driver, a truck, and a route. Whatever the eventual solution, avoid this kind of unnormalized data.

There is a slightly less obvious kind of unnormalized data that occurs when we have multiple data elements that are mutually dependent. Let's look at a class representing a line:

[image: image]

At first sight, this class might appear reasonable. A line clearly has a start and end, and will always have a length (even if it's zero). But we have duplication. The length is defined by the start and end points: change one of the points and the length changes. It's better to make the length a calculated field:

[image: image]

Later on in the development process, you may choose to violate the DRY principle for performance reasons. Frequently this occurs when you need to cache data to avoid repeating expensive operations. The trick is to localize the impact. The violation is not exposed to the outside world: only the methods within the class have to worry about keeping things straight.

[image: image]

This example also illustrates an important issue for object-oriented languages such as Java and C++. Where possible, always use accessor functions to read and write the attributes of objects.[1] It will make it easier to add functionality, such as caching, in the future.

[1] The use of accessor functions ties in with Meyer's Uniform Access principle [Mey97b], which states that "All services offered by a module should be available through a uniform notation, which does not betray whether they are implemented through storage or through computation."

Impatient Duplication

Every project has time pressures—forces that can drive the best of us to take shortcuts. Need a routine similar to one you've written? You'll be tempted to copy the original and make a few changes. Need a value to represent the maximum number of points? If I change the header file, the whole project will get rebuilt. Maybe I should just use a literal number here; and here; and here. Need a class like one in the Java runtime? The source is available, so why not just copy it and make the changes you need (license provisions notwithstanding)?

If you feel this temptation, remember the hackneyed aphorism "shortcuts make for long delays." You may well save some seconds now, but at the potential loss of hours later. Think about the issues surrounding the Y2K fiasco. Many were caused by the laziness of developers not parameterizing the size of date fields or implementing centralized libraries of date services.

Impatient duplication is an easy form to detect and handle, but it takes discipline and a willingness to spend time up front to save pain later.

Interdeveloper Duplication

On the other hand, perhaps the hardest type of duplication to detect and handle occurs between different developers on a project. Entire sets of functionality may be inadvertently duplicated, and that duplication could go undetected for years, leading to maintenance problems. We heard firsthand of a U.S. state whose governmental computer systems were surveyed for Y2K compliance. The audit turned up more than 10,000 programs, each containing its own version of Social Security number validation.

At a high level, deal with the problem by having a clear design, a strong technical project leader (see page 228 in Pragmatic Teams), and a well-understood division of responsibilities within the design. However, at the module level, the problem is more insidious. Commonly needed functionality or data that doesn't fall into an obvious area of responsibility can get implemented many times over.

We feel that the best way to deal with this is to encourage active and frequent communication between developers. Set up forums to discuss common problems. (On past projects, we have set up private Usenet newsgroups to allow developers to exchange ideas and ask questions. This provides a nonintrusive way of communicating—even across multiple sites—while retaining a permanent history of everything said.) Appoint a team member as the project librarian, whose job is to facilitate the exchange of knowledge. Have a central place in the source tree where utility routines and scripts can be deposited. And make a point of reading other people's source code and documentation, either informally or during code reviews. You're not snooping—you're learning from them. And remember, the access is reciprocal—don't get twisted about other people poring (pawing?) through your code, either.

Tip 12

Make It Easy to Reuse

What you're trying to do is foster an environment where it's easier to find and reuse existing stuff than to write it yourself. If it isn't easy, people won't do it. And if you fail to reuse, you risk duplicating knowledge.

Related sections include:

	Orthogonality, page 34

	Text Manipulation, page 99

	Code Generators, page 102

	Refactoring, page 184

	Pragmatic Teams, page 224

	Ubiquitous Automation, page 230

	It's All Writing, page 248

8. Orthogonality

Orthogonality is a critical concept if you want to produce systems that are easy to design, build, test, and extend. However, the concept of orthogonality is rarely taught directly. Often it is an implicit feature of various other methods and techniques you learn. This is a mistake. Once you learn to apply the principle of orthogonality directly, you'll notice an immediate improvement in the quality of systems you produce.

What Is Orthogonality?

"Orthogonality" is a term borrowed from geometry. Two lines are orthogonal if they meet at right angles, such as the axes on a graph. In vector terms, the two lines are independent. Move along one of the lines, and your position projected onto the other doesn't change.

[image: image]

In computing, the term has come to signify a kind of independence or decoupling. Two or more things are orthogonal if changes in one do not affect any of the others. In a well-designed system, the database code will be orthogonal to the user interface: you can change the interface without affecting the database, and swap databases without changing the interface.

Before we look at the benefits of orthogonal systems, let's first look at a system that isn't orthogonal.

A Nonorthogonal System

You're on a helicopter tour of the Grand Canyon when the pilot, who made the obvious mistake of eating fish for lunch, suddenly groans and faints. Fortunately, he left you hovering 100 feet above the ground. You rationalize that the collective pitch lever[2] controls overall lift, so lowering it slightly will start a gentle descent to the ground. However, when you try it, you discover that life isn't that simple. The helicopter's nose drops, and you start to spiral down to the left. Suddenly you discover that you're flying a system where every control input has secondary effects. Lower the left-hand lever and you need to add compensating backward movement to the right-hand stick and push the right pedal. But then each of these changes affects all of the other controls again. Suddenly you're juggling an unbelievably complex system, where every change impacts all the other inputs. Your workload is phenomenal: your hands and feet are constantly moving, trying to balance all the interacting forces.

[2] Helicopters have four basic controls. The cyclic is the stick you hold in your right hand. Move it, and the helicopter moves in the corresponding direction. Your left hand holds the collective pitch lever. Pull up on this and you increase the pitch on all the blades, generating lift. At the end of the pitch lever is the throttle. Finally you have two foot pedals, which vary the amount of tail rotor thrust and so help turn the helicopter.

Helicopter controls are decidedly not orthogonal.

Benefits of Orthogonality

As the helicopter example illustrates, nonorthogonal systems are inherently more complex to change and control. When components of any system are highly interdependent, there is no such thing as a local fix.

Tip 13

Eliminate Effects Between Unrelated Things

We want to design components that are self-contained: independent, and with a single, well-defined purpose (what Yourdon and Constantine call cohesion [YC86]). When components are isolated from one another, you know that you can change one without having to worry about the rest. As long as you don't change that component's external interfaces, you can be comfortable that you won't cause problems that ripple through the entire system.

You get two major benefits if you write orthogonal systems: increased productivity and reduced risk.

Gain Productivity

	Changes are localized, so development time and testing time are reduced. It is easier to write relatively small, self-contained components than a single large block of code. Simple components can be designed, coded, unit tested, and then forgotten—there is no need to keep changing existing code as you add new code.

	An orthogonal approach also promotes reuse. If components have specific, well-defined responsibilities, they can be combined with new components in ways that were not envisioned by their original implementors. The more loosely coupled your systems, the easier they are to reconfigure and reengineer.

	There is a fairly subtle gain in productivity when you combine orthogonal components. Assume that one component does M distinct things and another does N things. If they are orthogonal and you combine them, the result does M x N things. However, if the two components are not orthogonal, there will be overlap, and the result will do less. You get more functionality per unit effort by combining orthogonal components.

Reduce Risk

An orthogonal approach reduces the risks inherent in any development.

	Diseased sections of code are isolated. If a module is sick, it is less likely to spread the symptoms around the rest of the system. It is also easier to slice it out and transplant in something new and healthy.

	The resulting system is less fragile. Make small changes and fixes to a particular area, and any problems you generate will be restricted to that area.

	An orthogonal system will probably be better tested, because it will be easier to design and run tests on its components.

	You will not be as tightly tied to a particular vendor, product, or platform, because the interfaces to these third-party components will be isolated to smaller parts of the overall development.

Let's look at some of the ways you can apply the principle of orthogonality to your work.

Project Teams

Have you noticed how some project teams are efficient, with everyone knowing what to do and contributing fully, while the members of other teams are constantly bickering and don't seem able to get out of each other's way?

Often this is an orthogonality issue. When teams are organized with lots of overlap, members are confused about responsibilities. Every change needs a meeting of the entire team, because any one of them might be affected.

How do you organize teams into groups with well-defined responsibilities and minimal overlap? There's no simple answer. It depends partly on the project and your analysis of the areas of potential change. It also depends on the people you have available. Our preference is to start by separating infrastructure from application. Each major infrastructure component (database, communications interface, middleware layer, and so on) gets its own subteam. Each obvious division of application functionality is similarly divided. Then we look at the people we have (or plan to have) and adjust the groupings accordingly.

You can get an informal measure of the orthogonality of a project team's structure. Simply see how many people need to be involved in discussing each change that is requested. The larger the number, the less orthogonal the group. Clearly, an orthogonal team is more efficient. (Having said this, we also encourage subteams to communicate constantly with each other.)

Design

Most developers are familiar with the need to design orthogonal systems, although they may use words such as modular, component-based, and layered to describe the process. Systems should be composed of a set of cooperating modules, each of which implements functionality independent of the others. Sometimes these components are organized into layers, each providing a level of abstraction. This layered approach is a powerful way to design orthogonal systems. Because each layer uses only the abstractions provided by the layers below it, you have great flexibility in changing underlying implementations without affecting code. Layering also reduces the risk of runaway dependencies between modules. You'll often see layering expressed in diagrams such as Figure 2.1 on the next page.

Figure 2.1. Typical layer diagram

[image: image]

There is an easy test for orthogonal design. Once you have your components mapped out, ask yourself: If I dramatically change the requirements behind a particular function, how many modules are affected? In an orthogonal system, the answer should be "one."[3] Moving a button on a GUI panel should not require a change in the database schema. Adding context-sensitive help should not change the billing subsystem.

[3] In reality, this is naive. Unless you are remarkably lucky, most real-world requirements changes will affect multiple functions in the system. However, if you analyze the change in terms of functions, each functional change should still ideally affect just one module.

Let's consider a complex system for monitoring and controlling a heating plant. The original requirement called for a graphical user interface, but the requirements were changed to add a voice response system with touchtone telephone control of the plant. In an orthogonally designed system, you would need to change only those modules associated with the user interface to handle this: the underlying logic of controlling the plant would remain unchanged. In fact, if you structure your system carefully, you should be able to support both interfaces with the same underlying code base. It's Just a View, page 157, talks about writing decoupled code using the Model-View-Controller (MVC) paradigm, which works well in this situation.

Also ask yourself how decoupled your design is from changes in the real world. Are you using a telephone number as a customer identifier? What happens when the phone company reassigns area codes? Don't rely on the properties of things you can't control.

Toolkits and Libraries

Be careful to preserve the orthogonality of your system as you introduce third-party toolkits and libraries. Choose your technologies wisely.

We once worked on a project that required that a certain body of Java code run both locally on a server machine and remotely on a client machine. The alternatives for distributing classes this way were RMI and CORBA. If a class were made remotely accessible using RMI, every call to a remote method in that class could potentially throw an exception, which means that a naive implementation would require us to handle the exception whenever our remote classes were used. Using RMI here is clearly not orthogonal: code calling our remote classes should not have to be aware of their locations. The alternative—using CORBA—did not impose that restriction: we could write code that was unaware of our classes' locations.

When you bring in a toolkit (or even a library from other members of your team), ask yourself whether it imposes changes on your code that shouldn't be there. If an object persistence scheme is transparent, then it's orthogonal. If it requires you to create or access objects in a special way, then it's not. Keeping such details isolated from your code has the added benefit of making it easier to change vendors in the future.

The Enterprise Java Beans (EJB) system is an interesting example of orthogonality. In most transaction-oriented systems, the application code has to delineate the start and end of each transaction. With EJB, this information is expressed declaratively as metadata, outside any code. The same application code can run in different EJB transaction environments with no change. This is likely to be a model for many future environments.

Another interesting twist on orthogonality is Aspect-Oriented Programming (AOP), a research project at Xerox Parc ([KLM+97] and [URL 49]). AOP lets you express in one place behavior that would otherwise be distributed throughout your source code. For example, log messages are normally generated by sprinkling explicit calls to some log function throughout your source. With AOP, you implement logging orthogonally to the things being logged. Using the Java version of AOP, you could write a log message when entering any method of class Fred by coding the aspect:

[image: image]

If you weave this aspect into your code, trace messages will be generated. If you don't, you'll see no messages. Either way, your original source is unchanged.

Coding

Every time you write code you run the risk of reducing the orthogonality of your application. Unless you constantly monitor not just what you are doing but also the larger context of the application, you might unintentionally duplicate functionality in some other module, or express existing knowledge twice.

There are several techniques you can use to maintain orthogonality:

	Keep your code decoupled. Write shy code—modules that don't reveal anything unnecessary to other modules and that don't rely on other modules' implementations. Try the Law of Demeter [LH89], which we discuss in Decoupling and the Law of Demeter, page 138. If you need to change an object's state, get the object to do it for you. This way your code remains isolated from the other code's implementation and increases the chances that you'll remain orthogonal.

	Avoid global data. Every time your code references global data, it ties itself into the other components that share that data. Even globals that you intend only to read can lead to trouble (for example, if you suddenly need to change your code to be multithreaded). In general, your code is easier to understand and maintain if you explicitly pass any required context into your modules. In object-oriented applications, context is often passed as parameters to objects' constructors. In other code, you can create structures containing the context and pass around references to them.
The Singleton pattern in Design Patterns [GHJV95] is a way of ensuring that there is only one instance of an object of a particular class. Many people use these singleton objects as a kind of global variable (particularly in languages, such as Java, that otherwise do not support the concept of globals). Be careful with singletons—they can also lead to unnecessary linkage.

	Avoid similar functions. Often you'll come across a set of functions that all look similar—maybe they share common code at the start and end, but each has a different central algorithm. Duplicate code is a symptom of structural problems. Have a look at the Strategy pattern in Design Patterns for a better implementation.

Get into the habit of being constantly critical of your code. Look for any opportunities to reorganize it to improve its structure and orthogonality. This process is called refactoring, and it's so important that we've dedicated a section to it (see Refactoring, page 184).

Testing

An orthogonally designed and implemented system is easier to test. Because the interactions between the system's components are formalized and limited, more of the system testing can be performed at the individual module level. This is good news, because module level (or unit) testing is considerably easier to specify and perform than integration testing. In fact, we suggest that every module have its own unit test built into its code, and that these tests be performed automatically as part of the regular build process (see Code That's Easy to Test, page 189).

Building unit tests is itself an interesting test of orthogonality. What does it take to build and link a unit test? Do you have to drag in a large percentage of the rest of the system just to get a test to compile or link? If so, you've found a module that is not well decoupled from the rest of the system.

Bug fixing is also a good time to assess the orthogonality of the system as a whole. When you come across a problem, assess how localized the fix is. Do you change just one module, or are the changes scattered throughout the entire system? When you make a change, does it fix everything, or do other problems mysteriously arise? This is a good opportunity to bring automation to bear. If you use a source code control system (and you will after reading Source Code Control, page 86), tag bug fixes when you check the code back in after testing. You can then run monthly reports analyzing trends in the number of source files affected by each bug fix.

Documentation

Perhaps surprisingly, orthogonality also applies to documentation. The axes are content and presentation. With truly orthogonal documentation, you should be able to change the appearance dramatically without changing the content. Modern word processors provide style sheets and macros that help (see It's All Writing, page 248).

Living with Orthogonality

Orthogonality is closely related to the DRY principle introduced on page 27. With DRY, you're looking to minimize duplication within a system, whereas with orthogonality you reduce the interdependency among the system's components. It may be a clumsy word, but if you use the principle of orthogonality, combined closely with the DRY principle, you'll find that the systems you develop are more flexible, more understandable, and easier to debug, test, and maintain.

If you're brought into a project where people are desperately struggling to make changes, and where every change seems to cause four other things to go wrong, remember the nightmare with the helicopter. The project probably is not orthogonally designed and coded. It's time to refactor.

And, if you're a helicopter pilot, don't eat the fish....

Related sections include:

	The Evils of Duplication, page 26

	Source Code Control, page 86

	Design by Contract, page 109

	Decoupling and the Law of Demeter, page 138

	Metaprogramming, page 144

	It's Just a View, page 157

	Refactoring, page 184

	Code That's Easy to Test, page 189

	Evil Wizards, page 198

	Pragmatic Teams, page 224

	It's All Writing, page 248

Challenges

	Consider the difference between large GUI-oriented tools typically found on Windows systems and small but combinable command line utilities used at shell prompts. Which set is more orthogonal, and why? Which is easier to use for exactly the purpose for which it was intended? Which set is easier to combine with other tools to meet new challenges?

	C++ supports multiple inheritance, and Java allows a class to implement multiple interfaces. What impact does using these facilities have on orthogonality? Is there a difference in impact between using multiple inheritance and multiple interfaces? Is there a difference between using delegation and using inheritance?

Exercises

1. You are writing a class called Split, which splits input lines into fields. Which of the following two Java class signatures is the more orthogonal design?

[image: image]

2. Which will lead to a more orthogonal design: modeless or modal dialog boxes?

3. How about procedural languages versus object technology? Which results in a more orthogonal system?

9. Reversibility

Nothing is more dangerous than an idea if it's the only one you have.

• Emil-Auguste Chartier, Propos sur la religion, 1938

Engineers prefer simple, single solutions to problems. Math tests that allow you to proclaim with great confidence that x = 2 are much more comfortable than fuzzy, warm essays about the myriad causes of the French Revolution. Management tends to agree with the engineers: single, easy answers fit nicely on spreadsheets and project plans.

If only the real world would cooperate! Unfortunately, while x is 2 today, it may need to be 5 tomorrow, and 3 next week. Nothing is forever—and if you rely heavily on some fact, you can almost guarantee that it will change.

There is always more than one way to implement something, and there is usually more than one vendor available to provide a third-party product. If you go into a project hampered by the myopic notion that there is only one way to do it, you may be in for an unpleasant surprise. Many project teams have their eyes forcibly opened as the future unfolds:

"But you said we'd use database XYZ! We are 85% done coding the project, we can't change now!" the programmer protested. "Sorry, but our company decided to standardize on database PDQ instead—for all projects. It's out of my hands. We'll just have to recode. All of you will be working weekends until further notice."

Changes don't have to be that Draconian, or even that immediate. But as time goes by, and your project progresses, you may find yourself stuck in an untenable position. With every critical decision, the project team commits to a smaller target—a narrower version of reality that has fewer options.

By the time many critical decisions have been made, the target becomes so small that if it moves, or the wind changes direction, or a butterfly in Tokyo flaps its wings, you miss.[4] And you may miss by a huge amount.

[4] Take a nonlinear, or chaotic, system and apply a small change to one of its inputs. You may get a large and often unpredictable result. The clichéd butterfly flapping its wings in Tokyo could be the start of a chain of events that ends up generating a tornado in Texas. Does this sound like any projects you know?

The problem is that critical decisions aren't easily reversible.

Once you decide to use this vendor's database, or that architectural pattern, or a certain deployment model (client-server versus standalone, for instance), you are committed to a course of action that cannot be undone, except at great expense.

Reversibility

Many of the topics in this book are geared to producing flexible, adaptable software. By sticking to their recommendations—especially the DRY principle (page 26), decoupling (page 138), and use of metadata (page 144)—we don't have to make as many critical, irreversible decisions. This is a good thing, because we don't always make the best decisions the first time around. We commit to a certain technology only to discover we can't hire enough people with the necessary skills. We lock in a certain third-party vendor just before they get bought out by their competitor. Requirements, users, and hardware change faster than we can get the software developed.

Suppose you decide, early in the project, to use a relational database from vendor A. Much later, during performance testing, you discover that the database is simply too slow, but that the object database from vendor B is faster. With most conventional projects, you'd be out of luck. Most of the time, calls to third-party products are entangled throughout the code. But if you really abstracted the idea of a database out—to the point where it simply provides persistence as a service—then you have the flexibility to change horses in midstream.

Similarly, suppose the project begins as a client-server model, but then, late in the game, marketing decides that servers are too expensive for some clients, and they want a stand-alone version. How hard would that be for you? Since it's just a deployment issue, it shouldn't take more than a few days. If it would take longer, then you haven't thought about reversibility. The other direction is even more interesting. What if the stand-alone product you are making needs to be deployed in a client-server or n-tier fashion? That shouldn't be hard either.

The mistake lies in assuming that any decision is cast in stone—and in not preparing for the contingencies that might arise. Instead of carving decisions in stone, think of them more as being written in the sand at the beach. A big wave can come along and wipe them out at any time.

Tip 14

There Are No Final Decisions

Flexible Architecture

While many people try to keep their code flexible, you also need to think about maintaining flexibility in the areas of architecture, deployment, and vendor integration.

Technologies such as CORBA can help insulate portions of a project from changes in development language or platform. Is the performance of Java on that platform not up to expectations? Recode the client in C++, and nothing else needs to change. Is the rules engine in C++ not flexible enough? Switch over to a Smalltalk version. With a CORBA architecture, you have to take a hit only for the component you are replacing; the other components shouldn't be affected.

Are you developing for Unix? Which one? Do you have all of the portability concerns addressed? Are you developing for a particular version of Windows? Which one—3.1, 95, 98, NT, CE, or 2000? How hard will it be to support other versions? If you keep decisions soft and pliable, it won't be hard at all. If you have poor encapsulation, high coupling, and hard-coded logic or parameters in the code, it might be impossible.

Not sure how marketing wants to deploy the system? Think about it up front and you can support a stand-alone, client-server, or n-tier model just by changing a configuration file. We've written programs that do just that.

Normally, you can simply hide a third-party product behind a well-defined, abstract interface. In fact, we've always been able to do so on any project we've worked on. But suppose you couldn't isolate it that cleanly. What if you had to sprinkle certain statements liberally throughout the code? Put that requirement in metadata, and use some automatic mechanism, such as Aspects (see page 39) or Perl, to insert the necessary statements into the code itself. Whatever mechanism you use, make it reversible. If something is added automatically, it can be taken out automatically as well.

No one knows what the future may hold, especially not us! So enable your code to rock-n-roll: to "rock on" when it can, to roll with the punches when it must.

Related sections include:

	Decoupling and the Law of Demeter, page 138

	Metaprogramming, page 144

	It's Just a View, page 157

Challenges

	Time for a little quantum mechanics with Schrödinger's cat. Suppose you have a cat in a closed box, along with a radioactive particle. The particle has exactly a 50% chance of fissioning into two. If it does, the cat will be killed. If it doesn't, the cat will be okay. So, is the cat dead or alive? According to Schrödinger, the correct answer is both. Every time a sub-nuclear reaction takes place that has two possible outcomes, the universe is cloned. In one, the event occurred, in the other it didn't. The cat's alive in one universe, dead in another. Only when you open the box do you know which universe you are in.

No wonder coding for the future is difficult.

But think of code evolution along the same lines as a box full of Schrödinger's cats: every decision results in a different version of the future. How many possible futures can your code support? Which ones are more likely? How hard will it be to support them when the time comes?

Dare you open the box?

10. Tracer Bullets

Ready, fire, aim...

There are two ways to fire a machine gun in the dark.[5] You can find out exactly where your target is (range, elevation, and azimuth). You can determine the environmental conditions (temperature, humidity, air pressure, wind, and so on). You can determine the precise specifications of the cartridges and bullets you are using, and their interactions with the actual gun you are firing. You can then use tables or a firing computer to calculate the exact bearing and elevation of the barrel. If everything works exactly as specified, your tables are correct, and the environment doesn't change, your bullets should land close to their target.

[5] To be pedantic, there are many ways of firing a machine gun in the dark, including closing your eyes and spraying out bullets. But this is an analogy, and we're allowed to take liberties.

Or you could use tracer bullets.

Tracer bullets are loaded at intervals on the ammo belt alongside regular ammunition. When they're fired, their phosphorus ignites and leaves a pyrotechnic trail from the gun to whatever they hit. If the tracers are hitting the target, then so are the regular bullets.

Not surprisingly, tracer bullets are preferred to the labor of calculation. The feedback is immediate, and because they operate in the same environment as the real ammunition, external effects are minimized.

The analogy might be violent, but it applies to new projects, particularly when you're building something that hasn't been built before. Like the gunners, you're trying to hit a target in the dark. Because your users have never seen a system like this before, their requirements may be vague. Because you may be using algorithms, techniques, languages, or libraries you aren't familiar with, you face a large number of unknowns. And because projects take time to complete, you can pretty much guarantee the environment you're working in will change before you're done.

The classic response is to specify the system to death. Produce reams of paper itemizing every requirement, tying down every unknown, and constraining the environment. Fire the gun using dead reckoning. One big calculation up front, then shoot and hope.

Pragmatic Programmers, however, tend to prefer using tracer bullets.

Code That Glows in the Dark

Tracer bullets work because they operate in the same environment and under the same constraints as the real bullets. They get to the target fast, so the gunner gets immediate feedback. And from a practical standpoint they're a relatively cheap solution.

To get the same effect in code, we're looking for something that gets us from a requirement to some aspect of the final system quickly, visibly, and repeatably.

Tip 15

Use Tracer Bullets to Find the Target

We once undertook a complex client-server database marketing project. Part of its requirement was the ability to specify and execute temporal queries. The servers were a range of relational and specialized databases. The client GUI, written in Object Pascal, used a set of C libraries to provide an interface to the servers. The user's query was stored on the server in a Lisp-like notation before being converted to optimized SQL just prior to execution. There were many unknowns and many different environments, and no one was too sure how the GUI should behave.

This was a great opportunity to use tracer code. We developed the framework for the front end, libraries for representing the queries, and a structure for converting a stored query into a database-specific query. Then we put it all together and checked that it worked. For that initial build, all we could do was submit a query that listed all the rows in a table, but it proved that the UI could talk to the libraries, the libraries could serialize and unserialize a query, and the server could generate SQL from the result. Over the following months we gradually fleshed out this basic structure, adding new functionality by augmenting each component of the tracer code in parallel. When the UI added a new query type, the library grew and the SQL generation was made more sophisticated.

Tracer code is not disposable: you write it for keeps. It contains all the error checking, structuring, documentation, and self-checking that any piece of production code has. It simply is not fully functional. However, once you have achieved an end-to-end connection among the components of your system, you can check how close to the target you are, adjusting if necessary. Once you're on target, adding functionality is easy.

Tracer development is consistent with the idea that a project is never finished: there will always be changes required and functions to add. It is an incremental approach.

The conventional alternative is a kind of heavy engineering approach: code is divided into modules, which are coded in a vacuum. Modules are combined into subassemblies, which are then further combined, until one day you have a complete application. Only then can the application as a whole be presented to the user and tested.

The tracer code approach has many advantages:

	Users get to see something working early. If you have successfully communicated what you are doing (see Great Expectations, page 255), your users will know they are seeing something immature. They won't be disappointed by a lack of functionality; they'll be ecstatic to see some visible progress toward their system. They also get to contribute as the project progresses, increasing their buy-in. These same users will likely be the people who'll tell you how close to the target each iteration is.

	Developers build a structure to work in. The most daunting piece of paper is the one with nothing written on it. If you have worked out all the end-to-end interactions of your application, and have embodied them in code, then your team won't need to pull as much out of thin air. This makes everyone more productive, and encourages consistency.

	You have an integration platform. As the system is connected end-to-end, you have an environment to which you can add new pieces of code once they have been unit-tested. Rather than attempting a big-bang integration, you'll be integrating every day (often many times a day). The impact of each new change is more apparent, and the interactions are more limited, so debugging and testing are faster and more accurate.

	You have something to demonstrate. Project sponsors and top brass have a tendency to want to see demos at the most inconvenient times. With tracer code, you'll always have something to show them.

	You have a better feel for progress. In a tracer code development, developers tackle use cases one by one. When one is done, they move to the next. It is far easier to measure performance and to demonstrate progress to your user. Because each individual development is smaller, you avoid creating those monolithic blocks of code that are reported as 95% complete week after week.

Tracer Bullets Don't Always Hit Their Target

Tracer bullets show what you're hitting. This may not always be the target. You then adjust your aim until they're on target. That's the point.

It's the same with tracer code. You use the technique in situations where you're not 100% certain of where you're going. You shouldn't be surprised if your first couple of attempts miss: the user says "that's not what I meant," or data you need isn't available when you need it, or performance problems seem likely. Work out how to change what you've got to bring it nearer the target, and be thankful that you've used a lean development methodology. A small body of code has low inertia—it is easy and quick to change. You'll be able to gather feedback on your application and generate a new, more accurate version faster and at less cost than with any other method. And because every major application component is represented in your tracer code, your users can be confident that what they're seeing is based on reality, not just a paper specification.

Tracer Code versus Prototyping

You might think that this tracer code concept is nothing more than prototyping under an aggressive name. There is a difference. With a prototype, you're aiming to explore specific aspects of the final system. With a true prototype, you will throw away whatever you lashed together when trying out the concept, and recode it properly using the lessons you've learned.

For example, say you're producing an application that helps shippers determine how to pack odd-sized boxes into containers. Among other problems, the user interface needs to be intuitive and the algorithms you use to determine optimal packing are very complex.

You could prototype a user interface for your end users in a GUI tool. You code only enough to make the interface responsive to user actions. Once they've agreed to the layout, you might throw it away and recode it, this time with the business logic behind it, using the target language. Similarly, you might want to prototype a number of algorithms that perform the actual packing. You might code functional tests in a high-level, forgiving language such as Perl, and code low-level performance tests in something closer to the machine. In any case, once you'd made your decision, you'd start again and code the algorithms in their final environment, interfacing to the real world. This is prototyping, and it is very useful.

The tracer code approach addresses a different problem. You need to know how the application as a whole hangs together. You want to show your users how the interactions will work in practice, and you want to give your developers an architectural skeleton on which to hang code. In this case, you might construct a tracer consisting of a trivial implementation of the container packing algorithm (maybe something like first-come, first-served) and a simple but working user interface. Once you have all the components in the application plumbed together, you have a framework to show your users and your developers. Over time, you add to this framework with new functionality, completing stubbed routines. But the framework stays intact, and you know the system will continue to behave the way it did when your first tracer code was completed.

The distinction is important enough to warrant repeating. Prototyping generates disposable code. Tracer code is lean but complete, and forms part of the skeleton of the final system. Think of prototyping as the reconnaissance and intelligence gathering that takes place before a single tracer bullet is fired.

Related sections include:

	Good-Enough Software, page 9

	Prototypes and Post-it Notes, page 53

	The Specification Trap, page 217

	Great Expectations, page 255

11. Prototypes and Post-it Notes

Many different industries use prototypes to try out specific ideas; prototyping is much cheaper than full-scale production. Car makers, for example, may build many different prototypes of a new car design. Each one is designed to test a specific aspect of the car—the aerodynamics, styling, structural characteristics, and so on. Perhaps a clay model will be built for wind tunnel testing, maybe a balsa wood and duct tape model will do for the art department, and so on. Some car companies take this a step further, and now do a great deal of modeling work on the computer, reducing costs even further. In this way, risky or uncertain elements can be tried out without committing to building the real item.

We build software prototypes in the same fashion, and for the same reasons—to analyze and expose risk, and to offer chances for correction at a greatly reduced cost. Like the car makers, we can target a prototype to test one or more specific aspects of a project.

We tend to think of prototypes as code-based, but they don't always have to be. Like the car makers, we can build prototypes out of different materials. Post-it notes are great for prototyping dynamic things such as workflow and application logic. A user interface can be prototyped as a drawing on a whiteboard, as a nonfunctional mock-up drawn with a paint program, or with an interface builder.

Prototypes are designed to answer just a few questions, so they are much cheaper and faster to develop than applications that go into production. The code can ignore unimportant details—unimportant to you at the moment, but probably very important to the user later on. If you are prototyping a GUI, for instance, you can get away with incorrect results or data. On the other hand, if you're just investigating computational or performance aspects, you can get away with a pretty poor GUI, or perhaps even no GUI at all.

But if you find yourself in an environment where you cannot give up the details, then you need to ask yourself if you are really building a prototype at all. Perhaps a tracer bullet style of development would be more appropriate in this case (see Tracer Bullets, page 48).

Things to Prototype

What sorts of things might you choose to investigate with a prototype? Anything that carries risk. Anything that hasn't been tried before, or that is absolutely critical to the final system. Anything unproven, experimental, or doubtful. Anything you aren't comfortable with. You can prototype

	Architecture

	New functionality in an existing system

	Structure or contents of external data

	Third-party tools or components

	Performance issues

	User interface design

Prototyping is a learning experience. Its value lies not in the code produced, but in the lessons learned. That's really the point of prototyping.

Tip 16

Prototype to Learn

How to Use Prototypes

When building a prototype, what details can you ignore?

	Correctness. You may be able to use dummy data where appropriate.

	Completeness. The prototype may function only in a very limited sense, perhaps with only one preselected piece of input data and one menu item.

	Robustness. Error checking is likely to be incomplete or missing entirely. If you stray from the predefined path, the prototype may crash and burn in a glorious display of pyrotechnics. That's okay.

	Style. It is painful to admit this in print, but prototype code probably doesn't have much in the way of comments or documentation. You may produce reams of documentation as a result of your experience with the prototype, but comparatively very little on the prototype system itself.

Since a prototype should gloss over details, and focus in on specific aspects of the system being considered, you may want to implement prototypes using a very high-level language—higher than the rest of the project (maybe a language such as Perl, Python, or Tcl). A high-level scripting language lets you defer many details (including specifying data types) and still produce a functional (albeit incomplete or slow) piece of code.[6] If you need to prototype user interfaces, investigate tools such as Tcl/Tk, Visual Basic, Powerbuilder, or Delphi.

[6] If you are investigating absolute (instead of relative) performance, you will need to stick to a language that is close in performance to the target language.

Scripting languages work well as the "glue" to combine low-level pieces into new combinations. Under Windows, Visual Basic can glue together COM controls. More generally, you can use languages such as Perl and Python to bind together low-level C libraries—either by hand, or automatically with tools such as the freely available SWIG [URL 28]. Using this approach, you can rapidly assemble existing components into new configurations to see how things work.

Prototyping Architecture

Many prototypes are constructed to model the entire system under consideration. As opposed to tracer bullets, none of the individual modules in the prototype system need to be particularly functional. In fact, you may not even need to code in order to prototype architecture—you can prototype on a whiteboard, with Post-it notes or index cards. What you are looking for is how the system hangs together as a whole, again deferring details. Here are some specific areas you may want to look for in the architectural prototype:

	Are the responsibilities of the major components well defined and appropriate?

	Are the collaborations between major components well defined?

	Is coupling minimized?

	Can you identify potential sources of duplication?

	Are interface definitions and constraints acceptable?

	Does every module have an access path to the data it needs during execution? Does it have that access when it needs it?

This last item tends to generate the most surprises and the most valuable results from the prototyping experience.

How Not to Use Prototypes

Before you embark on any code-based prototyping, make sure that everyone understands that you are writing disposable code. Prototypes can be deceptively attractive to people who don't know that they are just prototypes. You must make it very clear that this code is disposable, incomplete, and unable to be completed.

It's easy to become misled by the apparent completeness of a demonstrated prototype, and project sponsors or management may insist on deploying the prototype (or its progeny) if you don't set the right expectations. Remind them that you can build a great prototype of a new car out of balsa wood and duct tape, but you wouldn't try to drive it in rush-hour traffic!

If you feel there is a strong possibility in your environment or culture that the purpose of prototype code may be misinterpreted, you may be better off with the tracer bullet approach. You'll end up with a solid framework on which to base future development.

When used properly, a prototype can save you huge amounts of time, money, pain, and suffering by identifying and correcting potential problem spots early in the development cycle—the time when fixing mistakes is both cheap and easy.

Related sections include:

	The Cat Ate My Source Code, page 2

	Communicate!, page 18

	Tracer Bullets, page 48

	Great Expectations, page 255

Exercises

4. Marketing would like to sit down and brainstorm a few Web-page designs with you. They are thinking of clickable image maps to take you to other pages, and so on. But they can't decide on a model for the image—maybe it's a car, or a phone, or a house. You have a list of target pages and content; they'd like to see a few prototypes. Oh, by the way, you have 15 minutes. What tools might you use?

12. Domain Languages

The limits of language are the limits of one's world.

• Ludwig Wittgenstein

Computer languages influence how you think about a problem, and how you think about communicating. Every language comes with a list of features—buzzwords such as static versus dynamic typing, early versus late binding, inheritance models (single, multiple, or none)—all of which may suggest or obscure certain solutions. Designing a solution with Lisp in mind will produce different results than a solution based on C-style thinking, and vice versa. Conversely, and we think more importantly, the language of the problem domain may also suggest a programming solution.

We always try to write code using the vocabulary of the application domain (see The Requirements Pit, page 210, where we suggest using a project glossary). In some cases, we can go to the next level and actually program using the vocabulary, syntax, and semantics—the language—of the domain.

When you listen to users of a proposed system, they might be able to tell you exactly how the system should work:

Listen for transactions defined by ABC Regulation 12.3 on a set of X.25 lines, translate them to XYZ Company's format 43B, retransmit them on the satellite uplink, and store for future analysis.

If your users have a number of such well-bounded statements, you can invent a mini-language tailored to the application domain that expresses exactly what they want:

 From X25LINE1 (Format=ABC123) {
 Put TELSTAR1 (Format=XYZ43B);
 Store DB;
 }

This language need not be executable. Initially, it could be simply a way of capturing the user's requirements—a specification. However, you may want to consider taking this a step further and actually implementing the language. Your specification has become executable code.

After you've written the application, the users give you a new requirement: transactions with negative balances shouldn't be stored, and should be sent back on the X.25 lines in the original format:

[image: image]

That was easy, wasn't it? With the proper support in place, you can program much closer to the application domain. We're not suggesting that your end users actually program in these languages. Instead, you're giving yourself a tool that lets you work closer to their domain.

Tip 17

Program Close to the Problem Domain

Whether it's a simple language to configure and control an application program, or a more complex language to specify rules or procedures, we think you should consider ways of moving your project closer to the problem domain. By coding at a higher level of abstraction, you are free to concentrate on solving domain problems, and can ignore petty implementation details.

Remember that there are many users of an application. There's the end user, who understands the business rules and the required outputs. There are also secondary users: operations staff, configuration and test managers, support and maintenance programmers, and future generations of developers. Each of these users has their own problem domain, and you can generate mini-environments and languages for all of them.

Domain-Specific Errors

If you are writing in the problem domain, you can also perform domain-specific validation, reporting problems in terms your users can understand. Take our switching application on on the facing page. Suppose the user misspelled the format name:

 From X25LINE1 (Format=AB123)

If this happened in a standard, general-purpose programming language, you might receive a standard, general-purpose error message:

 Syntax error: undeclared identifier

But with a mini-language, you would instead be able to issue an error message using the vocabulary of the domain:

 "AB123" is not a format. Known formats are ABC123,
 XYZ43B, PDQB, and 42.

Implementing a Mini-Language

At its simplest, a mini-language may be in a line-oriented, easily parsed format. In practice, we probably use this form more than any other. It can be parsed simply using switch statements, or using regular expressions in scripting languages such as Perl. The answer to Exercise 5 on page 281 shows a simple implementation in C.

You can also implement a more complex language, with a more formal syntax. The trick here is to define the syntax first using a notation such as BNF.[7] Once you have your grammar specified, it is normally trivial to convert it into the input syntax for a parser generator. C and C++ programmers have been using yacc (or its freely available implementation, bison [URL 27]) for years. These programs are documented in detail in the book Lex and Yacc [LMB92]. Java programmers can try javaCC, which can be found at [URL 26]. The answer to Exercise 7 on page 282 shows a parser written using bison. As it shows, once you know the syntax, it's really not a lot of work to write simple mini-languages.

[7] BNF, or Backus-Naur Form, lets you specify context-free grammars recursively. Any good book on compiler construction or parsing will cover BNF in (exhaustive) detail.

There's another way of implementing a mini-language: extend an existing one. For example, you could integrate application-level functionality with (say) Python [URL 9] and write something like[8]

[8] Thanks to Eric Vought for this example.

 record = X25LINE1.get(format=ABC123)
 if (record.balance < 0):
 X25LINE1.put(record, format=ABC123)
 else:
 TELSTAR1.put(record, format=XYZ43B)
 DB.store(record)

Data Languages and Imperative Languages

The languages you implement can be used in two different ways.

Data languages produce some form of data structure used by an application. These languages are often used to represent configuration information.

For example, the sendmail program is used throughout the world for routing e-mail over the Internet. It has many excellent features and benefits, which are controlled by a thousand-line configuration file, written using sendmail's own configuration language:

 Mlocal, P=/usr/bin/procmail,
 F=lsDFMAw5 :/|@qSPfhn9,
 S=10/30, R=20/40,
 T=DNS/RFC822/X-Unix,
 A=procmail -Y -a $h -d $u

Obviously, readability is not one of sendmail's strengths.

For years, Microsoft has been using a data language that can describe menus, widgets, dialog boxes, and other Windows resources. Figure 2.2 on the next page shows an excerpt from a typical resource file. This is far easer to read than the sendmail example, but it is used in exactly the same way—it is compiled to generate a data structure.

Figure 2.2. Windows .rc file

[image: image]

Imperative languages take this a step further. Here the language is actually executed, and so can contain statements, control constructs, and the like (such as the script on page 58).

You can also use your own imperative languages to ease program maintenance. For example, you may be asked to integrate information from a legacy application into your new GUI development. A common way of achieving this is by screen scraping; your application connects to the mainframe application as if it were a regular human user, issuing keystrokes and "reading" the responses it gets back. You could script the interaction using a mini-language.[9]

[9] In fact, you can buy tools that support just this kind of scripting. You can also investigate open-source packages such as Expect, which provide similar capabilities [URL 24].

[image: image]

When the application determines it is time to enter a Social Security number, it invokes the interpreter on this script, which then controls the transaction. If the interpreter is embedded within the application, the two can even share data directly (for example, via a callback mechanism).

Here you're programming in the maintenance programmer's domain. When the mainframe application changes, and the fields move around, the programmer can simply update your high-level description, rather than groveling around in the details of C code.

Stand-Alone and Embedded Languages

A mini-language doesn't have to be used directly by the application to be useful. Many times we may use a specification language to create artifacts (including metadata) that are compiled, read-in, or otherwise used by the program itself (see Metaprogramming, page 144).

For example, on page 100 we describe a system in which we used Perl to generate a large number of derivations from an original schema specification. We invented a common language to express the database schema, and then generated all the forms of it we needed—SQL, C, Web pages, XML, and others. The application didn't use the specification directly, but it relied on the output produced from it.

It is common to embed high-level imperative languages directly into your application, so that they execute when your code runs. This is clearly a powerful capability; you can change your application's behavior by changing the scripts it reads, all without compiling. This can significantly simplify maintenance in a dynamic application domain.

Easy Development or Easy Maintenance?

We've looked at several different grammars, ranging from simple line-oriented formats to more complex grammars that look like real languages. Since it takes extra effort to implement, why would you choose a more complex grammar?

The trade-off is extendibility and maintenance. While the code for parsing a "real" language may be harder to write, it will be much easier for people to understand, and to extend in the future with new features and functionality. Languages that are too simple may be easy to parse, but can be cryptic—much like the sendmail example on page 60.

Given that most applications exceed their expected lifetimes, you're probably better off biting the bullet and adopting the more complex and readable language up front. The initial effort will be repaid many times in reduced support and maintenance costs.

Related sections include:

	Metaprogramming, page 144

Challenges

	Could some of the requirements of your current project be expressed in a domain-specific language? Would it be possible to write a compiler or translator that could generate most of the code required?

	If you decide to adopt mini-languages as a way of programming closer to the problem domain, you're accepting that some effort will be required to implement them. Can you see ways in which the framework you develop for one project can be reused in others?

Exercises

5. We want to implement a mini-language to control a simple drawing package (perhaps a turtle-graphics system). The language consists of single-letter commands. Some commands are followed by a single number. For example, the following input would draw a rectangle.

[image: image]

6. Design a BNF grammar to parse a time specification. All of the following examples should be accepted.

 4pm, 7:38pm, 23:42, 3:16, 3:16am

7. Implement a parser for the BNF grammar in Exercise 6 using yacc, bison, or a similar parser-generator.

8. Implement the time parser using Perl. [Hint: Regular expressions make good parsers.]

13. Estimating

Quick! How long will it take to send War and Peace over a 56k modem line? How much disk space will you need for a million names and addresses? How long does a 1,000-byte block take to pass through a router? How many months will it take to deliver your project?

At one level, these are all meaningless questions—they are all missing information. And yet they can all be answered, as long as you are comfortable estimating. And, in the process of producing an estimate, you'll come to understand more about the world your programs inhabit.

By learning to estimate, and by developing this skill to the point where you have an intuitive feel for the magnitudes of things, you will be able to show an apparent magical ability to determine their feasibility. When someone says "we'll send the backup over an ISDN line to the central site," you'll be able to know intuitively whether this is practical. When you're coding, you'll be able to know which subsystems need optimizing and which ones can be left alone.

Tip 18

Estimate to Avoid Surprises

As a bonus, at the end of this section we'll reveal the single correct answer to give whenever anyone asks you for an estimate.

How Accurate Is Accurate Enough?

To some extent, all answers are estimates. It's just that some are more accurate than others. So the first question you have to ask yourself when someone asks you for an estimate is the context in which your answer will be taken. Do they need high accuracy, or are they looking for a ballpark figure?

	If your grandmother asks when you will arrive, she's probably wondering whether to make you lunch or dinner. On the other hand, a diver trapped underwater and running out of air is probably interested in an answer down to the second.

	What's the value of π? If you're wondering how much edging to buy to put around a circular flower bed, then "3" is probably good enough.[10] If you're in school, then maybe "22/7" is a good approximation. If you're in NASA, then maybe 12 decimal places will do.

[10] "3" is also apparently good enough if you are a legislator. In 1897, Indiana State Legislature House Bill No. 246 attempted to decree that henceforth π should have the value of "3". The Bill was tabled indefinitely at its second reading when a mathematics professor pointed out that their powers did not quite extend to passing laws of nature.

One of the interesting things about estimating is that the units you use make a difference in the interpretation of the result. If you say that something will take about 130 working days, then people will be expecting it to come in pretty close. However, if you say "Oh, about six months," then they know to look for it any time between five and seven months from now. Both numbers represent the same duration, but "130 days" probably implies a higher degree of accuracy than you feel. We recommend that you scale time estimates as follows:

[image: image]

So, if after doing all the necessary work, you decide that a project will take 125 working days (25 weeks), you might want to deliver an estimate of "about six months."

The same concepts apply to estimates of any quantity: choose the units of your answer to reflect the accuracy you intend to convey.

Where Do Estimates Come From?

All estimates are based on models of the problem. But before we get too deeply into the techniques of building models, we have to mention a basic estimating trick that always gives good answers: ask someone who's already done it. Before you get too committed to model building, cast around for someone who's been in a similar situation in the past.

See how their problem got solved. It's unlikely you'll ever find an exact match, but you'd be surprised how many times you can successfully draw on other's experiences.

Understand What's Being Asked

The first part of any estimation exercise is building an understanding of what's being asked. As well as the accuracy issues discussed above, you need to have a grasp of the scope of the domain. Often this is implicit in the question, but you need to make it a habit to think about the scope before starting to guess. Often, the scope you choose will form part of the answer you give: "Assuming there are no traffic accidents and there's gas in the car, I should be there in 20 minutes."

Build a Model of the System

This is the fun part of estimating. From your understanding of the question being asked, build a rough and ready bare-bones mental model. If you're estimating response times, your model may involve a server and some kind of arriving traffic. For a project, the model may be the steps that your organization uses during development, along with a very rough picture of how the system might be implemented.

Model building can be both creative and useful in the long term. Often, the process of building the model leads to discoveries of underlying patterns and processes that weren't apparent on the surface. You may even want to reexamine the original question: "You asked for an estimate to do X. However, it looks like Y, a variant of X, could be done in about half the time, and you lose only one feature."

Building the model introduces inaccuracies into the estimating process. This is inevitable, and also beneficial. You are trading off model simplicity for accuracy. Doubling the effort on the model may give you only a slight increase in accuracy. Your experience will tell you when to stop refining.

Break the Model into Components

Once you have a model, you can decompose it into components. You'll need to discover the mathematical rules that describe how these components interact. Sometimes a component contributes a single value that is added into the result. Some components may supply multiplying factors, while others may be more complicated (such as those that simulate the arrival of traffic at a node).

You'll find that each component will typically have parameters that affect how it contributes to the overall model. At this stage, simply identify each parameter.

Give Each Parameter a Value

Once you have the parameters broken out, you can go through and assign each one a value. You expect to introduce some errors in this step. The trick is to work out which parameters have the most impact on the result, and concentrate on getting them about right. Typically, parameters whose values are added into a result are less significant than those that are multiplied or divided. Doubling a line speed may double the amount of data received in an hour, while adding a 5 ms transit delay will have no noticeable effect.

You should have a justifiable way of calculating these critical parameters. For the queuing example, you might want to measure the actual transaction arrival rate of the existing system, or find a similar system to measure. Similarly, you could measure the current time taken to serve a request, or come up with an estimate using the techniques described in this section. In fact, you'll often find yourself basing an estimate on other subestimates. This is where your largest errors will creep in.

Calculate the Answers

Only in the simplest of cases will an estimate have a single answer. You might be happy to say "I can walk five cross-town blocks in 15 minutes." However, as the systems get more complex, you'll want to hedge your answers. Run multiple calculations, varying the values of the critical parameters, until you work out which ones really drive the model. A spreadsheet can be a big help. Then couch your answer in terms of these parameters. "The response time is roughly three quarters of a second if the system has a SCSI bus and 64MB memory, and one second with 48MB memory." (Notice how "three quarters of a second" conveys a different feeling of accuracy than 750 ms.)

During the calculation phase, you may start getting answers that seem strange. Don't be too quick to dismiss them. If your arithmetic is correct, your understanding of the problem or your model is probably wrong. This is valuable information.

Keep Track of Your Estimating Prowess

We think it's a great idea to record your estimates so you can see how close you were. If an overall estimate involved calculating subestimates, keep track of these as well. Often you'll find your estimates are pretty good—in fact, after a while, you'll come to expect this.

When an estimate turns out wrong, don't just shrug and walk away. Find out why it differed from your guess. Maybe you chose some parameters that didn't match the reality of the problem. Maybe your model was wrong. Whatever the reason, take some time to uncover what happened. If you do, your next estimate will be better.

Estimating Project Schedules

The normal rules of estimating can break down in the face of the complexities and vagaries of a sizable application development. We find that often the only way to determine the timetable for a project is by gaining experience on that same project. This needn't be a paradox if you practice incremental development, repeating the following steps.

	Check requirements

	Analyze risk

	Design, implement, integrate

	Validate with the users

Initially, you may have only a vague idea of how many iterations will be required, or how long they may be. Some methods require you to nail this down as part of the initial plan, but for all but the most trivial of projects this is a mistake. Unless you are doing an application similar to a previous one, with the same team and the same technology, you'd just be guessing.

So you complete the coding and testing of the initial functionality and mark this as the end of the first increment. Based on that experience, you can refine your initial guess on the number of iterations and what can be included in each. The refinement gets better and better each time, and confidence in the schedule grows along with it.

Tip 19

Iterate the Schedule with the Code

This may not be popular with management, who typically want a single, hard-and-fast number before the project even starts. You'll have to help them understand that the team, their productivity, and the environment will determine the schedule. By formalizing this, and refining the schedule as part of each iteration, you'll be giving them the most accurate scheduling estimates you can.

What to Say When Asked for an Estimate

You say "I'll get back to you."

You almost always get better results if you slow the process down and spend some time going through the steps we describe in this section. Estimates given at the coffee machine will (like the coffee) come back to haunt you.

Related sections include:

	Algorithm Speed, page 177

Challenges

	Start keeping a log of your estimates. For each, track how accurate you turned out to be. If your error was greater than 50%, try to find out where your estimate went wrong.

Exercises

9. You are asked "Which has a higher bandwidth: a 1Mbps communications line or a person walking between two computers with a full 4GB tape in their pocket?" What constraints will you put on your answer to ensure that the scope of your response is correct? (For example, you might say that the time taken to access the tape is ignored.)

10. So, which has the higher bandwidth?

End of sample

 To search for additional titles please go to

 http://search.overdrive.com.

OEBPS/html/graphics/p0143-03.jpg
public class Colada {
private Blender myBlender;
private Vector myStuff;

public Colada() {
myElender = new Blender():
myStuff = new Vector();

3

private void doSomething() {
myElender.addIngredients (myStuff.

b

}

OEBPS/html/graphics/p0143-04.jpg
FOI48 ProceRmltenpRci-lon(Sankaccomnt SCCt, Suts 1
Person *who;
Money amt;
amt . setValue(123.45);
acct.setBalance (amt);
who = acct.getOwner()
markiWorkflow(who->name (), SET_BALANCE);

OEBPS/html/graphics/p0298-01.jpg
/% Trancate BETing ro Jte IS8T ESxlon chera S
void string_tail(char *string, int maxlen) {
int len = strlen(string);
if (len > maxlen) {
strepy(string, string + (len - maxlen));

3
3

OEBPS/html/page-template.xpgt

	

	

	
	

	

	
	

OEBPS/html/graphics/f03fig01.gif
import java.
import java
impore java
impore java

util.Vector;

util Stack:
nec.URL;

‘emacs: M-x sort-lines

[

i

3tsort

import
inport
inport
inport

Java.awt.*;
Java.net URL

Java util.stack:
Java_util Vector:

OEBPS/html/graphics/f03fig02.gif

OEBPS/html/graphics/f03fig03.gif
struct EmployeeRow

Schema
« table employee active -7
« table employer —>- code —> struct EmployerRow

« table benefit generator ~
e struct BenefitRow

OEBPS/html/graphics/p0189-02.jpg
public class Window {

public Window(int width, int height) { ... }
public void setSize(int width, int height) { ... }
public boolean overlaps(Window w) { ... }

public int getarea() { ... }

OEBPS/html/graphics/f03fig04.gif
Add a product
'to the ‘on-order’ list
N Adaproauct
¥ ia int
¥ nane char(30]
F order_code int
H
en
< %{b
4
/* Add a product +/ (Add a product }
7+ to the ‘on-order’ list */ { to the 'on-order’ list }
typedef struct (AddProductisg - packed record
it id; sa: LongInt
char nane[301; nane array(0..29) of char:
int order_code: order_code: LongInt;

} AddProductMsg; end;

OEBPS/html/graphics/p0189-01.jpg
public class Shape {

public static final int SQUARE = 1;
public static final int CIRCLE = 2;
public static final int RIGHT_TRIANGLE = 3;

private int shapeType;
private double size;
public Shape(int shapeType, double size) {
this.shapeType = shapeType;
this.size = size;
3

// ... other methods ...

public double area() {
switch (shapeType) {

case SQUARE: return size*size;
case CIRCLE: return Math.PI*size*size/d.
case RIGHT_TRIANGLE: return size*size/2.0
¥

return 0;

Y

OEBPS/html/graphics/p0040-01.jpg
ENpaES: LTaoa 1
advise * Fred.*(..) {
static before {
Log.write("-> Entering

+ thisJoinPoint.methodName

3
3
v

OEBPS/html/graphics/p0281-03.jpg
Command *findCommand(int cmd) {
int i;

for (i = 0; i < ARRAY_SIZE(cmds); i++) {
if (cmds[i].cmd == cmd)
return cnds + i;

b

fprintf(stderr, "Unknown command ‘%c’\n", cmd);
return 0;

OEBPS/html/graphics/p0063-01.jpg
cuHZEON

kR ok

select pen 2
pen down

draw west 2em
then north 1
then east 2
then back south
et

OEBPS/html/graphics/p0195-01.jpg
pahblie cians oUn IEEEARDLA Etenos Testtaea §

public JUnitExample(final String name) {
super (name) ;
b

protected void setUp() {
// Load up test data...
testData.addELement (new Db1Pair(-4.0,0.0));
testData.addELement (new Db1Pair(0.0,0.0));
testData.addELement (new Db1Pair(64.0,8.0));
testData.addELement (new DblPair(Double MAX VALUE,
1.3407807926942587E154))
3
public void testMySqrt() {
double num, expected, result = 0.0;

Enumeration enum = testData.elements():
while (enum.hasMoreElements()) {
DblPair p = (DblPair)enum.nextElement();
nunm p.gethum();
expected = p.getExpected(
testValue(num, expected

1

3
public static Test suite() {
TestSuite suite- new TestSuite():
Suite.addTest(new JUnitExample("testhySare"));
return suite;

OEBPS/html/graphics/p0281-02.jpg
while (fgets(buff, sizeof(buff), stdin)) {
Command *cmd = findCommand(*buff);

if (emd) {
int arg =

if (cmd->hasArg & |getAvg(buff+l, &arg)) {

fprintf(stderr, “'%c' needs an argument\n”, *buff);
continue;

3

cmd->func(*buff, arg);

b
1

OEBPS/html/graphics/p0303-01.jpg
public class Shape {
private double size;

public Shape(double size) {
this.size = size;
¥
public double getSize() { return size;
¥
public class Square extends Shape {
public Square(double size) {
super(size);

3

public double area() {
double size = getSize();
return sizesize;

¥
¥

public class Circle extends Shape {

public Circle(double size) {
super(size);

b

public double area() {
double size = getSize();
return Math.PI*size*size/4.0;

3

3
7/ etc.

OEBPS/html/graphics/p0281-04.jpg
ol el L e L
return sscanf(buff, "%d", result) == 1;
v

OEBPS/html/graphics/p0303-02.jpg
public class Window {

public Window(int width, int height) { ... }
public void setSize(int width, int height) { ... }
public boolean overlaps(Window w) { ... }

public int getarea() { ... }

OEBPS/html/graphics/p0114-01.jpg
BOTLs DOURLE 38
-- Square root routine
require
sqrt_arg_must_be_positive: Current >= 0;

--- calculate square root here

((Result*Result) - Current).abs <= epsilon*Current.ab
-~ Result should be within error tolerance
amd

OEBPS/html/graphics/p0281-01.jpg
FYPSSRE. wtewert:
char
int hashrg:
void (*func)(int, int); /* routine to call */

} Command;

/* the command letter */
/* does it take an argument */

static Command cmds[] = {

i
€

<
<
€
<
<

B
o,
ol
ey
'St
W,

ARG,
NO_ARG,
NO_ARG,
ARG,
ARG,
ARG,
ARG,

doselectPen },
doPenUp 3,
doPenbown },
doPenDir 3,
doPenDir },
doPenDir },
doPenDir }

OEBPS/html/graphics/p0043-01.jpg
CEREN Splatl s
public Splitl(InputStreamReader rdr) { ...
public void readNextLine() throws TOException {
public int numFieldsO { ...
public String getField(int fieldNo) { ...

¥

class Split2 {
public Split2(String line) {
public int numFields() I
public String getField(int fieldNo) { ...
}

OEBPS/html/graphics/p0232-01.jpg
sSEEEIERS - cJava. .Claee -l

xml. java:
perl convert.pl S< > S@

.java.class:
$(JAVAC) §(JAVAC_FLAGS) $<

OEBPS/html/graphics/p0031-01.jpg
class Line {
public:

Point start;

Point end;

double length() { return start.distanceTo(end); }
}

OEBPS/html/graphics/f02fig02.gif
MAIN_MENU MENU
i
POPUP "8File”
i

MENUITEM "aNew", CM_FILENEW
MENUITEM "&Open...", CM_EILEOPEN
MENUITEM "&Save” | CM_FILESAVE
¥

¥

MY_DIALOG_BOX DIALOG 6, 15, 292, 287
STYLE DS_MODALERAME | WS_POPUP | WS_VISTBLE |
WS_CAPTION | WS_SYSMENU
CAPTION "My Dialog Box'
FONT 8, "MS Sans Serif’
€
DEFPUSHBUTTON "0K", ID_OK, 232, 16, 50, 14
PUSHBUTTON "Help”, TD_HELP, 232, 53, 50, 14
CONTROL "Edit Text Control”, ID EDITI,
'EDIT", WS_BORDER | WS_TABSTOP, 16, 16, 80, 56
CHECKBOX "Checkbox”, ID_CHECKBOX1, 153, 65, 42, 38,
BS_AUTOCHECKBOX | WS_TABSTOP

3

OEBPS/html/graphics/p0031-02.jpg
class Line {
private:
bool changed;
double length
Point start;
Point end;

public:

void setStart(Point p) { start changed

void setEnd(Point p) { end changed
Point getStart(void) { return start; }
Point getEnd(void) { return end; }

double getLength() ¢
if (changed) {
length = start.distanceTo(end);
changed = false;
¥
return lengt!
3
b

OEBPS/html/graphics/f02fig01.gif
User Interface

Database Report Business
access engine logic

Application framework

Standard C library

Operating system

OEBPS/html/graphics/U012B.gif

OEBPS/html/graphics/p0190-01.jpg
require
argument >= 0;
((Result * Result) - argument).abs <= epsilon*argument

OEBPS/html/graphics/085tab01.jpg
* ERIS Sounan ko yoer. . -

[use only basic features of
many different editors.

! have a favorite editor; but |
don't use all o ts features.

I have a favorite editor and
use it where possible.

[think you are nuts. Notepad
Is the best editor ever made.

AReN Thnk Shout. -

Pick a powerful editor and learn it
well,

Learn them. Cut down the number of
Keystrokes you need (o type.

1y to expand and use it for more
tasks than you do already.

Aslong as you are happy and produc-
tive, go for it! But if you find yoursels
subject to editor envy.” you may need
A Dk itk Sl

OEBPS/html/graphics/tex.gif
TeX

OEBPS/html/graphics/prefaceinline.gif
TPATTELY

OEBPS/html/graphics/p0289-01.jpg
Vil
+ apre anTten
* @post pop()

null // Require real data
anItem // Verify that it's
7/ on the stack

*/
public void push(final String anItem)

OEBPS/html/graphics/p0300-01.jpg
Wels printivealcqnet Nods Snoged |
char buffer(1000];

if (node) {
printTree(node->left);

getNodeAsString(node, buffer);
puts(buffer);

printTree(node->right);

OEBPS/html/graphics/orthogonality.gif
move parallel
- to X-axis

—_—

. no change
on Y-axis

OEBPS/html/graphics/p0289-02.jpg
int getSpeed()

void setSpeed(int x)
boolean isFull()
void £i11()

void empty()

OEBPS/html/graphics/p0300-02.jpg
while (node) {
if (node->left) printTree(node->left);

getNodeAsString(node, buffer);
puts(buffer);

node = node->right;

OEBPS/html/graphics/143tab01.jpg
peson L.

#include “date.h”

class Personl {

private:
Date myBirthdate;

public:
Personl(Date &birthDate;:
77 Bt

b e]
class Date;
class Person2 {
private:
Date *myBirthdate;
public:
Person2(Date birthDate):
.

OEBPS/html/graphics/p0289-03.jpg
* @invariant getSpeed() > 0

- implies isFull()
* @invariant getSpeed() >= 0 &
N getspeed() < 10

/

// Don’t run empty

// Range check

OEBPS/html/graphics/p0134-02.jpg
public void doSomething() throws IOException {

File tmpFile = new File(tmpFileName);
FileWriter tmp = new Fileliriter(tmpFile);
try {

// do some work

3
Finally {
tmpTile.delete();
¥
3

OEBPS/html/graphics/p0134-01.jpg
Wecls Acsome ihingaiwolad L
auto_ptr<Node> p (new Node);

// Access the Node as p->...

// Node automatically deleted at end
3

OEBPS/html/graphics/f01fig01.gif
‘What do you want them to learn?
What is their interest in what you've got to say?
How sophisticated are they?
How much detail do they want?
Whom do you want to own the Information?
How can you motivate them to listen to you?

OEBPS/html/graphics/p0155-01.jpg
char bufl[BUFSIZ];

char buf2[BUFSIZ];

char *p, “q;

strepy(bufl, “this is a test”

strepy(buf2, "this ain't gonna work");

p = streok(bufl, " "

a = streok(buf2, " ");

while (p & @) {
printf("%s %s\n", p, @);
P = strtok(NULL, " ");
@ = strtok(NULL, " ");

OEBPS/html/graphics/013211917X.jpg
. The !
Pragmatlc
Programmer

Andrew Hunt
David Thomas

OEBPS/html/graphics/p0183-01.jpg
POLG PEERELTERLCOREL Noue Toonag
char buffer[1000];

if (node) {
printTree(node->left);

getNodeAsString(node, buffer);
puts(buffer);

printTree(node->right);

OEBPS/html/graphics/p0296-01.jpg
public interface Flight {
// Return false if flight full.
public boolean addPassenger(Passenger p);
public void addToWaitList(Passenger p);
public int getFlightCapacity();
public int getNumPassengers();

OEBPS/html/graphics/p0061-02.jpg
SHORhe proEpE S
type "%s" social security_number
type enter

waitfor keyboardunlock

if text_at(10,14) is '
if text_at(10,14) is °
¥ ete

NVALID SSN' return bad_ssn
DUPLICATE SSN" return dup_ssn

OEBPS/html/graphics/p0250-01.jpg
VA
* Find the peak (highest) value within a specified date

*+ range of samples.

*+ Gparam aRange Range of dates to search for data.
* @param aThreshold Minimum value to consider.

+ @return the value, or <code>null</code> if no value found
. greater than or equal to the threshold.

.

public Sample findPeak(DateRange aRange, double aThreshold);

OEBPS/html/graphics/p0193-01.jpg
#1fdef __TEST _
int main(int arge, char **argv)
«

arge--; argvt; // skip program name
if (arge < 2) { // do standard tests if no args
testValue(-4.0, 0.0);
testValue(0.0, 0.0);
testValue(2.0, 1.4142135624);
testValue(64.0, 8.0);
testValue(1.0e7, 3162.2776602);
3
else { // else use args

double num, expected;
while (arge >= 2) {
nun = atof(argv(01);
expected = atof(argv[1]);
testValue(nun, expected)
2;

OEBPS/html/graphics/p0080-01.jpg
grep 'Almport ' *.java |
sed -e's/.*import *//' -e's/i.*S//' |
ROt i1 STiet

OEBPS/html/graphics/p0305-01.jpg
public static void main(String args(]) {

// Create the blender to test
dbe_ex blender = new dbc_ex();

// And test it according to the string on standard input

try {

int a;

char c;

while ((a = System.in.read()) != -1) {
© = (char)a;
4f (Character.isWhitespace(c)) {

continue;

¥

4f (Character.isDigit(c)) {
blender. setSpeed(Character.digit(c, 10));
3
else {
switch () {
case 'F': blender.fill();

break;
case "E': blender.empty();

break;
case 's': System.out.println("SPEED: “ +

blender.getSpeed());

break;
case '£': System.out.println("FULL " +
blender.isFull());
break;
default: throw new RuntimeException(
“Unknown Test directive”);

¥
¥
3

3
catch (java.io.IOException) {

System.err.printin("Test jig failed: " + e.getMessage());
3
System.err.println(“Completed blending\n"):
System.exit(0);

OEBPS/html/graphics/f06fig01.gif
runtime

0(C™): traveling salesman O(n lg(n)): heapsort

i
|
'
I
1
1
1
'
I
'
I
'
I
'
|
'
i

|
B

o)
O(lg(n))

O(n)
O(n lg(n))

ofn?)
o)
o(em

O(n?): selection sort

O(n): scquental search

O(1): arvay dccdss

‘Some common 0() notations
Constant (access element in array, simple
statements)

Logarithmic (binary search) [The notation lg(n)
is shorthand for loga(n)]

Linear (sequential search)

Worse than linear, but not much worse (aver-
age runtime of quicksort, heapsort)

Square law (selection and insertion sorts)
Cubic (multiplication of 2 n x n matrices)

Exponential (traveling salesman problem, set
partitioning)

OEBPS/html/graphics/p0129-01.jpg
void readCustomer(const char *fName, Customer *cRec) {

cFile = fopen(fName, "r+")
fread(cRec, sizeof(*cRec), 1, cFile);

¥

void writeCustomer(Customer *cRec) {
rewind(cFile);
furite(cRec, sizeof(*cRec), 1, cFile);
felose(cFile);

¥

void updateCustomer(const char *fName, double newalance) {
Customer cRec;
readCustomer(fName, &cRec);
cRec.balance = newBalanc
writeCustomer(&cRec) ;

OEBPS/html/graphics/p0177-01.jpg
pahiic SERtic ¥ald cebDUgLSITIng 8, throws LOSxcepllon {
FileWriter fw - new FileWriter(“debug.log”, true);
fu.write(s);
£u.flush():
fu.close():

OEBPS/html/graphics/p0293-03.jpg
FOIA BhAWER LancelEsnkAccount 1) 1
b.printBalance();
3

OEBPS/html/graphics/p0121-01.jpg
#define CHECK(LINE, EXPECTED) \
{ int rc = LINE; \
if (rc |= EXPECTED) \

ut_abort(__FILE_, _LINE_, #LINE, rc, EXPECTED); }

void ut_abort(char *file, int 1n, char *line, int rc, int exp) {
fprintf(stderr, "¥s line %d\n'%s’: expected %d, got %d\n",
file, 1n, line, exp, re);

exit(1);
3

OEBPS/html/graphics/p0293-02.jpg
PEBELE ol showbS ancallenkhcceunt acets 1
Money amt = acct.getBalance();
printToScreen(ant .printFormat());

¥

OEBPS/html/graphics/a.gif

OEBPS/html/graphics/p0188-01.jpg
AT (Sikia
rate = TX_RATE;
amt = base * TX_RATI
cale = 2*basis(amt) + extra(amt)*1.05;
}
else if ((state == OHIO) || (state
rate = (state == OHIO) 7 OH_RATE :
amt = base * rate;
calc = 2*basis(amt) + extra(amt)*1.05;
if (state == OHIO)
points

SERAS) %

MAINE)) {
ME_RATE;

}
else {
rate
amt
calc = 2¢basis(amt) + extra(amt)*1.05;
}

OEBPS/html/graphics/p0058-01.jpg
From SEhINEL (SOTEMRL=ARCISR) 1
if (ABC123.balance < 0) {
Put X25LINEL (Format=ABC123);
¥
else {
Put TELSTARL (Format=XYZ43B)
Store DB;
3
}

OEBPS/html/graphics/p0302-01.jpg
Tate_loakupfetatal;
base * rate;
2*basis(amt) + extraamt)*1.05;

if (state == OHIO)
points

OEBPS/html/graphics/p0302-02.jpg
public class Shape {

public static final int SQUARE 1;
public static final int CIRCLE 2;
public static final int RIGHT_TRIANGLE = 3;
private int shapeType;

private double size;

public Shape(int shapeType. double size) {

this.shapeType = shapeType;
this.size size;

¥

Va other methods ...

public double area() {
switch (shapeType) {

case SQUARE: return size*size;

case CIRCLE: return Math.PI*size*size/4.0;
case RIGHT_TRIANGLE: return size'size/2.0;
3

return 0;

OEBPS/html/graphics/p0132-01.jpg
void doSomething(veid) {
Node *n = new Node;

try {
// do something

¥

catch (...) {
delete n;
throw;

¥

delete n;

OEBPS/html/graphics/p0284-03.jpg
const char* NAME_names(] = {
“state_a”,
“state_b",

OEBPS/html/graphics/p0245-01.jpg
Ak FaSELint A, iot B) 1
Teturn a / (a + b

}

OEBPS/html/graphics/p0284-01.jpg
state_a
state_b

OEBPS/html/graphics/p0284-02.jpg
extern const char*® NAME names([];
typedef enum {

state_a,

state_b

1 NAME

OEBPS/html/graphics/p0287-02.jpg
#!/usr/bin/perl -w
package CG:
use strict;
Code generator for 'Pascal’ (see cg base.pl)

sub blankLine() { print "\n"i }
sub comment() { primt "{S_[0] Ma"i }
sub startMsg() { print "S_[0] - packed record\n"; }
sub endMsg() { print end;\n\n"i }
sub arrayType() {
my (Sname, Stype, Ssize) = a_;
ssize-;
print " Sname: array[0..Ssize] of Stypei\n";
¥
sub simpleType() {
my (Sname, Stype) = @
print " Sname: Styp
¥

OEBPS/html/graphics/p0287-01.jpg
#!/usr/bin/perl
package CG;
use strict;
Code generator for 'C’ (see cg_base.pl)

sub blankLine() { print "\n"i }
sub comment() { print "/*s_[0] */\n"; }
sub startMsg() { print “typedef struct {\n"; }
sub endMsg() { primt "} $_[0];\m\n"; }
sub arrayType() {
my (Sname, Stype, Ssize) = a_;
print " Stype Sname\(Ssize];\n";
¥
sub simpleType() {
my (Sname, Stype) =
print " Stype sname
¥

OEBPS/html/graphics/p0231-01.jpg
MIN HOUR DAY MONTH DAYOFWEEK COMMAND
¥

- /projects/Manhattan/bin/nightly
153 v v o1 /usr/local/bin/backup
* * /home/accounting/expense_reports

OEBPS/html/graphics/079tab02.jpg
Shell

GUL.....

zip archive.zip *.h *.c —or=
tar cvf archive.tar *.h *
Bring up a ZIP utility (such as the shareware WinZip
[URL 41], select “Create New Archive,” enter its name,
select the source directory in the add dialog, set the filter
to " .c”, click "Add,” set the filter to ** 1", click “Add,’
B e e

OEBPS/html/graphics/p0126-02.jpg
PEBLic Woid chen peaowil) thoows B1iootfoundExcaps lon 1

// This may throw FileNotFoundException.
ipstream = new FileInputStream("/etc/passwd");

Va

OEBPS/html/graphics/079tab01.jpg
Shell

GUI. .

find . -name "*.c’ -newer Makefile -print

Open the Explorer, navigate to the correct directory,
click on the Makefile, and note the modification time.
Then bring up Tools/Find, and enter *.c for the file
specification. Select the date tab, and enter the date you
noted for the Makefile in the first date field. Then hit OK.

OEBPS/html/graphics/p0030-01.jpg
class Line {
public:
Point start;
Point end
double length;
3

OEBPS/html/graphics/079tab04.jpg
shell

GUL.....

find . -name "¢.java’ -mtime +7 -print |
xargs grep 'java.awt’

Load each file in the list from the previous example

into an editor and search for the string “java.awt”, Write

o i e of vadh 1l conitabihis & witeh.

OEBPS/html/graphics/079tab03.jpg
Shell

Gul

B S L e T e o

Click and navigate to *Find files, " click the “Named" field
and type in “* Java’, select the “Date Modified" tab. Then
select “Between.” Click on the starting date and type in
the starting date of the beginning of the project. Click on
the ending date and type in the date of a week ago today
{be sure to have a calendar handy). Click on “Find Now.”

OEBPS/html/graphics/p0126-01.jpg
tetoone = OK:
try {
socket . read(name) ;
process(name);
socket.read(address);
processiddress (address) ;
socket.read(telNo);
// ete, ete
¥
catch (IOException e) {
retcode = BAD_READ;
Logger.log("Error reading individual:
¥

Tetuin retcod

+ e.getMessage());

OEBPS/html/graphics/p0143-02.jpg
pBLLE Wald. ahowkialsnoa (Bedkiocount acot)
Money amt = acct.getBalance();
printToScreen(ant .printFormat());

}

OEBPS/html/graphics/p0290-01.jpg
VA

* Gpre Math.abs(getSpeed() - x) <= 1 // Only change by one

* Gpre x >= 0 && x < 10
*+ @post getSpeed() == x
*/
public void setSpeed(final int x)
yoe
+ @pre IisFull()
*+ @post 1sFull()
*/
void £ill()
Joe
* @pre isFull()
+ @post 1isFull()
K4
void empty()

// Range check
// Homor requested speed

// Don’t £ill it twice
// Ensure it was done

// Don’t empty it twice
// Ensure it was done

OEBPS/html/graphics/p0191-02.jpg
EeRENaLuaL -0, #.0J):
testValue(0.0, 0.0);
testValue(2.0, 1.4142135624);
testValue(64.0, 8.0);
testValue(l.0e7, 3162.2776602):

OEBPS/html/graphics/p0191-01.jpg
PRBELE ¥oid Tast¥alualaounls rm, Ganhia expacted)
double result = 0.0;

ery { // We may throw a
Tesult = mySqre(num); // precondition exception

3
catch (Throwable e) {

if (num < 0.0) // If input is < 0, then
return; // we're expecting the
else 7/ exception, otherwise
assert(false); 7/ force a test failure
3

assert(Math. abs(expected-result) < epsilon‘expected);

OEBPS/html/graphics/arrow.gif

OEBPS/html/graphics/p0110-01.jpg
* @invariant forall Node n in elements() |

* n.prev() I= null
B implies,
B n.value().conpareTo(n.prev().value()) > 0
*/

public class dbe_list {
e

false
true

* @pre contains(aNode)
* @post contains(aNode)
/

public void insertNode(final Node aNode) {
7/

OEBPS/html/graphics/p0133-02.jpg
¢/ NERDPAT OGNSR LOE NOoGd TNACRIZTEaN
class NodeResource {
Node *n;
public:
NodeResource() { n = mew Node; }
~NodeResource() { delete n; }
Node *operator->() { return n; }
b
void doSomething?(veid) {
NodeResource n;

try {
7/ do something
¥
catch (...) {
throw;
3
3

OEBPS/html/graphics/p0156-01.jpg
SETIEg TORMLEAT AL

D StringTokanizar(this 16 & Taat’)i
StringTokenizer st2 = new StringTokenizer(“this test will work

while (st1.hasMoreTokens() && st2.hasMoreTokens()) {
System.out.printin(stl.nextToken());
System.out.println(st2.nextToken());

3

OEBPS/html/graphics/p0288-01.jpg
-- Add a unique item to a doubly linked list,
-~ and return the newly created NODE.

add_item (item : STRING) : NODE is
require
item /= Void
find_item(item) = Void

deferred
ensure

Tesult.next.previous = result
result.previous.next = result
find_item(item) = result

-

‘/=' is 'not equal’.
Must be unique
Abstract base class.

Check the newly
added node's links.
Should find it.

OEBPS/html/graphics/latex.gif
[£EX

OEBPS/html/graphics/p0288-02.jpg
private int datall:

Vs
* @post datalindex-1] < datalindex] &&
. datalindex] - aValue
+/
public Node insertNumber (fimal int aValue)
¢

int index - findPlaceTolnsert(aValue);

OEBPS/html/graphics/p0118-01.jpg
-- Add a unique item to a doubly linked list,
-~ and return the newly created NODE.

add_item (item : STRING) : NODE is
require
item /= Void
find_item(item) = Void

deferred
ensure

result.next.previous = result
result.previous.next = result
find_item(item) = result
end

is 'not equal’.
Must be unique
Abstract base class.

Check the newly
added node's links.
Should find it.

OEBPS/html/graphics/p0285-02.jpg
etest.c etest.h: etest.inc enumerated.pl
perl enumerated.pl etest.inc

OEBPS/html/graphics/p0133-01.jpg
¥oaa dadomakhingllvalal 1
Node n;

try {
// do something
3
catch (...) {
throw;
b3
3

OEBPS/html/graphics/p0130-02.jpg
vola updateCustomer(const char *IName, double newBalance) {
Customer cRec;
readCustomer(fName, &cRec);

if (newBalance >= 0.0) {
cRec.balance = newBalanc

writeCustomer(&cRec) ;

¥

else
folose(cFile);

OEBPS/html/graphics/zero.gif

OEBPS/html/graphics/p0130-01.jpg
void updateCustomer(const char *fName, double newBalance) {
Customer cRec:
readCustomer(fName, &cRec);

if (newBalance >= 0.0) {
cRec.balance = newBalance;
writeCustomer(&cRee) ;
3
3

OEBPS/html/graphics/p0127-01.jpg
public boolean open_user_file(String name)
throws FileNotFoundException {

File £ = new File(name);

if (1f.exists() {
return false;
3

ipstream = new FileInputStream(f);
return true;

OEBPS/html/graphics/p0291-01.jpg
package com.pragprog.util;

import java.lang.System; // for exit()
import java.lang.Thread; // for dumpstack()

public class Assert {

/** Write a message, print a stack trace and exit if
* our parameter is false.
</
public static void TEST(boolean condition) {
if (lcondition) {
System.out.println("
Thread. dumpStack();
System.exit(1);

3

Assertion Failed

b3

// Testbed. If our argument is 'okay’, try an assertion that
// succeeds, if 'fail' try one that fails
public static final void main(String args(]) {

if (args[0].compareTo("okay”) == 0) {

TEST(1L == 1);

3

else if (args[0].compareTo("fail”) == 0) {
TEST(1L == 2);

¥

else ¢
throw new RuntimeException(“Bad argument”);

¥

3
1

OEBPS/html/graphics/1917X.jpg
2

OEBPS/html/graphics/p0299-01.jpg
public static void debug(String s) throws IOException {
FileWriter fw = new FileWriter('debug.log", true);
fu.write(s);
fu. flush()
fu.close();

OEBPS/html/graphics/puzzles.gif

OEBPS/html/graphics/p0304-01.jpg
public abstract class Shape {
s
public abstract boolean overlaps(Shape s);
public abstract int getarea();
¥
public class Window {
private Shape shape;
public Window(Shape shape) {
this.shape = shape;
¥
public void setShape(Shape shape) {
this.shape = shape;
3
public boolean overlaps(Window w) {
return shape.overlaps(u.shape);
3

public int getArea() {
return shape.getArea();
¥
3

OEBPS/html/graphics/293tab01.jpg
bt
#include “date.h”
class Personl {
privat
Date myBirthdate;
public:
Personl(Date birthDate);
Py

PEBRESL
class Date;
class Person2 {
private:
Date *myBirthdate:
public:
Person2(Date &birthDate:
i

OEBPS/html/graphics/check.jpg

OEBPS/html/graphics/p0282-02.jpg
spec:

hour:

spec END_TOKEN

{ £ (S1 >= 24°60) yyerror(“Time is too large");
printf("%d minutes past midnight\n”, S1);
exit(0);

3

hour ':' minute
{88 = S1+83;

3

hour ':' minute ampm

{ if ($1 > 11760) yyerror('Hour out of range")
$$ = 1+ 83 + $4;

3

hour ampm

{ if ($1 > 11°60) yyerror("
5§ = s1+ 823

b3

hour_num
£ if (51 > 23) yyerror("Hour out of range");
5§ = s1 603

OEBPS/html/graphics/p0282-01.jpg
<time> hour> <ampm> |
<hour> : <minute> <ampm> |
<hour> : <minute>

<ampm> :=am |pm

<hour > digit> |
<digit> <digit>

<minute> digit> <digit>

<digit>

|1/2|3|4|5/6|7|8|9

OEBPS/html/graphics/p0285-01.jpg
MY SOODELSs
wy Sname = <;
die "Invalid format - missing name” unless defined(Sname);
chomp $name;
Read in the rest of the file
while (<)
chomp;
S/NS /i 8/\s*5/,
die “Invalid line
push aconsts, §_;
y
Now generate the file
open(HDR, ">Sname.h”) or die "Can’t open Sname.h: $!";
open(SRC, “>Sname.c”) or die “Can’t open Suame.c: S
my Suc_name = uc($name);
wy Sarray_name = Suc_name . "_names’;

print HDR “/* File generated automatically - do not edit */\n"
print HDR "extern const char *S {array_name}[];":

print HDR "typedef enum {\n ";

print HDR join ",\n ", Gconsts;
print HDR “\n} Suc_name;\n\n";

5_" unless /A(\w+)S/;

print SRC "/* File generated automatically - do not edit */\n":
print SRC "const char *s (array_name}(] = {\n \"";

print SRC join “\",\n \"*, Geonsts;

print SRC “\“\n}:\n";

close(SRC) ;

close(HDR) -

OEBPS/html/graphics/p0176-01.jpg
/* Truncate string to its last maxlen chars

void string tail(char “string, int maxlen) {
int len = strlen(string);
if (len > maxlen) {
strepy(string, string + (len - maxlen));

3
1

OEBPS/html/graphics/f07fig01.gif
A. CHARACTERISTIC INFORMATION
- Goal in context
- Scope
- Level
- Preconditions
- Success end condition
-~ Failed end condition
- Primary actor
- Trigger
B. MAIN SUCCESS SCENARIO
C. EXTENSIONS
D. VARIATIONS
E. RELATED INFORMATION
- Priority
- Performance target
- Frequency
- Superordinate use case
- Subordinate use cases.
- Channel to primary actor
- Secondary actors
- Channel to secondary actors
F. SCHEDULE
G. OPEN ISSUES

OEBPS/html/graphics/f07fig02.gif
USE CASE 5: BUY GOODS.

A, CHARACTERISTIC INFORMATION
"+ Goal in context: Buyer Issues request dircctly to our company, cxpects
goods shipped and (o be billed.
Scope: Company
Level: Summary
Preconditions: We know buyer. their address, etc.
Success end condition Buyer has goods, we have moncy fo the goods.
Failed end condition: We have ot sen the goods, buyer has not sent.
the money.
Primary actor: Buyer. any agent (or computer) acting for the customer
+ Trigger: Purchase request comes in.
B. MAIN SUCCESS SCENARIO
Buyer calls in with a purchase request.
Company captures buyer’s name, address, requested goods, etc.
Company gives buyer information on goods, prices, delvery dates, etc
Buyer signs for order.
Company creates order, ships order to buyer.
Company ships involce (o buyer:
Buyer pays nvoice.
C. EXTENSIONS
3a. Company is out of one of the ordered items: Renegotiate order
4a. Buyer pays directly with credit card: Take payment by credi card (use
case 44).
7a. Buyer returns goods: Handle returned goods (use case 105).
D. VARIATIONS
1. Buyer may use phone in. fax in, Web order form, electronie interchane.
7. Buyer may pay by cash. money order, check, or credit card.
E. RELATED INFORMATION
Priority: Top
Performance target: 5 minutes for order, 45 days untl paid
Frequency: 200/day
Superordinate use case: Manage customer relationship (use case).
Subordinate use cases: Create order (15). Take payment by credit card
44). Handle returned goods (105).
+ Channel to primary actor: May be phone, file, or interactive
+ Secondary actors: Credit card company, bank. shipping service
F. SCHEDULE
+ Due date: Relcase 1.0
G. OPEN ISSUES
« What happens If we have part of the order?
« What happens if credit card is stolen?

RET IS

OEBPS/html/graphics/f07fig03.gif
—@

OEBPS/html/graphics/p0279-01.jpg
Cluss splitl {
public Splitl(InputStreamReader rdr) { ...
public void readNextLine() throws TOException {
public int numFields() {
public String getPield(int fieldNo) {

}

class Split2 {
public Split2(String line) {
public int numFields() I
public String getPield(int fieldNo) {
}

OEBPS/html/graphics/p0296-02.jpg
public interface Passenger {
public void waitListAvailable();

¥

public interface Flight {
public void addWaitListListener(Passenger p);
public void removeWaitListListener(Passenger p);
public void addFulllistener(Fulllistener b
public void removeFullListener(FullListener b);

¥

public interface BigReport extends Fulllistemer {
public void FlightPullAlert(Flight £);
3}

OEBPS/html/graphics/send.gif

OEBPS/html/graphics/p0139-01.jpg
paRiiE wald plotDataitats elate, Se sotion afeieatlon)
TimeZone tz
aSelection.getRecorder() . getLocation() . getTimeZone(

OEBPS/html/graphics/p0164-01.jpg
public interface Flight {
// Return false if flight full.

public
public
public
public

boolean addPassenger(Passenger p);
void addToWaitList(Passenger p);

int getFlightCapacity();
int getNumPassengers():

OEBPS/html/graphics/p0301-02.jpg
if (state
rate = TX_RATE;
amt = base * TX_RATE;
calc = 2*basis(amt) + extra(amt)*1.05;
y
clse if ((state == OHIO) || (state
rate = (state == OHIO) ? OH_RATE :
amt = base * rate;
calc = 2*basis(amt) + extra(amt)*1.0
if (state == OHIO)

TEXAS) {

MAINE)) {
ME_RATE

points
}
else {
Tate = 1;
amt = base;

calc = 2*basis(amt) + extra(amt)*1.0

}

OEBPS/html/graphics/p0301-01.jpg
oid. printizaslzavaralconst Noda Suode, Ches SUalifers
if (node) {
printTreePrivate (node->left, buffer);
getNodeAsString(node, buffer);
puts(buffer);
printTreePrivate (node->right, buffer);
3
}
void newPrintTree(const Node *node) {
char buffer(10001;
printTreePrivate(node, buffer);
3

OEBPS/html/graphics/p0283-02.jpg
$_ = shifr;

/AC\d\a?) Cam | pm)$/ && doTime(S1, 0, §2, 12
/AC\d\a?) : (\d\d) (am|pm)$/ && doTime(S1, §2, §3, 12
/AO\E\A?) s (\a\)S/ && doTime(S1, §2, 0, 24);
aie "Invalid time S_\n

#

doTime (hour, min, ampm, maxHour)

#

sub doTime(§sS5) {
my (Shour, Smin, Soffset, SmaxHour) = G
aie "Invalid hour: Shour” if (Shour
Shour += 12 if (Soffset eq “pun");
print Shour*60 + Smin, " minutes past midnight\n':
exit(0);

SmaxHour) ;

OEBPS/html/graphics/p0139-02.jpg
PUBESE Wi RELOLUMLEL ELA RUALE, LEmsong-atz) 3

¥
STailEtat shmelate. NOBalelactinn RerTinsTonaly)

OEBPS/html/graphics/p0131-01.jpg
void readCustomer(FILE *cFile, Customer *cRec) {
fread(cRec, sizeof(*cRec), 1, cFile);

¥

void writeCustomer(FILE *cFile, Customer *cRec) {
rewind(cFile);
furite(cRec, sizeof(*cRec), 1, cFile);

¥

void updateCustomer(const char *fName, double newalance) {
FILE *cFile
Customer cRec;

cFile = fopen(fName, "r+"); 7/ =

readCustomer(cFile, &cRec); 7

if (newBalance >= 0.0) { 7
cRec.balance = newBalance; Va
writeCustomer(cFile, &cRec) Va

3 Va

felose(cFile); s

OEBPS/html/graphics/p0116-01.jpg
i Al ot L
int i = 1;
// Loop invariant: m = max(arr(0:i-1])
while (i < arr.length) {

m = Math.max(m, arr(i]);

i=d+1;

3

Vi EESRPLS BRELEON WL, SOngEl >

OEBPS/html/graphics/p0283-01.jpg
minute: DIGIT DIGIT
{88 = 51410 + $2;
if (§8 > 59) yyerror(“minute out of range"

i

ampm: A AM_MINS; }

(B PM_MINS; }
hour_num: DIGIT 51; 3

| DIGIT DIGIT = $1410 + $2; }

OEBPS/html/graphics/p0286-02.jpg
TARRaing lenguRgn

require "Slang” or die "Couldn’t load Slang';
Read and parse the file
my $name;
while (<) {
chomp;
if (/A\s*S/)
elsif (/A\#(.")/)
elsif (/AM\s*(.+)/) { CG::startMsg(S1); Sname = $1; }
elsif (/AE/) { CG::endMsg(Sname); }
elsif (/AF\s*(\Wo\s+(\u+)§/)
£ CG::isimpleType(S1,52); }
elsif (/AF\s* (\wH)\s+(\wi)\[(\aH\15/)
€ CG: :arrayType($1,52,53

lankLine(); }
omment (51); }

i}
else {
die "Invalid line: 5_";
3
3

OEBPS/html/graphics/p0286-01.jpg
my $dir = shift or die "Missing directory”
for my $file (glob("Sdir/*.pl") {
open(TP, "Sfile") or die "Opening Sfile: 5!";
undef §. # Turn off input record separator

my Scontent = <IP>; # read whole file as one string.
close(1P);

if (Scontent |- /Ause strict/m) {

rename Sfile, "Sfile.bak” or die "Renaming Sfile: §!";
open(0P, “>sfile") or die "Creating Sfile: $1"

Put 'use strict’
doesn’t start
Scontent =~ s/A(7!#)/\nuse strict;\n\n/m;
print 0P Scontent;

close(0P);

print “Updated S$file\n";

on first line that

b3
else {
print "Sfile already strict\n"

3
3

OEBPS/html/graphics/undo.gif

OEBPS/html/graphics/backspace.gif
BACKSPACE

OEBPS/html/graphics/f05fig01.gif
class Demeter {
private:

A *a; The Law of Demeter for functions
piot, funcO; states that any method of an
put /“-‘ : object should call only methods

7:sn
Void example(B& b); belonging to:

void Demete:
<
int £ = [funcQ; Je— itself

example(B& b) {

B invert O po e e method

a = new AQ:
a->setActive() ; J«—— any objects it created

any directly held component
objects

c.printQ;

OEBPS/html/graphics/f05fig02.gif
GWIW PRG-I M;:l*;")

L i

—_— —_
* o) e) G)
—_‘_

i i

-
™ umbrellas

0
Open
> blender

'l

(2. serve

OEBPS/html/graphics/t0167-01.gif
Name

Function

read
write
take

notify

Search for and retrieve data from the space.
Put an item into the space.

Similar to read, but removes the item from
the space as well.

Set up a notification to occur whenever an
object is written that matches the template.

OEBPS/html/graphics/f05fig05.gif
Score
collectr [y, v tees
- \ generator
scoreé |~ N
> Batter \ .
stats [~ P
Display | Web page
fiter formatter
- >
Gonitons
> | rete-
Tiva |* prompter

model = viewer

OEBPS/html/graphics/f05fig06.gif
Photos
Kings men Gambling debts~""
Eyewitnesses Graffiti Wife's alibi

LN

Detective 1 Detective 2 Detective 3

OEBPS/html/graphics/f05fig03.gif
task #1

Input
task #2

App.
Agon logie #1 Database
ot App. “Cee
logic #n

OEBPS/html/graphics/f05fig04.gif
‘Subscriber Subscriber
one two

T T
| register |
| notify* |
| |

| | rogister __|

| notify* | |
|

| | noify”

|

|

rebeewe

|
|
unsubscribe | |
|
|

Publisher

OEBPS/html/graphics/p0125-01.jpg
TeEnone = ks

if (socket.read(name)
retcode = BAD_READ;

¥

else {
processName (name) ;
if (socket.read(address) != OK) {

retcode = BAD_READ;

oK) ¢

3
else {
processiddress(address) ;
if (socket.read(telNo) = OK) {
retcode = BAD_READ;
1
else ¢
// ete, etc...
3
3

¥

Pt Tatoodar

OEBPS/html/graphics/p0306-01.jpg
#1/bin/sh
CMD="java dbc.dbc_ex"
£ailcoun
expect_okay() {
if echo "$*" | $CMD #>/dev/mull 2>&1
then

else
echo "FATLED! §+"
failcount='expr Sfailcount + 1'
£
y
expect_fail() {
if echo "S$*" | $OMD >/dev/mull 2>&1
‘then
echo "FATLED! (Should have failed): §*"
failcount='expr $failcount + 1'

£1
y
report() {
if [Sfailcount -gt 0]
then
echo -e “\n\n*** FATLED Sfailcount TESTS\n"

exit 1 # In case we are part of something larger
else

exit 0 # In case we are part of something larger
1

y

#

start the tests

expect_okay F123456789876543210E # Should run thru
expect_fail FS # Fails, speed too high
expect_fail 1 # Fails, empty

expect_fail F10E1 # Fails, empty

expect_fail F1238 # Fails, skips

expect_okay FE # Never turn on

expect_fail FIE # Emptying while running
expect_okay F10E # Should be ok

report # Report results

OEBPS/html/graphics/p0280-01.jpg
SO e

select pen 2
pen down

draw west 2em
then north 1

then east 2

then back south
¥ Dot oo

OEBPS/html/graphics/bfig01.gif
A solution to the Four Posts
puzzle posed on page 213.

OEBPS/html/graphics/p0119-01.jpg
private int data[];

Jie
* Gpost data[index-1] < data[index] &
* data[index] == aValue
</
public Node insertNumber (fimal int aValue)
«

int index = findPlaceToInsert(aValue);

OEBPS/html/graphics/p0119-03.jpg
int getSpeed()
void setSpeed(int x)
boolean isFull()
void £i110)

void empty()

OEBPS/html/graphics/home.gif

OEBPS/html/graphics/p0119-02.jpg
/SEE
* @pre anTtem = null // Require real data
* @post pop() == anItem // Verify that it's
N // on the stack
/

public void push(final String anItem)

OEBPS/html/graphics/t0065-01.gif
Duration Quote estimate in

1-15 days days

3-8weeks weeks

8-30 weeks months

30+ weeks think hard before giving an estimate

OEBPS/html/graphics/pub.jpg
A
vV

ADDISON-WESLEY
An imprint of Addison Wesley Longman, Inc.

OEBPS/html/graphics/p0294-01.jpg
public class Colada {
private Blender myBlender;
private Vector myStuff;

public Colada() {
myBlender = new Blender();
myStuff = new Vector();

3

private void doSomething() {
myBlender. addIngredients (myStuff.

3

3

OEBPS/html/graphics/p0294-02.jpg
Velf RroceRsirensaction{EMnkAcCount Scct, =t 1

Person *who;
Money amt;

amt . setValue(123.45
acct. setBalance (amt
who = acct.getOwner();
markWorkflow(who->name(), SET_BALANCE);

