

[image: Image]

Robert C. Martin Series

The mission of this series is to improve the state of the art of software craftsmanship. The books in this series are technical, pragmatic, and substantial. The authors are highly experienced craftsmen and professionals dedicated to writing about what actually works in practice, as opposed to what might work in theory. You will read about what the author has done, not what he thinks you should do. If the book is about programming, there will be lots of code. If the book is about managing, there will be lots of case studies from real projects.

These are the books that all serious practitioners will have on their bookshelves. These are the books that will be remembered for making a difference and for guiding professionals to become true craftsman.

Managing Agile Projects Sanjiv Augustine

Agile Estimating and Planning Mike Cohn

Working Effectively with Legacy Code Michael C. Feathers

Agile Java™: Crafting Code with Test-Driven Development Jeff Langr

Agile Principles, Patterns, and Practices in C# Robert C. Martin and Micah Martin

Agile Software Development: Principles, Patterns, and Practices Robert C. Martin

Clean Code: A Handbook of Agile Software Craftsmanship Robert C. Martin

UML For Java™ Programmers Robert C. Martin

Fit for Developing Software: Framework for Integrated Tests Rick Mugridge and Ward Cunningham

Agile Software Development with SCRUM Ken Schwaber and Mike Beedle

Extreme Software Engineering: A Hands on Approach Daniel H. Steinberg and Daniel W. Palmer

For more information, visit informit.com/martinseries

Clean Code

A Handbook of Agile Software Craftsmanship

The Object Mentors:

Robert C. Martin
Michael C. Feathers Timothy R. Ottinger
Jeffrey J. Langr Brett L. Schuchert
James W. Grenning Kevin Dean Wampler
Object Mentor Inc.

Writing clean code is what you must do in order to call yourself a professional. There is no reasonable excuse for doing anything less than your best.

[image: Image]

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco New York • Toronto • Montreal • London • Munich • Paris • Madrid Capetown • Sydney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations have been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed or implied warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential damages in connection with or arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or special sales, which may include electronic versions and/or custom covers and content particular to your business, training goals, marketing focus, and branding interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States please contact:

International Sales
international@pearsoned.com

Visit us on the Web: informit.com/ph

Library of Congress Cataloging-in-Publication Data
Martin, Robert C.
 Clean code : a handbook of agile software craftsmanship / Robert C. Martin.
 p. cm.
 Includes bibliographical references and index.
 ISBN 0-13-235088-2 (pbk. : alk. paper)
 1. Agile software development. 2. Computer software—Reliability. I. Title.
 QA76.76.D47M3652 2008
 005.1—dc22

2008024750

Copyright © 2009 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and permission must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permissions, write to:

Pearson Education, Inc
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax: (617) 671-3447

ISBN-13: 978-0-13-235088-4
ISBN-10: 0-13-235088-2
Text printed in the United States on recycled paper at Courier in Westford, Massachusetts.
Ninth printing, May 2011

For Ann Marie: The ever enduring love of my life.

Contents

Foreword

Introduction

On the Cover

Chapter 1: Clean Code

There Will Be Code

Bad Code

The Total Cost of Owning a Mess

The Grand Redesign in the Sky

Attitude

The Primal Conundrum

The Art of Clean Code?

What Is Clean Code?

Schools of Thought

We Are Authors

The Boy Scout Rule

Prequel and Principles

Conclusion

Bibliography

Chapter 2: Meaningful Names

Introduction

Use Intention-Revealing Names

Avoid Disinformation

Make Meaningful Distinctions

Use Pronounceable Names

Use Searchable Names

Avoid Encodings

Hungarian Notation

Member Prefixes

Interfaces and Implementations

Avoid Mental Mapping

Class Names

Method Names

Don’t Be Cute

Pick One Word per Concept

Don’t Pun

Use Solution Domain Names

Use Problem Domain Names

Add Meaningful Context

Don’t Add Gratuitous Context

Final Words

Chapter 3: Functions

Small!

Blocks and Indenting

Do One Thing

Sections within Functions

One Level of Abstraction per Function

Reading Code from Top to Bottom: The Stepdown Rule

Switch Statements

Use Descriptive Names

Function Arguments

Common Monadic Forms

Flag Arguments

Dyadic Functions

Triads

Argument Objects

Argument Lists

Verbs and Keywords

Have No Side Effects

Output Arguments

Command Query Separation

Prefer Exceptions to Returning Error Codes

Extract Try/Catch Blocks

Error Handling Is One Thing

The Error.java Dependency Magnet

Don’t Repeat Yourself

Structured Programming

How Do You Write Functions Like This?

Conclusion

SetupTeardownIncluder

Bibliography

Chapter 4: Comments

Comments Do Not Make Up for Bad Code

Explain Yourself in Code

Good Comments

Legal Comments

Informative Comments

Explanation of Intent

Clarification

Warning of Consequences

TODO Comments

Amplification

Javadocs in Public APIs

Bad Comments

Mumbling

Redundant Comments

Misleading Comments

Mandated Comments

Journal Comments

Noise Comments

Scary Noise

Don’t Use a Comment When You Can Use a Function or a Variable

Position Markers

Closing Brace Comments

Attributions and Bylines

Commented-Out Code

HTML Comments

Nonlocal Information

Too Much Information

Inobvious Connection

Function Headers

Javadocs in Nonpublic Code

Example

Bibliography

Chapter 5: Formatting

The Purpose of Formatting

Vertical Formatting

The Newspaper Metaphor

Vertical Openness Between Concepts

Vertical Density

Vertical Distance

Vertical Ordering

Horizontal Formatting

Horizontal Openness and Density

Horizontal Alignment

Indentation

Dummy Scopes

Team Rules

Uncle Bob’s Formatting Rules

Chapter 6: Objects and Data Structures

Data Abstraction

Data/Object Anti-Symmetry

The Law of Demeter

Train Wrecks

Hybrids

Hiding Structure

Data Transfer Objects

Active Record

Conclusion

Bibliography

Chapter 7: Error Handling

Use Exceptions Rather Than Return Codes

Write Your Try-Catch-Finally Statement First

Use Unchecked Exceptions

Provide Context with Exceptions

Define Exception Classes in Terms of a Caller’s Needs

Define the Normal Flow

Don’t Return Null

Don’t Pass Null

Conclusion

Bibliography

Chapter 8: Boundaries

Using Third-Party Code

Exploring and Learning Boundaries

Learning log4j

Learning Tests Are Better Than Free

Using Code That Does Not Yet Exist

Clean Boundaries

Bibliography

Chapter 9: Unit Tests

The Three Laws of TDD

Keeping Tests Clean

Tests Enable the -ilities

Clean Tests

Domain-Specific Testing Language

A Dual Standard

One Assert per Test

Single Concept per Test

F.I.R.S.T.

Conclusion

Bibliography

Chapter 10: Classes

Class Organization

Encapsulation

Classes Should Be Small!

The Single Responsibility Principle

Cohesion

Maintaining Cohesion Results in Many Small Classes

Organizing for Change

Isolating from Change

Bibliography

Chapter 11: Systems

How Would You Build a City?

Separate Constructing a System from Using It

Separation of Main

Factories

Dependency Injection

Scaling Up

Cross-Cutting Concerns

Java Proxies

Pure Java AOP Frameworks

AspectJ Aspects

Test Drive the System Architecture

Optimize Decision Making

Use Standards Wisely, When They Add Demonstrable Value

Systems Need Domain-Specific Languages

Conclusion

Bibliography

Chapter 12: Emergence

Getting Clean via Emergent Design

Simple Design Rule 1: Runs All the Tests

Simple Design Rules 2–4: Refactoring

No Duplication

Expressive

Minimal Classes and Methods

Conclusion

Bibliography

Chapter 13: Concurrency

Why Concurrency?

Myths and Misconceptions

Challenges

Concurrency Defense Principles

Single Responsibility Principle

Corollary: Limit the Scope of Data

Corollary: Use Copies of Data

Corollary: Threads Should Be as Independent as Possible

Know Your Library

Thread-Safe Collections

Know Your Execution Models

Producer-Consumer

Readers-Writers

Dining Philosophers

Beware Dependencies Between Synchronized Methods

Keep Synchronized Sections Small

Writing Correct Shut-Down Code Is Hard

Testing Threaded Code

Treat Spurious Failures as Candidate Threading Issues

Get Your Nonthreaded Code Working First

Make Your Threaded Code Pluggable

Make Your Threaded Code Tunable

Run with More Threads Than Processors

Run on Different Platforms

Instrument Your Code to Try and Force Failures

Hand-Coded

Automated

Conclusion

Bibliography

Chapter 14: Successive Refinement

Args Implementation

How Did I Do This?

Args: The Rough Draft

So I Stopped

On Incrementalism

String Arguments

Conclusion

Chapter 15: JUnit Internals

The JUnit Framework

Conclusion

Chapter 16: Refactoring SerialDate

First, Make It Work

Then Make It Right

Conclusion

Bibliography

Chapter 17: Smells and Heuristics

Comments

C1: Inappropriate Information

C2: Obsolete Comment

C3: Redundant Comment

C4: Poorly Written Comment

C5: Commented-Out Code

Environment

E1: Build Requires More Than One Step

E2: Tests Require More Than One Step

Functions

F1: Too Many Arguments

F2: Output Arguments

F3: Flag Arguments

F4: Dead Function

General

G1: Multiple Languages in One Source File

G2: Obvious Behavior Is Unimplemented

G3: Incorrect Behavior at the Boundaries

G4: Overridden Safeties

G5: Duplication

G6: Code at Wrong Level of Abstraction

G7: Base Classes Depending on Their Derivatives

G8: Too Much Information

G9: Dead Code

G10: Vertical Separation

G11: Inconsistency

G12: Clutter

G13: Artificial Coupling

G14: Feature Envy

G15: Selector Arguments

G16: Obscured Intent

G17: Misplaced Responsibility

G18: Inappropriate Static

G19: Use Explanatory Variables

G20: Function Names Should Say What They Do

G21: Understand the Algorithm

G22: Make Logical Dependencies Physical

G23: Prefer Polymorphism to If/Else or Switch/Case

G24: Follow Standard Conventions

G25: Replace Magic Numbers with Named Constants

G26: Be Precise

G27: Structure over Convention

G28: Encapsulate Conditionals

G29: Avoid Negative Conditionals

G30: Functions Should Do One Thing

G31: Hidden Temporal Couplings

G32: Don’t Be Arbitrary

G33: Encapsulate Boundary Conditions

G34: Functions Should Descend Only One Level of Abstraction

G35: Keep Configurable Data at High Levels

G36: Avoid Transitive Navigation

Java

J1: Avoid Long Import Lists by Using Wildcards

J2: Don’t Inherit Constants

J3: Constants versus Enums

Names

N1: Choose Descriptive Names

N2: Choose Names at the Appropriate Level of Abstraction

N3: Use Standard Nomenclature Where Possible

N4: Unambiguous Names

N5: Use Long Names for Long Scopes

N6: Avoid Encodings

N7: Names Should Describe Side-Effects.

Tests

T1: Insufficient Tests

T2: Use a Coverage Tool!

T3: Don’t Skip Trivial Tests

T4: An Ignored Test Is a Question about an Ambiguity

T5: Test Boundary Conditions

T6: Exhaustively Test Near Bugs

T7: Patterns of Failure Are Revealing

T8: Test Coverage Patterns Can Be Revealing

T9: Tests Should Be Fast

Conclusion

Bibliography

Appendix A: Concurrency II

Client/Server Example

The Server

Adding Threading

Server Observations

Conclusion

Possible Paths of Execution

Number of Paths

Digging Deeper

Conclusion

Knowing Your Library

Executor Framework

Nonblocking Solutions

Nonthread-Safe Classes

Dependencies Between Methods Can Break Concurrent Code

Tolerate the Failure

Client-Based Locking

Server-Based Locking

Increasing Throughput

Single-Thread Calculation of Throughput

Multithread Calculation of Throughput

Deadlock

Mutual Exclusion

Lock & Wait

No Preemption

Circular Wait

Breaking Mutual Exclusion

Breaking Lock & Wait

Breaking Preemption

Breaking Circular Wait

Testing Multithreaded Code

Tool Support for Testing Thread-Based Code

Conclusion

Tutorial: Full Code Examples

Client/Server Nonthreaded

Client/Server Using Threads

Appendix B: org.jfree.date.SerialDate

Appendix C: Cross References of Heuristics

Epilogue

Index

Foreword

One of our favorite candies here in Denmark is Ga-Jol, whose strong licorice vapors are a perfect complement to our damp and often chilly weather. Part of the charm of Ga-Jol to us Danes is the wise or witty sayings printed on the flap of every box top. I bought a two-pack of the delicacy this morning and found that it bore this old Danish saw:

Ærlighed i små ting er ikke nogen lille ting.

“Honesty in small things is not a small thing.” It was a good omen consistent with what I already wanted to say here. Small things matter. This is a book about humble concerns whose value is nonetheless far from small.

God is in the details, said the architect Ludwig mies van der Rohe. This quote recalls contemporary arguments about the role of architecture in software development, and particularly in the Agile world. Bob and I occasionally find ourselves passionately engaged in this dialogue. And yes, mies van der Rohe was attentive to utility and to the timeless forms of building that underlie great architecture. On the other hand, he also personally selected every doorknob for every house he designed. Why? Because small things matter.

In our ongoing “debate” on TDD, Bob and I have discovered that we agree that software architecture has an important place in development, though we likely have different visions of exactly what that means. Such quibbles are relatively unimportant, however, because we can accept for granted that responsible professionals give some time to thinking and planning at the outset of a project. The late-1990s notions of design driven only by the tests and the code are long gone. Yet attentiveness to detail is an even more critical foundation of professionalism than is any grand vision. First, it is through practice in the small that professionals gain proficiency and trust for practice in the large. Second, the smallest bit of sloppy construction, of the door that does not close tightly or the slightly crooked tile on the floor, or even the messy desk, completely dispels the charm of the larger whole. That is what clean code is about.

Still, architecture is just one metaphor for software development, and in particular for that part of software that delivers the initial product in the same sense that an architect delivers a pristine building. In these days of Scrum and Agile, the focus is on quickly bringing product to market. We want the factory running at top speed to produce software. These are human factories: thinking, feeling coders who are working from a product backlog or user story to create product. The manufacturing metaphor looms ever strong in such thinking. The production aspects of Japanese auto manufacturing, of an assembly-line world, inspire much of Scrum.

Yet even in the auto industry, the bulk of the work lies not in manufacturing but in maintenance—or its avoidance. In software, 80% or more of what we do is quaintly called “maintenance”: the act of repair. Rather than embracing the typical Western focus on producing good software, we should be thinking more like home repairmen in the building industry, or auto mechanics in the automotive field. What does Japanese management have to say about that?

In about 1951, a quality approach called Total Productive Maintenance (TPM) came on the Japanese scene. Its focus is on maintenance rather than on production. One of the major pillars of TPM is the set of so-called 5S principles. 5S is a set of disciplines—and here I use the term “discipline” instructively. These 5S principles are in fact at the foundations of Lean—another buzzword on the Western scene, and an increasingly prominent buzzword in software circles. These principles are not an option. As Uncle Bob relates in his front matter, good software practice requires such discipline: focus, presence of mind, and thinking. It is not always just about doing, about pushing the factory equipment to produce at the optimal velocity. The 5S philosophy comprises these concepts:

• Seiri, or organization (think “sort” in English). Knowing where things are—using approaches such as suitable naming—is crucial. You think naming identifiers isn’t important? Read on in the following chapters.

• Seiton, or tidiness (think “systematize” in English). There is an old American saying: A place for everything, and everything in its place. A piece of code should be where you expect to find it—and, if not, you should re-factor to get it there.

• Seiso, or cleaning (think “shine” in English): Keep the workplace free of hanging wires, grease, scraps, and waste. What do the authors here say about littering your code with comments and commented-out code lines that capture history or wishes for the future? Get rid of them.

• Seiketsu, or standardization: The group agrees about how to keep the workplace clean. Do you think this book says anything about having a consistent coding style and set of practices within the group? Where do those standards come from? Read on.

• Shutsuke, or discipline (self-discipline). This means having the discipline to follow the practices and to frequently reflect on one’s work and be willing to change.

If you take up the challenge—yes, the challenge—of reading and applying this book, you’ll come to understand and appreciate the last point. Here, we are finally driving to the roots of responsible professionalism in a profession that should be concerned with the life cycle of a product. As we maintain automobiles and other machines under TPM, breakdown maintenance—waiting for bugs to surface—is the exception. Instead, we go up a level: inspect the machines every day and fix wearing parts before they break, or do the equivalent of the proverbial 10,000-mile oil change to forestall wear and tear. In code, refactor mercilessly. You can improve yet one level further, as the TPM movement innovated over 50 years ago: build machines that are more maintainable in the first place. Making your code readable is as important as making it executable. The ultimate practice, introduced in TPM circles around 1960, is to focus on introducing entire new machines or replacing old ones. As Fred Brooks admonishes us, we should probably re-do major software chunks from scratch every seven years or so to sweep away creeping cruft. Perhaps we should update Brooks’ time constant to an order of weeks, days or hours instead of years. That’s where detail lies.

There is great power in detail, yet there is something humble and profound about this approach to life, as we might stereotypically expect from any approach that claims Japanese roots. But this is not only an Eastern outlook on life; English and American folk wisdom are full of such admonishments. The Seiton quote from above flowed from the pen of an Ohio minister who literally viewed neatness “as a remedy for every degree of evil.” How about Seiso? Cleanliness is next to godliness. As beautiful as a house is, a messy desk robs it of its splendor. How about Shutsuke in these small matters? He who is faithful in little is faithful in much. How about being eager to re-factor at the responsible time, strengthening one’s position for subsequent “big” decisions, rather than putting it off? A stitch in time saves nine. The early bird catches the worm. Don’t put off until tomorrow what you can do today. (Such was the original sense of the phrase “the last responsible moment” in Lean until it fell into the hands of software consultants.) How about calibrating the place of small, individual efforts in a grand whole? Mighty oaks from little acorns grow. Or how about integrating simple preventive work into everyday life? An ounce of prevention is worth a pound of cure. An apple a day keeps the doctor away. Clean code honors the deep roots of wisdom beneath our broader culture, or our culture as it once was, or should be, and can be with attentiveness to detail.

Even in the grand architectural literature we find saws that hark back to these supposed details. Think of mies van der Rohe’s doorknobs. That’s seiri. That’s being attentive to every variable name. You should name a variable using the same care with which you name a first-born child.

As every homeowner knows, such care and ongoing refinement never come to an end. The architect Christopher Alexander—father of patterns and pattern languages—views every act of design itself as a small, local act of repair. And he views the craftsmanship of fine structure to be the sole purview of the architect; the larger forms can be left to patterns and their application by the inhabitants. Design is ever ongoing not only as we add a new room to a house, but as we are attentive to repainting, replacing worn carpets, or upgrading the kitchen sink. Most arts echo analogous sentiments. In our search for others who ascribe God’s home as being in the details, we find ourselves in the good company of the 19th century French author Gustav Flaubert. The French poet Paul Valery advises us that a poem is never done and bears continual rework, and to stop working on it is abandonment. Such preoccupation with detail is common to all endeavors of excellence. So maybe there is little new here, but in reading this book you will be challenged to take up good disciplines that you long ago surrendered to apathy or a desire for spontaneity and just “responding to change.”

Unfortunately, we usually don’t view such concerns as key cornerstones of the art of programming. We abandon our code early, not because it is done, but because our value system focuses more on outward appearance than on the substance of what we deliver. This inattentiveness costs us in the end: A bad penny always shows up. Research, neither in industry nor in academia, humbles itself to the lowly station of keeping code clean. Back in my days working in the Bell Labs Software Production Research organization (Production, indeed!) we had some back-of-the-envelope findings that suggested that consistent indentation style was one of the most statistically significant indicators of low bug density. We want it to be that architecture or programming language or some other high notion should be the cause of quality; as people whose supposed professionalism owes to the mastery of tools and lofty design methods, we feel insulted by the value that those factory-floor machines, the coders, add through the simple consistent application of an indentation style. To quote my own book of 17 years ago, such style distinguishes excellence from mere competence. The Japanese worldview understands the crucial value of the everyday worker and, more so, of the systems of development that owe to the simple, everyday actions of those workers. Quality is the result of a million selfless acts of care—not just of any great method that descends from the heavens. That these acts are simple doesn’t mean that they are simplistic, and it hardly means that they are easy. They are nonetheless the fabric of greatness and, more so, of beauty, in any human endeavor. To ignore them is not yet to be fully human.

Of course, I am still an advocate of thinking at broader scope, and particularly of the value of architectural approaches rooted in deep domain knowledge and software usability. The book isn’t about that—or, at least, it isn’t obviously about that. This book has a subtler message whose profoundness should not be underappreciated. It fits with the current saw of the really code-based people like Peter Sommerlad, Kevlin Henney and Giovanni Asproni. “The code is the design” and “Simple code” are their mantras. While we must take care to remember that the interface is the program, and that its structures have much to say about our program structure, it is crucial to continuously adopt the humble stance that the design lives in the code. And while rework in the manufacturing metaphor leads to cost, rework in design leads to value. We should view our code as the beautiful articulation of noble efforts of design—design as a process, not a static endpoint. It’s in the code that the architectural metrics of coupling and cohesion play out. If you listen to Larry Constantine describe coupling and cohesion, he speaks in terms of code—not lofty abstract concepts that one might find in UML. Richard Gabriel advises us in his essay, “Abstraction Descant” that abstraction is evil. Code is anti-evil, and clean code is perhaps divine.

Going back to my little box of Ga-Jol, I think it’s important to note that the Danish wisdom advises us not just to pay attention to small things, but also to be honest in small things. This means being honest to the code, honest to our colleagues about the state of our code and, most of all, being honest with ourselves about our code. Did we Do our Best to “leave the campground cleaner than we found it”? Did we re-factor our code before checking in? These are not peripheral concerns but concerns that lie squarely in the center of Agile values. It is a recommended practice in Scrum that re-factoring be part of the concept of “Done.” Neither architecture nor clean code insist on perfection, only on honesty and doing the best we can. To err is human; to forgive, divine. In Scrum, we make everything visible. We air our dirty laundry. We are honest about the state of our code because code is never perfect. We become more fully human, more worthy of the divine, and closer to that greatness in the details.

In our profession, we desperately need all the help we can get. If a clean shop floor reduces accidents, and well-organized shop tools increase productivity, then I’m all for them. As for this book, it is the best pragmatic application of Lean principles to software I have ever seen in print. I expected no less from this practical little group of thinking individuals that has been striving together for years not only to become better, but also to gift their knowledge to the industry in works such as you now find in your hands. It leaves the world a little better than I found it before Uncle Bob sent me the manuscript.

Having completed this exercise in lofty insights, I am off to clean my desk.

James O. Coplien
Mørdrup, Denmark

Introduction

[image: Image]

Which door represents your code? Which door represents your team or your company? Why are we in that room? Is this just a normal code review or have we found a stream of horrible problems shortly after going live? Are we debugging in a panic, poring over code that we thought worked? Are customers leaving in droves and managers breathing down our necks? How can we make sure we wind up behind the right door when the going gets tough? The answer is: craftsmanship.

There are two parts to learning craftsmanship: knowledge and work. You must gain the knowledge of principles, patterns, practices, and heuristics that a craftsman knows, and you must also grind that knowledge into your fingers, eyes, and gut by working hard and practicing.

I can teach you the physics of riding a bicycle. Indeed, the classical mathematics is relatively straightforward. Gravity, friction, angular momentum, center of mass, and so forth, can be demonstrated with less than a page full of equations. Given those formulae I could prove to you that bicycle riding is practical and give you all the knowledge you needed to make it work. And you’d still fall down the first time you climbed on that bike.

Coding is no different. We could write down all the “feel good” principles of clean code and then trust you to do the work (in other words, let you fall down when you get on the bike), but then what kind of teachers would that make us, and what kind of student would that make you?

No. That’s not the way this book is going to work.

Learning to write clean code is hard work. It requires more than just the knowledge of principles and patterns. You must sweat over it. You must practice it yourself, and watch yourself fail. You must watch others practice it and fail. You must see them stumble and retrace their steps. You must see them agonize over decisions and see the price they pay for making those decisions the wrong way.

Be prepared to work hard while reading this book. This is not a “feel good” book that you can read on an airplane and finish before you land. This book will make you work, and work hard. What kind of work will you be doing? You’ll be reading code—lots of code. And you will be challenged to think about what’s right about that code and what’s wrong with it. You’ll be asked to follow along as we take modules apart and put them back together again. This will take time and effort; but we think it will be worth it.

We have divided this book into three parts. The first several chapters describe the principles, patterns, and practices of writing clean code. There is quite a bit of code in these chapters, and they will be challenging to read. They’ll prepare you for the second section to come. If you put the book down after reading the first section, good luck to you!

The second part of the book is the harder work. It consists of several case studies of ever-increasing complexity. Each case study is an exercise in cleaning up some code—of transforming code that has some problems into code that has fewer problems. The detail in this section is intense. You will have to flip back and forth between the narrative and the code listings. You will have to analyze and understand the code we are working with and walk through our reasoning for making each change we make. Set aside some time because this should take you days.

The third part of this book is the payoff. It is a single chapter containing a list of heuristics and smells gathered while creating the case studies. As we walked through and cleaned up the code in the case studies, we documented every reason for our actions as a heuristic or smell. We tried to understand our own reactions to the code we were reading and changing, and worked hard to capture why we felt what we felt and did what we did. The result is a knowledge base that desribes the way we think when we write, read, and clean code.

This knowledge base is of limited value if you don’t do the work of carefully reading through the case studies in the second part of this book. In those case studies we have carefully annotated each change we made with forward references to the heuristics. These forward references appear in square brackets like this: [H22]. This lets you see the context in which those heuristics were applied and written! It is not the heuristics themselves that are so valuable, it is the relationship between those heuristics and the discrete decisions we made while cleaning up the code in the case studies.

To further help you with those relationships, we have placed a cross-reference at the end of the book that shows the page number for every forward reference. You can use it to look up each place where a certain heuristic was applied.

If you read the first and third sections and skip over the case studies, then you will have read yet another “feel good” book about writing good software. But if you take the time to work through the case studies, following every tiny step, every minute decision—if you put yourself in our place, and force yourself to think along the same paths that we thought, then you will gain a much richer understanding of those principles, patterns, practices, and heuristics. They won’t be “feel good” knowledge any more. They’ll have been ground into your gut, fingers, and heart. They’ll have become part of you in the same way that a bicycle becomes an extension of your will when you have mastered how to ride it.

Acknowledgments

Thank you to my two artists, Jeniffer Kohnke and Angela Brooks. Jennifer is responsible for the stunning and creative pictures at the start of each chapter and also for the portraits of Kent Beck, Ward Cunningham, Bjarne Stroustrup, Ron Jeffries, Grady Booch, Dave Thomas, Michael Feathers, and myself.

Angela is responsible for the clever pictures that adorn the innards of each chapter. She has done quite a few pictures for me over the years, including many of the inside pictures in Agile Software Develpment: Principles, Patterns, and Practices. She is also my firstborn in whom I am well pleased.

A special thanks goes out to my reviewers Bob Bogetti, George Bullock, Jeffrey Overbey, and especially Matt Heusser. They were brutal. They were cruel. They were relentless. They pushed me hard to make necessary improvements.

Thanks to my publisher, Chris Guzikowski, for his support, encouragement, and jovial countenance. Thanks also to the editorial staff at Pearson, including Raina Chrobak for keeping me honest and punctual.

Thanks to Micah Martin, and all the guys at 8th Light (www.8thlight.com) for their reviews and encouragement.

Thanks to all the Object Mentors, past, present, and future, including: Bob Koss, Michael Feathers, Michael Hill, Erik Meade, Jeff Langr, Pascal Roy, David Farber, Brett Schuchert, Dean Wampler, Tim Ottinger, Dave Thomas, James Grenning, Brian Button, Ron Jeffries, Lowell Lindstrom, Angelique Martin, Cindy Sprague, Libby Ottinger, Joleen Craig, Janice Brown, Susan Rosso, et al.

Thanks to Jim Newkirk, my friend and business partner, who taught me more than I think he realizes. Thanks to Kent Beck, Martin Fowler, Ward Cunningham, Bjarne Stroustrup, Grady Booch, and all my other mentors, compatriots, and foils. Thanks to John Vlissides for being there when it counted. Thanks to the guys at Zebra for allowing me to rant on about how long a function should be.

And, finally, thank you for reading these thank yous.

On the Cover

The image on the cover is M104: The Sombrero Galaxy. M104 is located in Virgo and is just under 30 million light-years from us. At it’s core is a supermassive black hole weighing in at about a billion solar masses.

Does the image remind you of the explosion of the Klingon power moon Praxis? I vividly remember the scene in Star Trek VI that showed an equatorial ring of debris flying away from that explosion. Since that scene, the equatorial ring has been a common artifact in sci-fi movie explosions. It was even added to the explosion of Alderaan in later editions of the first Star Wars movie.

What caused this ring to form around M104? Why does it have such a huge central bulge and such a bright and tiny nucleus? It looks to me as though the central black hole lost its cool and blew a 30,000 light-year hole in the middle of the galaxy. Woe befell any civilizations that might have been in the path of that cosmic disruption.

Supermassive black holes swallow whole stars for lunch, converting a sizeable fraction of their mass to energy. E = MC2 is leverage enough, but when M is a stellar mass: Look out! How many stars fell headlong into that maw before the monster was satiated? Could the size of the central void be a hint?

The image of M104 on the cover is a combination of the famous visible light photograph from Hubble (right), and the recent infrared image from the Spitzer orbiting observatory (below, right). It’s the infrared image that clearly shows us the ring nature of the galaxy. In visible light we only see the front edge of the ring in silhouette. The central bulge obscures the rest of the ring.

But in the infrared, the hot particles in the ring shine through the central bulge. The two images combined give us a view we’ve not seen before and imply that long ago it was a raging inferno of activity.

[image: Image]

Cover image: © Spitzer Space Telescope

1
Clean Code

[image: Image]

You are reading this book for two reasons. First, you are a programmer. Second, you want to be a better programmer. Good. We need better programmers.

This is a book about good programming. It is filled with code. We are going to look at code from every different direction. We’ll look down at it from the top, up at it from the bottom, and through it from the inside out. By the time we are done, we’re going to know a lot about code. What’s more, we’ll be able to tell the difference between good code and bad code. We’ll know how to write good code. And we’ll know how to transform bad code into good code.

There Will Be Code

One might argue that a book about code is somehow behind the times—that code is no longer the issue; that we should be concerned about models and requirements instead. Indeed some have suggested that we are close to the end of code. That soon all code will be generated instead of written. That programmers simply won’t be needed because business people will generate programs from specifications.

Nonsense! We will never be rid of code, because code represents the details of the requirements. At some level those details cannot be ignored or abstracted; they have to be specified. And specifying requirements in such detail that a machine can execute them is programming. Such a specification is code.

I expect that the level of abstraction of our languages will continue to increase. I also expect that the number of domain-specific languages will continue to grow. This will be a good thing. But it will not eliminate code. Indeed, all the specifications written in these higher level and domain-specific language will be code! It will still need to be rigorous, accurate, and so formal and detailed that a machine can understand and execute it.

The folks who think that code will one day disappear are like mathematicians who hope one day to discover a mathematics that does not have to be formal. They are hoping that one day we will discover a way to create machines that can do what we want rather than what we say. These machines will have to be able to understand us so well that they can translate vaguely specified needs into perfectly executing programs that precisely meet those needs.

This will never happen. Not even humans, with all their intuition and creativity, have been able to create successful systems from the vague feelings of their customers. Indeed, if the discipline of requirements specification has taught us anything, it is that well-specified requirements are as formal as code and can act as executable tests of that code!

Remember that code is really the language in which we ultimately express the requirements. We may create languages that are closer to the requirements. We may create tools that help us parse and assemble those requirements into formal structures. But we will never eliminate necessary precision—so there will always be code.

Bad Code

I was recently reading the preface to Kent Beck’s book Implementation Patterns.1 He says, “… this book is based on a rather fragile premise: that good code matters….” A fragile premise? I disagree! I think that premise is one of the most robust, supported, and overloaded of all the premises in our craft (and I think Kent knows it). We know good code matters because we’ve had to deal for so long with its lack.

1. [Beck07].

I know of one company that, in the late 80s, wrote a killer app. It was very popular, and lots of professionals bought and used it. But then the release cycles began to stretch. Bugs were not repaired from one release to the next. Load times grew and crashes increased. I remember the day I shut the product down in frustration and never used it again. The company went out of business a short time after that.

[image: Image]

Two decades later I met one of the early employees of that company and asked him what had happened. The answer confirmed my fears. They had rushed the product to market and had made a huge mess in the code. As they added more and more features, the code got worse and worse until they simply could not manage it any longer. It was the bad code that brought the company down.

Have you ever been significantly impeded by bad code? If you are a programmer of any experience then you’ve felt this impediment many times. Indeed, we have a name for it. We call it wading. We wade through bad code. We slog through a morass of tangled brambles and hidden pitfalls. We struggle to find our way, hoping for some hint, some clue, of what is going on; but all we see is more and more senseless code.

Of course you have been impeded by bad code. So then—why did you write it?

Were you trying to go fast? Were you in a rush? Probably so. Perhaps you felt that you didn’t have time to do a good job; that your boss would be angry with you if you took the time to clean up your code. Perhaps you were just tired of working on this program and wanted it to be over. Or maybe you looked at the backlog of other stuff that you had promised to get done and realized that you needed to slam this module together so you could move on to the next. We’ve all done it.

We’ve all looked at the mess we’ve just made and then have chosen to leave it for another day. We’ve all felt the relief of seeing our messy program work and deciding that a working mess is better than nothing. We’ve all said we’d go back and clean it up later. Of course, in those days we didn’t know LeBlanc’s law: Later equals never.

The Total Cost of Owning a Mess

If you have been a programmer for more than two or three years, you have probably been significantly slowed down by someone else’s messy code. If you have been a programmer for longer than two or three years, you have probably been slowed down by messy code. The degree of the slowdown can be significant. Over the span of a year or two, teams that were moving very fast at the beginning of a project can find themselves moving at a snail’s pace. Every change they make to the code breaks two or three other parts of the code. No change is trivial. Every addition or modification to the system requires that the tangles, twists, and knots be “understood” so that more tangles, twists, and knots can be added. Over time the mess becomes so big and so deep and so tall, they can not clean it up. There is no way at all.

As the mess builds, the productivity of the team continues to decrease, asymptotically approaching zero. As productivity decreases, management does the only thing they can; they add more staff to the project in hopes of increasing productivity. But that new staff is not versed in the design of the system. They don’t know the difference between a change that matches the design intent and a change that thwarts the design intent. Furthermore, they, and everyone else on the team, are under horrific pressure to increase productivity. So they all make more and more messes, driving the productivity ever further toward zero. (See Figure 1-1.)

Figure 1-1 Productivity vs. time

[image: Image]

The Grand Redesign in the Sky

Eventually the team rebels. They inform management that they cannot continue to develop in this odious code base. They demand a redesign. Management does not want to expend the resources on a whole new redesign of the project, but they cannot deny that productivity is terrible. Eventually they bend to the demands of the developers and authorize the grand redesign in the sky.

A new tiger team is selected. Everyone wants to be on this team because it’s a green-field project. They get to start over and create something truly beautiful. But only the best and brightest are chosen for the tiger team. Everyone else must continue to maintain the current system.

Now the two teams are in a race. The tiger team must build a new system that does everything that the old system does. Not only that, they have to keep up with the changes that are continuously being made to the old system. Management will not replace the old system until the new system can do everything that the old system does.

This race can go on for a very long time. I’ve seen it take 10 years. And by the time it’s done, the original members of the tiger team are long gone, and the current members are demanding that the new system be redesigned because it’s such a mess.

If you have experienced even one small part of the story I just told, then you already know that spending time keeping your code clean is not just cost effective; it’s a matter of professional survival.

Attitude

Have you ever waded through a mess so grave that it took weeks to do what should have taken hours? Have you seen what should have been a one-line change, made instead in hundreds of different modules? These symptoms are all too common.

Why does this happen to code? Why does good code rot so quickly into bad code? We have lots of explanations for it. We complain that the requirements changed in ways that thwart the original design. We bemoan the schedules that were too tight to do things right. We blather about stupid managers and intolerant customers and useless marketing types and telephone sanitizers. But the fault, dear Dilbert, is not in our stars, but in ourselves. We are unprofessional.

This may be a bitter pill to swallow. How could this mess be our fault? What about the requirements? What about the schedule? What about the stupid managers and the useless marketing types? Don’t they bear some of the blame?

No. The managers and marketers look to us for the information they need to make promises and commitments; and even when they don’t look to us, we should not be shy about telling them what we think. The users look to us to validate the way the requirements will fit into the system. The project managers look to us to help work out the schedule. We are deeply complicit in the planning of the project and share a great deal of the responsibility for any failures; especially if those failures have to do with bad code!

“But wait!” you say. “If I don’t do what my manager says, I’ll be fired.” Probably not. Most managers want the truth, even when they don’t act like it. Most managers want good code, even when they are obsessing about the schedule. They may defend the schedule and requirements with passion; but that’s their job. It’s your job to defend the code with equal passion.

To drive this point home, what if you were a doctor and had a patient who demanded that you stop all the silly hand-washing in preparation for surgery because it was taking too much time?2 Clearly the patient is the boss; and yet the doctor should absolutely refuse to comply. Why? Because the doctor knows more than the patient about the risks of disease and infection. It would be unprofessional (never mind criminal) for the doctor to comply with the patient.

2. When hand-washing was first recommended to physicians by Ignaz Semmelweis in 1847, it was rejected on the basis that doctors were too busy and wouldn’t have time to wash their hands between patient visits.

So too it is unprofessional for programmers to bend to the will of managers who don’t understand the risks of making messes.

The Primal Conundrum

Programmers face a conundrum of basic values. All developers with more than a few years experience know that previous messes slow them down. And yet all developers feel the pressure to make messes in order to meet deadlines. In short, they don’t take the time to go fast!

True professionals know that the second part of the conundrum is wrong. You will not make the deadline by making the mess. Indeed, the mess will slow you down instantly, and will force you to miss the deadline. The only way to make the deadline—the only way to go fast—is to keep the code as clean as possible at all times.

The Art of Clean Code?

Let’s say you believe that messy code is a significant impediment. Let’s say that you accept that the only way to go fast is to keep your code clean. Then you must ask yourself: “How do I write clean code?” It’s no good trying to write clean code if you don’t know what it means for code to be clean!

The bad news is that writing clean code is a lot like painting a picture. Most of us know when a picture is painted well or badly. But being able to recognize good art from bad does not mean that we know how to paint. So too being able to recognize clean code from dirty code does not mean that we know how to write clean code!

Writing clean code requires the disciplined use of a myriad little techniques applied through a painstakingly acquired sense of “cleanliness.” This “code-sense” is the key. Some of us are born with it. Some of us have to fight to acquire it. Not only does it let us see whether code is good or bad, but it also shows us the strategy for applying our discipline to transform bad code into clean code.

A programmer without “code-sense” can look at a messy module and recognize the mess but will have no idea what to do about it. A programmer with “code-sense” will look at a messy module and see options and variations. The “code-sense” will help that programmer choose the best variation and guide him or her to plot a sequence of behavior preserving transformations to get from here to there.

In short, a programmer who writes clean code is an artist who can take a blank screen through a series of transformations until it is an elegantly coded system.

What Is Clean Code?

There are probably as many definitions as there are programmers. So I asked some very well-known and deeply experienced programmers what they thought.

[image: Image]

Bjarne Stroustrup, inventor of C++ and author of The C++ Programming Language

I like my code to be elegant and efficient. The logic should be straightforward to make it hard for bugs to hide, the dependencies minimal to ease maintenance, error handling complete according to an articulated strategy, and performance close to optimal so as not to tempt people to make the code messy with unprincipled optimizations. Clean code does one thing well.

Bjarne uses the word “elegant.” That’s quite a word! The dictionary in my MacBook® provides the following definitions: pleasingly graceful and stylish in appearance or manner; pleasingly ingenious and simple. Notice the emphasis on the word “pleasing.” Apparently Bjarne thinks that clean code is pleasing to read. Reading it should make you smile the way a well-crafted music box or well-designed car would.

Bjarne also mentions efficiency—twice. Perhaps this should not surprise us coming from the inventor of C++; but I think there’s more to it than the sheer desire for speed. Wasted cycles are inelegant, they are not pleasing. And now note the word that Bjarne uses to describe the consequence of that inelegance. He uses the word “tempt.” There is a deep truth here. Bad code tempts the mess to grow! When others change bad code, they tend to make it worse.

Pragmatic Dave Thomas and Andy Hunt said this a different way. They used the metaphor of broken windows.3 A building with broken windows looks like nobody cares about it. So other people stop caring. They allow more windows to become broken. Eventually they actively break them. They despoil the facade with graffiti and allow garbage to collect. One broken window starts the process toward decay.

3. http://www.pragmaticprogrammer.com/booksellers/2004-12.html

Bjarne also mentions that error handing should be complete. This goes to the discipline of paying attention to details. Abbreviated error handling is just one way that programmers gloss over details. Memory leaks are another, race conditions still another. Inconsistent naming yet another. The upshot is that clean code exhibits close attention to detail.

Bjarne closes with the assertion that clean code does one thing well. It is no accident that there are so many principles of software design that can be boiled down to this simple admonition. Writer after writer has tried to communicate this thought. Bad code tries to do too much, it has muddled intent and ambiguity of purpose. Clean code is focused. Each function, each class, each module exposes a single-minded attitude that remains entirely undistracted, and unpolluted, by the surrounding details.

Grady Booch, author of Object Oriented Analysis and Design with Applications

[image: Image]

Clean code is simple and direct. Clean code reads like well-written prose. Clean code never obscures the designer’s intent but rather is full of crisp abstractions and straightforward lines of control.

Grady makes some of the same points as Bjarne, but he takes a readability perspective. I especially like his view that clean code should read like well-written prose. Think back on a really good book that you’ve read. Remember how the words disappeared to be replaced by images! It was like watching a movie, wasn’t it? Better! You saw the characters, you heard the sounds, you experienced the pathos and the humor.

Reading clean code will never be quite like reading Lord of the Rings. Still, the literary metaphor is not a bad one. Like a good novel, clean code should clearly expose the tensions in the problem to be solved. It should build those tensions to a climax and then give the reader that “Aha! Of course!” as the issues and tensions are resolved in the revelation of an obvious solution.

I find Grady’s use of the phrase “crisp abstraction” to be a fascinating oxymoron! After all the word “crisp” is nearly a synonym for “concrete.” My MacBook’s dictionary holds the following definition of “crisp”: briskly decisive and matter-of-fact, without hesitation or unnecessary detail. Despite this seeming juxtaposition of meaning, the words carry a powerful message. Our code should be matter-of-fact as opposed to speculative. It should contain only what is necessary. Our readers should perceive us to have been decisive.

“Big” Dave Thomas, founder of OTI, godfather of the Eclipse strategy

[image: Image]

Clean code can be read, and enhanced by a developer other than its original author. It has unit and acceptance tests. It has meaningful names. It provides one way rather than many ways for doing one thing. It has minimal dependencies, which are explicitly defined, and provides a clear and minimal API. Code should be literate since depending on the language, not all necessary information can be expressed clearly in code alone.

Big Dave shares Grady’s desire for readability, but with an important twist. Dave asserts that clean code makes it easy for other people to enhance it. This may seem obvious, but it cannot be overemphasized. There is, after all, a difference between code that is easy to read and code that is easy to change.

Dave ties cleanliness to tests! Ten years ago this would have raised a lot of eyebrows. But the discipline of Test Driven Development has made a profound impact upon our industry and has become one of our most fundamental disciplines. Dave is right. Code, without tests, is not clean. No matter how elegant it is, no matter how readable and accessible, if it hath not tests, it be unclean.

Dave uses the word minimal twice. Apparently he values code that is small, rather than code that is large. Indeed, this has been a common refrain throughout software literature since its inception. Smaller is better.

Dave also says that code should be literate. This is a soft reference to Knuth’s literate programming.4 The upshot is that the code should be composed in such a form as to make it readable by humans.

4. [Knuth92].

Michael Feathers, author of Working Effectively with Legacy Code

[image: Image]

I could list all of the qualities that I notice in clean code, but there is one overarching quality that leads to all of them. Clean code always looks like it was written by someone who cares. There is nothing obvious that you can do to make it better. All of those things were thought about by the code’s author, and if you try to imagine improvements, you’re led back to where you are, sitting in appreciation of the code someone left for you—code left by someone who cares deeply about the craft.

One word: care. That’s really the topic of this book. Perhaps an appropriate subtitle would be How to Care for Code.

Michael hit it on the head. Clean code is code that has been taken care of. Someone has taken the time to keep it simple and orderly. They have paid appropriate attention to details. They have cared.

Ron Jeffries, author of Extreme Programming Installed and Extreme Programming Adventures in C#

Ron began his career programming in Fortran at the Strategic Air Command and has written code in almost every language and on almost every machine. It pays to consider his words carefully.

[image: Image]

In recent years I begin, and nearly end, with Beck’s rules of simple code. In priority order, simple code:

• Runs all the tests;

• Contains no duplication;

• Expresses all the design ideas that are in the system;

• Minimizes the number of entities such as classes, methods, functions, and the like.

Of these, I focus mostly on duplication. When the same thing is done over and over, it’s a sign that there is an idea in our mind that is not well represented in the code. I try to figure out what it is. Then I try to express that idea more clearly.

Expressiveness to me includes meaningful names, and I am likely to change the names of things several times before I settle in. With modern coding tools such as Eclipse, renaming is quite inexpensive, so it doesn’t trouble me to change. Expressiveness goes beyond names, however. I also look at whether an object or method is doing more than one thing. If it’s an object, it probably needs to be broken into two or more objects. If it’s a method, I will always use the Extract Method refactoring on it, resulting in one method that says more clearly what it does, and some submethods saying how it is done.

Duplication and expressiveness take me a very long way into what I consider clean code, and improving dirty code with just these two things in mind can make a huge difference. There is, however, one other thing that I’m aware of doing, which is a bit harder to explain.

After years of doing this work, it seems to me that all programs are made up of very similar elements. One example is “find things in a collection.” Whether we have a database of employee records, or a hash map of keys and values, or an array of items of some kind, we often find ourselves wanting a particular item from that collection. When I find that happening, I will often wrap the particular implementation in a more abstract method or class. That gives me a couple of interesting advantages.

I can implement the functionality now with something simple, say a hash map, but since now all the references to that search are covered by my little abstraction, I can change the implementation any time I want. I can go forward quickly while preserving my ability to change later.

In addition, the collection abstraction often calls my attention to what’s “really” going on, and keeps me from running down the path of implementing arbitrary collection behavior when all I really need is a few fairly simple ways of finding what I want.

Reduced duplication, high expressiveness, and early building of simple abstractions. That’s what makes clean code for me.

Here, in a few short paragraphs, Ron has summarized the contents of this book. No duplication, one thing, expressiveness, tiny abstractions. Everything is there.

Ward Cunningham, inventor of Wiki, inventor of Fit, coinventor of eXtreme Programming. Motive force behind Design Patterns. Smalltalk and OO thought leader. The godfather of all those who care about code.

[image: Image]

You know you are working on clean code when each routine you read turns out to be pretty much what you expected. You can call it beautiful code when the code also makes it look like the language was made for the problem.

Statements like this are characteristic of Ward. You read it, nod your head, and then go on to the next topic. It sounds so reasonable, so obvious, that it barely registers as something profound. You might think it was pretty much what you expected. But let’s take a closer look.

“… pretty much what you expected.” When was the last time you saw a module that was pretty much what you expected? Isn’t it more likely that the modules you look at will be puzzling, complicated, tangled? Isn’t misdirection the rule? Aren’t you used to flailing about trying to grab and hold the threads of reasoning that spew forth from the whole system and weave their way through the module you are reading? When was the last time you read through some code and nodded your head the way you might have nodded your head at Ward’s statement?

Ward expects that when you read clean code you won’t be surprised at all. Indeed, you won’t even expend much effort. You will read it, and it will be pretty much what you expected. It will be obvious, simple, and compelling. Each module will set the stage for the next. Each tells you how the next will be written. Programs that are that clean are so profoundly well written that you don’t even notice it. The designer makes it look ridiculously simple like all exceptional designs.

And what about Ward’s notion of beauty? We’ve all railed against the fact that our languages weren’t designed for our problems. But Ward’s statement puts the onus back on us. He says that beautiful code makes the language look like it was made for the problem! So it’s our responsibility to make the language look simple! Language bigots everywhere, beware! It is not the language that makes programs appear simple. It is the programmer that make the language appear simple!

Schools of Thought

What about me (Uncle Bob)? What do I think clean code is? This book will tell you, in hideous detail, what I and my compatriots think about clean code. We will tell you what we think makes a clean variable name, a clean function, a clean class, etc. We will present these opinions as absolutes, and we will not apologize for our stridence. To us, at this point in our careers, they are absolutes. They are our school of thought about clean code.

[image: Image]

Martial artists do not all agree about the best martial art, or the best technique within a martial art. Often master martial artists will form their own schools of thought and gather students to learn from them. So we see Gracie Jiu Jistu, founded and taught by the Gracie family in Brazil. We see Hakkoryu Jiu Jistu, founded and taught by Okuyama Ryuho in Tokyo. We see Jeet Kune Do, founded and taught by Bruce Lee in the United States.

Students of these approaches immerse themselves in the teachings of the founder. They dedicate themselves to learn what that particular master teaches, often to the exclusion of any other master’s teaching. Later, as the students grow in their art, they may become the student of a different master so they can broaden their knowledge and practice. Some eventually go on to refine their skills, discovering new techniques and founding their own schools.

None of these different schools is absolutely right. Yet within a particular school we act as though the teachings and techniques are right. After all, there is a right way to practice Hakkoryu Jiu Jitsu, or Jeet Kune Do. But this rightness within a school does not invalidate the teachings of a different school.

Consider this book a description of the Object Mentor School of Clean Code. The techniques and teachings within are the way that we practice our art. We are willing to claim that if you follow these teachings, you will enjoy the benefits that we have enjoyed, and you will learn to write code that is clean and professional. But don’t make the mistake of thinking that we are somehow “right” in any absolute sense. There are other schools and other masters that have just as much claim to professionalism as we. It would behoove you to learn from them as well.

Indeed, many of the recommendations in this book are controversial. You will probably not agree with all of them. You might violently disagree with some of them. That’s fine. We can’t claim final authority. On the other hand, the recommendations in this book are things that we have thought long and hard about. We have learned them through decades of experience and repeated trial and error. So whether you agree or disagree, it would be a shame if you did not see, and respect, our point of view.

We Are Authors

The @author field of a Javadoc tells us who we are. We are authors. And one thing about authors is that they have readers. Indeed, authors are responsible for communicating well with their readers. The next time you write a line of code, remember you are an author, writing for readers who will judge your effort.

You might ask: How much is code really read? Doesn’t most of the effort go into writing it?

Have you ever played back an edit session? In the 80s and 90s we had editors like Emacs that kept track of every keystroke. You could work for an hour and then play back your whole edit session like a high-speed movie. When I did this, the results were fascinating.

The vast majority of the playback was scrolling and navigating to other modules!

Bob enters the module.
He scrolls down to the function needing change.
He pauses, considering his options.
Oh, he’s scrolling up to the top of the module to check the initialization of a variable.
Now he scrolls back down and begins to type.
Ooops, he’s erasing what he typed!
He types it again.
He erases it again!
He types half of something else but then erases that!
He scrolls down to another function that calls the function he’s changing to see how it is called.
He scrolls back up and types the same code he just erased.
He pauses.
He erases that code again!
He pops up another window and looks at a subclass. Is that function overridden?

…

You get the drift. Indeed, the ratio of time spent reading vs. writing is well over 10:1. We are constantly reading old code as part of the effort to write new code.

Because this ratio is so high, we want the reading of code to be easy, even if it makes the writing harder. Of course there’s no way to write code without reading it, so making it easy to read actually makes it easier to write.

There is no escape from this logic. You cannot write code if you cannot read the surrounding code. The code you are trying to write today will be hard or easy to write depending on how hard or easy the surrounding code is to read. So if you want to go fast, if you want to get done quickly, if you want your code to be easy to write, make it easy to read.

The Boy Scout Rule

It’s not enough to write the code well. The code has to be kept clean over time. We’ve all seen code rot and degrade as time passes. So we must take an active role in preventing this degradation.

The Boy Scouts of America have a simple rule that we can apply to our profession.

Leave the campground cleaner than you found it.5

5. This was adapted from Robert Stephenson Smyth Baden-Powell’s farewell message to the Scouts: “Try and leave this world a little better than you found it…”

If we all checked-in our code a little cleaner than when we checked it out, the code simply could not rot. The cleanup doesn’t have to be something big. Change one variable name for the better, break up one function that’s a little too large, eliminate one small bit of duplication, clean up one composite if statement.

Can you imagine working on a project where the code simply got better as time passed? Do you believe that any other option is professional? Indeed, isn’t continuous improvement an intrinsic part of professionalism?

Prequel and Principles

In many ways this book is a “prequel” to a book I wrote in 2002 entitled Agile Software Development: Principles, Patterns, and Practices (PPP). The PPP book concerns itself with the principles of object-oriented design, and many of the practices used by professional developers. If you have not read PPP, then you may find that it continues the story told by this book. If you have already read it, then you’ll find many of the sentiments of that book echoed in this one at the level of code.

In this book you will find sporadic references to various principles of design. These include the Single Responsibility Principle (SRP), the Open Closed Principle (OCP), and the Dependency Inversion Principle (DIP) among others. These principles are described in depth in PPP.

Conclusion

Books on art don’t promise to make you an artist. All they can do is give you some of the tools, techniques, and thought processes that other artists have used. So too this book cannot promise to make you a good programmer. It cannot promise to give you “code-sense.” All it can do is show you the thought processes of good programmers and the tricks, techniques, and tools that they use.

Just like a book on art, this book will be full of details. There will be lots of code. You’ll see good code and you’ll see bad code. You’ll see bad code transformed into good code. You’ll see lists of heuristics, disciplines, and techniques. You’ll see example after example. After that, it’s up to you.

Remember the old joke about the concert violinist who got lost on his way to a performance? He stopped an old man on the corner and asked him how to get to Carnegie Hall. The old man looked at the violinist and the violin tucked under his arm, and said: “Practice, son. Practice!”

Bibliography

[Beck07]: Implementation Patterns, Kent Beck, Addison-Wesley, 2007.

[Knuth92]: Literate Programming, Donald E. Knuth, Center for the Study of Language and Information, Leland Stanford Junior University, 1992.

2
Meaningful Names

by Tim Ottinger

[image: Image]

Introduction

Names are everywhere in software. We name our variables, our functions, our arguments, classes, and packages. We name our source files and the directories that contain them. We name our jar files and war files and ear files. We name and name and name. Because we do so much of it, we’d better do it well. What follows are some simple rules for creating good names.

Use Intention-Revealing Names

It is easy to say that names should reveal intent. What we want to impress upon you is that we are serious about this. Choosing good names takes time but saves more than it takes. So take care with your names and change them when you find better ones. Everyone who reads your code (including you) will be happier if you do.

The name of a variable, function, or class, should answer all the big questions. It should tell you why it exists, what it does, and how it is used. If a name requires a comment, then the name does not reveal its intent.

 int d; // elapsed time in days

The name d reveals nothing. It does not evoke a sense of elapsed time, nor of days. We should choose a name that specifies what is being measured and the unit of that measurement:

 int elapsedTimeInDays;
 int daysSinceCreation;
 int daysSinceModification;
 int fileAgeInDays;

Choosing names that reveal intent can make it much easier to understand and change code. What is the purpose of this code?

 public List<int[]> getThem() {
 List<int[]> list1 = new ArrayList<int[]>();
 for (int[] x : theList)
 if (x[0] == 4)
 list1.add(x);
 return list1;
 }

Why is it hard to tell what this code is doing? There are no complex expressions. Spacing and indentation are reasonable. There are only three variables and two constants mentioned. There aren’t even any fancy classes or polymorphic methods, just a list of arrays (or so it seems).

The problem isn’t the simplicity of the code but the implicity of the code (to coin a phrase): the degree to which the context is not explicit in the code itself. The code implicitly requires that we know the answers to questions such as:

1. What kinds of things are in theList?

2. What is the significance of the zeroth subscript of an item in theList?

3. What is the significance of the value 4?

4. How would I use the list being returned?

The answers to these questions are not present in the code sample, but they could have been. Say that we’re working in a mine sweeper game. We find that the board is a list of cells called theList. Let’s rename that to gameBoard.

Each cell on the board is represented by a simple array. We further find that the zeroth subscript is the location of a status value and that a status value of 4 means “flagged.” Just by giving these concepts names we can improve the code considerably:

 public List<int[]> getFlaggedCells() {
 List<int[]> flaggedCells = new ArrayList<int[]>();
 for (int[] cell : gameBoard)
 if (cell[STATUS_VALUE] == FLAGGED)
 flaggedCells.add(cell);
 return flaggedCells;
 }

Notice that the simplicity of the code has not changed. It still has exactly the same number of operators and constants, with exactly the same number of nesting levels. But the code has become much more explicit.

We can go further and write a simple class for cells instead of using an array of ints. It can include an intention-revealing function (call it isFlagged) to hide the magic numbers. It results in a new version of the function:

 public List<Cell> getFlaggedCells() {
 List<Cell> flaggedCells = new ArrayList<Cell>();
 for (Cell cell : gameBoard)
 if (cell.isFlagged())
 flaggedCells.add(cell);
 return flaggedCells;
 }

With these simple name changes, it’s not difficult to understand what’s going on. This is the power of choosing good names.

Avoid Disinformation

Programmers must avoid leaving false clues that obscure the meaning of code. We should avoid words whose entrenched meanings vary from our intended meaning. For example, hp, aix, and sco would be poor variable names because they are the names of Unix platforms or variants. Even if you are coding a hypotenuse and hp looks like a good abbreviation, it could be disinformative.

Do not refer to a grouping of accounts as an accountList unless it’s actually a List. The word list means something specific to programmers. If the container holding the accounts is not actually a List, it may lead to false conclusions.1 So accountGroup or bunchOfAccounts or just plain accounts would be better.

1. As we’ll see later on, even if the container is a List, it’s probably better not to encode the container type into the name.

Beware of using names which vary in small ways. How long does it take to spot the subtle difference between a XYZControllerForEfficientHandlingOfStrings in one module and, somewhere a little more distant, XYZControllerForEfficientStorageOfStrings? The words have frightfully similar shapes.

Spelling similar concepts similarly is information. Using inconsistent spellings is disinformation. With modern Java environments we enjoy automatic code completion. We write a few characters of a name and press some hotkey combination (if that) and are rewarded with a list of possible completions for that name. It is very helpful if names for very similar things sort together alphabetically and if the differences are very obvious, because the developer is likely to pick an object by name without seeing your copious comments or even the list of methods supplied by that class.

A truly awful example of disinformative names would be the use of lower-case L or uppercase O as variable names, especially in combination. The problem, of course, is that they look almost entirely like the constants one and zero, respectively.

 int a = l;
 if (O == l)
 a = O1;
 else
 l = 01;

The reader may think this a contrivance, but we have examined code where such things were abundant. In one case the author of the code suggested using a different font so that the differences were more obvious, a solution that would have to be passed down to all future developers as oral tradition or in a written document. The problem is conquered with finality and without creating new work products by a simple renaming.

Make Meaningful Distinctions

[image: Image]

Programmers create problems for themselves when they write code solely to satisfy a compiler or interpreter. For example, because you can’t use the same name to refer to two different things in the same scope, you might be tempted to change one name in an arbitrary way. Sometimes this is done by misspelling one, leading to the surprising situation where correcting spelling errors leads to an inability to compile.2

2. Consider, for example, the truly hideous practice of creating a variable named klass just because the name class was used for something else.

It is not sufficient to add number series or noise words, even though the compiler is satisfied. If names must be different, then they should also mean something different.

Number-series naming (a1, a2, .. aN) is the opposite of intentional naming. Such names are not disinformative—they are noninformative; they provide no clue to the author’s intention. Consider:

 public static void copyChars(char a1[], char a2[]) {
 for (int i = 0; i < a1.length; i++) {
 a2[i] = a1[i];
 }
 }

This function reads much better when source and destination are used for the argument names.

Noise words are another meaningless distinction. Imagine that you have a Product class. If you have another called ProductInfo or ProductData, you have made the names different without making them mean anything different. Info and Data are indistinct noise words like a, an, and the.

Note that there is nothing wrong with using prefix conventions like a and the so long as they make a meaningful distinction. For example you might use a for all local variables and the for all function arguments.3 The problem comes in when you decide to call a variable theZork because you already have another variable named zork.

3. Uncle Bob used to do this in C++ but has given up the practice because modern IDEs make it unnecessary.

Noise words are redundant. The word variable should never appear in a variable name. The word table should never appear in a table name. How is NameString better than Name? Would a Name ever be a floating point number? If so, it breaks an earlier rule about disinformation. Imagine finding one class named Customer and another named CustomerObject. What should you understand as the distinction? Which one will represent the best path to a customer’s payment history?

There is an application we know of where this is illustrated. we’ve changed the names to protect the guilty, but here’s the exact form of the error:

 getActiveAccount();
 getActiveAccounts();
 getActiveAccountInfo();

How are the programmers in this project supposed to know which of these functions to call?

In the absence of specific conventions, the variable moneyAmount is indistinguishable from money, customerInfo is indistinguishable from customer, accountData is indistinguishable from account, and theMessage is indistinguishable from message. Distinguish names in such a way that the reader knows what the differences offer.

Use Pronounceable Names

Humans are good at words. A significant part of our brains is dedicated to the concept of words. And words are, by definition, pronounceable. It would be a shame not to take advantage of that huge portion of our brains that has evolved to deal with spoken language. So make your names pronounceable.

If you can’t pronounce it, you can’t discuss it without sounding like an idiot. “Well, over here on the bee cee arr three cee enn tee we have a pee ess zee kyew int, see?” This matters because programming is a social activity.

A company I know has genymdhms (generation date, year, month, day, hour, minute, and second) so they walked around saying “gen why emm dee aich emm ess”. I have an annoying habit of pronouncing everything as written, so I started saying “gen-yah-muddahims.” It later was being called this by a host of designers and analysts, and we still sounded silly. But we were in on the joke, so it was fun. Fun or not, we were tolerating poor naming. New developers had to have the variables explained to them, and then they spoke about it in silly made-up words instead of using proper English terms. Compare

 class DtaRcrd102 {
 private Date genymdhms;
 private Date modymdhms;
 private final String pszqint = ”102”;
 /* … */
 };

to

 class Customer {
 private Date generationTimestamp;
 private Date modificationTimestamp;;
 private final String recordId = ”102”;
 /* … */
 };

Intelligent conversation is now possible: “Hey, Mikey, take a look at this record! The generation timestamp is set to tomorrow’s date! How can that be?”

Use Searchable Names

Single-letter names and numeric constants have a particular problem in that they are not easy to locate across a body of text.

One might easily grep for MAX_CLASSES_PER_STUDENT, but the number 7 could be more troublesome. Searches may turn up the digit as part of file names, other constant definitions, and in various expressions where the value is used with different intent. It is even worse when a constant is a long number and someone might have transposed digits, thereby creating a bug while simultaneously evading the programmer’s search.

Likewise, the name e is a poor choice for any variable for which a programmer might need to search. It is the most common letter in the English language and likely to show up in every passage of text in every program. In this regard, longer names trump shorter names, and any searchable name trumps a constant in code.

My personal preference is that single-letter names can ONLY be used as local variables inside short methods. The length of a name should correspond to the size of its scope [N5]. If a variable or constant might be seen or used in multiple places in a body of code, it is imperative to give it a search-friendly name. Once again compare

 for (int j=0; j<34; j++) {
 s += (t[j]*4)/5;
 }

to

 int realDaysPerIdealDay = 4;
 const int WORK_DAYS_PER_WEEK = 5;
 int sum = 0;
 for (int j=0; j < NUMBER_OF_TASKS; j++) {
 int realTaskDays = taskEstimate[j] * realDaysPerIdealDay;
 int realTaskWeeks = (realdays / WORK_DAYS_PER_WEEK);
 sum += realTaskWeeks;
 }

Note that sum, above, is not a particularly useful name but at least is searchable. The intentionally named code makes for a longer function, but consider how much easier it will be to find WORK_DAYS_PER_WEEK than to find all the places where 5 was used and filter the list down to just the instances with the intended meaning.

Avoid Encodings

We have enough encodings to deal with without adding more to our burden. Encoding type or scope information into names simply adds an extra burden of deciphering. It hardly seems reasonable to require each new employee to learn yet another encoding “language” in addition to learning the (usually considerable) body of code that they’ll be working in. It is an unnecessary mental burden when trying to solve a problem. Encoded names are seldom pronounceable and are easy to mis-type.

Hungarian Notation

In days of old, when we worked in name-length-challenged languages, we violated this rule out of necessity, and with regret. Fortran forced encodings by making the first letter a code for the type. Early versions of BASIC allowed only a letter plus one digit. Hungarian Notation (HN) took this to a whole new level.

HN was considered to be pretty important back in the Windows C API, when everything was an integer handle or a long pointer or a void pointer, or one of several implementations of “string” (with different uses and attributes). The compiler did not check types in those days, so the programmers needed a crutch to help them remember the types.

In modern languages we have much richer type systems, and the compilers remember and enforce the types. What’s more, there is a trend toward smaller classes and shorter functions so that people can usually see the point of declaration of each variable they’re using.

Java programmers don’t need type encoding. Objects are strongly typed, and editing environments have advanced such that they detect a type error long before you can run a compile! So nowadays HN and other forms of type encoding are simply impediments. They make it harder to change the name or type of a variable, function, or class. They make it harder to read the code. And they create the possibility that the encoding system will mislead the reader.

 PhoneNumber phoneString;
 // name not changed when type changed!

Member Prefixes

You also don’t need to prefix member variables with m_ anymore. Your classes and functions should be small enough that you don’t need them. And you should be using an editing environment that highlights or colorizes members to make them distinct.

 public class Part {
 private String m_dsc; // The textual description
 void setName(String name) {
 m_dsc = name;
 }
 }

 public class Part {
 String description;
 void setDescription(String description) {
 this.description = description;
 }
 }

Besides, people quickly learn to ignore the prefix (or suffix) to see the meaningful part of the name. The more we read the code, the less we see the prefixes. Eventually the prefixes become unseen clutter and a marker of older code.

Interfaces and Implementations

These are sometimes a special case for encodings. For example, say you are building an ABSTRACT FACTORY for the creation of shapes. This factory will be an interface and will be implemented by a concrete class. What should you name them? IShapeFactory and ShapeFactory? I prefer to leave interfaces unadorned. The preceding I, so common in today’s legacy wads, is a distraction at best and too much information at worst. I don’t want my users knowing that I’m handing them an interface. I just want them to know that it’s a ShapeFactory. So if I must encode either the interface or the implementation, I choose the implementation. Calling it ShapeFactoryImp, or even the hideous CShapeFactory, is preferable to encoding the interface.

Avoid Mental Mapping

Readers shouldn’t have to mentally translate your names into other names they already know. This problem generally arises from a choice to use neither problem domain terms nor solution domain terms.

This is a problem with single-letter variable names. Certainly a loop counter may be named i or j or k (though never l!) if its scope is very small and no other names can conflict with it. This is because those single-letter names for loop counters are traditional. However, in most other contexts a single-letter name is a poor choice; it’s just a place holder that the reader must mentally map to the actual concept. There can be no worse reason for using the name c than because a and b were already taken.

In general programmers are pretty smart people. Smart people sometimes like to show off their smarts by demonstrating their mental juggling abilities. After all, if you can reliably remember that r is the lower-cased version of the url with the host and scheme removed, then you must clearly be very smart.

One difference between a smart programmer and a professional programmer is that the professional understands that clarity is king. Professionals use their powers for good and write code that others can understand.

Class Names

Classes and objects should have noun or noun phrase names like Customer, WikiPage, Account, and AddressParser. Avoid words like Manager, Processor, Data, or Info in the name of a class. A class name should not be a verb.

Method Names

Methods should have verb or verb phrase names like postPayment, deletePage, or save. Accessors, mutators, and predicates should be named for their value and prefixed with get, set, and is according to the javabean standard.4

4. http://java.sun.com/products/javabeans/docs/spec.html

 string name = employee.getName();
 customer.setName(”mike”);
 if (paycheck.isPosted())…

When constructors are overloaded, use static factory methods with names that describe the arguments. For example,

 Complex fulcrumPoint = Complex.FromRealNumber(23.0);

is generally better than

 Complex fulcrumPoint = new Complex(23.0);

Consider enforcing their use by making the corresponding constructors private.

Don’t Be Cute

If names are too clever, they will be memorable only to people who share the author’s sense of humor, and only as long as these people remember the joke. Will they know what the function named HolyHandGrenade is supposed to do? Sure, it’s cute, but maybe in this case DeleteItems might be a better name. Choose clarity over entertainment value.

[image: Image]

Cuteness in code often appears in the form of colloquialisms or slang. For example, don’t use the name whack() to mean kill(). Don’t tell little culture-dependent jokes like eatMyShorts() to mean abort().

Say what you mean. Mean what you say.

Pick One Word per Concept

Pick one word for one abstract concept and stick with it. For instance, it’s confusing to have fetch, retrieve, and get as equivalent methods of different classes. How do you remember which method name goes with which class? Sadly, you often have to remember which company, group, or individual wrote the library or class in order to remember which term was used. Otherwise, you spend an awful lot of time browsing through headers and previous code samples.

Modern editing environments like Eclipse and IntelliJ-provide context-sensitive clues, such as the list of methods you can call on a given object. But note that the list doesn’t usually give you the comments you wrote around your function names and parameter lists. You are lucky if it gives the parameter names from function declarations. The function names have to stand alone, and they have to be consistent in order for you to pick the correct method without any additional exploration.

Likewise, it’s confusing to have a controller and a manager and a driver in the same code base. What is the essential difference between a DeviceManager and a Protocol-Controller? Why are both not controllers or both not managers? Are they both Drivers really? The name leads you to expect two objects that have very different type as well as having different classes.

A consistent lexicon is a great boon to the programmers who must use your code.

Don’t Pun

Avoid using the same word for two purposes. Using the same term for two different ideas is essentially a pun.

If you follow the “one word per concept” rule, you could end up with many classes that have, for example, an add method. As long as the parameter lists and return values of the various add methods are semantically equivalent, all is well.

However one might decide to use the word add for “consistency” when he or she is not in fact adding in the same sense. Let’s say we have many classes where add will create a new value by adding or concatenating two existing values. Now let’s say we are writing a new class that has a method that puts its single parameter into a collection. Should we call this method add? It might seem consistent because we have so many other add methods, but in this case, the semantics are different, so we should use a name like insert or append instead. To call the new method add would be a pun.

Our goal, as authors, is to make our code as easy as possible to understand. We want our code to be a quick skim, not an intense study. We want to use the popular paperback model whereby the author is responsible for making himself clear and not the academic model where it is the scholar’s job to dig the meaning out of the paper.

Use Solution Domain Names

Remember that the people who read your code will be programmers. So go ahead and use computer science (CS) terms, algorithm names, pattern names, math terms, and so forth. It is not wise to draw every name from the problem domain because we don’t want our coworkers to have to run back and forth to the customer asking what every name means when they already know the concept by a different name.

The name AccountVisitor means a great deal to a programmer who is familiar with the VISITOR pattern. What programmer would not know what a JobQueue was? There are lots of very technical things that programmers have to do. Choosing technical names for those things is usually the most appropriate course.

Use Problem Domain Names

When there is no “programmer-eese” for what you’re doing, use the name from the problem domain. At least the programmer who maintains your code can ask a domain expert what it means.

Separating solution and problem domain concepts is part of the job of a good programmer and designer. The code that has more to do with problem domain concepts should have names drawn from the problem domain.

Add Meaningful Context

There are a few names which are meaningful in and of themselves—most are not. Instead, you need to place names in context for your reader by enclosing them in well-named classes, functions, or namespaces. When all else fails, then prefixing the name may be necessary as a last resort.

Imagine that you have variables named firstName, lastName, street, houseNumber, city, state, and zipcode. Taken together it’s pretty clear that they form an address. But what if you just saw the state variable being used alone in a method? Would you automatically infer that it was part of an address?

You can add context by using prefixes: addrFirstName, addrLastName, addrState, and so on. At least readers will understand that these variables are part of a larger structure. Of course, a better solution is to create a class named Address. Then, even the compiler knows that the variables belong to a bigger concept.

Consider the method in Listing 2-1. Do the variables need a more meaningful context? The function name provides only part of the context; the algorithm provides the rest. Once you read through the function, you see that the three variables, number, verb, and pluralModifier, are part of the “guess statistics” message. Unfortunately, the context must be inferred. When you first look at the method, the meanings of the variables are opaque.

Listing 2-1 Variables with unclear context.

 private void printGuessStatistics(char candidate, int count) { String number;
 String verb;
 String pluralModifier;
 if (count == 0) {
 number = ”no”;
 verb = ”are”;
 pluralModifier = ”s”;
 } else if (count == 1) {
 number = ”1”;
 verb = ”is”;
 pluralModifier = ””;
 } else {
 number = Integer.toString(count);
 verb = ”are”;
 pluralModifier = ”s”;
 }
 String guessMessage = String.format(
 ”There %s %s %s%s”, verb, number, candidate, pluralModifier
);
 print(guessMessage);
 }

The function is a bit too long and the variables are used throughout. To split the function into smaller pieces we need to create a GuessStatisticsMessage class and make the three variables fields of this class. This provides a clear context for the three variables. They are definitively part of the GuessStatisticsMessage. The improvement of context also allows the algorithm to be made much cleaner by breaking it into many smaller functions. (See Listing 2-2.)

Listing 2-2 Variables have a context.

 public class GuessStatisticsMessage {
 private String number;
 private String verb;
 private String pluralModifier;

 public String make(char candidate, int count) {
 createPluralDependentMessageParts(count);
 return String.format(
 "There %s %s %s%s",
 verb, number, candidate, pluralModifier);
 }

 private void createPluralDependentMessageParts(int count) {
 if (count == 0) {
 thereAreNoLetters();
 } else if (count == 1) {
 thereIsOneLetter();
 } else {
 thereAreManyLetters(count);
 }
 }

 private void thereAreManyLetters(int count) {
 number = Integer.toString(count);
 verb = "are";
 pluralModifier = "s";
 }

 private void thereIsOneLetter() {
 number = "1";
 verb = "is";
 pluralModifier = "";
 }

 private void thereAreNoLetters() {
 number = "no";
 verb = "are";
 pluralModifier = "s";
 }
 }

Don’t Add Gratuitous Context

In an imaginary application called “Gas Station Deluxe,” it is a bad idea to prefix every class with GSD. Frankly, you are working against your tools. You type G and press the completion key and are rewarded with a mile-long list of every class in the system. Is that wise? Why make it hard for the IDE to help you?

Likewise, say you invented a MailingAddress class in GSD’s accounting module, and you named it GSDAccountAddress. Later, you need a mailing address for your customer contact application. Do you use GSDAccountAddress? Does it sound like the right name? Ten of 17 characters are redundant or irrelevant.

Shorter names are generally better than longer ones, so long as they are clear. Add no more context to a name than is necessary.

The names accountAddress and customerAddress are fine names for instances of the class Address but could be poor names for classes. Address is a fine name for a class. If I need to differentiate between MAC addresses, port addresses, and Web addresses, I might consider PostalAddress, MAC, and URI. The resulting names are more precise, which is the point of all naming.

Final Words

The hardest thing about choosing good names is that it requires good descriptive skills and a shared cultural background. This is a teaching issue rather than a technical, business, or management issue. As a result many people in this field don’t learn to do it very well.

People are also afraid of renaming things for fear that some other developers will object. We do not share that fear and find that we are actually grateful when names change (for the better). Most of the time we don’t really memorize the names of classes and methods. We use the modern tools to deal with details like that so we can focus on whether the code reads like paragraphs and sentences, or at least like tables and data structure (a sentence isn’t always the best way to display data). You will probably end up surprising someone when you rename, just like you might with any other code improvement. Don’t let it stop you in your tracks.

Follow some of these rules and see whether you don’t improve the readability of your code. If you are maintaining someone else’s code, use refactoring tools to help resolve these problems. It will pay off in the short term and continue to pay in the long run.

3
Functions

[image: Image]

In the early days of programming we composed our systems of routines and subroutines. Then, in the era of Fortran and PL/1 we composed our systems of programs, subprograms, and functions. Nowadays only the function survives from those early days. Functions are the first line of organization in any program. Writing them well is the topic of this chapter.

Consider the code in Listing 3-1. It’s hard to find a long function in FitNesse,1 but after a bit of searching I came across this one. Not only is it long, but it’s got duplicated code, lots of odd strings, and many strange and inobvious data types and APIs. See how much sense you can make of it in the next three minutes.

1. An open-source testing tool. www.fitnese.org

Listing 3-1 HtmlUtil.java (FitNesse 20070619)

 public static String testableHtml(
 PageData pageData,
 boolean includeSuiteSetup
) throws Exception {
 WikiPage wikiPage = pageData.getWikiPage();
 StringBuffer buffer = new StringBuffer();
 if (pageData.hasAttribute("Test")) {
 if (includeSuiteSetup) {
 WikiPage suiteSetup =
 PageCrawlerImpl.getInheritedPage(
 SuiteResponder.SUITE_SETUP_NAME, wikiPage
);
 if (suiteSetup != null) {
 WikiPagePath pagePath =
 suiteSetup.getPageCrawler().getFullPath(suiteSetup);
 String pagePathName = PathParser.render(pagePath);
 buffer.append("!include -setup .")
 .append(pagePathName)
 .append("\n");
 }
 }
 WikiPage setup =
 PageCrawlerImpl.getInheritedPage("SetUp", wikiPage);
 if (setup != null) {
 WikiPagePath setupPath =
 wikiPage.getPageCrawler().getFullPath(setup);
 String setupPathName = PathParser.render(setupPath);
 buffer.append("!include -setup .")
 .append(setupPathName)
 .append("\n");
 }
 }
 buffer.append(pageData.getContent());
 if (pageData.hasAttribute("Test")) {
 WikiPage teardown =
 PageCrawlerImpl.getInheritedPage("TearDown", wikiPage);
 if (teardown != null) {
 WikiPagePath tearDownPath =
 wikiPage.getPageCrawler().getFullPath(teardown);
 String tearDownPathName = PathParser.render(tearDownPath);
 buffer.append("\n")
 .append("!include -teardown .")
 .append(tearDownPathName)
 .append("\n");
 }
 if (includeSuiteSetup) {
 WikiPage suiteTeardown =
 PageCrawlerImpl.getInheritedPage(
 SuiteResponder.SUITE_TEARDOWN_NAME,
 wikiPage
);
 if (suiteTeardown != null) {
 WikiPagePath pagePath =
 suiteTeardown.getPageCrawler().getFullPath (suiteTeardown);
 String pagePathName = PathParser.render(pagePath);
 buffer.append("!include -teardown .")
 .append(pagePathName)
 .append("\n");
 }
 }
 }
 pageData.setContent(buffer.toString());
 return pageData.getHtml();
 }

Do you understand the function after three minutes of study? Probably not. There’s too much going on in there at too many different levels of abstraction. There are strange strings and odd function calls mixed in with doubly nested if statements controlled by flags.

However, with just a few simple method extractions, some renaming, and a little restructuring, I was able to capture the intent of the function in the nine lines of Listing 3-2. See whether you can understand that in the next 3 minutes.

Listing 3-2 HtmlUtil.java (refactored)

 public static String renderPageWithSetupsAndTeardowns(
 PageData pageData, boolean isSuite
) throws Exception {
 boolean isTestPage = pageData.hasAttribute("Test");
 if (isTestPage) {
 WikiPage testPage = pageData.getWikiPage();
 StringBuffer newPageContent = new StringBuffer();
 includeSetupPages(testPage, newPageContent, isSuite);
 newPageContent.append(pageData.getContent());
 includeTeardownPages(testPage, newPageContent, isSuite);
 pageData.setContent(newPageContent.toString());
 }

 return pageData.getHtml();
 }

Unless you are a student of FitNesse, you probably don’t understand all the details. Still, you probably understand that this function performs the inclusion of some setup and teardown pages into a test page and then renders that page into HTML. If you are familiar with JUnit,2 you probably realize that this function belongs to some kind of Web-based testing framework. And, of course, that is correct. Divining that information from Listing 3-2 is pretty easy, but it’s pretty well obscured by Listing 3-1.

2. An open-source unit-testing tool for Java. www.junit.org

So what is it that makes a function like Listing 3-2 easy to read and understand? How can we make a function communicate its intent? What attributes can we give our functions that will allow a casual reader to intuit the kind of program they live inside?

Small!

The first rule of functions is that they should be small. The second rule of functions is that they should be smaller than that. This is not an assertion that I can justify. I can’t provide any references to research that shows that very small functions are better. What I can tell you is that for nearly four decades I have written functions of all different sizes. I’ve written several nasty 3,000-line abominations. I’ve written scads of functions in the 100 to 300 line range. And I’ve written functions that were 20 to 30 lines long. What this experience has taught me, through long trial and error, is that functions should be very small.

In the eighties we used to say that a function should be no bigger than a screen-full. Of course we said that at a time when VT100 screens were 24 lines by 80 columns, and our editors used 4 lines for administrative purposes. Nowadays with a cranked-down font and a nice big monitor, you can fit 150 characters on a line and a 100 lines or more on a screen. Lines should not be 150 characters long. Functions should not be 100 lines long. Functions should hardly ever be 20 lines long.

How short should a function be? In 1999 I went to visit Kent Beck at his home in Oregon. We sat down and did some programming together. At one point he showed me a cute little Java/Swing program that he called Sparkle. It produced a visual effect on the screen very similar to the magic wand of the fairy godmother in the movie Cinderella. As you moved the mouse, the sparkles would drip from the cursor with a satisfying scintillation, falling to the bottom of the window through a simulated gravitational field. When Kent showed me the code, I was struck by how small all the functions were. I was used to functions in Swing programs that took up miles of vertical space. Every function in this program was just two, or three, or four lines long. Each was transparently obvious. Each told a story. And each led you to the next in a compelling order. That’s how short your functions should be!3

3. I asked Kent whether he still had a copy, but he was unable to find one. I searched all my old computers too, but to no avail. All that is left now is my memory of that program.

How short should your functions be? They should usually be shorter than Listing 3-2! Indeed, Listing 3-2 should really be shortened to Listing 3-3.

Listing 3-3 HtmlUtil.java (re-refactored)

 public static String renderPageWith
 SetupsAndTeardowns(
 PageData pageData, boolean isSuite) throws Exception {
 if (isTestPage(pageData))
 includeSetupAndTeardownPages(pageData, isSuite);
 return pageData.getHtml();
 }

Blocks and Indenting

This implies that the blocks within if statements, else statements, while statements, and so on should be one line long. Probably that line should be a function call. Not only does this keep the enclosing function small, but it also adds documentary value because the function called within the block can have a nicely descriptive name.

This also implies that functions should not be large enough to hold nested structures. Therefore, the indent level of a function should not be greater than one or two. This, of course, makes the functions easier to read and understand.

Do One Thing

It should be very clear that Listing 3-1 is doing lots more than one thing. It’s creating buffers, fetching pages, searching for inherited pages, rendering paths, appending arcane strings, and generating HTML, among other things. Listing 3-1 is very busy doing lots of different things. On the other hand, Listing 3-3 is doing one simple thing. It’s including setups and teardowns into test pages.

The following advice has appeared in one form or another for 30 years or more.

[image: Image]

FUNCTIONS SHOULD DO ONE THING. THEY SHOULD DO IT WELL. THEY SHOULD DO IT ONLY.

The problem with this statement is that it is hard to know what “one thing” is. Does Listing 3-3 do one thing? It’s easy to make the case that it’s doing three things:

1. Determining whether the page is a test page.

2. If so, including setups and teardowns.

3. Rendering the page in HTML.

So which is it? Is the function doing one thing or three things? Notice that the three steps of the function are one level of abstraction below the stated name of the function. We can describe the function by describing it as a brief TO4 paragraph:

4. The LOGO language used the keyword “TO” in the same way that Ruby and Python use “def.” So every function began with the word “TO.” This had an interesting effect on the way functions were designed.

TO RenderPageWithSetupsAndTeardowns, we check to see whether the page is a test page and if so, we include the setups and teardowns. In either case we render the page in HTML.

If a function does only those steps that are one level below the stated name of the function, then the function is doing one thing. After all, the reason we write functions is to decompose a larger concept (in other words, the name of the function) into a set of steps at the next level of abstraction.

It should be very clear that Listing 3-1 contains steps at many different levels of abstraction. So it is clearly doing more than one thing. Even Listing 3-2 has two levels of abstraction, as proved by our ability to shrink it down. But it would be very hard to meaningfully shrink Listing 3-3. We could extract the if statement into a function named includeSetupsAndTeardownsIfTestPage, but that simply restates the code without changing the level of abstraction.

So, another way to know that a function is doing more than “one thing” is if you can extract another function from it with a name that is not merely a restatement of its implementation [G34].

Sections within Functions

Look at Listing 4-7 on page 71. Notice that the generatePrimes function is divided into sections such as declarations, initializations, and sieve. This is an obvious symptom of doing more than one thing. Functions that do one thing cannot be reasonably divided into sections.

One Level of Abstraction per Function

In order to make sure our functions are doing “one thing,” we need to make sure that the statements within our function are all at the same level of abstraction. It is easy to see how Listing 3-1 violates this rule. There are concepts in there that are at a very high level of abstraction, such as getHtml(); others that are at an intermediate level of abstraction, such as: String pagePathName = PathParser.render(pagePath); and still others that are remarkably low level, such as: .append(”\n”).

Mixing levels of abstraction within a function is always confusing. Readers may not be able to tell whether a particular expression is an essential concept or a detail. Worse, like broken windows, once details are mixed with essential concepts, more and more details tend to accrete within the function.

Reading Code from Top to Bottom: The Stepdown Rule

We want the code to read like a top-down narrative.5 We want every function to be followed by those at the next level of abstraction so that we can read the program, descending one level of abstraction at a time as we read down the list of functions. I call this The Step-down Rule.

5. [KP78], p. 37.

To say this differently, we want to be able to read the program as though it were a set of TO paragraphs, each of which is describing the current level of abstraction and referencing subsequent TO paragraphs at the next level down.

To include the setups and teardowns, we include setups, then we include the test page content, and then we include the teardowns.

To include the setups, we include the suite setup if this is a suite, then we include the regular setup.

To include the suite setup, we search the parent hierarchy for the “SuiteSetUp” page and add an include statement with the path of that page.

To search the parent…

It turns out to be very difficult for programmers to learn to follow this rule and write functions that stay at a single level of abstraction. But learning this trick is also very important. It is the key to keeping functions short and making sure they do “one thing.” Making the code read like a top-down set of TO paragraphs is an effective technique for keeping the abstraction level consistent.

Take a look at Listing 3-7 at the end of this chapter. It shows the whole testableHtml function refactored according to the principles described here. Notice how each function introduces the next, and each function remains at a consistent level of abstraction.

Switch Statements

It’s hard to make a small switch statement.6 Even a switch statement with only two cases is larger than I’d like a single block or function to be. It’s also hard to make a switch statement that does one thing. By their nature, switch statements always do N things. Unfortunately we can’t always avoid switch statements, but we can make sure that each switch statement is buried in a low-level class and is never repeated. We do this, of course, with polymorphism.

6. And, of course, I include if/else chains in this.

Consider Listing 3-4. It shows just one of the operations that might depend on the type of employee.

Listing 3-4 Payroll.java

 public Money calculatePay(Employee e)
 throws InvalidEmployeeType {
 switch (e.type) {
 case COMMISSIONED:
 return calculateCommissionedPay(e);
 case HOURLY:
 return calculateHourlyPay(e);
 case SALARIED:
 return calculateSalariedPay(e);
 default:
 throw new InvalidEmployeeType(e.type);
 }
 }

There are several problems with this function. First, it’s large, and when new employee types are added, it will grow. Second, it very clearly does more than one thing. Third, it violates the Single Responsibility Principle7 (SRP) because there is more than one reason for it to change. Fourth, it violates the Open Closed Principle8 (OCP) because it must change whenever new types are added. But possibly the worst problem with this function is that there are an unlimited number of other functions that will have the same structure. For example we could have

7. a. http://en.wikipedia.org/wiki/Single_responsibility_principle

b. http://www.objectmentor.com/resources/articles/srp.pdf

8. a. http://en.wikipedia.org/wiki/Open/closed_principle

b. http://www.objectmentor.com/resources/articles/ocp.pdf

 isPayday(Employee e, Date date),

or

 deliverPay(Employee e, Money pay),

or a host of others. All of which would have the same deleterious structure.

The solution to this problem (see Listing 3-5) is to bury the switch statement in the basement of an ABSTRACT FACTORY,9 and never let anyone see it. The factory will use the switch statement to create appropriate instances of the derivatives of Employee, and the various functions, such as calculatePay, isPayday, and deliverPay, will be dispatched polymorphically through the Employee interface.

9. [GOF].

My general rule for switch statements is that they can be tolerated if they appear only once, are used to create polymorphic objects, and are hidden behind an inheritance relationship so that the rest of the system can’t see them [G23]. Of course every circumstance is unique, and there are times when I violate one or more parts of that rule.

Listing 3-5 Employee and Factory

 public abstract class Employee {
 public abstract boolean isPayday();
 public abstract Money calculatePay();
 public abstract void deliverPay(Money pay);
 }

 public interface EmployeeFactory {
 public Employee makeEmployee(EmployeeRecord r) throws InvalidEmployeeType;
 }

 public class EmployeeFactoryImpl implements
 EmployeeFactory {
 public Employee makeEmployee(EmployeeRecord r) throws InvalidEmployeeType {
 switch (r.type) {
 case COMMISSIONED:
 return new CommissionedEmployee(r) ;
 case HOURLY:
 return new HourlyEmployee(r);
 case SALARIED:
 return new SalariedEmploye(r);
 default:
 throw new InvalidEmployeeType(r.type);
 }
 }
 }

Use Descriptive Names

In Listing 3-7 I changed the name of our example function from testableHtml to SetupTeardownIncluder.render. This is a far better name because it better describes what the function does. I also gave each of the private methods an equally descriptive name such as isTestable or includeSetupAndTeardownPages. It is hard to overestimate the value of good names. Remember Ward’s principle: “You know you are working on clean code when each routine turns out to be pretty much what you expected.” Half the battle to achieving that principle is choosing good names for small functions that do one thing. The smaller and more focused a function is, the easier it is to choose a descriptive name.

Don’t be afraid to make a name long. A long descriptive name is better than a short enigmatic name. A long descriptive name is better than a long descriptive comment. Use a naming convention that allows multiple words to be easily read in the function names, and then make use of those multiple words to give the function a name that says what it does.

Don’t be afraid to spend time choosing a name. Indeed, you should try several different names and read the code with each in place. Modern IDEs like Eclipse or IntelliJ make it trivial to change names. Use one of those IDEs and experiment with different names until you find one that is as descriptive as you can make it.

Choosing descriptive names will clarify the design of the module in your mind and help you to improve it. It is not at all uncommon that hunting for a good name results in a favorable restructuring of the code.

Be consistent in your names. Use the same phrases, nouns, and verbs in the function names you choose for your modules. Consider, for example, the names includeSetup-AndTeardownPages, includeSetupPages, includeSuiteSetupPage, and includeSetupPage. The similar phraseology in those names allows the sequence to tell a story. Indeed, if I showed you just the sequence above, you’d ask yourself: “What happened to includeTeardownPages, includeSuiteTeardownPage, and includeTeardownPage?” How’s that for being “… pretty much what you expected.”

Function Arguments

The ideal number of arguments for a function is zero (niladic). Next comes one (monadic), followed closely by two (dyadic). Three arguments (triadic) should be avoided where possible. More than three (polyadic) requires very special justification—and then shouldn’t be used anyway.

[image: Image]

Arguments are hard. They take a lot of conceptual power. That’s why I got rid of almost all of them from the example. Consider, for instance, the StringBuffer in the example. We could have passed it around as an argument rather than making it an instance variable, but then our readers would have had to interpret it each time they saw it. When you are reading the story told by the module, includeSetupPage() is easier to understand than includeSetupPageInto(newPage-Content). The argument is at a different level of abstraction than the function name and forces you to know a detail (in other words, StringBuffer) that isn’t particularly important at that point.

Arguments are even harder from a testing point of view. Imagine the difficulty of writing all the test cases to ensure that all the various combinations of arguments work properly. If there are no arguments, this is trivial. If there’s one argument, it’s not too hard. With two arguments the problem gets a bit more challenging. With more than two arguments, testing every combination of appropriate values can be daunting.

Output arguments are harder to understand than input arguments. When we read a function, we are used to the idea of information going in to the function through arguments and out through the return value. We don’t usually expect information to be going out through the arguments. So output arguments often cause us to do a double-take.

One input argument is the next best thing to no arguments. SetupTeardown-Includer.render(pageData) is pretty easy to understand. Clearly we are going to render the data in the pageData object.

Common Monadic Forms

There are two very common reasons to pass a single argument into a function. You may be asking a question about that argument, as in boolean fileExists(“MyFile”). Or you may be operating on that argument, transforming it into something else and returning it. For example, InputStream fileOpen(“MyFile”) transforms a file name String into an InputStream return value. These two uses are what readers expect when they see a function. You should choose names that make the distinction clear, and always use the two forms in a consistent context. (See Command Query Separation below.)

A somewhat less common, but still very useful form for a single argument function, is an event. In this form there is an input argument but no output argument. The overall program is meant to interpret the function call as an event and use the argument to alter the state of the system, for example, void passwordAttemptFailedNtimes(int attempts). Use this form with care. It should be very clear to the reader that this is an event. Choose names and contexts carefully.

Try to avoid any monadic functions that don’t follow these forms, for example, void includeSetupPageInto(StringBuffer pageText). Using an output argument instead of a return value for a transformation is confusing. If a function is going to transform its input argument, the transformation should appear as the return value. Indeed, StringBuffer transform(StringBuffer in) is better than void transform-(StringBuffer out), even if the implementation in the first case simply returns the input argument. At least it still follows the form of a transformation.

Flag Arguments

Flag arguments are ugly. Passing a boolean into a function is a truly terrible practice. It immediately complicates the signature of the method, loudly proclaiming that this function does more than one thing. It does one thing if the flag is true and another if the flag is false!

In Listing 3-7 we had no choice because the callers were already passing that flag in, and I wanted to limit the scope of refactoring to the function and below. Still, the method call render(true) is just plain confusing to a poor reader. Mousing over the call and seeing render(boolean isSuite) helps a little, but not that much. We should have split the function into two: renderForSuite() and renderForSingleTest().

Dyadic Functions

A function with two arguments is harder to understand than a monadic function. For example, writeField(name) is easier to understand than writeField(output-Stream, name).10 Though the meaning of both is clear, the first glides past the eye, easily depositing its meaning. The second requires a short pause until we learn to ignore the first parameter. And that, of course, eventually results in problems because we should never ignore any part of code. The parts we ignore are where the bugs will hide.

10. I just finished refactoring a module that used the dyadic form. I was able to make the outputStream a field of the class and convert all the writeField calls to the monadic form. The result was much cleaner.

There are times, of course, where two arguments are appropriate. For example, Point p = new Point(0,0); is perfectly reasonable. Cartesian points naturally take two arguments. Indeed, we’d be very surprised to see new Point(0). However, the two arguments in this case are ordered components of a single value! Whereas output-Stream and name have neither a natural cohesion, nor a natural ordering.

Even obvious dyadic functions like assertEquals(expected, actual) are problematic. How many times have you put the actual where the expected should be? The two arguments have no natural ordering. The expected, actual ordering is a convention that requires practice to learn.

Dyads aren’t evil, and you will certainly have to write them. However, you should be aware that they come at a cost and should take advantage of what mechanims may be available to you to convert them into monads. For example, you might make the writeField method a member of outputStream so that you can say outputStream. writeField(name). Or you might make the outputStream a member variable of the current class so that you don’t have to pass it. Or you might extract a new class like FieldWriter that takes the outputStream in its constructor and has a write method.

Triads

Functions that take three arguments are significantly harder to understand than dyads. The issues of ordering, pausing, and ignoring are more than doubled. I suggest you think very carefully before creating a triad.

For example, consider the common overload of assertEquals that takes three arguments: assertEquals(message, expected, actual). How many times have you read the message and thought it was the expected? I have stumbled and paused over that particular triad many times. In fact, every time I see it, I do a double-take and then learn to ignore the message.

On the other hand, here is a triad that is not quite so insidious: assertEquals(1.0, amount, .001). Although this still requires a double-take, it’s one that’s worth taking. It’s always good to be reminded that equality of floating point values is a relative thing.

Argument Objects

When a function seems to need more than two or three arguments, it is likely that some of those arguments ought to be wrapped into a class of their own. Consider, for example, the difference between the two following declarations:

 Circle makeCircle(double x, double y, double radius);
 Circle makeCircle(Point center, double radius);

Reducing the number of arguments by creating objects out of them may seem like cheating, but it’s not. When groups of variables are passed together, the way x and y are in the example above, they are likely part of a concept that deserves a name of its own.

Argument Lists

Sometimes we want to pass a variable number of arguments into a function. Consider, for example, the String.format method:

 String.format(”%s worked %.2f hours.”, name, hours);

If the variable arguments are all treated identically, as they are in the example above, then they are equivalent to a single argument of type List. By that reasoning, String.format is actually dyadic. Indeed, the declaration of String.format as shown below is clearly dyadic.

 public String format(String format, Object… args)

So all the same rules apply. Functions that take variable arguments can be monads, dyads, or even triads. But it would be a mistake to give them more arguments than that.

 void monad(Integer… args);
 void dyad(String name, Integer… args);
 void triad(String name, int count, Integer… args);

Verbs and Keywords

Choosing good names for a function can go a long way toward explaining the intent of the function and the order and intent of the arguments. In the case of a monad, the function and argument should form a very nice verb/noun pair. For example, write(name) is very evocative. Whatever this “name” thing is, it is being “written.” An even better name might be writeField(name), which tells us that the “name” thing is a “field.”

This last is an example of the keyword form of a function name. Using this form we encode the names of the arguments into the function name. For example, assertEquals might be better written as assertExpectedEqualsActual(expected, actual). This strongly mitigates the problem of having to remember the ordering of the arguments.

Have No Side Effects

Side effects are lies. Your function promises to do one thing, but it also does other hidden things. Sometimes it will make unexpected changes to the variables of its own class. Sometimes it will make them to the parameters passed into the function or to system globals. In either case they are devious and damaging mistruths that often result in strange temporal couplings and order dependencies.

Consider, for example, the seemingly innocuous function in Listing 3-6. This function uses a standard algorithm to match a userName to a password. It returns true if they match and false if anything goes wrong. But it also has a side effect. Can you spot it?

Listing 3-6 UserValidator.java

 public class UserValidator {
 private Cryptographer cryptographer;

 public boolean checkPassword(String userName, String password) {
 User user = UserGateway.findByName(userName);
 if (user != User.NULL) {
 String codedPhrase = user.
 getPhraseEncodedByPassword();
 String phrase = cryptographer.decrypt(codedPhrase, password);
 if ("Valid Password".equals(phrase)) {
 Session.initialize();
 return true;
 }
 }
 return false;
 }
 }

The side effect is the call to Session.initialize(), of course. The checkPassword function, by its name, says that it checks the password. The name does not imply that it initializes the session. So a caller who believes what the name of the function says runs the risk of erasing the existing session data when he or she decides to check the validity of the user.

This side effect creates a temporal coupling. That is, checkPassword can only be called at certain times (in other words, when it is safe to initialize the session). If it is called out of order, session data may be inadvertently lost. Temporal couplings are confusing, especially when hidden as a side effect. If you must have a temporal coupling, you should make it clear in the name of the function. In this case we might rename the function checkPasswordAndInitializeSession, though that certainly violates “Do one thing.”

Output Arguments

Arguments are most naturally interpreted as inputs to a function. If you have been programming for more than a few years, I’m sure you’ve done a double-take on an argument that was actually an output rather than an input. For example:

 appendFooter(s);

Does this function append s as the footer to something? Or does it append some footer to s? Is s an input or an output? It doesn’t take long to look at the function signature and see:

 public void appendFooter(StringBuffer report)

This clarifies the issue, but only at the expense of checking the declaration of the function. Anything that forces you to check the function signature is equivalent to a double-take. It’s a cognitive break and should be avoided.

In the days before object oriented programming it was sometimes necessary to have output arguments. However, much of the need for output arguments disappears in OO languages because this is intended to act as an output argument. In other words, it would be better for appendFooter to be invoked as

 report.appendFooter();

In general output arguments should be avoided. If your function must change the state of something, have it change the state of its owning object.

Command Query Separation

Functions should either do something or answer something, but not both. Either your function should change the state of an object, or it should return some information about that object. Doing both often leads to confusion. Consider, for example, the following function:

 public boolean set(String attribute, String value);

This function sets the value of a named attribute and returns true if it is successful and false if no such attribute exists. This leads to odd statements like this:

 if (set(”username”, ”unclebob”))…

Imagine this from the point of view of the reader. What does it mean? Is it asking whether the “username” attribute was previously set to “unclebob”? Or is it asking whether the “username” attribute was successfully set to “unclebob”? It’s hard to infer the meaning from the call because it’s not clear whether the word “set” is a verb or an adjective.

The author intended set to be a verb, but in the context of the if statement it feels like an adjective. So the statement reads as “If the username attribute was previously set to unclebob” and not “set the username attribute to unclebob and if that worked then.…” We could try to resolve this by renaming the set function to setAndCheckIfExists, but that doesn’t much help the readability of the if statement. The real solution is to separate the command from the query so that the ambiguity cannot occur.

 if (attributeExists(”username”)) {
 setAttribute(”username”, ”unclebob”);
 …
 }

Prefer Exceptions to Returning Error Codes

Returning error codes from command functions is a subtle violation of command query separation. It promotes commands being used as expressions in the predicates of if statements.

 if (deletePage(page) == E_OK)

This does not suffer from verb/adjective confusion but does lead to deeply nested structures. When you return an error code, you create the problem that the caller must deal with the error immediately.

 if (deletePage(page) == E_OK) {
 if (registry.deleteReference(page.name) == E_OK) {
 if (configKeys.deleteKey(page.name.makeKey()) == E_OK){
 logger.log("page deleted");
 } else {
 logger.log("configKey not deleted");
 }
 } else {
 logger.log("deleteReference from registry failed");
 }
 } else {
 logger.log("delete failed");
 return E_ERROR;
 }

On the other hand, if you use exceptions instead of returned error codes, then the error processing code can be separated from the happy path code and can be simplified:

 try {
 deletePage(page);
 registry.deleteReference(page.name);
 configKeys.deleteKey(page.name.makeKey());
 }
 catch (Exception e) {
 logger.log(e.getMessage());
 }

Extract Try/Catch Blocks

Try/catch blocks are ugly in their own right. They confuse the structure of the code and mix error processing with normal processing. So it is better to extract the bodies of the try and catch blocks out into functions of their own.

 public void delete(Page page) {
 try {
 deletePageAndAllReferences(page);
 }
 catch (Exception e) {
 logError(e);
 }
 }

 private void deletePageAndAllReferences(Page page) throws Exception {
 deletePage(page);
 registry.deleteReference(page.name);
 configKeys.deleteKey(page.name.makeKey());
 }

 private void logError(Exception e) {
 logger.log(e.getMessage());
 }

In the above, the delete function is all about error processing. It is easy to understand and then ignore. The deletePageAndAllReferences function is all about the processes of fully deleting a page. Error handling can be ignored. This provides a nice separation that makes the code easier to understand and modify.

Error Handling Is One Thing

Functions should do one thing. Error handing is one thing. Thus, a function that handles errors should do nothing else. This implies (as in the example above) that if the keyword try exists in a function, it should be the very first word in the function and that there should be nothing after the catch/finally blocks.

The Error.java Dependency Magnet

Returning error codes usually implies that there is some class or enum in which all the error codes are defined.

 public enum Error {
 OK,
 INVALID,
 NO_SUCH,
 LOCKED,
 OUT_OF_RESOURCES,

 WAITING_FOR_EVENT;
 }

Classes like this are a dependency magnet; many other classes must import and use them. Thus, when the Error enum changes, all those other classes need to be recompiled and redeployed.11 This puts a negative pressure on the Error class. Programmers don’t want to add new errors because then they have to rebuild and redeploy everything. So they reuse old error codes instead of adding new ones.

11. Those who felt that they could get away without recompiling and redeploying have been found—and dealt with.

When you use exceptions rather than error codes, then new exceptions are derivatives of the exception class. They can be added without forcing any recompilation or redeployment.12

12. This is an example of the Open Closed Principle (OCP) [PPP02].

Don’t Repeat Yourself13

13. The DRY principle. [PRAG].

Look back at Listing 3-1 carefully and you will notice that there is an algorithm that gets repeated four times, once for each of the SetUp, SuiteSetUp, TearDown, and SuiteTearDown cases. It’s not easy to spot this duplication because the four instances are intermixed with other code and aren’t uniformly duplicated. Still, the duplication is a problem because it bloats the code and will require four-fold modification should the algorithm ever have to change. It is also a four-fold opportunity for an error of omission.

[image: Image]

This duplication was remedied by the include method in Listing 3-7. Read through that code again and notice how the readability of the whole module is enhanced by the reduction of that duplication.

Duplication may be the root of all evil in software. Many principles and practices have been created for the purpose of controlling or eliminating it. Consider, for example, that all of Codd’s database normal forms serve to eliminate duplication in data. Consider also how object-oriented programming serves to concentrate code into base classes that would otherwise be redundant. Structured programming, Aspect Oriented Programming, Component Oriented Programming, are all, in part, strategies for eliminating duplication. It would appear that since the invention of the subroutine, innovations in software development have been an ongoing attempt to eliminate duplication from our source code.

Structured Programming

Some programmers follow Edsger Dijkstra’s rules of structured programming.14 Dijkstra said that every function, and every block within a function, should have one entry and one exit. Following these rules means that there should only be one return statement in a function, no break or continue statements in a loop, and never, ever, any goto statements.

14. [SP72].

While we are sympathetic to the goals and disciplines of structured programming, those rules serve little benefit when functions are very small. It is only in larger functions that such rules provide significant benefit.

So if you keep your functions small, then the occasional multiple return, break, or continue statement does no harm and can sometimes even be more expressive than the single-entry, single-exit rule. On the other hand, goto only makes sense in large functions, so it should be avoided.

How Do You Write Functions Like This?

Writing software is like any other kind of writing. When you write a paper or an article, you get your thoughts down first, then you massage it until it reads well. The first draft might be clumsy and disorganized, so you wordsmith it and restructure it and refine it until it reads the way you want it to read.

When I write functions, they come out long and complicated. They have lots of indenting and nested loops. They have long argument lists. The names are arbitrary, and there is duplicated code. But I also have a suite of unit tests that cover every one of those clumsy lines of code.

So then I massage and refine that code, splitting out functions, changing names, eliminating duplication. I shrink the methods and reorder them. Sometimes I break out whole classes, all the while keeping the tests passing.

In the end, I wind up with functions that follow the rules I’ve laid down in this chapter. I don’t write them that way to start. I don’t think anyone could.

Conclusion

Every system is built from a domain-specific language designed by the programmers to describe that system. Functions are the verbs of that language, and classes are the nouns. This is not some throwback to the hideous old notion that the nouns and verbs in a requirements document are the first guess of the classes and functions of a system. Rather, this is a much older truth. The art of programming is, and has always been, the art of language design.

Master programmers think of systems as stories to be told rather than programs to be written. They use the facilities of their chosen programming language to construct a much richer and more expressive language that can be used to tell that story. Part of that domain-specific language is the hierarchy of functions that describe all the actions that take place within that system. In an artful act of recursion those actions are written to use the very domain-specific language they define to tell their own small part of the story.

This chapter has been about the mechanics of writing functions well. If you follow the rules herein, your functions will be short, well named, and nicely organized. But never forget that your real goal is to tell the story of the system, and that the functions you write need to fit cleanly together into a clear and precise language to help you with that telling.

SetupTeardownIncluder

Listing 3-7 SetupTeardownIncluder.java

 package fitnesse.html;

 import fitnesse.responders.run.SuiteResponder;
 import fitnesse.wiki.*;

 public class SetupTeardownIncluder {
 private PageData pageData;
 private boolean isSuite;
 private WikiPage testPage;
 private StringBuffer newPageContent;
 private PageCrawler pageCrawler;

 public static String render(PageData pageData) throws Exception {
 return render(pageData, false);
 }

 public static String render(PageData pageData, boolean isSuite)
 throws Exception {
 return new SetupTeardownIncluder(pageData).render(isSuite);
 }

 private SetupTeardownIncluder(PageData pageData) {
 this.pageData = pageData;
 testPage = pageData.getWikiPage();
 pageCrawler = testPage.getPageCrawler();
 newPageContent = new StringBuffer();
 }

 private String render(boolean isSuite) throws Exception {
 this.isSuite = isSuite;
 if (isTestPage())
 includeSetupAndTeardownPages();
 return pageData.getHtml();
 }

 private boolean isTestPage() throws Exception {
 return pageData.hasAttribute("Test");
 }

 private void includeSetupAndTeardownPages() throws Exception {
 includeSetupPages();
 includePageContent();
 includeTeardownPages();
 updatePageContent();
 }

 private void includeSetupPages() throws Exception {
 if (isSuite)
 includeSuiteSetupPage();
 includeSetupPage();
 }

 private void includeSuiteSetupPage() throws Exception {
 include(SuiteResponder.SUITE_SETUP_NAME, "-setup");
 }

 private void includeSetupPage() throws Exception {
 include("SetUp", "-setup");
 }

 private void includePageContent() throws Exception {
 newPageContent.append(pageData.getContent());
 }

 private void includeTeardownPages() throws Exception {
 includeTeardownPage();
 if (isSuite)
 includeSuiteTeardownPage();
 }

 private void includeTeardownPage() throws Exception {
 include("TearDown", "-teardown");
 }

 private void includeSuiteTeardownPage() throws Exception {
 include(SuiteResponder.SUITE_TEARDOWN_NAME, "-teardown");
 }

 private void updatePageContent() throws Exception {
 pageData.setContent(newPageContent.toString());
 }

 private void include(String pageName, String arg) throws Exception {
 WikiPage inheritedPage = findInheritedPage(pageName);
 if (inheritedPage != null) {
 String pagePathName = getPathNameForPage(inheritedPage);
 buildIncludeDirective(pagePathName, arg);
 }
 }

 private WikiPage findInheritedPage(String pageName) throws Exception {
 return PageCrawlerImpl.getInheritedPage(pageName, testPage);
 }

 private String getPathNameForPage(WikiPage page) throws Exception {
 WikiPagePath pagePath = pageCrawler.getFullPath(page);
 return PathParser.render(pagePath);
 }

 private void buildIncludeDirective(String pagePathName, String arg) {
 newPageContent
 .append("\n!include ")
 .append(arg)
 .append(" .")
 .append(pagePathName)
 .append("\n");
 }
 }

Bibliography

[KP78]: Kernighan and Plaugher, The Elements of Programming Style, 2d. ed., McGraw-Hill, 1978.

[PPP02]: Robert C. Martin, Agile Software Development: Principles, Patterns, and Practices, Prentice Hall, 2002.

[GOF]: Design Patterns: Elements of Reusable Object Oriented Software, Gamma et al., Addison-Wesley, 1996.

[PRAG]: The Pragmatic Programmer, Andrew Hunt, Dave Thomas, Addison-Wesley, 2000.

[SP72]: Structured Programming, O.-J. Dahl, E. W. Dijkstra, C. A. R. Hoare, Academic Press, London, 1972.

End of sample

 To search for additional titles please go to

 http://search.overdrive.com.

OEBPS/html/images/f0398-01.jpg
1 packago og.3Croo.dste:

irore g catonsies
et Javatox Dtarormacsmbsler

AN Caendar WA
B Cteedat TSR,
o

1 TR Calear RN,

I DAL R,

I Smamcsies Gmta,

I SN (calener. SN

I

3 privace tin st tasory

16 privts static Dtaformobole cateoybols « ne Dteformoybolel)

ki

I e e (

"l

W

B publie static y fronta (ot ieder) throvs Thlesolguesatesstice (

5Pl 4 s Dvaliss0)

¢
© pilic sy |
1
‘
H

i e e tnaon
H st 4

B ool Menatasgma ot ion|

e ot hier ey ek 0., tacen)
@

i

S0 puslic aratic by parsotring €) throv LlogalirsuontBzcoeion |
51 P erioal] chortveskduptes

I onbels. g SR)

D seinal] seokbums +

T tmbols. stleakdarst:

B eemmn
T for (fy Gy roraliss) (

5 e e saimerscai et eden]] 11
H i e e

W et do:

a9

e)

B o oo Menaticpmetseption]

G ot 146 15 0 3 V100 veskday s, 5110
8

i

1 pilie stris tostring0)
it "t cotesymbals. ethsoayel) | indx)
8

5 pdlic int tolt() (
ki iy
59

OEBPS/html/images/1-4fig_martin.jpg

OEBPS/html/page-template.xpgt

	

	

	
	

	

	
	

OEBPS/html/images/f0352-01.jpg
165 /" A useful constant for referring to the second week in a month.
166 public static final int SCOND_VEEK_IMONTH < 2

16

8 /" A wsoful constant for roforring o tho thixd vesk in a mnth. */
169 public static final int THIRD.VEEK_INMONTH - 3

m

T /e p useful constant for rofrring to the fourth ek in 2 mnth. */
12 public static final int FOURTHNGEK _TOMGNTY - &

13

1/ A usetul constant for rofarring to the last week in a mnth. */
5 public static final int LAST_VESK_DLMON = 0;

h

1M Usetul range constant. */

18 public static final int TicLDE YOIE
m

1/ usetul range constant. */

181 public static final int THCLUDE FIRST - 11
i

18/ Usoful rango constant. */

188 public static final int TiCADE_SEcaD - 2
1

186/ Usoful rango constant. */

187 public static final int TicLDE o
in

m
10+ Usoful constant for spocifying a day of the veok rolativ to a fixed
Bl date:

m

13 pablic static final int AECEDING - -
11

v
196 '+ Usatul constant for specifying a day of the wesk relative to a fixed
W aste

o

19 public static final int WENREST - 0;

m

m

”
202+ Usaful constant for spocifying a day of the vesk relativ to a tixed
v

m
205 public static final int FOLLOVING = 1;
6

07 /e A description for the date.
28 private String description:

m
e

2 ettt constructor.

m oy

2 protected Sorialoatel) |

e

s

Fr

217+ otumms ccodestruscroode> 1t the supplied integer code represents 3
28+ valid day-of-the-vesk, and <code>faisec/code> otherwise.

e

30+ oparam code the code being checked for validity,

m

22+ Graturn ccodestruacioodos i€ the supplied integer code represents 3
m . VAL1a day-of-the-veak, 3nd <codes falsec/code> cXhervise.
oy

225 public static boolean isvalidheekdaycodotinal it codo) (
32

OEBPS/html/images/0325tab01.jpg
the field value of the object referred to by the
object reference one away from the top of the
stack, this.

Mnemonic Description Operand
Stack After
Put the constant value 0 onto the operand stack. | tis, 0
Store the top value on the stack (which is 0) into | <empty>

OEBPS/html/images/0325tab02.jpg
Mnemonic Description Operand
Stack After
ALORD 0 Toad tr5 onto the operand stack this
Do Copy the top of the stack. We now have two | this, this
copies of this on the operand stack.
GETFTELD 1ast1d | Retrieve the value of the field Lasc1d from the | this, 42
object pointed to on the top of the stack (ch:) and
store that value back on o the stack.
Push the integer constant 1 on the stack. this, 42,1
Tnteger add the top two values on the operand | this, 43
stack and store the result back on to the operand
stack
D0P_X1 Duplicate the value 43 and put it before this. | 43, this, 43
FUTFIELD value | Store the top value on the operand stack, 43, into | 43
the field value of the current object, represented by
the next-to-top value on the operand stack, this.
return the top (and only) value on the stack. <empty>

OEBPS/html/images/3_3fig_martin.jpg

OEBPS/html/images/2_3fig_martin.jpg

OEBPS/html/images/f0390-01.jpg
comon 4 Ties soeral surpee ciaes Licary £ the dmalca) patiom

€1 ik 2002005, by Chiect Relaeey Linited nd concebutars.

Projet Tnter bups . e, ona common/ s bl

o ibeary 55 froe aftae; you can reflsribate 1t andor Tty 1
305 the tern o £ B0 Loter Gapezal. Lic Licons 35 punbicted by
e s Saftunt Fosdition sither version 2.1 of the bicens, <1

3 T ation; . Latr vescion.

i lkwary is disteiuted o the hope k. it will b usstal Bt
NI A BT Sl eb (3 tiphisd wrraaty of MRARTASILITY
o FIRGSS R & DATIZIR TRIGE. Soo th QY Lot Goaoeal Tblic
Ticares to more dntaii

i should bave recsivod a copy of tho (U Losaer Ceseral Pslic
Liconsa alos vith U Lbtarys A€ ot wrte G the Fiso Softusce

90 10 3 Craeuck o rogtetered tradnsc of un Miceosyiers, I,
137 Tl Sres o ster comstrien |

Rolat vl ankdalo, ava

61 oppeic 382008 by Chgect Riaery Limited and conbukars.

originsl Mthors Darid Gillart (for Gbjact Refinery Linitad):
etrimeorters

$10¢ Raat ey sRRile S,y 1.6 25116 1525940 tama B §
s (t2em 26006 201)

35000 001 1 Change package to con yrotiary. it
IS0 2002 | Fixed seeoes reorted by Chackatyle (531

'

packags . ise e

3o avwal €t role v ratures a dite o aach yar ased on (@) 3
Estorono ruler 1b 3 day o e unaks 424 () 4 Celoction paramter
arialEace PECTOI, Saiallets SEAER, Sorislite. PALAVIG

For sxarple, Good riday canbe cpaci€iod s “the Pridy AETDD Bactor
Sty

[—p—
-
PibLLc class Relat vehoEmele extends Nmaltztee |

72 referece to the amual date 1ale o vhich this rule is based. *7
private Amuaitatonsls sirule

-

e dap of 6 vosk (Surialiate.MMEAY, Socialets. RSN, and o oal.

OEBPS/html/images/f0375-01.jpg
€€ public vold testieckdiyTodeTostrirgi] throus Bxception |
0 P st e whiCode Tt (T

PR e i e e

@ dertamelsl esdy, mebdeyCodeTocizing (RG]

T ASiiECVedmesier sehdasCodsTo £ RENESTH)¢
TL Aertaels(i, MeHCA OO THASIAT |
T dsertamelsCFridy, lednedeTots o (IO

T RISy b Co g ATROA)
W

T6 public wold estsHalabrbenter) thows Seston |
T s e 1)

B e e

35 asortEale el iR 0]

G el e 1)

[

£ pusiie vois costmmhTurter) throw Bestico |
G P ertail, renthesdToparer KR
i e e e e
B BRI, aheToarter KUCH)1

[dertali, wthoodToarter AL

i ARG, maheeToarter W)

G Sartiaelec, mahesdTaartor TRIT
G daertBli(, AR e)

G ARG, vheeTaror WGIRT)
5 el Moo SHTSEER);
5 dsertbelel, mahcoeToparter OCORN):
S ermelid, e VD)
55 Bl TR e DITDGE)

o
tcosguartor -1

ELl(True12d onch oo chould throw srom i

) S Rt o

@

I punlic v testmanthoodsmeri) thaows Bucption |
168 asiriBenta(samacy, sonthCodeTotr s CRLAR)¢
6 SERBaRIL-Fobriay’, MO HCroS £) FRRCARY) |
T Sanamleme, maEhCeCToTiaa B

iE Sisersasisiionil, mhcecTos (N
e e e iy

Ho aarBaele-lume, oMb TR

i SaserBaelel-laly motMCTRtr L))

2 SeRERls-hus TR RN

3 arBGRlal St Rt oSt SEITRER) ¢
HE SisertBamlateoctois, JomHCoTStr s OCTERE)
15 R haverr’, TSt 2 MVRGEE
HE SaasrtBenlal Decemor, menthCod st a3 TSCHERE) |

i o, mocemsmou, o)
D9 SiairBamieirreh moRMscrTonriaa RN, thiel 1
0 SiSerscmlsihar mRMSGToss A RRH, el
B Shaerchmiiiar mEMslo AL, cIie)
I SamsliiKy MR W, o))
I Ssersaslsi-iu mRMEATSI UE, te))
i sersaels-iil TS, Gt
AERCLGTOtaa AT, tate
DICLGTots o SSPTREES, L1
B o i ST Erion!

OEBPS/html/images/0341tab01.jpg
Make our two threads eligible to run.

Wait for both threads (o finish before we check the results.

B Record the actual final value.

3197 | Did our ending1a differ from what we expected? 1150, return end the test—
we've proven that the code is broken. If not, try again.

3 TFwe got 10 here, our test was unable (0 prove the production code was bro-

Ken in a “reasonable” amount of time; our code has failed. Either the code
is not broken or we didn’t run enough iterations to get the failure condition
to oceur.

OEBPS/html/images/c0iii-01.jpg
(X]
PRENTICE
HALL

OEBPS/html/images/5_2fig_martin.jpg
,,,,,

RTUL

OEBPS/html/images/f0366-01.jpg
J 54
2+ Jcomon + a free general purpose class Libeary for the Javatn) platform
3
i
5+ (C) Copyright 2000-2005, by Objct Rofinery Linited and Contributors.
fo
T+ projoct Tnfor hetps /. 3Ero0.oro/Jecomon/tndex s
e
5+ This library is free softuare; you can rodistrilate it andfor mdity it
10+ under the terms of the QW Lassar Ganaral FUbLic License a¢ published by

11+ tho Freo Softuaro Foundation: oithor varsion 2.1 of the Liconso, of

12+ (at your option) any later vorsion.

iy
30+ This Lbrary ie dictributed in the hopo that it will bo useful, but

15 WITHOUT ANV WARBANIY; without oven the inplied varzanty of NERCHATASILITY
16+ or FIMESS IR A PARTICULAR FROSE. Sea the QWU Laseer Ganaral Fublic

17+ Licansa for nore datails.

v

19 * You should havo recotved a copy of the GW Lescar Gonoral Rblic

20+ Liconsa slong with this Librarys i ot, write to the Free Softuare

21+ Foundstion, Tnc., 51 Framtlin feroot, Fith Floor, Bocton, M 02110-1301,

2 tu

F

20+ (Java is a tradenark o registored trademrk of S Microsystams, Tnc.

2+ in the United States and ather countrice.)

%+

A i

2+ Sarialiatemests. ava

s ,

30+ (6) Copyright 2001-2005, by Objoct Rofinery Linited

e

32+ original Author: David Gilbort (for Object Refinery Linited):

5+ conributor(s): -

M.

3+ 510 Sorsal0atemests. java,v 1.6 2005/11/16 15:58:40 tagua B §

%

37+ changes

3o

3+ 15or-2001 + Vorsion 1 (15);

40+ 257Tun-2002 ; Remved ummecossary inport (03

41+ 24-0ct-2002 ; Fisod orrors Toportod by Chocketylo (00);

42+ T Mar 2003 ; Aded sorlalization tost (D0)

£+ 05-Jan-2005 ; Added tost for bag Toport 1096202 (00)

i

5y

i

47 package oro.jtres.date.junit:

©

49 trport. gava. 1o, EytohrrayInputstroan:
50 irport. Java Lo.Bytehrrayoutputstro
51 import Javaio.ObjectInput

52 imort Java. io.ObjectIut e
53 import Java lo.Objectoutput

54 import Java. io.ObJectoutput troan
S

56 tmport Junit. transvork Tost

57 import Junit. ranework. TestCase:
58 import Junit . franevork TestSuite:
5

60 rport. org.troe.dito.HonthConstants;
61 import. org.tree.dite.Soralluto;

@

OEBPS/html/images/6_2fig_martin.jpg

OEBPS/html/images/f0381-01.jpg
436 pablic void testCreatelnetancefremdiiMIYY() throus Bxosption {
47 "arialtate dte - coontmstarce 1. SNNL, 1501,

E a1

G At ae. gkt

pri e T e
prifpeet i e Kt il
o

i@

GG bl vold testcreatetastanetuanser al() theons Brsption {
s sertaicil, WO, 100, croxomstane ()

W Amlet, TR, 901}, crenslastanes 311
i

G5 gl voie tostrestalnstacepuenavaitol) thec Breption |
0 srtaurlod, WO, 1900)

Creitatatanceees Gregrtancalendar (19000, 1. eI)
s assrtBusle(d, TNON, 2460

CreitaTasanéscew Groorioncalendar (2106, 0, 1. sk Time)
F

i
S pilic atatic voud minieinal) aros] |

G5l Eawer Pathuaha. ro RS Ll ucaTot s
F

i

OEBPS/html/images/f0389-01.jpg
@
i
il
i@
bl
i
i
it

5

3 (Serialbce. sstaspreariy)) {
e
)

)
o e 0
ey s 1

)

’

+ caloace the @, onch a0 year £rom e serial owaboe.
o

prbiate vod eatemppitear() |

17 30 the suss fromthe corial dce
Linkh it dars = Crisecse] - STRILLOKER, SR

11 creast eaten iecage ve amred sz S

Sine] it veses oy - 190 ¢ (a1 2651,

il it Seupe + St el JogTonsCount (veres nao20V0) 2
1m0 ¢ eniewptys - cays - Lo

11 indrestinatsd tacues e srcescmted yesrs

i rest e adrrr < 10 (amlavoan /36510

SE (andorestnat BT oo evores et |
sy = bt ntod Y
)

£
it 561 < calesarial(, 1, wadrostnat YY)
e st e ehis serad) |
Chdere: ImESAVTY + wndezesRad ¢ 1
gt g

)
Shicpor - et RedTYY - 1
)

tinal st st - calesmsslll, L is.gese)s

1) sysromas ey
= POSHBTE_IRFS.To D GP_PRBCEOTIC WAV

1t Gstaaptaaz s yuan) |
oy seassimnth
£ LEA? T AGEREGATE AT 0GB HEBCEDDI Y
)

17 g6 the ponth o the serial dee
f'm
i G et L aapeTsmstrscedtapbathim) - 1
e T S s Seran) |

s 13

Sk pstootirsccaispicthiml - 11

)
Butenth < wm - 1

11 whts ot is a0
ik = his.caria - <52
T trscotagmeh hic et 1

OEBPS/html/images/f0400-01.jpg
1 package oug. Jeres.date;

5 pubtic s ekttt
i

i SSCaD3), TR, FORTHL, DSTIO)
¢ feyrygttin

i

T vestutnthiine iades (

b e

Y

0

I e int ot (
1 et s
B

OEBPS/html/images/f0406-01.jpg
N6 sty = Gar;
1T el - salcomdinldy, math, vase);
i

6 pablic cprostbestimtoae oy, et ewath, ot year) |
11 PRI M. ot Gont. oar)
o

e pablic preadsboetiatatioe seriel) |
i35 Ve (Goran < MRLLEST MIK CROIAL |1 sl > ATESY.IAH_OHOINAL)

16 b o ienalnrenEicnt n!
i “rcaisheeTate: Sris) mal be 1n raoe 2 to 205H85.):
i

3 ocdinaibey < serialy
0 o
o

1 puvtte i getoraimaton) (
i it
o

BT pastie e getiearl
it et veur
o

B pablic wath getmnhy (
132 retumm onchs
o

I3 pastic i ettapotkexat) (
16 retumm oy
o

133 protected ey cotluroPlskfonceitazoca(] frotun Doy SATIRON
M3 puntas olcan equletooct abjoct) |

1 POt et Dutste

i

1S wte dte - navocs) absect:
6 cefum e getordaicar) — stordisaliay(
i)

i

i pustac i pasheotat

150 "ot stcrdinaioor)

B

b

B puslic in campereTotoact ctber) |
e

[

5

15T private e cateonaiual ot . Noth mach, sty
B8 i Totyatoriont + oL Sostasceyest - 1)

B9 Lo depeTotenr - (yor - WINDRN YR SOFFCRTED) * 345 1 asaysrovens:
16 IR Gy TG« ASREHTE TYS_0 0O RRCHDT M e Lo
AT @il elestoctjasn) 6 rath.toTa() 5 FEROY.ESI (1)

LR e

L

I sevur cyeiotont | SyIdlnth » dsreTenth 1 EMLIGST CATE (DO
16

4

OEBPS/html/images/f0370-01.jpg
G

i

u
il
Er

PUBLIC Waid LASLANTRACUREISNA) [
scoertEqa’s o ialonts. lespToaroas (1300, 1

e
+ e mnker of Yep yases. from 900 ap-to-and-rcludiag 1999 1 24
o
bilic void testiasnaner 1559) (

SSSETEqa1a e SIe espTearcom (1999, 2007
)

.
+ oo makar of Lop yuare. from 900 2p-to-ané-ncluding 900 i 25
o

Pt old tostiapen 2060 {

asaertEqae o Lok lespToarcoas (2000, 25)

)

~
+ Sorilice s tastance, restore it and check for squlicy

pislic vis tastsariaisaticnt) |

Sertalite a: - Sortalate croxomzaneR (35, 4, 2000);
Serialite @ - aily

v (
EitotrrayntpaStrem It v BytchrrayutpstSeroat)
Chicctouoat ou = oo hsectonpRSELEmIbE et 1
ety
i

Ghjectapat 1 = b hiectiaptereand
e B oeTap et trsmluttor Actytabezar0)) 5
@ < (soralince dn.zesdingec
jriteiiy
)
cstc @sption 9 (
Syt o peisiate.costrings

b, 2
)

.
©htoct tor g paet. 09622 o Eixed).
<
pitlis void casting220)
Sorialisto d - Soriltate crostoastanca(s, 2, 2004
3T Sl santsretl, 0
Sorsslto smpesced - Sevisliate. croainetan 28, 2, 209;
SesertTra . o (scted))

)

* issllarsous st for the adonthel) methcd
<

pislic void testaddszhal) (
Serlalnte df + Soelalate createTsancs (21, 5, 2000

OEBPS/html/images/f0357-01.jpg
475+ Retums true if the swplied integer code represents a valid

76+ week-in-the-monch, and false othervise

moo.

18+ Gparum code _the codo boing chocked for validity,

4T Gretum <codmtruec/code A the swplied iteder <o sepresants

s Valia veek-in the-musth.

ooy

482 public static baolean isValidMeekIntonthcodeltinal int coe) [

153

i suiteh(code) (

s Case PIRST WEEK_ DL ors:

s

I

i eI)

e aso LAST WERK_Ii MOTH: roturn true;

el taules returs falser

et)

2

o)

4

o

6 '+ potomines vhethar or ot the specifiod year s & leap yaar.

o

©8* oparim vy the yaar (in tho rango 1900 to 9999)

o

S0+ braturn <codestruec/odo> 1f the spacifiod year is a leap yoar.
*

a0
502 public static boolean isleaptear(tinal ot yyyy) (

s
s iUy s 0 10 (

s return false;

506)

s elee i (yyyy 3 400

e return trie;

s)

0 else if (yyy 3 100

s roturn falss;

s)

i atee (

s return trver

51)

516

s

s

s e

520 '+ Roturns the munber of loap years from 1900 to the specified yoar
s - mene,

@ v

23+ loto that 1900 s not a loap yoar.

T

525+ Gparmyyyy the year (in the range 1900 to 9999)
N

527+ Graturn the mnber of loap years from 1900 to the specified year.
2y

529 public static iat lesprearcount(tinal 10¢ yyyy) (
0

a ginal int leapt = Gy - 1896) / 4

s Sinal int Leapiod = tyyyy - 1500) / 1005

55 Simal int leapdto < vy - 1600} / 400;

i roturn loapd - Leaplt + loapdtd:

]

88)

OEBPS/html/images/114fig01.jpg
clear() void - Map

containsKey (Object key) boolean - Map
containsvalue (Object value) boolean - Map
entrySet() Set - Map

equals (Object o) boolean - Map

get (Object key) Object - Map

getClass() Class<? extends Object> - Object
hashCode() int - Map

isEmpty () boolean - Map

keySet () Set - Map

notify() void - Object

notifyAll() void - Object

put (Object key, Object value) Object - Map
putAll(Map t) void - Map

remove (Object key) Object - Map

size() int - Map

tostring() String - Object

values() Collection - Map

wait() void - Object

wait(long timeout) void - Object
wait(long timeout, int nanos) void - Object

OEBPS/html/images/f0378-01.jpg
SRSAERpAIS(IT; LmpEaRE (A
ARSI, Towesmcoet 00 1
)

250 pibli void tostastapaBlooth) throus Do [
27 " issrtBulot . LastouomRath GRRAKT, 1T
G deewle, asowyone (e, 10l
o dmlo:, Laowommga Dol
0 dtBIiG LuowomeRMATEL Dol
L Smewaie:
2 asrtBRmls, Lo IS, 0L}
6 i) Lowomemituy. Lt
L e Lm0l
G dammlons, Lutouomenthsermem, 1001,
G Amlel:, Lstowomeit e, ion):
SSiSrBcmain Lasoaoiert oVBEE, 1301
G detmlat, Luoujomehterasn, Lob));
G AN, Litowomerth FEROAR, 100
FI

275 bl vold testdist) teows Excetion [
G5 "Sriaitate roears + ad, A, 1990

T4 aetBlels, TN, 00, sDapsil, sedears))
6 Atmwle PR, 50, aDusL. redears)):
D0 Amli AR, 801, 2SS, Teears):

I el TR, 156k, abayels * 56, wteare)

oo

200 privio atatic Sproashaslato alist day, ik mctt, dat yoae) (oters aew

rsadshos:Out (e, oath. Toue)

2 s voie cosugsbeast) o Excopion |

26 assrtBuleldl, PSR, 1900), addbothall, 4L, INERRE, 1001):

G Athnniacs, TG, 500 sapheC] 401, JUENRY BOC)T

G5 AsatEleids, TR, 5601, MMEMG(L, 40, MO, GC)T)

G aetmwloidon, TR, G0 sddeha(l, 42 MR, GO

0 dmwlin. Tamey. 10 S8MIe(. A1, MDY, OO

G dmnlelds, TERRY, 5601, MMMERe(], 402, TN, 900}

25t

0 assetmwlsdon, NS, 1900, sdMents(s, 601, ML, 1900):

I daemIion. W, 101, Seakeastr SO, KUAK, 190}

B

5 assetmawle(ay, TEABRY, 19600, a8MRCISCS, A1, SRUBRY, 15601

i

F

0

2T puslic voie testaateacs) chraus Brception (

Zon " setiuslotd, TR, 5C1), sefearstl, o(1, RL, 100));

B svtblaiich, IR, 1506 soMaarsil, a1 PSR, 100

0 Amn may, 501 smears(90, MM, DU

S assrtBRwledn, TEROAR, 1964], adlfara(l, 402, FISON, 1963)1)

W

SEE pible vold st narisustooea) thros Brcetion [

305 "LiiIsld . e, SUCC seiriowbuo BRI, 411, AR, 2N
C Arthaleidn, TERRY, 06T g0 ororowlayO N EIESIY, AL, KA, Z106));
S0 daBleids, TERRR, UL g0 eriowDeyosk (SRR, 413, 180, DA

i AN, TR, L0 e reriowbo sk RESERY, 4. SRR, 2069)
s

HI

S ook, a0, . 2006

B DIl G oF ek S e T Skt

OEBPS/html/images/f0395-01.jpg
& MY & ENCRpI—
8 e
@

56 public Daytte getrorioisbayothec Dy CarsetloyOeek) (
51 P ottt Tomnaet + ATtk 15) - st Dapoflesk) tolet 1
s A e 0

o ottaattenet 7
IO et phadigeloffsel Tueoet):
o

102

165 pablic Bytuto setFollovinaDiesk Dy arptCeyot (
ire i ofetiorarget - CarekieyOBeak{oLRt0) - GeKDATOSR() LOIEEO):
i AT e)
it otteetmaraet 1 11

ot phatugs o s Taroe)
i)

0 pabltc Caytate getares:Capoteekitay tarpscrayoniet) [
111l offeetTom ecksTarge + Sty D ERGRRSIEL | g mpomeck) to1a)y
2L OffieTiureTa © (Gt SkTarset 3 1) 7

I3 SteiTomer ouTage < offsetoratoreTaget - 1

i offemeens > 3)

16kt pueters ottt vtz
e

e i phenstottss TRt creTraet)
i

e

I pustic Dotute cetEadBRthO) (
12 Mo - qebiorn:
e e - ttearty

E i Taste's et LstCeyoonthamth, year):
B S s i
el

6 pabtic tate tamstel
1y ian Calrdar caloste - calerdar. gt nctance)

TG U ordlmionth - senaEh()-toai) - Wth IS toTe)7
B i selGetear(), reiaond, geBarODIth 1 . 5, 17
L2 e calendas getTias(s

o

133 pustic Stz tostring) |
136" Cetirn rine o (A V6 A0, ok DerOBBRER(), setheeal), setar(]
o

19 pustic Dy cettupotbesk) |
10 "y e vt = g DyokeKPorndinatiarol:

B3 RARiCa0itee stecinsly oUaE() - By SR tore():
10 i ordiolofmuofiest - loettrdimaibrl) + ststineoifeet) 4 7;
163 Sout - ronio Coinalomoso st » Doy SNt)7
i@

16 pustic i dmssiscatounte o) |
et seccraimatiar) - e ceoraAIRE 1
i)

150 pusttc botean somayoace ctve) |
151 i qecrdinatnu) - ether.qsordinaloor();
B

-

OEBPS/html/images/f0363-01.jpg
“r
a4
a8
50
51
52
o5
w1
55
556
o7
w50
5
a6
61
s
a6
a6t
a6
846
il
%
5
it
it
m
s
b
o5
16
o
i
5
50
1
o2
0
1
s
56
@
"
o
50
o1
2
oy
4
5
56
a1
e
o
0
an
ane
ans
ant
05
06
a0
508

+ Returns a description of the date.
* orturn a doscription of the date.
-

public string getpescription()
seturn this.descriptions
)

o
+ Sets the description for the date.

* Gparan description the now descript ion for the dte.

.

public vold setDescription{£inal String dsseription) [
this.dascription - daseription;

)

pe
+ comerts the dite to a string.
* oroturn a sting reprosentation of the date,
*

public String tostring0) (

Toturn gotDeyoIMRALN) +

* + Sorialluto.sonthCoToSt g geKkonth ()
* 4 geurrvt()

)

e
+ Roturns the year (assume valid range of 1300 to $359).

+ dreturn the year
-

public bstract int GeLYIY();

.

+ Roturns the math (Jamary = 1, February = 2, March = 3).

* oroturn the month of tho yoar.
.

public bstract int gettenth();

o

* Rotumms the day of the math.

* oroturn the day of the math.
.
public sbstract int getDey0BBRE();

o
+ Roturns the day of the wesk.

+ oreturn the day of the wesk.

-

public abstract int getDayofesk():

.

+ Rotumns the difference (1n days) batuosn this date and the speciiod

+ “other: dste.

s

* e xesult is positive if this dato is aftor the “other’ dato and
nogative L€ 1t 1s beforo tho other” dto.

OEBPS/html/images/0136083250.jpg
ENTICE
L

Robert C. Martin Series

Clean Code

A Handbook of Agile Software Craftsmanship

Foreword by James O Coplien 'M rt C. Martin

OEBPS/html/images/1-5fig_martin.jpg

OEBPS/html/images/f0403-01.jpg
1 package oug. Jeres. dates

5 public batract clas Dutactery (
& et Stat e Dopataractory fackery - a4 prestalestutsTISCOy ()2
§ puslic sraic votd so Dot anke CoyDu ety Eactory) |
et factoy - taeteny:

1

procsctad abstract Dwrate makeutel at oxdinal):
Drorectad rstract Doiate FaKeatel . da. Merth ronh, 10 yam):
piotactad hetract Dt maieite it da, Lak rnth, I8¢ ysue
Diorscrsd etiact Duhts “akedtel ava st ate o)

prorectad rstract i _geckinimaneart

protocted tctract v othecimatntt

publte seatic tayate et (e ordinal)
Cotirn fctory parobEa Rl
'

puslic tatic Dayhte malatolist iy, Woth mceth, it yose) (
ot Tactory rakebcolday, moth, 7oue)
)

public static Duyhte malatelist duy ia onth, fnt you) [
et Tatory koo, moth, 1enr)
I

BUBlIc statlc fayte atatateva. ot 1.0 e (
Catien tactory makotala)
|

puslic tatic iat gotMaimtear() |
et factory._aetHmrient ()
)

puslic static int sotarinnteor(|
o Tactory. pthas ot

OEBPS/html/images/5_3fig_martin.jpg

OEBPS/html/images/f0384-01.jpg
o {
thioy sov HlsmlAromsetBzcet on
NN Mg P o In 18 vae 115 12,4
"
)

S8 Uy 20 11 58 Ly <o Sersalbse. ek dbnthmmh, yese))) |
iy - s
)

olen {
Chrow o TlspalaromsetExcep n(- I lid day” axoment. ")
)

17 the sersal wmbor esds to be sychusnised ith the dapnesthoyeut...
ERstTeer s Ry, mth, Jonr)

this.deserption = mil:

)

+ s comstruee - cxestes e Qo et xepsesting the
© Soied o bt (uhich should 5 1 Ehe vabg £ IS

* dparm serial e serial usber fox the By (range: 2 55 20SOS).
5
piblis Sreatsheetata(tinal i serial) (

U (seria) 5= STIAL LR D) 5 (seia) <= ST DHFER D)) (
ierteria - sarin
)
o
thzoy sov IlomaliramoetBzeetiond
sproadstaniute Soial mis bo i reose 2 £ ZSHGS.");
)

11 the dy-ponth year nesds to b sychecnised ith the srial ruber...
Edaftimin

)

*sstrns the descrioeion that ss attached b the date. I is et
£ FSred tha 3 e have & GocrIp Lon, ik for s applicat ins €
ey

© trecun The deseripeton tat 1s attachd to the dte
D)

pislic trine aatbesrioticnt) (
e

e
+ S tho daceripiion fo tho dito.

© oo aseripion tha Goseription Do his dite (cestmllejcodes
¢ permitted
b

piflic volg sattmsripeonitia) String dserigtien) |
Chie deseriprion - docription,
)

OEBPS/html/images/3_1fig_martin.jpg

OEBPS/html/images/f0373-01.jpg
i g B g S
piLic satic i 1 W - 37

e constat tor dgril. +/
pintie static Fias ok AR - 47

1 constat tor My, 41
pintic sttic sl i W - 81

o sttt e, +/
pislic satic finsl 13 TR « €

7 consrt for suty. */
piotie satse sl e ALY -

7 constart o g
pintie satie inbt 1 NIST - 8,

1 constat for Speaber, *1
pibLis satic s 1t S0 - 3

o —
Pl satic Tl L ST - 10:

7 cnstat for v,
Pl saric i I SRS - 11

7 Constat for Ducen. /.
PRI satic il e (B - 12

OEBPS/html/images/t0183-02.jpg
Bound Resources

Resources of a fixed size or number used in a concurrent environ-
ment. Examples include database connections and fixed-size read/
write buffers.

Mutual Exclusion

Only one thread can access shared data or a shared resource at a
time.

Starvation

‘One thread or a group of threads is prohibited from proceeding
for an excessively long time or forever. For example, always let-
ting fast-running threads through first could starve out longer run-
ning threads if there is no end to the fast-running threads.

Deadlock

Two or more threads waiting for cach other to finish. Each thread
has a resource that the other thread requires and neither can finish
until it gets the other resource.

Livelock

Threads in lockstep, each trying to do work but finding another
“in the way” Due to resonance, threads continue trying to
make progress but are unable to for an excessively long time—
or forever.

OEBPS/html/images/f0405-01.jpg
£5 packae oxa ee. ot
ST irport. atatic xs.3trendo. oot FEERUA

£ srpors Javaal

o
2 ¥ prosses 3 e weiny an oneser, 10 3 sinstar tahion o o

3 oplamatacion a Wietoioe cel. o cangs of dves swpportad is

€T U aion to 3 tee o

@ ran

€6 55 e that there 13 2 Gliberate g In Bl hat recomses the year
€1+ D50 Tep yaar vhe i fack 1L 16 5 3 Jep year Yor o Tird e
€6 Lioemation ot the Micrsott weheite 1 setiele QHLITH:

oo

50 Weps/amport nterosot con/stypor NYart el Q11311045

noon

75 Sl usee tho comention et 1-dan-19) = 1. Thie clace wss the

T3 cowantien L 100 -2

T4+ T rosult i3 ot the doy maber in this class Wil be diffoent to the

75 Eical Tisue for Sansary 06 Febrvaty D30tk Can Tecol 280 in o oxta
56 G 25-ha 190 UhLEh B ot Setaly GHLRCT) a1 fhom DI Bl Toriad
T+ g iy mabers will mach.

it

1 pablic class Spreatibentice mterds taynce (

2 "pslic sratic flal 1ac SULIGST OATE ORODOG » 21 11 1111990

£ Diblic satlc flaal Lot CATSS GATE oR0DOG = 2968405: 1/ 121313995
G piSlie st faal L3 T vk oo < 100

5 pislic static faal i VAXMICIE SIPRTED - 333
6 Aie Tiaal et 1] AGRSCATE CAES 10 o FRECEDTIG Wi
a1, S e i, 181, 1L, 2, 205, 27, 02, . s
i oatie tinal ek 1] LeR? 19 JOCHBSAT WIS To_ B OF_HECEDI M «
o0, 0,30 6, 50, 2L, 182, 102, 20, 24, U, 05, 335, 6]y

5 privce i extatnay
2 prives i &y
Mt ot

S pudlic resisottutotin doy, Nonth st in year) |
51 Pl < MINDALToAG SUCFTED | soar > WANIMAL1AAR_SOPPRTED)

i i v ot on
o A SRR 1 o+ | WAL SRR 1)
BTy 1T iy Ol e ba et

5l o e o sl 6 .7

[——
= e

OEBPS/html/images/t0183-01.jpg
ReentrantLock | A lock that can be acquired in one method and released in another.
Semaphore “An implementation of the classic semaphore, a lock with a count.
Countbownatch | A lock that waits for a number of events before releasing all

threads waiting on it. This allows all threads to have a fair chance
starting at about the s

ime time.

OEBPS/html/images/2_1fig_martin.jpg

OEBPS/html/images/6_1fig_martin.jpg

OEBPS/html/images/f0354-01.jpg
28+ Returns an array of month nanes.

0
21+ oroturn an array of month names.

m oy

23 public static suringl) getkonths() (

F

55 seturn gethenth(falee);

b

m)

k4

m

300+ petums an array of moch nanes.

m

w . Pﬂinm Shortensd 2 flag indicating that shortened month narss should
0 be aturned.

W

305+ Graturn an array of month namss.

Wy

307 public static String(] getNenths(tinal boolean shortensd) (
0

0 i£ (ehortensd) (

3w FotuEn DATS_FORBAT_STIBOLS. ok ShortWoaths).

m)

i also (

i TotuEn DATE_FORBAT_SHMBOLS. gotkonth)

e)

31

)

w

o

319+ Rotumms true L the swolied intecer code represants a valid mnth.
wmoor

B¢ Gparam code the code beiog checked for valiity

m

WM eretum scodetruec/code i the suplied iateger o represents 3
oy “atia month,

Wy

36 public static boolean isvalidionthcodo(inal iat code)

k]

F suiteh(code) (
w cae HARY:
i Cata FEERONR:
1 Casa waRCH:

w Casa AERIL:

i Gasa Wiy

i Gase

s G

% Gasa MOOST:

bl Cao SEPTEMEER:
e Case ocTogR;
m G NOVREES:
0 e DacmE,
e return trer
0 aetal

6 Setuen falee:
1)

15

M)

w1

1

”
349+ oturms the quarter for tho spocitiod sonth.
30 o+

OEBPS/html/images/5_1fig_martin.jpg

OEBPS/html/images/f01-3sombreroir.jpg
e

OEBPS/html/images/4_1fig_martin.jpg

OEBPS/html/images/f0396-01.jpg
o FRSLE WIS IRNCAGRENON L
Fetin qecrdinaitur) < othe cotordianloey)
)

pustic boslass 1s0n03atora Byt athe)
E et e et
)

public oclean skt Ouptate citer) {
et qecraiaaLEa) - ot coOrdLaIey (1
)

puntic molasn se0m0mtserCatate otha) (
et gecrdinaiiu] 5 cther gsoralasIzor ()
)

public bocless saSataa(Ouate i, e &) [
i siekeng 0. 2, Eoetereal. 001

)

Bublic bslear IsTonage(Dyate @, Dy @, TuteTmeral Intenal) |
12218 - ath.mia(dl s reinaifayt . 4. gekCraalbey)
% riaht Ntk maa(a stCedikachu () oecCrdnaltur (1)1
L nera. TG ore At 1| 1o, (N0

OEBPS/html/images/1-9fig_martin.jpg

OEBPS/html/images/f0360-01.jpg
Rotuns tho earliost dato that falls cn the specifiod day-of tho-veok
- and s APTR tho base dato

* Gparan targetWeskday 2 code for the target day-of-the-vesk.
+ Gparan base. the base date.

* oroturn the earlisst dato that falls on the specified day-of-tho-veok

. 30 52 AFTER the base date.

-

public static Seriallate gotPolloviogDayofleek final it targetieskday,
Einal Serisitate base) [

11 chook arguents. ..

¢ (Serialbate. il ibeckdaycodo(targetieskaay)) (
theow nes TilegalAzgunentExcoption{
*Iavalid day-of the-voek code.”

)
1/ 10 tho dato.

adjust = 7 + Wath.min(0, targotHeokcy - baseDow)

atse
adjust = Nath.max(s, targetheckday - baseDoW];

roturn Serialate.adiDaystadiust, base):

-
+ Roturns the date that falls on the speciied day-of-the-sesk and is
+ CLOSEST to the bise dite.

© Gparan targotDoH _a cado for tho taxget day-of-tharwesk.
- Gparam base the base date.

¢ Gretarn the date thAL £alls o the specitied day-of-the-veek and is
CLOSEST to the base date.

Y
public static Sorialiate gotNearostDayofieak(final 1At LargetDON,
£inal Serialate base) (

11 ok arqumts.

it (15 alDate. isVal ibookdaycodo(targoton) |
theow nes TilegalAzguneotBxcoption{
*“Invalid day-of the-voek code.”

)

11 t10a the ate.
Eiaal int acelo base etDayofHask ()
08 adjust = Wath.abs (cargotDON - basaDoH);
SE tadgust 3= 0)

7+ adgust;

OEBPS/html/images/5_4fig_martin.jpg
=

OEBPS/html/images/f0402-01.jpg
1 package oug. Jeres.date;
i

3 irport jaa.tent Dt Pocsastoles

§ public clase dstatnst |
& P priiala stk alerornabale dteforeac kol < sew Tt ormatbols
H

© bublic static strinal) ssnthes | |

3 el ien Gaterornat s, pthertn |+

f

I

I plic static bolaan isisprear st yoa) (
1 oate foath - vest v €

T ool e gane 41002 0

1 Dolam Coumandnenth - yar s 20 5

10 cavaen fourth dh { hurdedh 11 fourhucedth);
L

16 public static e Lassomromkntbach mach, e year] [
20 T aoth - NonehsEseRY 5. Iesprene st

B ki mah batar
Ioae

B mren sast 0
o

i

I6 puslic atatic k. Lasptoascom i your) (
1 P e G - 1330014

S tagios gear - 1800 /10

B dad | ear | 160) / 407

S et et - Lauplad lspdlt

OEBPS/html/images/3_4fig_martin.jpg

OEBPS/html/images/1-6fig_martin.jpg

OEBPS/html/images/f0368-01.jpg
125

m

.
Deblic void tostibndayprscodingPriday 0l (
SceLaltats modayiotors - Sorialate. ot FrosLousDpO ok
Serisitate MR, thic. 2001
n
adsertBqale(s, mondayBetors. goTay0Bath())

)
.
ooy follosing Fridey 9 Noverbor 2001 should bo 12 tiovesbar
o
peblic void toctibndasgollovingPriday a0l) (

Serialiate mondayhttar » Soiabate, gatFollovingoayotieok(

Sorisiiata WADRY, This aorsVElh]

”

Sesectsqale(12, eoedyAtter.gettapoBaEh)}
)

-
* Wonday nesrest Peidey 3 Novenbor 2001 shauld be 12 Noverber.
o

Deblic void tostibndliearostFridyNZOL)

Serialiate nondaylasress - St aloute getlasrestOoyOieek(
Serialtate MUK, this. orI2001

adsectsqals(12, rordptearest getTaroBoRth)

* Tho Manday peazest to 220d Tamuary 1970 £alls on the 13th,
-
peblic void tostibndpliearost20anisT() |
Sorialbato J22TIST0 - Soralte.croutolnstance(22, HoIorstante JNESY, 1970);
SerLa10ate mondalestestSera1Dets, ot Rear ek Dapo ek G aTout e KADRY, Jau22V1570)
Banala(13, mrdeiestost SeL D DAE)

-
" eoblen that (o comvarsion of ys to striags returts the rlght result. Actually, this
* rosall doponds o1 the Locals s Lost neuds 15 o mAILisd.

o
Public vo1d tostuactaarcodeToSrina() |

S30al String test = Serialoate.ueekiayCHSTOSKr g a Lot SYTURGAY)
assertqalsl- Sty (st

)

-
* Tost tho comorsion of a string (o a weekday. NoKo Tha this tost WILL fail 1f the
* UL locale doesn't uso gt wookaay Tames. . doriso a bester Cest!

-
Peblic vo1d tostskrinTcokasy() |

in2 voskday = Sorsalbo, oI MoOKTCo Weeeday”)
assortBquals (soral0oto VEXGSIRY, voakiar)

voskday < Soriallute. st rinTolookdayCoch(” Vochosday)
assartiqal (ser 310ato VERBSIRY, weskiar)

OEBPS/html/images/f0387-01.jpg
Ed

£
ks

i

B

i
&
ki
ki
Ed
i
k-
a0
6
i
i
@
i

i
i
B
E
£ g

o PR SN N AN A SN S

© Brecun ceadotrac/caes 1 his Sarlalite reprosen:s Cha s date 35
: b epecition Serisioto.
o
PRI toclesn Lson(Cial SeriaTto ot
ot (e sorial - avtor tosoriali)y
)

P

+ oturns trvo 1€ his Sariolte 1eprosets on
e o o icte.

© Do cther e ks g corpared o

wiier das cpaied to

+ Irstum <esdotrancendes 8 this Sarialute zepresets an aarlier date
. Civared 1 e speci o 5o Tt
o

pilic boslesn isboors(tisal Seriituco other) |
i (0 see 3« her Loseral()F

)

+ oturns truo 1 ais Sorislste Teprosscts the cam dato 38 the
+ Sacitied SorLalics.

+ daran otter the ks heig corpazed o,

© Srocun cesdtracrcntes 1 his Sarialiace Heprosencs Cho s ke
: SR serioe,
5
pinlis bostean Lsomorsetons(tial Secialcte echer) [
e (Ehia serial o ctber toseral 0
)

-
+ turns o 1€ his SariaThte reprosnts te sam s a5 U
© coeitiod Sorialhca.

T p—

st <codtoseclonde S this Sesialute xepresents che s ate
L S i

pilic oslesn Lehfer £l seraltuts otber) {
et (s serisl > thes toserLal)
)

o
+ toturns trve 1 this Sarisliste Teprosscts the sam dute 35 the
+ Socitied Sora1ocs.

© Sourn cther the dite s corpared b

© o scostraoccnges 1 his Surialite aprosencs Che s te 36
: he spciiod Serislite
pilic boslasn LeomortRar(£ial Soialiao ctber) |
e (Ehia serial - atbar toseral 1)
)

e
G O 1T L (T B S R

OEBPS/html/images/0340tab01.jpg
Line

Description

10

Crealc a single instance of C1asaii tiTheeadingPeoblen, NoIe, We must use
the final keyword because we use it below in an anonymous inner class.

116 | Create an anonymous inner class that uses the single instance of
Classiithhreadingproblen.

1 Run this code “enough” times to demonstrate that the code failed. but not
s0 much that the test “takes too long.” This is a balancing act; we don’t
want 10 wait to0 long to demonstrate failure. Picking this number s hard
although later we'll see that we can greatly reduce this number.

] Remember the starting value. This test is trying to prove that the code in
Classii thihreadingeronlen is broken. If this test passes, it proved that the
code was broken. If this test fails, the test was unable to prove that the code
is broken.

20 ‘We expect the final value to be two more than the current value.

2223 | Create two threads, both of which use the object we created in fines 12-16.

“This gives us the potential of two threads trying to use our single instance

of Classii roblen and interfering with each other.

OEBPS/html/images/f0351-01.jpg
103
100
105
106
0
108
105
10
11
1w
i
1t
15
n¢
m
1
it
ol
121
1
1
4
1
12
7
12
125
10
11
e}
m
1
13
136
il
16
1
10
11
102
10
141
1t
146
10
5
15
150
151
15
15
5
355
356
15
e
15
10
161
1@
16
16

/7% The lowest year value supported by this date format. ¥/
public static flnal int NINIMN_YEAR_ SUPIOKTSD = 1900;

7#* Tha nighest year value supported by this date format. /
Public static final int KRN, YEAR_SUPIOKTED - 9335,

4% Dsafu) constant for Monday. Bquivalont o Java.util.Calondar HOUCHY.
public static final int HORCAY - Caléndar. WATAY,

o

* Usoful constant.for osday. Bquivalont to Java.util Calondar. TUBSTAY.

public statie flnal int TESOAY = Calendar TUBSIAY,

”
* Usoful constant.for Wadhosday. Bquivalont to

* Java.ut 1. Calondar VEINGSONY .

i

public static final int VECRESAY - Calendsr VEDGESTRY;

s

* Usoful constant for Thrusday. Bquivalont to Java.ut L1, Calondar. THURSONY.
.

public tatic inal int RSN - Calandsr THORSTAY;

/7% Usaful constant for Friday. Bquivalent to Java.util.Calondar. FRIDNY. *+/
public static final int FRIAY = Calondar. RITAY;

.
* Usoful constant for Saturday. Bquivalent o Java.ut i1, Calondar. SKTURDAY.
.

public statle flnal int SNURDAY = Calandar, SKTURDAY

7#* Dsoful constant for Sunday. Bquivalont to Java.ut.il. Calondar SUCHY. */
PUBLIC static Flaal at SUNORY = Colondar. SNGRY;

7#* Tho nusbox of days in oach muth in ton losp years. */
Static tinal int[] LAST_DN_OF MU =
(0,31, 28, 31, 30,731,730, 31, 31, 3, 31, 30, 31)

/7% The nusber of days in a (non-leap) year up to the end of each mth. */
Scatic.tinal int[] AGSHBIATE_DAYS_T0 B0 OF MoTH <
(0,31, 59, 90, 120, 181; 181, 212, 243, 273, 304, 3, 345);

7#* Tho nusbor of days 1n a year p to tho ond of the precoding mnth. */
Static.tinal int[] ASSHBINTE,DAYS_T0_END_OF_PRBCEDING MAT =
(0,0, 30,53, 30, 10, 151, 181, 212, 203, 203, 304, 33, 3);

7+ Tho musbex of Gays 10 a leap yoar up to tho ond of euch wanch. */
Static.final int[] LEAP_YEAR_AGSHSGATE_DAYS_T0_ END_OF M =
(0,30, 60, 91, 121, 182; 162, 213, 20, 274, 305, 35, 366):

.
* oo aunber of days in a 1oap year wp to the end of the procoding ronth.
-
static tinal ()
LD YEASAGGRBZATE,DAYS_70_ED_0F_FRECEDING, WONTH =
T0, 0,38, 60, 31, 131, 152, 162, 213, 288, 214, 35, 335, 366);

7#% A usoful constant for roforring to tho first vook in a wonth. */
public static final. int. PIRST_VGEK_II MOITH =

OEBPS/html/images/f0376-01.jpg
s
o
b
1
m
s
1
s
]
n

1

10

i

10

ST, SMCRERRCE A ERRN, . EMI1:
SSSERBRNS D roRMEGETORr 03 DETHORR, true

i
Tothcotesteisat -1
TETLCTINeT 10 moach 500 dould throw s ior):
) ateh (Tiieqa egmntBicstion o |
i

)

piblic 16 EeststrimTABERCocoq) Cheows puccpeion |
sl AR, ATkt Maae(1
SESERBCNSTERROA, e Tt 2)
SSSERBGRIS AR, g Toke ool 1)
SAAEreBau AT, sringtaeti ot 1))
et e
SSRGS s iagIuhode £ 1
SSSeRBGRIULY, S iadtoticods 7111
SR BRI (IS, ot hoger 1)
Al SEPBASE AT ETOMOMACoS (3
SSsertBcele (CTOLE ot inaTorhode(1070
SRR, Sir oo a1
oA BB, e ing b 12%)

ot assarmqala(-L, SIS0
T sanrtzal 1, steiagTaRERCods L))

SRS SR COS0 RS)

o Gt m 1o 12) {
SSRGS e, ST Cod TSt ap . €410))) 7
| RIS ST AT . 68

I et stciniTtknthcodo)
T S T o o)

[aetERalens teinTknthcedo me) 1
11 Semtmaaleu stiammanthcods)

e e e
T Saamiaaiels ciaTmetecde i)
T b ikttt al')
T S iy Taetect)
I Sammsaslals dciayTattocie o)1
T Sammaai st Tt o))
11 SSmmaaiil st v)
[i o

J assetiqatss striasmacnthcods -our)
71 emtbalss ateiaTakothcede -TE)
71 s T code)
[el il i)
71 Semtbaalss it iarTkothcode W)
T SRR ST Code M)
= e
11 aemtbaalsis strin Tt cods -N0)
SRR LTl - w)):
SicerEquala i o inertCod DR
SaseriEaala(i1 stEimTerthCode W)
SR 12 T ot 18)

sttt steloyTGnECod ey
SRR SCLNTINGARE G

OEBPS/html/images/f0359-01.jpg
599 I

o seturn Serialbate,createlnstance(dd, m, 19);
o

@)

0

ot

605 '+ Crastes a now date by adding tho specifiod numbor of years to the base
Qi aste.

w oo

68+ Gparum yoars tho musbor of yoars to ad (can bo negative).

@9+ oparun bace tho baso dato

a v

61+ Graturn A new date,

W@y

613 public static Serialtuto addYaarstEinal int yoars, final Sorialdate buso) (
s

s Final 0t BasoY = baso.goLIYIY():
a6 £inal int basal - base.gotkonthi)

I Final int baseD - hase.gotDayoBlonth()

G

a Einsl int targett « busot + yoars;

@ final int targotD - Hath.min

a1 baseD, Seriallate. LastDayofonth (base, targett)

@ »

@

G roturn Seriallite. createlnstanca(targstD, basah, targett)

i

@)

I

@

€29 '+ Ratumms the latest date that falls on the specified day-of-the-veek and
G0+ is BERORE the basa dite.

@

€2+ Gparum argoteokday a codo for tho target day-of-tho-vuck.
5+ Sparan ase Ul base date

e

635+ broturn the latost dato that falls on the speciied day-of-tho-vock and
@ 15 DRFORE the basa date.

@y

8 public static Serialiuto gotProviousDuyofiook(£inal int targetkookday,
@ final Serialbate base) [
a0

o 11 chook argquents. ..

@ iE {1Sorialiute, isvaliHookaaycodo(targetiearday)) |

0 thron 1w TilogalArgumntxcaption(

p *“Invalid day-of the-soek code.”

s)

€)

ar

s 11 tind the aate.

‘0 Final int adsust;

& £ina] int 5asaDOA - base. oot ayOfHeck()

1 S (basaloH > targetiokiay)

2 adjust = Nath.nia(0, targetheckday - baseDoW];

5)

et alse

s adjust = 7 4 Math.max(0, targetieskay - baseDON);

5%)

i

a5 roturn Sorialate.adibays(adiust, basa)

i

“)

OEBPS/html/images/f0393-01.jpg
wr
1

15
1
15
1%
15
1
15
i
a1
i
i
i
it
i
21
31

AL (baso 1= pull) (
it Bis.rstative) |
Cas st it s
Socul = ScrisIDte. ok ro ety bk (. sk,
e

casa Serialoate.NEAREST)
ToShl = Sor olhte. o Mantot O (. ook

aaels
brests
oo, FrLm
Sessl - SeriolToto. gt 7sLIoutgleposesk (s, sk,
[

)
Tt

OEBPS/html/images/119fig01.jpg
Communication
Controller

1

interface»
Transmitter

+ ansmil(requency. stream)

Transmitter
Adapter

dutores
Teansmitter API

OEBPS/html/images/11_2fig_martin.jpg
main

2:run(co)

OEBPS/html/images/0324tab01.jpg
Mnemonic Description Operand
Stack After
AUORD 0 Load the Oth variable onto the operand stack. | this

What i the Oth variable? It is this., the current
object. When the method was called, the
receiver of the message, an instance of Exarole,
was pushed into the local variable array of the
frame created for method invocation. This is
always the first variable put in every instance
‘method.

OEBPS/html/images/9_1fig_martin.jpg

OEBPS/html/images/113fig01.jpg

OEBPS/html/images/f0365-01.jpg
2
a1
o
i
16
m
i
a1
50
51
"
a5
04
555
56
a5
"
5
0
1
2
54
a1
a5
5%
a1
e
559
000
o0
o0z
00}
004
005
006
007
008
009
010
011
o2
o
014
015
016
017
01
01
020
021
022
023
024
025
026
027
022
029
00
051
052
053
103)

* specified range (INCLSIVE). The date order of dl and &2 is not
+ imortant.

* Gparan A1 2 boundary date for tho zange

* Gparan & the other houndary date for the range

+ oreturn A boolemn.
-
public abstract boslean isTokange(Serialiute dl, Seriallate 2);

o
* Rotums ccodertruoc/codo> if this (BLik Sorialbate] 1 vithin tho
+ spocified rango (callar spocifios whothor o fot tho ond-points aro

inclided, The dato oxcor of dl and & is ot rportant.

* Gparan A1 a boundary dato for the zango
* Gparon @ tho othor houndary date for tho range
¢ Gparan Include '3 code Eht cntrols hether or 1ot the seart and end

e sre sncluded in the rang.

* dratuen A boolean.

public abstract boolean isTnkange(Sarialiate dl, Seriallate a2,
nt include):

o
+ Roturns the latest date that falls on the speciied day-of the-veok and
+ 14 BERORE this date,

© Sparan target20h 3 cud for the target dy-of-the-sesk.

¢ Gretu tho latost dito that a1 o the specied day-of-the-veek and
15 BRFORE this date.
M

public Soralnato gotProviousDayofook Einal it targetDik) |
TSturn gotPrev ousDayOPleek(taraet OOk, this)
)

o

* Rotumms the earliost dato that falls on the speciied Gay-of-tho-vook
* and 56 AP this date.

Gparin targetooH a codo for tho targat day-of-tho-sesk.

¢ Gretum tho sarliost dto that falls o the speciled y-of-the-veek
and ie AFTER this dste.
M

public Seriallate getFollovingbayofeek final nt targetDM)
roturn gotFollowingDayOfMeok targetD, this):
)

.
+ Raturne the nesvest dite that falls on the spaciied day-of-tha-veck.

* Gpaton targotDXH a codo for tho arget day-of-tho-veck.
© drturn the nesvest dite that falls on the specified day-of-tha-veck.
-

public Soraltate gotNoarostDayofhook(£imal Lt targetooN) (

Toturn gotNear st ayO fkook(targot oK, this)

OEBPS/html/images/f0382-01.jpg
eomon

s free ganeral purpose class libeary for the dwvalca) platform

€1 oppeiche 2002005, by hjeet Rlaney Limited sud concelbutans.

ot tntes beps . e, ona comn/ ks el

ol lbcaty Is fioe aftsae: you can relstrilate 1L andot sy
30 he Lerns of D U Loser GaREEaL MBLLC Licenso 35 pubbited by
e es Saftunre Fosuition sither version 2.1 of the Licens, o1

A% Jour et o) any Taar verclon.

i library is dsteiouced i the hopo ok it will b usaful, ut
I A WHIAITY ition. cven (ho 1p11sd vrtanty of MRURTARTLITY
o FIGSS K & DATISAAR HRIEE. So0 T . Lot Gosoeal Fublic
Ticarss fo more dntai.

Y00 sl hav rcotvad & cgy of the U Lossee Coeral Pistic
Licansa alcs vith thi Libaaeys A€ ot wite £ the Fieo Sftusee

(93 15 3 Craeast o rogtatered tradmsek of ur iezosyers, T
R e ot 224 e coutrian.]

60 oppeish 2082005, by Chgect Rtiaery Limited nd conclbukors.

ocipioal Mthor: Deid Gilbrt (for Gbjot Retirey Linicod
[

$10: Srsodsbestite. v 1.8 ZUS/LU0) 0925135 sy 50 §

g

L5 2000+ verston 1 11

05 Mo 201 1 Abdod e userptoni) and stDesceipt o) mschod (5):

5002001+ Chamgd s L Eceliut.sava Lo Spsadsten D, sva (35
Fized 3 003 n calewitias dy, meneh and vtz zerial
e

Hesan202 1 Fixed b In calewtatng che serls) msbac fean ey
Enith i year. Thants £ Trover KALS Tor 9 tepet. (0]

294202 1 Rt oalalChict) Puthad (SuecePorse T 33850 ()

13002001 1 Fixed rtors reported by rckatyie (05

130000 | plomeacad soraiacabls (331

11305203 § Coploced isTobaraet) rethod (05)

151550208 Tplanocsd Cogarsbie (05

U020 1 R acnodo) pothed (01

1

ackass sz dte

oz o alendiey
et Tmar !

’

*heresants o dto vsion an otsser, 1n 2 stxilar fasion to che
e e) S Mates Saas 38

OEBPS/html/images/f0407-01.jpg
167 private vold calcbayionchioar()
26 i do - ordinalbey - BNLIEST DR S5O

8 ovistnatedton: - NINDOX TEALSIPRORTED ¢ duys /35

B0 U5 iy fas - Eaten . eaplonriom (voroc iotes)

1 i indereotimutedton - NINDN TR SRRONTED 1 sontoapbre / 34y

m

DY e - ezt craiiLYy, unsrectratedroa)

Tl eindimiotten « fistordimlogiss yesr:

T3 ot Fosbon Stk atnin ord aalu, ClstOhdLoaloeae)

6 ornaitey - Elrsoneinelonied: - Saysetrerh i (a1
oo

b

103 privace Noth buntFonkschionzig ok ssordinal, snt Sirsordisalotioar) (
10 T Saystamietens - ncirel | issteoumceor

Wi s 1

B2 L (Gmyeletoromsonthiatert) < dyslntabichosr)

R
b

W e ren srentn e - 1)
b

B privaco e cpabatoromucbac 1 oneh) (
15 UE G 1 sasptortyann))

10 it A7 VAR AGBATE S saeceG o] - 1
iy

152 e poemate s o 80,0 MESEDIG MATH akon0) - 17

o

19

155 privare e WetPortencotainivs it suiedinaley, snt staceiogican) (

6 i v - Start st
BT while (frtirdmslotistatesr) < swcdisaltsy)

16 ot
15
20 o avese
P

25 privee e tiraordsaloBartun you)
Gt e colcomdnal 1, Wh Y. yase):

F

b

T piblic static Dayute crosostacco tate) (

61 Cropriantstontar eaisndr - rav orogo amaleceir
G Clmwcarmiate

0 Cin e Speadihan Ot ofcalerdr et (Calender 07E)

a1 Nerh rome (alenc et (3l andar MATH) 4 1)
i Coledar. ge Cstonor AR+

n

Fri

il

OEBPS/html/images/f0371-01.jpg
i

£

Secialiute di = Socialbate.sdfathe(d, 41);
sssertEquaialat, .gtleydtloath))7
et
ittt

Serialiute d - Saaltute adMoniatz, 01
Secertiquse oL, 4 gLy ent)11
SesertEaaislT, o sherth 1
SRR, B et 1+

Senialite 1+ Soriatute adorhs(l, Seraliute.adMnehe(],
oy ety

SearrtEqasa 7, ok aherth 1
SecertEQaLa 2004, 3060V

an

OEBPS/html/images/f0379-01.jpg
m
ko
i
i

£

o athgnmpm———"-_
1
)

pislic void testoatPoloviaaleyotesk) Shrous Bception |
o Sicarnalaia 1, SRR 2151 oot Follovioelosoflok I SKIRCRY, 4135, DECBER, 26601
ASSERCBRIS(ALL, JARARY, J0E), JAROLIoctoRE K SATICRY, 414, CBRES, 204)) ¢
SSSERBGRIEIAIS] WARD, 3008 J4FoLovinsert Mook NEBSONY, (3, FEEVRRE, 20041})¢

e (
Folloviralugothesk(-1, d(1, TN, 2006);
ELlLCTove110 dy of s i Should hicw exisption’)

) o (enicraontetion o ¢

'

public oid testGttionsak Ttk thious Bcetion |
SSSCrtBea(Alih, AL, JORE setat st Do ek SURORY, AI16, KPR, DIEN):
SESERBQRIS(AUIE, ARIL, J006), petiaroeToyOfuce (SRCRY, AL1T, AL, DI6N):
SSaSreB(dlie, ARLL, J00C), ptlascsetCoo ek SHORY, AL16, AL, N
SSSERBANSIAILE, ARIL, J006), st st DoOheeh (SRORY, 113, RPRL, DAY
SEEERBQRISAD, NATL, 006, ethear o Tyt ek (TRERY, 0, AL, 009

SEERBGRIEIA, AAIL, 2066, otlearoct by RO, Q(zL, AL, 015
SSSERBGRISIAID. AL, 2006, eteat oty ek SRR, (22, AL, 20360

itk el KAL 306, g buoos IO, 4UE AL 25061
Sisert B (AL AL, J0EC, gutlaarostDeyt ek WADAY, A(17, KL, 20161
SRR AR, J006) Do beyorie (Y. 015, AL, 0600
SeasrBGRIGIAL. NIL, 2066, goknars ey ok MDA, 19, KL, 2016))
SSSerBCRIEALT] AL, J06C dotearost Dy ek NADAY, 2120, AL, 20101
SRR AR J006) Do ceorice (. (21, AP, 0600
SRR A4, NALL, SO0}, JeraacoeECoorkenh RS, 123, AL, 01

e A1, ARIL, Z00E, gtthacot ey ek (TVESOY, (1, XPIL, 2006)):

SicortEqia d 10, NRLL, Z00C), JomakoctTomheek TVESO, e(17, APRLL, 13061)7
SsaereEaTalALS AL, JOEC) nasc st ek SUEENG, AL, AR, 00111
SSSEHBQRISIAIS, AL, J006) gethear s TyOfheeh (VBSRY, (15, APELL, 21061):
SSaertEulaidin, AALL, J00C), gotleacoetbeyotheek (B, AL, APRL. 2006117
. ARIL, 2000, stta s Dyofheek (VBSRY, A1, AL, 200611
SSSERBGRILIAE. AL, J006), gethear o Tyohee (VBSRY, A2 AL, 2306));

sssertEeuidl19, AL, 2000}, qtlscestToyO ek DAY, 4014, NI, 2006))
SSSEREQIRIA13] NRIL, S006) gtk EyOfheeh (EOSTRY, 8(17, WAL, 20061)
SSSEREGa1s d 17, NRIL, J60E), JtMearosyOrheckENGSIAY, S, AL, 2001))

SSSerCBaTa(a119, AL, J05E), ottiacos Doy ek VEDUSSNY, 4115, ARLL, $2061)

SeesrtBauna(dlls, AIL. J006), Jtnac oDy bk VENIS, Gt AEL,

SSSERBGRIS(A AL, J06e), etlearsetDyO ek VNI, S(21, AELL.

SSSEREBGRIEA, AL, 2006, ettaac s Doy ook VEDISN, G122, AL,

SSRGS 13, ARLL, 2006, JURNRAEORCyO MRk THRSINY, €U1E, NALL, 20060115
SasertEqala(d 20, NRIL, Z6CE) etlearesDey0 feek (RN, €17, AL 20061}
SSSIHEGa 4120, APRIL, JECE gttt Dy ek (TARSRY. L1, AT 2006))
SESCREQA 81 10] NRLL, S00C) JoRaEosyoeek (RS, (15, AL, 200611

SaSErEBaa(aid0, AL, J0LE, Jttasess Dot eek TSNS, G120, AL, 20360111

SSSERBGRISIA0] ARIL, J006) ptea st Dvo ek (RSN, (21, AL, 20960

SEESRBIL A0, AL, 2006, Jtuscost Dyt ek (NRSI, €122, AL, 299611

sssertEqals AL, NRIL, 2006, glesrostTy0 ek PRI, dU1E, KLL, 20360
SSSEREQAISAILL NRIL, J0L6) pehearertTyOfMeek (RIY, 8117, APRL. 1060
SAsErEqula(d(2L, AIL, J00C), petaakest DO tisk (AT, S11E, AL, 2060
SSSEHERIWL NRIL, J00E ntlearos Ty0 ek (FRIOY, 0115, AL, 20060
L, AR 2000, SRR (PRIONY. HH30. AR, 208EIT).

OEBPS/html/images/11_3fig_martin.jpg
main run(factory) OrderProcessing
<ccreates>>
LineltemF: <<interface>>
ineltemFactory
Implementation LinahomFactory
+ makeLineltem

L. o

<creates>>

OEBPS/html/images/f0356-01.jpg
41
s
i1
6
i
e
s
i
i
2
i
oy
i
2%
I
i
i
il
it
i
it
i
s
i
il
i
i
w
it
w0
s
e
s
e
ww
i
i
5
i
52
5
51
155
156
i
5
i
10
it
1@
16
16
16
16
i
16
s
m
it
n
it
o

T
tinal steingl) mnchs;

if (shortensa) (
oathe - DATE_FOUAT_SHNBOLS. ot Shorthonth 1
)

atee
‘ot = DATE_FOUAT_SIHBOLS. gotkonths().
)

roturn monthsenth - 11;

Converts a string to 3 moth code.
@

his mothod will roturn ono of the constants AV, FEERUARY,
DECNGER that corrospends to tho string. I the string is not
rocognised, this pethod rocurns -1.

Gparin & the string to parse.

Groturn <code>-Lc/ood> if the scring is mot parseabl, tho manth of the
yoar otherwisa.

public static int strisgTolonthcoda(string 51

Sinal Stringl] shortionthumss - DNTS FORGKT_SINBOLS,get Sortianths)
Eimal Strinal] montiames - DNTE FORAT SINBOLS.qetUorthal) -

ot result
Fegarel

17 et tay parsing the string as an integer (1-12)
oy (
Yosult = Tntoger parselt ();

)
esteh (wnberformatitcept 1 ¢)
11 swpress

11 o saarch throuh tho month nares.
3 {{rosult < 1) 11 {rosult > 12))
for (int 1= 0; 1 < monthanss. ongth; 144) (
i€ (s, oqualstshorthonthiams{ 1) |
Tonilt <4+ 17
brea;

)
i (e equaletmnthims(£])) |

emilt 21 1
break;

)

roturn result:

OEBPS/html/images/f0394-01.jpg
5

37 packags org. tree dite;
H

55 irore gt Soratieablo
40 irort il

i
5 ¥ sestrace elass tha ronesaets seatavle des with 8 prosaton ot

e Saategactorymataee to create a1 tastace.

fastor Gvid Gilbr:
CEIE0F Rbere o artin aid # ot of sefatoric,
!

6 piblic bt clase Tapots g lumats Corpuable, Serializala
5 "tz smtract sat getoroatios 11

@ pudlic sttt ceclow)

& DE e e peomnth;

G0 ualic shetrac St setowomeith 1y

{0 ot T rplemoation wil) na sach o to an intcye et
¢ s v it om0

0y o gust e sova.sriLIoter Yo ilL, b 8 ks ssase, B i
G % Javai L re can e 155 preeise - 12 Fapretrts an nStax n t i,

6 ¥ aacaiste to 17100 of ssard (w1t o ok 11 depandiog co the
S0 iz, Sonatines 1 ust vt G cipeesent & particola v (e 21
51 Shuary 2015 whart comcorniey ouralies et 16 Cine of . cr the
52 i g, o Snpthisg Sle. Tha s hat varve otiaed Dapats b

g

€6 procectsd abetract Tuy gy ForOnlnalIaEo)

G pudlic tytate plastuystot dne) |
P Tt eractor st G Ord LA)+ days)
W

T3 public Datate plastorhstot ke
e hasbe hsrdiaal - SUNGRER | LoL) - Kok, RIS K)

5 Enerttondrschaorais] - 1 ¢ gatiowl) o thidnt el

15 et aeseheorcre] - thi kot oRsscksodisal + Skl

1% it - it szl | 1)

3 et bisoaian] - rec Bt ANASEheCrdal 3 12 o Vrth RN, 00t)

Mot remthanth © W renr (ol ot scrd

0 Tty ot LAR OO S UG | Fsaltoct, tesuicronrs

ot Dyt aFacory. bl rosulila, roslthenth, saltio)

i

6 puslic mytote prastesrstue yeors |
i P et - aenioarl) + vests

£ ety - oL NG NTGEA |, e
| o B e e, SR S

£ prives int comectiaseouomeath iy, donth mrth, i yoar) [
S0 P astberotonth - DMk L1 LbtDuO Attt FekE)
B s aneet

OEBPS/html/images/f0385-01.jpg
w

f il
+ toturns the serlal s for the dis, wbere 1 dascy 1060 . 2

© T Correspond. it 1o L bir g systen v in Micesoft
© Sl o wondoet 3 Lt 1331

* drstum T coial s of thie ds,
o

pisli ot toserialt) [
st s aria
)

o ceodongan. i tecicotr oI €0 0 e

* orsun e date.
<
pilic Tte tenueet)
Eina] Coendas calsodr - cadendr st Tnstarce(
Calenr et GET OO, cetieRN| - 1, STOTIRTNO, O, 0, O
M

3
+ hotns the voar (e & vad zasgs of 90K to 999

* rtm o vz,
<

Pt ot gaarrero
ot s goar

et the wonth (s = 1, Fabeioey = 2 March = 3.
* arourn e ot th yesr

B ot getsnth) (
e (et
)

* roturns the day of the mneh.

© orstun e day of the mnch.

o

pilic ot sotDuyobech) (
s his o

)

o
+ sturns a cole soprssmnti the duy o the veeh.

@
Th cotes are dutlas in e {91k Surialace) clase 2z
CESUNTR o, <ende AT ol <cades DR,
Pt g c S oiomgin s
oot

Bt A code soprassnting ey of e vesh.

o
pilic ot gettapotbesk) [
et s serial + 91174 1

OEBPS/html/images/1-8fig_martin.jpg

OEBPS/html/images/f0362-01.jpg
785
796
w0
™
1
™
1
2
73
i
15
136
3
0
7
an
an
e
a0y
a0
a5
06
s
e
0
a0
it
o
o
e
a5
6
o
e
a
b
a1
@
i
a1
@
2%
@
@
@
e
o
I
a5
e
o
%
o
e
o
i
a1
s
a4y
st
a4
846

{
* Factory pothod that xaturns an instance of sams concreto subclass of
* (6Link Serialiute).

* Gpacan day_tho day (13,
+ Gparan ponththe mnth (1.12).
* Gparan iy the year (in the Tange 1900 to 3999)

* oroturn An instance of (91 Sorialoute).
.
public static Seriallate createlnstance(final int day, firal it month,
cinal int)
seturn new Spreadahestltelday, math, w3y
)

o
+ Pactory pethod that raturns an instance of soue concrete subclass of
+ (liak Seriallate)

* Gparan sorial the sarial mumker for the day (1 Jamuary 1900 = 2).
* dreturn a tnstance of Sarialiate.
-
public static Sorialmate craatolnstanco(tinal int serial) (
Toturn new Spresdahestiuto(sorial)
)

e
+ Factory pethod that raturas an nstance of & subelass of Sarialbate

* Gparan date. A Java date object.

* dreturn 3 tnstance of Serialiste.
.
public static Seriallate creatoTnstance(firal java.util.late date)

final Gresoriancalendar calandar = e Geegoriancalendar(}

calandar, et Tins data):

Torurn nou Spraadihast fate(calandar oo (Calandar. ATE)
Callndar gat (Calendar AT 4 1,
calondar gat (Calendar YEA));

)

-
+ Roturns the sarial msber for the date, whers 1 Jamary 1900 = 2 (this
+ corresponds, slosst, to the nurbering systen veed in Microsoft Bxcel for
+ Windowe and Lotus 1:2:3).

* dreturn the serial musber for the dste.
-

public abstract it toseriall):

™

+ Rotums a Java.util.fate. Since Java.ut L. mate has pore precision than
+ Seriallate, ve need to datine a comention for the 'tins Of day'.

* Greturn this as ccodersava.ut il Datac/codes,

public abstract Java.utilDato todato);
r

OEBPS/html/images/1-1fig_martin.jpg

OEBPS/html/images/x01-1single_thread.jpg
Single Thread

g e T

Getling Page
T T T Y

OEBPS/html/images/f0404-01.jpg
TR g SR
port Jmail

public slae Spreadsho:atoFatory extonds DotateBictory
BusLic Doytate rukebcatint crela) |
Cetin o Spreacibesacs kel
)

public Daytate _uotucotine sy, Nonth math, et yoar)
ot o Spreadshos k(&Y ponkh, 1t}
)

pubtic Caytate _rrabcarune cy, sat gore, ot yesr |
Eetirn he Fesdsbas (G, outh, yaar;
)

public Cotate aketuca(oue dte) |
i) Coeic ncteaiae catedss = new Grpociancaledar()
Calioa et e
“ein e preadibesiutel
Caltoa. ot Calendar GTE)
Ao, £ calenir e (s lodar M) + 1),
e get cslenda. TR 1

-

I proactad it _gsthininaaet) |
2t Ttk Soreshoet e DM YEAR S0PORTE
Ea

5 protectad it _asthscinadonel) |
i tsadibee D . KD YER_SPPORTED;

OEBPS/html/images/1-11fig_martin.jpg

OEBPS/html/images/f0374-01.jpg
2 JAEKIS 6ty JEemn. fare. Jiy
H

£ irport Jni. tramwort oscaser
1 imort o3 sixce-te.tt

& imart st g, Ere.dte. orielite.

1 i Javatilry
i
§ public clase Bbesor 4IDwoet extends Tosicas (

IL ublic void tostTtalidkeskdcode) throvs Bicetion |
12 P iy e by e 7 doped)

L e e b1

T asertrolilion I todaniel0)

B AR i)

i

It punlic ol ceststrimrsskaycode() throws cepion |

I assetmlstl, strlayTakshdncodel Sllor)):
G areueliom sk ytotwety)

L damelonma, Simkeokiartab(ien)

£ g1k abser Bl N, e Tk Coondar
1 st Y, ookl WA)
BT ammEels N, stringToleorinn(acet)

£ srcmmnccumsin, serimmosokdcot ey’
I BRSNS TeakdarCodl o))
2811 st Bl At gk ey
ST s VIS Krind ekt TURAY |
ST aemEasls(UISR, srireeokdam(i)
7 SRR, ettt

U asertBels IS, strineTobeckdaoos(edresdy® ;.
55 AR (R, eyt)
3677 st Mo, i ok o edtostar 1)t
ST el VBB, trireTobetay o (VENESINY |
ST AR MR, Sty (el

H asertBeusls U, strineToletdaode(“Thrsdsy)
E RN, Srin ey)
2 71 " SacortEau e RSO, hrireTolookaptialturcdar®
B1 aaartbols MR, trireTeordartosa THRSTAT
G SR, ok L 1)
Y et R st e e

D asertmana . s ayestFGy)
G BNl Srindeodaai-rn)
G577 st IO, sk By
ST SRR IO, ik PRI
ST amEaslRIN, st serisi)

B assrteels GO, ook tayote(-satudiy”))
5 AartBlo KU, SringToeoriaai(-5ot))

55 71 et VRO, Tkt cturdar
561 Sl KU, E OOy SATALAE
71 Sammbasle U, trireTokeori el et)1

S asertmanscm, sty)

G sartBals NN, Siringlobeokdaa(-a))

€11 il (SR, oo sy

1 i U, Krimheokia ol

61 SRl TN, srindecrin(-n)1
)

OEBPS/html/images/83250.jpg
Clean Code

OEBPS/html/images/f0399-01.jpg
1 package oug. Jeres.date;
i

§ pubtic s tateTmarsal (
et

& “pislic vootean sstntia: a, i Jot, Lae eight) (
© P e i

T

Y

§ cinsa

10 paslic Toolen setatiat &, it lot, i3k cight) |
1 PTaeim d e et 6 9 < ity

o

Lo

It closspram (
35 PR e et 4, e Sott, bac vipe) (

10 Pratim ey it 153 < ity

]

i)

1t 1

50 pitie tootan semntia & st T, ot eigh) (

B P e e b8 % ety

o

5o

i

55 public abstrot boslean tsTint 4, fa ot i vibt)
HE

OEBPS/html/images/f0410-01.jpg
16-288, 17-305
8 16-289, 17-306
.16-289, 17-307, 17-312
16-289, 16-290, 16-291, 17-308
16-290, 16291, 16-292, 17-309

oo 16-290, 17-309
16-291, 17-310
16-294, 17-322
.44, 14239, 16-295, 17313
16-296, 17-313
16-296, 17-314
. 17316
. 17-316
262, 17-317
15-262, 17-317

’ 15:265, 17-319
-.15-265, 15-266, 17-320
1-40, 6-106, 17-321
.5-90, 17-323

6-103, 17-324

. 16-276, 17-325
.16-278, 16-285, 17-326
3 o .16-283, 16-285, 17-327
S| " 15736416377, 16379, 16-282, 16287, 16288,
16-289, 16-290, 16-294, 16-296, 17-328

= rsesssnaness 16-277, 17-330

5 . 16-288, 17-331
-.15-263, 16291, 17-332
1336,14221, 15262, 17332
15-261, 17-333

16:274, 17334
- 17-334
169741627517

OEBPS/html/images/103fig02.jpg

OEBPS/html/images/103fig01.jpg

OEBPS/html/images/f0391-01.jpg
peivate it otk

11 Soocitios ek day o the week (PENDIE, NBNIST or UK. ¥/

brivare bt reistive;
P
ot constrocor - builes » rule B the Norday follviss 1 draary,
o

pislic Rolatsalaroplosktulel) |
EhiS(ron DhaMoa RIS} Ser a0 WECAY, Setlal e, FLLCHIN)
)

o
St contracon - Baas ot s on b splind sl
* Sourm subrute<ho rule that daternias the seferoce it
© G iyofiedr Che day-o-he-weok FOLI o e catsrace ite
+ i Sl e A S e i
o Bolowing).
pilic elatvetoroPhatiule (£ Nnsalotefule subrle,
Fira] at duopiek, fieal it selative) (

Ehis ot - oty

s eeltive = celarive
)

/

*aturns tho eub-zale (sl caod the ofeverce sl

© rturn o anal e ol that Betraioes U 1
. e

b

P MruaIntotule pASER) |

: &

s e aub-rale

ecencn ot for thie

[rep—

a0 somal dite sulo st ctermnes 230 roterence dito
o e mele

Y

pitlic vig catsubalottinal daitatotals cbeule) |
Ehie scmaie - siale;

)

.
124 s e dupof-chenusk for this e,
mooe

HE e e otk for 9 e
B pilie son canposesn) (

i e (s mothesk

o

i

s

13 e he day-ot-thoum tor this e
m

B i cootet o ctthee st i,
-~ oot s orfosrery

OEBPS/html/images/f0353-01.jpg
a1
m
p
m
3
m
s
o
7
26
b
5
e
0
01
i
26
P
s
246
201
248
2
1
1
b
=
5
S
5
ki
F
%
2%
26
262
25
264
25
26
il
%
%
m
m
m
7
m
75
76
m
e
m
0
21
b
pr
1
P
b
w
28

switchicode) [
cas SR
Caso N,
Gato TESTA,
Cato VEINESDAY:
Cae THRSDAY:
Gate PRI,
e HORDAY
raturen trie;
aetaul
Setuen falee:

)

o
+ Converts the supplied string to 3 day of the wesk,

* Gpanin s a string reprosonting the day of the vesk,
. the weak othervise.

-

public static it stringTolookdaycoda(sting) (

fimal String]) shortiookdaparms
= DATE_FORMAT_STBOLS. ot shortHokys)
Sinal Stringl] veshDayllanes = DKTS_FORMKT_STWBOLS. getackdays()

ot result - -1y

&= strint):

for (int 1= 0; 1 < vookDaytiamss.Jengths 144) [
55 (e cquateshortHaskbayaass 1)) |

st - 1
break;

)

1 (s oqustywaytams(i) (
ronlt - 1
broak:

)
)
roturn result
)
e
+ Roturms a string ropresonting the supplid dey-of-the-vesk.
e
* Hoad to £ind a better approach.
* Gparan vesidsy the dy of the vesk.
* Groturn a string representing the supplied day-of-the-weck.
-
public statie String weskaayCodeTosErng(£inal fnt veskaay) (

£i0al String]] veskdays = DATE_FORMAT_STHBOLS.getekéays():
roturn weskdays veskiay]

s

Groturn <code>-1c/code> if the string is not comertablo, the day of

OEBPS/html/images/11_4fig_martin.jpg
client

AppDataSource

‘BankDataAcessObject

Bank

le—rt
lo—ot

OEBPS/html/images/e01_01.jpg

OEBPS/html/images/322equ01.jpg

OEBPS/html/images/f0367-01.jpg
8

6 ' Somm JUnit teste for the (9L Saraloate) class.

&

66 public class SoriallutoTosts extends Tostcaso
@

@
o

108
10

i
m
m
s
16
m
ne
m
i
et
i
e
128

7#% Date reprosenting Novenber 9. */
private SerialDate nov2001;

”
* Craates a new tost casa.

public SeriallateTests(final String nare) {
super (nane)
)

s
+ Retumme a test suite for the JUnit test rumer

* draturn e test suite.
-

public static Tost saitet) (
Toturn now TostSuitolSor albatemosts.class)
)

o
* rroblen sot wp.
2
protectsd void sattpl)

Ehis.novav200] © Serialoata.crestalnstancel, WonthCorstants NVENBER, 2001);
)

o

+9 Yov 2001 plus tuo mnths should b 9 Jan 2002

-

public vo1d testAIMBRRSToNEI2001() [
final Sariallate Jn9R2002 - Sarsalbate. adMonthe(2, this.nov3t2001);
Final Sorialnite answr - Sorialace. cruateTnitanca(s, 1, 2002)7
assertBquals ansuer, Jandt2002);

”
* A tost case for a reparted bug, o fised
-

public Vol testAMRANSTOSOER2003 () (
Sioal Carialbote dl - Seriaibote. createlnstance(5, VorthConstants. OCTIRER, 2003)
final Serialnate @ - Serialbate.addionthe(z, dl)
assertBquals(, Serlaloute.croatolnstanca(, WnCCorstants. ECENBES, 2003));

)

s
* A tost case for a reparted bug, oo fized
i
PUBLLC V010 LoSLARIBIISTOLIAR003() [
Sinal Seriallate dl = Sarialbate.createlnstance(1, Montheonstants. JAMIARY, 2003);
final Seriallate & - Sarialbate.addnths(0, al);
assertsqualsl@, a0

”
'+ Monday preceding Friday 9 November 2001 should be 5 Noverber.

OEBPS/html/images/f0380-01.jpg
0
i
B
£
£
W
i
E
5
i
i
ke
B
ki
B

kA
Ed
35
i
bt
iz
s
ol
it
i
i
i
bt
b
bl
a0
i
il
s
a0
a
i
@
i
b
s
i
ki
i
i
b
el

SusectRgmIS{ANEL REIL, 00K, UEMEUIED SN LI, QS

SasertBoulald(2L, AL, 2006}, ettiacsctDoyOfhank FRIDN, 4122, RWLL, 2060}

I IS, AL, 006}, JOUNASRELSO RRISATRON, (16, APRLL, 006N

[1 SammtEaladlls, AR, 20001, fouiarsstioyo ek (NURDN. GlTT, AL, 106D}

71 SEERERIAI1S] NRIL. J006), ptleakoe DO beek SATRORY, (1€, AL, 2006))

11 Saticualeidas, AL, S0061, ToNorestLoyo sk SNIURON, G115, APRL. 210611}

SettearesTeyotiock TN, 8110, ARRL, 2000))1

T SRR AL, J006), puthearoe Dok (ATRON, dC1, NI, 2006))
ASSERCBGURIS(AI22 AL, JO0E), oRHRaESe DO Waek SATORRY, G2, KRLL, 036

11 Saamsasldis, AW, 2006

g
etarecttuyottosk(-1, a1, LA, 006
ELLCTina1ia day ot ok code sould Sheow excetion

) cateh (Dega kgt on 8 |

1

'
puslic vols teetEnreentRenth() theows Bucption |

Secialhote d - Soialowa-creste Tntance 2
Sisrcbeuma @l Dt 5060, & germateu

)

public ols EcetisorLBENTSSCigg) theoe ception |
SaSErtBels(PFLrs IR0t o I VELE TN)
S3ASRBaA - Sacond sk IEEYTot: 133 SORD VEEE. T JTH)
SEAERBC1a(1 T4, KTt g THRD VESE. 1 WA
SESERBls-Fourt, sk VTSt (3 (FOCTE VEE. T JNTH)
S3SERBRIS (Lo Voot 03[LASTRBR LHTH

ey ¢
7 ekimorimseeiaat-y

71 G CImalia veok soo shauid theow sxeption')
1) citeh (lesticpimecention o |

o

PUBLic 16 EastieLat e () Ebnows Scegtsce (
SsseriBewlal Hocedag” relst oot ing ECDNG) |
SRR o LA ot 4 AR
SEARBIL Pt louid LS WOToR 3 POLLIES

oty (
1 selstonstrisat-1o00,
T i (Taiia telaive cace should theow exception”s:
Ty cen (iaiscomentsacere o0) |
o

f

a0, U, 20090):
SSAERBAMTL(d20, PR, 2006, e CrtesthoRAL], FEERUAE, D))
SSSERBGISIOL W, 2000, ek BuORMIGEABIL L, R, 20041
SEASRBL(0] ARIL, J006), & JotENEIGRARIMAL, L, 2006)))
SSSERBRTA(OL WAL, 000, dpetmbEercMGRth O, 1Y, 6601
SSSEiBaRIS 0, TIG, T106) et Iowreathon], THE, 200)
SBEREGEOL e, 206, ¢ GBI, T, 206
SSSerBGRIAAO AET, 206, 4 qutErbfCurterthonthd(L, AT, 006
LSRRGS 00, SRR, 200 Do EOICL TN, SHITOEE. 2096)
SSERBGRISIEL OCTIR, S60E, .04t MOORTTGRMUA i1, CCTUER, 450
SSsertpclatd, WBEE, 20), S ses T Curren AL, MBS, 20001
SSSINBUIOL DERE. S0(6) e EDICTATION Y1, TECRB. 2360
SSEREBQAIEIA, TR, 0T, 4 geEdtCur RN AL, FEUARY, 2013)))

OEBPS/html/images/f0388-01.jpg
34~ mecitied rangs (DELUEIVE). The dace cedor of &L 204 &2 14 ot
T et

T tmumar s busdny die tor tho sue,

T B e ather bowdery dite for the e

I

0 st boolass,

E)

S piblic teslea tsinsimeltia) Serialice dl, fia) serialote @) (
i st slabanga (3, @, SoraLbto, DITE 07

w0

36

F—

S ot tru 18 this Sosallut 1 vichin the pecitied came (caller
S it hather oF ho 104 snd poTRA Sre elead). T oréer of 0L
3t et poria,

W

S T umer oo bouaduy ane tor cho o,

3t iamm e s sacend by date o the forg.

35 arm dnclude 4 ool (et contiols isthe o ot the st and exd
oo 0 ecThand T the nine.

E

E

Bretun <cudeorsecleads 1 this Seclalite fs withl the scified
. i

Y

5 public teolean

Iotael i) sotaliucs 0L, fies] Serlalite 2.
i) ot Laeto)

Sina) it 21 - dLtosrial)}

o it 22 @ ool

£l e Start < BhpIcl, <2

Eined it oo - pthgan(cl, 22

il e < - el
i€ Cinclude L. Soraitate. me1ovt ooy (
Tt 152 St 5 3 < 200

)
Slse i Gaclads . Sorialivte. TG FIRT) |
priigteddirporion

)

Slse it (nclads = Serialiote TS D) |
Pt rrgey s

)

s1se ¢
it 5 st g6 s < ond
)

)

i
+ Calolate the erial maber ron the day, musth and rose.
w2

aras 6 1he aa.
B the mia
ey the vear,

© ireturn the szl e trn the da, roneh snd gz,
B

vate e catesarial(tinal i &, ciaa) ¢ m, Gaal 1) (
Tinad it 1y« Ly 300} + 35, 1 Serialte. SapEoariutely - 3
L Stk 10 ASRBGHTE DS 5 0. HECHOD IO 17
s s NI (

OEBPS/html/images/f0350-01.jpg
* 11506t 2001 ¢ Ro-organised the class and moved 1t to new package

. con.seefinery.date (05):

* 05-ou-2001 + A 2 getiuscriptionl) method, and eliminated NotableDate

. elase 191

* 12:000-2001 ¢ T8D recuires sakDascriptiont) mathod, now that Notablabate
clase is goro (D3); _Changed getreviousTayofiookl),

. getollontnshayofieok(} and getNearestDayofikck() to correct

% Buge. (061

* 05-Doc-2001 ¢ Fixed bug o Spreadshesttate class (15)

* 29°Kay-2002 + Woved the month constants into a separate intarface

. (onthConstants) (05}

* 27-0ug-2002 ¢ Fided bug 1n adRonths() msthod, thanks to N77lovka Potr (D3)

* 03-0eE-2002 + Fixed ertors reported by Checksiyle (36)

* 13Mar-2003 ¢ Inplenented Sortalizablo (00);

* 29Kay-2003 + Fised bug 1n adonths nathod (D5):

* 04-5ep-2003 ; Irplonanted Comarablo. pdted tho isTntange Javadocs (00);

* 05-3an-2005 : Fixed Iug 1o addoars(} method (1096212) (B5)7

59 package org.3free.date:
@
61 srport. java.io.Sorialzabl;

8
o
®

* An abstract class that dfines our roquiramits for manipulating datos,
without tying dom 2 particular implementat on

oy

Roquixenent 1 ¢ natch at loast vhat Bxcel doss for Gites

Rouirarant 2 ; class is imutablo:

&

My oot Just use Jeva.util.Cote? We will, vhen it makes sense. At bums,

Savaut:1.0ate can be 1o precise - it epresents an inetant o Cime.

accurate to 1/1000th of a second (with the e itselt dgending on the

Firmzone) . Sonetines e Juct vank o sebresent 3 partscuiar day (5.0, 21

Sanuary 2005) without concorning ourcelvoe about e tino of day, o tho

tine-zote, o anything else. That's uhat we've defired SerialDate for.

@

You can call getTnstancet) to get a concrate subelass of Sariallate,

without worrying about the eract implementat on.

* Gauthor tavid Gilbert

-

56 public abstract class Sarialiuta implarnts Corparable,

o
@
®
0
a
2
5
3
5
%
a7
*
5

m

101

102

Seriallzabie
Monthconstants (

7#* For serialization, */
private static flnal lon sorial¥orsiowIo

MR

7 e format symbole. */
public static £l TatsomstSymols
DATE_FORMKT_STHBOLS = now SurplaDatoformat () gotDatoFormtsymbols();

7¥* Tha serial munber for 1 January 1900, */

public static flnal int SERINL LOWER_BOUD = 2:

7¥* Tha serial musber for 31 Dacenbor 5999, /
public static final int SERINL UPFER_BOUD = 2950465

OEBPS/html/images/1-10fig_martin.jpg

OEBPS/html/images/10_1fig_martin.jpg

OEBPS/html/images/f0409-01.jpg
16379 16285,
16-285,

16-28.

14389, 16373, 1628

Gs C16-279. 16286, 16-201
66 -106, 16-280, 16-283, 16-284,
16-294,
16281,

5-86. 15264, 16-276,
G12 L. 16284, 16-285. 16-286, 16-287,

15264, 16-284, 16-288,
16-288.
16-286.
16-288.

16:295.
16-288.

L 16-288,
. 16-276.
. 16-274,
o 16-274,

- 16-291
16-296,

16-296,
16-283,
s 16-283)
16-283, 16-285, 16286,

16-287.

16-284,
16-292.
16-295.
16-288.
16-292.

17.29)
17-293

17-295
17-295
17-296
17-296
17-297
17-297
16-289, 16-293,

17-299
17-300
17-301
17-302
17-302
17-302
17-303
17-303
17-304

OEBPS/html/images/1-2fig_martin.jpg

OEBPS/html/images/13_1fig_martin.jpg

OEBPS/html/images/f0392-01.jpg
pisLic void satTuroDiskiine] ot datiesk)
et S

’

+ totune the xolaciue’ attribute, tha dtemmizes T
© Syt eheruek v es Intcreted Ly (soriaitute, RIS,
© SHiTere MR o Serislite oA

I A
b
pisli ot sutbelativa) (
st e ela e
)

.
© Sirlaitiee rollwn

© o relative. Gcaenines "MLk Gay-of-Ehe-wek 13 salecced by this
: peis
b
pibLic vié satkolacsctimal e relacire)

Ehisreliive - fola s
)

.
< craten & clow of this rue.

st & clow of this rua.
© Shous Clonallotppocteccption Thic hesld nvor g,
b

piblic et clom0) chrows ClontitSortachcapt on (
i) et valayo Tk e Gp! et
L elativauyotashiute) s, clone()
Apicate. subruls + (amaToatakeo] AHCte geLSIE() I
et eator

)

*hotns the date gnarated by this Tul, ox the secttiod v

© S yesr 1o yoar (1506 1tse yoar Sitse 5539

+ iretum The dte gemrate by th rale for
Tessmmilresse)

aiven yoar (poseibly

M
piflic Soraitute gocowattiral t yuse) (

11 cboc raum...
it Uy S it mumen vaae_swecersny

11 i SrialEate OULHAL 1508 SHIGETED |

Eheo o o IArovmetEseest o
| R e s i .

11 carcnace the ...
Serialice reanl - s
Fined Corialiute bt + thic subule. eeCatelyest

OEBPS/html/images/14_1fig_martin.jpg

OEBPS/html/images/x01-3breaking_cycle.jpg
Resource 2 Resource 1

#

e

o

k2 /j’
Thread 27

OEBPS/html/images/f0358-01.jpg
37
i
i
40
it
s
s
s
a5
s46
s
st
s
5
551
s
s
st
555
556
s
s
55
@
561
@
56
st
s
s
s
s
s
n
o
a2
73
o
&
b
b
i
7
580
581
s
e
a1
555
sa6
s
s
s
50
a1
sz
55
st
55
556
51
58

Roturns tho mumber f the last day of the month, taking into acount
1oap yours.

+ Gparan oonththe month.
* Gparan iy the year (in the rage 1900 to 3399)

* oroturn the mnber of tho last day of the morth
-
public static int LastDayomonth£inal int month, final int yyyy) (
Sinal int vesult - LAST Y0P MR (sonth];
5t onth 1< PERAARY) ©
roturn rosult;

)

else i (isleapteariyyy))
return result + 1

)

also (
Totuen rosult
)
)
o
* Croates a now dato by ading tho spacified mnber of s to tho haso
- ate.

* Gparan daysthe number of days to add (can be neqativel.
* Gbaran base the base date.

* drturn 3 new date,
-
public static Seriallate addDays(£inal int days, final Serialdate base) (

£inal dnt serialDaytbe - base.toserlal() + daye
roturn Sorialute,croatelnstanc{sor sl uyNumbr

)
”

* Croates a now dato by ading tho spacified musber of penchs to the buse
+ e,

s

+ 1 the buse dste s closa to the end of the math, the dy on the sesult
+ my bo adjusted slishtly: 31 May + 1 aonth - 30 June.

* Gpacon oonthe_the musber of miths to add (can bo negative).
* Gparan base the base date.

* drturn 3 new date,
-
public static SerialDate addonths(€inal int months,

fina sersaiate base) (

Si0al int 3y = (12 7 base.tIYIY() + hase.gethonth() + mooths - 1)

I
£inal int mm = (12 * baso.GoLIYYY() + Baso.gathanth () + mnths - 1)
L1

final fnt 8 - Wath.mint
‘base.getDayofonth(), SerialDate.lastDayofMonth(mm, yy)

OEBPS/html/images/x01-2multi_thread.jpg
Thread 1

Semrorese ML UL AL LML L

L

Thiead 2

Parsing Page AN B .

Geting Page — ! L1 N I n
Ly

Thiead 3

Parsing Page

Geting Page —— L)

OEBPS/html/images/15_1fig_martin.jpg

OEBPS/html/images/f0377-01.jpg
it e o sezeie o S 1 R
SASEREalai LT S 1))
et

SBSEREGAIS(C oyl u3en)
SSeeREGRlalT iyl uly)
et i
SSSEREGAIs) LT ol bt
SacerEQRla i st Code et)
pretie i ot
e e

i

sl 1 s TR Cod DI
et e
SSaerEQSla0 Loy TMECode)
retawiis i
SiierEquna(s MLy TaCode W)
SaSerEQala(C Loy Cod TG
SRS S Loy Cod T
SSSEREAIS(S agTaECl AT
SASEriEaala(s Loy THRECd - SETSEG) 1
SSSEHEQRNAIIG s) Coer e
SSSEREQAIS L ST ot bSe)
SEEEREAa 12 ST Cod ‘DRG] |

Fri

216 i void tesTovaLidkbeKIAntCod) o Bception [
" e G v drw)

D st i iawedmmc v
o

G0 dstpalse el iesIibkattuda 51
E

B

25 gl woid tostTdamtan) thiows Bicption (
Sadortase aLasptor 1900
SSairraeetiaaspvon 10107
SSERalet o (1402)):
SR 1908) ¢
SRl leapFoar 1900)) 1
presti ot
il istapear (195001
SRR Trelclaaptosr 16411
presti et ot
SBSErTe cseaprear 2000
SEaEreselasose (210101
SRRt 00

F
F

0 il void tostlesptausCout () theoss Bucstion (
Go Piartin, oot 156

i i e

i asswtBuls(. atewcomt 1502

L AN Lo

G demled, Laptarom 1o

L el Lo 1is)

G Siarama loproe (150

P Leaploaroou (1567
ia Leaptoaroom 1563
i gttt (119

i datmsleds, leptorcomt 1))
0 Aetmwliy. bt (2101
B Rl met G

OEBPS/html/images/f02-1wtfm.jpg
The OMLY VAL mefsugemenT—

OF Code Quaciry: WTFs/mivure

W E

GOOJ code . BAd codle.

Reproduced with the kind permission of Thom Holwerda.
http:/Awww.osnews.com/story/19266/WTFs_m

(c) 2008 Focus Shift

OEBPS/html/images/12_1fig_martin.jpg

OEBPS/html/images/f0364-01.jpg
909 ¥ Gparam other the date being compared to.

0
51+ Graturn the difference batueen this and the other date,

oy

SI3 public abstract int conpare(Serialbate other):

e

[

516 '+ Rotumms true if this Seriallate rapresents the same date as the
ST+ spocified Serialate.

a v

519+ Gparum other the date boing comared to,

w v

31+ broturn ccodentruec/ondo> if this Soriallute reprosente tho s dato ac
P the specitied Sortaltato.

m oy

524 public abstract boolean fson(Sarialbato othor)

25

2

527 '+ Rotumms true if this Soriallate xepresents an earlier ate comared to
528+ the specitied SerialDate.

o

50+ Gparum other e date boing comared to,

mr

52+ Graturn ccodestruacloodes i€ this Seriallute represents an oarlior date
. compared to the specitiod SerialDate.

my

535 public abstract boolean isBofora(SerialDate other):

5%

5

538+ Rotumms trus Lf this Soriallato xapresents the same date as the
59+ spocified Serialiate.

W v

M1 ¢ Gparan other the dto botng comared to.

e

Wy lxnlm\ <codeptrusccolox 1 this Sorialtato reprosents tho sam dato
s 25 the specitiod Sorialdate.

Wy

346 public abstract boolean lsonorBofora(Sorialate other)

a4

us g

589 '+ Rotumms true if this Soriallate rapresents the same date as the
30+ spocified Serialate.

551

92 Oparun other the date being compared to,

555

52 oretum <codmtrusc/code i this Serialtute represents the same date
555 25 the specitiod Sorialdate.

A

557 public abstract boolean ishfter(SerialDate other):

a5

e

360 '+ Rotumms trus Lf this Sorialiate rapresents the same date as the
61+ spocified Serialate.

w v

93 Oparan other the date being compared to,

354

5652 oretum <codtrusc/code S this Serialtate represents the same date
366 25 the specitiod Sorialdate.

Wy

968 public abstract boolean lsonOrAftor Sarialdato othor)

%

mn

”
911 '* Roturns <codestruec/code> if this (Olink SerialDate) is vithin the

OEBPS/html/images/f0383-01.jpg
T

8 aro c1at thao 13 3 Sferats b 11 Bcel et iz 2 year
15033 ek Your whon U et S 56 a0 3 Tad yor. sou S 0 ot
Latoration o 1 Meessofe sbaite 1n aticle GIELT0:
Rt gt ot con/uppart B Aticles/ g3/ a%p
e s the convene ot 1-cane 1990
Convstian 1Ldsn 199 - 2
The toslt 15 that e oy mnber in this lase will be diffarent € the
Bl flgne tor Sanaey 20 Fruary 190, b Che Bcel 3 10 an extza
iy 129 Fob 1500 VLch o ek SekusLly skiak) 3 fom ShR polet foruard
o da s w11 occh,

e claee s the

ssthor Gvid Gstbor:
-
6 b clase Sprostsbaszico encards soratones (

© e R serisliation, +/
5 privite Rt faal Toop serseTersionID - -Z0ISHETOSIIHSMGLL:

.
G e cay asber 1osanng - 2, 2-nton0 - FE—.
s,

)

i private e sersal

5

ST e dy of the math (110 26, 29, 30 or 31 dpanding 31 the renth)

£ pruate wt aan

S e rth of the pea 1 t0 12
55 privata e math:

S e e 00 1o 9. 41
S prueate bt year

Moo o cotional deseripkion fr the dute +/
I pravato Sries doseriotiany

oo
TR ST —

W64 dparan e day (n U rame 1 £ 287290030
T s the ooth (i th rangs 1t 121

IE B yesr the yar (in th Tanae D00 £ 358

s o

OO piolic Spreasheotbcoltinal it iy, Eisal ok nenth, Sl iat year) |

i S Cgesr 5= 1990 55 (gar s 9 (
m Shiciyer - vt

i)

it E

1 thzow tow TlopalizoumetEzest ot

i e voat ot st b5 1n xacce 1408 10 999,
e »

i)

1

i ¢ Gmnth > oot e

I 54 Tronh <. WehConetaat s, ComeER)) |

i Chiciath - mch

1)

OEBPS/html/images/11_1fig_martin.jpg

OEBPS/html/images/f0397-01.jpg
TONERN S T

rport Savaext uterornasmiole:

S FEEIDARYZ), WARCHE) .
AL,) R,
T, . e,
S0 KAL) BGRR12)

30 privacs Static ItatormeiSyate GhtobormESymiele - ow IutofortSymboLe

I privees Static faal 12t LIT AT oF Mo

1
H
H
i
 public s et |
1
i
H

i B O RO i R
i i dnde
i

16 e e |
7 e aden
i

20 public static Noath Eronltint senthTaden) (
5 P et hoath valis)) (

2 it tnineor mostalnin)
o et

o)

55 e oew Thlogathepumotception|*Taralid ecth Sades * 1 onthlsdr)
H

5 public i doamuy) (
a1 et LAST DA 08 Yo icen]
)

Tyr——
5 M Sl
E

56 puslie stris tostring0)
51 et eterormst s, getenth) {aden - 111
N

i pudlic Rrivs totestseiont) |
1 i Gaterorma S ek TarRonthst) 1nx - 1)
I

G pitie static Ntk parststeing 1) |
i Py
G o et mathaliest))

i Ui e
i ot

i

S

£ Tatu tonat tneoper.pareete 11
2

5 ok Gwbermmatscstion o) ()
5 Shra oew Tlogaiacumotoeption “Tealid mcth * 1 o
N

1 privato ot ratchas(ring o) |
it it cequisimuretistiagtring) 11
i e B
@

G ptse e cone) ¢
& P
@

OEBPS/html/images/f0349-01.jpg
2 oo gonoral purposo class Liary for the Javaltn) platfom

() Copyright 2000-2005, by Object Rotinery Linited and Contributors.

Project Info: bitp:/ /. Exee.oro/ comon/index. htal

This Library is fres softvare; you can redistribute it and/or mdify it
undar the tarms of the (M Lesser General Public Licensa a published by
the Frae Software Foundation: oither varsion 2.1 of the Licensa, of

(@t your option) any later version.

This Library s distributod in tho hopo tht it will bo useful, but
WITHGT A WARRATY; wthout aven tho. irpliad wareanty of MERCRATAGILTY
or FIINGSS FOR A PARTICULIR, PURROSE. See he GN) Lescer Genaral Pblic
Licansa for rore details.

You shoud have rocoived a copy of tho QW Lesser Gonoral Rublic

Licanso along vith, this Lbrary: i€ mat, write to the Froe Softuato
Foundation, Tnc., 51 Franklin Screat, FAth Floot, Eoston, WA 02110-1301,

{2ava 1 a tradonark or registored trademuek of Sun Wictosystors, Tnc.
in'tho United Statos and achor countrios.]

Serialtate.java

161 Copyright 20012005, by Objoct Rotinory Linited.

Original Athor: David Gilbert.(for Object Refinery Linited);
Contribator(s): -

$10: Sorialbate.Java,yv 1.7 2008/11/03 09:25:17 mungacy B §
Changes (£rom 11-0ct-2001)

OEBPS/html/images/2_2fig_martin.jpg
L a7

OEBPS/html/images/f0372-01.jpg
€1 ek 2002005, by Chject Relaeey Linited nd concribtars.

oyt Inter beps . e, oea comon/ ks el

o ibeary s froe aftsare: you can relstrilate 1L andor iy 1
305 the L of D Lstr Gabezal, BLLC License 35 PURLIERd by
e es Saftunr Fosdtion either version 21 of the bicens, o1

a7 Jour otlon, any 1aer verclon.

i lbrary is dsteiouted i the hope tak it will b usaful, k.
VITHIT AR AN itios. v e aplied vrsanty of MSRIRVAEILITY
© o SIS 60k A IATITAAR FRRES. So0 S0 G Lot Ganoeal Fplic

© Vicina for e dtaiie.

00 916 hav oot & cgy of the G Lossee Coneral PisLic
Licansn alcs vith Eh1 ibxaeys 1€ aat, urite € the Fieo Sftusee
Fomiaicn, Tec. 1 Feanklin Sreet. FiCh Flock. Bosto, Mh. 02110-L301

s is o trabeusk o egistered radmack of S Nicrosy s, T,
13708 ke Sees Saa Ser owstrion

P ———
€1 i 2082, 209, by Gt Refiasey Linited

Origioal Mthor: Daid Gilbert (tor Gbjot Retirery Linicod)s
et -

10t Nnthccretants. ava,v 1.4 20S/L1/15 14S844C taqa 559 §
e

o020 ¢ Yorsion 1 (e moved £rom Sriallve clase] (03
'

& it o, st e

-
* Dol constarts or mnths, Nate that theee sxe T xpivalct to the
- Cotsants Gefined by Jarecu1.Coiende (are SNTKIY2D 413 DOCANERF 11
© Ui by the SeraiDuce and RcularTitoriod cloes

5 e
public oterfacs Nonthoonscats (

1o consta tor swmse +f
P satie inal L SRS = 1

1o constrt tor peeuny.
DAL satie sl Lo FERORY < 22

OEBPS/html/images/f0355-01.jpg
31~ param code the month code (1-12).

i
38+ Graturn the quarter tat tho mnth bolongs to
8 Gchrons Java.Lang. L LogalATgumntBxcep ion
E)

356 public static int ronthCodoToguarter (£inal int code) [
E

% svitehtcodo) (
39 Case AR

0 Case FEBROARY:

it e W returm 1;

8 e ARRIL:

6 G Wy

26 case TOB: return 2

36 cass Ly

26 Gt i

i case SEPTBMEER: coturn 3

6 Gt octomR:

i cata OVENEER:

m cao DBCEEER: roturn 4

it fault: throw nov logalArqumentBeception(

m *Soriallete.montheodoToguarter: valid mnth codo.)
m)

B

w9

b

mooe

318 '+ Roturns a string representing the supplied month,
oot

380+ Tho string returned is the long form of the month nans taken from the
31+ datault locaie

W

3+ Gparimmonth the math.

W

38+ Greturn a string representing the supplied month,

Wy

397 public static String mathcodemostring(final int month) (
0

3 roturn monehCodToStzingtmonth, also):
w0

o)

w

m o

3+ oturms a string xepresonting the suppliod monch,

W@

396+ The string returned is the long or short form of the meath nams taken
37+ from the default locais

W

39+ Cparum ponth_the mouth.

W00+ Sparam shortensd 1f coodestrusc/code> return the abbreviat on of the
oo oot

W

403+ Greturn a string representing the supplied month,

408+ thoows Java, Lang. Hlegalhraument Exception

w

406 public static String monthCodeToString(inal int month,

wn final boolean shortense)

e

w 11 chock arguents. ..

it it (jisvalidnthced mneh)) (

a throw nes TllogalArgumantBxcoption(

bt '*serialDate.moathCodeTostring: month outside valid range.*):

OEBPS/html/images/4_2fig_martin.jpg

OEBPS/html/images/3_2fig_martin.jpg

OEBPS/html/images/f0361-01.jpg
2
721
125
124
2
m
72
i
i
m
75
74
7
e
7
7
™
0
0
02
74
44
e
46
w7
e
1
5
51
52
75
754
7%
7%
5
5
7%
7%
it
02
16
78
7%
746
i
18
16
m
m
m
m
m
il
%
m
8
m
0
7
"
7
788

]
roturn Seriallate.adiDaystadiust, base):

)

o
+ Role the date forsard to the Last day of the ponch.

* Gparan base the base date.

* dreturn a now serlal date.
public Serialtute gotBNDECurrontkonthtinal Sorialiute beso) |
Einal int lact + Sorialbeto.lactCuyomienth
basa.gotkonth(), baso.GoLTIYY()
»
Toturn Sorialbate,croatolnstanco(1ast, base.gotWonth), buso.gekyyY() |
)

=
+ patur
Iy

* Ned to £1d & better spprosch.

s a string coressponding to the vesk-in-the-month code.

* Gparam cowt an inteser code Toprsenting the week- n-the-mnth.

+ Oroturn a string corrasponding to the wesk-in-the-mwath code.
.
public static String veskIakonthTost g tinal int cout) (

suiteh (comt) [
caso Sorialluto. IRST VSK_IILNONTH ; roturn “First”
casa Sorialluto. SGCOND YEBF_IT MATH : roturn *Socond
casa Soriallato. HIRD_VESK_TLJONTH ¢ roturn "Mhird
Gt Ser albute. FOURTR VERK_IICMATH : return “Fourth

Case Seriallate. LAST VERK_LWONTH + retum “Last'
Bofanlt
rotuen “Sorialoato.vookInkontHToStr ing) mvalid codo. s

)

o
* Rotumms a string reprssonting tho supplied ‘rolative’
e

* N to £id 3 better spprosch.

+ Gparan relative a constant zaprosant ing the “relative’.

* fretuen 3 string reprasenting the supplied ‘relative’
.
public static String relativestring(finsl iat relative) (

suiteh (rslative)

caso Sorialbuto. MECEDING + roturn *Precoding’
Case Sariallate.YEAREST : faturn “Meareste

Gate Seriallata. LLONIN seturm “Follosing
Sfault : return ‘ERROR : felative To String's

OEBPS/html/images/1-7fig_martin.jpg

OEBPS/html/images/16_1fig_martin.jpg

OEBPS/html/images/5_5fig_martin.jpg
~
)

/

};\\

OEBPS/html/images/17_1fig_martin.jpg

OEBPS/html/images/f0401-01.jpg
1 package org. Jtree.date:
i

5 public ona Veckdntan

]

OEBPS/html/images/f0369-01.jpg
s Uashcny » Serialbace. ety igToleatdsyoode|ed®);

e SecertEqa’s o Lt VEIVESDY, vookl)
wo

1

oo

151+ et o comereto of a ctrin to 3 south, Mate tha caie teet il all 1€ tho
B2 % T ecale dscent vee Beaiah moah e devis 8 Eeteer est!
oy

I pinlic vis taststrimarmticod) (

¢ 1 < Serialice, string TS Tamary .
aceertiqads HovthSonetant s ARRY, 317

< Soriatute seeiogTaER o Ty %)
et Monthoonatant . AR, 3)

= Soria it sl)
Seertiqais RosthCoecant AR, 201

1300t 8 bt oo 20 8 o,

BilLic void testibah AT ot (

tinsl Striag tost » Soriallut.onchcuieTstriag Mon A Constan . DOCREEN)
sssixeEqats Docabar, test

)

.
1300 3¢ 10t 3 Losp o,
<

P old cost e Lastear 1) (
ScairtTa Seria Lo, seLasploa 1901
)

<200 35 2 2w vour.
o
piblic vold test Eeougieardics) |
SssirtTue et alce. LLeTear 209}
)

s
+ the maber of Leap yaare. from 1900 2p-co-and-rcludiag 1583 1 0.
o

piStic oid testlaptout 163%) {

asserqais e Lalace. leapiearcot (1199, 01

)

.
2V ima maker of Leap yeare f1em 2900 p-to-an scladizg 1303 32 €.
W

& e veie comtaptoaroome1ses

i SiaertEqaLs e LaLote. lespToaCst: (1903, 013
6
Er—

G e maber of lewp yeas uom 1900 p-to-and-cladizg 190 55 1.
R

OEBPS/html/images/f0386-01.jpg
FO—
S0 Vs v oqutiey of ens dute wivy n anvitrary apgue
Eoora

5+ hia nethed will rutur rue LY 1€ che ckiet 1 an fnstace of the
G0 SN Seraitate) s cless, and 1 represers (e sam doy 25 this
(Al preadeoe)

Er

T aparm chiect the sbict to corpae (cntrelleodes pemiteed).
5 st oolasn,

F
1 puslic toclesn oqalattina hieet objos) [

i

8 1 gt smseasot soristuee) (

i tire) srialla s « (eriaibuo) objecty

cebun (Aol - this totsall)
)
alee (

et alon

* hoturns & Vs o for this blect Lastance.

* brstum A vach oo
<

pili ot Dasheodes (
st Cerisi(ly
)

.

+ Tt s 0Locarcs (i days) Itwen Chis date and chs pectled

o cttar 0o s et cspared 1o

st The dfacene (i days) becvee Ehis date and che pecified
ot e

M

bl ot corpareaal Serielite erser)
T 15 Serla - ouher tose a1)}

)

-
+ Ilncete tho msad recuired by the Coparabl tostace.

ot cater the it chjct (aaaly amettr Seriaigo)

st A nemtise koo, 1610, or 8 ositive iates: ss this cbect
L T Tl i el e

pilic ot corpareTFloal chiet ther) {
e Crparel(Sstiatate) s66t

i
S it Serathe.
N

£his Seriaiute xeprosants the e dats 23 the

