

[image: image]

CONTENTS

Chapter 1: Introducing Cloud-Based Mobile Apps

How to Build Mobile Apps in the Cloud

Two Big Ideas About the App Industry

Getting Started

Summary

Chapter 2: Mobilizing Your App

Building a Touch-Sensitive Drawing App

Using the Amazon Cloud

Summary

Chapter 3: Building Mobile Web Apps

What You Can Do with Mobile Web Apps

Introducing jQuery and jQuery Mobile

Building a To-Do List App

Summary

Chapter 4: Enhancing Your App

Using App Caching

Handling Touch Events

Embedding an Interactive Map

Providing an Application Icon and a Startup Screen

Summary

Chapter 5: Building Apps in the Cloud

Server-Side JavaScript

Cloud Analytics for Your To-Do List App

Summary

Chapter 6: Use the Cloud!

The Classic Cloud Architecture

Introducing Amazon SimpleDB

Putting the To-Do List App in the Cloud

Summary

Chapter 7: Enhancing the User Experience

Creating a Classic Tab Bar Interface

Enabling Mobile Audio and Video

Launching Apps from Your App

Summary

Chapter 8: Working with the Cloud

Storing Content in Amazon S3

Signing In with the Cloud

Building Large-Scale Apps

Summary

Chapter 9: Creating Hybrid Apps that Run Natively

Introducing Hybrid Apps

Building Hybrid Apps

Lifestream, a Photo-Blogging App

Summary

Chapter 10: Building a Photo-Blogging App

The Architecture of Lifestream

Building the Server

Completing the Lifestream App

Summary

Chapter 11: Working with Cloud Development Services

Getting to Know the Mobile App Development Platforms

Using the FeedHenry Platform

Using the Appcelerator Platform

Using the appMobi Platform

Summary

Chapter 12: Going Social!

Using the Twitter API

An App for Direct Messages

Summary

Chapter 13: App Stores

What You Need to Publish Your App

Building Your App for Release

Summary

Chapter 14: Selling Your App

Determining a Marketing Strategy

Choosing Tactics for Promoting Your App

Summary

Appendix: Exercise Solutions

Introduction

Advertisement

Download CD/DVD content

Chapter 1

Introducing Cloud-Based Mobile Apps

WHAT YOU WILL LEARN IN THIS CHAPTER:

	Using your existing skills as a web developer to build mobile apps

	Understanding how HTML5 will be used as an app-development standard

	Learning how to dynamically create JavaScript functions

	Using the WebKit browser engine for app development

	Creating a mobile web app that responds to touch

	Installing and using the nginx web server

This book is for web developers who want to build mobile apps and cloud services. If you know HTML, CSS, and JavaScript, you already have the skills to build not only mobile apps but also the cloud services that power them.

The code examples in this book show you how to build complete apps. You are never left to put together the pieces yourself. The code is simple and includes error-handling logic, so you’ll learn how to build production-ready apps and systems.

Over the course of this book, you will build three complete applications. You’ll learn how to put together all the elements of the technology stack, and you’ll learn about a wide range of technologies and services. This book will enable you to get to work but avoids unnecessary detail and theory.

This book is an accelerator for your skills. You can use it to efficiently make the leap into mobile and cloud development. Rather than attempting to be a reference for all the details, which you can find on the web anyway, it is a stepping stone for your skills.

HOW TO BUILD MOBILE APPS IN THE CLOUD

This book describes how to build apps that run on the new generation of smart mobile devices. It also shows how to build out the business logic behind these apps, and how to run that business logic in a cloud hosting environment, such as that provided by Amazon.

This book focuses on the two leading platforms: iPhone and Android. These two, between them, cover the vast majority of smartphones and provide access to the largest market.

[image: image]

NOTE In this book, the term iPhone should be taken as shorthand for any iOS-based device, including iPad and the iPod Touch devices. Similarly, the term Android refers to any device running Android version 2.1 or higher, including any of the Android tablets that are competing with the iPad.

It’s important to understand the types of apps that can run on mobile devices:

	Mobile web apps — These apps are really just websites, designed to function in an app-like way. They run in a web browser on a device.

	Purely native apps — These apps are written in a device-specific language, using a device-specific programming interface: Objective-C for iPhone apps or Java for Android apps. Native apps can access all the capabilities of the device and can take many forms, from simple utility apps to advanced 3-D games.

	Hybrid native apps — For these apps, you use HTML to build the user interface but wrap the HTML in a native container. Such apps can access some of the native capabilities of the device but can still be developed using HTML.

In this book you will learn how to build mobile web apps and hybrid apps.

The other component that many apps have is not something that lives on the mobile device at all. It is the business logic, data storage, and service integration that support the operation of the code on the mobile device. This element of app development is just as important as the visible part that you install on your device. Placing this code in a cloud-hosting environment is the best approach to developing a robust support system for your app, and this book shows you how to build the server elements of your app. You will learn how to do this by using your existing JavaScript skills. You’ll run your code on the server using Node.js, a high-speed, high-capacity JavaScript server engine.

Using Your Existing Skill Set

As a web developer, you already possess all the skills you need to be a mobile app developer as well. If you can build websites, you can build mobile apps. If you are a web developer wanting to build mobile apps, you do not need to learn new languages such as Objective-C or Java. You do not even need to learn new languages to build the code for servers that support your app.

All you need to know is HTML, CSS, and JavaScript. This book assumes that you have a working knowledge of these three basic web languages. Even if you are more comfortable with design and graphics and are stronger in HTML and CSS than in JavaScript, you will still be able to follow the examples in this book and build your own apps.

This book takes a practical approach and shows you how to build real applications. The examples stick to common language features and avoid anything esoteric. The first set of code examples in this chapter lay the JavaScript ground work that will see you through to the end of the book.

You will use your existing skill set to build mobile web apps. You will then support those apps by using some server-side JavaScript, running on cloud servers, and you’ll see all the steps needed to set this up. Then you’ll learn how to create hybrid native apps using HTML, CSS, and JavaScript.

Determining What Tools You Need

You’ll need some development tools in order to fully explore the examples in this book. You will certainly find a physical iPhone or Android device very useful for testing and development. You need to run mobile apps on an actual device to really understand how they will behave once users get hold of them.

To a certain extent, you can develop the apps and code examples in this book on any of the three major operating systems: Mac, Windows, or Linux. However, you will find that a Mac is the best choice, simply because the iPhone development tools from Apple can only run on a Mac. Your Mac can also run the server code quite easily. One thing you should do is upgrade to the latest version of the Mac OS X operating system, as this will support the most up-to-date versions of the iPhone development tools.

Windows and Linux are also acceptable, although you will have to do a little more configuration and setup work. In particular, on Windows, you will need to install the Cygwin UNIX environment so that you can run Node.js. Cygwin is available from www.cygwin.com. As discussed in Chapter, 11, you will also have to rely on third-party services to build hybrid native iPhone apps.

You can build mobile web apps and the necessary server code using your existing development tools. All you need is a good code editor, and I’m sure you’ve already chosen a favorite for coding websites. You’ll also be using the command line quite a bit, especially for the server code. But don’t worry if you’re not comfortable with the command line; this book gives you exactly the commands you need to run.

Later in this book, you’ll need to download and install the software development kits (SDKs) for iPhone and Android development. These SDKs are provided as part of the Xcode (for iPhone) and Eclipse (for Android) development environments. Xcode runs only on a Mac, but you can run Eclipse on all three operating systems.

The final development tool you’ll use is the Safari web browser. You can download this directly from the Apple website: www.apple.com/safari. You will use Safari as a test and deployment tool because Safari is built with the open source WebKit browser engine. This browser engine is used on both iPhone and Android, and it is the web browser environment for which you need to develop. In your coding work cycle, you will use the desktop Safari browser as your test system.

The Skills You’ll Learn

As you work through this book, you’ll learn and enhance a wide range of skills. These skills will cover the entire mobile app technology stack, from the device, to the server, to the database. These will be practical skills, and theory will be kept to a minimum. All the code examples in this book create complete, fully working apps. You’ll be able to use them as foundations for your own work.

You’ll make good use of the new features in HTML5 when you build mobile web apps and HTML5-based native apps. The Safari browser and the WebKit engine have good support for many of the features of HTML5. You’ll be able to use local on-device storage, app caching, geolocation, and even audio and video support.

You’ll also learn about the special metatags and design considerations needed for mobile web app development. These allow you to deal with different screen sizes and device capabilities. They also allow you to define home screen icons and loading screens for your app.

To make the transition from a mobile web app to a hybrid native app, you’ll use the open source PhoneGap project. This project provides a framework that allows you to embed your HTML in a native container. This is how you will build native apps using JavaScript. PhoneGap also provides you with an extended set of JavaScript functions that let you access the device camera and use the device accelerometer to detect movement.

The app on a device is only part of the story. The aim of this book is to teach you how to create mobile apps that provide complete services. This means you’ll need to write server code that handles some of your business logic, such as user account management, user data storage, and integration with third-party cloud services. You’ll also learn how to provide social media logins using Facebook and Twitter.

You will use JavaScript to build the server-side logic. You’ll run your JavaScript in an application server known as Node.js (or more commonly, just “Node”), a JavaScript server created using the Google JavaScript engine from the Chrome web browser. Node is amazingly fast and designed to handle thousands of concurrent clients, so it’s perfect for running a popular app.

You’ll need a place to put your server-side code, so you’ll learn how to host your code in the cloud, using Amazon Web Services (AWS). AWS is a full cloud-hosting system provided by Amazon that lets you create your servers and store images and files; it provides a nearly infinite database. You’ll learn how to set up and configure an Amazon server and how to access the Amazon services over the web.

Finally, you’ll learn how to work with next-generation databases that go beyond traditional tables, columns, and rows. You’ll learn how to work with these schemaless database systems and how to synchronize them with the data on your mobile device.

TWO BIG IDEAS ABOUT THE APP INDUSTRY

This book is based on two predictions about where the app industry is going:

	Cloud computing will be the primary way to build the service infrastructure for apps — Most app developers accept this idea.

	Using HTML5 is a great way to build apps and will only become better — This view is still quite controversial.

The following sections take a closer look at these predictions and how they affect you, as a web developer and as a mobile app developer.

Web Apps and the Future

There are two types of web apps: mobile web apps and hybrid native apps. A mobile web app is delivered as a website and runs in a web browser on a mobile device. You can bookmark web apps on the home screen of the device, and you can give them icons and loading screens (as you’ll see in Chapter 4). The user experience with mobile web apps is essentially different from that of native apps, but you can remove many of the differences.

The other type of web app, the hybrid native app, is actually a native app that runs a web browser inside itself. The entire app user interface is actually a web page that runs your HTML5 code. You use wrapper systems, such as the open source PhoneGap, to create a native wrapper. The native wrapper is a native app, but it only really does two things: create a WebView control (the native element that displays HTML) and provide access to device capabilities such as the camera via a JavaScript API.

This book will show you how to create both types of apps. You should carefully consider which approach is the best choice. The huge advantage of mobile web apps is that they are ultimately just websites, which means they do not have to be submitted to any app stores for approval. You can update them as frequently as you like, and they can be accessed from almost all smartphones (although functionality may be limited outside the iPhone and Android platforms).

However, hybrid native apps have the advantage of being proper apps that are listed in the app stores. They can use a device to its full potential, and you can extended these apps with native code, if necessary. You might be surprised to learn that a great many “purely” native apps actually make extensive use of HTML5 WebView controls. This is the main way to display rich text interfaces, even for purely native apps.

The following are the main reasons to develop an app using HTML5, whether as a mobile web app or within a hybrid native wrapper:

	Cross-platform — Your app is automatically cross-platform, and you have to develop it only once. The minor debugging required to handle device browser differences is inconsequential compared to the huge effort required to port an entire app from one platform language to another.

	Standards compliant — Long after the current set of mobile platforms have become historical entries in Wikipedia, your HTML5 app will still be running. HTML, as a technology choice, is a completely safe bet. It is quickly becoming the primary means of building user interfaces on any device, including tablet computers.

	Lower-cost rapid development — Developing your app with HTML, CSS, and JavaScript means that you can build and iterate extremely quickly. You have the advantage of many tools that support HTML, along with a wide pool of developer talent. Even if your ultimate goal is to create a native hybrid app, you can still do most of your development using a web browser, which means a much faster work cycle.

	Low-friction deployment — You can launch and update mobile web apps immediately, without waiting for a third-party approval process. You have complete control over content, user base, and commercial activities. No vendor is powerful enough to control the web.

	Easy to learn — You already have a good knowledge of web languages, so you can start building apps right away just by learning to deal with the particularities of mobile web app development. You do not need to invest any time in learning a new language such as Objective-C, which has limited use outside its own ecosystem.

	JavaScript — One important reason to build apps with HTML5 is that you will use JavaScript as your development language. Long-neglected as a toy scripting language and useful only for form validation and drop-down menus, JavaScript is emerging as the next big industry language. This change is happening because it is now possible to use JavaScript not only for websites but also for mobile apps and for server code. JavaScript is one of the few languages that can cover the entire technology stack.

JavaScript has certain weaknesses, including an unfortunate syntax inherited from the C language. But it is also capable of supporting advanced functional and object-oriented programming styles. You’ll see examples of this power in many of the code examples in this book. With JavaScript, you need relatively few lines of code to quickly build complex apps, and you can easily debug those apps interactively in your web browser. As a result, when you adopt JavaScript as your primary language for mobile and cloud development, you will experience a huge increase in your software development productivity.

The Cloud as the Future

Cloud computing means many things. For mobile app developers, it provides the ability to build apps that millions of people can use. Cloud computing makes it easier to handle large and growing numbers of users.

This book shows you how to build your own cloud-based system from the ground up, using the Amazon cloud. You can use the same basic approach with other cloud vendors, such as Rackspace or Joyent. Chapter 11 covers the use of higher-level services that completely remove the need for any server configuration and just run your code for you.

You do not need to use traditional server-side languages such as Java or C# to build the cloud element of your app. You do not even need to know any of the existing scripting languages, such as Ruby, Python, or PHP. By using the Node server, you can run JavaScript on the server side. This means you can use a single language for all your development. You can stay focused on what you need to do, without being distracted by the differences between programming languages.

Using the cloud to build your server-side business logic has the following advantages:

	Low cost — It is easy to get started, as you pay only for what you use. There is no need to buy a server or sign up for a fixed monthly fee.

	High capacity — The cloud can provide you with as much bandwidth and storage as you need. You can grow your service easily as your user base grows.

	Flexibility — You can add and remove servers and databases very quickly, you can add capacity in the geographic regions where needed, and you can easily integrate with third-party services.

	Low maintenance — You do not need to worry about system administration or configuration. You can use prebuilt and preconfigured machines. You can use cloud databases that do not have to be tuned for performance.

By the end of Chapter 2, you’ll be running a cloud-based mobile web app.

GETTING STARTED

This book contains many code examples. For the most part, each example is contained within its own folder, and you will be instructed to create these folders when needed. You do, however, need to decide on a place to keep all the sample code. The best thing to do is to create a Projects folder inside your home folder and store everything there. Of course, you are free to use a different folder structure if it suits you better.

All the code in this book is available for download. If you expand the downloadable zip file for each chapter into your Projects folder, you will end up with the full set of code examples in one easy-to-access location.

For the purposes of learning the material in this book, you may find it helpful to create some of the code by hand. The examples assume that you are doing everything manually, even if you are just running the downloadable code. The precise manual steps are explained so that you can follow along and understand not just the code but also how to put the mobile apps and cloud systems together end-to-end.

The instructions assume basic knowledge of the command line. They also assume that you are familiar with your code editor and know how to create folders and manipulate files.

Let’s begin!

Using JavaScript Functions

In this book, you will use JavaScript as the primary language, on both the client and the server. JavaScript is a strange language, with some really great parts and some truly awful parts. If you’ve only used JavaScript for form validation or doing some HTML manipulation, then reading this book will help you get to the next level with JavaScript.

The most important part of JavaScript to understand is the way that functions work. This book makes liberal use of such things as dynamic functions, closures, and callbacks. This section is a primer on these aspects of JavaScript functions. If you already know your way around these concepts, feel free to skip to the next section. If not, try out these simple exercises to get a feel for some of the more advanced uses of functions in JavaScript.

[image: image]

NOTE Each of the JavaScript examples in this section is a self-contained HTML page that you can load directly into your web browser from the file system on your computer. The code in the examples inserts some output text into the blank HTML page so you can see what you are doing. These examples will work in all major browsers, but you should really use Safari or Chrome when doing mobile web app development, as these browsers use the same WebKit engine as iPhone and Android devices.

JavaScript Literal Data Structures

One of the best things about JavaScript is that it is really easy to define data structures directly in code. The JavaScript syntax for doing this is so easy that it has inspired a data exchange format called JavaScript Object Notation, otherwise known as JSON. You’ll be doing a lot of work with JSON in later chapters.

The following example shows the basic syntax for arrays and objects in JavaScript. If your JavaScript is a little rusty, or if you’ve just picked it up by copying random code snippets, then you’ll find this example useful. If you already know your way around JSON, you might want to skip ahead to the next example.

The word literal used in this example means that you can type in the data structure directly, without executing any code to build it. As in many other languages, a literal JavaScript array is a comma-separated list of values, enclosed in square brackets:

["a", "b", "c"]

A literal JavaScript object is a list of key/value pairs, enclosed in braces:

{ ... }

The keys are strings, and the values can be anything from numbers to strings to literal arrays and objects themselves:

{"a":100, "b":"BBB", "c":["a", "b", "c"]}

The key/value pairs are separated by a : character, with the key on the left. As shorthand, you can remove the quotation marks from keys if they contain only letters and numbers:

{a:100, b:"BBB", c:["a", "b", "c"]}

TRY IT OUT: Using Literal Data Structures in JavaScript

The code in this example shows you how to set and get values from arrays and objects, as well as how to print them in JSON format. Take a look:

1. Using your code editor, create a new file called js-literals.html in your Projects folder.

2. Insert the following HTML code into the new file and save it:

[image: image]<!DOCTYPE html>
<html><head></head><body id="main"><script>
var main = document.getElementById('main');

var myarray = ['a','b'];
myarray.push('c');

var myobject = {
 a: 'AAA',
 b: 'BBB'
};
myobject.c = 'CCC';

main.innerHTML =
 "<pre>" +
 "myarray[0] is " + myarray[0] + "
"+
 "myarray[1] is " + myarray[1] + "
"+
 "myarray[2] is " + myarray[2] + "
"+

 "myobject.a is " + myobject.a + "
"+
 "myobject.b is " + myobject.b + "
"+
 "myobject.c is " + myobject.c + "
"+

 "myobject['a'] is " + myobject['a'] + "
"+
 "myobject['b'] is " + myobject['b'] + "
"+
 "myobject['c'] is " + myobject['c'] + "
"+

 "myarray is " + JSON.stringify(myarray) + "
"+
 "myobject is " + JSON.stringify(myobject) + "
"+
 "<pre>"
</script></body></html>

code snippet js-literals.html

To avoid typing all this code in by hand, you can instead use the downloadable code examples.

3. Open the js-literals.html file in your web browser. You can do this by double-clicking the file in your operating system’s file explorer application. Or you can select File [image: image] Open in your browser. Your web browser should display the following text:

myarray[0] is a
myarray[1] is b
myarray[2] is c
myobject.a is AAA
myobject.b is BBB
myobject.c is CCC
myobject['a'] is AAA
myobject['b'] is BBB
myobject['c'] is CCC
myarray is ["a","b","c"]
myobject is {"a":"AAA","b":"BBB","c":"CCC"}

[image: image]

WARNING If you are using the Chrome browser, you’ll find that there is no File [image: image] Open command. Instead, you have to enter the full folder path to the js-literals.htm file in the address bar, prefixed with file://. Here’s an example: file:///home/richard/Projects/js-literals.html.

How It Works

For most of the examples in this book, the How It Works section goes through the code from top to bottom, showing how each feature is implemented. As you go through this book, you’ll be able to understand larger sections of code in one go.

This example involves an HTML file. In fact, it is a HTML version 5 file, because you used the HTML5 document type at the start of the file:

<!DOCTYPE html>

Next, you define some boilerplate HTML to create an empty document. You’ll reuse this boilerplate code in the other examples in this chapter. The boilerplate contains the standard HTML document tags: the html tag containing head and body tags. The body tag has an id attribute so that you can refer to it in the JavaScript code. Everything is squashed onto one line to keep it out of the way of the JavaScript code, which is the star of this show. At the end of this second line, an opening script tag means you can start to write some JavaScript:

<html><head></head><body id="main"><script>

The first line of JavaScript is also boilerplate. You need to get a reference to the body tag so that you can output some text to demonstrate various features of JavaScript literals. This line of code uses the built-in JavaScript document API provided by all browsers. This API, known as the Document Object Model (DOM), is standardized. You store the body tag reference in a variable called main:

var main = document.getElementById('main');

Now on to the actual sample code. First, you define a literal array:

var myarray = ['a','b'];

This array-building syntax is common to many languages and should feel quite comfortable to you. You can use either single or double quotes in JavaScript when you are providing literal string values. If you use single quotes, you do not need to escape double quotes (by using the \ character), and the same goes for single quotes inside double quotes. Thus the following are both acceptable:

var single = '"quoted"'
var double = "'quoted'"

To set an array value, you use the common square bracket syntax. For example, anarray[2] = "foo" sets the third element (array indexes start at 0) to the string value "foo".

In this book and in your own apps, you will often need to append values to the end of an array. You can do this by using the built-in push function, like so:

myarray.push('c');

In the code example, this means that the myarray array variable now contains three values, “a”, “b”, and “c”. Every array object has a push function that you can use in this way.

The next lines of code define an object literal. The keys in the key/value pairs are referred to as the properties of the object. This object has two property keys, a and b. The a property key has the value AAA, and the b property key has the value BBB:

var myobject = {
 a: 'AAA',
 b: 'BBB'
};

The literal object syntax always follows this pattern:

{ <key1>:<value1>, <key2>:<value2>, ...}

Once the object is created, you can also set further values. In this line of code, you set the value of the c property key to CCC:

myobject.c = 'CCC';

This syntax, known as dot notation, lets you specify the properties of an object in an abbreviated manner. Dot notation is really just a shorthand for the full square bracket notation: myobject['d'] = 'DDD'. You can use dot notation when you already know the name of the property, and you can use the square bracket notation when you are using a variable whose value is the name of the property or when the property name contains non-alphanumeric characters that need to be inside quotes.

[image: image]

NOTE The examples in this book use the literal object notation a great deal, and it will become second nature to you very quickly.

The final statement in the sample code is a multiline statement that displays a selection of syntax examples for accessing the values of array and object literals. The statement builds a string containing HTML code and then uses the innerHTML DOM property of the body tag (referenced by the main variable), to set the contents of the HTML page:

main.innerHTML =
 "<pre>" +

The pre tag is used to display the output as monospaced source code.

The first group of lines shows you how to access array values (no surprises here):

 "myarray[0] is " + myarray[0] + "
"+
 "myarray[1] is " + myarray[1] + "
"+
 "myarray[2] is " + myarray[2] + "
"+

The second group of lines shows how dot notation works:

 "myobject.a is " + myobject.a + "
"+
 "myobject.b is " + myobject.b + "
"+
 "myobject.c is " + myobject.c + "
"+

The next group of lines shows the same values, this time using square brackets to access the property values:

 "myobject['a'] is " + myobject['a'] + "
"+
 "myobject['b'] is " + myobject['b'] + "
"+
 "myobject['c'] is " + myobject['c'] + "
"+

Finally, the last two lines display the myarray and myobject variables, using the JSON data format. Modern web browsers include a special JSON utility object. The JSON.stringify function converts a variable into a string containing the textual representation of the JSON encoding of the value of that variable. Of course, this looks almost exactly like the original object literal syntax you used at the top of the file:

 "myarray is " + JSON.stringify(myarray) + "
"+
 "myobject is " + JSON.stringify(myobject) + "
"+

The last line of the statement closes the pre tag:

 "</pre>"

At the end are the closing HTML tags:

</script></body></html>

Notice that the script tag in this example is not inside the head tag but rather inside the body tag. This means that the script tag code will run after the browser has prepared the DOM. And this means that the document.getElementById function will return an actual element rather than null. You can also use the onload event handler to the same end, but this example keeps the boilerplate code to a minimum.

The rest of the examples focus on the workings of the JavaScript code, and the boilerplate works in the same way for each example.

You now have enough knowledge of the JavaScript literal syntax to follow the rest of the examples in this book.

JavaScript Functions

JavaScript functions are both the same as and different from functions in other languages. You can create them before your code runs or while your code is running, and you can even create them without names. In this book, because you focus on Safari, you do not need to worry about cross-browser differences in the way that function definitions are handled. The examples in this book also stick to an easy-to-understand subset of all the ways you can use functions. This example covers the main things you need to know.

TRY IT OUT: Writing JavaScript Functions

There are two main ways to create functions in JavaScript: by using function declarations or function expressions. You can use function declarations to create your functions ahead of time, before your code runs. You can use function expressions to create your functions on demand when your code is running. To see how these two methods are used, follow these steps:

1. Using your code editor, create a new file called js-functions.html in your Projects folder.

2. Insert the following HTML code into the new file and save it:

[image: image]<!DOCTYPE html>
<html><head></head><body id="main"><script>
var main = document.getElementById('main');
var log = [];
log.push('<pre>');

log.push(declaration());

function declaration() {
 return "declaration";
}

var expression = function() {
 return "expression";
}

log.push(expression());

var myobject = {
 property: function() {
 return "property";
 }
}
log.push(myobject.property());

log.push('</pre>');
main.innerHTML = log.join('
');
</script></body></html>

code snippet js-literals.html

If you prefer, you can use the downloadable code.

3. Open the js-functions.html file in your web browser by either double-clicking the file or using the File [image: image] Open menu command in your browser. Your web browser will display the following text:

declaration
expression
property

How It Works

As in the previous example, this HTML file uses boilerplate code. The HTML tags are the same, as is the reference to the body tag stored in the main variable.

This time, you use the JavaScript array variable log to store the results of the code execution. log contains a list of strings that you build up over time by recording what happens in the code. You start with an empty array:

var log = [];

You use the push function to append strings to the array. Because you will want to display the output in a monospaced font when you are finished, you’ll enclose the logging strings in a pre tag. The first push sets this up:

log.push('<pre>');

Next, you push the result returned from calling the declaration function onto the log:

log.push(declaration());

But the declaration function has not been written yet! How can this work? It works because the declaration function is written using the syntax for function declaration. In this syntax, the name of the function appears after the function keyword, as highlighted below:

function declaration() {
 return "declaration";
}

This means that the declaration function is created before any code runs. By the time your code does run, the declaration function is already defined and is ready and waiting to be used.

The next function is defined using a function expression. You can tell it’s an expression because the function is being treated like the value of a variable:

var expression = function() {
 return "expression";
}

Here, the expression variable is assigned a function as its value. This function is anonymous: There is no name after the function keyword. But you can still call the function by using the name of the variable that points at the function:

log.push(expression());

In this line of code, you are again pushing the string value returned by the function onto the log array. You call the function by using the ordinary syntax:

<function_name>()

You call functions created using expressions the same way you call declared functions, except you use the name of the variable.

The other important point about function expressions is that you must define a function before you call it. In this example, the expression() call can work only after the var expression = function() { ... } lines.

There is a special case of function expressions that you will use quite a bit in this book. You can assign anonymous functions to the properties of an object. The function expression is the value of the property. The value just happens to be a function, and not a string or number:

var myobject = {
 property: function() {
 return "property";
 }
}

You call functions defined in this way by referencing them as object properties:

log.push(myobject.property());

This line uses dot notation, but you could also write this:

log.push(myobject["property"]());

The main reason for placing functions inside an object in this way is to put them together into logical groups. This makes object-oriented programming easier.

The last thing you need to do is display the results of all this function calling. First, you close the pre tag:

log.push('</pre>');

Then you use the innerHTML property of the body tag to set the textual content of the page. To turn the array into a string, you use the join function. This function is available on all arrays, and it joins up the values into one long string. You can provide an argument, such as “
”, to the join function, and it will place the string value of the argument between the values in the final string. The br tag places each log entry on a new line.

This is not all there is to JavaScript functions. At the end of this section are some links to more detailed resources. However, the code examples in this book almost always use one of these three ways of creating functions, so you now know enough to follow the sample code.

Mastering the Power of Callback Functions

The most common function code pattern you will see in this book is the callback pattern. The idea is that when you ask a function to do something for you, instead of getting a result right away as a return value, you’ll get a result later. This is useful when the function takes time to finish its job or only registers your interest in future events.

Consider the event-handling functions that web browsers provide, such as onclick or onkeypress. These can’t return a click or keypress event to you as a return value because the click or key press only happens later, when the user performs those actions. If your code had to wait for a return value, it would be blocked, unable to proceed any further, and none of the rest of your code would run.

The solution that event handlers use is a callback function. You provide a function to the event handler when you set it up, and later, when the event happens, your callback function itself is called. This pattern is very easy to set up in JavaScript because you can create dynamic functions easily by using function expressions. In the most common form of this pattern, you pass an anonymous callback function directly as an argument to an event handler:

function eventHandler(function() {
 // body of your anonymous callback function
})

This pattern is also useful for things like database queries. You’ll learn all about writing server-side JavaScript using the Node server later in this book, and you’ll see many examples of this pattern in action. Because a database query takes some time to complete — you have to send data over the network between yourself and the database, and the database has to perform its own work — your query result will take time to come back to you. So you use the callback pattern and receive the query result via your callback function.

TRY IT OUT: Using Callback Functions

Callback functions are just like normal functions in that they have parameters that are used to receive the data they work on. In the case of callbacks, the parameters contain the results of the calling function’s work. Here’s a simple example to show how this works:

1. Create a new file called js-callbacks.html in your Projects folder.

2. Insert the following HTML into this file:

[image: image]<!DOCTYPE html>
<html><head></head><body id="main"><script>
var main = document.getElementById('main');
var log = ['<pre>']

function waitForSomething(callback) {
 callback('called')
}

waitForSomething(function(someText) {
 log.push(someText)
})

log.push('</pre>')
main.innerHTML = log.join('
')
</script></body></html>

Code snippet js-callbacks.html

If you prefer, you can use the downloadable code.

3. View the js-callbacks.html file in your web browser. Your web browser should display the following:

called

How It Works

The boilerplate in this example is the same as the boilerplate in the preceding example. This example also uses the log variable as a string array to collect the output. The innerHTML element property and the array join function are used to display the logged output, as in the previous example.

In this example, the waitForSomething function is the function that will call the callback function. This code, because it is an example, just performs the call immediately and does not actually wait for anything:

function waitForSomething(callback) {
 callback('called')
}

The callback parameter is a variable that points to your callback function. It is passed in as a variable name, callback, and called as a function, callback(). This callback function is passed an argument when it is called, a string with the value 'called'. In the real world, this argument would be a mouse click event or database result set.

Now you use the waitForSomething function and pass in your callback function. To do this, you dynamically create an anonymous function and pass it in place as the first argument to waitForSomething. This is shown highlighted here:

waitForSomething(function(someText) {
 log.push(someText)
})

The anonymous callback function takes in a single parameter, someText, and pushes this parameter onto the output log right away. To help you understand how this works, here is a list of the lines of code, in the order in which they are executed:

A: waitForSomething(callback)
B: callback('called')
C: function(someText) // someText == 'called'
D: log.push(someText)

You’ll get used to callbacks very quickly. The syntax is quite convenient because you can define the actions to take when an event happens right at the place in the code where you indicate your interest in that event.

[image: image]

NOTE Callback functions introduce a lot of brackets and braces into your code. Make sure your code editor helps you keep track of them (with some form of highlighting) and that you stick to a consistent coding and indentation style. It’s easy to lose track of which closing bracket or brace matches which opening bracket or brace.

Dynamic Functions

In JavaScript, you can create new functions at any time, using function expressions. This means you can create new functions when your code is running. This can be very useful for things like error handling, and you’ll see examples of it in later chapters.

The other useful thing you can do with dynamic functions is to create functions that have some of their variables already set. This is useful because it means you have to write less code: You can drop any logic that has to figure out what the values should be.

Let’s say you have a photo gallery app. Each time the user clicks on a photo, you pop up an expanded version of the photo. You write an onclick event-handling function, which you attach to each photo that first inspects the click event to determine which photo was clicked on and expands that photo.

But you could also create the photo click event handler dynamically. For each photo, you create a new event-handler function that already knows which photo it is meant to expand. Now you only have to write the photo expander code, and you can drop the event inspection code.

How does the dynamically created function know which photo to expand? It references a variable outside itself that has a reference to the right photo. Of course, this outside variable still has to be within the scope of the function; it could be a local variable or function parameter of the code that creates the dynamic function.

TRY IT OUT: Using Dynamic Functions

This simple example shows dynamic functions in action. Follow these steps:

1. Create a new file called js-dynamic.html in your Projects folder.

2. Insert the following HTML into this file:

[image: image]<!DOCTYPE html>
<html><head></head><body id="main"><script>
var main = document.getElementById('main');
var log = ['<pre>']

function make(color) {
 var dynamic = function(thing) {
 return thing + ' is ' + color
 }
 return dynamic
}

var greenify = make('green')
var blueify = make('blue')

log.push(greenify('grass'))
log.push(blueify('sky'))

log.push('</pre>')
main.innerHTML = log.join('
')
</script></body></html>

Code snippet js-callbacks.html

If you prefer, you can use the downloadable code.

3. View the js-dynamics.html file in your web browser. Your web browser should display the following:

grass is green
sky is blue

How It Works

The boilerplate in this example is the same as in the preceding examples. The make function is where the example begins. The make function creates another function inside itself. It first assigns the dynamically created function to the variable dynamic and then returns this variable. The dynamic function is shown highlighted:

function make(color) {
 var dynamic = function(thing) {
 return thing + ' is ' + color
 }
 return dynamic
}

The dynamic function creates a string that tells the color of something. The name of the thing is passed in as the thing parameter. However, the color of the thing is obtained from outside the dynamic function. It happens to be the value of the color parameter passed to the make function.

To aid your understanding of what happens when a JavaScript function is called, you need to be familiar with the concept of scope. The scope of a function is simply all the variables that the function can reach. A function can reach all its local variables and parameters, of course. But it can also reach any variables that were defined outside the function at a higher level, such as global variables or variables in any higher-level functions that the function is itself inside.

In this case, the function assigned to the dynamic variable is inside the make function and so can access the variables and parameters of the make function. When you return the newly created dynamic function, the value of the color parameter can still be accessed by the new dynamic function. You can think of the color variable as being carried around by the dynamic function.

You can now use the make function to create some functions with preconfigured colors. You call the make function, it returns the dynamic function, and you store a reference to the dynamic function in a local variable. In the sample code, greenify and blueify reference separate dynamic functions where the color variable has the value 'green' or 'blue', respectively:

var greenify = make('green')
var blueify = make('blue')

In the case of the photo expander app, instead of a color, you would pass in the HTML img element that corresponds to each photo.

Finally, you use the dynamic functions to create the desired output:

log.push(greenify('grass'))
log.push(blueify('sky'))

There is a computer science term for dynamic functions (such as greenify and blueify) created in this way: They are known as closures.

Learning More About JavaScript

These introductory JavaScript examples have prepared you for the JavaScript used in the rest of this book. If you need a gentle but thorough introduction, try http://eloquentjavascript.net. If you want to go deeper, try the best JavaScript reference on the web: https://developer.mozilla.org/en/JavaScript. Even though this is focused on the Firefox browser, everything is still relevant to Safari. For Safari-specific information, visit http://developer.apple.com/devcenter/safari. Finally, if you’d like to really understand JavaScript, visit http://crockford.com, where Douglas Crockford, the inventor of JSON, waxes lyrical.

The WebKit Browser Engine

The built-in web browsers on the iPhone and Android use the open-source WebKit browser engine to display HTML. The WebKit project was launched in 2005 by Apple and has developers from many companies, including Google. The WebKit projects is descended from the KHTML project, which was one of the early Linux web browser engines, renowned for its small and clean code base. If you are interested, find more details at http://webkit.org.

In this book, you will use WebKit-based browsers on both your desktop development machine and your mobile device. On the Mac operating system, you will use the desktop version, in the form of the desktop Safari browser, which uses WebKit as its HTML engine. A version of Safari is also available for Windows, downloadable from http://www.apple.com/safari. On Linux, your easiest option is to use Chrome, which has some implementation differences from Safari but also uses WebKit — and it has virtually the same developer tools as Safari.

On your iPhone, you’ll use the mobile version of WebKit, known as mobile Safari, and on Android, you’ll also use WebKit, as the built-in browser is based on it.

The fact that your mobile apps will run on the WebKit engine on both desktop and mobile devices makes your life much easier. It means you can develop an app using the desktop version of Safari and see almost the same behavior there as you will see on a mobile device. There are differences, of course, and you will still need to test on a physical device.

You’ll find that your development cycle will involve spending time testing in the desktop Safari browser, testing on the Safari running on the device simulators, and testing on the actual device using mobile Safari. Your code–test–debug cycle will be very fast when you are working with desktop Safari because you are just reloading a website. You’ll find this is a great aid to productivity.

The other great thing about Safari is that the built-in developer tools are very good. If you have used the Firebug extension on the Firefox browser, you will feel right at home. To enable the developer tools, you open the Safari Preferences window, select the Advanced tab, and select the Show Develop Menu option. When a menu item titled Develop appears in the menu bar, you choose the Show Web Inspector menu item. The Web Inspector window should appear at the bottom of the page.

Figure 1-1 shows the Web Inspector with the previous code example file, js-dynamic.html, open. The tabs show various types of information about the page. The Elements tab is particularly useful; you can use it to review the HTML structure of the document when you make dynamic changes to it as you animate or alter the user interface of an app.

FIGURE 1-1

[image: image]

Apple provides copious volumes of documentation on every aspect of the Safari browser. You can find everything at the Safari Dev Center: http://developer.apple.com/devcenter/safari. In this book, you learn how to use Safari to develop and debug the various features in your app, such as HTML5 local storage.

A Colorful Little App

Now that you know some basics, in this section, you’ll actually build an app! In this example, you will build an app that displays a box with a random color. Each time you click or tap the box, it will change to a new random color. Figure 1-2 shows the app in action, running on desktop Safari, with the developer console open.

FIGURE 1-2

[image: image]

What do you need to do to create this app? You’ll put everything in one HTML page. You’ll need a square div tag to change color. You’ll need some JavaScript to generate random colors and change the color of the div tag when the user click or taps it.

For now, you’ll just build the desktop version of this app. In the following section, you’ll learn how to view it on a mobile device.

TRY IT OUT: Developing a Mobile Web App

You need to use the desktop Safari browser to view this example. You’ll use Safari so that you can be sure you’ll see the same results on your mobile device. As with all the other examples in this book, the code you see here is a full working example. Follow these steps:

1. Create a new subfolder called view in your Projects folder.

2. Create a new file called view.html in your Projects/view subfolder.

3. Insert the following HTML in the view.html file:

[image: image]<!DOCTYPE html>
<html>
<head>
 <meta name="viewport"
 content="user-scalable=no,initial-scale=1.0,maximum-scale=1.0" />

 <style>
 body { margin: 0px; }
 #tapper {
 margin: 10px;
 width: 300px;
 height: 300px;
 background-color: #f00;
 }
 </style>

 <script>
 function hex() {
 var hexchars = "0123456789abcedf";
 var hexval = Math.floor(16 * Math.random());
 return hexchars[hexval];
 }
 window.onload = function() {
 var tapper = document.getElementById("tapper")
 tapper.onclick = function() {
 tapper.style.backgroundColor = "#"+hex()+hex()+hex();
 }
 }
 </script>
</head>
<body>
<div id="tapper"></div>
</body>
</html>

code view/view.html

If you prefer, you can use the downloadable code.

4. Open the view.html file in your desktop Safari browser. You should see 300-by-300–pixel square, filled with a random color.

5. Click the square several times and verify that the color changes to another random color each time you click.

How It Works

This HTML file introduces some of the boilerplate code that you will use throughout this book to define the user interface for your HTML5 mobile apps. The first line indicates to the browsers that this page uses HTML5:

<!DOCTYPE html>

Using this document type declaration is the standard way to start an HTML5 web page.

Next, you open the HTML file in the usual way, with the standard html and head tags. You use the viewport metatag to define the screen dimensions of the app:

<html>
<head>
 <meta name="viewport"
 content="user-scalable=no,initial-scale=1.0,maximum-scale=1.0" />

The mobile device’s browser uses the viewport metatag to scale the page. When you visit a normal website on your mobile device, you use a two-finger pinch gesture to zoom in and out. This is not something you want to happen with your mobile app because it is not a website. To prevent this zooming behavior, you use the viewport metatag to specify a series of special settings for the mobile device. In this case, the user-scalable=no setting disables the zoom, the initial-scale=1.0 setting makes your app occupy the entire width of the mobile device screen, and maximum-scale=1.0 prevents any automatic scaling. These settings have no effect at the moment because you are working on the desktop version of Safari.

You define the user interface of this app by using HTML, so you can style it with CSS in the normal manner. The style tag sets the size and position of the square div that holds the color, which is initially set to red (#f00):

 <style>
 body { margin: 0px; }
 #tapper {
 margin: 10px;
 width: 300px;
 height: 300px;
 background-color: #f00;
 }
 </style>

Next comes the script tag. First, you need a little utility function to help generate random colors. The hex function generates a random number between 0 and 15 and then returns the hexadecimal digit for that number — one of the characters in the string “0123456789abcdef”:

 <script>
 function hex() {
 var hexchars = "0123456789abcedf";
 var hexval = Math.floor(16 * Math.random());
 return hexchars[hexval];
 }

The hex function uses the simple trick of listing the hex digits in ascending order in a string and using the random number as an index for the character position in that string. So if the random number is 8, the character at position 8, namely "8", is returned. If the random is 15, the character at position 15, namely "f", is returned.

Now you need to react to the click or tap on the color square. You use the window.onload event handler to make sure the page has fully loaded before you try to find any elements in it:

 window.onload = function() {

Then you use the document.getElementById function to get the square color div, using the identifier you have given it: 'tapper':

 var tapper = document.getElementById("tapper")

Once you have the color div in the tapper variable, you use the onclick event handler to detect clicks on the div:

 tapper.onclick = function() {

Now you change the color. You use the hex function three times (once for each of the red, green, and blue color components) to generate a new random color and then set the background of the div to this new color:

 tapper.style.backgroundColor = "#"+hex()+hex()+hex();

This is all the code logic you need. Now you can close your functions, the script tag, and the head tag:

 }
 }
 </script>
</head>

The body of the HTML page defines the color div, setting the identifier of the div to "tapper" so that you can find it by using document.getElementById("tapper").

<body>
<div id="tapper"></div>
</body>

Finally, you close the HTML document:

</html>

Apart from the viewport metatag, this is all very standard HTML, CSS, and JavaScript. To view the app by using desktop Safari, you just load the view.html file directly. You can’t do this with your mobile device because there is no way to load the file. You have to instead access the file by using a web server. The next section shows you how to do this.

Introducing the nginx Web Server

As you develop mobile apps, you’ll need to test them on your mobile device. When you build HTML5-based apps, the device-testing process can actually be faster than the process of developing native apps. You can reload an app in the web browser on the device, which takes just a few seconds!

You can access an app on your mobile device by requesting it from a local web server running on your desktop development machine. To do this, you need to make sure that both your mobile device and your desktop machine are on the same local network. The easiest way to ensure this is to connect both to the same Wi-Fi router.

To deliver the HTML files for your app, you have to run a local web server. The web server used in this book is the nginx web server, available from http://nginx.org. This server is extremely fast and lightweight — perfect for cloud servers. It is also designed to handle large numbers of users. The nginx configuration file is also very easy to work with and has a simple syntax.

Installing nginx on a Mac

To install nginx on a Mac, you need to use the MacPorts installer system. The MacPorts installer lets you install UNIX command-line tools and servers on your Mac by using simple one-line commands. You can go to the www.macports.org site and click the Installing Mac Ports link on the left. Then you download the dmg file for your version of Mac OS X: Lion, Snow Leopard, or Leopard. Then you open the dmg file and install MacPorts by double-clicking its icon and following the onscreen instructions.

Next, you open the Terminal app, which you can find in the Utilities subfolder of the Applications folder. You need to make sure the MacPorts installer system knows about the latest version of nginx. To do this, you run this command (and then enter your password):

sudo port -d selfupdate

You see many lines of output, indicating the status of the update process. Then you can install nginx by running this command:

sudo port install nginx

Again, you see some lines of output that provide feedback on the installation process. When it completes, you are ready to start using nginx, and you can skip ahead to the “Starting and Stopping nginx” section.

Installing nginx on Windows

The nginx website, http://nginx.org, makes Windows binaries available for download. All you have to do is download the zip file from the site and unzip it into a convenient location. Then you can skip ahead to the “Starting and Stopping nginx” section.

Installing nginx on Linux

There are a number of different Linux distributions and a number of different ways to install server software on Linux. This book shows you how to use one of the most popular distributions, Ubuntu, which is available from www.ubuntu.com. When you set up your Amazon cloud servers, you will also use Ubuntu.

On Ubuntu, installing nginx is very simple: You use the built-in package manager. You run this command (and enter your root password):

sudo apt-get install nginx

Depending on the configuration of your machine, this installation process may start nginx for you. If it does not, you can follow the instructions in the next section.

Starting and Stopping nginx

Before you start nginx, you need to make sure there are no other web servers running. If there are, they will be occupying port 80 on your machine, the network port number used for HTTP, and nginx will not be able to run. To test whether there is a web server running on your desktop machine, you open a web browser (such as Safari) and visit http://localhost. If a web page appears, then you know you have another web server running, and you’ll need to stop that web server first. If not, you can proceed to start nginx, as described below.

If the web server already running on your machine is Apache, then you can stop it on the command line by using this:

apachectl stop

If you are on a Windows machine, you can usually find an Apache administration application on the Start menu, and it should have a Stop button.

If you are using Windows, you might find that the Microsoft web server, known as Internet Information Server (IIS), is running. You can stop IIS by opening its administration application, which is in the Control Panel.

If you have previously installed a different web server, you should refer to its documentation to find the procedure to shut it down. You can always start it again after you have finished your app development.

To start nginx on your Mac or Windows machine, you go to the command line (on Windows you need to cd to the folder containing nginx) and run this command:

nginx

To stop nginx, you use the following command:

nginx -s stop

On Linux, the commands are slightly different. This is the start command:

sudo /etc/init.d/nginx start

And this is the stop command:

sudo /etc/init.d/nginx stop

And that’s it! To verify that nginx has started, you should reload http://localhost in your web browser. You should see the text "Welcome to nginx!".

Using nginx

You’re going to use nginx to serve up the HTML files for your app. The nginx web server has a default html folder, where you can save HTML files. Any HTML files saved to this folder will be served by nginx. You’ll copy your view.html file into your nginx html folder so that the URL http://localhost/view.html will deliver your view.html file.

The location of the nginx html folder depends on your system. On a Mac, it will be /opt/local/share/nginx/html. On Windows, it will be C:\nginx\html if you installed nginx in your C: drive. On Linux, it will /var/www/nginx-default.

[image: image]

WARNING The location of the nginx html folder depends on your specific system, your nginx version, and the way you installed nginx. If you cannot find the html folder, the best place to get help is the nginx Wiki: http://wiki.nginx.org.

Once you have located the nginx html folder, you need to copy your view.html file into it. Then you can access this file in your web browser by using http://localhost/view.html. You should do this now to verify that everything is working.

There is one last step to viewing the app on your device. From your device, you cannot use localhost as the website address because that would refer to the mobile device itself. Instead, you must use the Internet Protocol (IP) address of your desktop development machine. You’ll need to determine your local IP address.

Your local IP address is not the same as your public address, which is the address your machine or network has on the public Internet. Rather, your local IP address is an address used internally on your local network. If you are on an IPv4 network, this IP address starts with 192.168., or 10., or 172.16. If you are on an IPv6 network, this address starts with fc00:.

The approach to finding your local IP address depends on your system. On a Mac, you click the apple icon on the top-left of the menu bar and select About This Mac. Then you click the More Info button in the small summary window that appears. This opens a larger window with detailed information. Next, you click the Network item on the left and look for your IP address on the local Wi-Fi network in the AirPort item description.

On Windows, you open the list of network connections from the Start menu and double-click the Wireless Network Connection item. Then you click the Support tab of the small window that appears. Your local IP address will be shown.

On Linux, you use the ifconfig command to print out quite a few lines of information. You should look for the IP addresses that begin with the prefix numbers mentioned above, such as 192.168.

Next, you load your app by using your local IP address. In your desktop Safari browser, you open the URL http://YOUR_IP_ADDRESS/view.html, replacing YOUR_IP_ADDRESS with your local IP address. You should see your app appear as before.

[image: image]

NOTE This book uses YOUR_IP_ADDRESS to refer to the local IP address of your desktop development machine.

Now it’s time to test the app on your device. On your iPhone or Android device, you open the built-in web browser app and enter http://YOUR_IP_ADDRESS/view.html. You should see your app appear as in Figure 1-3. As you can see from the figure, my local IP address is 192.168.100.112.

FIGURE 1-3

[image: image]

Tap the color square with your finger. It will change to a new random color. Congratulations! You have created your first mobile web app!

SUMMARY

This chapter introduced you to hybrid mobile apps, which are native apps built with an HTML5 container as their entire user interface. You were also introduced to JavaScript object literal syntax and the hidden power of JavaScript functions. Using these new skills you built a simple but complete mobile web app and debugged and tested this app using the Safari web browser. Finally, you installed the nginx web browser and delivered your mobile web app direct to your iPhone or Android device. At this point you have almost covered the complete mobile web app development cycle.

In the next chapter, you’ll learn how to make your app respond to finger touch events, a critical feature of any mobile app. You’ll learn how to give your app a more native look and feel. You’ll also learn about “tracer bullets,” a great technique for speeding up your development of new code. Finally, you create your first cloud service, live, on the Amazon cloud.

EXERCISES

1. In the sample code for the simple app you built in this chapter, you listened for a click event to change the color. Although this works on a mobile device, it is less responsive than using touch events. Modify the code to use the ontouchstart event instead.

2. Some of the apps you develop will need to be able to detect whether the mobile device is in portrait (vertical) or landscape (horizontal) orientation. You can use the window.onresize event to detect orientation changes. Add a listener for this event and turn the square into a rectangle when the device is moved into landscape orientation. Turn it back into a square when the device returns to portrait orientation.

3. When a user first visits your mobile web app, the address bar of the mobile browser remains visible, reducing the amount of space available for your user interface. For this exercise, overcome this by scrolling the page up by one pixel.

4. For the most part, you’ll want your mobile apps to remain at the same fixed zoom level because this is how native apps behave. However, there are occasions when you might want to change this and take advantage of the native zooming behavior — for example, if you are displaying a large chart. Experiment with the scale setting in the viewport metatag to see if you can start the app zoomed out.

Answers to the Exercises can be found in the Appendix.

• WHAT YOU LEARNED IN THIS CHAPTER

	TOPIC
	KEY CONCEPTS

	HTML5
	The latest version of the HTML standard, produced by the World Wide Web consortium (W3C). This is the most important web standard to be released in recent years. It defines a new set of capabilities for applications built using HTML. You can now detect the location of your user, store data locally, and even generate complex graphics. The enhanced interactivity and dynamic interface features such as animation also enable you to build highly visual, user-friendly, and engaging user interfaces using HTML5.

	Dynamic JavaScript Functions
	The JavaScript language is more powerful than it might first appear. Because it supports a functional programming style through the use of dynamic functions, you can develop complex systems without code bloat. Learning the basics of the functional programming style can help you increase your code reuse significantly and enable you to become far more productive as a programmer.

	WebKit
	This open source browser engine has become the de facto standard for mobile web app development because it is used on both iPhone and Android, as well as other less popular platforms. The WebKit engine has string support for HTML5 and excellent support for debugging and app development. Because you can use the desktop version of WebKit, in the form of the Safari web browser, to test and develop your mobile app long before you reach for a physical device, your development work cycle is much faster and shorter.

	nginx
	This web server is specifically designed to handle large numbers of requests very efficiently. This makes it an excellent choice for cloud hosting. You’ll use the nginx web server throughout this book to host mobile web apps and to provide a front end for your service interfaces.

Chapter 2

Mobilizing Your App

WHAT YOU WILL LEARN IN THIS CHAPTER:

	Drawing graphics for your app by using the canvas element

	Using simple boilerplate code to give your app a native feel

	Creating a tracer bullet to test your app architecture end-to-end

	Building a simple drawing app that responds to finger movements

	Learning to refactor your code so that it is maintainable

	Understanding the cloud services that Amazon provides

	Using Amazon to create your own cloud server

	Configuring your cloud server to deliver mobile web apps

This chapter teaches you all the essentials of building a mobile cloud app. At the end of this chapter, you will be able to develop and deploy basic mobile web apps that live in the Amazon cloud.

The code in this chapter is brief and simple. You need to have only a basic understanding of JavaScript, and you’ll put into practice concepts such as JSON and callback functions. If you are already comfortable with any of the concepts described here, feel free to skim over the explanations.

The focus of this chapter is to create a live, working app that is delivered from a public URL and that you can access anywhere. You’ll even be able to ask your friends or colleagues to test it. Let’s begin!

BUILDING A TOUCH-SENSITIVE DRAWING APP

In this section, you will build a complete mobile web app. This app will allow you to draw pictures on the screen of your mobile device, using your finger. Because you are just getting started, I’m going to ask you to trust me on some of the details and just cut and paste some of the code. This way, you can create a working app that’s hosted in the cloud very quickly. Don’t worry: You’ll learn all the details in later chapters.

In this chapter, you’ll develop a mobile web app on your local desktop machine, but you’ll need to test it on your mobile device. That means your desktop machine has to deliver the HTML and JavaScript files to your mobile device, using a web server. In Chapter 1, you learned about the nginx web server, which you’ll use in the rest of this book to deliver your mobile web apps. You’ll use nginx locally and in the cloud. In Chapter 1 you set up nginx and placed your HTML files in the html folder so that nginx can easily find your HTML files.

How to Draw on the Screen

To create a touch-sensitive drawing app, you need a way to detect the movement of a finger across the screen. For this you can use special JavaScript event handlers that listen for finger touches and provide you with the position of a touch on the screen. These event handlers are called ontouchstart and ontouchmove, and they work in much the same way as traditional JavaScript event handlers such as onclick or onmousemove. Chapter 4 explores the details of touch events. For now, you’re going to learn how to use them to draw pictures.

To draw a picture on the screen, you use the canvas HTML tag. This tag provides a pixel-based drawing rectangle on which you can draw lines and shapes by using JavaScript. The WebKit browser engine used on both the iPhone and Android has good support for the canvas tag, so your code will work equally well on both types of device. The canvas tag is similar to an img tag, except you can change the image. Here is an example:

<canvas id="mycanvas" width="300" height="300">

You need to set the width and height of the canvas tag, in pixels, so that the size of the drawing area is well defined. You also need to provide an id attribute so that you can get hold of the canvas element in JavaScript by using the document.getElementById function:

var canvas = document.getElementById('mycanvas');

The canvas tag allows you to create any image you like. This is an extremely useful ability, and many HTML5 games are created entirely with a canvas tag. You can use the canvas tag to create custom user interfaces, or to display generated graphics such as real-time charts, or even to use visual effects that enhance your app.

[image: image]

NOTE The canvas tag isn’t the only way to draw images inside a web browser. You can also use Scalable Vector Graphics (SVG), an image drawing API that many browsers support. Unfortunately, Android does not support SVG (at least up to version 2.3), so it is not a practical option for mobile web apps.

The canvas API uses the concept of a context. Instead of calling functions directly on the canvas object, you ask the canvas object for a context object. You use this context object to do the actual drawing. Why is a special context object designed into the API? To allow future support for 3-D graphics. At the moment, mobile browsers provide only a flat 2-D drawing surface, but in the near future, you will be able to use hardware-accelerated 3-D graphics. For now, you just ask for the 2-D context object, like so:

var context = canvas.getContext('2d');

The JavaScript canvas API gives you functions to draw straight lines, curved lines (called arcs), rectangular shapes, and shapes with many straight and curved sides. When you draw a line or shape with the canvas API, you can set properties of the context to control the appearance of the line or shape. For example, to set the width of a line, in pixels, you use the lineWidth property:

context.lineWidth = 5

Here are some common properties you can set:

	strokeStyle— The color used to draw lines and arcs

	fillStyle — The color used to fill in the inside of shapes

	lineWidth — The pixel width of lines

	lineCap — The shape used at the end of lines

	lineJoin — The way in which lines are joined together

You can use the lineCap and lineJoin properties to improve the appearance of lines and shapes. In this chapter’s app, you’ll set both of these properties to the value round, which means that lines will have nicely rounded ends and no sharp edges where they join.

You can’t just draw with the context object. Instead, you have to define a path first. A path is a series of lines and other drawing actions all collected together into one unit. No pixels are changed on the screen while you are setting up the path. Only when you have defined the steps in the path do you ask the context object to draw pixels on the screen. While this might seem like extra complication, using a path is a useful way to organize your drawing logic and to write reusable code. Here are the functions on the context object that you use to set up the path and draw pixels:

	beginPath — Starts defining a path

	closePath — Finishes defining a path

	stroke — Draws the lines of the path defined so far

	fill — Fills in the area of the path defined so far

The context object offers lots of drawing functions. The following are the ones you need for this example.

	rect — Draws a rectangle defined by two points

	arc — Draws a curved line defined by starting and ending angles

	lineTo — Draws a line from the current pixel position to the position indicated

	moveTo — Moves the current pixel position without drawing anything

You can combine these basic functions in complex ways by using programmatic logic to draw complex objects. You can even create animations by clearing the entire canvas object and drawing a new animation frame.

[image: image]

NOTE This chapter covers only the part of the canvas API that you need to implement the drawing app. You can read more about the many properties and functions of the canvas API at https://developer.mozilla.org/en/Canvas_tutorial.

In Chapter 1, you built a simple mobile web app that is completely contained within one HTML file. You did not have to integrate different files and components to get the app working. When you build more complex apps, you often need to connect different software components and services. You need to make sure that all these components can find and talk to each other properly.

It is a classic and traditional mistake in software engineering to build all the components separately and then integrate them all at the end of the project. This never works. Software, unlike mechanical components, is not subject to physical limitations and has multiple degrees of freedom. You need to integrate the software components first, before you build them out fully. You do this by using tracer bullets. In the physical world, tracer bullets help you see the stream of bullets from a gun. They are non-lethal bullets that burn up brightly and follow the same trajectory as normal bullets. You can apply a similar idea to software to verify that everything works end-to-end.

In the case of the drawing app, you need to integrate the canvas element in an HTML file with a separate JavaScript file that contains the programming logic. Then you need to deliver both HTML and JavaScript files from the nginx web server to your mobile device. You need to build a tracer bullet that works from top to bottom. It does not need to be functional, but it does need to prove that all the pieces of technology can talk to each other.

TRY IT OUT: Using a Tracer Bullet

In this example, you’ll create a tracer bullet — a small mobile web app that uses the canvas tag to display a line slanted at 45 degrees. You’ll define the app interface in an HTML file, and you’ll define the app logic in a separate JavaScript file. You’ll deliver the app to your mobile device by using the nginx web server. Here’s how you do it:

1. Create a new folder called draw inside your nginx html folder.

2. Start your code editor and create a new empty file called draw-tracer.html. Save this file in the draw subfolder of your nginx html folder, which also contains the view.html file from Chapter 1.

3. Insert the following HTML code into the draw-tracer.html file and save it:

[image: image]<!DOCTYPE html>
<html>
<head>
 <meta name="viewport"
 content="user-scalable=no,initial-scale=1.0,maximum-scale=1.0" />

 <style>
 body { padding:10px; margin:0px; background-color: #ccc; }
 #main { margin: 10px auto 0px auto; }
 </style>

 <script src="draw-tracer.js"></script>
</head>
<body>
<canvas id="main" width="300" height="300"></canvas>
</body>
</html>

code snippet draw-tracer.html

4. Verify that nginx is delivering the file. To do so, open your desktop Safari browser and visit http://localhost/draw/draw-tracer.html. You should see a blank gray page.

5. Use your code editor to create a new empty file called draw-tracer.js. Save this file in you nginx html folder.

6. Insert the following JavaScript code into the draw-tracer.js file and save it:

[image: image]window.onload = function() {

 var canvas = document.getElementById("main");
 var context = canvas.getContext('2d');

 context.beginPath();
 context.lineWidth = 5;
 context.moveTo(50, 50);
 context.lineTo(250, 250);
 context.stroke();
 context.closePath();

code snippet draw-tracer.js

7. Verify that the code that uses the canvas tag is working correctly. To do so, reload http://localhost/draw/draw-tracer.html in your desktop Safari browser. You should see a black line slanted at 45 degrees on a gray background.

8. Open http://localhost/draw/draw-tracer.html on your mobile device, but use your desktop IP address instead of localhost. If you see the page shown in Figure 2-1, you know that the app works on your mobile device.

FIGURE 2-1

[image: image]

[image: image]

NOTE When you’re ready to test your app on your mobile device, you’ll need to point the web browser on your mobile device at your local desktop machine. You should enter the IP address of your local machine into the address bar of the mobile Safari app. In order for this to work, you need to make sure that your desktop and your mobile device are both on the same Wi-Fi network. To find the IP address of your desktop machine, follow the instructions in Chapter 1.

DEBUGGING YOUR APP DEVELOPMENT CONFIGURATION

The primary purpose of this example is to debug your app development configuration. It is common to encounter misconfigurations, network connection difficulties, syntax errors, and many other problems. By putting together the tracer bullet code, you have a very small code base to debug. Finding the cause of the problem is much simpler because your own code is so small and short.

If the app fails to display on your desktop browser, you can start by verifying your assumptions. Did you save the files in the right folder? Do they have the right file permissions? Is nginx running? Is it configured properly? Do not assume that anything is actually the way it is supposed to be; actually check it.

Another step you can take is to try other ways to interact with your code. For example, you can open the draw-tracer.html file directly by selecting Safari File [image: image] Open File. Does it work then? If not, you can select View [image: image] View Source to check that you have the right file. When accessing the file via the URL, you can open the Safari developer console by selecting Develop [image: image] Show Web Inspector. Are there error reports? You can get also get a debug console on your iPhone. To do this, you go to the settings for the mobile Safari browser. At the bottom of the list of settings, you touch the Developer item and then enable the Debug Console toggle switch.

Most of the time, you can solve integration problems by methodically verifying your assumptions. You should try to test each piece in isolation to confirm that it is all working correctly.

What if you are completely stuck? Don’t head for Google just yet. You can try one more tactic, and it’s a lot of fun: Break stuff! Yes, you can deliberately break things and verify that they fail in the right way. For example, you can introduce a syntax error and see if you get an error message. If you don’t get one, perhaps you are looking at a different version of the file? Or maybe you’re inadvertently editing a back-up version. We’ve all been there. By deliberately introducing errors, you can make sure that at least some parts of the system are working. You have a repeatable test. Something works. You break it. It doesn’t work. You, not the bug, are now in control. You should keep breaking stuff until your assumptions are proven wrong. This is often a very quick way to find the real cause of an error.

If all these tactics fail, you must of course head for Google and any other online resources that can help. You should always try to search for the exact text of any error messages by cutting and pasting them into the Google search box. You’re likely to quickly find an answer. Or you can head for social answer sites, such as http://stackoverflow.com. Don’t forget that for many technology topics, you can find online chat communities that can provide direct help. Use Google to find them.

How It Works

If the slanted line appears on your mobile device, you can now examine the code to see how it works. If not, see the sidebar for some trouble-shooting advice.

The HTML document starts with the HTML5 document declaration:

<!DOCTYPE html>

All the examples in this book assume support for HTML5 and use this declaration. The WebKit browser engines on iPhones and Android devices provide good support for HTML5 features, and using this declaration makes your intentions clear.

The head element contains a special viewport metatag that controls the appearance and zoom level of the app. The viewport metatag is covered in more detail in Chapters 4 and 7. For now, you just use it as follows:

 <meta name="viewport"
 content="user-scalable=no,initial-scale=1.0,
 maximum-scale=1.0" />

The head element also contains a small amount of CSS to lay out the canvas element on the screen:

 <style>
 body { padding:10px; margin:0px; background-color: #ccc; }
 #main { margin: 10px auto 0px auto; }
 </style>

Finally, the head element references a JavaScript file that contains the code that draws the slanted line on the canvas:

<script src="draw-tracer.js"></script>

The body of the HTML contains only one element, the canvas tag itself, with an id attribute with a value of "main". The app uses this id attribute to obtain a reference to the canvas element:

<canvas id="main" width="300" height="300"></canvas>

Note that the draw-tracer.js file is short and minimal — providing just enough code to be a good tracer bullet.

The first line of code is:

 window.onload = function() {

This line of code sets an anonymous event handler function to the onload event of the window object. This anonymous function is called when the HTML page has finished loading. You need to do this to ensure that when the JavaScript code goes looking for the canvas element, it will find it. If you look for the canvas element too soon, before the document has finished loading, then it won’t be found because it does not exist yet, and your code will fail.

You use the event handler function to get a reference to the canvas element:

 var canvas = documet.getElementById('main');

Once you have that, you can ask for the 2-D drawing context:

 var context = canvas.getContext('2d');

Now you are ready to draw! First, you need to start a path:

 context.beginPath();

Then you need to set the pixel width of the line. In this example, you set it to 5 pixels to get a nice wide line that is easy to see:

 context.lineWidth = 5;

To draw the line, you move to a position 50 pixels from the top and left of the canvas:

 context.moveTo(50, 50);

Canvas positions are calculated from the top-left corner, just like CSS positions. The top-left pixel of a canvas is thus always at position (0, 0).

To draw the line, you use the lineTo function, which takes as arguments the top and left positions of the end point of the line. Because the canvas is 300 by 300 pixels, you draw the line from position (50, 50) to position (250, 250), which gives you a line slanted at 45 degrees in the center of the screen:

 context.lineTo(250, 250);

To draw the pixels and make the line visible, you call the stroke function on the context object:

 context.stroke();

This draws all the elements of the path defined so far. There’s only one, the line you just created.

Finally, you close the path:

 context.closePath();

Drawing in Response to Touch Events

Now that you have a working mobile web app that uses the canvas tag to draw on the screen, it’s time to add some interactivity and enable the app to respond to finger touches. In the following example, you’ll turn your simple tracer bullet into a drawing app. You know that the end-to-end integration works, so you can now concentrate on the logic of the app.

When the user just taps the screen, you want to draw a dot. You’ll use the canvas arc function to do this, by drawing a filled-in circle. You’ll use the ontouchstart event handler to detect finger taps on the mobile device screen.

When the user drags a finger across the screen, you want to fill in the path the finger takes as closely as possible. The touch event gives you a continuous series of points that indicates the path of the user’s finger. You will use the lineTo function to draw a line from the previous finger position to the latest finger position. You’ll end up drawing lots of very short lines, and as a result, the user will see a continuous curve on the screen. You’ll use the ontouchmove event handler to detect ongoing finger movement against the screen of the mobile device. You’ll also add a Clear button to let the user erase the current drawing and start again.

TRY IT OUT: Drawing with Your Finger

In this example, you’ll turn your tracer bullet into a drawing app to enable the user to draw with his or her finger. Here’s how you do it:

1. Inside the draw folder that you used for the previous example, copy the draw-tracer.html file and rename it draw.html.

2. Change two lines in the draw.html file, as shown boldfaced in the following code:

[image: image]<!DOCTYPE html>
<html>
<head>
 <meta name="viewport"
 content="user-scalable=no,initial-scale=1.0,maximum-scale=1.0" />

 <style>
 body { padding:10px; margin:0px; background-color: #ccc; }
 #main { margin: 10px auto 0px auto; }
 </style>

 <script src="draw.js"></script>
</head>
<body>
<button id="clear">clear</button>

<canvas id="main" width="300" height="300"></canvas>
</body>
</html>

code snippet draw/draw.html

The first change, instead of loading the draw-tracer.js JavaScript file, loads a file called draw.js. The second change defines a Clear button.

3. Create new file called draw.js in the draw folder. Using your code editor, insert the following lines of code into the draw.js file:

[image: image]window.onload = function() {

 document.ontouchmove = function(e){ e.preventDefault(); }

 var canvas = document.getElementById('main');
 var canvastop = canvas.offsetTop;

 var context = canvas.getContext('2d');

 var lastx;
 var lasty;

 context.strokeStyle = "#000000";
 context.lineCap = 'round';
 context.lineJoin = 'round';
 context.lineWidth = 5;

 function clear() {
 context.fillStyle = "#ffffff";
 context.rect(0, 0, 300, 300);
 context.fill();
 }

 function dot(x,y) {
 context.beginPath();
 context.fillStyle = "#000000";
 context.arc(x,y,1,0,Math.PI*2,true);
 context.fill();
 context.stroke();
 context.closePath();
 }

 function line(fromx,fromy, tox,toy) {
 context.beginPath();
 context.moveTo(fromx, fromy);
 context.lineTo(tox, toy);
 context.stroke();
 context.closePath();
 }

 canvas.ontouchstart = function(event){
 event.preventDefault();

 lastx = event.touches[0].clientX;
 lasty = event.touches[0].clientY - canvastop;

 dot(lastx,lasty);
 }

 canvas.ontouchmove = function(event){
 event.preventDefault();

 var newx = event.touches[0].clientX;
 var newy = event.touches[0].clientY - canvastop;

 line(lastx,lasty, newx,newy);

 lastx = newx;
 lasty = newy;
 }

 var clearButton = document.getElementById('clear');
 clearButton.onclick = clear;

 clear();
}

code snippet draw/draw.js

4. Verify that nginx is delivering your new files. To do so, open your desktop Safari browser and visit http://localhost/draw/draw.html. You should see a blank gray page containing a 300-pixel white square, with a Clear button at the top.

5. Open http://localhost/draw/draw.html on your mobile device, but use your desktop IP address instead of localhost.

6. Draw something on the mobile device’s screen. Verify that finger taps produce dots and that dragging your finger around the screen creates continuous lines. Figure 2-2 shows an example of a drawing.

FIGURE 2-2

[image: image]

7. Tap the Clear button to erase the drawing and start again.

How It Works

The HTML for this example is almost the same as for the previous example. Here you simply changed the JavaScript used to define the functionality of the app and added some HTML tags to define a Clear button.

The new JavaScript follows the same basic approach as the tracer bullet JavaScript. It waits for the window.onload event to get started, ensuring that all the HTML elements it needs will be ready in the document:

window.onload = function() {

The next line is a little bit of magic that keeps your app, which is really just an HTML page, from scrolling. You prevent the default scrolling behavior of the ontouchmove event. This is explained in greater detail in Chapter 4. For now, you use the following standard boilerplate code:

 document.ontouchmove = function(e){ e.preventDefault(); }

Next, you grab the canvas element as you did in the tracer bullet code:

 var canvas = document.getElementById('main');

This time, you need the value of the offsetTop property of the canvas element:

 var canvastop = canvas.offsetTop;

The canvas element appears about 50 pixels below the top of the browser window. When you get touch events, the clientX and clientY properties of the touch event give you the location of the touch on the browser window. But the canvas element is not directly at the top of the window, so you need to adjust the vertical Y value of the touch event position. The vertical Y value is currently 50 pixels too large because this value counts from the top of the browser window, not from the top of the canvas object.

As with the tracer bullet code, you need to get the 2-D context of the canvas, so that you can actually draw:

 var context = canvas.getContext('2d');

To draw the continuous line, you need to keep track of the last-known touch position. Each time you get notification of a new touch position, you draw a line from the last-known position to the new position. The lastx and lasty variables store the last-known position.

 var lastx;
 var lasty;

You also need to set up the drawing context so that it draws the right type of line. To get a line that is colored black, you set the strokeStyle property to the color value #000000. To get a nice thick line, you set the width of the line to 5 pixels, using the lineWidth property. To make the start and end of the line smooth, you set the lineCap and lineJoin properties to the special string value 'round'. Here are the lines that set this all up:

 context.strokeStyle = "#000000";
 context.lineCap = 'round';
 context.lineJoin = 'round';
 context.lineWidth = 5;

You need to perform three high-level drawing operations: clear the canvas, draw a dot, and draw a line. These correspond to the user tapping the Clear button, tapping the screen, and moving a finger on the screen. These high-level operations are composed of low-level drawing context operations. If you place each high-level operation in its own function that performs the low-level function calls, your code will be reasonably well structured.

The clear function clears the canvas. It does this by drawing a white rectangle that covers the entire canvas, from the top-left corner (0, 0) to the bottom-right corner (300, 300). You set the fillStyle property to the color white. Then you use the rect function to specify a rectangular path and then draw the path by using the fill function:

 function clear() {
 context.fillStyle = "#ffffff";
 context.rect(0, 0, 300, 300);
 context.fill();
 }

You may have noticed that the clear function does not define a path explicitly using the beginPath and closePath functions. This is because there is always a current path to which you can add drawing operations. Calling the path drawing functions stroke or fill by themselves will draw the current path up to that point.

The dot function draws a small black circle on the canvas. It takes two parameters, x and y, that specify the location of the dot. This function uses an explicit path. You set the color with fillStyle and draw the dot using the arc function. The arc function takes a center point (x, y), a radius (1), the starting angle in radians (0), the ending angle in radians (2π), and a direction (counterclockwise). Remember from high school math that 360 degrees equals 2π radians. These low-level instructions define a complete circular path. You then call the fill function to fill in the inside of the circle, and you call stroke to draw the edge of the circle. Finally, you close the path with closePath:

 function dot(x,y) {
 context.beginPath();
 context.fillStyle = "#000000";
 context.arc(x,y,1,0,Math.PI*2,true);
 context.fill();
 context.stroke();
 context.closePath();
 }

The line function draws a straight line. Most of the time, your app will receive ontouchmove events so frequently that the user will never see perfectly straight lines but rather a continuous trace of the finger movement made up of many short lines. The user will notice straight lines only when moving a finger very fast.

The line function takes four parameters: fromx and fromy specify the starting point of the line, and tox and toy specify the ending point of the line. You use the moveTo function to move the path starting point, and you use the lineTo function to draw a line to the ending point. You call the stroke function to draw the line:

 function line(fromx,fromy, tox,toy) {
 context.beginPath();
 context.moveTo(fromx, fromy);
 context.lineTo(tox, toy);
 context.stroke();
 context.closePath();
 }

Because a line has no inside area, you do not need to call the fill function.

Now that your drawing functions are defined, you need to respond to finger taps and movements. You use the ontouchstart event handler to get notification that a finger has touched the screen. This notification just tells you that a touch event has started. The user may subsequently lift the finger off the screen or proceed to move it. For this drawing app, the difference is not that important because it will always draw a dot. If the user starts moving a finger, the dot simply becomes part of the continuous line.

In the ontouchstart event handler function, you again use the preventDefault function on the event parameter to disable any default browser actions, such as starting a copy-and-paste operation:

 canvas.ontouchstart = function(event){
 event.preventDefault();

When you get a touch event, you always need to store the position of the touch in the lastx and lasty variables so the line can be drawn from the touch point if the user starts to move a finger. A touch event is a little more complex than a mouse click event, and Chapter 4 goes into all the details. For now, all you need to know is that the touch event object contains a special touches array. The first element of this array, event.touches[0], contains an object that describes the finger position on the screen. The clientX and clientY properties of this object give the pixel position of the touch relative to the browser window. As noted earlier, you need to adjust the vertical pixel Y value because the canvas element is about 50 pixels below the top of the browser window. You subtract the canvastop value that you captured previously:

 lastx = event.touches[0].clientX;
 lasty = event.touches[0].clientY - canvastop;

Now that everything is ready, and the last touch position has been recorded, you draw the dot by calling the dot function:

 dot(lastx,lasty);
 }

You also need to deal with finger movement. The ontouchmove event handler is called continuously as the user moves a finger across the screen, giving you near-real-time reports on the position of the finger. As with the ontouchstart event handler, you need to disable any default browser behaviors:

 canvas.ontouchmove = function(event){
 event.preventDefault();

You also need to capture the position of the touch relative to the canvas. You don’t store it in the lastx and lasty variables yet, though, as you still need those to draw the line:

 var newx = event.touches[0].clientX;
 var newy = event.touches[0].clientY - canvastop;

Then, you draw the line, from the last position recorded to the new position you have just received:

 line(lastx,lasty, newx,newy);

Finally, you record the last position by updating the lastx and lasty variables:

 lastx = newx;
 lasty = newy;
 }

One piece of the user interface remains: You need to make the Clear button work. You grab the button element by using its id and attach an onclick event handler, which is simply the clear function:

 var clearButton = document.getElementById('clear');
 clearButton.onclick = clear;

Finally, you prepare the canvas by calling the clear function directly, so that the user is presented with a blank white canvas before he or she starts drawing:

 clear();

[image: image]

NOTE In JavaScript, there is a difference between calling a function and using it as a variable. You call the clear function by putting brackets after the name. When you write clear() in your code, the clear function is called, and the statements inside it are executed right away. When you write clear without brackets, the clear function is not executed right away. The clear in this case is just a variable, the value of which happens to be a function! In JavaScript, functions are values, just like objects, strings, and numbers. This idea that you can work with functions as if they are normal values is part of the hidden power of JavaScript. When you wrote clearButton.onclick = clear;, you set the onclick property of the clearButton object equal a value, and that value is the clear function.

Applying the DRY Principle to Your Code

You have created a simple drawing app that covers quite a bit of ground. You can already see how the elements of a mobile web application are put together, from the HTML5 definition of the user interface to the JavaScript implementation of the functionality. You have met some of the functions specific to touch-sensitive interfaces, and you have seen some boilerplate code that makes your web app behave a little bit more like a native app than a web page.

As you progress through this book, you will build larger and more complex apps. When you use the techniques in this book to build production apps, they will almost certainly be large and complex as well. A good software engineer designs code in such a way that even large apps are as free of complication as possible. One of the most effective strategies is known as the Don’t Repeat Yourself (DRY) principle. The basic idea is that you try to avoid repeating blocks of code. You try to ensure that you have one definitive function for each feature.

The benefit of the DRY principle is that when you a fix a bug, you have to fix it only once, and it is completely fixed. If you have to apply the same fix to multiple similar sections of code, it is very easy to forget individual sections or to make other mistakes. The same benefit applies when you enhance a feature: You must do it in only one place.

One of the best things about DRY code is that it is short code. By applying the DRY principle, you actually reduce the number of lines of code in your app. Not only does this improve performance, but it also reduces the effort required to build the app. You can deliver faster and earn more money!

In the following example, you’ll refactor the drawing app code base from the preceding example. You’ll take similar sections of code and replace them with a single definitive version. You’ll take advantage of the fact that in JavaScript, you can treat functions like variables and give them to other functions to run. When you pass a function as an argument to another function, the function that you pass is often used as a callback. The function you called calls you back, using your function argument.

Here’s an example. First, you create an anonymous function and store it in a variable called callback:

var callback = function() {
 alert("hello");
}

Then you pass callback as a parameter to another function called callme. The callme function does only one thing: It calls the function passed to it — in this case, callback:

function callme(callback) {
 callback()
}

Another great way to refactor code, and achieve DRYness, is to use data structures rather than logic statements. To do so, you represent some of your logic as data. JavaScript makes this very easy, because it has a literal syntax for objects and arrays:

var myarray = ["a", "b", "c"];
var myobject = { a:1, b:2, c:3 };

This literal syntax allows you to define complex data structures where arrays can contain other arrays and objects, and objects can contain other objects and arrays:

var complex = { a:["a", "b", "c"], b:{c:3,d:4} };

This literal syntax is commonly known as JSON (JavaScript Object Notation). JSON is useful not only for defining data structures but also for representing data in string format for transmission over a network.

TRY IT OUT: Don’t Repeat Yourself

In this example, you refactor the drawing app to use functions and JSON to avoid repetitive code and thus follow the DRY principle. Here’s how you do it:

1. Inside the draw folder that you used for the previous example, copy the draw.html file and rename it draw-dry.html.

2. Change one line in the draw-dry.html file, shown boldfaced here:

[image: image]<!DOCTYPE html>
<html>
<head>
 <meta name="viewport"
 content="user-scalable=no,initial-scale=1.0,maximum-scale=1.0" />

 <style>
 body { padding:10px; margin:0px; background-color: #ccc; }
 #main { margin: 10px auto 0px auto; }
 </style>

 <script src="draw-dry.js"></script>
</head>
<body>
<button id="clear">clear</button>

<canvas id="main" width="300" height="300"></canvas>
</body>
</html>

code snippet draw/draw-dry.html

Instead of loading the draw.js JavaScript file as you did in the previous example, you now load a file called draw-dry.js.

3. Create a new file called draw-dry.js in the draw folder. Using your code editor, insert the following lines of code into the draw.js file:

[image: image]window.onload = function() {

 document.ontouchmove = function(e){ e.preventDefault(); }

 var draw = {
 fill: "#000000",
 stroke: "#000000",
 clear: "#ffffff",
 size: 5,
 cap: 'round',
 join: 'round',
 width: 300,
 height: 300
 }

 var canvas = document.getElementById('main');
 var canvastop = canvas.offsetTop

 var context = canvas.getContext('2d');

 var lastx;
 var lasty;

 function clear() {
 context.fillStyle = draw.clear;
 context.rect(0, 0, draw.width, draw.height);
 context.fill();
 }

 function path(moves) {
 context.beginPath();
 context.strokeStyle = draw.stroke;
 context.fillStyle = draw.fill;
 context.lineCap = draw.cap;
 context.lineJoin = draw.join;
 context.lineWidth = draw.size;

 moves()

 context.fill();
 context.stroke();
 context.closePath();
 }

 function dot(x,y) {
 path(function(){
 context.arc(x,y,1,0,Math.PI*2,true);
 });
 }

 function line(fromx,fromy, tox,toy) {
 path(function(){
 context.moveTo(fromx, fromy);
 context.lineTo(tox, toy);
 });
 }

 function position(event,action) {
 event.preventDefault();

 var newx = event.touches[0].clientX;
 var newy = event.touches[0].clientY - canvastop;

 action(lastx,lasty, newx,newy)

 lastx = newx;
 lasty = newy;
 }

 canvas.ontouchstart = function(event){
 position(event,function(lastx,lasty, newx,newy){
 dot(newx,newy);
 })
 }

 canvas.ontouchmove = function(event){
 position(event,function(lastx,lasty, newx,newy){
 line(lastx,lasty, newx,newy);
 })
 }

 var clearButton = document.getElementById('clear');
 clearButton.onclick = clear;

 clear();
}

code snippet draw/draw-dry.js

4. Verify that nginx is delivering your new files. To do so, open your desktop Safari browser and visit http://localhost/draw/draw-dry.html. You should see the same drawing interface as in the preceding example.

5. Open http://localhost/draw/draw-dry.html on your mobile device, but use your desktop IP address instead of localhost.

How It Works

This drawing app has the same functionality as the previous one. However, it is far more easily extended and enhanced. If you try the exercises at the end of this chapter, you’ll find that they are much more easily solved with this version.

You already know how the basic code works. Therefore, this section explains how the refactoring has changed the code and the reasoning behind the changes. You can use these techniques in your own work to deliver higher-quality apps faster.

The first big change is the use of JSON syntax to describe the properties of the drawing. You define a draw variable that contains these properties in an anonymous object. Think of the anonymous object as a bag of properties between an opening brace and a closing brace:

 var draw = {
 fill: "#000000",
 stroke: "#000000",
 clear: "#ffffff",
 size: 5,
 cap: 'round',
 join: 'round',
 width: 300,
 height: 300
 }

The purpose of these properties should be clear from the previous code examples. The fill, stroke, and clear properties specify the colors to use. The size, cap, and join properties specify the appearance of the line. The width and height properties specify the size of the canvas.

In the rest of the code, you can refer to these properties by using the syntax draw.<name>, where <name> is one of the property names, like fill. To get the fill color, for example, you use draw.fill. You may be more familiar with the syntax draw["fill"], which is a style commonly seen in older online JavaScript tutorials. You can use either style, but the draw.fill form gives you clearer code as it has fewer characters.

In keeping with the DRY principle, the draw object is the only place where you keep the settings for the drawing. If you examine the previous code example, you’ll notice that the #000000 color value is repeated in the code. In this example, it appears only once.

The clear function needs to be updated to refer to the property values in the draw object. This is an easy change:

 function clear() {
 context.fillStyle = draw.clear;
 context.rect(0, 0, draw.width, draw.height);
 context.fill();
 }

Now you get to make some big changes. If you examine the dot and line functions, you see a lot of the same code. This repeated code begins and closes a drawing path, sets colors, and performs other housekeeping. Why not factor this common code out into its own function? Here is the code to do so, with the shared code shown highlighted:

 function path(moves) {
 context.beginPath();
 context.strokeStyle = draw.stroke;
 context.fillStyle = draw.fill;
 context.lineCap = draw.cap;
 context.lineJoin = draw.join;
 context.lineWidth = draw.size;

 moves()

 context.fill();
 context.stroke();
 context.closePath();
 }

How does this function work? First, it always uses a path by calling the beginPath and closePath functions. Second, it always sets up the appearance of the line or dot explicitly, every time. This means that if you make changes to the draw object properties in response to user input (for example, the user changing the drawing color), then those changes will be picked up automatically. Third, it uses a callback function, moves, to perform the drawing.

The callback function is the key to making the path function generic. The path function has one parameter — another function called moves. After the path function has done its housekeeping, it calls the moves function, using the syntax moves(). This is how a callback works. The moves function contains drawing instructions, but the path function doesn’t need to know and doesn’t care what they are. When the moves function is finished, the path function can call fill and stroke to make the drawing appear, and then it is done.

This might seem like a lot of work just to draw dots and lines. Here’s what you get: The dot and line functions are now very short and simple! And if you want to add more drawing functions, such as squares or circles, those functions will be much shorter as well. You have made your code extensible and easy to maintain.

Here are the new dot and line functions. The boldfaced lines show how they use the path function:

 function dot(x,y) {
 path(function(){
 context.arc(x,y,1,0,Math.PI*2,true);
 });
 }

 function line(fromx,fromy, tox,toy) {
 path(function(){
 context.moveTo(fromx, fromy);
 context.lineTo(tox, toy);
 });
 }

The dot function still uses the arc function to draw the dot, and the line function still uses the moveTo and lineTo functions to draw the line. What is different is that they create a new anonymous function, using this syntax:

function(){
 ...
}

This is the moves function! It is passed to the path function, and the path function calls it to create the drawing.

You can apply the same refactoring to the handling of the touch events. The common code in this case should capture the finger position and record it. It should also call either the dot or line drawing functions, using a callback.

You need a new function, called position, to do the housekeeping work. This position function needs two things, the touch event, so that it can get the finger position, and a callback function, so that it can cause a drawing action to occur. Here is the code, with the callback logic highlighted:

 function position(event,action) {
 event.preventDefault();

 var newx = event.touches[0].clientX;
 var newy = event.touches[0].clientY - canvastop;

 action(lastx,lasty, newx,newy)

 lastx = newx;
 lasty = newy;
 }

The callback function is called action, and it has four arguments. The first two are the X and Y positions of the last touch event, and the next two are the X and Y positions of the new touch event. After the action function returns, the position function records the new touch position in the lastx and lasty variables.

As with the path function, the position function makes your event handlers much shorter. The benefit, again, is that when you extend the event handlers or create new ones, you have much less code to write. The use of the anonymous callback function is highlighted here:

 canvas.ontouchstart = function(event){
 position(event,function(lastx,lasty, newx,newy){
 dot(newx,newy);
 })
 }

 canvas.ontouchmove = function(event){
 position(event,function(lastx,lasty, newx,newy){
 line(lastx,lasty, newx,newy);
 })

There is a lot more to writing large-scale maintainable apps. For example, you may want to make use of third-party software libraries to greatly reduce the amount of code you have to write. You’ll learn more about that in Chapter 3.

USING THE AMAZON CLOUD

The Amazon cloud, more formally known as Amazon Web Services (AWS), is a collection of on-demand services for building websites and apps that can scale up to meet very high loads. In this book, you will learn how to use some of these services, of which there are many.

The primary Amazon service you will use in this section is the Elastic Compute Cloud (EC2). This service provides virtual servers known as instances. These server instances can be tiny virtual machines or large dedicated servers. You can boot up instances whenever you need them. The great thing about this is that you don’t have to spend money buying servers up front. You may have a great idea for a mobile app, backed by an online service, but you don’t know in advance how quickly you’ll get users to sign up. Amazon’s EC2 service lets you start with small services and pay for them as you use them.

Each instance is created from a prebuilt copy, known as an Amazon Machine Image (AMI). AMIs exist for all sorts of use cases. In this book, you’ll use some prebuilt AMIs created by the Alestic blog community (see http://alestic.com). Instead of installing a new operating system each time, you can simply reuse a preconfigured copy that already has the right software installed. You can even create your own AMIs.

The EC2 service has many features, and like all the other Amazon services, it also has a web service API that you can use to automate the management of your servers. This book takes you through the basics required to get you up and running. If you intend to use AWS in a production capacity, you should make sure to read the detailed Amazon online documentation: http://aws.amazon.com/documentation. (Follow the EC2 link for information about EC2.)

The EC2 service relies on the Elastic Block Service (EBS) to provide data storage. EBS provides virtual disk drives for a server. You will not need to use EBS directly in this book, but by using EC2, you will be relying on EBS indirectly. Each server that you create is “attached” to an EBS volume, which can be thought of as a virtual hard disk. The EBS service ensures that the data on this virtual disk is replicated and backed up. Nonetheless, you should not rely on EBS to store valuable data, as EBS volumes can and do become slow and unresponsive. The EBS service has considerable “rocket science” behind it, and Amazon is still working out some of the kinks.

[image: image]

WARNING If you have previously used server hosting services, then you’ll need to adjust your expectations when it comes to AWS machines. They are individually unreliable. You may find that you need to reboot instances when EBS volumes become unresponsive and refuse to perform read/write disk operations. Amazon does also suffer from occasional large scale outages, just like any utility company. To work around this, plan to build your app using many small servers, rather than one big server.

In this book, you will also encounter the SimpleDB service. This database lives in the Amazon cloud and provides a very simple key/value-based interface. You’ll use SimpleDB to enhance one of the sample apps in Chapter 6.

In Chapter 8, you’ll learn about the Simple Storage Service (S3). This service lets you store data in the cloud and access it via simple HTTP web requests. This was one of the first Amazon cloud services, and it is also one of the most successful. You can host entire websites by using S3.

How Geography Affects Amazon AWS

The AWS cloud is not provided as a single global service. Instead, the same service is offered in a number of AWS regions. These correspond to geographic regions where Amazon has set up data centers to provide the physical infrastructure for the AWS cloud. Each region has a code name that roughly corresponds to its location (for example, us-west-1, us-east-1, eu-west-1). The list of regions is expanding as Amazon sets up more facilities. There are cost differences between the regions, and in general, you should pick the region that is closest to your predicted user base. You might also want to deploy your service over multiple regions to ensure the highest levels of fault tolerance. Be aware that the cost of bandwidth between regions is much higher than the cost of bandwidth inside a region.

Inside each region, Amazon offers availability zones. It is commonly understood that each availability zone corresponds to a separate physical installation. However, it may actually just mean different physical rooms in the same data center. Amazon does not provide specific details. Also, availability zones are not the same for different users. Amazon does not release details about the way that availability zones are structured, so bear this in mind when you are planning your server deployments. All you can be sure of is that the cost of bandwidth between availability zones is much lower than the cost between regions. For good levels of fault tolerance, you can use multiple availability zones, but you should be aware that it is entirely possible to have outages of all zones in a region.

To access AWS, you need to prove you are who you say you are. You do this by using cryptographic keys rather than passwords. AWS requires you to cryptographically sign your requests with an access key and token. These are provided to you when you sign in to the AWS website using your Amazon account. You do not have to build the signing algorithms yourself (although doing so is not very difficult). In this book, you will use AWS API libraries to do the hard work for you.

To access EC2 instances, you need to use public/private key pairs. If you are familiar with SSH (the Secure Shell utility), you will not find this any different from the usual procedure for key-based login. If you are not familiar with SSH, then pay attention to the detailed instructions in the examples that follow. These instructions will show you how to log in to your server and run basic UNIX commands.

Using the Elastic Compute Cloud

In this book, you will use a server to run many of the examples. This server will run as an EC2 instance. You have to pay for the EC2 service, but Amazon offers a free usage tier. In this tier, you can use a low-powered very small virtual machine free for a year. This provides the perfect platform for experimentation.

In the following example, you’ll deploy your drawing app to the Amazon cloud. To do this, you’ll need to create a server instance that delivers your app to mobile devices. This server instance runs a web server that delivers the draw.html and draw.js files to mobile device web browsers.

This example walks you step-by-step through the server instance creation process. You’ll use the free usage tier that Amazon provides. This allows you to run a very small server free for one year without paying for CPU time. However, you still need to pay for bandwidth and storage. For that reason, Amazon requires you to enter your credit card details to activate your account. You can choose to use one of your existing Amazon consumer accounts for this purpose. So that you can see how the process works without actually signing up, this example includes detailed screenshots.

I recommend that you do sign up with Amazon in any case, so that you can gain firsthand experience of a world-class cloud-based system. The bandwidth and storage costs for running this example amount to pennies per month, and you can of course shut down your test server at any time.

TRY IT OUT: Creating an Instance

In this example, you’ll create an instance of the EC2 service. Here’s how you do it:

1. Open your desktop Safari browser and visit http://aws.amazon.com. This is the home page of the AWS cloud system.

2. Click Create an AWS Account on the top right of the page. You are presented with the AWS sign-in page. This page looks almost exactly like the normal Amazon consumer sign-in page. Your AWS account is also a normal Amazon account and is handled by the same internal Amazon user authentication system.

3. Sign in using an existing Amazon account or create a new one especially for your AWS usage. The AWS management console appears. However, you are not able to do anything yet, as you have not signed up for any products.

4. Sign up for the EC2 product by clicking the yellow Sign Up button. As part of the sign-up process, you have to complete an account verification procedure. This is an additional security measure that all new AWS accounts must complete. An automated Amazon service will phone you, and you must enter a PIN code provided onscreen. Amazon will send you an email when the EC2 service has been activated for your account. This normally takes a few minutes, so grab a cup of coffee!

5. Once your account has been verified, click the EC2 tab of the AWS management console. Figure 2-3 shows the standard EC2 control panel interface, before you add any instances.

FIGURE 2-3

[image: image]

6. Open a new browser tab and visit http://alestic.com. Click the us-west-1 tab and choose the most recent version of Ubuntu from the list of AMI codes. This is usually the first entry at the top of the table, denoted “Ubuntu version EBS boot”. The publisher should be Canonical, and you should select the 64-bit EBS instance. You can copy and paste the AMI code and enter it manually into the AWS management console. The Alestic blog also offers a shortcut link. If you click the arrow beside the AMI code, you are taken back to the AWS console, and, as shown in Figure 2-4, the Request Instances Wizard window appears; you can use it to set up your instance.

FIGURE 2-4

[image: image]

7. Go through the steps of the Request Instances Wizard. By using the shortcut link from the Alestic blog, you have already completed the first step, which is to choose the AMI. Click Continue.

8. Fill out the Instance Details step of the wizard, as shown in Figure 2-5. Choose the right size for the instance. You want to make sure you are on the free usage tier, so choose the Micro (t1.micro) option from the Instance Type drop-down list. Make sure you request only one instance and set your availability zone to us-west-1b. Also choose the Launch Instances option. Click Continue.

FIGURE 2-5

[image: image]

9. Complete the Create Key Pair step of the wizard, as shown in Figure 2-6. You need a secure cryptographic public/private key pair to actually log in to your instance. For this example, you can let Amazon do all the hard work and just create a new key pair. Choose the Create a New Key Pair option, call your key pair yourkey, and click the Create and Download Your Key Pair button. Save a file called yourkey.pem in a safe place.

FIGURE 2-6

[image: image]

10. Complete the Configure Firewall step of the wizard, as shown in Figure 2-7, to make sure your instance is secure. Because this instance will be a web server, you want to allow HTTP traffic. You also want to allow SSH access so that you can log in. The best thing to do here is to create a security group that stores these web server firewall settings so that you can reuse them if you create new instances. Choose the Create a New Security Group option. Use the value web in the Group Name field. In the Inbound Rules box, choose SSH from the drop-down list, and leave the Source value as 0.0.0.0/0. Click the Add Rule button.

FIGURE 2-7

[image: image]

Add rules for HTTP and HTTPS by using the Inbound Rules box. When you are done, click Continue. Figure 2-8 shows these firewall settings.

FIGURE 2-8

[image: image]

11. Complete the Review step of the wizard. Your instance appears in the instances list on the main area of the EC2 tab, first with the state “pending” and then with the state “running.” Right-click the instance and select Properties. The properties view for the instance appears, as shown in Figure 2-9.

FIGURE 2-9

[image: image]

12. You are now the proud owner of an Amazon EC2 instance, so play around with the EC2 management console. Try stopping and starting your instance and take a look at the Monitoring tab in the properties view.

How It Works

The AWS management console is the graphical control panel for your Amazon cloud services. You can control all of your EC2 instances here. The Amazon AWS API also provides a programmatic interface, but you will not need that for the examples in this book.

There are thousands of AMIs to choose from. This book uses a 64-bit Ubuntu Linux AMI. The Ubuntu Linux distribution is one of the most common, and you will nearly always be able to find answers to any questions that you have about it on the web. It is updated frequently, so you can be sure you are running recent versions of server software packages that you install. Ubuntu also includes the Debian Advanced Packaging Tool, which provides the apt-get software installer command. This system utility can automatically install software on your machine and ensure that it is compatible with other, previously installed software libraries, upgrading them as necessary. It is an incredibly useful piece of software, and you will use it to quickly set up your instance in the next example.

In this example, you set up a 64-bit instance in order to ensure that your server can properly run the MongoDB database. (You’ll learn about MongoDB in Chapter 5.) The maximum size of the MongoDB is restricted with a 32-bit instance, so it is better to go with the 64-bit option. This means that even though you’re starting on a Micro instance, you can scale up to a large instance.

You selected an EBS-based instance. This means that disk space from Amazon EBS is allocated directly to this instance, in much the same manner as a normal hard disk is used by a traditional server. It is possible to create preconfigured instances that can run without individual dedicated disks. These types of instances are commonly used for CPU-intensive tasks such as video encoding. For this example, you need a normal server with a normal hard disk. Behind the scenes of the Amazon EC2 service, everything is virtual, but for your purposes, you can think of the instance as an ordinary server with its own hard disk. This abstraction is part of the value of cloud computing.

The security group configuration is an important part of using the Amazon cloud. Security groups allow you to set up firewall rules for groups of servers. All the servers inside a security group can talk to each other freely, but external servers, including other servers on the Amazon cloud, can access the group servers only via your configured ports. Because this example is a web application, the web security group opens up the standard web ports: 80 for HTTP and 443 for HTTPS. You also need port 22 for SSH access.

Once your instance is set up, you can review its properties and status by bringing up the properties view, as shown in Figure 2-9. There are many properties, and you should refer to the Amazon documentation for a full explanation. The Public DNS value is the most useful right now. This is the public name of your instance, and you will use this name to connect to your instance and to access the drawing app you created in the first part of this chapter.

The Monitoring tab in the properties view is particularly interesting. It allows you to view the performance characteristics of your server over different periods of time. You can review CPU usage, disk space, and bandwidth usage.

[image: image]

NOTE When you are running a server in production, you should use external monitoring services to make sure everything is okay. You can configure these monitoring services to send you alerts when there is a problem with your server. Two great services with free options are http://cloudkick.com and http://pingdom.com.

Deploying Your Mobile Web App

Now that you have a server up and running, it’s time to deploy your mobile web app. The following example shows you how. To run the command-line utilities in the following example, you will need to use a command-line terminal. If you are using a Mac or Linux machine, you simply launch the Terminal application, and you are ready to go. If you are using a Windows machine, you can install the Cygwin environment, available from http://www.cygwin.com. This gives you a UNIX-like terminal that can run the commands in this example.

If you are not familiar with UNIX command-line utilities, you can still follow this example. Just make sure to enter the commands very precisely. It may help to do some background reading to become a little more familiar with these utilities, as you will need to use them to manage your cloud servers. http://www.linux.com is a good place to start.

TRY IT OUT: Configuring an Instance

In this example, you’ll upload the drawing application and access it directly from your Amazon instance. First, you’ll need to log in and install a web server. Here’s what you do:

1. Start the Terminal application. Use the cd command to go to the folder where you downloaded the yourkey.pem Amazon key file in the preceding example. On a Mac, you probably saved this file to your Downloads folder, so type this command:

cd Downloads

Alternatively, copy the yourkey.pem file into your home folder. You can use the pwd command to find your home folder. When you start the Terminal application, you start in your home folder:

pwd
/home/username

2. Open the AWS management console, open the properties view for your instance, and copy the public DNS name, which is a long string that looks something like this:

ec2-204-236-174-57.us-west-1.compute.amazonaws.com

3. In the Terminal application, enter the following command exactly as shown here:

chmod go-r yourkey.pem

This command ensures that the yourkey.pem file has the correct access permissions. Only you should be able to access this file. The chmod command removes read permission from other users on your machine. If you don’t do this, the ssh command in the next step will refuse to run.

4. To log in to your instance, run the following command, replacing the highlighted text with the public DNS name of your instance:

ssh -i yourkey.pem -l ubuntu ec2...amazonaws.com

You should now be logged in to your instance, and you should see something similar to Figure 2-10. This shows the chmod and ssh commands, executed locally, and then the connection to your instance. When you connect, a short message is displayed, showing usage statistics.

FIGURE 2-10

[image: image]

5. Install a web server on your instance to deliver the drawing application files to mobile device browser. In Chapter 1, you installed nginx on your local machine. Now you need to install nginx on your Amazon instance. Because you are using Ubuntu, this is very easy with the apt-get command, which is the command-line version of the Debian Advanced Packaging Tool. You need to be the root user to install nginx. Become root with this command:

sudo -s

Then run the following command, and you should see the output shown in Figure 2-11:

FIGURE 2-11

[image: image]

apt-get install nginx

6. Still as root, start the nginx web server with this command:

nginx

The command prints no output. To check that nginx is indeed running, use this command:

ps -ef | grep nginx

This lists all processes with the name nginx that are running on the machine. You should see several lines of output that look similar to this:

... nginx: master process nginx
... nginx: worker process
... nginx: worker process
... nginx: worker process
... nginx: worker process
... grep --color=auto nginx

7. Verify that you have a working web server. Visit the public DNS name of your instance by using your desktop Safari browser. You should see a welcome message like the one shown in Figure 2-12.

FIGURE 2-12

[image: image]

How It Works

In this example, you use your Amazon public/private key file to gain access to your instance. Amazon uses key files because they are more secure than passwords. It is impossible for anyone to log in to your instance without the key file. For this reason, you should keep the key file stored safely and make sure to back it up as well. In this example, you place your key file in your home folder. Normally, you would store your key file in a special subfolder of your home folder called .ssh. To learn more about SSH, visit www.openssh.com. On a Windows machine, as an alternative to the Cygwin version of SSH, you can use an application called PuTTY. This is available from www.chiark.greenend.org.uk/~sgtatham/putty.

The ssh command takes many arguments. In this example, you use the -i argument to specify a key file and the -l argument to specify the name of the user to log in. For the Ubuntu AMI that you set up, this user is ubuntu. You do not log in directly as the root user, but you can become the root user if you need to by using the sudo command.

To install nginx, you use the apt-get command. This downloads, builds, configures, and installs nginx for you, all in one go. It does not start nginx automatically, so you need do this yourself, with this simple command:

nginx

This launches nginx as a UNIX daemon, which means it detaches itself from your login and will keep running in the background, even when you log off. This is what you want from a web server!

The ps command lists all the processes that are running on the instance. You run this command and then pipe its output, using the | character, as input to the grep command. The grep command searches for strings that match its arguments. The end result of this UNIX incantation is a list of any nginx processes that are running. This is a handy way to check that nginx is indeed running.

Finally, you visit your new website by accessing your Amazon instance in your web browser via its public DNS name. You see the default home page for nginx, which is a simple welcome message. The public DNS name is basically a website domain name that is inconveniently long and that you need to copy and paste in many places. It is possible to change this name and use a proper domain name by using the Amazon Elastic IP Service. This service is not covered by this book, but you can find details about it in the Amazon AWS documentation.

Deploying Your Mobile App to the Instance

Your Amazon instance is ready, and the next step is to deploy your mobile app to the instance. In a production scenario, you will want to use a version control system, such as Git or Subversion. In this example, you will simply copy the files onto the server. First, you’ll need to configure nginx on the server. You’ll need to edit the nginx configuration file. In order to do this, you will need to use a command-line text editor such as vi or Emacs. Because you can’t use the mouse, these editors require you to use the Ctrl and Esc keys to enter commands such as copy and paste. You may already be familiar with one of these editors, in which case this example will be easy to complete. If not, you should first take a little time to learn the basics of either vi or Emacs. Here are some good places to start: www.wikihow.com/Learn-vi and www.wikihow.com/Program-Using-GNU-Emacs. These command-line editors may seem slightly prehistoric, but they are incredibly useful if you intend to build a cloud-based mobile app. You will need to be able to edit text files on your servers to configure and control the cloud-based elements of your app.

TRY IT OUT: Deploying Your Mobile App

In this example, you’ll configure nginx to deliver the files for your mobile web app, and you’ll copy those files onto your Amazon instance. Here’s what you do:

1. Open the Terminal application and log in to your instance as before, using the following command, where you replace the highlighted text with the public DNS name of your instance:

ssh -i yourkey.pem -l ubuntu ec2...amazonaws.com

2. Open the nginx default configuration file using your command-line editor of choice. This file is located at /etc/nginx/sites-available/default.

[image: image]

WARNING If you make a mistake with your nginx configuration, nginx will print a warning message and halt. When nginx is halted, no files are served, and your mobile web app is not available. As a general rule with UNIX configuration files, you should create a backup copy before you make changes. That way, you can always go back to a known good version of the file.

3. Insert the following lines into the server { ... } section of the nginx configuration file, just after the location / { ... } subsection:

 location /draw {
 alias /home/ubuntu/draw;
 }

4. Save the file and exit the text editor.

5. In your home folder on the server, create a new folder called draw to hold the drawing app files. You are in your home folder just after you log in. To automatically return to your home folder if you have used cd to get to a different folder, use the command cd by itself, without any arguments. Here are the commands to create the draw folder:

cd
mkdir draw

6. To serve files from this folder, instruct nginx to reload its configuration by using this command:

sudo nginx -s reload

7. Open a new tab on the Terminal application and use cd to get to the draw folder you created for the drawing app you developed in the first part of this chapter. If you created the draw folder as a subfolder of your Projects folder, then this is the command:

cd Projects/draw

8. Copy the draw.html and draw.js files to the draw folder on the server. To do this, use the scp command from your local machine. This command has similar arguments to the ssh command, but it uses a special syntax (<username>@<server>:<path>) to indicate the remote destination of the file. Here are the commands, where you replace the highlighted text with the public DNS name of your instance:

scp -i yourkey.pem draw.html ubuntu@ec2...amazonaws.com:draw
scp -i yourkey.pem draw.js ubuntu@ec2...amazonaws.com:draw

Your mobile web app is now live in the cloud!

9. Verify that you can reach the app by using your desktop Safari browser. Visit the URL: http://ec2...amazonaws.com/draw/draw.html (where the boldfaced server name is the public DNS name of your instance). Your drawing app should appear.

10. Open the app on your mobile device browser, using the same URL. An easy way to do this is to email the URL to yourself and click on the link in the email on your mobile device. Your app should appear as in Figure 2-13.

FIGURE 2-13

[image: image]

How It Works

The nginx configuration in this example looks for a folder called draw in your home folder that contains all the files for the drawing application. In this book, you will create subfolders like this for most of the examples to keep your code organized. The same folder structure is used for the downloadable code. When you developed the drawing app on your local machine, you simply created a subfolder in the default nginx html folder. On the Amazon instance, you used a different location for the draw folder, and you had to configure nginx to tell it about this location.

This example shows you how to set up the configuration for nginx on a remote server, using only command-line utilities. This is an essential skill when it comes to developing and deploying your own cloud-based apps. To stay focused on the task of building cloud-based mobile apps, this example gives a minimum set of commands you can just type in to get the desired effect. There are many other ways to achieve the same results.

Once you have your app running on the EC2 service, you are ready to serve millions of users. With very little effort, you can change the size of your instance to a much larger-capacity machine; this gives you vertical scaling. You can also create multiple clones of the machine. This lets you scale your app by adding more and more machines, which gives you horizontal scaling. Combine both, and you can scale up to meet the huge success of your app!

SUMMARY

In this chapter you went step by step through the process of building and deploying a mobile web app. With just the knowledge in this chapter, you can already build quite complex and interesting mobile web apps. You also learned how to deploy these apps to the Amazon cloud service. You are therefore now in a position to scale up your app to millions of users when that time comes!

In the next chapter, you’ll start learning more details, such as how to build apps that look like apps, not just websites. You’ll also learn about the best third-party software libraries to use. You’ll also learn how to provide features such as geolocation and how to respond to device orientation changes. The next chapter shows you how to build a fully functional interactive mobile web app with many features.

EXERCISES

1. Enable the user to draw using the colors red, green, and blue. Add three buttons at the top of the app. When the user taps a button for a given color, all subsequent dots and lines should be drawn using that color. Use the refactored DRY code example to make the modification easier.

2. Enable the user to save and restore the current drawing. You do not need to provide permanent storage, but you do need to be able to restore the canvas to a previous state while the app is running.

3. Very often when you start to build apps for clients, you will need to restrict access to the version that is under construction. You can do this by password-protecting the URL path using your nginx configuration file. The nginx wiki at http://wiki.nginx.com is a good place to start.

4. Using the scp command to deploy files to your server is going to be pretty painful on an ongoing basis. How can you use http://github.com to make deployments much easier?

Answers to the Exercises can be found in the Appendix.

• WHAT YOU LEARNED IN THIS CHAPTER

	TOPIC
	KEY CONCEPTS

	The canvas element
	This HTML5 element provides a pixel-based drawing surface that allows you to create arbitrary graphics for an app. The canvas API uses the concept of a path to describe complex images, using a collection of basic drawing steps. The canvas element is well supported in both iPhone and Android.

	Mobile web app boilerplate code
	Throughout this book, the sample code for mobile apps contains a certain amount of boilerplate code. This code declares that the app uses HTML5 and that certain default touch actions, such as scrolling, are disabled. The boilerplate also gives you control over the zoom level of the app and enables you to specify a standard look and feel across different devices.

	Tracer bullet
	A tracer bullet is an integrated code base that tests the end-to-end functionality of the app. It does not test the features of the app, but it tests whether all the different software components and dependencies are compatible and communicating properly with each other. Using a tracer bullet early on enables you to avoid complex debugging later on, when application logic is mixed in with integration code.

	Touch events
	You can react to the user’s fingers touching the screen by using the same simple event handling code style that you use for reacting to mouse clicks in a traditional web browser. You receive touch events when the user’s fingers first make contact with the screen, as they move, and when they leave the screen again.

	Don’t Repeat Yourself (DRY) principle
	The DRY principle is a rule of thumb that is useful for software engineering. It stipulates that, within reason, you should avoid repeating sections of code or data. The opposite of the DRY approach is often derisively referred to as “cut-and-paste” coding. DRY code is far more maintainable and extensible, but it does require a slightly higher level of abstraction in the design.

	Amazon AWS
	The Amazon Web Services (AWS) platform is a collection of many different cloud services that help you scale and build apps more quickly. You pay for usage of the service on an as-needed basis, and you can pick and choose the services that you need.

	Amazon EC2
	The Amazon Elastic Compute Cloud is one of the primary AWS services. It offers the ability to quickly deploy new servers with almost no configuration and build time. You can specify the operating system and capacity of the new server and launch and control it — all from a user-friendly web interface. You still have full administrator access to the server and can configure it exactly as desired.

End of sample

 To search for additional titles please go to

 http://search.overdrive.com.

OEBPS/page-template.xpgt

	

	

	
	

	

	
	

OEBPS/images/f122-01.jpg

OEBPS/images/f106-01.jpg
800 To Do App
[«] [+.[[3 ite:s/ uryiout/todo. hemi ¢ J(Q- Google

To Do List X Cancel

7] step 4+ Write HrMtL web app

] swp2:2 s =

[step 3: Promin EET—rT =
Tobolist x carel

[0 sep s proms

OEBPS/images/f101-01.jpg
To Do App
(] [£.]5 e ytouttado et ¢ (@ cooste)
To Do List 2 Jommont
sene|
7] s e

[step2:2

[step s:Protint

o[w{z[r[r]v]u] Jole]
DBpREnAA

Ldzlxclv]elnInES
e I

OEBPS/images/f096-01.jpg
8eno To Do App
[Lo (@] s errousreodo.mt ¢ (@ cooste

To Do List

test item

=
TovoLst (x Carcel

OEBPS/images/f093-01.jpg
To Do App
LE]® e revmouod, o) (ar coose

Javaseript

hijst

todo.htmi

OEBPS/images/f088-01.jpg
(Yol] http://localhost/jqmob/jamob.htrl

(. > J (T] rup: stocalhost amobijamobhumi ¢ J(@ coogle
Content Example
Button Example

e EE—mm—
TG ame

List Example
Gontemt Example
Button Example

Form Exampie

OEBPS/images/f078-01.jpg
[E— ————
e At booknare

o —

: AWENENENGR
AREAERARNE

1 ARENENE -

e [T] e

e open

e o S Open n rewwindow
it beoknark
Add shoricut to Home

share ink

Cory link URL

OEBPS/images/f145-01.jpg
Iraditional Database Schema

Cartiter ShoppingCart
ftem Price Cant Cart Date
A 190 o1 ;g ot 201141
[299 o1 02 20112
c 300 02 / 03 20113
|

D 4.90 03

MongoDE Objects

cart—p 01 cart—p- 02 cart— 03

date—p» 201111

date—p» 201112

date—p 201113

ftems —fitem —p-A

price —p-199

ftems —a, [item —p-C

price —-2.99

items

tem —-D
price —-3.99

item —p- B

price —- 2.9

OEBPS/images/f132-01.jpg
ToDolist + am

OEBPS/images/f130-01.jpg

OEBPS/images/f062-01.jpg
Richard-RodgersHacBook-Proi~ richards chmod go-r yourkey.pen
Richard Rodgers HacBook Proi~ richards ssh i yourkey.pen -L ubuntu cc2-204-236-174-57. us west-1.compute. omazonaws . cam
Welcone to Ubuntu 11.64 (GNU/Linux 2.6.33-8-virtual x86_64]

+ Docunentation: https://help. ubuntu. con/.
Systen infornation as of Wed May ¢ 15:54:53 UTC 2011

Systen load: 0.3 Processes: 57
Usage of /: B.2% of 7.87G3 Users logged in: @
Memory usage: 5% TP sddress for ethd: 10.178.03.16

Suap usage: 0%

Graph this date and manage this system at https://landscape.canonical.con/

At the nonent, only the core of the system is installes. To tune the
systen to your needs, you can choose to install one or more
precefined collections of software by running the following

connand:

cection server

cudo taskeel

The programs included with the Ubuntu syster ore free softwarc;
the exact distribution terms for esch progran are described In the
individual Tiles in /usr/share/doc/*/copyright.

Ubuntu cones with ABSOLUTELY NO WARRANTY, to the extent permitted by
applicable low.

To run a command ac adninistrator (user "root"), use "sudo <commands"
Ses nan zudo_roott for datails.

uburtu@ip-10-170-93-16:~8 |

OEBPS/images/f059-02.jpg
me itps console.aws.mazon comec2 homelregion=us-west- Lés= nstances . Iw Google ,

Wil sweamsoncom AW | Producs | Developers | Commuriy | Suppart | Account

‘Welcome, Richard John Rodger Setings Sian O

o 52 [[iwe [ciouawese | e apmoduse ioudrrons | Cioudrormaion s |ane | ian|
Crr—
Rogion: | 6 towon worse | nrco ctors Torowneo | 2 nareen | Bron |
B USSR * g (At) (AsrceTions) 1 T e]
[ET— AN | rotbevos | Type | Suus SecuryGroups KeyParhame | Mantoring Vi
—— C] | @450 ami130Mcs6 | ebs tmcn | @ nmning web yourkey | Wbssic o
Vinsancas
> Spot Roauests
+ Reserved tnsances
- 2502 i seeand
»amis @ EC2 Instance: 1-84311bc0
e i | "Deseription | [Monioring | [Togs |
> Volumes R /ubuntu-imagesubuu natty-11.04-amdsd-server 20110426 (ami-1360c5s) 2009 L
+ snapahors Securty@roups v Trpe: e
RE— | == iy e siesiossas0n
> secury Groups wew. i Subnet1o: -
> Mhastin 20w ‘Source/Dest. Check: Virtualization: paravirtual
> Placamant rouse
e Placement roue Reservaton: raasaoses
e A sk = Platorm: E
Key Pair Name: ey Kermer10: acsnoride
Montoring: s ey
s 1p: - Root Deice: P
RostbevieaType: wn Tenanr: atok
Uecycie: o
Block Devies: st
Pusic ons: 220023517457 13- weste cmpite amaranav o
Prva ons: 1010:170.9-16.45 wt-1comutcintomal
00 S o 0 Bt o e las S g remeinds | Fonincl | gt §

Privacy Poicy | Terms ofUse | An amazoncom. company

OEBPS/images/f059-01.jpg
nt Console
(L] s/ consoe.awsamazon comecbomerrgion=is-vest-#s=launchinsnceWizar G

Request Instances Wizard
v v v o
SCEOTIS GeTAR comGAERRAL

Secuky roup dtemine whethr 1 twork st s g or bockad o your nstances ou ay s e ek reu, o we
Can il Yo Geate new securky Group o 81w acass o your nances ueng the suggested Pt beow. Add 3ddona pores "ow
pdate Yoo Secinty raup anyume Una the Securky Groups Fage:
O Choose ane or more of your existing Security Groups

© Create a new Security Group

Group Name. b

Group Description usb.

Inbound Rules

cenea

e rule:

Port range: i
(60, 80 or 9152:6553%) %

T

0.0.0.00
[

15216820125, 5547004026, o
ist7a00 detas)

00000

OEBPS/images/9781118203354.jpg
Beginning
Mobile Application
Development in the Cloud

OEBPS/images/f058-01.jpg
S Management Console

(L] s/ consoe.awsamazon comecbomerrgion=is-vest-#s=launchinsnceWizar G

"

Request Instances Wizard

v v v o
oSt aNAM MSWKEOEMS TR commEmRMAL o

Secuky roup dtemine whethr 1 twork st s g or bockad o your nstances ou ay s e ek reu, o we
Can el Yo Geste nem secury Group o 81w sccss o our neances ueing the uggestsd P
pdate Yoo Secinty raup anyume Una the Securky Groups Fage:

s below. Add ool 59t now
O Choose ane or more of your existing Security Groups

© Create a new Security Group

Group Name. b

Group Description usb.
Inbound Rules

70000

(e, 192,168,200, s5-47a44828, o1
133serm00igernt)

@ paia

OEBPS/images/f057-02.jpg
S Management Console

(L] s/ consoe.awsamazon comecbomerrgion=is-vest-#s=launchinsnceWizar G

Request Instances Wizard
coostanaM wswouts ey RR e
Pubiconae ey pars sl yu o ceurly connc s your stnce & unches To e Koy oa, e name and ik
o your Ky Pai o, e private key £ your computer: Nots, you anly need €
S ey paronte ok 2ach e You want 5 i Ao EC3 paance
Choose from your existing Key P:

© Create a new Key Pair

1. Entor 3 nam for your key pairs [yeuker (s, ke

2. Click to create your key pair:*
our ker 5o | resto . Downlosdyaur ke pai

Seve i e n 3 lace you il
Temember. o ean vee e ey it
aunch oty itances it e o vl

e ey Po s poge 5 creat of maroge
Sing ones.

OEBPS/images/f449-01.jpg
Keystore selection

O Use existing keystore
® Create new keystore

Location: | /Users/richard ricebridge /dev/tonvo) tonvo-eclipse keystore Browse...

Password:

Confirm: |

@ == =

OEBPS/images/f057-01.jpg
(L] s/ cnsole.aws amazo comecbomerrgion.s-vest-6s=launchinsncetizar G

Request Instances Wizard

f—
cvoostanam st beTats e

Provid the doais for your nstanca(s). You may aleo docids Whhar you want £ aunch your nstances 4 “on-demand’ or"spot”
instances.

Namber o nstanesss (1| Avaabityzone: (v)
B T T —
pe e
o [—— Grmws 1on e
s VD] L] cew zomw 75
E) sew dome so

unch Instances|

O Request Spot In:

High-Memory Extra Large (m.large) ssEUs 20 w1
High-Memory Doubie ExtraLarge (m2.2xarge) 13ECUS 4 Cores 34208
Hih-Memory Quacruple Extra Large (m2dxarge) 26ECUS 8 Cores 68.4GB
High <P Extra Large et iaroe) s sooes 76

OEBPS/images/f448-01.jpg
IEHeS8BRE]4 0% 886 @5 18-i- e e 5 $oeus Bliaa

s 55 | = 5

£%] 7|[& Androia manitest
> B —
[Seabpteta R ——
e [amcwaaone ==
vesoncose [1 1
[——— =
St [=
E— =
st tocton [2]
st s OO®O OO = Aiwaes o suppors scvens
B [e a——
feror | smotscens[ase "
R — |
Do rarge screens [tre]
e
2 st pcin [P i oo Ao
15 b [@ s [Dectston B come 7 B[B =D
T | Anaroia soK Contert Loager

OEBPS/images/f447-01.jpg
[T 1 escomnec 30 com MebObects TunesComect wsa/wo/37 0097311

& iTunes Connect Ricard Radger, Rchard Rodger 1323714254

.

‘App Information
s unks
. it o T
T S P
P =
p—
Versions

Current Version

[—

DTV e

Common 2015 e e AL s e et e | P sl

OEBPS/images/f446-01.jpg
Please choose your application record and signing identity

Application: [tonvo 1.0.0 (OS App)]
Identity: [iPhone Distribution (currently matches ‘iPhone Distribution: [

OEBPS/images/f077-01.jpg
.

OEBPS/images/f067-01.jpg

OEBPS/images/f064-01.jpg
(@) ec2-204-236-174-57 us-west-1 compute amazonaws com

‘Welcome to nginx!

OEBPS/images/f063-01.jpg
ro0t@ip-10-170-93-16: ~ — ssh — 131X47

170-93-16:~4# apt-get install nginx
Reading packege lists... Done
Building dependency tree

Reading state nformation... done

The following extra packages will be installec:
Libgd2-noxgn Libjpegb2 LibxsLt1.1 noine—comnon noink-full

Suggested packages:
Libed-tools
The following NEW packages will be installed:

Libgd2-noxpn Libipags? 1ibxelE1.1 nginx ngins-comnon ngink—full
0 upgraded, & nely installed, O to renove anc 0 not upgraded.

Neas to got 817 kB of archives.

After this operation, 2,601 k3 of sdditional disk space will be used.

Do you want to continue [Y/n]? y
//us-vest-1.ecz.archive.
7/us-vest-1.ec2 archive.
//us-vest-1.ec2 archive.
//us-vest-1.ec2 archive.
7/us-vest-1.ec2 archive.
/us-vest-1. ec2. archive.
Fetched 817 kB in s (3,344 k/s)

ubuntu. con/ubuntu/
ubuntu_ con/ubuntu/
ubuntu. con/ubuntu/
ubuntu. con/ubuntu/
ubuntu_ con/ubuntu/
ubuntu_ con/ubuntu/

natty/nain libgé2-noxpn andss
natty/universe nginx-comnon al
natty/universe nginx-full anis
Patty/universe nginx all 0.8.54-4

Selecting previously deselectod packsge Libipegs2.

(Reading dotabose
Unpecking Libjpeg6z (from .

25205 files ond directorics currently installed.)
+/Uibjpeg62_Sb1-Tubuntul_anded. deb)

Selecting previously deselected package Libxslti.l.

Unpacking Libxslti1 (fron

Unpacking Libga2-noxom (fron .
Selecting previously deselecte
Unpacking nginx-conmon (fron .

package nginx
Inginx-comon.

Selecting previously deselectsd package ngim

+-/Uibx$1t1.1_1.1.26-5builol_andsa.ceb) ...
Selecting previously deselected package Libgd2-noxpn.
/Libgd2-noxpn_2.0. 35+rclodfsg-Subuntu2_andsd.deb) ...

5.5474_a11. deb)
il

Unpacking mgimactalt (fra s /npimaFaULL0.8-S4ot andcd. deb) ...

Selecting previously deselected package nginx.

Patty/nain 1ibjpegs2 andbs Bol-lubuntul (8.5 kB
Patty/nain Uibxslt1.1 an6é 1.1.26-6builel [165 k8]

36~rclngtsg-subuntu2 (201 kB
8.51-4 [14.8 k8]

8.54-4 [342 k8]

15,892 B

Unpacking nginx (fron .
Processing triggers for
Processing triggers for
Processing triggers for
Processing triggers for
Setting
Setting
Setting

u Uibxsltl.1
up Uibgd2-noxpn (2.

/nginx_0.8.54-4_all.deb)
python-central «

U s

ureadanead
man-db ...

up Libjpegs? (6b1-Tubuntud) .
(1.1.26-6o0i1d1)

- 36~rcindfsg-Subuntu2) ...

Setting up ngink-comman (0.8.54-4)
Setting up ngine full (0.8.54-4)

Setting up nginx (5.8.54-4)

Processing triggers for Libcobin ...

Ldcontig deferred processing now taking place
ro01@ip-10-178-93-16:~# |

OEBPS/images/f280-01.jpg

OEBPS/images/f279-02.jpg
5, ooy onessorsoayis> =
Change, this if you wart te allow scoling —
neta nana=tviempa bt Contentohuidthodefaultonidih; user-scaloblecnat />
neta http-equiv="Content-typa" content="text/htnl; charset-uti-g"s
<titlelifestreans/titles
<i-- ipag/iPhone cpacitic ces below, 203 atter your nain cos >
+ medtimontyereen wnd (radevics Vi 0aten)t rrescvipad.cont ypecttectsenst /o
* nedia-tonly screen and (nax-device-widthi 480px)" hrefntiphons.cas” ype-ttont/css /x
<7- 11 you apolication is targeting 105 BEFORE 4.8 you WUST put json2.fs fron http://m. JSON.ore/jsenz.is into your was
ZECTipt Lypetret/javaserapte charset ks E it ghanegan. oot eripts
“oeript type-rtext/iavaseript” charset-tuti gt
77 1% you want <o prevent dragging, uncoment this section
function preventichavior(e)
i

e.preventoatautt);

docunent addEventListener("touchnove”, preventBchavior, folse);
b7

function onbodyLoad()
{

| decument vt stener(“deviceready ordeviceResdy alac

7+ Vnen this function is called, ProneGap has been initialized and is ready to roll s/
finction snbeviceneady |
{

17 60 your thing!

</scripts
<rheais

OEBPS/images/f278-01.jpg
Choose a template for your new project:

Q

PhonsGap
PhoneGap-b
Appiication

Framework & Library
Application Plug-in

SystemPlug-in
otter PhoneGap-based Application
Precsdon

and Javaseript.

This templte provides a starting point for 3 PhoneCGap based apalication.Just modify the wunw foder contents with your HTNL, CSS

OEBPS/images/f263-01.jpg
® O O Terminal — memcached — 41x47 | ® O O 41x47 | ® O O Terminal — memcached — 44x47
ET lab 19 =
et named Slab clazs pers| slab clazs 30 chunk size 66232 perslab
sending key named 1/ 0E 15
B class pers|slab class 31: chunk size £2792 perslab
get nane1 1 12
sending key namel class pers|slab class 32: chunk size 103496 perslab
= 10
get nane3 class pers|slab class 33: chunk size 129376 perslab
sending key name3 B
D class pers|siab class 34: chunk size 161720 persiab
et naneo o 5
sending key named clase pers| slab class 35: chunk size 202152 perslab
B H
get nanet class 1-valuel pers|slab class 36: chunk size 252696 perslab
>30 sencing key namel oo set 2-falsc
<30 e class pers| slab clazs 37: chunk size 315872 perslab

<30 get nane3

3
sending key name3 class| pers|slab class 38: chunk size 394840 perslab
D : get l=valuel 2
set nanes 0 3600 6 class| et 2-false pers|slab class 39: chunk size 493552 persiab
sToRED 2
et naned class| pers|slab class 40: chunk size 616944 perslab
sending key named o 1
) class| pers|slab class 41: chunk size 771184 perslab
get nanel o Ey
sending key namel servel) slab class 42: chunk size 1048576 perslab
EvD servel) 1
get name3 send ® <26 server listening (auto-negotiate)
sending key name3 server <27 server listening (auto-negotiate)
Y send b o <28 send buffer was 9216, now 3728270
et namet servel <28 server listening (udp)
sending key names served <28 server listening (udp)
BN server <29 send buffer was 9216, now 3728270
get naneo server <28 server listening {ucp)
sending key named servel <28 server listening (udp)
BN servel <29 server listening (udp)
get namel server <29 server listening (udp)
sending key namel new au lectio| <29 server listening (udp)
v o <29 server listening {udp)
get namez Client <30 new auto-negotiating client connection
sending key name3 set na 30: Client using the ascii protocol
1) STORED set name2 0 3660 6 b
get nameo get nal 0 STORED
sending key names sendin <30 get name2
END END 5 30 sending key nane2 :
connection closed. connec >30_END v

ACSIGINT handled.

OEBPS/images/f261-01.jpg
® O O Terminal — memcached —41x47 | ® O O Terminal — memcached —41x47 | ® O O Terminal — memcached — 44x47.

> nencached —vv -p 11211 > mencached —vv -p 11212 > menceched —w -p 11213 O
Slab class 10 chunk zize 96 pers [slab class 1: chunk size 9 pers| slab class 1: chunk size 96 persiab
Tab 10922 Tab 10922 10922

slab class 2: chunk size 120 pers |slab class 2: chunk size 120 pers| slab class 2: chunk size 120 persiab
lb 8738 lb 8738 738

slob closs 3: chunk size 152 pers [slab class 3: chunk sice 152 pers| slab class 3 chunk size 152 persiob
lab Gaon Tah easn saca

slab class 4: chunk size 192 pers |slab class 4: chunk size 192 pers| slab class 4: chunk size 192 persiab
lb 5461 Tab 5451 61

Slab class 5: chunk size 240 pers [slab class 5: chunk size 240 pers| stab class 5: chunk size 240 persiab
Tob 4369 Tob 4369 4369

slab class 6: chunk size 304 pers |slab class 6: chunk size 304 pers| slab class 6: chunk size 304 persiab
lb 3449 Tab 3440 3429

slab class 7: chunk size 384 pers [slab class 7: chunk size 334 pers| slab class 7: chunk size 334 perslab
Tab 2730 b 2730 2730

Slab clas: @: chunk zize 480 pers [slab class 8: chunk size 430 pers| slab class 8: chunk size 130 persisb
lb 2184 b 2184 2164

slab class 9: chunk size 600 pers |slab class 9: chunk size 600 pers| slab class 9 chunk size 600 perslab
b 1747 b 1747 7

lab closs 10: chunk size 752 pers | slab class 105 chunk sice 752 pers| slab class 10: chunk size 752 persiob
lab 1304 Tab 1304 1302

slab class 11: chunk size 944 pers |slab class 11: chunk size 944 pers| slab class 11: chunk size 944 persiab
Tab 1110 Tab 1110 1110

Slab class 12: chunk size 1184 pers [slab class 12: chunk size 1184 pers| slab class 12: chunk size 1184 persiab
b ees Tob a0 66s.

slab class 13: chunk size 1480 pers [slab class 13: chunk size 1480 pers| slab class 13: chunk size 1430 perslab
ab b 7 708

slab class 14: chunk size 1856 pers |slab class 14: chunk size 1856 pers| slab class 14: chunk size 1856 perslab
b ses b ssa s64

lab clazz 155 chunk zize 2320 pers [slab class 15+ chunk size 2320 pers| slab class 15: chunk size 2320 porsiob
b 451 b 451 as1

slab class 16: chunk size 2904 pers |slab class 16: chunk size 2004 pers| slab class 16: chunk size 2904 perslab
lb 361 b 361 361

lab closs 17: chunk size 3632 pers | slab class 17: chunk sice 3632 pers| slab class 17: chunk size 3632 persiob
Teb 268 Tab 20 268

slab class 18: chunk size 4544 pers |slab class 18: chunk size 4584 pers slab class 18: chunk size 4544 perslab
lab b 2 230

Slab class 19: chunk size 5680 pers |slab class 19: chunk size 5680 pers| slab class 19: chunk size 5680 persiab
Tob 164 Tob 104 104

slab class_ 20: chunk size 7104 pers |slab class_ 20: chunk size 7104 pers| slab class 20: chunk size 7104 persiab
b 147 Tb 147 147

slab class 21: chunk size 8880 pers |slab class 21: chunk size 8830 pers| slab class 21: chunk size 8830 perslab
b 18 T s 118 L
Slab clase 22: chunk size 11204 pers|slab class 22: chunk size 11104 pers slab class 22i chunk size 11104 perslab
lab 0 Tab 5 0 <
slab class 23: chunk size 13880 pers|slab class 23: chunk sice 13830 pers slab class 23: chunk size 13830 perslab -
lab 7 lab 7 75

v

OEBPS/images/f251-01.jpg
Twitter

3 it/ 2p.twiter.com/oauthauthorizeToauth_token=VIRVIKYUoEwrUMYU38/aD-_C (@ Google

Twiter takes your privacy.

An application would like to connect to your very seriously.
account Only dlick “Allow’ for

‘The application Chartaca by Ricebridge would ke theability o access applications you trust

‘and updateyour dafa on Tuiter. Sign out ifyou wantto connoettoan Allowing this appliation 1o
account other than rjrodger. connect to your account

may give Crartaca access to
your Direct Nessages OMs),
or the abilty to Tweet on

Allow Chartaca access? your behalt.

.
S e e
(e o i e o
212 - B

5/ Icing " y0u cortnue 0 oerst e Ters Tes of e, In paiuar, some usage
Tniotraron il b ShAEE back Wi TWLr Fr ore, S 04 Prsacy Folc

OEBPS/images/f250-01.jpg
[it 152.165.100.112:3003 et

OEBPS/images/f239-02.jpg
[s/ /console.aws. amazon com/s3/home

AWS | Products Developers | Communiy | Support | Account
Elastic Boanstall| 53

e eSS

Objects and Fold

Welcome, Richard Rodger Sion O

@ uposs < Crosta oer | actons ~ | & Rarosn | @ Propories. @ Transtrs | o |
&) rirodger-mobile-cloud-appe
Namo

Jsie st it
The bucket 'rjrodger-mobile-cloud-apps' is empty

© 2008 - 2010, Amszon Web Sarvices LLC or i sfflatas. All ngnt recervad.

| Feedoack Support

Prvacy ey Termzofuza | An amazon
17

OEBPS/images/f239-01.jpg
(i[5 g console aws amazon com/s3/home A CEE D

Create a Bucket - Select a Bucket Name and Region oo

A bucket is a containor fo objocts storad in Amazon S3. When croating a buckat,
You can choose 3 Regicn 1o ptimize for latency, minimize costs, or acdress
requiatory requirements. For more information regarding bucket naming
conventians, plesse Vist the Amazon 3 documentaton.

Bucket Name: irodser-mobile-cloud-sps

Region: US Standard zd

SetUpLoggrg> || Crest | Cance |

OEBPS/images/f238-01.jpg
5 rups: console.aws.amazon.coms3 fhome ¢ Q- Goosle

i awsamezoncom AWS Praducss | Developers | Commniy | Support Account Welcome, Richard Rodger - Sign Ou

asicseanstne 55| 263 | vre

Clouaweten | Elssic MapReduse | Cloudrront A5

Cloudrront | RS

L —

To get started using Amazon S3, create a bucket to hold your objects.

2000 2010, Amsson et Servics LG or s flaes ALt eservd. | eodock | Support | prvcy ol | Termscfse | An amazon

OEBPS/images/f279-01.jpg
» 5 brecutsbles
4 Fina Resuls
») bookmarks

»Hscu

© prejc symeas
» @ pementzvon s
> Gerace Buicer Fes

No Editor

OEBPS/images/f232-01.jpg
Enhanced App

Launchers

http/google.com

tel:123456789

sms:123456789

mailto:richard @example.com

http:/maps.google.com/maps?
g=Dublin.Ireland

hitpz/www.youtube.com/watch?
v=Xzhlrggtesg

scroll audio video launch

OEBPS/images/f215-01.jpg

OEBPS/images/f197-03.jpg
server offset = %2 ((15 = 0) + {25 — 20))
=%(15+5)
=10

OEBPS/images/f197-02.jpg
Server

Client

OEBPS/images/f197-01.jpg
Server oftset = 2 ({t, — £,) + (t, — 1,))

OEBPS/images/f178-01.jpg
Client Your Cloud
Service Service

OEBPS/images/f172-01.jpg
600 http: /localhost/todo/stats/ charts. html

¢ J(Q- cooge

To Do List App Usage Totals

Last 60 Seconds Last 60 Minutes Last 60 Hours Last 60 Days
Total Total Total Total
Done Done Done Done
Not Done Not Done Not Done Not Done
0 s “ E

OEBPS/images/f152-01.jpg

OEBPS/images/f151-01.jpg
B few Duerl Fomst Dok Dta wndow belp Type 2 questin for bl %2 8 %

-0 -|B LU E TR] e
T A [EL_ Gl T] I E I E
Time in Seconds App ID Current Count Previous Count Change to Total Total for All Apps 1
for This App for This App
oA 2 0 2 2
w8 3 i 3 5
man A 6 2 4 El
w41 8 1 E 2 7
ms1 a i El 10
wel C 3 3 0 10
1]
i O3 dhsheett (Ghest2 {Sheea/ |¢ |

Resdy

OEBPS/images/f225-01.jpg
scroll au

video launch

OEBPS/images/f219-01.jpg
Enhanced App

audio

OEBPS/images/f378-01.jpg
[+ 2 (T (] & o 1 appcteator comyaos. e J(a cocole

A appcelerator” © admin wmroesK |

N | aPs | ACCOUNT | PROFILE | PURCHASES

No Users Yet!

‘Welcome back, Richard
Fonce youve pubihed me aps, you cankeep an ey

e (Y e it s e ot 1o i shot v
/o with Agpcelrato Anaiytics, check ot the

documentationfor deskiop and mebile on
doelaper.apeclertor.com.

Your Applications Active Apps. Aldogs.

Launch Aralytis
Laurch Aralis

JErys——

OEBPS/images/f376-01.jpg
806 et
it st el -

TR v o e - o) coo: Q)(a) (=L (&[]

i+ coting S5 st v o b4 Goge s Yoursbe | it (s < (e [

(@D FEEDHENRY

- Rope 05 - mone s - sansse 23)

OEBPS/images/f374-01.jpg
e Descrson petons
. [e — 0 ppicacion whic dmonsaes h e uncinaly avatabe v i FescHayplator Vew Cane
P (Use S Toscr WEBKT ONLY BROWSERS) Thi A domcnarass vros compenets ¢ View G
Tompie ope (D Eessrerny SO Eromie Tt S icke Anoxaplevascrpt ac o splcetons wichSepays iter s, a1 RSS esdand i Vi i
oo Aoy O Teres A ooes sepcaten e ey nevs e vew cone
nportan 20 O s somory Tis s demonstaes now s cienk 10 ackages o cusomse pscadon tehevorar s Ve Gre
D sooenss pome i Agp o amanatates g sever e s et m S5 et vew cone

e[poge T o o T Tempites 6

Copyicht ©32011 Foadbonry -wloacheneyom

OEBPS/images/f373-01.jpg
FEATURE
HTMLS defines user Interface
Javascript development
Proprietary API

API Complexity

Own IDE

Cloud Hosting of Server Code
Prebuilt Cloud Components
Enterpiise Support Features
Custom Extensions

User Interface Components
App Management Dashboard

App Analytics

FEEDHENRY

YES

YES

YES

Low

YES

YES

NO

YES

YES

NO

YES

YES

APPCELERATOR

NO

YES

YES

HIGH

YES

NO

YES

YES

YES

YES

YES

YES

MEDIUM

NO

NO

YES

NO

YES

NO

YES

NO

OEBPS/images/f365-01.jpg
Or Create a Now Usemame

Rogister

OEBPS/images/f360-01.jpg
< - B ifesueam-inio st s

¥ nformation Property List a7 iems)

witemo 2 items)
RLicentifier comricebridge.OLlifesuream
¥ LRL Schemes L item)
remo Iifestrean
¥ icon fles G items)
b Susported interface erientations (F |14 tems)
b Supported interface orientatons (1 ftem)
Localizstion native development e |English
suncle display name Ufestream
Executable fle SIXECUTABLE_NAMEH
can file conprg
Bundle dentier comricebridge.OLifestream
Infobictionary version 60
Bundle name S{PRODUCT NAME}
Bundle 05 Type code AL
Bundle creator 05 Type code m
Bundle version Lo
Application requres Prone enviror | ¥
Msin i fle baze name.
Main nib i base name (Pad)

OEBPS/images/f356-01.jpg

OEBPS/images/f355-02.jpg
Followers

Following

Search

Unfollow

OEBPS/images/f355-01.jpg
Lifestream Follow.

Register

OEBPS/images/f311-01.jpg

OEBPS/images/f299-03.jpg

OEBPS/images/f299-02.jpg
Take Picture

Upload Plcture

OEBPS/images/f299-01.jpg
Pifestroam. Pt

OEBPS/images/f292-02.jpg

OEBPS/images/f450-01.jpg
(L] hsp. s marees anaro . compublshromenmppecoice

Upload new APK

S

OEBPS/images/f449-02.jpg
Alas:

Password:

Confirm:

Validity (years): 33

First and Last Name: Richard Rodger

Organizational Unit:

Organization: [Wiley Publishing Inc.

City or Localiy. waterford

State o Province: | Waterford

Country Code (00: £

@ Cemc) GRS (ool)

Finish

OEBPS/images/f292-01.jpg

OEBPS/images/f487-01.jpg
Enhanced App

Release 10 refresh...
1

a

scroll audi video launch

OEBPS/images/f287-01.jpg
lifestream

OEBPS/images/f451-01.jpg
806 tonvo - Android Market

L2)] e e s comeain-com arsasore

IS

oo Images Videos Maps News Shopprg Gl mom v ichard.rodgor@gmai.com | My Markal Account | My Accoun | Sign ol

& Android Market

e

Description

Manage your Tute drsct message conversatons ox mulil sccounts.

tonvo jrerm

Vit Developers Websie > i

App Screenshots i
This app o comptile withyour
Voratons Sameung GT5000

OEBPS/images/f286-02.jpg
rr S8 8 0 %0y
(i Package e 38y ey = 51
B%
——]
¥ B 22
> Befeerces Ubraes
» e
[Tupm———
Bt
S
Dinsecrent
Bminic

Biproreasn004is
]
e
e —
S butsoroneres
Ebutcam
5t properties

- |BE 6 DS P | |21 bl 0 e o

<I00CTYPE T
>

k" content-"width-320; user- scalob

Pita-cpuiverContent- " contenta' text/bimts 5
Sitespronstaperities

e AR raf-Tqanter-cu et

nead-
“body onload="nit0;" de"stoge” closss thene"s

“hzthiz ile is located ot azsets/index hml</ns
Pty

plostarn: capen (tglatfors Libapic/a

eisps /spans, Neme

<Span LdeTwidth' Brbspi spans, Heic

spons, Color Depth: <apon td- colorde

Sd-"accel-d
dton St

et sctia o sl

5 Tooubug B
CETPEaN
&% v \er\a“
Db AL Activate.
[xr—

an i ¢ ot vaiibie

[E Probems @ Jvadoc 5, Decaration| B Comole 5

varo

OEBPS/images/logo1.jpg
J

Available for
download on
Wrox com

OEBPS/images/f286-01.jpg
EHeABFE]# 0 |8E6 D6 1E- -3 udr o

< gtasiesm
¥ Banirod 22
e
> E3gen cenarated e is]
> Eoavses
<o

=
3 Aridanestxri
S bisronses
Etcnm B owime 52
o e i o v
~pronuardls

 1ador B, Dxcraion] & Comol, w0

1 Erors 4 tems)

@ orodap camt be rasovas 10 1ype s
€ DrodGap ca o to 3 e Sampiejava
€ DrofdGap camn b resoved 10 voe Sampieieva

@ The methos oncreataisunaie) o ype Sample must ovem

Shonegas.0.9.4jar - festeamyibs 1

OEBPS/images/f524-01.jpg
Try Safari Books Online FREE
for 15 days + 15% off
for up to 12 Months*

Read this book for free online—along with thousands of others—
with this 15-day trial offer.

T

Be: inning
| s
L1 pevelr™

\)

Safari

p“‘"“ he Cloud

WithSafat Books Onlne,you can experence
searchable, nlmited acces o thousarsof
technology,dita meda and professonal
development books and videos fom dozensf
Ieating publshers, Withone low oty or yeary
Subscription price, you get:

 Access to hundreds of expert-ted nstructonal
videoson toda'shottest topies.

 Sample ot to help accekrate a wide varety
ofsoitware pojects

 Robust orgaidng estures Incluing favortes,
Tghights,tags, note, mash-ups an more

 Mobile access using any device with a browser
 Rough Cutspre-published manuscrpts

START YOUR FREE TRIAL TODAY!

Vit wansafarboolsonline.comfwrox o get st
[——

et —
it s e e

OEBPS/images/f285-01.jpg
project name: [ifestream

Contents
O Create new project in workspace
© Create project from existing source

¥ use default location

Location: | /USers/ichard) android-Ifestream

O Create project from existing sampie

Samples: [ApDemos

sulg Targer

Target hame Vendor At Level
0 android 15 Android Open Source Prject 3
3 Google APls Google Inc. 3
0 Android 16 Android Open Source Prject M
) Gooale AFis Googie Inc. “
0 Android 20 Android Open Source Prject s
) Gooale AFls Google Inc. s
O Android 201 Android Open Source Prject .
) Google APls Google Inc. i
) Android 2.1-update Androtd Open Source Project 2.1-updatel 7
Coogie Inc. 7

_propertes
Application rame: Ssrple

Packoge name: com proncgan.Semple
) Create Adivity: Sample

Min SOK Version: 2

&)

<sea) (vo>) (Gne) (@ommmned)

OEBPS/images/title.jpg
BEGINNING

Mobile Application Development
in the Cloud

Richard Rodger

i
John Wiley & Sons, Inc.

OEBPS/images/f284-01.jpg
wizarae:
pe fiter text
5)

B
v = ardroid

2 Ancroid Teat Projct
» GoBackaery

reon

>

» & Bampies

@ (<beck) @Nemm) (Cancel) (_finsh)
=

OEBPS/images/pen.jpg

OEBPS/images/f282-01.jpg
¥ Information Property List
» lcon fles
» Supposted interface orientations (F
» Supported nterface orientations
Localization native development re
Bundle isplay name.
Exccutable il
keon fle

InfoDictonary version
Bungle rame
Bundle 05 Type code

Bundle creator 05 Type code
Bundle version

Applcation requires iPhons enviror
Main it fie base rame.
Main b fie base rame (Fad)

OEBPS/images/f281-01.jpg
General | uild_Configwations

Camments

Configuration: (Debug B8 (@ Search in Build Settings

T —

Seting
Architectures
Baze SDK.
Build Active Archiecture Orly
Vald Architectures

| ¥ Build Locations.

Value
Standard (armvG armv7)
Latest i0S (currently set to 105 42)

armys army7

Build Products Path
Intermediate Builé Files Path
Per-configuration Buid Products Path
Per-configuration Intermediate Build Fies Path
Precompiled Headers Cache Path

| ¥Build Options

build
build

build/Debug-iphaneos
bulld/lfestream. il Debug-iphoneos

Ivar folders/RQ/RQZbOSGKGEWTnakw-ik+ ++Ti/-Caches-/com.apple Xcode. 501 /SharedPrecompiledHeaders

Build Variants
Debug Information Format

Enable OpenM? Support

Generate Profiing Code

Precompiled Header Uses Fies From Build Di
Run Static Analyzer

Scan All Source Fies for Includes.

Validate Bult Product

v

(@lala)::{a}a]

ing
Code Signing Entilements
¥ Code signing igentity

‘Code Signing Resource Rules Path

Any 05 5

hone Developer (currently matches iPhone Developer: Richard Rodger (94856UCHAG)"

secson. (ranccamuiss. 1) (2)

/

OEBPS/images/back02.jpg
Programm

to Programme

Connect with Wrox.

Participate

Take an active role online by participating
in our P2P forums @ p2p.wroxcom

Wrox Blox

Download short informational pieces and code
1o keep you up to date and out of trouble

Join the Community

Sign up for our free monthly newsletter
at newsletter.wrox.com

Wrox.com

Browse the vast selection of Wrox titles, e-books,

and blogs and find exactly what you need

Contact Us.

We love feedback! Have a book idea? Need community support?

Let us knoy

by e-mailing wrox-partnerwithus@

User Group Program

Become a member and take advantage of al
the benefits

Wrox on Ewikter

Follow @wrox on Twitter and be in the know
on the latest news in the world of Wrox

Wrox on A

Join the Wrox Facebook page at
facebook.com/wroxpress and get updates
on new books and publications as well

as upcoming programmer conferernces
and user group everts

rox.com

OEBPS/images/f445-01.jpg
- T— —

Version: unspecifid [T

TONVO e omeeteeciono (Cowme)

(@ wme >

Name. Comment status

OEBPS/images/f444-02.jpg
[Ciheps 1/ sconnect 2pple com/WebObects| TunesConnect wea/wo/5.0.097 33,1 113.11113 (@ oogle

& iTunes Connect Richad Rodger, Richrd Rodger 1323716254
App Information
deniers inks TS

R iew in App store Wanage n-App Purchase
Bunde D comicebridgeLtonve

sopiern aszssron2

e 105 App

Versions

Current Version

—

< Staws. @ prepare for Upload

tonvo

Versin 100

ate reaed 24 Juy 2011

[

oo 201 e A s . Tem B S | ey oy

OEBPS/images/f444-01.jpg
[Caheps /e sconnect appie com/WebObectTunesConnect moaiwo/50.05.73.1.1

1904 AT 1 provide yourow End User Lcense Agreerment EULA, i e, you provde a EULA, st mee these riimu 1. I you do
ot e 3 CULA, th ancars EULA il 9Bl 1 Yot 3p.

Uploads

Large 5123512 1eon (7).

drag and drop to change the order) (7).

vone | nou
Copprah 201 a7 e Ao e Tt s | ey ey

OEBPS/images/f443-01.jpg
o/ sconnect 2ppie.com/ebObects/ TunesConct mcaiwo/40.05.7.3.1.1 soene. ¢ (@ coogte

& iTunes Connect Richard Rodoer, Richard Rodger 1323714254

Select the availability date and price tier for your app.

Aoy o (o) s Dz O
R

View Picing Matrx .

Discount for Educational nsttutions @ ®

Unless you select specific stores, your app will be for sale in all App Stores worldwide.

OEBPS/images/arrow.jpg

OEBPS/images/f442-01.jpg
[Cihaos s iunesconnectappe comwebOsjcts TunesConmect wosrvor305:73 50,1

& iTunes Connect Rchard Roder, Richard Roeger| 1323714254

Enter the following in English.

AopName feome |
B
T —— e

D —— RO

Vour Buncie . comsicebridgeoLione

1 Make sure s s th comec sundie 0 for your
500 The sundi 10 camnorbe canged once ¢
e

Docs your app havespecic devie reqirments? Lesn e

OEBPS/images/cross.jpg

OEBPS/images/f426-01.jpg
kvent Producer and Consumer Objects

Key: <object> fom —— 10

Social

outbound
sas

Accounts

OEBPS/images/f029-01.jpg

OEBPS/images/f036-01.jpg
02166100 .. O R coose

OEBPS/images/f021-01.jpg
(<> () []5 e rmoris-zynamic ont

grass is green
Sky is blue

q

1DOCTYPE htnl-
1
e/ hosc

Sgrass ic green
Pty

“sky s bluet
o

* Cormaand sl
> Soe e

Greplay: olock:
b a5
[peics
» Proper

[Pevesisees e

OEBPS/images/f022-01.jpg
en view.htm|

o [(5 e s ropon ot e ecmasossoans

vt ewn_CJ(@ Goese i

iiv id="tapper” style="beckaround-colors rab(1is, 0, 85); "a</die
</vosys
htnl

OEBPS/images/f423-01.jpg
¢ J(ar coosle

© AccountSignin

© Your Accounts.

i-calle; vnceengeh, » Oess 1
BT P TU3YFBKBOAETHLo7 7BV (54 E0A26 N2 RHENCO2E U2 R EAC B

TGN oDt e comaFTazFairect nesinges S sonseounts i
Bobith hancorSDEryrFSagsuty ¢ lonature nethoSSIIAC SHALAa
S A Lo VOIS LA 53 2homuth v re om0
Lz ze oGt a0
[bject 1

onuth cal 1

sasanutn o
SRR M

sccessort, » et |
Coauthocall”, "nessage”, » Oject |
Ry KT TUBYEFBKBOADTRL 5 TV B OATE N EL 2L NGO EU1£5L A CO2rc 430535

SErohuganar

‘ oty »aray
‘ (o, Bhject 1
\

D tonoN 2 ANZSEF S AZSZF A2t _Consuner Ky SDLAGBNLEBNCFLGSBRLERHE ot

] |

frrorevvenny

OEBPS/images/f056-01.jpg
(L] s/ consoe.awsamazo comec2bomerrgionis-vest-6s=launchinsncetizar G

Request Instances Wizard

O
cwoost auam . seamirn councon

The bookmar that was sctvated refers o the AHI beiow. Pleas revio.
AMI Details

amage 1a: ami-a26t3css

owner:

Maifest: 1099720109477/0bs/ubuntu Images/ubuntu-natty-11.04-amgs4-corve

oty
wasoa
RootDavica Type: et

Attached Block Devices
Device Name Volume Size.
Jdevisans 8B

OEBPS/images/f422-01.jpg
nbor Poopla Accounts
Account Sign-in

| SPEOEREE,

Your Accounts

OEBPS/images/f416-02.jpg
Ewittery E -

Authorize tonvo to use your
account?

Tris applcatn will b abl to

+ Read Twsets rom your ameie

= S0 uno you flow, and olow new people
« Update your pofie
Tieats for you.

OEBPS/images/f042-01.jpg
192.168.100.112/draw... & u

OEBPS/images/f416-01.jpg
8006 Tomwo Agp.

(L ()] s oo e A e

© AccountSignin

© Your Accounts

{atworc it ey 2206065
S oL SN ANBE T W CIscSNOGO, o3 XNX24EU' 22 RHENGQ2SL ELT22L AhERCQ2otgUag caihvrfor "900GGaCGGAOYESYLC

D T T QN e 1 S —

TS
FISU82Eenut_sisraore.rethe S IDAC-SHNISZEe Rt ires IO TIIOTSBISE 2msth vers orkOTL

iroiecs tomuncaautn, 528

onect , object 1
Pcanpiete seomnth, s toece |
o calle, Sacetesarts » tgect |

Coutiocall] taessast, s Ohyect |
YL VRTE BRGNS VBV FBABOAYPO3CO NG A NG L ABID G it

e okt b e AT coin e ORI st Sane S5
e T I

B —————
A R AR e e

e e aauthossissn
Bosject 1 tomacoauth 78

oLl “oauth_token-20g06610- -oauth 13,7

s A BT cmscsen oken secret oS U155 AHERC 0250 RRER 1SR i a-SAESGE IS st

hetuork.completen, “aecount®, » Bject 1

OEBPS/images/f055-01.jpg
5 s console s amazon.com/ec2 homeregion-=—us-west-Liselecinsance- & aunchimiis-nsances o] (@ eerformia

B i s e, R Rodgar | S | im0t
[55 (2 [une | Goviwascn i | ouderons| i s [ans [

Region: ® tanenvomo | 5 3 s | 2 raron | 9 v
5 st) || s Bl)] e e YO

+Ee2 Dashboard

stances You do pot have any ruing nstancos.

Fice Gl the Launch Inctancas bukton 9 st your awn server.
> Spot Raquests: [y
» Reserved Instances S

+ Bundle Taske

> Volumes
> Snapehots

NETWORKING & SECuRITY
» Security Groups
»placement Groups

> Key Pairs

© 2008 - 2011, Amazan Web Services LLC o i affsis. All igh reserved. | Fesdback | Suppert | Privacy oy | Termaof Use | AD @mazoncom company

OEBPS/images/f415-01.jpg
806 Tonvo App.

2 (T] e 0sers mchardncebisoe utonvo i ncex. e ¢ J(ar ceosle

© AccountSignin

© Your Accounts.

D | mrors warmings togs

i
0

oshcati, ccesar, s vt)
h-calie e 1

AT L L 4cFagsEne P

TG oRaMZFA2Fpt, T, cOmFaaUTIAZE QU Sokenkonuth. o BACKAIDtonoNZS3ANZS2EAZS2ENZSEFAZ803UEh_COmSLTET KEYASOLGEUGGBnUEA N850 N CEASORY
BLEINESonuths Lonatur e nethoduSIHAC.SHALA26amuth. T incs anpRaDTS1TSHOSENEEamuth v Lamaot,
f ovjece 1

ot oKenDCDT S TG My SOEDAFOS T anuth_oken_eCret 0ot ENGAYZPD 5 TR RSP 5 TS Mt gk confi et ruce]
[Phrer®, *hlios:./apd, uktter. con/oauth/authorizeToauth. tohen-Seotat BYoGCTAVIL BB TEvr lococEOSTS")

OEBPS/images/f410-01.jpg
B sccouns

rirodger

OEBPS/images/f409-02.jpg
B9 tonvol

© rodger

Thanks fo test message

OEBPS/images/f409-01.jpg
tosttwo.

9 tonvo s ot

testone

9 tonvo s ot

8 tonvol 3 omor

Wil

OEBPS/images/f407-01.jpg
nbon Poopla Accounts

Account Sign-in

| SPEORREEE,

Your Accounts

OEBPS/images/f406-01.jpg
b et o oo

Network mp e
T
i
i
Twitter Social
Inbox People Accounts convo

TopNav.

OEBPS/images/f399-01.jpg

OEBPS/images/f398-01.jpg
View Interaction Model

Accounts

Inbox

Conversation

OAuth
sign-n

People

OEBPS/images/f394-01.jpg
oper Console

D
|58
m =

Jairec_messages son
—

aince 1

Include._entites

oage

+ soedsssa7,

200 status. 22251 bytes returned in 0.478176 seconds. | Headers 00

OEBPS/images/f383-01.jpg
MOTOROLA
E6 BRI® ssrm

B i oM

OEBPS/images/f382-01.jpg
[:] appMobi Enterprise Portal

| | P

28 seavic SapssrPToN @ EVENT HSTORY & MANAGE ACCOUNTS

Signaa 1 - chard@ricsbridge.com Rica o | LOGOUT

Psravce e

submit new buids no mat
e these Updates wihout s

‘You havo 19b o ranstorramainng

for ricabridge-apo1 is currenty disabled.

1GB

transfer

OEBPS/images/f380-01.jpg
-

Web - ap04/Resources/app.Js - Titanium Studio - /Users/nichard/Documents/Titanium Studio Workspace

00|

tomiom. U1 setSackgreumdCotor 4600°5;

er tobioup - Titonium UL cresteTastroup s

ar wint. - Titanium. UL croateMindonc
Sitte: Ton

>:

Vet tab. - Titanium. UL craoteTas(t

g

or Lol = Titamiom. U1 crustetabel(C
ealor:"1000",

B et tfermity etvtics e,

Sexthlign: conter’,
width: o

ar win2 - Titanium. U1 craota¥indoncC

o 50 i 08 S 5 S
26 05:15:37.437 cpO(14749:207) [DEBUG] Reachobility Flog Skatus Crange: - £6----- metorkStotusforfioss

26 08:15:38.645 epl4114740:207] [DEBUG] Reachability Flog Skatus Chana - netroritatusForFlags

26 09:33:33. 200 cpOA[14749:207) [DEBUG] Reachobility Flog Status Crange: - £~ metmorkStotusforfioss

26 11:42156.280 pe411474:207] [DEBUG] Reachabiliey Flog Skatus Chan - netroristatushorfiags

