

[image: cover.eps]

SQL For Dummies®, 7th Edition

Table of Contents

Introduction

About This Book

Who Should Read This Book?

How This Book Is Organized

Part I: Basic Concepts

Part II: Using SQL to Build Databases

Part III: Storing and Retrieving Data

Part IV: Controlling Operations

Part V: Taking SQL to the Real World

Part VI: Advanced Topics

Part VII: The Part of Tens

Appendix and Glossary

Icons Used in This Book

Getting Started

Part I: Basic Concepts

Chapter 1: Relational Database Fundamentals

Keeping Track of Things

What Is a Database?

Database Size and Complexity

What Is a Database Management System?

Flat Files

Database Models

Relational model

Why relational is better

Components of a relational database

Dealing with your relations

Enjoy the view

Schemas, domains, and constraints

The object model challenges the relational model

The object-relational model

Database Design Considerations

Chapter 2: SQL Fundamentals

What SQL Is and Isn’t

A (Very) Little History

SQL Statements

Reserved Words

Data Types

Exact numerics

Approximate numerics

Character strings

Binary strings

Booleans

Datetimes

Intervals

XML type

ROW types

Collection types

REF types

User-defined types

Data type summary

Null Values

Constraints

Using SQL in a Client/Server System

The server

The client

Using SQL on the Internet or an Intranet

Chapter 3: The Components of SQL

Data Definition Language

When “Just do it!” is not good advice

Creating tables

A room with a view

Collecting tables into schemas

Ordering by catalog

Getting familiar with DDL statements

Data Manipulation Language

Value expressions

Predicates

Logical connectives

Set functions

Subqueries

Data Control Language

Transactions

Users and privileges

Referential integrity constraints can jeopardize your data

Delegating responsibility for security

Part II: Using SQL to Build Databases

Chapter 4: Building and Maintaining a Simple Database Structure

Using a RAD Tool to Build a Simple Database

Deciding what to track

Creating a database table

Altering the table structure

Creating an index

Deleting a table

Building POWER with SQL’s DDL

Using SQL with Microsoft Access

Creating a table

Creating an index

Altering the table structure

Deleting a table

Deleting an index

Portability Considerations

Chapter 5: Building a Multitable Relational Database

Designing a Database

Step 1: Defining objects

Step 2: Identifying tables and columns

Step 3: Defining tables

Domains, character sets, collations, and translations

Getting into your database fast with keys

Working with Indexes

What’s an index, anyway?

Why you should want an index

Maintaining an index

Maintaining Data Integrity

Entity integrity

Domain integrity

Referential integrity

Just when you thought it was safe . . .

Potential problem areas

Constraints

Normalizing the Database

Modification anomalies and normal forms

First normal form

Second normal form

Third normal form

Domain-key normal form (DK/NF)

Abnormal form

Part III: Storing and Retrieving Data

Chapter 6: Manipulating Database Data

Retrieving Data

Creating Views

From tables

With a selection condition

With a modified attribute

Updating Views

Adding New Data

Adding data one row at a time

Adding data only to selected columns

Adding a block of rows to a table

Updating Existing Data

Transferring Data

Deleting Obsolete Data

Chapter 7: Specifying Values

Values

Row values

Literal values

Variables

Special variables

Column references

Value Expressions

String value expressions

Numeric value expressions

Datetime value expressions

Interval value expressions

Conditional value expressions

Functions

Summarizing by using set functions

Value functions

Chapter 8: Using Advanced SQL Value Expressions

CASE Conditional Expressions

Using CASE with search conditions

Using CASE with values

A special CASE — NULLIF

Another special CASE — COALESCE

CAST Data-Type Conversions

Using CAST within SQL

Using CAST between SQL and the host language

Row Value Expressions

Chapter 9: Zeroing In on the Data You Want

Modifying Clauses

FROM Clauses

WHERE Clauses

Comparison predicates

BETWEEN

IN and NOT IN

LIKE and NOT LIKE

SIMILAR

NULL

ALL, SOME, ANY

EXISTS

UNIQUE

DISTINCT

OVERLAPS

MATCH

Referential integrity rules and the MATCH predicate

Logical Connectives

AND

OR

NOT

GROUP BY Clauses

HAVING Clauses

ORDER BY Clauses

Chapter 10: Using Relational Operators

UNION

The UNION ALL operation

The CORRESPONDING operation

INTERSECT

EXCEPT

Various Joins

Basic join

Equi-join

Cross join

Natural join

Condition join

Column-name join

Inner join

Outer join

Union join

ON versus WHERE

Chapter 11: Delving Deep with Nested Queries

What Subqueries Do

Nested queries that return sets of rows

Nested queries that return a single value

The ALL, SOME, and ANY quantifiers

Nested queries that are an existence test

Other correlated subqueries

UPDATE, DELETE, and INSERT

Chapter 12: Recursive Queries

What Is Recursion?

Houston, we have a problem

Failure is not an option

What Is a Recursive Query?

Where Might You Use a Recursive Query?

Querying the hard way

Saving time with a recursive query

Where Else Might You Use a Recursive Query?

Part IV: Controlling Operations

Chapter 13: Providing Database Security

The SQL Data Control Language

User Access Levels

The database administrator

Database object owners

The public

Granting Privileges to Users

Roles

Inserting data

Looking at data

Modifying table data

Deleting obsolete rows from a table

Referencing related tables

Using domains, character sets, collations, and translations

Causing SQL statements to be executed

Granting Privileges across Levels

Granting the Power to Grant Privileges

Taking Privileges Away

Using GRANT and REVOKE Together to Save Time and Effort

Chapter 14: Protecting Data

Threats to Data Integrity

Platform instability

Equipment failure

Concurrent access

Reducing Vulnerability to Data Corruption

Using SQL transactions

The default transaction

Isolation levels

The implicit transaction-starting statement

SET TRANSACTION

COMMIT

ROLLBACK

Locking database objects

Backing up your data

Savepoints and subtransactions

Constraints Within Transactions

Chapter 15: Using SQL within Applications

SQL in an Application

Keeping an eye out for the asterisk

SQL strengths and weaknesses

Procedural languages’ strengths and weaknesses

Problems in combining SQL with a procedural language

Hooking SQL into Procedural Languages

Embedded SQL

Module language

Object-oriented RAD tools

Using SQL with Microsoft Access

Part V: Taking SQL to the Real World

Chapter 16: Accessing Data with ODBC and JDBC

ODBC

The ODBC interface

Components of ODBC

ODBC in a Client/Server Environment

ODBC and the Internet

Server extensions

Client extensions

ODBC and an Intranet

JDBC

Chapter 17: Operating on XML Data with SQL

How XML Relates to SQL

The XML Data Type

When to use the XML type

When not to use the XML type

Mapping SQL to XML and XML to SQL

Mapping character sets

Mapping identifiers

Mapping data types

Mapping tables

Handling null values

Generating the XML Schema

SQL Functions That Operate on XML Data

XMLDOCUMENT

XMLELEMENT

XMLFOREST

XMLCONCAT

XMLAGG

XMLCOMMENT

XMLPARSE

XMLPI

XMLQUERY

XMLCAST

Predicates

DOCUMENT

CONTENT

XMLEXISTS

VALID

Transforming XML Data into SQL Tables

Mapping Non-Predefined Data Types to XML

Domain

Distinct UDT

Row

Array

Multiset

The Marriage of SQL and XML

Part VI: Advanced Topics

Chapter 18: Stepping through a Dataset with Cursors

Declaring a Cursor

Query expression

ORDER BY clause

Updatability clause

Sensitivity

Scrollability

Opening a Cursor

Fetching Data from a Single Row

Syntax

Orientation of a scrollable cursor

Positioned DELETE and UPDATE statements

Closing a Cursor

Chapter 19: Adding Procedural Capabilities with Persistent Stored Modules

Compound Statements

Atomicity

Variables

Cursors

Conditions

Handling conditions

Conditions that aren’t handled

Assignment

Flow of Control Statements

IF…THEN…ELSE…END IF

CASE…END CASE

LOOP…ENDLOOP

LEAVE

WHILE…DO…END WHILE

REPEAT…UNTIL…END REPEAT

FOR…DO…END FOR

ITERATE

Stored Procedures

Stored Functions

Privileges

Stored Modules

Chapter 20: Handling Errors

SQLSTATE

WHENEVER Clause

Diagnostics Areas

Diagnostics header area

Diagnostics detail area

Constraint violation example

Adding constraints to an existing table

Interpreting the information returned by SQLSTATE

Handling Exceptions

Chapter 21: Triggers

Examining Some Applications of Triggers

Creating a Trigger

Statement and row triggers

When a trigger fires

The triggered SQL statement

An example trigger definition

Firing a Succession of Triggers

Referencing Old Values and New Values

Firing Multiple Triggers on a Single Table

Part VII: The Part of Tens

Chapter 22: Ten Common Mistakes

Assuming That Your Clients Know What They Need

Ignoring Project Scope

Considering Only Technical Factors

Not Asking for Client Feedback

Always Using Your Favorite Development Environment

Using Your Favorite System Architecture Exclusively

Designing Database Tables in Isolation

Neglecting Design Reviews

Skipping Beta Testing

Not Documenting Your Process

Chapter 23: Ten Retrieval Tips

Verify the Database Structure

Try Queries on a Test Database

Double-Check Queries That Include Joins

Triple-Check Queries with Subselects

Summarize Data with GROUP BY

Watch GROUP BY Clause Restrictions

Use Parentheses with AND, OR, and NOT

Control Retrieval Privileges

Back Up Your Databases Regularly

Handle Error Conditions Gracefully

Appendix: SQL:2008 Reserved Words

				SQL For Dummies®

				by Allen G. Taylor

				
				[image: WileyTitlePageLogo.eps]
				

				SQL For Dummies®

				Published by
Wiley Publishing, Inc.
111 River St.
Hoboken, NJ 07030-5774
www.wiley.com

				Copyright © 2010 by Wiley Publishing, Inc., Indianapolis, Indiana

				Published simultaneously in Canada

				No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

				Trademarks: Wiley, the Wiley Publishing logo, For Dummies, the Dummies Man logo, A Reference for the Rest of Us!, The Dummies Way, Dummies Daily, The Fun and Easy Way, Dummies.com, Making Everything Easier, and related trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates in the United States and other countries, and may not be used without written permission. All other trademarks are the property of their respective owners. Wiley Publishing, Inc., is not associated with any product or vendor mentioned in this book.

				Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation warranties of fitness for a particular purpose. No warranty may be created or extended by sales or promotional materials. The advice and strategies contained herein may not be suitable for every situation. This work is sold with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional services. If professional assistance is required, the services of a competent professional person should be sought. Neither the publisher nor the author shall be liable for damages arising herefrom. The fact that an organization or Website is referred to in this work as a citation and/or a potential source of further information does not mean that the author or the publisher endorses the information the organization or Website may provide or recommendations it may make. Further, readers should be aware that Internet Websites listed in this work may have changed or disappeared between when this work was written and when it is read.

				For general information on our other products and services, please contact our Customer Care Department within the U.S. at 877-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002.

				For technical support, please visit www.wiley.com/techsupport.

				Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.

				Library of Congress Control Number: 2009942830

				ISBN: 978-0-470-55741-9

				Manufactured in the United States of America

				10 9 8 7 6 5 4 3 2 1

				
				[image: WileycopyrightLogo.eps]

				

				About the Author

				Allen G. Taylor is a 30-year veteran of the computer industry and the author of 26 books, including Crystal Reports 2008 For Dummies, Database Development For Dummies, Access Power Programming with VBA, and SQL All-in-One For Dummies. He lectures internationally on databases, networks, innovation, and entrepreneurship. He also teaches database development through a leading online educational program. For the latest news on Allen’s activities, check out www.DatabaseCentral.Info. You can contact Allen at allen.taylor@ieee.org.

				Dedication

				This book is dedicated to my brother David Taylor, who is the hardware guru of the family.

				Author’s Acknowledgments

				First and foremost, I would like to acknowledge the help of Jim Melton, editor of the ISO/ANSI specification for SQL. Without his untiring efforts, this book, and indeed SQL itself as an international standard, would be of much less value. Andrew Eisenberg has also contributed to my knowledge of SQL through his writing. I would like to thank Michael Durthaler for helpful suggestions regarding the coverage of cursors. I would also like to thank my project editor Kim Darosett, my technical editor Robert Schneider, and my acquisitions editor Kyle Looper for their key contributions to the production of this book. Thanks also to my agent, Carole McClendon of Waterside Productions, for her support of my career.

				Publisher’s Acknowledgments

				We’re proud of this book; please send us your comments through our online registration form located at www.dummies.com/register/.

				Some of the people who helped bring this book to market include the following:

				Acquisitions, Editorial, and Media Development

				Project Editor: Kim Darosett

				Acquisitions Editor: Kyle Looper

				Senior Copy Editor: Barry Childs-Helton

				Technical Editor: Robert Schneider

				Editorial Manager: Leah Cameron

				Editorial Assistant: Amanda Graham

				Sr. Editorial Assistant: Cherie Case

				Cartoons: Rich Tennant (www.the5thwave.com)

				Composition Services

				Project Coordinator: Katherine Crocker

				Layout and Graphics: Samantha K. Cherolis, Joyce Haughey, Melissa K. Jester, Christine Williams

				Proofreader: Laura Bowman

				Indexer: Potomac Indexing, LLC

				Publishing and Editorial for Technology Dummies

				Richard Swadley, Vice President and Executive Group Publisher

				Andy Cummings, Vice President and Publisher

				Mary Bednarek, Executive Acquisitions Director

				Mary C. Corder, Editorial Director

				Publishing for Consumer Dummies

				Diane Graves Steele, Vice President and Publisher

				Composition Services

				Debbie Stailey, Director of Composition Services

	
		
			
				Introduction

				Welcome to database development using SQL, the industry-standard database query language. Many database management system (DBMS) tools run on a variety of hardware platforms. The differences among the tools can be great, but all serious products have one thing in common: They support SQL data access and manipulation. If you know SQL, you can build relational databases and get useful information out of them.

				About This Book

				Relational database management systems are vital to many organizations. People often think that creating and maintaining these systems must be extremely complex activities — the domain of database gurus who possess enlightenment beyond that of mere mortals. This book sweeps away the database mystique. In this book, you

				Get to the roots of databases.

				Find out how a DBMS is structured.

				Discover the major functional components of SQL.

				Build a database.

				Protect a database from harm.

				Operate on database data.

				Determine how to get the information you want out of a database.

				The purpose of this book is to help you build relational databases and get valuable information out of them by using SQL. SQL is the international standard language used to create and maintain relational databases. This edition covers the latest version of the standard, SQL:2008.

				This book doesn’t tell you how to design a database (I do that in Database Development For Dummies, also published by Wiley). Here I assume that you or somebody else has already created a valid design. I then illustrate how you implement that design by using SQL. If you suspect that you don’t have a good database design, then — by all means — fix your design before you try to build the database. The earlier you detect and correct problems in a development project, the cheaper the corrections will be.

				Who Should Read This Book?

				If you need to store or retrieve data from a DBMS, you can do a much better job with a working knowledge of SQL. You don’t need to be a programmer to use SQL, and you don’t need to know programming languages, such as Java, C, or BASIC. SQL’s syntax is like that of English.

				If you are a programmer, you can incorporate SQL into your programs. SQL adds powerful data manipulation and retrieval capabilities to conventional languages. This book tells you what you need to know to use SQL’s rich assortment of tools and features inside your programs.

				How This Book Is Organized

				This book contains eight major parts. Each part contains several chapters. You may want to read this book from cover to cover once, although you don’t have to. After that, this book becomes a handy reference guide. You can turn to whatever section is appropriate to answer your questions.

				Part I: Basic Concepts

				Part I introduces the concept of a database and distinguishes relational databases from other types. It describes the most popular database architectures, as well as the major components of SQL.

				Part II: Using SQL to Build Databases

				You don’t need SQL to build a database. This part shows you how to build a database by using Microsoft Access, and then you get to build the same database by using SQL. In addition to defining database tables, this part covers other important database features: domains, character sets, collations, translations, keys, and indexes.

				Throughout this part, I emphasize protecting your database from corruption, which is a bad thing that can happen in many ways. SQL gives you the tools to prevent corruption, but you must use them properly to prevent problems caused by bad database design, harmful interactions, operator error, and equipment failure.

				Part III: Storing and Retrieving Data

				After you have some data in your database, you want to do things with it: Add to the data, change it, or delete it. Ultimately, you want to retrieve useful information from the database. SQL tools enable you to do all this. These tools give you low-level, detailed, brass-tacks control over your data.

				Part IV: Controlling Operations

				A big part of database management is protecting the data from harm, which can come in many shapes and forms. People may accidentally or intentionally put bad data into database tables, for example. You can protect yourself by controlling who can access your database and what they can do with it. Another threat to data comes from unintended interaction of concurrent users’ operations. SQL provides powerful tools to prevent this problem too. SQL provides much of the protection automatically, but you need to understand how the protection mechanisms work so you get all the protection you need.

				Part V: Taking SQL to the Real World

				SQL is different from most other computer languages in that it operates on a whole set of data items at once, rather than dealing with them one at a time. This difference in operational modes makes combining SQL with other languages a challenge, but you can face it by using the information in this book. You can exchange information with nondatabase applications by using XML.

				Part VI: Advanced Topics

				In this part, you discover how to include set-oriented SQL statements in your programs and how to get SQL to deal with data one item at a time.

				This part also covers error handling. SQL provides you with a lot of information whenever something goes wrong in the execution of an SQL statement, and you find out how to retrieve and interpret that information.

				Part VII: The Part of Tens

				This section provides some important tips on what to do, and what not to do, in designing, building, and using a database.

				Appendix and Glossary

				The Appendix lists all of SQL’s reserved words, as of the 2008 release of Part 14of the ANSI/ISO SQL standard. These are words that have a very specific meaning in SQL and cannot be used for table names, column names, or anything other than their intended meaning. Also, you can download a basic glossary of some frequently used terms at www.dummies.com/go/sqlfd7e.

				Icons Used in This Book

				[image: tip.eps] Tips save you a lot of time and keep you out of trouble.

				[image: remember.eps] Pay attention to the information marked by this icon — you may need it later.

				[image: warning_bomb.eps] Heeding the advice that this icon points to can save you from major grief. Ignore it at your peril.

				[image: technicalstuff.eps] This icon alerts you to the presence of technical details that are interesting but not absolutely essential to understanding the topic being discussed.

				Getting Started

				Now for the fun part! Databases are the best tools ever invented for keeping track of the things you care about. After you understand databases and can use SQL to make them do your bidding, you wield tremendous power. Coworkers come to you when they need critical information. Managers seek your advice. Youngsters ask for your autograph. But most importantly, you know, at a very deep level, how your organization really works.

			

		

	
		
			
				Part I

				Basic Concepts

				
				[image: 557419-pp0101.eps]
			

				In this part . . .

				Part I presents the big picture. Before talking about SQL itself, I explain what databases are and how they’re different from data that 20th-century humans used to store in crude, unstructured, Stone-Age computer files. I go over the most popular database models and discuss the physical systems on which these databases run. Then I move on to SQL itself, giving you a brief look at what SQL is, how the language came about, and what it is today, based on the latest version of the international standard SQL language.

			

		

	
		
			
				Chapter 1

				Relational Database Fundamentals

				In This Chapter

				Organizing information

				Defining “database” in digital terms

				Deciphering DBMS

				Comparing database models

				Defining “relational database” (can you relate?)

				Considering the challenges of database design

				SQL (pronounced ess-que-ell, not see’qwl, though database geeks still argue about that) is a language specifically designed with databases in mind. SQL enables people to create databases, add new data to them, maintain the data in them, and retrieve selected parts of the data. Introduced in 1970, SQL has grown and advanced over the years to become the industry standard. It is governed by a formal standard maintained by the International Standards Organization (ISO).

				Various kinds of databases exist, each adhering to a different model of how the data in the database is organized.

				SQL was originally developed to operate on data in databases that follow the relational model. Recently, the international SQL standard has incorporated part of the object model, resulting in hybrid structures called object-relational databases. In this chapter, I discuss data storage, devote a section to how the relational model compares with other major models, and provide a look at the important features of relational databases.

				Before I talk about SQL, however, I want to nail down what I mean by the term database. Its meaning has changed, just as computers have changed the way people record and maintain information.

				Keeping Track of Things

				Today people use computers to perform many tasks formerly done with other tools. Computers have replaced typewriters for creating and modifying documents. They’ve surpassed electromechanical calculators as the best way to do math. They’ve also replaced millions of pieces of paper, file folders, and file cabinets as the principal storage medium for important information. Compared to those old tools, of course, computers do much more, much faster — and with greater accuracy. These increased benefits do come at a cost, however: Computer users no longer have direct physical access to their data.

				When computers occasionally fail, office workers may wonder whether computerization really improved anything at all. In the old days, a manila file folder only “crashed” if you dropped it — then you merely knelt down, picked up the papers, and put them back in the folder. Barring earthquakes or other major disasters, file cabinets never “went down,” and they never gave you an error message. A hard-drive crash is another matter entirely: You can’t “pick up” lost bits and bytes. Mechanical, electrical, and human failures can make your data go away into the Great Beyond, never to return.

				Taking the necessary precautions to protect yourself from accidental data loss allows you to start cashing in on the greater speed and accuracy that computers provide.

				If you’re storing important data, you have four main concerns:

				Storing data has to be quick and easy, because you’re likely to do it often.

				The storage medium must be reliable. You don’t want to come back later and find some (or all) of your data missing.

				Data retrieval has to be quick and easy, regardless of how many items you store.

				You need an easy way to separate the exact information you want now from the tons of data that you don’t want right now.

				State-of-the-art computer databases satisfy these four criteria. If you store more than a dozen or so data items, you probably want to store those items in a database.

				What Is a Database?

				The term database has fallen into loose use lately, losing much of its original meaning. To some people, a database is any collection of data items (phone books, laundry lists, parchment scrolls . . . whatever). Other people define the term more strictly.

				In this book, I define a database as a self-describing collection of integrated records. And yes, that does imply computer technology, complete with programming languages such as SQL.

				[image: remember.eps] A record is a representation of some physical or conceptual object. Say, for example, that you want to keep track of a business’s customers. You assign a record for each customer. Each record has multiple attributes, such as name, address, and telephone number. Individual names, addresses, and so on are the data.

				A database consists of both data and metadata. Metadata is the data that describes the data’s structure within a database. If you know how your data is arranged, then you can retrieve it. Because the database contains a description of its own structure, it’s self-describing. The database is integrated because it includes not only data items but also the relationships among data items.

				The database stores metadata in an area called the data dictionary, which describes the tables, columns, indexes, constraints, and other items that make up the database.

				Because a flat file system (described later in this chapter) has no metadata, applications written to work with flat files must contain the equivalent of the metadata as part of the application program.

				Database Size and Complexity

				Databases come in all sizes, from simple collections of a few records to mammoth systems holding millions of records.

				[image: remember.eps] A personal database is designed for use by a single person on a single computer. Such a database usually has a rather simple structure and a relatively small size. A departmental or workgroup database is used by the members of a single department or workgroup within an organization. This type of database is generally larger than a personal database and is necessarily more complex; such a database must handle multiple users trying to access the same data at the same time. An enterprise database can be huge. Enterprise databases may model the critical information flow of entire large organizations.

				What Is a Database Management System?

				Glad you asked. A database management system (DBMS) is a set of programs used to define, administer, and process databases and their associated applications. The database being managed is, in essence, a structure that you build to hold valuable data. A DBMS is the tool you use to build that structure and operate on the data contained within the database.

				You can find many DBMS programs on the market today. Some run only on mainframe computers, some only on minicomputers, and some only on personal computers. A strong trend, however, is for such products to work on multiple platforms or on networks that contain all three classes of machines. An even newer trend is to distribute data over a storage area network (SAN) or even to store it out on the Internet.

				[image: remember.eps] A DBMS that runs on platforms of multiple classes, large and small, is called scalable.

				Whatever the size of the computer that hosts the database — and regardless of whether the machine is connected to a network — the flow of information between database and user is always the same. Figure 1-1 shows that the user communicates with the database through the DBMS. The DBMS masks the physical details of the database storage so that the application only has to concern itself with the logical characteristics of the data, not with how the data is stored.

				
					Figure 1-1: Block diagram of a DBMS-based information system.

				

				[image: 557419-fg0101.eps]

				The value is not in the data, but in the structure

				Years ago, some clever person calculated that if you reduce human beings to their components of carbon, hydrogen, oxygen, and nitrogen atoms (plus traces of others), they would be worth only 97 cents. However droll this assessment, it’s misleading. People aren’t composed of mere isolated collections of atoms. Our atoms combine into enzymes, proteins, hormones, and many other substances that would cost millions of dollars per ounce on the pharmaceutical market. The precise structure of these combinations of atoms is what gives them greater value. By analogy, database structure makes possible the interpretation of seemingly meaningless data. The structure brings to the surface patterns, trends, and tendencies in the data. Unstructured data — like uncombined atoms — has little or no value.

				Flat Files

				Where structured data is concerned, the flat file is as simple as it gets. No, a flat file isn’t a folder that’s been squashed under a stack of books. Flat files are so called because they have minimal structure. If they were buildings, they’d barely stick up from the ground. A flat file is simply a collection of data records, one after another, in a specified format — the data, the whole data, and nothing but the data — in effect, a list. In computer terms, a flat file is simple. Because the file doesn’t store structural information (metadata), its overhead (stuff in the file that is not data but takes up storage space) is minimal.

				Say that you want to keep track of the names and addresses of your company’s customers in a flat file system. The system may have a structure something like this:

				Harold Percival 26262 S. Howards Mill Rd Westminster CA92683

				Jerry Appel 32323 S. River Lane Rd Santa Ana CA92705

				Adrian Hansen 232 Glenwood Court Anaheim CA92640

				John Baker 2222 Lafayette St Garden Grove CA92643

				Michael Pens 77730 S. New Era Rd Irvine CA92715

				Bob Michimoto 25252 S. Kelmsley Dr Stanton CA92610

				Linda Smith 444 S.E. Seventh St Costa Mesa CA92635

				Robert Funnell 2424 Sheri Court Anaheim CA92640

				Bill Checkal 9595 Curry Dr Stanton CA92610

				Jed Style 3535 Randall St Santa Ana CA92705

				As you can see, the file contains nothing but data. Each field has a fixed length (the Name field, for example, is always exactly 15 characters long), and no structure separates one field from another. The person who created the database assigned field positions and lengths. Any program using this file must “know” how each field was assigned, because that information is not contained in the database itself.

				Such low overhead means that operating on flat files can be very fast. On the minus side, however, application programs must include logic that manipulates the file’s data at a very detailed level. The application must know exactly where and how the file stores its data. Thus, for small systems, flat files work fine. The larger a system is, however, the more cumbersome a flat-file system becomes.

				[image: tip.eps] Using a database instead of a flat-file system eliminates duplication of effort. Although database files themselves may have more overhead, the applications can be more portable across various hardware platforms and operating systems. A database also makes writing application programs easier because the programmer doesn’t need to know the physical details of where and how the data is stored.

				Databases eliminate duplication of effort, because the DBMS handles the data-manipulation details. Applications written to operate on flat files must include those details in the application code. If multiple applications all access the same flat-file data, these applications must all (redundantly) include that data-manipulation code. If you’re using a DBMS, however, you don’t need to include such code in the applications at all.

				Clearly, if a flat-file-based application includes data-manipulation code that only runs on a particular hardware platform, migrating the application to a new platform is a headache waiting to happen. You have to change all the hardware-specific code — and that’s just for openers. Migrating a similar DBMS-based application to another platform is much simpler — fewer complicated steps, fewer aspirin consumed.

				Database Models

				Different as databases may be in size, they are generally always structured according to one of three database models:

				Hierarchical: These databases arrange their data in a simple hierarchical structure that allows fast access. They suffer from redundancy problems and their structural inflexibility makes database modification difficult.

				Network: Network databases have minimal redundancy but pay for that advantage with structural complexity.

				Relational: These databases store their data in tables that are related to each other. Nowadays, new installations of database management systems are almost exclusively of the relational type. Organizations that already have a major investment in hierarchical or network technology may add to the existing model, but groups that have no need to maintain compatibility with such so-called legacy systems nearly always choose the relational model for their databases.

				The first databases to see wide use were large organizational databases that today would be called enterprise databases, built according to either the hierarchical model or the network model. Systems built according to the relational model followed several years later. SQL is a strictly modern language; it applies only to the relational model and its descendant, the object-relational model. So here’s where this book says, “So long, it’s been good to know ya,” to the hierarchical and network models.

				[image: technicalstuff.eps] New database management systems that aren’t based on the relational model probably conform to the (newer) object model or the (hybrid) object-relational model.

				Relational model

				Dr. E. F. Codd of IBM first formulated the relational database model in 1970, and this model started appearing in products about a decade later. Ironically, IBM did not deliver the first relational DBMS. That distinction went to a small start-up company, which named its product Oracle.

				Relational databases have almost completely replaced earlier database types. That’s largely because you can change the structure of a relational database without having to change or modify applications that were based on the old structures. Suppose, for example, that you add one or more new columns to a database table. You don’t need to change any previously written applications that process that table — unless, of course, you alter one or more of the columns that those applications have to use.

				[image: warning_bomb.eps] Of course, if you remove a column that an existing application has to use, you experience problems no matter what database model you follow. One of the quickest ways to make a database application crash is to ask it to retrieve a kind of data that your database doesn’t contain.

				Why relational is better

				In applications written with DBMSs that follow the hierarchical or network model, database structure is hard-coded into the application. That is, the application is dependent on the specific physical implementation of the database. If you add a new attribute to the database, you must change your application to accommodate the change, whether or not the application uses the new attribute. An unmodified application will expect the data to be arranged according to the old layout, so it will produce garbage when it writes data into the file that now contains the new attribute.

				Relational databases offer structural flexibility; applications written for those databases are easier to maintain than similar applications written for hierarchical or network databases. That same structural flexibility enables you to retrieve combinations of data that you may not have anticipated needing at the time of the database’s design.

				Components of a relational database

				Relational databases gain their flexibility because their data resides in tables that are largely independent of each other. You can add, delete, or change data in a table without affecting the data in the other tables, provided that the affected table is not a parent of any of the other tables. (Parent-child table relationships are explained in Chapter 5, and no, they don’t involve discussing allowances over dinner.) In this section, I show what these tables consist of and how they relate to the other parts of a relational database.

				Dealing with your relations

				At holiday time, many of my relatives come to my house and sit down at my table. Databases have relations, too, but each of their relations has its own table. A relational database is made up of one or more relations.

				[image: remember.eps] A relation is a two-dimensional array of rows and columns, containing single-valued entries and no duplicate rows. Each cell in the array can have only one value, and no two rows may be identical. If that’s a little hard to picture, here’s an example that will put you in the right ballpark. . . .

				Most people are familiar with two-dimensional arrays of rows and columns, in the form of electronic spreadsheets such as Microsoft Excel. A major-league baseball player’s offensive statistics, as listed on the back of baseball card, are an example of such an array. On the baseball card are columns for year, team, games played, at-bats, hits, runs scored, runs batted in, doubles, triples, home runs, bases on balls, steals, and batting average. A row covers each year that the player has played in the Major Leagues. You can also store this data in a relation (a table), which has the same basic structure. Figure 1-2 shows a relational database table holding the offensive statistics for a single major-league player. In practice, such a table would hold the statistics for an entire team — or perhaps the whole league.

				
					Figure 1-2: A table showing a baseball player’s offensive statistics.

				

				[image: 557419-fg0102.eps]

				Columns in the array are self-consistent: A column has the same meaning in every row. If a column contains a player’s last name in one row, the column must contain a player’s last name in all rows. The order in which the rows and columns appear in the array has no significance. As far as the DBMS is concerned, it doesn’t matter which column is first, which is next, and which is last. The same is true of rows. The DBMS processes the table the same way regardless of the organization.

				Every column in a database table embodies a single attribute of the table, just like that baseball card. The column’s meaning is the same for every row of the table. A table may, for example, contain the names, addresses, and telephone numbers of all an organization’s customers. Each row in the table (also called a record, or a tuple) holds the data for a single customer. Each column holds a single attribute — such as customer number, customer name, customer street, customer city, customer state, customer postal code, or customer telephone number. Figure 1-3 shows some of the rows and columns of such a table.

				[image: remember.eps] The relations in this database model correspond to tables in any database based on the model. Try to say that ten times fast.

				
					Figure 1-3: Each database row contains a record; each database column holds a single attribute.

				

				[image: 557419-fg0103.eps]

				Enjoy the view

				One of my favorite views is of the Yosemite Valley from the mouth of the Wawona Tunnel, late on a spring afternoon. Golden light bathes the sheer face of El Capitan, Half Dome glistens in the distance, and Bridal Veil Falls forms a silver cascade of sparkling water, while a trace of wispy clouds weaves a tapestry across the sky. Databases have views as well — even if they’re not quite that picturesque. The beauty of database views is their sheer usefulness when you’re working with your data.

				Tables can contain many columns and rows. Sometimes all that data interests you, and sometimes it doesn’t. Only some columns of a table may interest you, or perhaps you want to see only rows that satisfy a certain condition. Some columns of one table and some other columns of a related table may interest you. To eliminate data that isn’t relevant to your current needs, you can create a view — a subset of a database that an application can process. It may contain parts of one or more tables.

				[image: remember.eps] Views are sometimes called virtual tables. To the application or the user, views behave the same as tables. Views, however, have no independent existence. Views allow you to look at data, but views are not part of the data.

				Say, for example, that you’re working with a database that has a CUSTOMER table and an INVOICE table. The CUSTOMER table has the columns CustomerID, FirstName, LastName, Street, City, State, Zipcode, and Phone. The INVOICE table has the columns InvoiceNumber, CustomerID, Date, TotalSale, TotalRemitted, and FormOfPayment.

				A national sales manager wants to look at a screen that contains only the customer’s first name, last name, and telephone number. Creating from the CUSTOMER table a view that contains only the FirstName, LastName, and Phone columns enables the manager to view what he or she needs without having to see all the unwanted data in the other columns. Figure 1-4 shows the derivation of the national sales manager’s view.

				
					Figure 1-4: The sales manager’s view derives from the CUSTOMER table.

				

				[image: 557419-fg0104.eps]

				A branch manager may want to look at the names and phone numbers of all customers whose zip codes fall between 90000 and 93999 (southern and central California). A view that places a restriction on the rows it retrieves, as well as the columns it displays, does the job. Figure 1-5 shows the sources for the columns in the branch manager’s view.

				The accounts-payable manager may want to look at customer names from the CUSTOMER table and Date, TotalSale, TotalRemitted, and FormOfPayment from the INVOICE table, where TotalRemitted is less than TotalSale. The latter would be the case if full payment hasn’t yet been made. This need requires a view that draws from both tables. Figure 1-6 shows data flowing into the accounts-payable manager’s view from both the CUSTOMER and INVOICE tables.

				
					Figure 1-5: The branch manager’s view includes only certain rows from the CUSTOMER table.

				

				[image: 557419-fg0105.eps]

				Views are useful because they enable you to extract and format database data without physically altering the stored data. They also protect the data that you don’t want to show, because they don’t contain it. Chapter 6 illustrates how to create a view by using SQL.

				
					Figure 1-6: The accounts-payable manager’s view draws from two tables.

				

				[image: 557419-fg0106.eps]

				Schemas, domains, and constraints

				[image: tip.eps] A database is more than a collection of tables. Additional structures, on several levels, help to maintain the data’s integrity. A database’s schema provides an overall organization to the tables. The domain of a table column tells you what values you may store in the column. You can apply constraints to a database table to prevent anyone (including yourself) from storing invalid data in the table.

				Schemas

				The structure of an entire database is its schema, or conceptual view. This structure is sometimes also called the complete logical view of the database. The schema is metadata — as such, it’s part of the database. The metadata itself, which describes the database’s structure, is stored in tables that are just like the tables that store the regular data. Even metadata is data; that’s the beauty of it.

				Domains

				An attribute of a relation (that is, a column of a table) can assume some finite number of values. The set of all such values is the domain of the attribute.

				Say, for example, that you’re an automobile dealer who handles the newly introduced Curarri GT 4000 sports coupe. You keep track of the cars you have in stock in a database table that you name INVENTORY. You name one of the table columns Color, which holds the exterior color of each car. The GT 4000 comes in only four colors: blazing crimson, midnight black, snowflake white, and metallic gray. Those four colors are the domain of the Color attribute.

				Constraints

				Constraints are an important, although often overlooked, component of a database. Constraints are rules that determine what values the table attributes can assume.

				By applying tight constraints to a column, you can prevent people from entering invalid data into that column. Of course, every value that is legitimately in the domain of the column must satisfy all the column’s constraints. As I mention in the preceding section, a column’s domain is the set of all values that the column can contain. A constraint is a restriction on what a column may contain. The characteristics of a table column, plus the constraints that apply to that column, determine the column’s domain. By applying constraints, you can prevent users from entering data into a column that falls outside the column’s domain.

				In the auto dealership example, you can constrain the database to accept only those four values in the Color column. If a data entry operator then tries to enter in the Color column a value of, for example, forest green, the system refuses to accept the entry. Data entry can’t proceed until the operator enters a valid value into the Color field.

				You may wonder what happens when the Curarri AutoWerks decides to offer a forest-green version of the GT 4000 as a mid-year option. The answer is (drum roll, please) job security for database-maintenance programmers. This kind of thing happens all the time and requires updates to the database structure. Only people who know how to modify the database structure (such as you) will be able to prevent a major snafu.

				The object model challenges the relational model

				The relational model has been fantastically successful in a wide variety of application areas. However, it does not do everything that anyone would ever want. The limitations have been made more visible by the rise in popularity of object-oriented programming languages such as C++, Java, and C#. Such languages are capable of handling more complex problems than traditional languages due to their advanced features, such as user-extensible type systems, encapsulation, inheritance, dynamic binding of methods, complex and composite objects, and object identity.

				I am not going to explain all that jargon in this book (although I do touch on some of these terms later). Suffice it to say that the classic relational model doesn’t mesh well with many of these features. As a result, database management systems based on the object model have been developed and are available on the market. As yet, their market share is relatively small.

				The object-relational model

				Database designers, like everyone else, are constantly searching for the best of all possible worlds. They mused, “Wouldn’t it be great if we could have the advantages of an object-oriented database system, and still retain compatibility with the relational system that we have come to know and love?” This kind of thinking led to the hybrid object-relational model. Object-relational DBMSs extend the relational model to include support for object-oriented data modeling. Object-oriented features have been added to the international SQL standard, allowing relational DBMS vendors to transform their products into object-relational DBMSs, while retaining compatibility with the standard. Thus, whereas the SQL-92 standard describes a purely relational database model, SQL:1999 describes an object-relational database model. SQL:2003 has more object-oriented features, and SQL:2008 goes even further in that direction.

				In this book, I describe ISO/IEC international standard SQL. This is primarily a relational database model. I also include the object-oriented extensions to the standard that were introduced in SQL:1999, and the additional extensions included in SQL:2003 and SQL:2008. The object-oriented features of the new standard allow developers to apply SQL databases to problems that are too complex to address with the older, purely relational, paradigm. Vendors of DBMS systems are incorporating the object-oriented features in the ISO standard into their products. Some of these features have been present for years, while others are yet to be included.

				Database Design Considerations

				A database is a representation of a physical or conceptual structure, such as an organization, an automobile assembly, or the performance statistics of all the major-league baseball clubs. The accuracy of the representation depends on the level of detail of the database design. The amount of effort that you put into database design should depend on the type of information you want to get out of the database. Too much detail is a waste of effort, time, and hard drive space. Too little detail may render the database worthless.

				[image: tip.eps] Decide how much detail you need now and how much you may need in the future — and then provide exactly that level of detail in your design (no more and no less). But don’t be surprised if you have to adjust the design eventually to meet changing real-world needs.

				[image: remember.eps] Today’s database management systems, complete with attractive graphical user interfaces and intuitive design tools, can give the would-be database designer a false sense of security. These systems make designing a database seem comparable to building a spreadsheet or engaging in some other relatively straightforward task. No such luck. Database design is difficult. If you do it incorrectly, not only is your database likely to suffer from poor performance, but it also may well become gradually more corrupt as time goes on. Often the problem doesn’t turn up until after you devote a great deal of effort to data entry. By the time you know that you have a problem, it’s already serious. In many cases, the only solution is to completely redesign the database and reenter all the data. The up side is that by the time you finish your second version of the same database, you realize how much better you understand database design.

			

		

	
		
			
				Chapter 2

				SQL Fundamentals

				In This Chapter

				Understanding SQL

				Clearing up SQL misconceptions

				Taking a look at the different SQL standards

				Getting familiar with standard SQL commands and reserved words

				Representing numbers, characters, dates, times, and other data types

				Exploring null values and constraints

				Putting SQL to work in a client/server system

				Considering SQL on a network

				SQL is a flexible language that you can use in a variety of ways. It’s the most widely used tool for communicating with a relational database. In this chapter, I explain what SQL is and isn’t — specifically, what distinguishes SQL from other types of computer languages. Then I introduce the commands and data types that standard SQL supports, and explain two key concepts: null values and constraints. Finally, I give an overview of how SQL fits into the client/server environment, as well as the Internet and organizational intranets.

				What SQL Is and Isn’t

				The first thing to understand about SQL is that SQL isn’t a procedural language, as are BASIC, C, C++, C#, and Java. To solve a problem in one of those procedural languages, you write a procedure — a sequence of commands that performs one specific operation after another until the task is complete. The procedure may be a straightforward linear sequence or may loop back on itself, but in either case, the programmer specifies the order of execution.

				SQL, on the other hand, is nonprocedural. To solve a problem using SQL, simply tell SQL what you want (as if you were talking to Aladdin’s genie) instead of telling the system how to get you what you want. The database management system (DBMS) decides the best way to get you what you request.

				All right. I just told you that SQL is not a procedural language — and that’s essentially true. However, millions of programmers out there (and you’re probably one of them) are accustomed to solving problems in a procedural manner. So, in recent years, there has been a lot of pressure to add some procedural functionality to SQL — and SQL now incorporates features of a procedural language: BEGIN blocks, IF statements, functions, and (yes) procedures. With these facilities added, you can store programs at the server, where multiple clients can use your programs repeatedly.

				To illustrate what I mean by “tell the system what you want,” suppose you have an EMPLOYEE table from which you want to retrieve the rows that correspond to all your senior people. You want to define a senior person as anyone older than age 40 or anyone earning more than $60,000 per year. You can make the desired retrieval by using the following query:

				SELECT * FROM EMPLOYEE WHERE Age > 40 OR Salary > 60000 ;

				This statement retrieves all rows from the EMPLOYEE table where either the value in the Age column is greater than 40 or the value in the Salary column is greater than 60,000. In SQL, you don’t have to specify how the information is retrieved. The database engine examines the database and decides for itself how to fulfill your request. You need only specify what data you want to retrieve.

				[image: remember.eps] A query is a question you ask the database. If any of the data in the database satisfies the conditions of your query, SQL retrieves that data.

				Current SQL implementations lack many of the basic programming constructs that are fundamental to most other languages. Real-world applications usually require at least some of these programming constructs, which is why SQL is actually a data sublanguage. Even with the extensions that were added in 1999, 2003, 2005, and 2008, you still have to use SQL in combination with a procedural language (such as C++) to create a complete application.

				You can extract information from a database in one of two ways:

				Make an ad-hoc query from a computer console by just typing an SQL statement and reading the results from the screen. Console is the traditional term for the computer hardware that does the job of the keyboard and screen used in current PC-based systems. Queries from the console are appropriate when you want a quick answer to a specific question. To meet an immediate need, you may require information that you never needed before from a database. You’re likely never to need that information again, either, but you need it now. Enter the appropriate SQL query statement from the keyboard, and in due time, the result appears on your screen.

				Execute a program that collects information from the database and then reports on the information, either on-screen or in a printed report. Incorporating an SQL query directly into a program is a good way to run a complex query that you’re likely to run again in the future. That way, you can formulate a query just once for use as often as you want. Chapter 15 explains how to incorporate SQL code into programs written in another programming language.

				A (Very) Little History

				SQL originated in one of IBM’s research laboratories, as did relational database theory. In the early 1970s, as IBM researchers developed early relational DBMS (or RDBMS) systems, they created a data sublanguage to operate on these systems. They named the pre-release version of this sublanguage SEQUEL (Structured English QUEry Language). However, when it came time to formally release their query language as a product, they found that another company had already trademarked the product name “Sequel.” Therefore, the marketing geniuses at IBM decided to give the released product a name that was different from SEQUEL but still recognizable as a member of the same family. So they named it SQL (pronounced ess-que-ell).

				[image: technicalstuff.eps] The syntax of SQL is a form of structured English, which is where its original name came from. However, SQL is not a structured language in the sense that computer scientists understand that term. Thus, despite the assumptions of many people, SQL is not an acronym standing for “structured query language.” It is a sequence of three letters that don’t stand for anything, just like the name of the C language does not stand for anything.

				IBM’s work with relational databases and SQL was well known in the industry even before IBM introduced its SQL/DS relational database (RDBMS) product in 1981. By that time, Relational Software, Inc. (now Oracle Corporation) had already released its first RDBMS. These early products immediately set the standard for a new class of database management systems. They incorporated SQL, which became the de facto standard for data sublanguages. Vendors of other relational database management systems came out with their own versions of SQL. Typically these other implementations contained all the core functionality of the IBM products, extended in ways that took advantage of the particular strengths of their own RDBMS product. As a result, although nearly all vendors used some form of SQL, compatibility between platforms was poor.

				[image: remember.eps] An implementation is a particular RDBMS running on a specific hardware platform.

				Soon a movement began to create a universally recognized SQL standard to which everyone could adhere. In 1986, ANSI (the American National Standards Institute) released a formal standard it named SQL-86. ANSI updated that standard in 1989 to SQL-89 and again in 1992 to SQL-92. As DBMS vendors proceed through new releases of their products, they try to bring their implementations ever closer to this standard. This effort has brought the goal of true SQL portability much closer to reality.

				[image: remember.eps] The most recent full version of the SQL standard is SQL:2008 (ISO/IEC 9075-X:2008). In this book, I describe SQL as SQL:2008 defines the language. Every specific SQL implementation differs from the standard to a certain extent. Because the complete SQL standard is comprehensive, currently available implementations are unlikely to support it fully. However, DBMS vendors are working to support a core subset of the standard SQL language. The full ISO/IEC standard is available for purchase at webstore.ansi.org.

				SQL Statements

				The SQL command language consists of a limited number of statements that perform three functions of data handling: Some of them define data, some manipulate data, and others control data. I cover the data-definition statements and data-manipulation statements in Chapters 4 through 12; I detail the data-control statements in Chapters 13 and 14.

				To comply with SQL:2008, an implementation must include a basic set of core features. It may also include extensions to the core set (which the SQL:2008 specification also describes). Table 2-1 lists the core plus the extended SQL:2008 statements. It’s quite a list. If you’re among those programmers who love to try out new capabilities, rejoice.

				
					
						
								
								Table 2-1 SQL:2008 Statements

							
						

						
								
								ADD

							
								
								DEALLOCATE PREPARE

							
								
								FREE LOCATOR

							
						

						
								
								ALLOCATE CURSOR

							
								
								DECLARE

							
								
								GET DESCRIPTOR

							
						

						
								
								ALLOCATE DESCRIPTOR

							
								
								DECLARE LOCAL TEMPORARY TABLE

							
								
								GET DIAGNOSTICS

							
						

						
								
								ALTER DOMAIN

							
								
								DELETE

							
								
								GRANT PRIVILEGE

							
						

						
								
								ALTER ROUTINE

							
								
								DESCRIBE INPUT

							
								
								GRANT ROLE

							
						

						
								
								ALTER SEQUENCE GENERATOR

							
								
								DESCRIBE OUTPUT

							
								
								HOLD LOCATOR

							
						

						
								
								ALTER TABLE

							
								
								DISCONNECT

							
								
								INSERT

							
						

						
								
								ALTER TRANSFORM

							
								
								DROP

							
								
								MERGE

							
						

						
								
								ALTER TYPE

							
								
								DROP ASSERTION

							
								
								OPEN

							
						

						
								
								CALL

							
								
								DROP ATTRIBUTE

							
								
								PREPARE

							
						

						
								
								CLOSE

							
								
								DROP CAST

							
								
								RELEASE SAVEPOINT

							
						

						
								
								COMMIT

							
								
								DROP CHARACTER SET

							
								
								RETURN

							
						

						
								
								CONNECT

							
								
								DROP COLLATION

							
								
								REVOKE

							
						

						
								
								CREATE

							
								
								DROP COLUMN

							
								
								ROLLBACK

							
						

						
								
								CREATE ASSERTION

							
								
								DROP CONSTRAINT

							
								
								SAVEPOINT

							
						

						
								
								CREATE CAST

							
								
								DROP DEFAULT

							
								
								SELECT

							
						

						
								
								CREATE CHARACTER SET

							
								
								DROP DOMAIN

							
								
								SET CATALOG

							
						

						
								
								CREATE COLLATION

							
								
								DROP METHOD

							
								
								SET CONNECTION

							
						

						
								
								CREATE DOMAIN

							
								
								DROP ORDERING

							
								
								SET CONSTRAINTS

							
						

						
								
								CREATE FUNCTION

							
								
								DROP ROLE

							
								
								SET DESCRIPTOR

							
						

						
								
								CREATE METHOD

							
								
								DROP ROUTINE

							
								
								SET NAMES

							
						

						
								
								CREATE ORDERING

							
								
								DROP SCHEMA

							
								
								SET PATH

							
						

						
								
								CREATE PROCEDURE

							
								
								DROP SCOPE

							
								
								SET ROLE

							
						

						
								
								CREATE ROLE

							
								
								DROP SEQUENCE

							
								
								SET SCHEMA

							
						

						
								
								CREATE SCHEMA

							
								
								DROP TABLE

							
								
								SET SESSION AUTHORIZATION

							
						

						
								
								CREATE SEQUENCE

							
								
								DROP TRANSFORM

							
								
								SET SESSION CHARACTERISTICS

							
						

						
								
								CREATE TABLE

							
								
								DROP TRANSLATION

							
								
								SET SESSION COLLATION

							
						

						
								
								CREATE TRANSFORM

							
								
								DROP TRIGGER

							
								
								SET TIME ZONE

							
						

						
								
								CREATE TRANSLATION

							
								
								DROP TYPE

							
								
								SET TRANSACTION

							
						

						
								
								CREATE TRIGGER

							
								
								DROP VIEW

							
								
								SET TRANSFORM GROUP

							
						

						
								
								CREATE TYPE

							
								
								EXECUTE IMMEDIATE

							
								
								START TRANSACTION

							
						

						
								
								CREATE VIEW

							
								
								FETCH

							
								
								UPDATE

							
						

						
								
								DEALLOCATE DESCRIPTOR

							
								
							
								
							
						

					
				

				Reserved Words

				In addition to the statements, a number of other words have a special significance within SQL. These words, along with the statements, are reserved for specific uses, so you can’t use them as variable names or in any other way that differs from their intended use. You can easily see why tables, columns, and variables should not be given names that appear on the reserved word list. Imagine the confusion that a statement such as the following would cause:

				SELECT SELECT FROM SELECT WHERE SELECT = WHERE ;

				’Nuff said. A complete list of SQL reserved words appears in the appendix.

				Data Types

				Depending on their histories, different SQL implementations support a variety of data types. The SQL specification recognizes seven predefined general types:

				Numerics

				Binary

				Strings

				Booleans

				Datetimes

				Intervals

				XML

				Within each of these general types may be several subtypes (exact numerics, approximate numerics, character strings, bit strings, large object strings). In addition to the built-in, predefined types, SQL supports collection types, constructed types, and user-defined types, all of which I discuss later in this chapter.

				[image: tip.eps] If you use an SQL implementation that supports data types that aren’t described in the SQL specification, you can keep your database more portable by avoiding these undescribed data types. Before you decide to create and use a user-defined data type, make sure that any DBMS you may want to port to in the future also supports user-defined types.

				Exact numerics

				As you can probably guess from the name, the exact numeric data types enable you to express the value of a number exactly. Five data types fall into this category:

				INTEGER

				SMALLINT

				BIGINT

				NUMERIC

				DECIMAL

				INTEGER data type

				Data of the INTEGER type has no fractional part, and its precision depends on the specific SQL implementation. As the database developer, you can’t specify the precision.

				[image: remember.eps] The precision of a number is the maximum number of significant digits the number can have.

				SMALLINT data type

				The SMALLINT data type is also for integers, but the precision of a SMALLINT in a specific implementation can’t be any larger than the precision of an INTEGER on the same implementation. In many implementations, SMALLINT and INTEGER are the same.

				If you’re defining a database table column to hold integer data and you know that the range of values in the column won’t exceed the precision of SMALLINT data on your implementation, assign the column the SMALLINT type rather than the INTEGER type. This assignment may enable your DBMS to conserve storage space.

				BIGINT data type

				The BIGINT data type is defined as a type whose precision is at least as great as that of the INTEGER type (it may be greater). The exact precision of a BIGINT data type depends on the SQL implementation used.

				NUMERIC data type

				NUMERIC data can have a fractional component in addition to its integer component. You can specify both the precision and the scale of NUMERIC data. (Precision, remember, is the maximum number of significant digits possible.)

				[image: remember.eps] The scale of a number is the number of digits in its fractional part. The scale of a number can’t be negative or larger than that number’s precision.

				If you specify the NUMERIC data type, your SQL implementation gives you exactly the precision and scale that you request. You may specify NUMERIC and get a default precision and scale, or NUMERIC (p) and get your specified precision and the default scale, or NUMERIC (p,s) and get both your specified precision and your specified scale. The parameters p and s are placeholders that would be replaced by actual values in a data declaration.

				Say, for example, that the NUMERIC data type’s default precision for your SQL implementation is 12 and the default scale is 6. If you specify a database column as having a NUMERIC data type, the column can hold numbers up to 999,999.999999. If, on the other hand, you specify a data type of NUMERIC (10) for a column, that column can hold only numbers with a maximum value of 9,999.999999. The parameter (10) specifies the maximum number of digits possible in the number. If you specify a data type of NUMERIC (10,2) for a column, that column can hold numbers with a maximum value of 99,999,999.99. In this case, you may still have ten total digits, but only two of those digits can fall to the right of the decimal point.

				[image: tip.eps] NUMERIC data is used for values such as 595.72. That value has a precision of 5 (the total number of digits) and a scale of 2 (the number of digits to the right of the decimal point). A data type of NUMERIC (5,2) is appropriate for such numbers.

				DECIMAL data type

				The DECIMAL data type is similar to NUMERIC. This data type can have a fractional component, and you can specify its precision and scale. The difference is that your implementation may specify a precision greater than what you specify — if so, the implementation uses the greater precision. If you do not specify precision or scale, the implementation uses default values, as it does with the NUMERIC type.

				An item that you specify as NUMERIC (5,2) can never contain a number with an absolute value greater than 999.99. An item that you specify as DECIMAL (5,2) can always hold values up to 999.99, but if your SQL implementation permits larger values, then the DBMS won’t reject values larger than 999.99.

				[image: tip.eps] Use the NUMERIC or DECIMAL type if your data has fractional positions, and use the INTEGER, SMALLINT, or BIGINT type if your data always consists of whole numbers. Use the NUMERIC type if you want to maximize portability, because a value that you define as NUMERIC (5,2), for example, holds the same range of values on all systems.

				Approximate numerics

				Some quantities have such a large range of possible values (many orders of magnitude) that a computer with a given register size can’t represent all the values exactly. (Examples of register sizes are 32 bits, 64 bits, and 128 bits.) Usually in such cases, exactness isn’t necessary, and a close approximation is acceptable. SQL defines three approximate NUMERIC data types to handle this kind of data: REAL, DOUBLE PRECISION, and FLOAT (as detailed in the next three subsections).

				REAL data type

				The REAL data type gives you a single-precision, floating-point number — the precision of which depends on the SQL implementation. In general, the hardware you use determines precision. A 64-bit machine, for example, gives you more precision than does a 32-bit machine.

				[image: remember.eps] A floating-point number is a number that contains a decimal point. The decimal point can “float” to different locations in the number, depending on the number’s value. Examples include 3.1, 3.14, and 3.14159 — and yes, all three can be used as values for “pi” — each with a different precision.

				DOUBLE PRECISION data type

				The DOUBLE PRECISION data type gives you a double-precision floating-point number, the precision of which again depends on the implementation. Surprisingly, the meaning of the word DOUBLE also depends on the implementation. Double-precision arithmetic is primarily employed by scientific users. Different scientific disciplines have different needs in the area of precision. Some SQL implementations cater to one category of users, and other implementations cater to other categories of users.

				In some systems, the DOUBLE PRECISION type has exactly twice the capacity of the REAL data type for both mantissa and exponent. (In case you’ve forgotten what you learned in high school, you can represent any number as a mantissa multiplied by ten raised to the power given by an exponent. You can write 6,626, for example, as 6.626E3. The number 6.626 is the mantissa, which you multiply by ten raised to the third power; in that case, 3 is the exponent.)

				You gain no benefit by representing numbers that are fairly close to 1 (such as 6,626 or even 6,626,000) with an approximate NUMERIC data type. Exact numeric types work just as well — and after all, they’re exact. For numbers that are either very near 0 or much larger than 1, however, such as 6.626E-34 (a very small number), you must use an approximate NUMERIC type. Exact NUMERIC data types can’t hold such numbers. On other systems, the DOUBLE PRECISION type gives you somewhat more than twice the mantissa capacity — and somewhat less than twice the exponent capacity as the REAL type. On yet another type of system, the DOUBLE PRECISION type gives double the mantissa capacity but the same exponent capacity as the REAL type. In this case, accuracy doubles, but range does not.

				[image: remember.eps] The SQL specification doesn’t try to dictate, arbitrate, or establish by fiat what DOUBLE PRECISION means. The specification requires only that the precision of a DOUBLE PRECISION number be greater than the precision of a REAL number. Although this constraint is rather weak, it’s probably the best possible, given the great differences you encounter in hardware.

				FLOAT data type

				The FLOAT data type is most useful if you think that you may someday migrate your database to a hardware platform with register sizes different from those available on your current platform. By using the FLOAT data type, you can specify a precision — for example, FLOAT (5). If your hardware supports the specified precision with its single-precision circuitry, then your present system uses single-precision arithmetic. If, after you migrate your database, the specified precision requires double-precision arithmetic, then the system uses double-precision arithmetic.

				[image: tip.eps] Using FLOAT rather than REAL or DOUBLE PRECISION makes moving your databases to other hardware easier. That’s because the FLOAT data type enables you to specify precision and lets the hardware fuss over whether to use single- or double-precision arithmetic. (Remember, the precision of REAL and DOUBLE PRECISION numbers is hardware-dependent.)

				If you aren’t sure whether to use the exact NUMERIC data types (that is, NUMERIC and DECIMAL) or the approximate NUMERIC data types (that is, FLOAT and REAL), use the exact NUMERIC types. Exact data types demand fewer system resources — and, of course, give exact (rather than approximate) results. If the range of possible values of your data is large enough to require you to use approximate data types, you can probably determine this fact in advance.

				Character strings

				Databases store many types of data, including graphic images, sounds, and animations. I expect odors to come next. Can you imagine a three-dimensional 1680-×-1050, 24-bit color image of a large slice of pepperoni pizza on your screen, while an odor sample taken at DiFilippi’s Pizza Grotto replays through your super-multimedia card? Such a setup may get frustrating — at least until you can afford to add taste-type data to your system as well. Alas, you can expect to wait a long time before odor and taste become standard SQL data types. These days, the data types that you use most commonly — after the NUMERIC types, of course — are the character-string types.

				You have three main types of CHARACTER data: fixed character data (CHARACTER or CHAR), varying character data (CHARACTER VARYING or VARCHAR), and character large-object data (CHARACTER LARGE OBJECT or CLOB). You also have three variants of these types of character data: NATIONAL CHARACTER, NATIONAL CHARACTER VARYING, and NATIONAL CHARACTER LARGE OBJECT. Details coming right up.

				CHARACTER data type

				If you define the data type of a column as CHARACTER or CHAR, you can specify the number of characters the column holds by using the syntax CHARACTER (x), where x is the number of characters. If you specify a column’s data type as CHARACTER (16), for example, the maximum length of any data you can enter in the column is 16 characters. If you don’t specify an argument (that is, you don’t provide a value in place of the x, SQL assumes a field length of one character. If you enter data into a CHARACTER field of a specified length and you enter fewer characters than the specified number, SQL fills the remaining character spaces with blanks.

				CHARACTER VARYING data type

				The CHARACTER VARYING data type is useful if entries in a column can vary in length but you don’t want SQL to pad the field with blanks. This data type enables you to store exactly the number of characters that the user enters. No default value exists for this data type. To specify this data type, use the form CHARACTER VARYING (x) or VARCHAR (x), where x is the maximum number of characters permitted.

				CHARACTER LARGE OBJECT data type

				The CHARACTER LARGE OBJECT (CLOB) data type was introduced with SQL:1999. As its name implies, it’s used with huge character strings that are too large for the CHARACTER type. CLOBs behave much like ordinary character strings, but there are a number of restrictions on what you can do with them.

				For one thing, a CLOB may not be used in a PRIMARY KEY, FOREIGN KEY, or UNIQUE predicate. Furthermore, it may not be used in a comparison other than one for either equality or inequality. Because of their large size, applications generally do not transfer CLOBs to or from a database. Instead, a special client-side data type called a CLOB locator is used to manipulate the CLOB data. It’s a parameter whose value identifies a large character-string object.

				Note: A predicate is a statement that may either be logically True or logically False.

				NATIONAL CHARACTER, NATIONAL CHARACTER VARYING, and NATIONAL CHARACTER LARGE OBJECT data types

				Various languages have some characters that differ from any characters in another language. For example, German has some special characters not present in the English-language character set. Some languages, such as Russian, have a very different character set from that of English. For example, if you specify the English character set as the default for your system, you can use alternate character sets because the NATIONAL CHARACTER, NATIONAL CHARACTER VARYING, and NATIONAL CHARACTER LARGE OBJECT data types function the same as the CHARACTER, CHARACTER VARYING, and CHARACTER LARGE OBJECT data types — the only difference is that the character set you’re specifying is different from the default character set.

				You can specify the character set as you define a table column. If you want, each column can use a different character set. The following example of a table-creation statement uses multiple character sets:

				CREATE TABLE XLATE (

				 LANGUAGE_1 CHARACTER (40),

				 LANGUAGE_2 CHARACTER VARYING (40) CHARACTER SET GREEK,

				 LANGUAGE_3 NATIONAL CHARACTER (40),

				 LANGUAGE_4 CHARACTER (40) CHARACTER SET KANJI

) ;

				Here the LANGUAGE_1 column contains characters in the implementation’s default character set. The LANGUAGE_3 column contains characters in the implementation’s national character set. The LANGUAGE_2 column contains Greek characters. And the LANGUAGE_4 column contains Kanji characters. After a long absence, Asian character sets, such as Kanji, are now available in many DBMS products.

				Binary strings

				The BINARY string data types are new in SQL:2008. Considering that binary data has been fundamental to digital computers since the Atanasoff-Berry Computer of the 1930s, this recognition of the importance of binary data seems a little late in coming to SQL. (Better late than never, I suppose.) There are three different binary types, BINARY, BINARY VARYING, and BINARY LARGE OBJECT.

				BINARY data type

				If you define the data type of a column as BINARY, you can specify the number of bytes (octets) the column holds by using the syntax BINARY (x), where x is the number of bytes. If you specify a column’s data type as BINARY (16), for example, the binary string must be 16 bytes in length. BINARY data must be entered as bytes, starting with byte one.

				BINARY VARYING data type

				Use the BINARY VARYING or VARBINARY type when the length of a binary string is a variable. To specify this data type, use the form BINARY VARYING (x) or VARBINARY (x), where x is the maximum number of bytes permitted. The minimum size of the string is zero and the maximum size is x.

				BINARY LARGE OBJECT data type

				The BINARY LARGE OBJECT (BLOB) data type is used with huge binary strings that are too large for the BINARY type. Graphical images and music files are examples of huge binary strings. BLOBs behave much like ordinary binary strings, but SQL puts a number of restrictions on what you can do with them.

				For one thing, you can’t use a BLOB in a PRIMARY KEY, FOREIGN KEY, or UNIQUE predicate. Furthermore, no BLOBs are allowed in comparisons other than those for equality or inequality. BLOBs are large, so applications generally don’t transfer actual BLOBs to or from a database. Instead, they use a special client-side data type called a BLOB locator to manipulate the BLOB data. The locator is a parameter whose value identifies a binary large object.

				Booleans

				The BOOLEAN data type consists of the distinct truth values True and False, as well as Unknown. If either a Boolean True or False value is compared to a NULL or Unknown truth value, the result will have the Unknown value.

				Datetimes

				The SQL standard defines five data types that deal with dates and times; they’re called datetime data types, or simply datetimes. Considerable overlap exists among these data types, so some implementations you encounter may not support all five.

				[image: warning_bomb.eps] Implementations that do not fully support all five data types for dates and times may have problems with databases that you try to migrate from another implementation. If you have trouble with a migration, check the source and the destination implementations to see how they represent dates and times.

				DATE data type

				The DATE type stores year, month, and day values of a date, in that order. The year value is four digits long, and the month and day values are both two digits long. A DATE value can represent any date from the year 0001 to the year 9999. The length of a DATE is ten positions, as in 1957-08-14.

				TIME WITHOUT TIME ZONE data type

				The TIME WITHOUT TIME ZONE data type stores hour, minute, and second values of time. The hours and minutes occupy two digits. The seconds value may be only two digits but may also expand to include an optional fractional part. Therefore this data type can represent a time such as (for example) 32 minutes and 58.436 seconds past 9:00 a.m. as 09:32:58.436.

				The precision of the fractional part is implementation-dependent but is at least six digits long. A TIME WITHOUT TIME ZONE value takes up eight positions (including colons) when the value has no fractional part, or nine positions (including the decimal point) plus the number of fractional digits when the value does include a fractional part. You specify TIME WITHOUT TIME ZONE type data either as TIME, which gives you the default of no fractional digits, or as TIME WITHOUT TIME ZONE (p), where p is the number of digit positions to the right of the decimal. The example in the preceding paragraph represents a data type of TIME WITHOUT TIME ZONE (3).

				TIMESTAMP WITHOUT TIME ZONE data type

				TIMESTAMP WITHOUT TIME ZONE data includes both date and time information. The lengths and the restrictions on the values of the components of TIMESTAMP WITHOUT TIME ZONE data are the same as they are for DATE and TIME WITHOUT TIME ZONE data, except for one difference: The default length of the fractional part of the time component of a TIMESTAMP WITHOUT TIME ZONE is six digits rather than zero.

				If the value has no fractional digits, the length of a TIMESTAMP WITHOUT TIME ZONE is 19 positions — ten date positions, one space as a separator, and eight time positions, in that order. If fractional digits are present (six digits is the default), the length is 20 positions plus the number of fractional digits. The 20th position is for the decimal point. You specify a field as TIMESTAMP WITHOUT TIME ZONE type by using either TIMESTAMP WITHOUT TIME ZONE or TIMESTAMP WITHOUT TIME ZONE (p), where p is the number of fractional digit positions. The value of p can’t be negative, and the implementation determines its maximum value.

				TIME WITH TIME ZONE data type

				The TIME WITH TIME ZONE data type is the same as the TIME WITHOUT TIME ZONE data type except this type adds information about the offset from universal time (UTC, also known as Greenwich Mean Time or GMT). The value of the offset may range anywhere from –12:59 to +13:00. This additional information takes up six more digit positions following the time — a hyphen as a separator, a plus or minus sign, and then the offset in hours (two digits) and minutes (two digits) with a colon in between the hours and minutes. A TIME WITH TIME ZONE value with no fractional part (the default) is 14 positions long. If you specify a fractional part, the field length is 15 positions plus the number of fractional digits.

				TIMESTAMP WITH TIME ZONE data type

				The TIMESTAMP WITH TIME ZONE data type functions the same as the TIMESTAMP WITHOUT TIME ZONE data type except that this data type also adds information about the offset from universal time. The additional information takes up six more digit positions following the timestamp (see the preceding section for the form of the time-zone information). Including time-zone data sets up 25 positions for a field with no fractional part and 26 positions — plus the number of fractional digits for fields that do include a fractional part (six is the default number of fractional digits).

				Intervals

				The interval data types relate closely to the datetime data types. An interval is the difference between two datetime values. In many applications that deal with dates, times, or both, you sometimes need to determine the interval between two dates or two times.

				SQL recognizes two distinct types of intervals: the year-month interval and the day-time interval. A year-month interval is the number of years and months between two dates. A day-time interval is the number of days, hours, minutes, and seconds between two instants within a month. You can’t mix calculations involving a year-month interval with calculations involving a day-time interval, because months come in varying lengths (28, 29, 30, or 31 days long).

				XML type

				The XML data type has a tree structure, so a root node may have child nodes, which may, in turn, have children of their own. First introduced in SQL:2003, the XML type was fleshed out in SQL/XML:2005, and further augmented in SQL:2008. The 2005 edition defined five parameterized subtypes, while retaining the original plain-vanilla XML type. XML values can exist as instances of two or even more types, because some of the subtypes are subtypes of other subtypes. (Maybe I should call them sub-subtypes, or even sub-sub-subtypes. Fortunately, SQL:2008 defined a standard way of referring to subtypes.)

				The primary modifiers of the XML type are SEQUENCE, CONTENT, and DOCUMENT. The secondary modifiers are UNTYPED, ANY, or XMLSCHEMA. Figure 2-1 shows the tree-like structure illustrating the hierarchical relationships among the subtypes.

				Figure 2-1: Relationships of the XML subtypes.

				[image: 557419-fg0201.eps]

				The following list is a rundown of the XML types you should be familiar with. Don’t freak out if it looks like Greek (or worse yet, Linear A) to you. A more detailed explanation of these types is given in Chapter 17. I’ve organized the list to begin with the most basic types and end with the most complicated:

				XML(SEQUENCE): Every value in XML is either an SQL NULL value or an XQuery sequence. That way, every XML value is an instance of the XML(SEQUENCE) type. XQuery is a query language specifically designed to extract information from XML data. This is the most basic XML type.

				[image: remember.eps] XML(SEQUENCE) is the least restrictive of the XML types. It can accept values that are not well-formed XML values. The other XML types, on the other hand, aren’t quite so forgiving.

				XML(CONTENT(ANY)): This is a slightly more restrictive type than XML(SEQUENCE). Every XML value that is either a NULL value or an XQuery document node (or a child of that document node) is an instance of this type. Every instance of XML(CONTENT(ANY)) is also an instance of XML(SEQUENCE). XML values of the XML(CONTENT(ANY)) type are not necessarily well formed, either. Such values may be intermediate results in a query that are later reduced to well-formed values.

				XML(CONTENT(UNTYPED)): This is more restrictive than XML(ANY CONTENT), and thus any value of the XML(CONTENT(UNTYPED)) type is also an instance of the XML(CONTENT(ANY)) type and the XML(SEQUENCE) type. Every XML value that is either the null value or a non-null value of type XML(CONTENT(ANY)) is an XQuery document node D, such that the following is true for every XQuery element node contained in the XQuery tree T rooted in D:

				 The type-name property is xdt:untyped.

				 The nilled property is False.

				 For every XQuery attribute node contained in T, the type property is xdt:untypedAtomic.

				 For every XQuery attribute node contained in T, the type property is a value of type-name XML(CONTENT(UNTYPED)).

				XML(CONTENT(XMLSCHEMA)): This is a second subtype of XML(CONTENT(ANY)) besides XML(CONTENT(UNTYPED)). As such it is also a subtype of XML(SEQUENCE). Every XML value that is either the null value or a non-null value of type XML(CONTENT(ANY)) and is also an XQuery document node D such that every XQuery element node that is contained in the XQuery tree T rooted in D

				 Is valid according to the XML Schema S, or

				 Is valid according to an XML namespace N in an XML Schema S, or

				 Is valid according to a global element declaration schema component E in an XML schema S,

				 Is a value of type XML(CONTENT(XMLSCHEMA)), whose type descriptor includes the registered XML Schema descriptor of S, and, if N is specified, the XML namespace URI of N, or if E is specified, the XML namespace URI of E and the XML NCName of E.

				XML(DOCUMENT(ANY)): This is another subtype of the XML(CONTENT(ANY)) type with the added restriction that instances of XML(DOCUMENT(ANY)) are document nodes that have exactly one XQuery element node, zero or more XQuery comment nodes, and zero or more XQuery processing instruction nodes.

				XML(DOCUMENT(UNTYPED)): Every value that is either the NULL value or a non-null value of type XML(CONTENT(UNTYPED)) that is an XQuery document node whose children property has exactly one XQuery element node, zero or more XQuery comment nodes, and zero or more XQuery processing instruction nodes is a value of type XML(DOCUMENT(UNTYPED)). All instances of XML(DOCUMENT(UNTYPED)) are also instances of XML(CONTENT(UNTYPED)). Furthermore, all instances of XML(DOCUMENT(UNTYPED)) are also instances of XML(DOCUMENT(ANY)). XML(DOCUMENT(UNTYPED)) is the most restrictive of the subtypes, sharing the restrictions of all the other subtypes. Any document that qualifies as an XML(DOCUMENT(UNTYPED)) is also an instance of all the other XML subtypes.

				ROW types

				The ROW data type was introduced with SQL:1999. It’s not that easy to understand, and as a beginning to intermediate SQL programmer, you may never use it. After all, people got by without it just fine between 1986 and 1999.

				One notable thing about the ROW data type is that it violates the rules of normalization that E. F. Codd declared in the early days of relational database theory. (I talk more about those rules in Chapter 5.) One of the defining characteristics of first normal form is that a field in a table row may not be multivalued. A field may contain one and only one value. However, the ROW data type allows you to declare an entire row of data to be contained within a single field in a single row of a table — in other words, a row nested within a row.

				[image: remember.eps] The normal forms, first articulated by Dr. Codd, are defining characteristics of relational databases. Inclusion of the ROW type in the SQL standard was the first attempt to broaden SQL beyond the pure relational model.

				Consider the following SQL statement, which defines a ROW type for a person’s address information:

				CREATE ROW TYPE addr_typ (

				 Street CHARACTER VARYING (25),

				 City CHARACTER VARYING(20),

				 State CHARACTER (2),

				 PostalCode CHARACTER VARYING (9)

) ;

				After it’s defined, the new ROW type can be used in a table definition:

				CREATE TABLE CUSTOMER (

				 CustID INTEGER PRIMARY KEY,

				 LastName CHARACTER VARYING (25),

				 FirstName CHARACTER VARYING (20),

				 Address addr_typ,

				 Phone CHARACTER VARYING (15)

) ;

				The advantage here is that if you’re maintaining address information for multiple entities — such as customers, vendors, employees, and stockholders — you only have to define the details of the address specification once: in the ROW type definition.

				Collection types

				After SQL broke out of the relational straightjacket with SQL:1999, data types that violate first normal form became possible. It became possible for a field to contain a whole collection of objects rather than just one. The ARRAY type was introduced in SQL:1999, and the MULTISET type was introduced in SQL:2003.

				Two collections may be compared to each other only if they are both the same type, either ARRAY or MULTISET, and if their element types are comparable. Because arrays have a defined element order, corresponding elements from the arrays can be compared. Multisets have no defined element order, but can be compared if (a) an enumeration exists for each multiset being compared and (b) the enumerations can be paired.

				ARRAY type

				The ARRAY data type violates first normal form (1NF), but in a different way than the way the ROW type violates 1NF. The ARRAY type, a collection type, is not a distinct type in the same sense that CHARACTER and NUMERIC are distinct data types. An ARRAY type merely allows one of the other types to have multiple values within a single field of a table. For example, say your organization needs to be able to contact customers whether they’re at work, at home, or on the road. You want to maintain multiple telephone numbers for them. You can do this by declaring the Phone attribute as an array, as shown in the following code:

				CREATE TABLE CUSTOMER (

				 CustID INTEGER PRIMARY KEY,

				 LastName CHARACTER VARYING (25),

				 FirstName CHARACTER VARYING (20),

				 Address addr_typ,

				 Phone CHARACTER VARYING (15) ARRAY [3]

) ;

				The ARRAY [3] notation allows you to store up to three telephone numbers in the CUSTOMER table. The three telephone numbers represent an example of a repeating group. Repeating groups are a no-no according to classical relational database theory, but this is one of several examples of cases where SQL:1999 broke the rules. When Dr. Codd first specified the rules of normalization, he traded off functional flexibility for data integrity. SQL:1999 took back some of that functional flexibility, at the cost of some added structural complexity.

				[image: remember.eps] The increased structural complexity could translate into compromised data integrity if you are not fully aware of all the effects of the actions you perform on your database. Arrays are ordered, in that each element in an array is associated with exactly one ordinal position in the array.

				MULTISET type

				A multiset is an unordered collection. Specific elements of the multiset may not be referenced; usually that’s because those elements are not assigned specific ordinal positions in the multiset.

				REF types

				REF types are not part of core SQL. This means that a DBMS may claim compliance with the SQL standard without implementing REF types at all. The REF type is not a distinct data type in the sense that CHARACTER and NUMERIC are. Instead, it’s a pointer to a data item, a row type, or an abstract data type that resides in a row of a table (a site). Dereferencing the pointer can retrieve the value stored at the target site.

				If you’re confused, don’t worry, because you’re not alone. Using the REF types requires a working knowledge of object-oriented programming (OOP) principles. This book refrains from wading too deeply into the murky waters of OOP. In fact — because the REF types are not a part of core SQL — you may be better off if you don’t use them. If you want maximum portability across DBMS platforms, stick to core SQL.

				User-defined types

				User-defined types (UDTs) represent another example of features that arrived in SQL:1999 that come from the object-oriented programming world. As an SQL programmer, you are no longer restricted to the data types defined in the SQL specification. You can define your own data types, using the principles of abstract data types (ADTs) found in such object-oriented programming languages as C++.

				One of the most important benefits of UDTs is the fact that you can use them to eliminate the impedance mismatch between SQL and the host language that is “wrapped around” the SQL. A long-standing problem with SQL has been the fact the SQL’s predefined data types do not match the data types of the host languages within which SQL statements are embedded. Now, with UDTs, a database programmer can create data types within SQL that match the data types of the host language.

				A UDT has attributes and methods, which are encapsulated within the UDT. The outside world can see the attribute definitions and the results of the methods — but the specific implementations of the methods are hidden from view. Access to the attributes and methods of a UDT can be further restricted by specifying that they are public, private, or protected. Public attributes or methods are available to all users of a UDT. Private attributes or methods are available only to the UDT itself. Protected attributes or methods are available only to the UDT itself or its subtypes. You see from this that a UDT in SQL behaves much like a class in an object-oriented programming language. Two forms of user-defined types exist: distinct types and structured types.

				Distinct types

				Distinct types are the simpler of the two forms of user-defined types. A distinct type’s defining feature is that it’s expressed as a single data type. It is constructed from one of the predefined data types, called the source type. Multiple distinct types that are all based on a single source type are distinct from each other; thus, they are not directly comparable. For example, you can use distinct types to distinguish between different currencies. Consider the following type definition:

				CREATE DISTINCT TYPE USdollar AS DECIMAL (9,2) ;

				This definition creates a new data type for U.S. dollars (USdollar), based on the predefined DECIMAL data type. You can create another distinct type in a similar manner:

				CREATE DISTINCT TYPE Euro AS DECIMAL (9,2) ;

				You can now create tables that use these new types:

				CREATE TABLE USInvoice (

				 InvID INTEGER PRIMARY KEY,

				 CustID INTEGER,

				 EmpID INTEGER,

				 TotalSale USdollar,

				 Tax USdollar,

				 Shipping USdollar,

				 GrandTotal USdollar

) ;

				CREATE TABLE EuroInvoice (

				 InvID INTEGER PRIMARY KEY,

				 CustID INTEGER,

				 EmpID INTEGER,

				 TotalSale Euro,

				 Tax Euro,

				 Shipping Euro,

				 GrandTotal Euro

) ;

				The USdollar type and the Euro type are both based on the DECIMAL type, but instances of one cannot be directly compared with instances of the other or with instances of the DECIMAL type. In SQL, as in the real world, it is possible to convert U.S. dollars into euros, but doing so requires a special operation (CAST). After conversion is complete, comparisons are possible.

				Structured types

				The second form of user-defined type — the structured type — is expressed as a list of attribute definitions and methods instead of being based on a single predefined source type.

				Constructors

				When you create a structured UDT, the DBMS automatically creates a constructor function for it, giving it the same name as the UDT. The constructor’s job is to initialize the attributes of the UDT to their default values.

				Mutators and observers

				When you create a structured UDT, the DBMS automatically creates a mutator function and an observer function. A mutator, when invoked, changes the value of an attribute of a structured type. An observer function is the opposite of a mutator function; its job is to retrieve the value of an attribute of a structured type. You can include observer functions in SELECT statements to retrieve values from a database.

				Subtypes and supertypes

				A hierarchical relationship can exist between two structured types. For example, a type named MusicCDudt has a subtype named RockCDudt and another subtype named ClassicalCDudt. MusicCDudt is the supertype of those two subtypes. RockCDudt is a proper subtype of MusicCDudt if there is no subtype of MusicCDudt that is a supertype of RockCDudt. If RockCDudt has a subtype named HeavyMetalCDudt, HeavyMetalCDudt is also a subtype of MusicCDudt, but it is not a proper subtype of MusicCDudt.

				A structured type that has no supertype is called a maximal supertype, and a structured type that has no subtypes is called a leaf subtype.

				Example of a structured type

				You can create structured UDTs in the following way:

				/* Create a UDT named MusicCDudt */

				CREATE TYPE MusicCDudt AS

				/* Specify attributes */

				Title CHAR(40),

				Cost DECIMAL(9,2),

				SuggestedPrice DECIMAL(9,2)

				/* Allow for subtypes */

				NOT FINAL ;

				CREATE TYPE RockCDudt UNDER MusicCDudt NOT FINAL ;

				The subtype RockCDudt inherits the attributes of its supertype MusicCDudt.

				CREATE TYPE HeavyMetalCDudt UNDER RockCDudt FINAL ;

				Now that you have the types, you can create tables that use them. Here’s an example:

				CREATE TABLE METALSKU (

				 Album HeavyMetalCDudt,

				 SKU INTEGER) ;

				Now you can add rows to the new table:

				BEGIN

				 /* Declare a temporary variable a */

				 DECLARE a = HeavyMetalCDudt ;

				 /* Execute the constructor function */

				 SET a = HeavyMetalCDudt() ;

				 /* Execute first mutator function */

				 SET a = a.title(‘Edward the Great’) ;

				 /* Execute second mutator function */

				 SET a = a.cost(7.50) ;

				 /* Execute third mutator function */

				 SET a = a.suggestedprice(15.99) ;

				 INSERT INTO METALSKU VALUES (a, 31415926) ;

				 END

				Data type summary

				Table 2-2 lists various data types and displays literals that conform to each type.

				
					
						
								
								Table 2-2 Data Types

							
						

						
								
								Data Type

							
								
								Example Value

							
						

						
								
								CHARACTER (20)

							
								
								‘Amateur Radio ’

							
						

						
								
								VARCHAR (20)

							
								
								‘Amateur Radio’

							
						

						
								
								CLOB (1000000)

							
								
								‘This character string is a million characters long . . .’

							
						

						
								
								SMALLINT, BIGINT, or INTEGER

							
								
								7500

							
						

						
								
								NUMERIC or DECIMAL

							
								
								3425.432

							
						

						
								
								REAL, FLOAT, or DOUBLE PRECISION

							
								
								6.626E-34

							
						

						
								
								BINARY (1)

							
								
								‘01100011’

							
						

						
								
								VARBINARY (4)

							
								
								‘011000111100011011100110’

							
						

						
								
								BLOB (1000000)

							
								
								‘1001001110101011010101010101. . .’

							
						

						
								
								BOOLEAN

							
								
								‘true’

							
						

						
								
								DATE

							
								
								DATE ‘1957-08-14’

							
						

						
								
								TIME (2) WITHOUT TIME ZONE 1

							
								
								TIME ‘12:46:02.43’ WITHOUT TIME ZONE

							
						

						
								
								TIME (3) WITH TIME ZONE

							
								
								TIME ‘12:46:02.432-08:00’ WITH TIME ZONE

							
						

						
								
								TIMESTAMP WITHOUT TIME ZONE (0)

							
								
								TIMESTAMP ‘1957-08-14 12:46:02’ WITHOUT TIME ZONE

							
						

						
								
								TIMESTAMP WITH TIME ZONE (0)

							
								
								TIMESTAMP ‘1957-08-14 12:46:02-08:00’ WITH TIME ZONE

							
						

						
								
								INTERVAL DAY

							
								
								INTERVAL ‘4’ DAY

							
						

						
								
								XML(SEQUENCE)

							
								
								<Client>Vince Tenetria</Client>

							
						

						
								
								ROW

							
								
								ROW (Street VARCHAR (25), City VARCHAR (20), State CHAR (2), PostalCode VARCHAR (9))

							
						

						
								
								ARRAY

							
								
								INTEGER ARRAY [15]

							
						

						
								
								MULTISET

							
								
								No literal applies to the MULTISET type.

							
						

						
								
								REF

							
								
								Not a type, but a pointer

							
						

						
								
								USER DEFINED TYPE

							
								
								Currency type based on DECIMAL

							
						

						
								
								1 Argument specifies number of fractional digits.

							
						

					
				

				[image: remember.eps] Your SQL implementation may not support all the data types that I describe in this section. Furthermore, your implementation may support nonstandard data types that I don’t describe here. (Your mileage may vary, and so on. You know the drill.)

				Null Values

				[image: remember.eps] If a database field contains a data item, that field has a specific value. A field that does not contain a data item is said to have a null value. Keep in mind that

				In a numeric field, a null value is not the same as a value of zero.

				In a character field, a null value is not the same as a blank.

				Both a numeric zero and a blank character are definite values. A null value indicates that a field’s value is undefined — its value is not known.

				A number of situations exist in which a field may have a null value. The following list describes a few of these situations and gives an example of each:

				The value exists, but you don’t know what the value is yet. You set MASS to null in the Higgs boson row of the ELEMENTARY_PARTICLE table before the mass of the Higgs boson is accurately determined.

				The value doesn’t exist yet. You set TOTAL_SOLD to null in the SQL For Dummies, 7th Edition row of the BOOKS table because the first set of quarterly sales figures is not yet reported.

				The field isn’t applicable for this particular row. You set SEX to null in the C3PO row of the EMPLOYEE table because C3PO is a droid that has no gender. (You knew that.)

				The value is out of range. You set SALARY to null in the Oprah Winfrey row of the EMPLOYEE table because you designed the SALARY column as type NUMERIC (8,2) and Oprah’s contract calls for pay in excess of $999,999.99. (You knew that too.)

				[image: tip.eps] A field can have a null value for many different reasons. Don’t jump to any hasty conclusions about what any particular null value means.

				Constraints

				Constraints are restrictions that you apply to the data that someone can enter into a database table. You may know, for example, that entries in a particular numeric column must fall within a certain range. If anyone makes an entry that falls outside that range, then that entry must be an error. Applying a range constraint to the column prevents this type of error from happening.

				Traditionally, the application program that uses the database applies any constraints to a database. The most recent DBMS products, however, enable you to apply constraints directly to the database. This approach has several advantages. If multiple applications use the same database, you apply the constraints only once (rather than multiple times). Also, adding constraints at the database level is usually simpler than adding them to an application. Often all you do is tack the appropriate clause onto your CREATE statement.

				I discuss constraints and assertions (which are constraints that apply to more than one table) in detail in Chapter 5.

				Using SQL in a Client/Server System

				SQL is a data sublanguage that works on a standalone system or on a multiuser system. SQL works particularly well on a client/server system. On such a system, users on multiple client machines that connect to a server machine can access — via a local-area network (LAN) or other communications channel — a database that resides on the server to which they’re connected. The application program on a client machine contains SQL data-manipulation commands. The portion of the DBMS residing on the client sends these commands to the server across the communications channel that connects the server to the client. At the server, the server portion of the DBMS interprets and executes the SQL command and then sends the results back to the client across the communication channel. You can encode very complex operations into SQL at the client, and then decode and perform those operations at the server. This type of setup results in the most effective use of the bandwidth of that communication channel.

				[image: remember.eps] If you retrieve data by using SQL on a client/server system, only the data you want travels across the communication channel from the server to the client. In contrast, a simple resource-sharing system, with minimal intelligence at the server, must send huge blocks of data across the channel to give you the small piece of data that you want. This sort of massive transmission can slow operations considerably. The client/server architecture complements the characteristics of SQL to provide good performance at a moderate cost on small, medium, and large networks.

				The server

				Unless it receives a request from a client, the server does nothing; it just stands around and waits. If multiple clients require service at the same time, however, servers must respond quickly. Servers generally differ from client machines in terms of how much data they handle. They have large amounts of very fast disk storage, optimized for fast data access and retrieval. And because they must handle traffic coming in simultaneously from multiple client machines, servers need a fast processor, or even multiple processors.

				What the server is

				The server (short for database server) is the part of a client/server system that holds the database. The server also holds the server software — the part of a database management system that interprets commands coming in from the clients and translates these commands into operations in the database. The server software also formats the results of retrieval requests and sends the results back to the requesting client.

				What the server does

				The server’s job is relatively simple and straightforward. All a server needs to do is read, interpret, and execute commands that come to it across the network from clients. Those commands are in one of several data sublanguages.

				A sublanguage doesn’t qualify as a complete language — it implements only part of a language. A data sublanguage may, for example, deal only with data handling. The sublanguage has operations for inserting, updating, deleting, and selecting data, but may not have flow control structures such as DO loops, local variables, functions, procedures, or input/output to printers. SQL is the most common data sublanguage in use today and has become an industry standard. In fact, SQL has supplanted proprietary data sublanguages on machines in all performance classes. With SQL:1999, SQL acquired many of the features missing from traditional sublanguages. However, SQL is still not a complete general-purpose programming language; it must be combined with a host language to create a database application.

				The client

				The client part of a client/server system consists of a hardware component and a software component. The hardware component is the client computer and its interface to the local-area network. This client hardware may be very similar (or even identical) to the server hardware. The software is the distinguishing component of the client.

				What the client is

				The client’s primary job is to provide a user interface. As far as the user is concerned, the client machine is the computer, and the user interface is the application. The user may not even realize that the process involves a server. The server is usually out of sight — often in another room. Aside from the user interface, the client also contains the application program and the client part of the DBMS. The application program performs the specific task you require (say, in accounts receivable or order entry). The client part of the DBMS executes the application program’s commands and exchanges data and SQL data-manipulation commands with the server part of the DBMS.

				What the client does

				The client part of a DBMS displays information on-screen and responds to user input transmitted via the keyboard, mouse, or other input device. The client may also process data coming in from a telecommunications link or from other stations on the network. The client part of the DBMS does all the application-specific “thinking.” To a developer, the client part of a DBMS is the interesting part. The server part just handles the requests of the client part in a repetitive, mechanical fashion.

				Using SQL on the Internet or an Intranet

				Database operation on the Internet and on intranets differs fundamentally from database operation in a traditional client/server system. The difference is primarily on the client end. In a traditional client/server system, much of the functionality of the DBMS resides on the client machine. On an Internet-based database system, most or all of the DBMS resides on the server. The client may host nothing more than a Web browser. At most, the client holds a browser and a browser extension, such as a Firefox add-on or an ActiveX control. Thus the conceptual “center of mass” of the system shifts toward the server. This shift has several advantages:

				The client portion of the system (browser) is low-cost or even free.

				You have a standardized user interface.

				The client is easy to maintain.

				You have a standardized client/server relationship.

				You have a common means of displaying multimedia data.

				The main disadvantages of performing database manipulations over the Internet involve security and data integrity:

				To protect information from unwanted access or tampering, both the Web server and the client browser must support strong encryption.

				Browsers don’t perform adequate data-entry validation checks.

				Database tables residing on different servers may become desynchronized.

				Client and server extensions designed to address these concerns make the Internet a feasible location for production database applications. The architecture of an intranet is similar to that of the Internet but security is less of a concern. Because the organization maintaining the intranet has physical control over all the client machines — as well as the servers and the network that connects these components together — an intranet suffers much less exposure to the efforts of malicious hackers. Data-entry errors and database desynchronization, however, do remain concerns.

			

		

	

End of sample

 To search for additional titles please go to

 http://search.overdrive.com.

OEBPS/images/557419-fg0103_fmt.jpeg
Wi (e

B TR e Seachs e

[l Fonsar

I — -

OEBPS/images/557419-fg0106_fmt.jpeg
—L i}

Gusomar

nvocE T

[or—
Customerl
Do

TS pAYvew

Tt < Tl

OEBPS/images/557419-fg1201_fmt.jpeg

OEBPS/images/557419-fg0302_fmt.jpeg
—L i} P

Gusomar
Freame. Fraame

Loatoms Lestiane
St

oy
Sne
Zpeote
Phone Phons

.

OEBPS/images/557419-fg0403_fmt.jpeg

OEBPS/images/557419-fg1501_fmt.jpeg

OEBPS/images/557419-fg0305_fmt.jpeg
Dstatase

[Gom] [som]

7 VAN
2N N

| [Tabe | [Tale | [Tabie] [Tabie | [Tavie] [Tavie | [Tavie | [Tabte] [Tabie | [Taie]

OEBPS/images/557419-fg0406_fmt.jpeg

OEBPS/images/557419-fg0504_fmt.jpeg
‘SALES_TRACK

Proct e
oo Landey dtrg o
0| T 210
o - am
R am
o Landey dtrg 2m
oo Tetipst 210

OEBPS/images/557419-fg1602_fmt.jpeg

OEBPS/images/557419-fg0501_fmt.jpeg
cuenT TesTs EnpLoveE
Books
) oroeRs 0
Protuce

ResuuTs

OEBPS/images/557419-fg0412_fmt.jpeg

OEBPS/images/557419-pp0301_fmt.jpeg
The 5t Wave By Rich Tennant

|

“Dow’t 1augh. T4's £aster than our
corrent sgstem.”

OEBPS/images/arrow.jpg

OEBPS/images/557419-fg0415_fmt.jpeg

OEBPS/images/557419-fg0602_fmt.jpeg
S —

Outetmber|

Lot REFORTIN LA Ve
R—
1 e

FEsULTS Tt DeRepord

p—

Orertumber

et

Deeepord

PreimnanFnal

OEBPS/images/557419-fg0409_fmt.jpeg

OEBPS/images/557419-fg0902_fmt.jpeg
e s

oo
I

OEBPS/images/557419-fg0410_fmt.jpeg

OEBPS/images/557419-fg0502_fmt.jpeg
SALES

P e
onn Landry drgen. B
W | Teogane 3
o Chrin s ¥
R 3

OEBPS/images/557419-fg0407_fmt.jpeg

OEBPS/images/557419-fg0603_fmt.jpeg
S —

Ot BATHDAY Vi
Cienans
et

e ome
[BithdyCharge
TEsTs o

Totuns [
Lo B

OEBPS/images/557419-fg2001_fmt.jpeg
Pan— S ———

OEBPS/images/557419-fg0413_fmt.jpeg

OEBPS/images/557419-fg1603_fmt.jpeg
e
At

Wb
Broweer

WotdWide
et

OEBPS/images/warning_bomb_fmt.jpeg

OEBPS/images/557419-pp0101_fmt.jpeg
The 5th Wave By Rich Tennant

[AUTO SHOW FOR COMPUTER
STORAGE EXEQUTIVES

e

OEBPS/images/557419-fg1202_fmt.jpeg
-
]
e
gy

Ly

o

OEBPS/images/557419-fg0105_fmt.jpeg
Gusomar

BRANGH Gh Ve

Fra
Loatoms

St
oy
Sne
Zpeote

Phone

nvocE T

[or—
Customerl
B

Toisle
Toaeited
Fom0tPamert

Zpede - DD AND Zpod < - 399

OEBPS/images/WileyTitlePageLogo_fmt.jpeg
&)

VALEY
Wiley Publishing, Inc.

OEBPS/images/557419-fg0101_fmt.jpeg
..........

OEBPS/images/557419-fg1503_fmt.jpeg

OEBPS/images/557419-fg0402_fmt.jpeg

OEBPS/images/557419-fg0503_fmt.jpeg
‘CUST_PURCH PROD_PRICE.
Cutome D P P e
001 | Laundeydergnt Landy dawrgen | 12
W | Toapure Tootpasts 3
00| hlore b Chrin s 4

0| Toape

OEBPS/images/557419-fg0408_fmt.jpeg
sxgg)

OEBPS/images/557419-fg1302_fmt.jpeg
o

Ak

|

S inited Eion

Undgnd Opn dien

OEBPS/images/557419-fg0414_fmt.jpeg

OEBPS/images/557419-fg0201_fmt.jpeg
——

o omaaam

AL COTONTHNLSHNRY X EONTENTINTFED)

| awcmaema
.

R

OEBPS/images/557419-pp0201_fmt.jpeg
Ermioren

7 "thic thing and

_ N [see st e
/ C:.e w th

OEBPS/images/557419-fg0901_fmt.jpeg

OEBPS/images/557419-fg0904_fmt.jpeg

OEBPS/images/557419-fg0411_fmt.jpeg

OEBPS/images/tip_fmt.jpeg

OEBPS/images/557419-pp0501_fmt.jpeg
The 5t Wave By Rich Tennant

e Eals mabwril coomtila Rars vl Eaiteache.

OEBPS/images/557419-fg0301_fmt.jpeg

OEBPS/images/technicalstuff_fmt.jpeg

OEBPS/images/557419-fg1301_fmt.jpeg
Database dministrtor

Tt

ToaPuble

OEBPS/images/remember_fmt.jpeg

OEBPS/images/557419-fg1203_fmt.jpeg

OEBPS/images/557419-fg0104_fmt.jpeg
Gusomar

SALES. MR Ve
Fra

Fra
Loatoms

theh

St
oy
Sne
Zpeote

Phone

nvocE T

[or—
Customerl
B

Toisle
Toaeited
Fom0tPamert

Prons

OEBPS/images/557419-fg0102_fmt.jpeg
o
—3

M
o | e | Gam 81 it

| s 3 3
-
1900 | pos | 148 2 12

s

h
st
100

@

]
E
b

5|3 0w | s

ofofol 1] 0
IR
HHHEE]

Bt
g
@

OEBPS/images/cover.jpg

OEBPS/images/check.jpg

OEBPS/images/WileycopyrightLogo_fmt.jpeg

OEBPS/images/557419-fg0303_fmt.jpeg

OEBPS/images/557419-fg0401_fmt.jpeg

OEBPS/images/557419-fg1502_fmt.jpeg

OEBPS/images/557419-pp0401_fmt.jpeg
The 5t Wave By Rich Tennant

Sromm T

B o s 5

1T
“Theg're pushing the compang into 3 new, h
Brection svit aeked 1 e viguid pwp
‘the stovage system.”

OEBPS/images/557419-fg0404_fmt.jpeg

OEBPS/images/557419-pp0701_fmt.jpeg

OEBPS/images/557419-fg0416_fmt.jpeg

OEBPS/images/557419-fg0304_fmt.jpeg
AETmETTER LA Ww SO We SOEARWe KLY
Y e Sl &y
= — e) 2o
e S| Sonasn | - chegy
wioceTbe | woge e | srcoucr e

| begen
Tocneneas ety
rmopamen e

OEBPS/images/557419-fg0903_fmt.jpeg

OEBPS/images/557419-fg1601_fmt.jpeg
soue
[
Sarr
[
Gt [o w-n
Sarer s.w.r

Lcslarss Woraite
Nenwor et

OEBPS/images/557419-fg0601_fmt.jpeg
8]

Cienans |
gt
prose}

oy
Se
Posiods
Prom

o

Eonsctferan ORDERS_B1_STATE Vi,
R——

S
Drsetier

oROERS el

Outetmter ||
CienName

Testriod
Sabsporion
iy

OEBPS/images/557419-fg0405_fmt.jpeg

OEBPS/images/557419-pp0601_fmt.jpeg
The 5% Wave By Rich Tennant

[THE ANNALS OF
WEARABLE COMPUTING

T be vight there. T just need to do a core dump
Bl g whow Brek"

