

[image: image]

CONTENTS

Preface

Acknowledgments

Contributors

Part I: Foundations

Chapter 1: Introduction to Cloud Computing

1.1 Cloud Computing in a Nutshell

1.2 Roots of Cloud Computing

1.3 Layers and Types of Clouds

1.4 Desired Features of a Cloud

1.5 Cloud Infrastructure Management

1.6 Infrastructure as a Service Providers

1.7 Platform as a Service Providers

1.8 Challenges and Risks

1.9 Summary

References

Chapter 2: Migrating into a Cloud

2.1 Introduction

2.2 Broad Approaches to Migrating into the Cloud

2.3 The Seven-Step Model of Migration into a Cloud

2.4 Conclusions

Acknowledgments

References

Chapter 3: Enriching the ‘Integration as a Service’ Paradigm for the Cloud Era

3.1 An Introduction

3.2 The Onset of Knowledge Era

3.3 The Evolution of Saas

3.4 The Challenges of Saas Paradigm

3.5 Approaching the Saas Integration Enigma

3.6 New Integration Scenarios

3.7 the Integration Methodologies

3.8 Saas Integration Products and Platforms

3.9 Saas Integration Services

3.10 Businesses-to-Business Integration (B2Bi) Services

3.11 A Framework of Sensor—Cloud Integration [3]

3.12 Saas Integration Appliances

3.13 Conclusion

References

Chapter 4: The Enterprise Cloud Computing Paradigm

4.1 Introduction

4.2 Background

4.3 Issues for Enterprise Applications on the Cloud

4.4 Transition Challenges

4.5 Enterprise Cloud Technology and Market Evolution

4.6 Business Drivers Toward a Marketplace for Enterprise Cloud Computing

4.7 The Cloud Supply Chain

4.8 Summary

Acknowledgments

References

Part II: Infrastructure as a Service (Iaas)

Chapter 5: Virtual Machines Provisioning and Migration Services

5.1 Introduction and Inspiration

5.2 Background and Related Work

5.3 Virtual Machines Provisioning and Manageability

5.4 Virtual Machine Migration Services

5.5 VM Provisioning and Migration in Action

5.6 Provisioning in the Cloud Context

5.7 Future Research Directions

5.8 Conclusion

References

Chapter 6: On the Management of Virtual Machines for Cloud Infrastructures

6.1 The Anatomy of Cloud Infrastructures

6.2 Distributed Management of Virtual Infrastructures

6.3 Scheduling Techniques for Advance Reservation of Capacity

6.4 Capacity Management to Meet SLA Commitments

6.5 Conclusions and Future Work

Acknowledgments

References

Chapter 7: Enhancing Cloud Computing Environments Using a Cluster as a Service

7.1 Introduction

7.2 Related Work

7.3 Rvws Design

7.4 Cluster as a Service: The Logical Design

7.5 Proof of Concept

7.6 Future Research Directions

7.7 Conclusion

References

Chapter 8: Secure Distributed Data Storage in Cloud Computing

8.1 Introduction

8.2 Cloud Storage: from Lans to Wans

8.3 Technologies for Data Security in Cloud Computing

8.4 Open Questions and Challenges

8.5 Summary

References

Part III: Platform and Software as a Service (Paas/Iaas)

Chapter 9: Aneka—Integration of Private and Public Clouds

9.1 Introduction

9.2 Technologies and Tools for Cloud Computing

9.3 Aneka Cloud Platform

9.4 Aneka Resource Provisioning Service

9.5 Hybrid Cloud Implementation

9.6 Visionary thoughts for Practitioners

9.7 Summary and Conclusions

Acknowledgments

References

Chapter 10: CometCloud: An Autonomic Cloud Engine

10.1 Introduction

10.2 CometCloud Architecture

10.3 Autonomic Behavior of Cometcloud

10.4 Overview of Cometcloud-Based Applications

10.5 Implementation and Evaluation

10.6 Conclusion and Future Research Directions

Acknowledgments

References

Chapter 11: T-Systems’ Cloud-Based Solutions for Business Applications

11.1 Introduction

11.2 What Enterprises Demand of Cloud Computing

11.3 Dynamic ICT Services

11.4 Importance of Quality and Security in Clouds

11.5 Dynamic Data Center—Producing Business-Ready, Dynamic ICT Services

11.6 Case Studies

11.7 Summary: Cloud Computing Offers much more than Traditional Outsourcing

Acknowledgments

References

Chapter 12: Workflow Engine for Clouds

12.1 Introduction

12.2 Background

12.3 Workflow Management Systems and Clouds

12.4 Architecture of Workflow Management Systems

12.5 Utilizing Clouds for Workflow Execution

12.6 Case Study: Evolutionary Multiobjective Optimizations

12.7 Visionary thoughts for Practitioners

12.8 Future Research Directions

12.9 Summary and Conclusions

Acknowledgments

References

Chapter 13: Understanding Scientific Applications for Cloud Environments

13.1 Introduction

13.2 A Classification of Scientific Applications and Services in the Cloud

13.3 Saga-Based Scientific Applications That Utilize Clouds

13.4 Discussion

13.5 Conclusions

References

Chapter 14: the Mapreduce Programming Model and Implementations

14.1 Introduction

14.2 Mapreduce Programming Model

14.3 Major Mapreduce Implementations for the Cloud

14.4 Mapreduce Impacts and Research Directions

14.5 Conclusion

References

Part IV: Monitoring and Management

Chapter 15: An Architecture for Federated Cloud Computing

15.1 Introduction

15.2 A Typical Use Case

15.3 The Basic Principles of Cloud Computing

15.4 A Model for Federated Cloud Computing

15.5 Security Considerations

15.6 Summary and Conclusions

References

Chapter 16: SLA Management in Cloud Computing: a Service Provider’S Perspective

16.1 Inspiration

16.2 Traditional Approaches to SLO Management

16.3 Types of SLA

16.4 Life Cycle of SLA

16.5 SLA Management in Cloud

16.6 Automated Policy-Based Management

16.7 Conclusion

References

Chapter 17: Performance Prediction for HPC on Clouds

17.1 Introduction

17.2 Background

17.3 Grid and Cloud

17.4 HPC in the Cloud: Performance-Related Issues

17.5 Summary and Conclusions

References

Part V: Applications

Chapter 18: Best Practices in Architecting Cloud Applications in the AWS Cloud

18.1 Introduction

18.2 Background

18.3 Cloud Concepts

18.4 Cloud Best Practices

18.5 Greptheweb Case Study

18.6 Future Research Directions

18.7 Conclusion

Acknowledgments

References

Chapter 19: Massively Multiplayer Online Game Hosting on Cloud Resources

19.1 Introduction

19.2 Background

19.3 Related Work

19.4 Model

19.5 Experiments

19.6 Future Research Directions

19.7 Conclusions

Acknowledgments

References

Chapter 20: Building Content Delivery Networks Using Clouds

20.1 Introduction

20.2 Background/Related Work

20.3 Metacdn: Harnessing Storage Clouds for Low-Cost, High-Performance Content Delivery

20.4 Performance of the Metacdn Overlay

20.5 Future Directions

20.6 Conclusion

Acknowledgments

References

Chapter 21: Resource Cloud Mashups

21.1 Introduction

21.2 Concepts of a Cloud Mashup

21.3 Realizing Resource Mashups

21.4 Conclusions

References

Part VI: Governance and Case Studies

Chapter 22: Organizational Readiness and Change Management in the Cloud Age

22.1 Introduction

22.2 Basic Concept of Organizational Readiness

22.3 Drivers for Changes: A Framework to Comprehend the Competitive Environment

22.4 Common Change Management Models

22.5 Change Management Maturity Model (Cmmm)

22.6 Organizational Readiness Self-Assessment: (Who, When, Where, and How)

22.7 Discussion

22.8 Conclusion

Acknowledgments

References

Chapter 23: Data Security in the Cloud

23.1 An Introduction to the Idea of Data Security

23.2 the Current State of Data Security in the Cloud

23.3 Homo Sapiens and Digital Information

23.4 Cloud Computing and Data Security Risk

23.5 Cloud Computing and Identity

23.6 The Cloud, Digital Identity, and Data Security

23.7 Content Level Security—Pros and Cons

23.8 Future Research Directions

23.9 Conclusion

Acknowledgments

Further Reading

References

Chapter 24: Legal Issues in Cloud Computing

24.1 Introduction

24.2 Data Privacy and Security Issues

24.3 Cloud Contracting Models

24.4 Jurisdictional Issues Raised By Virtualization and Data Location

24.5 Commercial and Business Considerations—A Cloud User’S Viewpoint

24.6 Special Topics

24.7 Conclusion

24.8 Epilogue

References

Chapter 25: Achieving Production Readiness for Cloud Services

25.1 Introduction

25.2 Service Management

25.3 Producer–Consumer Relationship

25.4 Cloud Service Life Cycle

25.5 Production Readiness

25.6 Assessing Production Readiness

25.7 Summary

References

Index

[image: image]

Copyright © 2011 by John Wiley & Sons, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permission.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives or written sales materials. The advice and strategies contained herein may not be suitable for your situation. You should consult with a professional where appropriate. Neither the publisher nor author shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please contact our Customer Care Department within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic formats. For more information about Wiley products, visit our web site at www.wiley.com.

Library of Congress Cataloging-in-Publication Data:

Cloud computing : principles and paradigms / edited by Rajkumar Buyya, James Broberg, Andrzej Goscinski.

 p. ; cm.

 Includes bibliographical references and index.

 ISBN 978-0-470-88799-8 (hardback)

1. Cloud computing. I. Buyya, Rajkumar, 1970– II. Broberg, James. III. Goscinski, Andrzej.

 QA76.585.C58 2011

 004.67′8—dc22

2010046367

PREFACE

Cloud computing has recently emerged as one of the buzzwords in the ICT industry. Numerous IT vendors are promising to offer computation, storage, and application hosting services and to provide coverage in several continents, offering service-level agreements (SLA)-backed performance and uptime promises for their services. While these “clouds” are the natural evolution of traditional data centers, they are distinguished by exposing resources (computation, data/storage, and applications) as standards-based Web services and following a “utility” pricing model where customers are charged based on their utilization of computational resources, storage, and transfer of data. They offer subscription-based access to infrastructure, platforms, and applications that are popularly referred to as IaaS (Infrastructure as a Service), PaaS (Platform as a Service), and SaaS (Software as a Service). While these emerging services have increased interoperability and usability and reduced the cost of computation, application hosting, and content storage and delivery by several orders of magnitude, there is significant complexity involved in ensuring that applications and services can scale as needed to achieve consistent and reliable operation under peak loads.

Currently, expert developers are required to implement cloud services. Cloud vendors, researchers, and practitioners alike are working to ensure that potential users are educated about the benefits of cloud computing and the best way to harness the full potential of the cloud. However, being a new and popular paradigm, the very definition of cloud computing depends on which computing expert is asked. So, while the realization of true utility computing appears closer than ever, its acceptance is currently restricted to cloud experts due to the perceived complexities of interacting with cloud computing providers.

This book illuminates these issues by introducing the reader with the cloud computing paradigm. The book provides case studies of numerous existing compute, storage, and application cloud services and illustrates capabilities and limitations of current providers of cloud computing services. This allows the reader to understand the mechanisms needed to harness cloud computing in their own respective endeavors. Finally, many open research problems that have arisen from the rapid uptake of cloud computing are detailed. We hope that this motivates the reader to address these in their own future research and development. We believe the book to serve as a reference for larger audience such as systems architects, practitioners, developers, new researchers, and graduate-level students. This book also comes with an associated Web site (hosted at http://www.manjrasoft.com/CloudBook/) containing pointers to advanced on-line resources.

Organization of the Book

This book contains chapters authored by several leading experts in the field of cloud computing. The book is presented in a coordinated and integrated manner starting with the fundamentals and followed by the technologies that implement them.

The content of the book is organized into six parts:

I. Foundations

II. Infrastructure as a Service (IaaS)

III. Platform and Software as a Service (PaaS/SaaS)

IV. Monitoring and Management

V. Applications

VI. Governance and Case Studies

Part I presents fundamental concepts of cloud computing, charting their evolution from mainframe, cluster, grid, and utility computing. Delivery models such as Infrastructure as a Service, Platform as a Service, and Software as a Service are detailed, as well as deployment models such as Public, Private, and Hybrid Clouds. It also presents models for migrating applications to cloud environments.

Part II covers Infrastructure as a Service (IaaS), from enabling technologies such as virtual machines and virtualized storage, to sophisticated mechanisms for securely storing data in the cloud and managing virtual clusters.

Part III introduces Platform and Software as a Service (PaaS/IaaS), detailing the delivery of cloud hosted software and applications. The design and operation of sophisticated, auto-scaling applications and environments are explored.

Part IV presents monitoring and management mechanisms for cloud computing, which becomes critical as cloud environments become more complex and interoperable. Architectures for federating cloud computing resources are explored, as well as service level agreement (SLA) management and performance prediction.

Part V details some novel applications that have been made possible by the rapid emergence of cloud computing resources. Best practices for architecting cloud applications are covered, describing how to harness the power of loosely coupled cloud resources. The design and execution of applications that leverage cloud resources such as massively multiplayer online game hosting, content delivery and mashups are explored.

Part VI outlines the organizational, structural, regulatory and legal issues that are commonly encountered in cloud computing environments. Details on how companies can successfully prepare and transition to cloud environments are explored, as well as achieving production readiness once such a transition is completed. Data security and legal concerns are explored in detail, as users reconcile moving their sensitive data and computation to cloud computing providers.

Rajkumar Buyya

The University of Melbourne and Manjrasoft Pty Ltd., Australia

James Broberg

The University of Melbourne, Australia

Andrzej Goscinski

Deakin University, Australia

ACKNOWLEDGMENTS

First and foremost, we are grateful to all the contributing authors for their time, effort, and understanding during the preparation of the book.

We thank Professor Albert Zomaya, editor of the Wiley book series on parallel and distributed computing, for his enthusiastic support and guidance during the preparation of book and enabling us to easily navigate through Wiley’s publication process.

We would like to thank members of the book Editorial Advisory Board for their guidance during the preparation of the book. The board members are: Dr. Geng Lin (CISCO Systems, USA), Prof. Manish Parashar (Rutgers: The State University of New Jersey, USA), Dr. Wolfgang Gentzsch (Max-Planck-Gesellschaft, München, Germany), Prof. Omer Rana (Cardiff University, UK), Prof. Hai Jin (Huazhong University of Science and Technology, China), Dr. Simon See (Sun Microsystems, Singapore), Dr. Greg Pfister (IBM, USA (retired)), Prof. Ignacio M. Llorente (Universidad Complutense de Madrid, Spain), Prof. Geoffrey Fox (Indiana University, USA), and Dr. Walfredo Cirne (Google, USA).

All chapters were reviewed and authors have updated their chapters to address review comments. We thank members of the Melbourne CLOUDS Lab for their time and effort in peer reviewing of chapters.

Raj would like to thank his family members, especially Smrithi, Soumya, and Radha Buyya, for their love, understanding, and support during the preparation of the book. James would like to thank his wife, Amy, for her love and support. Andrzej would like to thank his wife, Teresa, for her love and support.

Finally, we would like to thank the staff at Wiley, particularly, Simone Taylor (Senior Editor, Wiley), Michael Christian (Editorial Assistant, Wiley), and S. Nalini (MPS Limited, a Macmillan Company, Chennai, India). They were wonderful to work with!

R.B.

J.B.

A.G.

CONTRIBUTORS

Matthias Assel, High Performance Computing Center Stuttgart (HLRS), University of Stuttgart, 70550 Stuttgart, Germany

Rocco Aversa, Department of Information Engineering, Second University of Naples, 81031 Aversa (CE), Italy

Sumit Bose, Unisys Research Center, Bangalore, India - 560025

Janine Anthony Bowen, Esq., McKenna Long & Aldridge LLP, Atlanta, GA 30308, USA

David Breitgand, IBM Haifa Research Lab, Haifa University Campus, 31095, Haifa, Israel

James Broberg, Department of Computer Science and Software Engineering, The University of Melbourne, Parkville, Melbourne, VIC 3010, Australia

Michael Brock, School of Information Technology, Deakin University, Geelong, Victoria 3217, Australia

Rajkumar Buyya, Department of Computer Science and Software Engineering, The University of Melbourne, Parkville, Melbourne, VIC 3010, Australia

Haijun Cao, School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China

Wai-Kit Cheah, Advanced Customer Services, Oracle Corporation (S) Pte Ltd., Singapore 038986

Yu Chen, Department of Electrical and Computer Engineering, State University of New York—Binghamton, Binghamton, NY 13902

Xingchen Chu, Department of Computer Science and Software Engineering, The University of Melbourne, Parkville, Melbourne, VIC 3010, Australia

Beniamino Di Martino, Department of Information Engineering, Second University of Naples, 81031 Aversa (CE), Italy

Tariq Ellahi, SAP Research Belfast, BT3 9DT, Belfast, United Kingdom

Mohamed A. El-Refaey, Arab Academy for Science, Technology and Maritime Transport, College of Computing and Information Technology, Cairo, Egypt

Jun Feng, Department of Electrical and Computer Engineering, State University of New York—Binghamton, Binghamton, NY 13902

Fermín Galán, Telefónica I + D, Emilio Vargas, 6. 28043 Madrid, Spain

Alex Galis, University College London, Department of Electronic and Electrical Engineering, Torrington Place, London WC1E 7JE, United Kingdom

Andrzej Goscinski, School of Information Technology, Deakin University, Geelong, Victoria 3217, Australia

David Hadas, IBM Haifa Research Lab, Haifa University Campus, 31095, Haifa, Israel

Benoit Hudzia, SAP Research Belfast, BT3 9DT, Belfast, United Kingdom

Shadi Ibrahim, School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China

Alexandru Iosup, Electrical Engineering, Mathematics and Computer Science Department, Delft University of Technology, 2628 CD, Delft, The Netherlands

Shantenu Jha, Center for Computation and Technology and Department of Computer Science, Louisiana State University, Baton Rouge, LA 70803

Hai Jin, School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China

Dileban Karunamoorthy, Department of Computer Science and Software Engineering, The University of Melbourne, Parkville, Melbourne, VIC 3010, Australia

Henry Kasim, HPC and Cloud Computing Center, Oracle Corporation (S) Pte Ltd, #18-01 Suntec Tower Four, Singapore 038986

Daniel S. Katz, Computation Institute, University of Chicago, Chicago, Illinois 60637

Hyunjoo Kim, Department of Electrical and Computer Engineering, Rutgers, The State University of New Jersey, New Brunswick, NJ

Alexander Kipp, High Performance Computing Center Stuttgart (HLRS), University of Stuttgart, 70550 Stuttgart, Germany

Wei-Shinn Ku, Department of Computer Science and Software Engineering, Auburn University, AL 36849

Robert Lam, School of Information and Communication Technologies SAIT Polytechnic, Calgary, Canada T2M 0L4

Lars Larsson, Department of Computing Science, University Umea, Sweden

Eliezer Levy, SAP Research SRC Ra’anana, Ra’anana 43665; Israel

Hui Li, SAP Research Karlsruhe, Vincenz-Priessnitz-Strasse, 176131 Karlsruhe, Germany

Maik A. Lindner, SAP Research Belfast, BT3 9DT, Belfast, United Kingdom

Pu Liu, IBM Endicott Center, New York, NY

Ignacio M. Llorente, Distributed Systems Architecture Research Group, Departmento de Arquitectura de Computadores y Automática, Facultad de Informática, Universidad Complutense de Madrid, 28040 Madrid, Spain

Andre Luckow, Center for Computation and Technology, Louisiana State University, Baton Rouge, LA, 70803

Ganesan Malaiyandisamy, SETLabs, Infosys Technologies Limited, Electronics City, Bangalore, India, 560100

Alessandro Maraschini, ElsagDatamat spa, Rome, Italy

Philippe Massonet, CETIC, B-6041 Charleroi, Belgium

Michael Mattess, Department of Computer Science and Software Engineering, The University of Melbourne, Parkville, Melbourne, VIC 3010, Australia

Andre Merzky, Center for Computation and Technology, Louisiana State University, Baton Rouge, LA, 70803

T. S. Mohan, Infosys Technologies Limited, Electronics City, Bangalore, India, 560100

RubÉn S. Montero, Distributed Systems Architecture Research Group, Departmento de Arquitectura de Computadores, y Automática, Facultad de Informatica, Universidad Complutense de Madrid, 28040 Madrid, Spain

Susan Morrow, Avoco Secure, London W1S 2LQ, United Kingdom

Sridhar Murthy, Infosys Technologies Limited, Electronics City, Bangalore, India, 560100

Vlad Nae, Institute of Computer Science, University of Innsbruck, Technikerstraβe 21a, A-6020 Innsbruck, Austria

Kenneth Nagin, IBM Haifa Research Lab, Haifa University Campus, 31095, Haifa, Israel

Suraj Pandey, Department of Computer Science and Software Engineering, The University of Melbourne, Parkville, Melbourne, VIC 3010, Australia

Manish Parashar, Department of Electrical and Computer Engineering, Rutgers, The State University of New Jersey, New Jersey, USA.

Anjaneyulu Pasala, SETLabs, Infosys Technologies Limited, Electronics City, Bangalore, India, 560100

Michael Pauly, T-Systems, Aachen, Germany

Radu Prodan, Institute of Computer Science, University of Innsbruck, A-6020 Innsbruck, Austria

Li Qi, School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China

Dheepak R A, SETLabs, Infosys Technologies Limited, Electronics City, Bangalore, India, 560100

Pethuru Raj, Robert Bosch India, Bangalore 560068, India

Massimiliano Rak, Department of Information Engineering, Second University of Naples, 81031 Aversa (CE), Italy

Philip Robinson, SAP Research Belfast, BT3 9DT, Belfast, United Kingdom

Benny Rochwerger, IBM Haifa Research Lab, Haifa University Campus, 31095, Haifa, Israel

Lutz Schubert, High Performance Computing Center Stuttgart (HLRS), University of Stuttgart, 70550 Stuttgart, Germany

Xuanhua Shi, School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China

Borja Sotomayor, Department of Computer Science, University of Chicago, Chicago, IL

Katerina Stamou, Department of Computer Science, Louisiana State University, Baton Rouge, LA, 70803

Zhou Su, Department of Computer Science, Graduate School of Science and Engineering, Waseda University, Japan

Jinesh Varia, Amazon Web Services, Seattle, WA 98109

Constantino Vázquez, Facultad de Informática, Universidad Complutense de Madrid, 28040 Madrid, Spain

Christian Vecchiola, Department of Computer Science and Software Engineering, The University of Melbourne, Parkville, Melbourne, VIC 3010, Australia

Salvatore Venticinque, Department of Information Engineering, Second University of Naples, 81031 Aversa (CE), Italy

Umberto Villano, Department of Engineering, University of Sannio, 82100 Benevento, Italy

Massimo Villari, Department. of Mathematics Faculty of Engineering, University of Messina, 98166 Messina, Italy

William Voorsluys, Department of Computer Science and Software Engineering, The University of Melbourne, Parkville, Melbourne, VIC 3010, Australia

Stefan Wesner, High Performance Computing Center Stuttgart (HLRS), University of Stuttgart, 70550 Stuttgart, Germany

Yaron Wolfsthal, IBM Haifa Research Lab, Haifa University Campus, 31095, Haifa, Israel

Song Wu, School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China

PART I

FOUNDATIONS

CHAPTER 1

INTRODUCTION TO CLOUD COMPUTING

WILLIAM VOORSLUYS

JAMES BROBERG

RAJKUMAR BUYYA

1.1 CLOUD COMPUTING IN A NUTSHELL

When plugging an electric appliance into an outlet, we care neither how electric power is generated nor how it gets to that outlet. This is possible because electricity is virtualized; that is, it is readily available from a wall socket that hides power generation stations and a huge distribution grid. When extended to information technologies, this concept means delivering useful functions while hiding how their internals work. Computing itself, to be considered fully virtualized, must allow computers to be built from distributed components such as processing, storage, data, and software resources [1].

Technologies such as cluster, grid, and now, cloud computing, have all aimed at allowing access to large amounts of computing power in a fully virtualized manner, by aggregating resources and offering a single system view. In addition, an important aim of these technologies has been delivering computing as a utility. Utility computing describes a business model for on-demand delivery of computing power; consumers pay providers based on usage (“pay-as-you-go”), similar to the way in which we currently obtain services from traditional public utility services such as water, electricity, gas, and telephony.

Cloud computing has been coined as an umbrella term to describe a category of sophisticated on-demand computing services initially offered by commercial providers, such as Amazon, Google, and Microsoft. It denotes a model on which a computing infrastructure is viewed as a “cloud,” from which businesses and individuals access applications from anywhere in the world on demand [2]. The main principle behind this model is offering computing, storage, and software “as a service.”

Many practitioners in the commercial and academic spheres have attempted to define exactly what “cloud computing” is and what unique characteristics it presents. Buyya et al. [2] have defined it as follows: “Cloud is a parallel and distributed computing system consisting of a collection of inter-connected and virtualised computers that are dynamically provisioned and presented as one or more unified computing resources based on service-level agreements (SLA) established through negotiation between the service provider and consumers.”

Vaquero et al. [3] have stated “clouds are a large pool of easily usable and accessible virtualized resources (such as hardware, development platforms and/or services). These resources can be dynamically reconfigured to adjust to a variable load (scale), allowing also for an optimum resource utilization. This pool of resources is typically exploited by a pay-per-use model in which guarantees are offered by the Infrastructure Provider by means of customized Service Level Agreements.”

A recent McKinsey and Co. report [4] claims that “Clouds are hardware-based services offering compute, network, and storage capacity where: Hardware management is highly abstracted from the buyer, buyers incur infrastructure costs as variable OPEX, and infrastructure capacity is highly elastic.”

A report from the University of California Berkeley [5] summarized the key characteristics of cloud computing as: “(1) the illusion of infinite computing resources; (2) the elimination of an up-front commitment by cloud users; and (3) the ability to pay for use . . . as needed . . .”

The National Institute of Standards and Technology (NIST) [6] characterizes cloud computing as “. . . a pay-per-use model for enabling available, convenient, on-demand network access to a shared pool of configurable computing resources (e.g. networks, servers, storage, applications, services) that can be rapidly provisioned and released with minimal management effort or service provider interaction.”

In a more generic definition, Armbrust et al. [5] define cloud as the “data center hardware and software that provide services.” Similarly, Sotomayor et al. [7] point out that “cloud” is more often used to refer to the IT infrastructure deployed on an Infrastructure as a Service provider data center.

While there are countless other definitions, there seems to be common characteristics between the most notable ones listed above, which a cloud should have: (i) pay-per-use (no ongoing commitment, utility prices); (ii) elastic capacity and the illusion of infinite resources; (iii) self-service interface; and (iv) resources that are abstracted or virtualised.

In addition to raw computing and storage, cloud computing providers usually offer a broad range of software services. They also include APIs and development tools that allow developers to build seamlessly scalable applications upon their services. The ultimate goal is allowing customers to run their everyday IT infrastructure “in the cloud.”

A lot of hype has surrounded the cloud computing area in its infancy, often considered the most significant switch in the IT world since the advent of the Internet [8]. In midst of such hype, a great deal of confusion arises when trying to define what cloud computing is and which computing infrastructures can be termed as “clouds.”

Indeed, the long-held dream of delivering computing as a utility has been realized with the advent of cloud computing [5]. However, over the years, several technologies have matured and significantly contributed to make cloud computing viable. In this direction, this introduction tracks the roots of cloud computing by surveying the main technological advancements that significantly contributed to the advent of this emerging field. It also explains concepts and developments by categorizing and comparing the most relevant R&D efforts in cloud computing, especially public clouds, management tools, and development frameworks. The most significant practical cloud computing realizations are listed, with special focus on architectural aspects and innovative technical features.

1.2 ROOTS OF CLOUD COMPUTING

We can track the roots of clouds computing by observing the advancement of several technologies, especially in hardware (virtualization, multi-core chips), Internet technologies (Web services, service-oriented architectures, Web 2.0), distributed computing (clusters, grids), and systems management (autonomic computing, data center automation). Figure 1.1 shows the convergence of technology fields that significantly advanced and contributed to the advent of cloud computing.

FIGURE 1.1. Convergence of various advances leading to the advent of cloud computing.

[image: image]

Some of these technologies have been tagged as hype in their early stages of development; however, they later received significant attention from academia and were sanctioned by major industry players. Consequently, a specification and standardization process followed, leading to maturity and wide adoption. The emergence of cloud computing itself is closely linked to the maturity of such technologies. We present a closer look at the technologies that form the base of cloud computing, with the aim of providing a clearer picture of the cloud ecosystem as a whole.

1.2.1 From Mainframes to Clouds

We are currently experiencing a switch in the IT world, from in-house generated computing power into utility-supplied computing resources delivered over the Internet as Web services. This trend is similar to what occurred about a century ago when factories, which used to generate their own electric power, realized that it is was cheaper just plugging their machines into the newly formed electric power grid [8].

Computing delivered as a utility can be defined as “on demand delivery of infrastructure, applications, and business processes in a security-rich, shared, scalable, and based computer environment over the Internet for a fee” [9]. This model brings benefits to both consumers and providers of IT services. Consumers can attain reduction on IT-related costs by choosing to obtain cheaper services from external providers as opposed to heavily investing on IT infrastructure and personnel hiring. The “on-demand” component of this model allows consumers to adapt their IT usage to rapidly increasing or unpredictable computing needs.

Providers of IT services achieve better operational costs; hardware and software infrastructures are built to provide multiple solutions and serve many users, thus increasing efficiency and ultimately leading to faster return on investment (ROI) as well as lower total cost of ownership (TCO) [10].

Several technologies have in some way aimed at turning the utility computing concept into reality. In the 1970s, companies who offered common data processing tasks, such as payroll automation, operated time-shared mainframes as utilities, which could serve dozens of applications and often operated close to 100% of their capacity. In fact, mainframes had to operate at very high utilization rates simply because they were very expensive and costs should be justified by efficient usage [8].

The mainframe era collapsed with the advent of fast and inexpensive microprocessors and IT data centers moved to collections of commodity servers. Apart from its clear advantages, this new model inevitably led to isolation of workload into dedicated servers, mainly due to incompatibilities between software stacks and operating systems [11]. In addition, the unavailability of efficient computer networks meant that IT infrastructure should be hosted in proximity to where it would be consumed. Altogether, these facts have prevented the utility computing reality of taking place on modern computer systems.

Similar to old electricity generation stations, which used to power individual factories, computing servers and desktop computers in a modern organization are often underutilized, since IT infrastructure is configured to handle theoretical demand peaks. In addition, in the early stages of electricity generation, electric current could not travel long distances without significant voltage losses. However, new paradigms emerged culminating on transmission systems able to make electricity available hundreds of kilometers far off from where it is generated. Likewise, the advent of increasingly fast fiber-optics networks has relit the fire, and new technologies for enabling sharing of computing power over great distances have appeared.

These facts reveal the potential of delivering computing services with the speed and reliability that businesses enjoy with their local machines. The benefits of economies of scale and high utilization allow providers to offer computing services for a fraction of what it costs for a typical company that generates its own computing power [8].

1.2.2 SOA, Web Services, Web 2.0, and Mashups

The emergence of Web services (WS) open standards has significantly contributed to advances in the domain of software integration [12]. Web services can glue together applications running on different messaging product platforms, enabling information from one application to be made available to others, and enabling internal applications to be made available over the Internet.

Over the years a rich WS software stack has been specified and standardized, resulting in a multitude of technologies to describe, compose, and orchestrate services, package and transport messages between services, publish and discover services, represent quality of service (QoS) parameters, and ensure security in service access [13].

WS standards have been created on top of existing ubiquitous technologies such as HTTP and XML, thus providing a common mechanism for delivering services, making them ideal for implementing a service-oriented architecture (SOA). The purpose of a SOA is to address requirements of loosely coupled, standards-based, and protocol-independent distributed computing. In a SOA, software resources are packaged as “services,” which are well-defined, self-contained modules that provide standard business functionality and are independent of the state or context of other services. Services are described in a standard definition language and have a published interface [12].

The maturity of WS has enabled the creation of powerful services that can be accessed on-demand, in a uniform way. While some WS are published with the intent of serving end-user applications, their true power resides in its interface being accessible by other services. An enterprise application that follows the SOA paradigm is a collection of services that together perform complex business logic [12].

This concept of gluing services initially focused on the enterprise Web, but gained space in the consumer realm as well, especially with the advent of Web 2.0. In the consumer Web, information and services may be programmatically aggregated, acting as building blocks of complex compositions, called service mashups. Many service providers, such as Amazon, del.icio.us, Facebook, and Google, make their service APIs publicly accessible using standard protocols such as SOAP and REST [14]. Consequently, one can put an idea of a fully functional Web application into practice just by gluing pieces with few lines of code.

In the Software as a Service (SaaS) domain, cloud applications can be built as compositions of other services from the same or different providers. Services such user authentication, e-mail, payroll management, and calendars are examples of building blocks that can be reused and combined in a business solution in case a single, ready-made system does not provide all those features. Many building blocks and solutions are now available in public marketplaces. For example, Programmable Web1 is a public repository of service APIs and mashups currently listing thousands of APIs and mashups. Popular APIs such as Google Maps, Flickr, YouTube, Amazon eCommerce, and Twitter, when combined, produce a variety of interesting solutions, from finding video game retailers to weather maps. Similarly, Salesforce.com’s offers AppExchange,2 which enables the sharing of solutions developed by third-party developers on top of Salesforce.com components.

1.2.3 Grid Computing

Grid computing enables aggregation of distributed resources and transparently access to them. Most production grids such as TeraGrid [15] and EGEE [16] seek to share compute and storage resources distributed across different administrative domains, with their main focus being speeding up a broad range of scientific applications, such as climate modeling, drug design, and protein analysis.

A key aspect of the grid vision realization has been building standard Web services-based protocols that allow distributed resources to be “discovered, accessed, allocated, monitored, accounted for, and billed for, etc., and in general managed as a single virtual system.” The Open Grid Services Architecture (OGSA) addresses this need for standardization by defining a set of core capabilities and behaviors that address key concerns in grid systems.

Globus Toolkit [18] is a middleware that implements several standard Grid services and over the years has aided the deployment of several service-oriented Grid infrastructures and applications. An ecosystem of tools is available to interact with service grids, including grid brokers, which facilitate user interaction with multiple middleware and implement policies to meet QoS needs.

The development of standardized protocols for several grid computing activities has contributed—theoretically—to allow delivery of on-demand computing services over the Internet. However, ensuring QoS in grids has been perceived as a difficult endeavor [19]. Lack of performance isolation has prevented grids adoption in a variety of scenarios, especially on environments where resources are oversubscribed or users are uncooperative. Activities associated with one user or virtual organization (VO) can influence, in an uncontrollable way, the performance perceived by other users using the same platform. Therefore, the impossibility of enforcing QoS and guaranteeing execution time became a problem, especially for time-critical applications [20].

Another issue that has lead to frustration when using grids is the availability of resources with diverse software configurations, including disparate operating systems, libraries, compilers, runtime environments, and so forth. At the same time, user applications would often run only on specially customized environments. Consequently, a portability barrier has often been present on most grid infrastructures, inhibiting users of adopting grids as utility computing environments [20].

Virtualization technology has been identified as the perfect fit to issues that have caused frustration when using grids, such as hosting many dissimilar software applications on a single physical platform. In this direction, some research projects (e.g., Globus Virtual Workspaces [20]) aimed at evolving grids to support an additional layer to virtualize computation, storage, and network resources.

1.2.4 Utility Computing

With increasing popularity and usage, large grid installations have faced new problems, such as excessive spikes in demand for resources coupled with strategic and adversarial behavior by users. Initially, grid resource management techniques did not ensure fair and equitable access to resources in many systems. Traditional metrics (throughput, waiting time, and slowdown) failed to capture the more subtle requirements of users. There were no real incentives for users to be flexible about resource requirements or job deadlines, nor provisions to accommodate users with urgent work.

In utility computing environments, users assign a “utility” value to their jobs, where utility is a fixed or time-varying valuation that captures various QoS constraints (deadline, importance, satisfaction). The valuation is the amount they are willing to pay a service provider to satisfy their demands. The service providers then attempt to maximize their own utility, where said utility may directly correlate with their profit. Providers can choose to prioritize high yield (i.e., profit per unit of resource) user jobs, leading to a scenario where shared systems are viewed as a marketplace, where users compete for resources based on the perceived utility or value of their jobs. Further information and comparison of these utility computing environments are available in an extensive survey of these platforms [17].

1.2.5 Hardware Virtualization

Cloud computing services are usually backed by large-scale data centers composed of thousands of computers. Such data centers are built to serve many users and host many disparate applications. For this purpose, hardware virtualization can be considered as a perfect fit to overcome most operational issues of data center building and maintenance.

The idea of virtualizing a computer system’s resources, including processors, memory, and I/O devices, has been well established for decades, aiming at improving sharing and utilization of computer systems [21]. Hardware virtualization allows running multiple operating systems and software stacks on a single physical platform. As depicted in Figure 1.2, a software layer, the virtual machine monitor (VMM), also called a hypervisor, mediates access to the physical hardware presenting to each guest operating system a virtual machine (VM), which is a set of virtual platform interfaces [22].

FIGURE 1.2. A hardware virtualized server hosting three virtual machines, each one running distinct operating system and user level software stack.

[image: image]

The advent of several innovative technologies—multi-core chips, paravirtualization, hardware-assisted virtualization, and live migration of VMs—has contributed to an increasing adoption of virtualization on server systems. Traditionally, perceived benefits were improvements on sharing and utilization, better manageability, and higher reliability. More recently, with the adoption of virtualization on a broad range of server and client systems, researchers and practitioners have been emphasizing three basic capabilities regarding management of workload in a virtualized system, namely isolation, consolidation, and migration [23].

Workload isolation is achieved since all program instructions are fully confined inside a VM, which leads to improvements in security. Better reliability is also achieved because software failures inside one VM do not affect others [22]. Moreover, better performance control is attained since execution of one VM should not affect the performance of another VM [23].

The consolidation of several individual and heterogeneous workloads onto a single physical platform leads to better system utilization. This practice is also employed for overcoming potential software and hardware incompatibilities in case of upgrades, given that it is possible to run legacy and new operation systems concurrently [22].

Workload migration, also referred to as application mobility [23], targets at facilitating hardware maintenance, load balancing, and disaster recovery. It is done by encapsulating a guest OS state within a VM and allowing it to be suspended, fully serialized, migrated to a different platform, and resumed immediately or preserved to be restored at a later date [22]. A VM’s state includes a full disk or partition image, configuration files, and an image of its RAM [20].

A number of VMM platforms exist that are the basis of many utility or cloud computing environments. The most notable ones, VMWare, Xen, and KVM, are outlined in the following sections.

VMWare ESXi.

VMware is a pioneer in the virtualization market. Its ecosystem of tools ranges from server and desktop virtualization to high-level management tools [24]. ESXi is a VMM from VMWare. It is a bare-metal hypervisor, meaning that it installs directly on the physical server, whereas others may require a host operating system. It provides advanced virtualization techniques of processor, memory, and I/O. Especially, through memory ballooning and page sharing, it can overcommit memory, thus increasing the density of VMs inside a single physical server.

Xen.

The Xen hypervisor started as an open-source project and has served as a base to other virtualization products, both commercial and open-source. It has pioneered the para-virtualization concept, on which the guest operating system, by means of a specialized kernel, can interact with the hypervisor, thus significantly improving performance. In addition to an open-source distribution [25], Xen currently forms the base of commercial hypervisors of a number of vendors, most notably Citrix XenServer [26] and Oracle VM [27].

KVM.

The kernel-based virtual machine (KVM) is a Linux virtualization subsystem. Is has been part of the mainline Linux kernel since version 2.6.20, thus being natively supported by several distributions. In addition, activities such as memory management and scheduling are carried out by existing kernel features, thus making KVM simpler and smaller than hypervisors that take control of the entire machine [28].

KVM leverages hardware-assisted virtualization, which improves performance and allows it to support unmodified guest operating systems [29]; currently, it supports several versions of Windows, Linux, and UNIX [28].

1.2.6 Virtual Appliances and the Open Virtualization Format

An application combined with the environment needed to run it (operating system, libraries, compilers, databases, application containers, and so forth) is referred to as a “virtual appliance.” Packaging application environments in the shape of virtual appliances eases software customization, configuration, and patching and improves portability. Most commonly, an appliance is shaped as a VM disk image associated with hardware requirements, and it can be readily deployed in a hypervisor.

On-line marketplaces have been set up to allow the exchange of ready-made appliances containing popular operating systems and useful software combinations, both commercial and open-source. Most notably, the VMWare virtual appliance marketplace allows users to deploy appliances on VMWare hypervisors or on partners public clouds [30], and Amazon allows developers to share specialized Amazon Machine Images (AMI) and monetize their usage on Amazon EC2 [31].

In a multitude of hypervisors, where each one supports a different VM image format and the formats are incompatible with one another, a great deal of interoperability issues arises. For instance, Amazon has its Amazon machine image (AMI) format, made popular on the Amazon EC2 public cloud. Other formats are used by Citrix XenServer, several Linux distributions that ship with KVM, Microsoft Hyper-V, and VMware ESX.

In order to facilitate packing and distribution of software to be run on VMs several vendors, including VMware, IBM, Citrix, Cisco, Microsoft, Dell, and HP, have devised the Open Virtualization Format (OVF). It aims at being “open, secure, portable, efficient and extensible” [32]. An OVF package consists of a file, or set of files, describing the VM hardware characteristics (e.g., memory, network cards, and disks), operating system details, startup, and shutdown actions, the virtual disks themselves, and other metadata containing product and licensing information. OVF also supports complex packages composed of multiple VMs (e.g., multi-tier applications) [32].

OVF’s extensibility has encouraged additions relevant to management of data centers and clouds. Mathews et al. [33] have devised virtual machine contracts (VMC) as an extension to OVF. A VMC aids in communicating and managing the complex expectations that VMs have of their runtime environment and vice versa. A simple example of a VMC is when a cloud consumer wants to specify minimum and maximum amounts of a resource that a VM needs to function; similarly the cloud provider could express resource limits as a way to bound resource consumption and costs.

1.2.7 Autonomic Computing

The increasing complexity of computing systems has motivated research on autonomic computing, which seeks to improve systems by decreasing human involvement in their operation. In other words, systems should manage themselves, with high-level guidance from humans [34].

Autonomic, or self-managing, systems rely on monitoring probes and gauges (sensors), on an adaptation engine (autonomic manager) for computing optimizations based on monitoring data, and on effectors to carry out changes on the system. IBM’s Autonomic Computing Initiative has contributed to define the four properties of autonomic systems: self-configuration, self-optimization, self-healing, and self-protection. IBM has also suggested a reference model for autonomic control loops of autonomic managers, called MAPE-K (Monitor Analyze Plan Execute—Knowledge) [34, 35].

The large data centers of cloud computing providers must be managed in an efficient way. In this sense, the concepts of autonomic computing inspire software technologies for data center automation, which may perform tasks such as: management of service levels of running applications; management of data center capacity; proactive disaster recovery; and automation of VM provisioning [36].

1.3 LAYERS AND TYPES OF CLOUDS

Cloud computing services are divided into three classes, according to the abstraction level of the capability provided and the service model of providers, namely: (1) Infrastructure as a Service, (2) Platform as a Service, and (3) Software as a Service [6]. Figure 1.3 depicts the layered organization of the cloud stack from physical infrastructure to applications.

FIGURE 1.3. The cloud computing stack.

[image: image]

These abstraction levels can also be viewed as a layered architecture where services of a higher layer can be composed from services of the underlying layer [37]. The reference model of Buyya et al. [38] explains the role of each layer in an integrated architecture. A core middleware manages physical resources and the VMs deployed on top of them; in addition, it provides the required features (e.g., accounting and billing) to offer multi-tenant pay-as-you-go services. Cloud development environments are built on top of infrastructure services to offer application development and deployment capabilities; in this level, various programming models, libraries, APIs, and mashup editors enable the creation of a range of business, Web, and scientific applications. Once deployed in the cloud, these applications can be consumed by end users.

1.3.1 Infrastructure as a Service

Offering virtualized resources (computation, storage, and communication) on demand is known as Infrastructure as a Service (IaaS) [7]. A cloud infrastructure enables on-demand provisioning of servers running several choices of operating systems and a customized software stack. Infrastructure services are considered to be the bottom layer of cloud computing systems [39].

Amazon Web Services mainly offers IaaS, which in the case of its EC2 service means offering VMs with a software stack that can be customized similar to how an ordinary physical server would be customized. Users are given privileges to perform numerous activities to the server, such as: starting and stopping it, customizing it by installing software packages, attaching virtual disks to it, and configuring access permissions and firewalls rules.

1.3.2 Platform as a Service

In addition to infrastructure-oriented clouds that provide raw computing and storage services, another approach is to offer a higher level of abstraction to make a cloud easily programmable, known as Platform as a Service (PaaS). A cloud platform offers an environment on which developers create and deploy applications and do not necessarily need to know how many processors or how much memory that applications will be using. In addition, multiple programming models and specialized services (e.g., data access, authentication, and payments) are offered as building blocks to new applications [40].

Google AppEngine, an example of Platform as a Service, offers a scalable environment for developing and hosting Web applications, which should be written in specific programming languages such as Python or Java, and use the services’ own proprietary structured object data store. Building blocks include an in-memory object cache (memcache), mail service, instant messaging service (XMPP), an image manipulation service, and integration with Google Accounts authentication service.

1.3.3 Software as a Service

Applications reside on the top of the cloud stack. Services provided by this layer can be accessed by end users through Web portals. Therefore, consumers are increasingly shifting from locally installed computer programs to on-line software services that offer the same functionally. Traditional desktop applications such as word processing and spreadsheet can now be accessed as a service in the Web. This model of delivering applications, known as Software as a Service (SaaS), alleviates the burden of software maintenance for customers and simplifies development and testing for providers [37, 41].

Salesforce.com, which relies on the SaaS model, offers business productivity applications (CRM) that reside completely on their servers, allowing costumers to customize and access applications on demand.

1.3.4 Deployment Models

Although cloud computing has emerged mainly from the appearance of public computing utilities, other deployment models, with variations in physical location and distribution, have been adopted. In this sense, regardless of its service class, a cloud can be classified as public, private, community, or hybrid [6] based on model of deployment as shown in Figure 1.4.

FIGURE 1.4. Types of clouds based on deployment models.

[image: image]

Armbrust et al. [5] propose definitions for public cloud as a “cloud made available in a pay-as-you-go manner to the general public” and private cloud as “internal data center of a business or other organization, not made available to the general public.”

In most cases, establishing a private cloud means restructuring an existing infrastructure by adding virtualization and cloud-like interfaces. This allows users to interact with the local data center while experiencing the same advantages of public clouds, most notably self-service interface, privileged access to virtual servers, and per-usage metering and billing.

A community cloud is “shared by several organizations and supports a specific community that has shared concerns (e.g., mission, security requirements, policy, and compliance considerations) [6].”

A hybrid cloud takes shape when a private cloud is supplemented with computing capacity from public clouds [7]. The approach of temporarily renting capacity to handle spikes in load is known as “cloud-bursting” [42].

1.4 DESIRED FEATURES OF A CLOUD

Certain features of a cloud are essential to enable services that truly represent the cloud computing model and satisfy expectations of consumers, and cloud offerings must be (i) self-service, (ii) per-usage metered and billed, (iii) elastic, and (iv) customizable.

1.4.1 Self-Service

Consumers of cloud computing services expect on-demand, nearly instant access to resources. To support this expectation, clouds must allow self-service access so that customers can request, customize, pay, and use services without intervention of human operators [6].

1.4.2 Per-Usage Metering and Billing

Cloud computing eliminates up-front commitment by users, allowing them to request and use only the necessary amount. Services must be priced on a short-term basis (e.g., by the hour), allowing users to release (and not pay for) resources as soon as they are not needed [5]. For these reasons, clouds must implement features to allow efficient trading of service such as pricing, accounting, and billing [2]. Metering should be done accordingly for different types of service (e.g., storage, processing, and bandwidth) and usage promptly reported, thus providing greater transparency [6].

1.4.3 Elasticity

Cloud computing gives the illusion of infinite computing resources available on demand [5]. Therefore users expect clouds to rapidly provide resources in any quantity at any time. In particular, it is expected that the additional resources can be (a) provisioned, possibly automatically, when an application load increases and (b) released when load decreases (scale up and down) [6].

1.4.4 Customization

In a multi-tenant cloud a great disparity between user needs is often the case. Thus, resources rented from the cloud must be highly customizable. In the case of infrastructure services, customization means allowing users to deploy specialized virtual appliances and to be given privileged (root) access to the virtual servers. Other service classes (PaaS and SaaS) offer less flexibility and are not suitable for general-purpose computing [5], but still are expected to provide a certain level of customization.

1.5 CLOUD INFRASTRUCTURE MANAGEMENT

A key challenge IaaS providers face when building a cloud infrastructure is managing physical and virtual resources, namely servers, storage, and networks, in a holistic fashion [43]. The orchestration of resources must be performed in a way to rapidly and dynamically provision resources to applications [7].

The software toolkit responsible for this orchestration is called a virtual infrastructure manager (VIM) [7]. This type of software resembles a traditional operating system—but instead of dealing with a single computer, it aggregates resources from multiple computers, presenting a uniform view to user and applications. The term “cloud operating system” is also used to refer to it [43]. Other terms include “infrastructure sharing software [44]” and “virtual infrastructure engine [45].”

Sotomayor et al. [7], in their description of the cloud ecosystem of software tools, propose a differentiation between two categories of tools used to manage clouds. The first category—cloud toolkits—includes those that “expose a remote and secure interface for creating, controlling and monitoring virtualize resources,” but do not specialize in VI management. Tools in the second category—the virtual infrastructure managers—provide advanced features such as automatic load balancing and server consolidation, but do not expose remote cloud-like interfaces. However, the authors point out that there is a superposition between the categories; cloud toolkits can also manage virtual infrastructures, although they usually provide less sophisticated features than specialized VI managers do.

The availability of a remote cloud-like interface and the ability of managing many users and their permissions are the primary features that would distinguish “cloud toolkits” from “VIMs.” However, in this chapter, we place both categories of tools under the same group (of the VIMs) and, when applicable, we highlight the availability of a remote interface as a feature.

Virtually all VIMs we investigated present a set of basic features related to managing the life cycle of VMs, including networking groups of VMs together and setting up virtual disks for VMs. These basic features pretty much define whether a tool can be used in practical cloud deployments or not. On the other hand, only a handful of software present advanced features (e.g., high availability) which allow them to be used in large-scale production clouds.

1.5.1 Features

We now present a list of both basic and advanced features that are usually available in VIMs.

Virtualization Support.

The multi-tenancy aspect of clouds requires multiple customers with disparate requirements to be served by a single hardware infrastructure. Virtualized resources (CPUs, memory, etc.) can be sized and resized with certain flexibility. These features make hardware virtualization, the ideal technology to create a virtual infrastructure that partitions a data center among multiple tenants.

Self-Service, On-Demand Resource Provisioning.

Self-service access to resources has been perceived as one the most attractive features of clouds. This feature enables users to directly obtain services from clouds, such as spawning the creation of a server and tailoring its software, configurations, and security policies, without interacting with a human system administrator. This capability “eliminates the need for more time-consuming, labor-intensive, human-driven procurement processes familiar to many in IT” [46]. Therefore, exposing a self-service interface, through which users can easily interact with the system, is a highly desirable feature of a VI manager.

Multiple Backend Hypervisors.

Different virtualization models and tools offer different benefits, drawbacks, and limitations. Thus, some VI managers provide a uniform management layer regardless of the virtualization technology used. This characteristic is more visible in open-source VI managers, which usually provide pluggable drivers to interact with multiple hypervisors [7]. In this direction, the aim of libvirt [47] is to provide a uniform API that VI managers can use to manage domains (a VM or container running an instance of an operating system) in virtualized nodes using standard operations that abstract hypervisor specific calls.

Storage Virtualization.

Virtualizing storage means abstracting logical storage from physical storage. By consolidating all available storage devices in a data center, it allows creating virtual disks independent from device and location. Storage devices are commonly organized in a storage area network (SAN) and attached to servers via protocols such as Fibre Channel, iSCSI, and NFS; a storage controller provides the layer of abstraction between virtual and physical storage [48].

In the VI management sphere, storage virtualization support is often restricted to commercial products of companies such as VMWare and Citrix. Other products feature ways of pooling and managing storage devices, but administrators are still aware of each individual device.

Interface to Public Clouds.

Researchers have perceived that extending the capacity of a local in-house computing infrastructure by borrowing resources from public clouds is advantageous. In this fashion, institutions can make good use of their available resources and, in case of spikes in demand, extra load can be offloaded to rented resources [45].

A VI manager can be used in a hybrid cloud setup if it offers a driver to manage the life cycle of virtualized resources obtained from external cloud providers. To the applications, the use of leased resources must ideally be transparent.

Virtual Networking.

Virtual networks allow creating an isolated network on top of a physical infrastructure independently from physical topology and locations [49]. A virtual LAN (VLAN) allows isolating traffic that shares a switched network, allowing VMs to be grouped into the same broadcast domain. Additionally, a VLAN can be configured to block traffic originated from VMs from other networks. Similarly, the VPN (virtual private network) concept is used to describe a secure and private overlay network on top of a public network (most commonly the public Internet) [50].

Support for creating and configuring virtual networks to group VMs placed throughout a data center is provided by most VI managers. Additionally, VI managers that interface with public clouds often support secure VPNs connecting local and remote VMs.

Dynamic Resource Allocation.

Increased awareness of energy consumption in data centers has encouraged the practice of dynamic consolidating VMs in a fewer number of servers. In cloud infrastructures, where applications have variable and dynamic needs, capacity management and demand prediction are especially complicated. This fact triggers the need for dynamic resource allocation aiming at obtaining a timely match of supply and demand [51].

Energy consumption reduction and better management of SLAs can be achieved by dynamically remapping VMs to physical machines at regular intervals. Machines that are not assigned any VM can be turned off or put on a low power state. In the same fashion, overheating can be avoided by moving load away from hotspots [52].

A number of VI managers include a dynamic resource allocation feature that continuously monitors utilization across resource pools and reallocates available resources among VMs according to application needs.

Virtual Clusters.

Several VI managers can holistically manage groups of VMs. This feature is useful for provisioning computing virtual clusters on demand, and interconnected VMs for multi-tier Internet applications [53].

Reservation and Negotiation Mechanism.

When users request computational resources to available at a specific time, requests are termed advance reservations (AR), in contrast to best-effort requests, when users request resources whenever available [54]. To support complex requests, such as AR, a VI manager must allow users to “lease” resources expressing more complex terms (e.g., the period of time of a reservation). This is especially useful in clouds on which resources are scarce; since not all requests may be satisfied immediately, they can benefit of VM placement strategies that support queues, priorities, and advance reservations [55].

Additionally, leases may be negotiated and renegotiated, allowing provider and consumer to modify a lease or present counter proposals until an agreement is reached. This feature is illustrated by the case in which an AR request for a given slot cannot be satisfied, but the provider can offer a distinct slot that is still satisfactory to the user. This problem has been addressed in OpenPEX, which incorporates a bilateral negotiation protocol that allows users and providers to come to an alternative agreement by exchanging offers and counter offers [56].

High Availability and Data Recovery.

The high availability (HA) feature of VI managers aims at minimizing application downtime and preventing business disruption. A few VI managers accomplish this by providing a failover mechanism, which detects failure of both physical and virtual servers and restarts VMs on healthy physical servers. This style of HA protects from host, but not VM, failures [57, 58].

For mission critical applications, when a failover solution involving restarting VMs does not suffice, additional levels of fault tolerance that rely on redundancy of VMs are implemented. In this style, redundant and synchronized VMs (running or in standby) are kept in a secondary physical server. The HA solution monitors failures of system components such as servers, VMs, disks, and network and ensures that a duplicate VM serves the application in case of failures [58].

Data backup in clouds should take into account the high data volume involved in VM management. Frequent backup of a large number of VMs, each one with multiple virtual disks attached, should be done with minimal interference in the systems performance. In this sense, some VI managers offer data protection mechanisms that perform incremental backups of VM images. The backup workload is often assigned to proxies, thus offloading production server and reducing network overhead [59].

1.5.2 Case Studies

In this section, we describe the main features of the most popular VI managers available. Only the most prominent and distinguishing features of each tool are discussed in detail. A detailed side-by-side feature comparison of VI managers is presented in Table 1.1.

TABLE 1.1. Feature Comparison of Virtual Infrastructure Managers

[image: image]

Apache VCL.

The Virtual Computing Lab [60, 61] project has been incepted in 2004 by researchers at the North Carolina State University as a way to provide customized environments to computer lab users. The software components that support NCSU’s initiative have been released as open-source and incorporated by the Apache Foundation.

Since its inception, the main objective of VCL has been providing desktop (virtual lab) and HPC computing environments anytime, in a flexible cost-effective way and with minimal intervention of IT staff. In this sense, VCL was one of the first projects to create a tool with features such as: self-service Web portal, to reduce administrative burden; advance reservation of capacity, to provide resources during classes; and deployment of customized machine images on multiple computers, to provide clusters on demand.

In summary, Apache VCL provides the following features: (i) multi-platform controller, based on Apache/PHP; (ii) Web portal and XML-RPC interfaces; (iii) support for VMware hypervisors (ESX, ESXi, and Server); (iv) virtual networks; (v) virtual clusters; and (vi) advance reservation of capacity.

AppLogic.

AppLogic [62] is a commercial VI manager, the flagship product of 3tera Inc. from California, USA. The company has labeled this product as a Grid Operating System.

AppLogic provides a fabric to manage clusters of virtualized servers, focusing on managing multi-tier Web applications. It views an entire application as a collection of components that must be managed as a single entity. Several components such as firewalls, load balancers, Web servers, application servers, and database servers can be set up and linked together. Whenever the application is started, the system manufactures and assembles the virtual infrastructure required to run it. Once the application is stopped, AppLogic tears down the infrastructure built for it [63].

AppLogic offers dynamic appliances to add functionality such as Disaster Recovery and Power optimization to applications [62]. The key differential of this approach is that additional functionalities are implemented as another pluggable appliance instead of being added as a core functionality of the VI manager.

In summary, 3tera AppLogic provides the following features: Linux-based controller; CLI and GUI interfaces; Xen backend; Global Volume Store (GVS) storage virtualization; virtual networks; virtual clusters; dynamic resource allocation; high availability; and data protection.

Citrix Essentials.

The Citrix Essentials suite is one the most feature complete VI management software available, focusing on management and automation of data centers. It is essentially a hypervisor-agnostic solution, currently supporting Citrix XenServer and Microsoft Hyper-V [64].

By providing several access interfaces, it facilitates both human and programmatic interaction with the controller. Automation of tasks is also aided by a workflow orchestration mechanism.

In summary, Citrix Essentials provides the following features: Windows-based controller; GUI, CLI, Web portal, and XML-RPC interfaces; support for XenServer and Hyper-V hypervisors; Citrix Storage Link storage virtualization; virtual networks; dynamic resource allocation; three-level high availability (i.e., recovery by VM restart, recovery by activating paused duplicate VM, and running duplicate VM continuously) [58]; data protection with Citrix Consolidated Backup.

Enomaly ECP.

The Enomaly Elastic Computing Platform, in its most complete edition, offers most features a service provider needs to build an IaaS cloud.

Most notably, ECP Service Provider Edition offers a Web-based customer dashboard that allows users to fully control the life cycle of VMs. Usage accounting is performed in real time and can be viewed by users. Similar to the functionality of virtual appliance marketplaces, ECP allows providers and users to package and exchange applications.

In summary, Enomaly ECP provides the following features: Linux-based controller; Web portal and Web services (REST) interfaces; Xen back-end; interface to the Amazon EC2 public cloud; virtual networks; virtual clusters (ElasticValet).

Eucalyptus.

The Eucalyptus [39] framework was one of the first open-source projects to focus on building IaaS clouds. It has been developed with the intent of providing an open-source implementation nearly identical in functionality to Amazon Web Services APIs. Therefore, users can interact with a Eucalyptus cloud using the same tools they use to access Amazon EC2. It also distinguishes itself from other tools because it provides a storage cloud API—emulating the Amazon S3 API—for storing general user data and VM images.

In summary, Eucalyptus provides the following features: Linux-based controller with administration Web portal; EC2-compatible (SOAP, Query) and S3-compatible (SOAP, REST) CLI and Web portal interfaces; Xen, KVM, and VMWare backends; Amazon EBS-compatible virtual storage devices; interface to the Amazon EC2 public cloud; virtual networks.

Nimbus3.

The Nimbus toolkit [20] is built on top of the Globus framework. Nimbus provides most features in common with other open-source VI managers, such as an EC2-compatible front-end API, support to Xen, and a backend interface to Amazon EC2. However, it distinguishes from others by providing a Globus Web Services Resource Framework (WSRF) interface. It also provides a backend service, named Pilot, which spawns VMs on clusters managed by a local resource manager (LRM) such as PBS and SGE.

Nimbus’ core was engineered around the Spring framework to be easily extensible, thus allowing several internal components to be replaced and also eases the integration with other systems.

In summary, Nimbus provides the following features: Linux-based controller; EC2-compatible (SOAP) and WSRF interfaces; Xen and KVM backend and a Pilot program to spawn VMs through an LRM; interface to the Amazon EC2 public cloud; virtual networks; one-click virtual clusters.

OpenNebula.

OpenNebula is one of the most feature-rich open-source VI managers. It was initially conceived to manage local virtual infrastructure, but has also included remote interfaces that make it viable to build public clouds. Altogether, four programming APIs are available: XML-RPC and libvirt [47] for local interaction; a subset of EC2 (Query) APIs and the OpenNebula Cloud API (OCA) for public access [7, 65].

Its architecture is modular, encompassing several specialized pluggable components. The Core module orchestrates physical servers and their hypervisors, storage nodes, and network fabric. Management operations are performed through pluggable Drivers, which interact with APIs of hypervisors, storage and network technologies, and public clouds. The Scheduler module, which is in charge of assigning pending VM requests to physical hosts, offers dynamic resource allocation features. Administrators can choose between different scheduling objectives such as packing VMs in fewer hosts or keeping the load balanced. Via integration with the Haizea lease scheduler [66], OpenNebula also supports advance reservation of capacity and queuing of best-effort leases [7].

In summary, OpenNebula provides the following features: Linux-based controller; CLI, XML-RPC, EC2-compatible Query and OCA interfaces; Xen, KVM, and VMware backend; interface to public clouds (Amazon EC2, ElasticHosts); virtual networks; dynamic resource allocation; advance reservation of capacity.

OpenPEX.

OpenPEX (Open Provisioning and EXecution Environment) was constructed around the notion of using advance reservations as the primary method for allocating VM instances. It distinguishes from other VI managers by its leases negotiation mechanism, which incorporates a bilateral negotiation protocol that allows users and providers to come to an agreement by exchanging offers and counter offers when their original requests cannot be satisfied.

In summary, OpenPEX provides the following features: multi-platform (Java) controller; Web portal and Web services (REST) interfaces; Citrix XenServer backend; advance reservation of capacity with negotiation [56].

oVirt.

oVirt is an open-source VI manager, sponsored by Red Hat’s Emergent Technology group. It provides most of the basic features of other VI managers, including support for managing physical server pools, storage pools, user accounts, and VMs. All features are accessible through a Web interface [67].

The oVirt admin node, which is also a VM, provides a Web server, secure authentication services based on freeIPA, and provisioning services to manage VM image and their transfer to the managed nodes. Each managed node libvirt, which interfaces with the hypervisor.

In summary, oVirt provides the following features: Fedora Linux-based controller packaged as a virtual appliance; Web portal interface; KVM backend.

Platform ISF.

Infrastructure Sharing Facility (ISF) is the VI manager offering from Platform Computing [68]. The company, mainly through its LSF family of products, has been serving the HPC market for several years.

ISF’s architecture is divided into three layers. The top most Service Delivery layer includes the user interfaces (i.e., self-service portal and APIs); the Allocation Engine provides reservation and allocation policies; and the bottom layer—Resource Integrations—provides adapters to interact with hypervisors, provisioning tools, and other systems (i.e., external public clouds). The Allocation Engine also provides policies to address several objectives, such as minimizing energy consumption, reducing impact of failures, and maximizing application performance [44].

ISF is built upon Platform’s VM Orchestrator, which, as a standalone product, aims at speeding up delivery of VMs to end users. It also provides high availability by restarting VMs when hosts fail and duplicating the VM that hosts the VMO controller [69].

In summary, ISF provides the following features: Linux-based controller packaged as a virtual appliance; Web portal interface; dynamic resource allocation; advance reservation of capacity; high availability.

VMWare vSphere and vCloud.

vSphere is VMware’s suite of tools aimed at transforming IT infrastructures into private clouds [36, 43]. It distinguishes from other VI managers as one of the most feature-rich, due to the company’s several offerings in all levels the architecture.

In the vSphere architecture, servers run on the ESXi platform. A separate server runs vCenter Server, which centralizes control over the entire virtual infrastructure. Through the vSphere Client software, administrators connect to vCenter Server to perform various tasks.

The Distributed Resource Scheduler (DRS) makes allocation decisions based on predefined rules and policies. It continuously monitors the amount of resources available to VMs and, if necessary, makes allocation changes to meet VM requirements. In the storage virtualization realm, vStorage VMFS is a cluster file system to provide aggregate several disks in a single volume. VMFS is especially optimized to store VM images and virtual disks. It supports storage equipment that use Fibre Channel or iSCSI SAN.

In its basic setup, vSphere is essentially a private administration suite. Self-service VM provisioning to end users is provided via the vCloud API, which interfaces with vCenter Server. In this configuration, vSphere can be used by service providers to build public clouds. In terms of interfacing with public clouds, vSphere interfaces with the vCloud API, thus enabling cloud-bursting into external clouds.

In summary, vSphere provides the following features: Windows-based controller (vCenter Server); CLI, GUI, Web portal, and Web services interfaces; VMware ESX, ESXi backend; VMware vStorage VMFS storage virtualization; interface to external clouds (VMware vCloud partners); virtual networks (VMWare Distributed Switch); dynamic resource allocation (VMware DRM); high availability; data protection (VMWare Consolidated Backup).

1.6 INFRASTRUCTURE AS A SERVICE PROVIDERS

Public Infrastructure as a Service providers commonly offer virtual servers containing one or more CPUs, running several choices of operating systems and a customized software stack. In addition, storage space and communication facilities are often provided.

1.6.1 Features

In spite of being based on a common set of features, IaaS offerings can be distinguished by the availability of specialized features that influence the cost–benefit ratio to be experienced by user applications when moved to the cloud. The most relevant features are: (i) geographic distribution of data centers; (ii) variety of user interfaces and APIs to access the system; (iii) specialized components and services that aid particular applications (e.g., load-balancers, firewalls); (iv) choice of virtualization platform and operating systems; and (v) different billing methods and period (e.g., prepaid vs. post-paid, hourly vs. monthly).

Geographic Presence.

To improve availability and responsiveness, a provider of worldwide services would typically build several data centers distributed around the world. For example, Amazon Web Services presents the concept of “availability zones” and “regions” for its EC2 service. Availability zones are “distinct locations that are engineered to be insulated from failures in other availability zones and provide inexpensive, low-latency network connectivity to other availability zones in the same region.” Regions, in turn, “are geographically dispersed and will be in separate geographic areas or countries [70].”

User Interfaces and Access to Servers.

Ideally, a public IaaS provider must provide multiple access means to its cloud, thus catering for various users and their preferences. Different types of user interfaces (UI) provide different levels of abstraction, the most common being graphical user interfaces (GUI), command-line tools (CLI), and Web service (WS) APIs.

GUIs are preferred by end users who need to launch, customize, and monitor a few virtual servers and do not necessary need to repeat the process several times. On the other hand, CLIs offer more flexibility and the possibility of automating repetitive tasks via scripts (e.g., start and shutdown a number of virtual servers at regular intervals). WS APIs offer programmatic access to a cloud using standard HTTP requests, thus allowing complex services to be built on top of IaaS clouds.

Advance Reservation of Capacity.

Advance reservations allow users to request for an IaaS provider to reserve resources for a specific time frame in the future, thus ensuring that cloud resources will be available at that time. However, most clouds only support best-effort requests; that is, users requests are server whenever resources are available [54].

Amazon Reserved Instances is a form of advance reservation of capacity, allowing users to pay a fixed amount of money in advance to guarantee resource availability at anytime during an agreed period and then paying a discounted hourly rate when resources are in use. However, only long periods of 1 to 3 years are offered; therefore, users cannot express their reservations in finer granularities—for example, hours or days.

Automatic Scaling and Load Balancing.

As mentioned earlier in this chapter, elasticity is a key characteristic of the cloud computing model. Applications often need to scale up and down to meet varying load conditions. Automatic scaling is a highly desirable feature of IaaS clouds. It allow users to set conditions for when they want their applications to scale up and down, based on application-specific metrics such as transactions per second, number of simultaneous users, request latency, and so forth.

When the number of virtual servers is increased by automatic scaling, incoming traffic must be automatically distributed among the available servers. This activity enables applications to promptly respond to traffic increase while also achieving greater fault tolerance.

Service-Level Agreement.

Service-level agreements (SLAs) are offered by IaaS providers to express their commitment to delivery of a certain QoS. To customers it serves as a warranty. An SLA usually include availability and performance guarantees. Additionally, metrics must be agreed upon by all parties as well as penalties for violating these expectations.

Most IaaS providers focus their SLA terms on availability guarantees, specifying the minimum percentage of time the system will be available during a certain period. For instance, Amazon EC2 states that “if the annual uptime Percentage for a customer drops below 99.95% for the service year, that customer is eligible to receive a service credit equal to 10% of their bill.3”

Hypervisor and Operating System Choice.

Traditionally, IaaS offerings have been based on heavily customized open-source Xen deployments. IaaS providers needed expertise in Linux, networking, virtualization, metering, resource management, and many other low-level aspects to successfully deploy and maintain their cloud offerings. More recently, there has been an emergence of turnkey IaaS platforms such as VMWare vCloud and Citrix Cloud Center (C3) which have lowered the barrier of entry for IaaS competitors, leading to a rapid expansion in the IaaS marketplace.

1.6.2 Case Studies

In this section, we describe the main features of the most popular public IaaS clouds. Only the most prominent and distinguishing features of each one are discussed in detail. A detailed side-by-side feature comparison of IaaS offerings is presented in Table 1.2.

TABLE 1.2. Feature Comparison Public Cloud Offerings (Infrastructure as a Service)

[image: image]

Amazon Web Services.

Amazon WS4 (AWS) is one of the major players in the cloud computing market. It pioneered the introduction of IaaS clouds in 2006. It offers a variety cloud services, most notably: S3 (storage), EC2 (virtual servers), Cloudfront (content delivery), Cloudfront Streaming (video streaming), SimpleDB (structured datastore), RDS (Relational Database), SQS (reliable messaging), and Elastic MapReduce (data processing).

The Elastic Compute Cloud (EC2) offers Xen-based virtual servers (instances) that can be instantiated from Amazon Machine Images (AMIs). Instances are available in a variety of sizes, operating systems, architectures, and price. CPU capacity of instances is measured in Amazon Compute Units and, although fixed for each instance, vary among instance types from 1 (small instance) to 20 (high CPU instance). Each instance provides a certain amount of nonpersistent disk space; a persistence disk service (Elastic Block Storage) allows attaching virtual disks to instances with space up to 1TB.

Elasticity can be achieved by combining the CloudWatch, Auto Scaling, and Elastic Load Balancing features, which allow the number of instances to scale up and down automatically based on a set of customizable rules, and traffic to be distributed across available instances. Fixed IP address (Elastic IPs) are not available by default, but can be obtained at an additional cost.

In summary, Amazon EC2 provides the following features: multiple data centers available in the United States (East and West) and Europe; CLI, Web services (SOAP and Query), Web-based console user interfaces; access to instance mainly via SSH (Linux) and Remote Desktop (Windows); advanced reservation of capacity (aka reserved instances) that guarantees availability for periods of 1 and 3 years; 99.5% availability SLA; per hour pricing; Linux and Windows operating systems; automatic scaling; load balancing.

Flexiscale.

Flexiscale is a UK-based provider offering services similar in nature to Amazon Web Services. However, its virtual servers offer some distinct features, most notably: persistent storage by default, fixed IP addresses, dedicated VLAN, a wider range of server sizes, and runtime adjustment of CPU capacity (aka CPU bursting/vertical scaling). Similar to the clouds, this service is also priced by the hour.

In summary, the Flexiscale cloud provides the following features: available in UK; Web services (SOAP), Web-based user interfaces; access to virtual server mainly via SSH (Linux) and Remote Desktop (Windows); 100% availability SLA with automatic recovery of VMs in case of hardware failure; per hour pricing; Linux and Windows operating systems; automatic scaling (horizontal/vertical).

Joyent.

Joyent’s Public Cloud offers servers based on Solaris containers virtualization technology. These servers, dubbed accelerators, allow deploying various specialized software-stack based on a customized version of OpenSolaris operating system, which include by default a Web-based configuration tool and several pre-installed software, such as Apache, MySQL, PHP, Ruby on Rails, and Java. Software load balancing is available as an accelerator in addition to hardware load balancers.

A notable feature of Joyent’s virtual servers is automatic vertical scaling of CPU cores, which means a virtual server can make use of additional CPUs automatically up to the maximum number of cores available in the physical host.

In summary, the Joyent public cloud offers the following features: multiple geographic locations in the United States; Web-based user interface; access to virtual server via SSH and Web-based administration tool; 100% availability SLA; per month pricing; OS-level virtualization Solaris containers; OpenSolaris operating systems; automatic scaling (vertical).

GoGrid.

GoGrid, like many other IaaS providers, allows its customers to utilize a range of pre-made Windows and Linux images, in a range of fixed instance sizes. GoGrid also offers “value-added” stacks on top for applications such as high-volume Web serving, e-Commerce, and database stores.

It offers some notable features, such as a “hybrid hosting” facility, which combines traditional dedicated hosts with auto-scaling cloud server infrastructure. In this approach, users can take advantage of dedicated hosting (which may be required due to specific performance, security or legal compliance reasons) and combine it with on-demand cloud infrastructure as appropriate, taking the benefits of each style of computing.

As part of its core IaaS offerings, GoGrid also provides free hardware load balancing, auto-scaling capabilities, and persistent storage, features that typically add an additional cost for most other IaaS providers.

Rackspace Cloud Servers.

Rackspace Cloud Servers is an IaaS solution that provides fixed size instances in the cloud. Cloud Servers offers a range of Linux-based pre-made images. A user can request different-sized images, where the size is measured by requested RAM, not CPU.

Like GoGrid, Cloud Servers also offers hybrid approach where dedicated and cloud server infrastructures can be combined to take the best aspects of both styles of hosting as required. Cloud Servers, as part of its default offering, enables fixed (static) IP addresses, persistent storage, and load balancing (via A-DNS) at no additional cost.

1.7 PLATFORM AS A SERVICE PROVIDERS

Public Platform as a Service providers commonly offer a development and deployment environment that allow users to create and run their applications with little or no concern to low-level details of the platform. In addition, specific programming languages and frameworks are made available in the platform, as well as other services such as persistent data storage and in-memory caches.

1.7.1 Features

Programming Models, Languages, and Frameworks.

Programming models made available by IaaS providers define how users can express their applications using higher levels of abstraction and efficiently run them on the cloud platform. Each model aims at efficiently solving a particular problem. In the cloud computing domain, the most common activities that require specialized models are: processing of large dataset in clusters of computers (MapReduce model), development of request-based Web services and applications; definition and orchestration of business processes in the form of workflows (Workflow model); and high-performance distributed execution of various computational tasks.

For user convenience, PaaS providers usually support multiple programming languages. Most commonly used languages in platforms include Python and Java (e.g., Google AppEngine), .NET languages (e.g., Microsoft Azure), and Ruby (e.g., Heroku). Force.com has devised its own programming language (Apex) and an Excel-like query language, which provide higher levels of abstraction to key platform functionalities.

A variety of software frameworks are usually made available to PaaS developers, depending on application focus. Providers that focus on Web and enterprise application hosting offer popular frameworks such as Ruby on Rails, Spring, Java EE, and .NET.

Persistence Options.

A persistence layer is essential to allow applications to record their state and recover it in case of crashes, as well as to store user data. Traditionally, Web and enterprise application developers have chosen relational databases as the preferred persistence method. These databases offer fast and reliable structured data storage and transaction processing, but may lack scalability to handle several petabytes of data stored in commodity computers [71].

In the cloud computing domain, distributed storage technologies have emerged, which seek to be robust and highly scalable, at the expense of relational structure and convenient query languages. For example, Amazon SimpleDB and Google AppEngine datastore offer schema-less, automatically indexed database services [70]. Data queries can be performed only on individual tables; that is, join operations are unsupported for the sake of scalability.

1.7.2 Case Studies

In this section, we describe the main features of some Platform as Service (PaaS) offerings. A more detailed side-by-side feature comparison of VI managers is presented in Table 1.3.

TABLE 1.3. Feature Comparison of Platform-as-a-Service Cloud Offerings

[image: image]

Aneka.

Aneka [72] is a .NET-based service-oriented resource management and development platform. Each server in an Aneka deployment (dubbed Aneka cloud node) hosts the Aneka container, which provides the base infrastructure that consists of services for persistence, security (authorization, authentication and auditing), and communication (message handling and dispatching). Cloud nodes can be either physical server, virtual machines (XenServer and VMware are supported), and instances rented from Amazon EC2.

The Aneka container can also host any number of optional services that can be added by developers to augment the capabilities of an Aneka Cloud node, thus providing a single, extensible framework for orchestrating various application models.

Several programming models are supported by such task models to enable execution of legacy HPC applications and MapReduce, which enables a variety of data-mining and search applications.

Users request resources via a client to a reservation services manager of the Aneka master node, which manages all cloud nodes and contains scheduling service to distribute request to cloud nodes.

App Engine.

Google App Engine lets you run your Python and Java Web applications on elastic infrastructure supplied by Google. App Engine allows your applications to scale dynamically as your traffic and data storage requirements increase or decrease. It gives developers a choice between a Python stack and Java. The App Engine serving architecture is notable in that it allows real-time auto-scaling without virtualization for many common types of Web applications. However, such auto-scaling is dependent on the application developer using a limited subset of the native APIs on each platform, and in some instances you need to use specific Google APIs such as URLFetch, Datastore, and memcache in place of certain native API calls. For example, a deployed App Engine application cannot write to the file system directly (you must use the Google Datastore) or open a socket or access another host directly (you must use Google URL fetch service). A Java application cannot create a new Thread either.

Microsoft Azure.

Microsoft Azure Cloud Services offers developers a hosted .NET Stack (C#, VB.Net, ASP.NET). In addition, a Java & Ruby SDK for .NET Services is also available. The Azure system consists of a number of elements. The Windows Azure Fabric Controller provides auto-scaling and reliability, and it manages memory resources and load balancing. The .NET Service Bus registers and connects applications together. The .NET Access Control identity providers include enterprise directories and Windows LiveID. Finally, the .NET Workflow allows construction and execution of workflow instances.

Force.com.

In conjunction with the Salesforce.com service, the Force.com PaaS allows developers to create add-on functionality that integrates into main Salesforce CRM SaaS application.

Force.com offers developers two approaches to create applications that can be deployed on its SaaS plaform: a hosted Apex or Visualforce application. Apex is a proprietary Java-like language that can be used to create Salesforce applications. Visualforce is an XML-like syntax for building UIs in HTML, AJAX, or Flex to overlay over the Salesforce hosted CRM system. An application store called AppExchange is also provided, which offers a paid & free application directory.

Heroku.

Heroku is a platform for instant deployment of Ruby on Rails Web applications. In the Heroku system, servers are invisibly managed by the platform and are never exposed to users. Applications are automatically dispersed across different CPU cores and servers, maximizing performance and minimizing contention. Heroku has an advanced logic layer than can automatically route around failures, ensuring seamless and uninterrupted service at all times.

1.8 CHALLENGES AND RISKS

Despite the initial success and popularity of the cloud computing paradigm and the extensive availability of providers and tools, a significant number of challenges and risks are inherent to this new model of computing. Providers, developers, and end users must consider these challenges and risks to take good advantage of cloud computing. Issues to be faced include user privacy, data security, data lock-in, availability of service, disaster recovery, performance, scalability, energy-efficiency, and programmability.

1.8.1 Security, Privacy, and Trust

Ambrust et al. [5] cite information security as a main issue: “current cloud offerings are essentially public . . . exposing the system to more attacks.” For this reason there are potentially additional challenges to make cloud computing environments as secure as in-house IT systems. At the same time, existing, well-understood technologies can be leveraged, such as data encryption, VLANs, and firewalls.

Security and privacy affect the entire cloud computing stack, since there is a massive use of third-party services and infrastructures that are used to host important data or to perform critical operations. In this scenario, the trust toward providers is fundamental to ensure the desired level of privacy for applications hosted in the cloud [38].

Legal and regulatory issues also need attention. When data are moved into the Cloud, providers may choose to locate them anywhere on the planet. The physical location of data centers determines the set of laws that can be applied to the management of data. For example, specific cryptography techniques could not be used because they are not allowed in some countries. Similarly, country laws can impose that sensitive data, such as patient health records, are to be stored within national borders.

1.8.2 Data Lock-In and Standardization

A major concern of cloud computing users is about having their data locked-in by a certain provider. Users may want to move data and applications out from a provider that does not meet their requirements. However, in their current form, cloud computing infrastructures and platforms do not employ standard methods of storing user data and applications. Consequently, they do not interoperate and user data are not portable.

The answer to this concern is standardization. In this direction, there are efforts to create open standards for cloud computing.

The Cloud Computing Interoperability Forum (CCIF) was formed by organizations such as Intel, Sun, and Cisco in order to “enable a global cloud computing ecosystem whereby organizations are able to seamlessly work together for the purposes for wider industry adoption of cloud computing technology.” The development of the Unified Cloud Interface (UCI) by CCIF aims at creating a standard programmatic point of access to an entire cloud infrastructure.

In the hardware virtualization sphere, the Open Virtual Format (OVF) aims at facilitating packing and distribution of software to be run on VMs so that virtual appliances can be made portable—that is, seamlessly run on hypervisor of different vendors.

1.8.3 Availability, Fault-Tolerance, and Disaster Recovery

It is expected that users will have certain expectations about the service level to be provided once their applications are moved to the cloud. These expectations include availability of the service, its overall performance, and what measures are to be taken when something goes wrong in the system or its components. In summary, users seek for a warranty before they can comfortably move their business to the cloud.

SLAs, which include QoS requirements, must be ideally set up between customers and cloud computing providers to act as warranty. An SLA specifies the details of the service to be provided, including availability and performance guarantees. Additionally, metrics must be agreed upon by all parties, and penalties for violating the expectations must also be approved.

1.8.4 Resource Management and Energy-Efficiency

One important challenge faced by providers of cloud computing services is the efficient management of virtualized resource pools. Physical resources such as CPU cores, disk space, and network bandwidth must be sliced and shared among virtual machines running potentially heterogeneous workloads.

The multi-dimensional nature of virtual machines complicates the activity of finding a good mapping of VMs onto available physical hosts while maximizing user utility. Dimensions to be considered include: number of CPUs, amount of memory, size of virtual disks, and network bandwidth. Dynamic VM mapping policies may leverage the ability to suspend, migrate, and resume VMs as an easy way of preempting low-priority allocations in favor of higher-priority ones. Migration of VMs also brings additional challenges such as detecting when to initiate a migration, which VM to migrate, and where to migrate. In addition, policies may take advantage of live migration of virtual machines to relocate data center load without significantly disrupting running services. In this case, an additional concern is the trade-off between the negative impact of a live migration on the performance and stability of a service and the benefits to be achieved with that migration [73].

Another challenge concerns the outstanding amount of data to be managed in various VM management activities. Such data amount is a result of particular abilities of virtual machines, including the ability of traveling through space (i.e., migration) and time (i.e., checkpointing and rewinding) [74], operations that may be required in load balancing, backup, and recovery scenarios. In addition, dynamic provisioning of new VMs and replicating existing VMs require efficient mechanisms to make VM block storage devices (e.g., image files) quickly available at selected hosts.

Data centers consumer large amounts of electricity. According to a data published by HP[4], 100 server racks can consume 1.3 MW of power and another 1.3 MW are required by the cooling system, thus costing USD 2.6 million per year. Besides the monetary cost, data centers significantly impact the environment in terms of CO2 emissions from the cooling systems [52].

In addition to optimize application performance, dynamic resource management can also improve utilization and consequently minimize energy consumption in data centers. This can be done by judiciously consolidating workload onto smaller number of servers and turning off idle resources.

1.9 SUMMARY

Cloud computing is a new computing paradigm that offers a huge amount of compute and storage resources to the masses. Individuals (e.g., scientists) and enterprises (e.g., startup companies) can have access to these resources by paying a small amount of money just for what is really needed.

This introductory chapter has surveyed many technologies that have led to the advent of cloud computing, concluding that this new paradigm has been a result of an evolution rather than a revolution.

In their various shapes and flavors, clouds aim at offering compute, storage, network, software, or a combination of those “as a service.” Infrastructure-, Platform-, and Software-as-a-service are the three most common nomenclatures for the levels of abstraction of cloud computing services, ranging from “raw” virtual servers to elaborate hosted applications.

A great popularity and apparent success have been visible in this area. However, as discussed in this chapter, significant challenges and risks need to be tackled by industry and academia in order to guarantee the long-term success of cloud computing. Visible trends in this sphere include the emergence of standards; the creation of value-added services by augmenting, combining, and brokering existing compute, storage, and software services; and the availability of more providers in all levels, thus increasing competiveness and innovation. In this sense, numerous opportunities exist for practitioners seeking to create solutions for cloud computing.

REFERENCES

1. I. Foster, The grid: Computing without bounds, Scientific American, vol. 288, No. 4, (April 2003), pp. 78–85.

2. R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic, Cloud computing and emerging IT platforms: Vision, hype, and reality for delivering computing as the 5th utility, Future Generation Computer Systems, 25:599–616, 2009.

3. L. M. Vaquero, L. Rodero-Merino, J. Caceres, and M. Lindner, A break in the clouds: Towards a cloud definition, SIGCOMM Computer Communications Review, 39:50–55, 2009.

4. McKinsey & Co., Clearing the Air on Cloud Computing, Technical Report, 2009.

5. M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, and R. Katz, Above the Clouds: A Berkeley View of Cloud Computing, UC Berkeley Reliable Adaptive Distributed Systems Laboratory White Paper, 2009.

6. P. Mell and T. Grance, The NIST Definition of Cloud Computing, National Institute of Standards and Technology, Information Technology Laboratory, Technical Report Version 15, 2009.

7. B. Sotomayor, R. S. Montero, I. M. Llorente, and I. Foster, Virtual infrastructure management in private and hybrid clouds, IEEE Internet Computing, 13(5):14–22, September/October, 2009.

8. N. Carr, The Big Switch: Rewiring the World, from Edison to Google. W. W. Norton & Co., New York, 2008.

9. M. A. Rappa, The utility business model and the future of computing systems, IBM Systems Journal, 43(1):32–42, 2004.

10. C. S. Yeo et al., Utility computing on global grids, Chapter 143, Hossein Bidgoli (ed.), The Handbook of Computer Networks, ISBN: 978-0-471-78461-6, John Wiley & Sons, New York, USA, 2007.

11. I. Foster and S. Tuecke, Describing the elephant: The different faces of IT as service, ACM Queue, 3(6):26–29, 2005.

12. M. P. Papazoglou and W.-J. van den Heuvel, Service oriented architectures: Approaches, technologies and research issues, The VLDB Journal, 16:389–415, 2007.

13. H. Kreger, Fulfilling the Web services promise, Communications of the ACM, 46(6):29, 2003.

14. B. Blau, D. Neumann, C. Weinhardt, and S. Lamparter, Planning and pricing of service mashups, in Proceedings of the 2008 10th IEEE Conference on E-Commerce Technology and the Fifth IEEE Conference on Enterprise Computing, E-Commerce and E-Services, Crystal City, Washington, DC, 2008, pp.19–26.

15. C. Catlett, The philosophy of TeraGrid: Building an open, extensible, distributed TeraScale facility, in Proceedings of 2nd IEEE/ACM International Symposium on Cluster Computing and the Grid, Berlin, Germany, 2002, p. 8.

16. F. Gagliardi, B. Jones, F. Grey, M. E. Begin, and M. Heikkurinen, Building an infrastructure for scientific grid computing: Status and goals of the EGEE project, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 363(1833):1729, 2005.

17. J. Broberg, S. Venugopal, and R. Buyya, Market-oriented Grid and utility computing: The state-of-the-art and future directions, Journal of Grid Computing, 6:255–276, 2008.

18. I. Foster, Globus toolkit version 4: Software for service-oriented systems, Journal of Computer Science and Technology, 21(513–520), 2006.

19. R. Buyya and S. Venugopal, Market oriented computing and global Grids: An introduction, in Market Oriented Grid and Utility Computing, R. Buyya and K. Bubendorfer (eds.), John Wiley & Sons, Hoboken, NJ, 2009, pp. 24–44.

20. K. Keahey, I. Foster, T. Freeman, and X. Zhang, Virtual workspaces: Achieving quality of service and quality of life in the grid, Scientific Programming, 13(4):265–275, 2005.

21. R. P. Goldberg, Survey of virtual machine research, IEEE Computer, 7(6):34–45, 1974.

22. R. Uhlig et al., Intel virtualization technology, IEEE Computer, 38(5):48–56, 2005.

23. P. Barham et al., Xen and the art of virtualization, in Proceedings of 19th ACM Symposium on Operation Systems Principles, New York, 2003, pp. 164–177.

24. VMWare Inc., VMWare, http://www.vmware.com, 22/4/2010.

25. Xen.org Community, http://www.xen.org, 22/4/2010.

26. Citrix Systems Inc., XenServer, http://www.citrix.com/XenServer, 22/4/2010.

27. Oracle Corp., Oracle VM, http://www.oracle.com/technology/products/vm, 24/4/2010.

28. KVM Project, Kernel based virtual machine, http://www.linux-kvm.org, 22/4/2010.

29. A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori, KVM: The Linux virtual machine monitor, in Proceedings of the Linux Symposium, Ottawa, Canada, 2007, p. 225.

30. VMWare Inc., VMWare Virtual Appliance Marketplace, http://www.vmware.com/appliances, 22/4/2010.

31. Amazon Web Services Developer Community, Amazon Machine Images, http://developer.amazonwebservices.com/connect/kbcategory.jspa?categoryID=171, 22/4/2010.

32. Distributed Management Task Force Inc, Open Virtualization Format, Specification DSP0243 Version 1.0.0, 2009.

33. J. Matthews, T. Garfinkel, C. Hoff, and J. Wheeler, Virtual machine contracts for datacenter and cloud computing environments, in Proceedings of the 1st Workshop on Automated Control for Datacenters and Clouds, 2009, pp. 25–30.

34. International Business Machines Corp., An architectural blueprint for autonomic computing, White Paper Fourth Edition, 2006.

35. M. C. Huebscher and J. A. McCann, A survey of autonomic computing—degrees, models, and applications, ACM Computing Surveys, 40:1–28, 2008.

36. VMWare Inc., VMware vSphere, http://www.vmware.com/products/vsphere/, 22/4/2010.

37. L. Youseff, M. Butrico, and D. Da Silva, Toward a unified ontology of cloud computing, in Proceedings of the 2008 Grid Computing Environments Workshop, 2008, pp. 1–10.

38. R. Buyya, S. Pandey, and C. Vecchiola, Cloudbus toolkit for market-oriented cloud computing, in Proceedings 1st International Conference on Cloud Computing (CloudCom 09), Beijing, 2009, pp. 3–27.

39. D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman, L. Youseff, and D. Zagorodnov, The Eucalyptus open-source cloud-computing system, in Proceedings of IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGrid 2009), Shanghai, China, pp. 124–131, University of California, Santa Barbara. (2009, Sep.) Eucalyptus [online]. http://open.eucalyptus.com.

40. Appistry Inc., Cloud Platforms vs. Cloud Infrastructure, White Paper, 2009.

41. B. Hayes, Cloud computing, Communications of the ACM, 51:9–11, 2008.

42. P. T. Jaeger, J. Lin, J. M. Grimes, and S. N. Simmons, Where is the cloud? Geography, economics, environment, and jurisdiction in cloud computing, First Monday, 14(4–5): 2009.

43. VMWare Inc., VMware vSphere, the First Cloud Operating, White Paper, 2009.

44. Platform Computing, Platform ISF Datasheet, White Paper, 2009.

45. M. D. de Assuncao, A. di Costanzo, and R. Buyya, Evaluating the cost–benefit of using cloud computing to extend the capacity of clusters, in Proceedings of the 18th ACM International Symposium on High Performance Distributed Computing (HPDC 2009), Munich, Germany, 2009, pp. 141–150.

46. D. Amrhein, Websphere Journal, http://websphere.sys-con.com/node/1029500, 22/4/2010.

47. Libvirt: The Virtualization API, Terminology and Goals, http://libvirt.org/goals.html, 22/4/2010.

48. A. Singh, M. Korupolu, and D. Mohapatra, Server-storage virtualization: Integration and load balancing in data centers, in Proceedings of the 2008 ACM/IEEE Conference on Supercomputing, 2008, pp. 1–12.

49. R. Perlman, Interconnections: Bridges, Routers, Switches, and Internetworking Protocols, Addison-Wesley Longman, Boston, MA, 1999.

50. A. S. Tanenbaum, Computer Networks, Prentice-Hall, Upper Saddle River, NJ, 2002.

51. D. Gmach, J. Rolia, L. Cherkasova, and A. Kemper, Capacity management and demand prediction for next generation data centers, in Proceedings of IEEE International Conference on Web Services, 2007, pp. 43—50.

52. A. Verma, P. Ahuja, and A. Neogi, pMapper: Power and migration cost aware application placement in virtualized systems, in Proceedings of the 9th ACM/IFIP/USENIX International Conference on Middleware, 2008, pp. 243—264.

53. K. Keahey and T. Freeman, Contextualization: Providing one-click virtual clusters, in Proceedings of IEEE Fourth International Conference on eScience, 2008, pp. 301—308.

54. B. Sotomayor, K. Keahey, and I. Foster, Combining batch execution and leasing using virtual machines, in Proceedings of the 17th International Symposium on High Performance Distributed Computing, 2008, pp. 87—96.

55. B. Sotomayor, R. Montero, I. M. Llorente, and I. Foster, Capacity leasing in cloud systems using the opennebula engine, Cloud Computing and Applications, 2008.

56. S. Venugopal, J. Broberg, and R. Buyya, OpenPEX: An open provisioning and EXecution system for virtual machines, in Proceedings of the 17th International Conference on Advanced Computing and Communications (ADCOM 2009), Bengaluru, India, 2009.

57. VMWare Inc., VMware High Availability (HA), http://www.vmware.com/products/high-availability/index.html, 22/4/2010.

58. Citrix Systems Inc., The three levels of high availability—Balancing priorities and cost, White Paper, 2008.

59. VMWare Inc., VMWare vStorage APIs for Data Protection, http://www.vmware.com/products/vstorage-apis-for-data-protection, 22/4/2010.

60. H. E. Schaffer et al., NCSUs Virtual Computing Lab: A cloud computing solution, Computer, 42:94–97, 2009.

61. North Carolina State University, Virtual Computing Lab (VCL), http://vcl.ncsu.edu, 22/4/2010.

62. 3tera Inc., AppLogic—Grid Operating System for Web Applications, http://www.3tera.com/AppLogic, 22/4/2010.

63. 3Tera Inc., The AppLogic Grid Operating System, White Paper, 2006.

64. Citrix Systems Inc., Citrix essentials for Hyper-V, http://www.citrix.com/ehv, 22/4/2010.

65. Distributed Systems Architecture Group, OpenNebula: The open source toolkit for cloud computing, http://www.opennebula.org, 22/4/2010.

66. University of Chicago, Haizea—An open source VM-based lease manager, http://haizea.cs.uchicago.edu, 22/4/2010.

67. Red Hat’s Emerging Technology group, oVirt, http://ovirt.org, 22/4/2010.

68. Platform Computing Corporation, Platform ISF. http://www.platform.com/Products/platform-isf, 22/4/2010.

69. Platform Computing, Platform VM Orchestrator, http://www.platform.com/Products/platform-vm-orchestrator, 22/4/2010.

70. Amazon Inc., Amazon Web Services, http://www.amazon.com, 22/4/2010.

71. F. Chang et al., Bigtable: A distributed storage system for structured data, in Proceedings of the 7th USENIX Symposium on Operating Systems Design and Implementation (OSDI’06), 2006, pp. 205–218.

72. C. Vecchiola, X. Chu, and R. Buyya, Aneka: A software platform for .NET-based cloud computing, in High Speed and Large Scale Scientific Computing, W. Gentzsch, L. Grandinetti, and G. Joubert (eds.), IOS Press, Amsterdam, Netherlands, 2009, pp. 267–295.

73. W. Voorsluys, J. Broberg, S. Venugopal, and R. Buyya, Cost of virtual machine live migration in clouds: A performance evaluation, in Proceedings 1st International Conference on Cloud Computing, Beijing, 2009, pp. 254–265.

74. D. T. Meyer et al., Parallax: Virtual disks for virtual machines, in Proceedings of the 3rd ACM SIGOPS/EuroSys European Conference on Computer Systems, 2008, pp. 41–54.

1 http://www.programmableweb.com

2 http://sites.force.com/appexchange

3 http://aws.amazon.com/ec2-sla

4 http://aws.amazon.com

CHAPTER 2

MIGRATING INTO A CLOUD

T. S. MOHAN

2.1 INTRODUCTION

The promise of cloud computing has raised the IT expectations of small and medium enterprises beyond measure. Large companies are deeply debating it. Cloud computing is a disruptive model of IT whose innovation is part technology and part business model—in short a “disruptive techno-commercial model” of IT. This tutorial chapter focuses on the key issues and associated dilemmas faced by decision makers, architects, and systems managers in trying to understand and leverage cloud computing for their IT needs. Questions asked and discussed in this chapter include: when and how to migrate one’s application into a cloud; what part or component of the IT application to migrate into a cloud and what not to migrate into a cloud; what kind of customers really benefit from migrating their IT into the cloud; and so on. We describe the key factors underlying each of the above questions and share a Seven-Step Model of Migration into the Cloud.

Cloud computing has been a hotly debated and discussed topic amongst IT professionals and researchers both in the industry and in academia. There are intense discussions on several blogs, in Web sites, and in several research efforts [1–4]. This also resulted in several entrepreneurial efforts to help leverage and migrate into the cloud given the myriad issues, challenges, benefits, and limitations and lack of comprehensive understanding of what cloud computing can do. On the one hand, there were these large cloud computing IT vendors like Google, Amazon, and Microsoft, who had started offering cloud computing services on what seemed like a demonstration and trial basis though not explicitly mentioned. They were charging users fees that in certain contexts demonstrated very attractive pricing models. It demonstrated that cloud computing per se was for real and that the “techno-commerical disruptive business model” was indeed giving a greater return on investment (ROI) than traditional IT investment for a business. On the other hand, these initial cloud computing offerings were premature. The cloud computing service vendors were grappling real issues of distributed systems as well as business models and had a number open engineering and research problems [2] that indicated in multiple ways that the cloud computing services were yet to mature fully.

Several efforts have been made in the recent past to define the term “cloud computing” and many have not been able to provide a comprehensive one [2, 5, 6]. This has been more challenging given the scorching pace of the technological advances as well as the newer business model formulations for the cloud services being offered. We propose the following definition of cloud computing: “It is a techno-business disruptive model of using distributed large-scale data centers either private or public or hybrid offering customers a scalable virtualized infrastructure or an abstracted set of services qualified by service-level agreements (SLAs) and charged only by the abstracted IT resources consumed.” Most enterprises today are powered by captive data centers. In most large or small enterprises today, IT is the backbone of their operations. Invariably for these large enterprises, their data centers are distributed across various geographies. They comprise systems and software that span several generations of products sold by a variety of IT vendors. In order to meet varying loads, most of these data centers are provisioned with capacity beyond the peak loads experienced. If the enterprise is in a seasonal or cyclical business, then the load variation would be significant. Thus what is observed generally is that the provisioned capacity of IT resources is several times the average demand. This is indicative of significant degree of idle capacity. Many data center management teams have been continuously innovating their management practices and technologies deployed to possibly squeeze out the last possible usable computing resource cycle through appropriate programming, systems configurations, SLAs, and systems management. Cloud computing turned attractive to them because they could pass on the additional demand from their IT setups onto the cloud while paying only for the usage and being unencumbered by the load of operations and management.

2.1.1 The Promise of the Cloud

Most users of cloud computing services offered by some of the large-scale data centers are least bothered about the complexities of the underlying systems or their functioning. More so given the heterogeneity of either the systems or the software running on them. They were most impressed by the simplicity, uniformity, and ease of use of the Cloud Computing Service abstractions. In small and medium enterprises, cloud computing usage for all additional cyclical IT needs has yielded substantial and significant economic savings. Many such success stories have been documented and discussed on the Internet. This economics and the associated trade-offs, of leveraging the cloud computing services, now popularly called “cloudonomics,” for satisfying enterprise’s seasonal IT loads has become a topic of deep interest amongst IT managers and technology architects.

As shown in Figure 2.1, the promise of the cloud both on the business front (the attractive cloudonomics) and the technology front widely aided the CxOs to spawn out several non-mission critical IT needs from the ambit of their captive traditional data centers to the appropriate cloud service. Invariably, these IT needs had some common features: They were typically Web-oriented; they represented seasonal IT demands; they were amenable to parallel batch processing; they were non-mission critical and therefore did not have high security demands. They included scientific applications too [7]. Several small and medium business enterprises, however, leveraged the cloud much beyond the cautious user. Many startups opened their IT departments exclusively using cloud services—very successfully and with high ROI. Having observed these successes, several large enterprises have started successfully running pilots for leveraging the cloud. Many large enterprises run SAP to manage their operations. SAP itself is experimenting with running its suite of products: SAP Business One as well as SAP Netweaver on Amazon cloud offerings. Gartner, Forrester, and other industry research analysts predict that a substantially significant percentage of the top enterprises in the world would have migrated a majority of their IT needs to the cloud offerings by 2012, thereby demonstrating the widespread impact and benefits from cloud computing. Indeed the promise of the cloud has been significant in its impact.

FIGURE 2.1. The promise of the cloud computing services.

[image: image]

2.1.2 The Cloud Service Offerings and Deployment Models

Cloud computing has been an attractive proposition both for the CFO and the CTO of an enterprise primarily due its ease of usage. This has been achieved by large data center service vendors or now better known as cloud service vendors again primarily due to their scale of operations. Google,1 Amazon,2 Microsoft,3 and a few others have been the key players apart from open source Hadoop4 built around the Apache ecosystem. As shown in Figure 2.2, the cloud service offerings from these vendors can broadly be classified into three major streams: the Infrastructure as a Service (IaaS), the Platform as a Service (PaaS), and the Software as a Service (SaaS). While IT managers and system administrators preferred IaaS as offered by Amazon for many of their virtualized IT needs, the programmers preferred PaaS offerings like Google AppEngine (Java/Python programming) or Microsoft Azure (.Net programming). Users of large-scale enterprise software invariably found that if they had been using the cloud, it was because their usage of the specific software package was available as a service—it was, in essence, a SaaS offering. Salesforce.com was an exemplary SaaS offering on the Internet.

FIGURE 2.2. The cloud computing service offering and deployment models.

[image: image]

From a technology viewpoint, as of today, the IaaS type of cloud offerings have been the most successful and widespread in usage. However, the potential of PaaS has been high: All new cloud-oriented application development initiatives are based on the PaaS model. The significant impact of enterprises leveraging IaaS and PaaS has been in the form of services whose usage is representative of SaaS on the Cloud. Be it search (Google/Yahoo/Bing, etc.) or email (Gmail/Yahoomail/Hotmail, etc.) or social networking (Facebook/Twitter/Orkut, etc.), most users are unaware that much of their on-line activities has been supported in one form or the other by the cloud.

The cloud application deployment and consumption was modeled at three levels: the public cloud offerings from cloud vendors; the private cloud initiatives within large enterprises; and the hybrid cloud initiatives that leverage both the public cloud and the private cloud or managed services data centers. The IaaS–oriented services offered abstracted (or virtualized and scalable) hardware—like compute power or storage or bandwidth. For example, as seen from its pricing tariffs webpage for 2009, Amazon5 offered six levels of abstracted elastic cloud compute (EC2) server power: the “small-instance,” “large-instance,” “extra-large instance,” “high-cpu instance,” “high-cpu medium instance,” or “high-cpu extra-large instance.” Each of these are accompanied by appropriate RAM, storage, performance guarantees, and bandwidth support. The PaaS offerings are focused on supporting programming platforms whose runtime implicitly use’s cloud services offered by their respective vendors. As of today, these highly vendor-locked PaaS technologies have been leveraged to develop new applications by many startups. Compared to IaaS offerings, applications riding on PaaS deliver better performance due to the intrinsic cloud support for the programming platform. The SaaS on Cloud offerings are focused on supporting large software package usage leveraging cloud benefits. Most users of these packages are invariably ignorant of the underlying cloud support—in fact most, if not all, do not care. Indeed, a significant degree of the features of the software package invariably reflect the support of the cloud computing platform under the hood. For example, in gmail, users hardly bother about either the storage space taken up or whether an email needs to be deleted or its storage location. Invariably these reflect the cloud underneath, where storage (most do not know on which system it is) is easily scalable or for that matter where it is stored or located.

2.1.3 Challenges in the Cloud

While the cloud service offerings present a simplistic view of IT in case of IaaS or a simplistic view of programming in case PaaS or a simplistic view of resources usage in case of SaaS, the underlying systems level support challenges are huge and highly complex. These stem from the need to offer a uniformly consistent and robustly simplistic view of computing while the underlying systems are highly failure-prone, heterogeneous, resource hogging, and exhibiting serious security shortcomings. As observed in Figure 2.3, the promise of the cloud seems very similar to the typical distributed systems properties that most would prefer to have. Invariably either in the IaaS or PaaS or SaaS cloud services, one is proffered features that smack of full network reliability; or having “instant” or “zero” network latency; or perhaps supporting “infinite” bandwidth; and so on. But then robust distributed systems are built while keeping mind that are these fallacies6 that must be studiously avoided at design time as well as during implementations and deployments. Cloud computing has the ironical role of projecting this idealized view of its services while ensuring that the underlying systems are managed realistically. In fact the challenges in implementing cloud computing services are plenty: Many of them are listed in Figure 2.3. Prime amongst these are the challenges of security. The Cloud Security Alliance seeks to address many of these issues [8].

FIGURE 2.3. ‘Under the hood’ challenges of the cloud computing services implementations.

[image: image]

2.2 BROAD APPROACHES TO MIGRATING INTO THE CLOUD

Given that cloud computing is a “techno-business disruptive model” and is on the top of the top 10 strategic technologies to watch for 2010 according to Gartner,7 migrating into the cloud is poised to become a large-scale effort in leveraging the cloud in several enterprises. “Cloudonomics” deals with the economic rationale for leveraging the cloud and is central to the success of cloud-based enterprise usage. At what IT costs—both short term and long term—would one want to migrate into the cloud? While all capital expenses are eliminated and only operational expenses incurred by leveraging the cloud, does this satisfy all strategic parameters for enterprise IT? Does the total cost of ownership (TCO) become significantly less as compared to that incurred when running one’s own private data center? Decision-makers, IT managers, and software architects are faced with several dilemmas when planning for new Enterprise IT initiatives.

2.2.1 Why Migrate?

There are economic and business reasons why an enterprise application can be migrated into the cloud, and there are also a number of technological reasons. Many of these efforts come up as initiatives in adoption of cloud technologies in the enterprise, resulting in integration of enterprise applications running off the captive data centers with the new ones that have been developed on the cloud. Adoption of or integration with cloud computing services is a use case of migration.

At the core, migration of an application into the cloud can happen in one of several ways: Either the application is clean and independent, so it runs as is; or perhaps some degree of code needs to be modified and adapted; or the design (and therefore the code) needs to be first migrated into the cloud computing service environment; or finally perhaps the migration results in the core architecture being migrated for a cloud computing service setting, this resulting in a new architecture being developed, along with the accompanying design and code implementation. Or perhaps while the application is migrated as is, it is the usage of the application that needs to be migrated and therefore adapted and modified. In brief, migration can happen at one of the five levels of application, code, design, architecture, and usage.

With due simplification, the migration of an enterprise application is best captured by the following:

[image: image]

where P is the application before migration running in captive data center, [image: image] is the application part after migration either into a (hybrid) cloud, [image: image] is the part of application being run in the captive local data center, and [image: image] is the application part optimized for cloud. If an enterprise application cannot be migrated fully, it could result in some parts being run on the captive local data center while the rest are being migrated into the cloud—essentially a case of a hybrid cloud usage. However, when the entire application is migrated onto the cloud, then [image: image] is null. Indeed, the migration of the enterprise application P can happen at the five levels of application, code, design, architecture, and usage. It can be that the [image: image] migration happens at any of the five levels without any [image: image] component. Compound this with the kind of cloud computing service offering being applied—the IaaS model or PaaS or SaaS model—and we have a variety of migration use cases that need to be thought through thoroughly by the migration architects. To capture this situation succinctly, on enumeration, we have the following migration scenario use-case numbers: For migrating into an IaaS offering, there are 30 use-case scenarios. For migrating into a PaaS offering, there are 20 use-case scenarios. For migrating into a SaaS offering, it is purely a case of migration of usage, with no accompanying enterprise application migration—like the case of migrating from an existing local ERP system to SAP already being offered on a cloud. Of course, for each of these migration use-case scenarios, detailed approaches exist while for many commonly applicable scenarios, enterprises have consolidated their migration strategy best practices. In fact, the migration industry thrives on these custom and proprietary best practices. Many of these best practices are specialized at the level of the components of an enterprise application—like migrating application servers or the enterprise databases.

Cloudonomics.

Invariably, migrating into the cloud is driven by economic reasons of cost cutting in both the IT capital expenses (Capex) as well as operational expenses (Opex). There are both the short-term benefits of opportunistic migration to offset seasonal and highly variable IT loads as well as the long-term benefits to leverage the cloud. For the long-term sustained usage, as of 2009, several impediments and shortcomings of the cloud computing services need to be addressed.

At the core of the cloudonomics, as articulated in Ambrust et al. [2], is the expression of when a migration can be economically feasible or tenable. If the average costs of using an enterprise application on a cloud is substantially lower than the costs of using it in one’s captive data center and if the cost of migration does not add to the burden on ROI, then the case for migration into the cloud is strong.

Apart from these costs, other factors that play a major role in the cloudonomics of migration are the licensing issues (for perhaps parts of the enterprise application), the SLA compliances, and the pricing of the cloud service offerings. Most cloud service vendors, at a broad level, have tariffs for the kind of elastic compute, the elastic storage, or the elastic bandwidth. Of course these pricing tariffs can be variable too, and therefore the cloudonomics of migration should be soundly meaningful accommodating the pricing variability.

2.2.2 Deciding on the Cloud Migration

In fact, several proof of concepts and prototypes of the enterprise application are experimented on the cloud to take help in making a sound decision on migrating into the cloud. Post migration, the ROI on the migration should be positive for a broad range of pricing variability. Arriving at a decision for undertaking migration demands that either the compelling factors be clearly understood or the pragmatic approach of consulting a group of experts be constituted. In the latter case, much like software estimation, one applies Wide-Band Delphi Techniques [9] to make decisions. We use the following technique: A questionnaire with several classes of key questions that impact the IT due to the migration of the enterprise application is posed to a select audience chosen for their technology and business expertise. Assume that there are M such classes. Each class of questions is assigned a certain relative weightage Bi in the context of the entire questionnaire. Assume that in the M classes of questions, there was a class with a maximum of N questions. We can then model the weightage-based decision making as M × N weightage matrix as follows:

[image: image]

where Cl is the lower weightage threshold and Ch is the higher weightage threshold while Aij is the specific constant assigned for a question and Xij is the fraction between 0 and 1 that represents the degree to which that answer to the question is relevant and applicable. Since all except one class of questions do not have all N questions, the corresponding has a null value. The lower and higher thresholds are defined to rule out trivial cases of migration. A simplified variant of this method can be presented as a balanced scorecard-oriented decision making. An example of that approach to the adoption of cloud is found in Dargha [10].

2.3 THE SEVEN-STEP MODEL OF MIGRATION INTO A CLOUD

Typically migration initiatives into the cloud are implemented in phases or in stages. A structured and process-oriented approach to migration into a cloud has several advantages of capturing within itself the best practices of many migration projects. While migration has been a difficult and vague subject—of not much interest to the academics and left to the industry practitioners—not many efforts across the industry have been put in to consolidate what has been found to be both a top revenue earner and a long standing customer pain. After due study and practice, we share the Seven-Step Model of Migration into the Cloud as part of our efforts in understanding and leveraging the cloud computing service offerings in the enterprise context. In a succinct way, Figure 2.4 captures the essence of the steps in the model of migration into the cloud, while Figure 2.5 captures the iterative process of the seven-step migration into the cloud.

FIGURE 2.4. The Seven-Step Model of Migration into the Cloud.

[image: image]
Source: Infosys Research.

FIGURE 2.5. The iterative Seven-step Model of Migration into the Cloud.

[image: image]
Source: Infosys Research.

Cloud migration assessments comprise assessments to understand the issues involved in the specific case of migration at the application level or the code, the design, the architecture, or usage levels. In addition, migration assessments are done for the tools being used, the test cases as well as configurations, functionalities, and NFRs of the enterprise application. This results in a meaningful formulation of a comprehensive migration strategy. The first step of the iterative process of the seven-step model of migration is basically at the assessment level. Proof of concepts or prototypes for various approaches to the migration along with the leveraging of pricing parameters enables one to make appropriate assessments.

These assessments are about the cost of migration as well as about the ROI that can be achieved in the case of production version. The next process step is in isolating all systemic and environmental dependencies of the enterprise application components within the captive data center. This, in turn, yields a picture of the level of complexity of the migration. After isolation is complete, one then goes about generating the mapping constructs between what shall possibly remain in the local captive data center and what goes onto the cloud. Perhaps a substantial part of the enterprise application needs to be re-architected, redesigned, and reimplemented on the cloud. This gets in just about the functionality of the original enterprise application. Due to this migration, it is possible perhaps that some functionality is lost. In the next process step we leverage the intrinsic features of the cloud computing service to augment our enterprise application in its own small ways. Having done the augmentation, we validate and test the new form of the enterprise application with an extensive test suite that comprises testing the components of the enterprise application on the cloud as well. These test results could be positive or mixed. In the latter case, we iterate and optimize as appropriate. After several such optimizing iterations, the migration is deemed successful. Our best practices indicate that it is best to iterate through this Seven-Step Model process for optimizing and ensuring that the migration into the cloud is both robust and comprehensive. Figure 2.6 captures the typical components of the best practices accumulated in the practice of the Seven-Step Model of Migration into the Cloud. Though not comprehensive in enumeration, it is representative.

FIGURE 2.6. Some details of the iterative Seven-Step Model of Migration into the Cloud.

[image: image]

Compared with the typical approach8 to migration into the Amazon AWS, our Seven-step model is more generic, versatile, and comprehensive. The typical migration into the Amazon AWS is a phased over several steps. It is about six steps as discussed in several white papers in the Amazon website and is as follows: The first phase is the cloud migration assessment phase wherein dependencies are isolated and strategies worked out to handle these dependencies. The next phase is in trying out proof of concepts to build a reference migration architecture. The third phase is the data migration phase wherein database data segmentation and cleansing is completed. This phase also tries to leverage the various cloud storage options as best suited. The fourth phase comprises the application migration wherein either a “forklift strategy” of migrating the key enterprise application along with its dependencies (other applications) into the cloud is pursued. Or perhaps using the “hybrid migration strategy,” the critical parts of the enterprise application are retained in the local captive data center while noncritical parts are moved into the cloud. The fifth phase comprises leveraging the various Amazon AWS features like elasticity, autoscaling, cloud storage, and so on. Finally in the sixth phase, the migration is optimized for the cloud. These phases are representative of how typical IT staff would like to migrate an enterprise application without touching its innards but only perhaps at the level of configurations—this perfectly matches with the typical IaaS cloud computing offerings. However, this is just a subset of our Seven-step Migration Model and is very specific and proprietary to Amazon cloud offering.

2.3.1 Migration Risks and Mitigation

The biggest challenge to any cloud migration project is how effectively the migration risks are identified and mitigated. In the Seven-Step Model of Migration into the Cloud, the process step of testing and validating includes efforts to identify the key migration risks. In the optimization step, we address various approaches to mitigate the identified migration risks.

Migration risks for migrating into the cloud fall under two broad categories: the general migration risks and the security-related migration risks. In the former we address several issues including performance monitoring and tuning—essentially identifying all possible production level deviants; the business continuity and disaster recovery in the world of cloud computing service; the compliance with standards and governance issues; the IP and licensing issues; the quality of service (QoS) parameters as well as the corresponding SLAs committed to; the ownership, transfer, and storage of data in the application; the portability and interoperability issues which could help mitigate potential vendor lock-ins; the issues that result in trivializing and noncomprehending the complexities of migration that results in migration failure and loss of senior management’s business confidence in these efforts.

On the security front, the cloud migration risks are plenty—as addressed in the guideline document published by the Cloud Security Alliance [8]. Issues include security at various levels of the enterprise application as applicable on the cloud in addition to issues of trust and issues of privacy. There are several legal compliances that a migration strategy and implementation has to fulfill, including obtaining the right execution logs as well as retaining the rights to all audit trails at a detailed level—which currently may not be fully available. On matters of governance, there are several shortcomings in the current cloud computing service vendors. Matters of multi-tenancy and the impact of IT data leakage in the cloud computing environments is acknowledged; however, the robustness of the solutions to prevent it is not fully validated. Key aspects of vulnerability management and incident responses quality are yet to be supported in a substantial way by the cloud service vendors. Finally there are issues of consistent identity management as well. These and several of the issues are discussed in Section 2.1. Issues and challenges listed in Figure 2.3 continue to be the persistent research and engineering challenges in coming up with appropriate cloud computing implementations.

2.4 CONCLUSIONS

While migrating into a cloud has a lot of challenges, many migration projects fail to fully comprehend the issues at stake—with the key sponsors and management either trivializing it or committing to migrating a piece of code and/or data into the cloud. There are significant opportunities and success factors for a well-designed cloud migration strategy leveraging the Seven-Step Model of Migration into the Cloud. Primary amongst them is a comprehensive understanding of the cloudonomics of the migration as well as the underlying technical challenges.

Developing the best practices in migrating to the cloud is unique to every class of enterprise applications and unique to every corporate practice group. Some of the key best practices include designing the migration as well as the new application architecture or design or code for failures when in reality most assume that cloud computing service environments are failsafe. In fact most cloud computing data centers use commodity hardware and are routinely prone to failure. Approaches not reflecting this reality results in several performance penalties. Another best practice is the application and enforcement of loose-coupling between various parts of the target enterprise application. A key best practice has to been to build security at every level and layer of the migration. Finally the most important of the best practices has been to fully leverage the cloud computing service features while not being constrained by the baggage carried by the enterprise application in its traditional deployment in the captive data centers. Migrating into a cloud is a nontrivial activity. It is challenging given the complexity of comprehending the various factors involved for a successful migration. The proposed Seven-Step Model of Migration into the cloud helps structure and organize one’s efforts in putting together a plan of action and process to successful complete the migration without problems. Of course best practices are accumulated through migration project executions, and the seven-step model of migration is reflective of this.

ACKNOWLEDGMENTS

The author sincerely thanks S. V. Subrahmanya as well as the members of E-Com Research Labs, E&R, and Infosys for all the help and support.

REFERENCES

1. J. Broberg, S. Venugopal, and R. Buyya, Market-oriented Grids and utility computing: The state-of-the-art and future directions, Journal of Grid Computing, 6(3):255–276, 2008.

2. M. Ambrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski, G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia, Above the Clouds: A Berkeley View of Cloud Computing, UC Berkeley RAD Systems Labs, Feb 2009.

3. G. Reese, Cloud Application Architectures: Building Applications and Infrastructure in the Cloud, O’Reilly, April 2007.

4. R. Buyya, C. S. Yeo, and S. Venugopal, Market-oriented cloud computing: Vision, hype, and reality for delivering IT Services as Computing Utilities, in Proceedings of the 10th IEEE International Conference on High Performance Computing and Communications, September 25–27, 2008, pp. 5–13 Dalian, China.

5. Cloud Definitions: NIST, Gartner, Forrester in Cloud enterprise, August 2009. (Also available at: http://cloudenterprise.info/2009/08/04/cloud-definitions-nist-gartner-forrester/)

6. T. Velte, A. Velte, and R. Elsenpeter, Cloud Computing, A Practical Approach, McGraw-Hill Computing, New York, 2009.

7. C. Vecchiola, S. Pandey, and R. Buyya, High-performance cloud computing: A view of scientific applications, in Proceedings of the 10th International Symposium on Pervasive Systems, Algorithms and Networks (I-SPAN 2009, IEEE CS Press, USA), Kaohsiung, Taiwan, December 14–16, 2009.

8. Security Guidance for Critical Areas of Focus in Cloud Computing, The Cloud Security Alliance April/November 2009. (Also available at: http://www.cloudsecurityalliance.org/csaguide.pdf)

9. A. Stellman and J. Greene, Applied Software Project Management, O’Reilly Media.

10. R. Dargha, Cloud Computing—Key Considerations for Adoption, Infosys Technologies Whitepaper. 2009. (Also available at http://www.infosys.com/cloud-computing/white-papers/cloud-computing.pdf)

11. C. Keene, I. Poddar, J. Nicke, and U. Budink, Cloud Quick Start—A Roadmap for Adopting Cloud Computing—IBM, WaveMaker and Rightscale, WaveMaker Software Inc. Whitepaper, November 2009. (Also available at: http://www.wavemaker.com/ibm-quickstart.pdf)

12. A. Dubey, J. Mohiuddin, and A. Baijal, The Emerging Platform Wars in Enterprise Software, A McKinsey & Company Whitepaper, April 2008. (Available at http://www.mckinsey.com/clientservice/hightech/pdfs/Emerging_Platform_Wars.pdf)

13. C. Vecchiola, X. Chu, and R. Buyya, Aneka: A software platform for .NET-based Cloud computing, High Performance & Large Scale Computing, Advances in Parallel Computing, W. Gentzsch, L. Grandinetti, and G. Joubert (eds.), IOS Press, 2009.

14. SMART—The Service Oriented Migration and Reuse Technique. Software Engineering Institute Tech Report: CMU/SEI-2005-TN-029.

1 http://appengine.google.com

2 http://aws.amazon.com

3 http://azure.microsoft.com

4 http://hadoop.apache.org

5 http://aws.amazon.com/ec2

6 http://blogs.sun.com/jag/resource/Fallacies.html

7 http://www.gartner.com/it/page.jsp?id=1210613

8 http://aws.amazon.com

CHAPTER 3

ENRICHING THE ‘INTEGRATION AS A SERVICE’ PARADIGM FOR THE CLOUD ERA

PETHURU RAJ

3.1 AN INTRODUCTION

The trend-setting cloud paradigm actually represents the cool conglomeration of a number of proven and promising Web and enterprise technologies. Though the cloud idea is not conceptually new, practically it has brought in myriad tectonic shifts for the whole information and communication technology (ICT) industry. The cloud concepts have progressively and perceptibly impacted the IT and business domains on several critical aspects. The cloud computing has brought in series of novelty-packed deployment, delivery, consumption and pricing models whereas the service orientation prescribes a much simpler application design mechanism. The noteworthy contribution of the much-discoursed and deliberated cloud computing is the faster realization and proliferation of dynamic, converged, adaptive, on-demand, and online compute infrastructures, which are the key requirement for the future IT. The delightful distinctions here are that clouds guarantee most of the non-function requirements (Quality of Service (QoS) attributes) such as availability, high performance, on-demand scalability/elasticity, affordability, global-scale accessibility and usability, energy efficiency etc.

Having understood the exceptional properties of cloud infrastructures (hereafter will be described as just clouds), most of the global enterprises (small, medium and even large) are steadily moving their IT offerings such as business services and applications to clouds. This transition will facilitate a higher and deeper reach and richness in application delivery and consumability. Product vendors having found that the cloud style is a unique proposition are moving their platforms, databases, and middleware to clouds. Cloud Infrastructure providers are establishing cloud centers to host a variety of ICT services and platforms of worldwide individuals, innovators, and institutions. Cloud service providers (CSPs) are very aggressive in experimenting and embracing the cool cloud ideas and today every business and technical services are being hosted in clouds to be delivered to global customers, clients and consumers over the Internet communication infrastructure. For example, security as a service (SaaS) is a prominent cloud-hosted security service that can be subscribed by a spectrum of users of any connected device and the users just pay for the exact amount or time of usage. In a nutshell, on-premise and local applications are becoming online, remote, hosted, on-demand and off-premise applications. With the unprecedented advertisement, articulation and adoption of cloud concepts, the cloud movement is picking up fast as per leading market research reports. Besides the modernization of legacy applications and positing the updated and upgraded in clouds, fresh applications are being implemented and deployed on clouds to be delivered to millions of global users simultaneously affordably. It is hence clear that a number of strategic and significant movements happen silently in the hot field of cloud computing.

All these portend and predict that there is a new dimension to the integration scenario. Hitherto enterprise data and applications are being linked up via one or more standards-compliant integration platforms, brokers, engines, and containers within the corporate intranet. Business-to-business (B2B) integration is being attended via special data formats, message templates, and networks and even via the Internet. Enterprises consistently expand their operations to several parts of the world as they establish special partnerships with their partners or buy other companies in different geographies for enhancing the product and service portfolios. Business applications are finding their new residence in clouds. However most of the confidential and corporate data are still being maintained in enterprise servers for security reasons. The integration task gets just bigger with the addition of the cloud space and the integration complexity is getting murkier. Hence it is logical to take the integration middleware to clouds to simplify and streamline the enterprise-to-enterprise (E2E), enterprise-to-cloud (E2C) and cloud-to-cloud (C2C) integration.

In this chapter, we want you to walk through how cloud paradigm impacts the integration scene. That is, how cloud applications are being integrated with both enterprise as well as other cloud applications. Similarly how applications hosted in distributed clouds can find on another and share their functionality is also being given its share of attention. We have visualised and written about a few important integration scenarios wherein cloud-based middleware exceptionally contributes for simplifying and streamlining the increasingly complex integration goal. It is all about how integration becomes a cloud service.

3.2 THE ONSET OF KNOWLEDGE ERA

Having started its innings as the greatest business-enabler, today IT is tending towards the significant factor and the facilitator of every aspect of human lives. Path-breaking and people-centric technologies (miniaturization, virtualization, federation, composition, collaboration, etc.) are emerging and are being experimented, expounded, and established in order to empower the professional and the personal IT to be smart, simple, supple and sensitive towards users’ situational needs and to significantly enhance peoples’ comfort, care, convenience and choice. Novel computing paradigms (grid, on-demand, service, cloud, etc.) erupt and evolve relentlessly to be greatly and gracefully impactful and insightful. In the monolithic mainframe era, one centralized and large system performed millions of operations to respond to thousands of users (one-to-many), today everyone has his own compute machine (one-to-one), and tomorrow a multitude of smart objects and electronic devices (nomadic, wearable, portable, implantable etc.) will seamlessly and spontaneously co-exist, corroborate, correlate, and coordinate with one another dynamically with dexterity to understand one or more users’ needs, conceive, construct, and deliver them at right time at right place (many-to-one). Anytime anywhere computing tends towards everywhere, every time and everything computing.

Ambient intelligence (AmI) is the newest buzzword today with ambient sensing, networking, perception, decision-making and actuation technologies. Multimedia and multimodal technologies are flourishing in order to be make human interaction more friendly and fruitful. Dynamic, virtualized and autonomic infrastructures, flexible, integrated and lean processes, constructive and contributive building-blocks (service, model, composite, agent, aspect etc.), slim and sleek devices and appliances, smart objects empowered by invisible tags and stickers, natural interfaces, ad-hoc and situational networking capabilities all combine adaptively together to accomplish the grandiose goals of the forthcoming ambient intelligence days and decades. In short, IT-sponsored and splurged smartness in every facet of our living in this world is the vision. Software engineering is on the right track with the maturity of service orientation concepts and software as a service (SaaS) model. Clouds chip in mightily in realizing the much-acclaimed knowledge era. Technologies form a dynamic cluster in real-time in order to contribute immensely and immeasurably for all the existing, evolving and exotic expectations of people.

3.3 THE EVOLUTION OF SaaS

SaaS paradigm is on fast track due to its innate powers and potentials. Executives, entrepreneurs, and end-users are ecstatic about the tactic as well as strategic success of the emerging and evolving SaaS paradigm. A number of positive and progressive developments started to grip this model. Newer resources and activities are being consistently readied to be delivered as a service. Experts and evangelists are in unison that cloud is to rock the total IT community as the best possible infrastructural solution for effective service delivery. There are several ways clouds can be leveraged inspiringly and incredibly for diverse IT problems. Today there is a small list of services being delivered via the clouds and in future, many more critical applications will be deployed and consumed. In short, clouds are set to decimate all kinds of IT inflexibility and dawn a growing array of innovations to prepare the present day IT for sustainable prosperity.

IT as a Service (ITaaS) is the most recent and efficient delivery method in the decisive IT landscape. With the meteoric and mesmerizing rise of the service orientation principles, every single IT resource, activity and infrastructure is being viewed and visualized as a service that sets the tone for the grand unfolding of the dreamt service era. These days, systems are designed and engineered as elegant collections of enterprising and evolving services. Infrastructures are service-enabled to be actively participative and collaborative. In the same tenor, the much-maligned delivery aspect too has gone through several transformations and today the whole world has solidly settled for the green paradigm ‘IT as a service (ITaaS)’. This is accentuated due to the pervasive Internet. Also we are bombarded with innumerable implementation technologies and methodologies. Clouds, as indicated above, is the most visible and viable infrastructure for realizing ITaaS. Another influential and impressive factor is the maturity obtained in the consumption-based metering and billing capability. HP even proclaims this evolving trend as ‘everything as a service’.

Integration as a service (IaaS) is the budding and distinctive capability of clouds in fulfilling the business integration requirements. Increasingly business applications are deployed in clouds to reap the business and technical benefits. On the other hand, there are still innumerable applications and data sources locally stationed and sustained primarily due to the security reason. The question here is how to create a seamless connectivity between those hosted and on-premise applications to empower them to work together. IaaS overcomes these challenges by smartly utilizing the time-tested business-to-business (B2B) integration technology as the value-added bridge between SaaS solutions and in-house business applications.

B2B systems are capable of driving this new on-demand integration model because they are traditionally employed to automate business processes between manufacturers and their trading partners. That means they provide application-to-application connectivity along with the functionality that is very crucial for linking internal and external software securely. Unlike the conventional EAI solutions designed only for internal data sharing, B2B platforms have the ability to encrypt files for safe passage across the public network, manage large data volumes, transfer batch files, convert disparate file formats, and guarantee data delivery across multiple enterprises. IaaS just imitates this established communication and collaboration model to create reliable and durable linkage for ensuring smooth data passage between traditional and cloud systems over the Web infrastructure.

The use of hub & spoke (H&S) architecture further simplifies the implementation and avoids placing an excessive processing burden on the customer sides. The hub is installed at the SaaS provider’s cloud center to do the heavy lifting such as reformatting files. A spoke unit at each user site typically acts as basic data transfer utility. With these pieces in place, SaaS providers can offer integration services under the same subscription / usage-based pricing model as their core offerings. This trend of moving all kinds of common and centralised services to clouds is gaining momentum these days. As resources are getting distributed and decentralised, linking and leveraging them for multiple purposes need a multifaceted infrastructure. Clouds, being the Web-based infrastructures are the best fit for hosting scores of unified and utility-like platforms to take care of all sorts of brokering needs among connected and distributed ICT systems.

1. The Web is the largest digital information superhighway

2. The Web is the largest repository of all kinds of resources such as web pages, applications comprising enterprise components, business services, beans, POJOs, blogs, corporate data, etc.

3. The Web is turning out to be the open, cost-effective and generic business execution platform (E-commerce, business, auction, etc. happen in the web for global users) comprising a wider variety of containers, adaptors, drivers, connectors, etc.

4. The Web is the global-scale communication infrastructure (VoIP, Video conferencing, IP TV etc,)

5. The Web is the next-generation discovery, Connectivity, and integration middleware

Thus the unprecedented absorption and adoption of the Internet is the key driver for the continued success of the cloud computing.

3.4 THE CHALLENGES OF SaaS PARADIGM

As with any new technology, SaaS and cloud concepts too suffer a number of limitations. These technologies are being diligently examined for specific situations and scenarios. The prickling and tricky issues in different layers and levels are being looked into. The overall views are listed out below. Loss or lack of the following features deters the massive adoption of clouds

1. Controllability

2. Visibility & flexibility

3. Security and Privacy

4. High Performance and Availability

5. Integration and Composition

6. Standards

A number of approaches are being investigated for resolving the identified issues and flaws. Private cloud, hybrid and the latest community cloud are being prescribed as the solution for most of these inefficiencies and deficiencies. As rightly pointed out by someone in his weblogs, still there are miles to go. There are several companies focusing on this issue. Boomi (http://www.dell.com/) is one among them. This company has published several well-written white papers elaborating the issues confronting those enterprises thinking and trying to embrace the third-party public clouds for hosting their services and applications.

Integration Conundrum.

While SaaS applications offer outstanding value in terms of features and functionalities relative to cost, they have introduced several challenges specific to integration. The first issue is that the majority of SaaS applications are point solutions and service one line of business. As a result, companies without a method of synchronizing data between multiple lines of businesses are at a serious disadvantage in terms of maintaining accurate data, forecasting, and automating key business processes. Real-time data and functionality sharing is an essential ingredient for clouds.

APIs are Insufficient.

Many SaaS providers have responded to the integration challenge by developing application programming interfaces (APIs). Unfortunately, accessing and managing data via an API requires a significant amount of coding as well as maintenance due to frequent API modifications and updates. Furthermore, despite the advent of web services, there is little to no standardization or consensus on the structure or format of SaaS APIs. As a result, the IT department expends an excess amount of time and resources developing and maintaining a unique method of communication for the API of each SaaS application deployed within the organization.

Data Transmission Security.

SaaS providers go to great length to ensure that customer data is secure within the hosted environment. However, the need to transfer data from on-premise systems or applications behind the firewall with SaaS applications hosted outside of the client’s data center poses new challenges that need to be addressed by the integration solution of choice. It is critical that the integration solution is able to synchronize data bi-directionally from SaaS to on-premise without opening the firewall. Best-of-breed integration providers can offer the ability to do so by utilizing the same security as when a user is manually typing data into a web browser behind the firewall.

For any relocated application to provide the promised value for businesses and users, the minimum requirement is the interoperability between SaaS applications and on-premise enterprise packages. As SaaS applications were not initially designed keeping the interoperability requirement in mind, the integration process has become a little tougher assignment. There are other obstructions and barriers that come in the way of routing messages between on-demand applications and on-premise resources. Message, data and protocol translations have to happen at end-points or at the middleware layer in order to decimate the blockade that is prohibiting the spontaneous sharing and purposeful collaboration among the participants. As applications and data are diverse, distributed and decentralized, versatile integration technologies and methods are very essential to smoothen the integration problem. Reflective middleware is an important necessity for enterprise-wide, real-time and synchronized view of information to benefit executives, decision-makers as well as users tactically as well as strategically. Data integrity, confidentiality, quality and value have to be preserved as services and applications are interlinked and saddled to work together.

The Impacts of Clouds [1, 2].

On the infrastructural front, in the recent past, the clouds have arrived onto the scene powerfully and have extended the horizon and the boundary of business applications, events and data. That is, business applications, development platforms etc. are getting moved to elastic, online and on-demand cloud infrastructures. Precisely speaking, increasingly for business, technical, financial and green reasons, applications and services are being readied and relocated to highly scalable and available clouds. The immediate implication and impact is that integration methodologies and middleware solutions have to take clouds too into account for establishing extended and integrated processes and views. Thus there is a clarion call for adaptive integration engines that seamlessly and spontaneously connect enterprise applications with cloud applications. Integration is being stretched further to the level of the expanding Internet and this is really a litmus test for system architects and integrators.

The perpetual integration puzzle has to be solved meticulously for the originally visualised success of SaaS style. Interoperability between SaaS and non-SaaS solutions remains the lead demand as integration leads to business-aware and people-centric composite systems and services. Boundaryless flow of information is necessary for enterprises to strategize to achieve greater successes, value and for delivering on the elusive goal of customer delight. Integration has been a big challenge for growing business behemoths, fortune 500 companies, and system integrators. Now with the availability, affordability and suitability of the cloud-sponsored and the state-of-the-art infrastructures for application deployment and delivery, the integration’s scope, size, and scale is expanding and this beneficial extension however have put integration architects, specialists and consultants in deeper trouble.

3.5 APPROACHING THE SaaS INTEGRATION ENIGMA

Integration as a Service (IaaS) is all about the migration of the functionality of a typical enterprise application integration (EAI) hub / enterprise service bus (ESB) into the cloud for providing for smooth data transport between any enterprise and SaaS applications. Users subscribe to IaaS as they would do for any other SaaS application. Cloud middleware is the next logical evolution of traditional middleware solutions. That is, cloud middleware will be made available as a service. Due to varying integration requirements and scenarios, there are a number of middleware technologies and products such as JMS-compliant message queues and integration backbones such as EAI, ESB, EII, EDB, CEP, etc. For performance sake, clusters, fabrics, grids, and federations of hubs, brokers, and buses are being leveraged.

For service integration, it is enterprise service bus (ESB) and for data integration, it is enterprise data bus (EDB). Besides there are message oriented middleware (MOM) and message brokers for integrating decoupled applications through message passing and pick up. Events are coming up fast and there are complex event processing (CEP) engines that receive a stream of diverse events from diverse sources, process them at real-time to extract and figure out the encapsulated knowledge, and accordingly select and activate one or more target applications thereby a kind of lighter connectivity and integration occurs between the initiating and the destination applications. Service orchestration and choreography enables process integration. Service interaction through ESB integrates loosely coupled systems whereas CEP connects decoupled systems. Besides data services, mashups perform and provide composite services, data and views. Thus at every layer or tier in the enterprise IT stack, there are competent integration modules and guidelines brewing for bringing up the much-anticipated dynamic integration.

With the unprecedented rise in cloud usage, all these integration software are bound to move to clouds. Amazon’s Simple Queue Service (SQS) provides a straightforward way for applications to exchange messages via queues in the cloud. SQS is a classic example for understanding what happens when a familiar on-premise service is recast as a cloud service. However there are some problems with this. Because SQS replicates messages across multiple queues, an application reading from a queue is not guaranteed to see all messages from all queues on a particular read request. SQS also doesn’t promise in-order and exactly-once delivery. These simplifications let Amazon make SQS more scalable, but they also mean that developers must use SQS differently from an on-premise message queuing technology.

Cloud infrastructure is not very useful without SaaS applications that run on top of them, and SaaS applications are not very valuable without access to the critical corporate data that is typically locked away in various corporate systems. So, for cloud applications to offer maximum value to their users, they need to provide a simple mechanism to import or load external data, export or replicate their data for reporting or analysis purposes, and finally keep their data synchronized with on-premise applications. That brings out the importance of SaaS integration subject.

As per one of the David Linthicum’s white papers, approaching SaaS-to-enterprise integration is really a matter of making informed and intelligent choices. Choices are mainly around the integration approaches to leverage architectural patterns, the location of the integration engine, and, finally the enabling technology. The unprecedented growth of SaaS means that more and more software components are migrated and made to reside in off-premise SaaS platforms. Hence the need for integration between remote cloud platforms with on-premise enterprise platforms, wherein the customer and corporate data are stored for ensuring unbreakable, impeccable and impenetrable security, has caught the serious and sincere attention and imagination of product vendors and SaaS providers.

Why SaaS Integration is hard?.

As indicated in the white paper, there is a mid-sized paper company that recently became a Salesforce.com CRM customer. The company currently leverages an on-premise custom system that uses an Oracle database to track inventory and sales. The use of the Salesforce.com system provides the company with a significant value in terms of customer and sales management. However, the information that persists within the Salesforce.com system is somewhat redundant with the information stored within the on-premise legacy system (e.g., customer data). Thus the “as is” state is in a fuzzy state and suffers from all kinds of costly inefficiencies including the need to enter and maintain data in two different locations, which ultimately costs more for the company. Another irritation is the loss of data quality which is endemic when considering this kind of dual operation. This includes data integrity issues, which are a natural phenomenon when data is being updated using different procedures, and there is no active synchronization between the SaaS and on-premise systems.

Having understood and defined the “to be” state, data synchronization technology is proposed as the best fit between the source, meaning Salesforce.com, and the target, meaning the existing legacy system that leverages Oracle. This technology is able to provide automatic mediation of the differences between the two systems, including application semantics, security, interfaces, protocols and native data formats. The end result is that information within the SaaS-delivered systems and the legacy systems are completely and compactly synchronized meaning that data entered into the CRM system would also exist in the legacy systems and vice versa, along with other operational data such as inventory, items sold, etc. The “to be” state thereby removes data quality and integrity issues fully. This directly and indirectly paves the way for saving thousands of dollars a month and producing a quick ROI from the integration technology that is studied and leveraged.

Integration has been the prominent subject of study and research by academic students and scholars for years as integration brings a sense of order to the chaos and mess created by heterogeneous systems, networks, and services. Integration technologies, tools, tips, best practices, guidelines, metrics, patterns, and platforms are varied and vast. Integration is not easier either to implement as successful untangling from the knotty situation is a big issue. The web of application and data silos really makes the integration task difficult and hence choosing a best-in class scheme for flexible and futuristic integration is insisted very frequently. First of all, we need to gain the insights about the special traits and tenets of SaaS applications in order to arrive at a suitable integration route. The constraining attributes of SaaS applications are

	Dynamic nature of the SaaS interfaces that constantly change

	Dynamic nature of the metadata native to a SaaS provider such as Salesforce.com

	Managing assets that exist outside of the firewall

	Massive amounts of information that need to move between SaaS and on-premise systems daily and the need to maintain data quality and integrity.

As SaaS are being deposited in cloud infrastructures vigorously, we need to ponder about the obstructions being imposed by clouds and prescribe proven solutions. If we face difficulty with local integration, then the cloud integration is bound to be more complicated. The most probable reasons are

	New integration scenarios

	Access to the cloud may be limited

	Dynamic resources

	Performance

Limited Access.

Access to cloud resources (SaaS, PaaS, and the infrastructures) is more limited than local applications. Accessing local applications is quite simple and faster. Imbedding integration points in local as well as custom applications is easier. Even with the commercial applications, it is always possible to slip in database-triggers to raise events and provide hooks for integration access. Once applications move to the cloud, custom applications must be designed to support integration because there is no longer that low-level of access. Enterprises putting their applications in the cloud or those subscribers of cloud-based business services are dependent on the vendor to provide the integration hooks and APIs. For example, the Salesforce.com web services API does not support transactions against multiple records, which means integration code has to handle that logic. For PaaS, the platform might support integration for applications on the platform. However platform-to-platform integration is still an open question. There is an agreement that a limited set of APIs will improve the situation to an extent. But those APIs must be able to handle the integration required. Applications and data can be moved to public clouds but the application providers and data owners lose the much-needed controllability and flexibility, Most of the third-party cloud providers do not submit their infrastructures for third-party audit. Visibility is another vital factor lost out due to this transition.

Dynamic Resources.

Cloud resources are virtualized and service-oriented. That is, everything is expressed and exposed as a service. Due to the dynamism factor that is sweeping the whole could ecosystem, application versioning and infrastructural changes are liable for dynamic changes. These would clearly impact the integration model. That is, the tightly coupled integration fails and falters at cloud. It is clear that the low-level interfaces ought to follow the Representational State Transfer (REST) route, which is a simple architectural style and subscribes to the standard methods of the Http protocol.

Performance.

Clouds support application scalability and resource elasticity. However the network distances between elements in the cloud are no longer under our control. Bandwidth is not the limiting factor in most integration scenarios but the round trip latency is an issue not to be sidestepped. Because of the latency aggravation, the cloud integration performance is bound to slow down.

3.6 NEW INTEGRATION SCENARIOS

Before the cloud model, we had to stitch and tie local systems together. With the shift to a cloud model is on the anvil, we now have to connect local applications to the cloud, and we also have to connect cloud applications to each other, which add new permutations to the complex integration channel matrix. It is unlikely that everything will move to a cloud model all at once, so even the simplest scenarios require some form of local / remote integration. It is also likely that we will have applications that never leave the building, due to regulatory constraints like HIPPA, GLBA, and general security issues. All of this means integration must criss-cross firewalls somewhere.

Cloud Integration Scenarios.

We have identified three major integration scenarios as discussed below.

Within a Public Cloud (figure 3.1).

FIGURE 3.1. Within a Public Cloud.

[image: image]

Two different applications are hosted in a cloud. The role of the cloud integration middleware (say cloud-based ESB or internet service bus (ISB)) is to seamlessly enable these applications to talk to each other. The possible sub-scenarios include these applications can be owned by two different companies. They may live in a single physical server but run on different virtual machines.

Homogeneous Clouds (figure 3.2).

FIGURE 3.2. Across Homogeneous Clouds.

[image: image]

The applications to be integrated are posited in two geographically separated cloud infrastructures. The integration middleware can be in cloud 1 or 2 or in a separate cloud.

There is a need for data and protocol transformation and they get done by the ISB. The approach is more or less compatible to enterprise application integration procedure.

Heterogeneous Clouds (figure 3.3).

FIGURE 3.3. Across Heterogeneous Clouds.

[image: image]

One application is in public cloud and the other application is private cloud.

As described above, this is the currently dominating scene for cloud integration. That is, businesses are subscribing to popular on-demand enterprise packages from established providers such as Salesforce.com and Ramco Systems (http://www.ramco.com/)’s customer relationship management (CRM), NetSuite’s (http://www.netsuite.com) enterprise resource planning (ERP), etc. The first two scenarios will become prevalent once there are several commercial clouds and cloud services become pervasive. Then service integration and composition domains will become an important and incredible factor for global computing.

3.7 THE INTEGRATION METHODOLOGIES

Excluding the custom integration through hand-coding, there are three types for cloud integration

1. Traditional Enterprise Integration Tools can be empowered with special connectors to access Cloud-located Applications—This is the most likely approach for IT organizations, which have already invested a lot in integration suite for their application integration needs. With a persistent rise in the necessity towards accessing and integrating cloud applications, special drivers, connectors and adapters are being built and incorporated on the existing integration platforms to enable bidirectional connectivity with the participating cloud services. As indicated earlier, there are several popular and pioneering enterprise integration methods and platforms such as EAI/ESB, which are accordingly empowered, configured and customized in order to access and leverage the growing array of cloud applications too. For attaining an enhanced performance, integration appliances are very hot in the market.

2. Traditional Enterprise Integration Tools are hosted in the Cloud—This approach is similar to the first option except that the integration software suite is now hosted in any third-party cloud infrastructures so that the enterprise does not worry about procuring and managing the hardware or installing the integration software. This is a good fit for IT organizations that outsource the integration projects to IT service organizations and systems integrators, who have the skills and resources to create and deliver integrated systems. The IT divisions of business enterprises need not worry about the upfront investment of high-end computer machines, integration packages, and their maintenance with this approach. Similarly system integrators can just focus on their core competencies of designing, developing, testing, and deploying integrated systems. It is a good fit for cloud-to-cloud (C2C) integration, but requires a secure VPN tunnel to access on-premise corporate data. An example of a hosted integration technology is Informatica PowerCenter Cloud Edition on Amazon EC2.

3. Integration-as-a-Service (IaaS) or On-Demand Integration Offerings—These are SaaS applications that are designed to deliver the integration service securely over the Internet and are able to integrate cloud applications with the on-premise systems, cloud-to-cloud applications. Even on-premise systems can be integrated with other on-premise applications via this integration service. This approach is a good fit for companies who insist about the ease of use, ease of maintenance, time to deployment, and are on a tight budget. It is appealing to small and mid-sized companies, as well as large enterprises with departmental application deployments. It is also a good fit for companies who plan to use their SaaS administrator or business analyst as the primary resource for managing and maintaining their integration work. A good example is Informatica On-Demand Integration Services.

In a nutshell, the integration requirements can be realised using any one of the following methods and middleware products.

1. Hosted and extended ESB (Internet service bus / cloud integration bus)

2. Online Message Queues, Brokers and Hubs

3. Wizard and configuration-based integration platforms (Niche integration solutions)

4. Integration Service Portfolio Approach

5. Appliance-based Integration (Standalone or Hosted)

With the emergence of the cloud space, the integration scope grows further and hence people are looking out for robust and resilient solutions and services that would speed up and simplify the whole process of integration.

Characteristics of Integration Solutions and Products.

The key attributes of integration platforms and backbones gleaned and gained from integration projects experience are connectivity, semantic mediation, Data mediation, integrity, security, governance etc

	Connectivity refers to the ability of the integration engine to engage with both the source and target systems using available native interfaces. This means leveraging the interface that each provides, which could vary from standards-based interfaces, such as Web services, to older and proprietary interfaces. Systems that are getting connected are very much responsible for the externalization of the correct information and the internalization of information once processed by the integration engine.

	Semantic Mediation refers to the ability to account for the differences between application semantics between two or more systems. Semantics means how information gets understood, interpreted and represented within information systems. When two different and distributed systems are linked, the differences between their own yet distinct semantics have to be covered.

	Data Mediation converts data from a source data format into destination data format. Coupled with semantic mediation, data mediation or data transformation is the process of converting data from one native format on the source system, to another data format for the target system.

	Data Migration is the process of transferring data between storage types, formats, or systems. Data migration means that the data in the old system is mapped to the new systems, typically leveraging data extraction and data loading technologies.

	Data Security means the ability to insure that information extracted from the source systems has to securely be placed into target systems. The integration method must leverage the native security systems of the source and target systems, mediate the differences, and provide the ability to transport the information safely between the connected systems.

	Data Integrity means data is complete and consistent. Thus, integrity has to be guaranteed when data is getting mapped and maintained during integration operations, such as data synchronization between on-premise and SaaS-based systems.

	Governance refers to the processes and technologies that surround a system or systems, which control how those systems are accessed and leveraged. Within the integration perspective, governance is about managing changes to core information resources, including data semantics, structure, and interfaces.

These are the prominent qualities carefully and critically analyzed for when deciding the cloud / SaaS integration providers.

Data Integration Engineering Lifecycle.

As business data are still stored and sustained in local and on-premise server and storage machines, it is imperative for a lean data integration lifecycle. The pivotal phases, as per Mr. David Linthicum, a world-renowned integration expert, are understanding, definition, design, implementation, and testing.

1. Understanding the existing problem domain means defining the metadata that is native within the source system (say Salesforce.com) and the target system (say an on-premise inventory system). By doing this, there is a complete semantic understanding of both source and target systems. If there are more systems for integration, the same practice has to be enacted.

2. Definition refers to the process of taking the information culled during the previous step and defining it at a high level including what the information represents, ownership, and physical attributes. This contributes a better perceptive of the data being dealt with beyond the simple metadata. This insures that the integration process proceeds in the right direction.

3. Design the integration solution around the movement of data from one point to another accounting for the differences in the semantics using the underlying data transformation and mediation layer by mapping one schema from the source to the schema of the target. This defines how the data is to be extracted from one system or systems, transformed so it appears to be native, and then updated in the target system or systems. This is increasingly done using visual-mapping technology. In addition, there is a need to consider both security and governance and also consider these concepts within the design of the data integration solution.

4. Implementation refers to actually implementing the data integration solution within the selected technology. This means connecting the source and the target systems, implementing the integration flows as designed in the previous step, and then other steps required getting the data integration solution up-and-running

5. Testing refers to assuring that the integration is properly designed and implemented and that the data synchronizes properly between the involved systems. This means looking at known test data within the source system and monitoring how the information flows to the target system. We need to insure that the data mediation mechanisms function correctly as well as review the overall performance, durability, security, modifiability and sustainability of the integrated systems.

3.8 SaaS INTEGRATION PRODUCTS AND PLATFORMS

Cloud-centric integration solutions are being developed and demonstrated for showcasing their capabilities for integrating enterprise and cloud applications. The integration puzzle has been the toughest assignment for long due to heterogeneity and multiplicity-induced complexity. Now with the arrival and adoption of the transformative and disruptive paradigm of cloud computing, every ICT products are being converted into a collection of services to be delivered via the open Internet. In that line, the standards-compliant integration suites are being transitioned into services so that any integration need of any one from any part of the world can be easily, cheaply and rapidly met. At this point of time, primarily data integration products are highly visible as their need is greater compared to service or message-based integration of applications. But as the days go by, there will be a huge market for application and service integration. Interoperability will become the most fundamental thing. Composition and collaboration will become critical and crucial for the mass adoption of clouds, which are prescribed and proclaimed as the next-generation infrastructure for creating, deploying and delivering hordes of ambient, artistic, adaptive, and agile services. Cloud interoperability is the prime demand and the Figure 3.4 for creating cloud peers, clusters, fabrics, and grids.

FIGURE 3.4. The Smooth and Spontaneous Cloud Interaction via Open Clouds.

[image: image]

3.8.1 Jitterbit [4]

Force.com is a Platform as a Service (PaaS), enabling developers to create and deliver any kind of on-demand business application. However, in order to take advantage of this breakthrough cloud technology, there is a need for a flexible and robust integration solution to synchronize force.com with any on-demand or on-premise enterprise applications, databases, and legacy systems. Until now, integrating force.com applications with other on-demand applications and systems within an enterprise has seemed like a daunting and doughty task that required too much time, money, and expertise.

Jitterbit is a fully graphical integration solution that provides users a versatile platform and a suite of productivity tools to reduce the integration efforts sharply. Jitterbit can be used standalone or with existing EAI infrastructures, enabling users to create new projects or consume and modify existing ones offered by the open source community or service provider. The Jitterbit solution enables the cool integration among confidential and corporate data, enterprise applications, web services, XML data sources, legacy systems, simple and complex flat files. Apart from a scalable and secure server, Jitterbit provides a powerful graphical environment to help us quickly design, implement, test, deploy, and manage the integration projects. Jitterbit is comprised of two major components:

	Jitterbit Integration Environment An intuitive point-and-click graphical UI that enables to quickly configure, test, deploy and manage integration projects on the Jitterbit server.

	Jitterbit Integration Server A powerful and scalable run-time engine that processes all the integration operations, fully configurable and manageable from the Jitterbit application.

Jitterbit is making integration easier, faster, and more affordable than ever before. Using Jitterbit, one can connect force.com with a wide variety of on-premise systems including ERP, databases, flat files and custom applications. The Figure 3.5 vividly illustrates how Jitterbit links a number of functional and vertical enterprise systems with on-demand applications

FIGURE 3.5. Linkage of On-Premise with Online and On-Demand Applications.

[image: image]

3.8.2 Boomi Software [5]

Has come out with an exciting and elegant SaaS integration product. It promises to fulfil the vision “Integration on Demand”. While the popularity of SaaS applications rises dramatically, the integration task has been the “Achilles heel” of the SaaS mechanism. The integration challenge is real and unanimously cited by industry analysts as the leading barrier to overwhelming SaaS adoption.

Boomi AtomSphere is an integration service that is completely on-demand and connects any combination of SaaS, PaaS, cloud, and on-premise applications without the burden of installing and maintaining software packages or appliances. Anyone can securely build, deploy and manage simple to complex integration processes using only a web browser. Whether connecting SaaS applications found in various lines of business or integrating across geographic boundaries, AtomSphere is being presented as a centralized platform that could deliver integration with all the benefits one would expect from a SaaS solution. As new applications are connected to the AtomSphere, they become instantly accessible to the entire community with no adapters to purchase or upgrade to install. Boomi offers the “pure SaaS” integration solution that enables to quickly develop and deploy connections between applications, regardless of the delivery model.

3.8.3 Bungee Connect [6]

For professional developers, Bungee Connect enables cloud computing by offering an application development and deployment platform that enables highly interactive applications integrating multiple data sources and facilitating instant deployment. Built specifically for cloud development, Bungee Connect reduces the efforts to integrate (mashup) multiple web services into a single application. Bungee automates the development of rich UI and eases the difficulty of deployment to multiple web browsers. Bungee Connect leverages the cloud development to bring an additional value to organizations committed to building applications for the cloud.

3.8.4 OpSource Connect [7]

Expands on the OpSource Services Bus (OSB) by providing the infrastructure for two-way web services interactions, allowing customers to consume and publish applications across a common web services infrastructure. OpSource Connect also addresses the problems of SaaS integration by unifying different SaaS applications in the “cloud” as well as legacy applications running behind a corporate firewall. By providing the platform to drive web services adoption and integration, OpSource helps its customers grow their SaaS application and increase customer retention.

The Platform Architecture.

OpSource Connect is made up of key features including

	OpSource Services Bus

	OpSource Service Connectors

	OpSource Connect Certified Integrator Program

	OpSource Connect ServiceXchange

	OpSource Web Services Enablement Program

The OpSource Services Bus (OSB) is the foundation for OpSource’s turnkey development and delivery environment for SaaS and web companies. Based on SOA, it allows applications running on the OpSource On-Demand platform to quickly and easily tap web services. There is no longer a need to write code for these business functions, as OpSource has already invested in the upfront development. It is all about leveraging the OSB to quickly gain business functions and accelerate time-to-market.

3.8.5 SnapLogic [8]

SnapLogic is a capable, clean, and uncluttered solution for data integration that can be deployed in enterprise as well as in cloud landscapes. The free community edition can be used for the most common point-to-point data integration tasks, giving a huge productivity boost beyond custom code. SnapLogic professional edition is a seamless upgrade that extends the power of this solution with production management, increased capacity, and multi-user features at a price that won’t drain the budget, which is getting shrunk due to the economic slump across the globe. Even the much-expected “V” mode recovery did not happen; the craze for SaaS solutions is on the climb.

The web, SaaS applications, mobile devices, and cloud platforms have profoundly changed the requirements imposed on data integration technology. SnapLogic is a data integration platform designed for the changing landscape of data and applications. SnapLogic offers a solution that provides flexibility for today’s data integration challenges.

	Changing data sources. SaaS and on-premise applications, Web APIs, and RSS feeds

	Changing deployment options. On-premise, hosted, private and public cloud platforms

	Changing delivery needs. Databases, files, and data services

Using a unique hybrid approach, SnapLogic delivers transparency and extensibility to adapt to new integration demands by combining the web principles and open source software with the traditional data integration capabilities.

Transformation Engine and Repository.

SnapLogic is a single data integration platform designed to meet data integration needs. The SnapLogic server is built on a core of connectivity and transformation components, which can be used to solve even the most complex data integration scenarios. The SnapLogic designer runs in any web browser and provides an efficient and productive environment for developing transformation logic. The entire system is repository based, with a single metadata store for all the definitions and transformation logic.

The SnapLogic designer provides an initial hint of the web principles at work behind the scenes. The SnapLogic server is based on the web architecture and exposes all its capabilities through web interfaces to outside world. Runtime control and monitoring, metadata access, and transformation logic are all available through web interfaces using a security model just like the web. The SnapLogic web architecture also provides the ultimate flexibility in functionality and deployment. Data transformations are not restricted to a fixed source or target like traditional ETL engines. The ability to read or write a web interface comes naturally to SnapLogic, allowing the creation of on-demand data services using the same logic as fixed transformations. For deployment, the web architecture means one can choose to run SnapLogic on-premise or hosted in the cloud.

3.8.6 The Pervasive DataCloud [9]

Platform (Figure 3.6) is unique multi-tenant platform. It provides dynamic “compute capacity in the sky” for deploying on-demand integration and other data-centric applications. Pervasive DataCloud is the first multi-tenant platform for delivering the following.

FIGURE 3.6. Pervasive Integrator Connects Different Resources.

[image: image]

1. Integration as a Service (IaaS) for both hosted and on-premises applications and data sources

2. Packaged turnkey integration

3. Integration that supports every integration scenario

4. Connectivity to hundreds of different applications and data sources

Pervasive DataCloud hosts Pervasive and its partners’ data-centric applications. Pervasive uses Pervasive DataCloud as a platform for deploying on-demand integration via

	The Pervasive DataSynch family of packaged integrations. These are highly affordable, subscription-based, and packaged integration solutions. They bring a rapid, seamless, turnkey approach to cloud-based integration for popular applications such as Salesforce, QuickBooks and Microsoft Dynamics

	Pervasive Data Integrator. This runs on the Cloud or on-premises and is a design-once and deploy anywhere solution to support every integration scenario

	Data migration, consolidation and conversion

	ETL / Data warehouse

	B2B / EDI integration

	Application integration (EAI)

	SaaS /Cloud integration

	SOA / ESB / Web Services

	Data Quality/Governance

	Hubs

Pervasive DataCloud provides multi-tenant, multi-application and multi-customer deployment. Pervasive DataCloud is a platform to deploy applications that are

	Scalable—Its multi-tenant architecture can support multiple users and applications for delivery of diverse data-centric solutions such as data integration. The applications themselves scale to handle fluctuating data volumes.

	Flexible—Pervasive DataCloud supports SaaS-to-SaaS, SaaS-to-on premise or on-premise to on-premise integration.

	Easy to Access and Configure—Customers can access, configure and run Pervasive DataCloud-based integration solutions via a browser.

	Robust—Provides automatic delivery of updates as well as monitoring activity by account, application or user, allowing effortless result tracking.

	Secure—Uses the best technologies in the market coupled with the best data centers and hosting services to ensure that the service remains secure and available.

	Affordable—The platform enables delivery of packaged solutions in a SaaS-friendly pay-as-you-go model.

3.8.7 Bluewolf [10]

Has announced its expanded “Integration-as-a-Service” solution, the first to offer ongoing support of integration projects guaranteeing successful integration between diverse SaaS solutions, such as Salesforce.com, BigMachines, eAutomate, OpenAir and back office systems (e.g. Oracle, SAP, Great Plains, SQL Service and MySQL). Called the Integrator, the solution is the only one to include proactive monitoring and consulting services to ensure integration success. With remote monitoring of integration jobs via a dashboard included as part of the Integrator solution, Bluewolf proactively alerts its customers of any issues with integration and helps to solves them quickly. For administrative ease, the Bluewolf Integrator is designed with user-friendly administration rules that enable the administrator to manage the flow of data between front and back office systems with little or no IT support. With a Wizard-based approach, the Integrator prompts are presented in simple and non-technical terms. The Bluewolf Integrator integrates with Salesforce, BigMachines, Oracle, SAP, Microsoft SQL server, MySQL, and supports flat files, such as CSV, XHTML and many more.

3.8.8 Online MQ

Online MQ is an Internet-based queuing system. It is a complete and secure online messaging solution for sending and receiving messages over any network. It is a cloud messaging queuing service. In the integration space, messaging middleware as a service is the emerging trend. Here are some of the advantages for using Online MQ.

	Ease of Use. It is an easy way for programs that may each be running on different platforms, in different systems and different networks, to communicate with each other without having to write any low-level communication code.

	No Maintenance. No need to install any queuing software/server and no need to be concerned with MQ server uptime, upgrades and maintenance.

	Load Balancing and High Availability. Load balancing can be achieved on a busy system by arranging for more than one program instance to service a queue. The performance and availability features are being met through clustering. That is, if one system fails, then the second system can take care of users’ requests without any delay.

	Easy Integration. Online MQ can be used as a web-service (SOAP) and as a REST service. It is fully JMS-compatible and can hence integrate easily with any Java EE application servers. Online MQ is not limited to any specific platform, programming language or communication protocol.

3.8.9 CloudMQ [15]

This leverages the power of Amazon Cloud to provide enterprise-grade message queuing capabilities on demand. Messaging allows us to reliably break up a single process into several parts which can then be executed asynchronously. They can be executed within different threads, or even on different machines. The parts communicate by exchanging messages. The messaging framework guarantees that messages get delivered to the right recipient and wake up the appropriate thread when a message arrives. CloudMQ is the easiest way to start exploring integration of messaging into applications since no installation or configuration is necessary.

3.8.10 Linxter

Linxter [14] is a cloud messaging framework for connecting all kinds of applications, devices, and systems. Linxter is a behind-the-scenes, message-oriented and cloud-based middleware technology and smoothly automates the complex tasks that developers face when creating communication-based products and services. With everything becoming Internet-enabled (iPods, clothing, toasters . . . anything), Linxter’s solution securely, easily, and dynamically connects all these things. Anything that is connected to the Internet can connect to each other through the Linxter’s dynamic communication channels. These channels move data between any number of endpoints and the data can be reconfigured on the fly, simplifying the creation of communication-based products and services.

Online MQ, CloudMQ and Linxter are all accomplishing message-based application and service integration. As these suites are being hosted in clouds, messaging is being provided as a service to hundreds of distributed and enterprise applications using the much-maligned multi-tenancy property. “Messaging middleware as a service (MMaaS)” is the grand derivative of the SaaS paradigm. Thus integration as a service (IaaS) is being accomplished through this messaging service. As seen above, there are data mapping tools come handy in linking up different applications and databases that are separated by syntactic, structural, schematic and semantic deviations. Templates are another powerful mechanism being given serious thought these days to minimize the integration complexity. Scores of adaptors for automating the connectivity and subsequently the integration needs are taking off the ground successfully. The integration conundrum has acquired such a big proportion as the SaaS solutions were designed, developed, and deployed without visualizing the need for integration with the resources at the local and corporate servers.

3.9 SaaS INTEGRATION SERVICES

We have seen the state-of-the-art cloud-based data integration platforms for real-time data sharing among enterprise information systems and cloud applications. Another fast-emerging option is to link enterprise and cloud systems via messaging. This has forced vendors and service organizations to take message oriented middleware (MoM) to the all-powerful cloud infrastructures. Going forward, there are coordinated and calculated efforts for taking the standards-compatible enterprise service bus (ESB) to clouds in order to guarantee message enrichment, mediation, content and context-based message routing. Thus both loosely or lightly coupled and decoupled cloud services and applications will become a reality soon with the maturity and durability of message-centric and cloud-based service bus suites. We can still visualise the deployment of complex event processing (CEP) engines in clouds in order to capture and capitalise streams of events from diverse sources in different formats and forms in order to infer the existing and emerging situation precisely and concisely. Further on, all kinds of risks, threats, vulnerabilities, opportunities, trends, tips, associations, patterns, and other tactical as well as strategic insights and actionable insights can be deduced to act upon confidently and at real time.

In a highly interoperable environment, seamless and spontaneous composition and collaboration would happen in order to create sophisticated services dynamically. Context-aware applications covering all kinds of constituents and participants (self, surroundings and situation-aware devices, sensors, robots, instruments, media players, utensils, consumer electronics, information appliances, etc.), in a particular environment (home, hotel, hospital, office, station, stadium etc.), enterprise systems, integration middleware, cloud services and knowledge engines can be built and sustained. There are fresh endeavours in order to achieve service composition in cloud ecosystem. Existing frameworks such as service component architecture (SCA) are being revitalised for making it fit for cloud environments. Composite applications, services, data, views and processes will be become cloud-centric and hosted in order to support spatially separated and heterogeneous systems.

3.9.1 Informatica On-Demand [11]

Informatica offers a set of innovative on-demand data integration solutions called Informatica On-Demand Services. This is a cluster of easy-to-use SaaS offerings, which facilitate integrating data in SaaS applications, seamlessly and securely across the Internet with data in on-premise applications. The Informatica on-demand service is a subscription-based integration service that provides all the relevant features and functions, using an on-demand or an as-a-service delivery model. This means the integration service is remotely hosted, and thus provides the benefit of not having to purchase or host software. There are a few key benefits to leveraging this maturing technology.

	Rapid development and deployment with zero maintenance of the integration technology.

	Automatically upgraded and continuously enhanced by vendor.

	Proven SaaS integration solutions, such as integration with Salesforce.com, meaning that the connections and the metadata understanding are provided.

	Proven data transfer and translation technology, meaning that core integration services such as connectivity and semantic mediation are built into the technology.

Informatica On-Demand has taken the unique approach of moving its industry leading PowerCenter Data Integration Platform to the hosted model and then configuring it to be a true multi-tenant solution. That means that when developing new features or enhancements, they are immediately made available to all of their customers transparently. That means, no complex software upgrades required and no additional fee is demanded. Fixing, patching, versioning, etc are taken care of by the providers at no cost for the subscribers. Still the service and operation level agreements are being fully met. And the multi-tenant architecture means that bandwidth and scalability are shared resources so meeting different capacity demands becomes smoother and simpler.

3.9.2 Microsoft Internet Service Bus (ISB) [13]

Azure is an upcoming cloud operating system from Microsoft. This makes development, depositing and delivering Web and Windows application on cloud centers easier and cost-effective. Developers’ productivity shoots up, customers’ preferences are being provided, the enterprise goal of “more with less” gets achieved, etc. Azure is being projected as the comprehensive yet compact cloud framework that comprises a wider variety of enabling tools for a slew of tasks and a growing service portfolio. The primary components are explained below.

Microsoft .NET Services.

is a set of Microsoft-built and hosted cloud infrastructure services for building Internet-enabled applications and the ISB acts as the cloud middleware providing diverse applications with a common infrastructure to name, discover, expose, secure and orchestrate web services. The following are the three broad areas.

.NET Service Bus.

The .NET Service Bus (Figure 3.7) provides a hosted, secure, and broadly accessible infrastructure for pervasive communication, large-scale event distribution, naming, and service publishing. Services can be exposed through the Service Bus Relay, providing connectivity options for service endpoints that would otherwise be difficult or impossible to reach. Endpoints can be located behind network address translation (NAT) boundaries or bound to frequently changing, dynamically assigned IP addresses, or both.

FIGURE 3.7. .NET Service Bus.

[image: image]

.NET Access Control Service.

The .NET Access Control Service is a hosted, secure, standards-based infrastructure for multiparty, federated authentication, rules-driven, and claims-based authorization. The Access Control Service’s capabilities range from simple, one-step, user name/password-based authentication and authorization with Web-style HTTP requests to sophisticated WS-Federation scenarios that employ two or more collaborating WS-Trust Security Token Services. The Access Control Service allows applications to rely on .NET Services solution credentials for simple scenarios or on on-premise enterprise accounts managed in Microsoft Active Directory and federated with the Access Control Service via next-generation Microsoft Active Directory Federation Services.

.NET Workflow Service.

The .NET Workflow Service provide a hosted environment for service orchestration based on the familiar Windows Workflow Foundation (WWF) development experience. The Workflow services will provide a set of specialized activities for rules-based control flow, service invocation, as well as message processing and correlation that can be executed on demand, on schedule, and at scale inside the.NET Services environment.

The most important part of the Azure is actually the service bus represented as a WCF architecture. The key capabilities of the Service Bus are

	A federated namespace model that provides a shared, hierarchical namespace into which services can be mapped. This allows providing any endpoint with a stable, Internet-accessible URI, regardless of the location.

	A service registry service that provides an opt-in model for publishing service endpoints into a lightweight, hierarchical, and RSS-based discovery mechanism.

	A lightweight and scalable publish/subscribe event bus.

	A relay and connectivity service with advanced NAT traversal and pull-mode message delivery capabilities acting as a “perimeter network (also known as DMZ, demilitarized zone, and screened subnet) in the sky” for services that would otherwise be unreachable due to NAT/Firewall restrictions or frequently changing dynamic IP addresses, or that do not allow any incoming connections due to other technical limitations.

Relay Services.

Often when we connect a service, it is located behind the firewall and behind the load balancer. Its address is dynamic and can be resolved only on local network. When we are having the service call-backs to the client, the connectivity challenges lead to scalability, availability and security issues. The solution to Internet connectivity challenges is instead of connecting client directly to the service we can use a relay service as pictorially represented in the relay service Figure 3.8.

FIGURE 3.8. The .NET Relay Service.

[image: image]

The Relay service is a service residing in the cloud whose job is to assist the connectivity and relaying the calls to the service. Relay Service solution require both the client and the service intranets to allow connections to the cloud.

3.10 BUSINESSES-TO-BUSINESS INTEGRATION (B2Bi) SERVICES

B2Bi has been a mainstream activity for connecting geographically distributed businesses for purposeful and beneficial cooperation. Products vendors have come out with competent B2B hubs and suites for enabling smooth data sharing in standards-compliant manner among the participating enterprises. Now with the surging popularity of clouds, there are serious and sincere efforts to posit these products in clouds in order to deliver B2Bi as a service with very lest investment and maintenance costs. The cloud ideas and ideals lay the strong and stimulating foundation for transitioning from the capital expenditure to operational expenditure and for sustaining the transformed.

There are several proven integration methods in the B2Bi space and they can be captured and capitalized for achieving quicker success and better return and value in the evolving IaaS landscape. B2Bi systems are good candidate for IaaS as they are traditionally employed to automate business processes between manufacturers and their external trading partners such as retail, warehouse, transport, and inventory systems. This means that they provide application-to-application (A2A) connectivity along with functionality that is crucial to linking internal and external software: i.e. secure data exchange across the corporate firewall. Unlike pure EAI solutions designed only for internal data sharing, B2Bi platforms have the ability to encrypt files for safe passage across the public network, manage large data volumes, transfer batch files, convert disparate file formats and guarantee data accuracy, integrity, confidentiality, and delivery. Just as these abilities ensure smooth communication between manufacturers and their external suppliers or customers, they also enable reliable interchange between hosted and installed applications.

The IaaS model also leverages the adapter libraries developed by B2Bi vendors to provide rapid integration with various business systems. Because the B2Bi partners have the expertise and experience ad can supply pre-built connectors for major ERP, CRM, SCM and other packaged business applications as well as legacy systems from AS400 to MVS and mainframe. The use of a hub-and-spoke centralised architecture further simplifies implementation and provides a good control and grip on the system management and finally this avoids placing an excessive processing burden on the customer side. The hub is installed at the SaaS provider’s cloud center to do the heavy lifting such as reformatting files. A spoke unit, typically consisting of a small downloadable Java client, is then deployed at each user site to handle basic tasks such as data transfer. This also eliminates the need for an expensive server-based solution, data mapping and other tasks at the customer location. As the Internet is the principal communication infrastructure, enterprises can leverage the IaaS to sync up with their partners across the continents towards smart and systematic collaboration.

Cloud-based Enterprise Mashup Integration Services for B2B Scenarios [17].

There is a vast need for infrequent, situational and ad-hoc B2B applications desired by the mass of business end-users. Enterprise mashup and lightweight composition approaches and tools are promising methods to unleash the huge and untapped potential of empowering end-users to develop or assemble aligned and aware composite services in order to overcome the “long-tail” dilemma. Currently available solutions to support B2B collaborations focus on the automation of long-term business relationships and still lack to provide their users intuitive ways to modify or to extend them according to their ad-hoc or situational needs. Conventional proceeding in the development of such applications directs to an immense use of time and work due to long development cycles and a lack of required business knowledge.

Especially in the area of applications to support B2B collaborations, current offerings are characterized by a high richness but low reach, like B2B hubs that focus on many features enabling electronic collaboration, but lack availability for especially small organizations or even individuals. The other extreme solutions with a low reach but high richness such as web sites, portals and emails, lack standardization and formularization which makes them inappropriate for automated or special enterprises’ needs. New development approaches are hence needed to overcome theses hurdles and hitches to involve non-technical business users into the development process in order to address this long tail syndrome, to realize cost-effectiveness and efficiency gains, and to overcome the traditional constrictions between IT department and business units.

Enterprise Mashups, a kind of new-generation Web-based applications, seem to adequately fulfill the individual and heterogeneous requirements of end-users and foster End User Development (EUD). To shorten the traditional and time-consuming development process, these new breed of applications are developed by non-professional programmers, often in a non-formal, iterative, and collaborative way by assembling existing building blocks.

SOA has been presented as a potent solution to organization’s integration dilemmas. ESBs are used to integrate different services within a SOA-driven company. However, most ESBs are not designated for cross-organizational collaboration, and thus problems arise when articulating and aiming such an extended collaboration. SOA simplifies and streamlines the integration of new and third-party services but still it can be done by skilled and experienced developers. End-users usually are not able to realize the wanted integration scenarios. This leads, beneath high costs for integration projects, to the unwanted inflexibility, because integration projects last longer, although market competition demands a timely response to uprising requirements proactively.

Another challenge in B2B integration is the ownership of and responsibility for processes. In many inter-organizational settings, business processes are only sparsely structured and formalized, rather loosely coupled and/or based on ad-hoc cooperation. Inter-organizational collaborations tend to involve more and more participants and the growing number of participants also draws a huge amount of differing requirements. Also, the participants may act according to different roles, controls and priorities. Historically, the focus for collaboration was participation within teams which were managed according to one set of rules.

Now, in supporting supplier and partner co-innovation and customer co-creation, the focus is shifting to collaboration which has to embrace the participants, who are influenced yet restricted by multiple domains of control and disparate processes and practices. This represents the game-changing shift from static B2B approaches to new and dynamic B2B integration, which can adaptively act and react to any unexpected disruptions, can allow a rapid configuration and customization and can manage and moderate the rising complexity by the use of end-to-end business processes.

Both Electronic data interchange translators (EDI) and Managed file transfer (MFT) have a longer history, while B2B gateways only have emerged during the last decade. However, most of the available solutions aim at supporting medium to larger companies, resulting from their high costs and long implementation cycles and times, which make them unaffordable and unattractive to smaller organizations. Consequently, these offerings are not suitable for short-term collaborations, which need to be set up in an ad hoc manner.

Enterprise Mashup Platforms and Tools.

Mashups are the adept combination of different and distributed resources including content, data or application functionality. Resources represent the core building blocks for mashups. Resources can be accessed through APIs, which encapsulate the resources and describe the interface through which they are made available. Widgets or gadgets primarily put a face on the underlying resources by providing a graphical representation for them and piping the data received from the resources. Piping can include operators like aggregation, merging or filtering. Mashup platform is a Web based tool that allows the creation of Mashups by piping resources into Gadgets and wiring Gadgets together.

Enterprise Mashups, which are enterprise-scale, aware and ready, are extremely advantages in B2B integration scenes. Mashups can resolve many of the disadvantages of B2B hubs such as low reach due to hard-wired connections. Mashups enable EUD and lightweight connections of systems. Mashups can help adding richness to existing lightweight solutions such as Websites or Portals by adding a certain level of formalization and standardization. Mashups facilitate the ease of mixing and transforming various sources of information internally and from business partners. Complexity in B2B operations is often linked with heterogeneous systems and platforms. The tedious integration process and requirements of various support and maintenance for the software is a major hindrance to today’s dynamic B2B integration, especially for the small and medium enterprises.

The Mashup integration services are being implemented as a prototype in the FAST project. The layers of the prototype are illustrated in Figure 3.9 illustrating the architecture, which describes how these services work together. The authors of this framework have given an outlook on the technical realization of the services using cloud infrastructures and services.

FIGURE 3.9. Cloud-based Enterprise Mashup Integration Platform Architecture.

[image: image]

Prototype architecture shows the services and their relations to each other. The core services are shown within the box in the middle. The external services shown under the box are attached via APIs to allow the usage of third-party offerings to realize their functionality. Users access the services through a Mashup platform of their choice. The Mashup platforms are connected via APIs to the Mashup integration services.

To use the services, users have to identify themselves against the user-access control service. This service is connected to a user management service, which controls the users and their settings. The user management service is connected via an API to allow the usage of external services, e.g. a corporate user database. All data coming from the users go through a translation engine to unify the data objects and protocols, so that different Mashup platforms can be integrated. The translation engine has an interface which allows connecting other external translation engines to add support for additional protocol and data standards. The translated data is forwarded to the routing engine, which is the core of the Mashup integration services. The routing engine takes care of processing the inputs received from the Mashup platforms and forwarding them to the right recipient. The routing is based on rules, which can be configured through an API.

To simplify this, a Gadget could be provided for the end-user. The routing engine is also connected to a message queue via an API. Thus, different message queue engines are attachable. The message queue is responsible for storing and forwarding the messages controlled by the routing engine. Beneath the message queue, a persistent storage, also connected via an API to allow exchangeability, is available to store large data. The error handling and monitoring service allows tracking the message-flow to detect errors and to collect statistical data. The Mashup integration service is hosted as a cloud-based service. Also, there are cloud-based services available which provide the functionality required by the integration service. In this way, the Mashup integration service can reuse and leverage the existing cloud services to speed up the implementation.

Message Queue.

The message queue could be realized by using Amazon’s Simple Queue Service (SQS). SQS is a web-service which provides a queue for messages and stores them until they can be processed. The Mashup integration services, especially the routing engine, can put messages into the queue and recall them when they are needed.

Persistent Storage.

Amazon Simple Storage Service5 (S3) is also a web-service. The routing engine can use this service to store large files.

Translation Engine.

This is primarily focused on translating between different protocols which the Mashup platforms it connects can understand, e.g. REST or SOAP web services. However, if the need of translation of the objects transferred arises, this could be attached to the translation engine. A company requiring such a service could on the one hand develop such a service and connect it to the Mashup integration services. Another possibility for this would be to connect existing translation services, e.g., the services by Mule on Demand, which is also a cloud-based offering.

Interaction between the Services.

The diagram describes the process of a message being delivered and handled by the Mashup Integration Services Platform. The precondition for this process is that a user already established a route to a recipient. After having received a message from an Enterprise Mashup tool via an API, the Integration Services first check the access rights of the sender of the message against an external service. An incoming message is processed only if sender of the message is authorized, that is, he has the right to deliver the message to the recipient and to use the Mashup integration services. If he is not authorized, the processing stops, and an error message gets logged. The error log message is written into a log file, which could reside on Amazon’s Simple Storage Service (S3). If the message has been accepted, it is put in the message queue in Amazon’s SQS service. If required, the message is being translated into another format, which can also be done by an external, cloud-based service. After that, the services can begin trying delivering the message to a recipient. Evaluating the recipients of the message is based on the rules stored in the routing engine which have been configured by a user before. Finally, the successful delivery of the message can be logged, or an error if one occurred.

3.11 A FRAMEWORK OF SENSOR—CLOUD INTEGRATION [3]

In the past few years, wireless sensor networks (WSNs) have been gaining significant attention because of their potentials of enabling of novel and attractive solutions in areas such as industrial automation, environmental monitoring, transportation business, health-care etc. If we add this collection of sensor-derived data to various Web-based social networks or virtual communities, blogs etc., there will be fabulous transitions among and around us. With the faster adoption of micro and nano technologies, everyday things are destined to become digitally empowered and smart in their operations and offerings. Thus the goal is to link smart materials, appliances, devices, federated messaging middleware, enterprise information systems and packages, ubiquitous services, handhelds, and sensors with one another smartly to build and sustain cool, charismatic and catalytic situation-aware applications. Clouds have emerged as the centralized, compact and capable infrastructure to deliver people-centric and context-aware services to users with all the qualities inherently. This long-term target demands that there has to be a cool connectivity and purposeful interactions between clouds and all these pervasive and minuscule systems. In this section, we explain about a robust and resilient a framework to enable this exploration by integrating sensor networks to clouds. But there are many challenges to enable this framework. The authors of this framework have proposed a pub-sub based model, which simplifies the integration of sensor networks with cloud based community-centric applications. Also there is a need for internetworking cloud providers in case of violation of service level agreement with users.

A virtual community consisting of team of researchers have come together to solve a complex problem and they need data storage, compute capability, security; and they need it all provided now. For example, this team is working on an outbreak of a new virus strain moving through a population. This requires more than a Wiki or other social organization tool. They deploy bio-sensors on patient body to monitor patient condition continuously and to use this data for large and multi-scale simulations to track the spread of infection as well as the virus mutation and possible cures. This may require computational resources and a platform for sharing data and results that are not immediately available to the team.

Traditional HPC approach like Sensor-Grid model can be used in this case, but setting up the infrastructure to deploy it so that it can scale out quickly is not easy in this environment. However, the cloud paradigm is an excellent move. But current cloud providers unfortunately did not address the issue of integrating sensor network with cloud applications and thus have no infrastructure to support this scenario. The virtual organization (VO) needs a place that can be rapidly deployed with social networking and collaboration tools, other specialized applications and tools that can compose sensor data and disseminate them to the VO users based on their subscriptions.

Here, the researchers need to register their interests to get various patients’ state (blood pressure, temperature, pulse rate etc.) from bio-sensors for large-scale parallel analysis and to share this information with each other to find useful solution for the problem. So the sensor data needs to be aggregated, processed and disseminated based on subscriptions. On the other hand, as sensor data require huge computational power and storage, one cloud provider may not handle this requirement. This insists and induces for a dynamic collaboration with other cloud providers. The framework addresses the above issues and provides competent solutions.

To integrate sensor networks to cloud, the authors have proposed a content-based pub-sub model. A pub/sub system encapsulates sensor data into events and provides the services of event publications and subscriptions for asynchronous data exchange among the system entities. MQTT-S is an open topic-based pub-sub protocol that hides the topology of the sensor network and allows data to be delivered based on interests rather than individual device addresses. It allows a transparent data exchange between WSNs and traditional networks and even between different WSNs.

In this framework, like MQTT-S, all of the system complexities reside on the broker’s side but it differs from MQTT-S in that it uses content-based pub-sub broker rather than topic-based which is suitable for the application scenarios considered. When an event is published, it is transmitted from a publisher to one or more subscribers without the publisher having to address the message to any specific subscriber. Matching is done by the pub-sub broker outside of the WSN environment. In content-based pub-sub system, sensor data has to be augmented with meta-data to identify the different data fields. For example, a meta-data of a sensor value (also event) can be body temperature, blood pressure etc.

To deliver published sensor data or events to subscribers, an efficient and scalable event matching algorithm is required by the pub-sub broker. This event matching algorithm targets a range predicate case suitable to the application scenarios and it is also efficient and scalable when the number of predicates increases sharply. The framework is shown in Figure 3.10. In this framework, sensor data are coming through gateways to a pub/sub broker. Pub/sub broker is required in the system to deliver information to the consumers of SaaS applications as the entire network is very dynamic. On the WSN side, sensor or actuator (SA) devices may change their network addresses at any time. Wireless links are quite likely to fail. Furthermore, SA nodes could also fail at any time and rather than being repaired, it is expected that they will be replaced by new ones. Besides, different SaaS applications can be hosted and run on any machines anywhere on the cloud. In such situations, the conventional approach of using network address as communication means between the SA devices and the applications may be very problematic because of their dynamic and temporal nature.

FIGURE 3.10. The Framework Architecture of Sensor—Cloud Integration.

[image: image]

Moreover, several SaaS applications may have an interest in the same sensor data but for different purposes. In this case, the SA nodes would need to manage and maintain communication means with multiple applications in parallel. This might exceed the limited capabilities of the simple and low-cost SA devices. So pub-sub broker is needed and it is located in the cloud side because of its higher performance in terms of bandwidth and capabilities. It has four components describes as follows:

Stream monitoring and processing component (SMPC).

The sensor stream comes in many different forms. In some cases, it is raw data that must be captured, filtered and analyzed on the fly and in other cases, it is stored or cached. The style of computation required depends on the nature of the streams. So the SMPC component running on the cloud monitors the event streams and invokes correct analysis method. Depending on the data rates and the amount of processing that is required, SMP manages parallel execution framework on cloud.

Registry component (RC).

Different SaaS applications register to pub-sub broker for various sensor data required by the community user. For each application, registry component stores user subscriptions of that application and sensor data types (temperature, light, pressure etc.) the application is interested in. Also it sends all user subscriptions along with application id to the disseminator component for event delivery.

Analyzer component (AC).

When sensor data or events come to the pub-sub broker, analyzer component determines which applications they are belongs to and whether they need periodic or emergency deliver. The events are then passed to the disseminator component to deliver to appropriate users through SasS applications.

Disseminator component (DC).

For each SaaS application, it disseminates sensor data or events to subscribed users using the event matching algorithm. It can utilize cloud’s parallel execution framework for fast event delivery. The pub-sub components workflow in the framework is as follows:

Users register their information and subscriptions to various SaaS applications which then transfer all this information to pub/sub broker registry. When sensor data reaches to the system from gateways, event/stream monitoring and processing component (SMPC) in the pub/sub broker determines whether it needs processing or just store for periodic send or for immediate delivery. If sensor data needs periodic/ emergency delivery, the analyzer determines which SaaS applications the events belong to and then passes the events to the disseminator along with application ids. The disseminator, using the event matching algorithm, finds appropriate subscribers for each application and delivers the events for use.

Besides the pub-sub broker, the authors have proposed to include three other components: mediator, policy repository (PR) and collaborator agent (CA) along with system manager, provisioning manager, monitoring and metering and service registry in the sensor-cloud framework to enable VO based dynamic collaboration of primary cloud providers with other cloud providers in case of SLA violations for burst resource demand. These three components collectively act as a “gateway” for a given CLP in creation of a new VO. They are described as follows:

Mediator.

The (resource) mediator is a policy-driven entity within a VO to ensure that the participating entities are able to adapt to changing circumstances and are able to achieve their objectives in a dynamic and uncertain environment. Once a VO is established, the mediator controls which resources to be used of the collaborating CLPs, how this decision is taken, and which policies are being used. When performing automated collaboration, the mediator will also direct any decision making during negotiations, policy management, and scheduling. A mediator holds the initial policies for VO creation and works in conjunction with its local Collaborating Agent (CA) to discover external resources and to negotiate with other CLPs.

Policy Repository (PR).

The PR virtualizes all of the policies within the VO. It includes the mediator policies, VO creation policies along with any policies for resources delegated to the VO as a result of a collaborating arrangement. These policies form a set of rules to administer, manage, and control access to VO resources. They provide a way to manage the components in the face of complex technologies.

Collaborating Agent (CA).

The CA is a policy-driven resource discovery module for VO creation and is used as a conduit by the mediator to exchange policy and resource information with other CLPs. It is used by a primary CLP to discover the collaborating CLPs’ (external) resources, as well as to let them know about the local policies and service requirements prior to commencement of the actual negotiation by the mediator.

On concluding, to deliver published sensor data or events to appropriate users of cloud applications, an efficient and scalable event-matching algorithm called Statistical Group Index Matching (SGIM) is proposed and leveraged. The authors also have evaluated its performance and compared with existing algorithms in a cloud based ubiquitous health-care application scenario. The authors in the research paper have clearly described this algorithm that in sync with the framework enables sensor-cloud connectivity to utilize the ever-expanding sensor data for various next generation community-centric sensing applications on the cloud. It can be seen that the computational tools needed to launch this exploration is more appropriately built from the data center “cloud” computing model than the traditional HPC approaches or Grid approaches. The authors have embedded a content-based pub-sub model to enable this framework.

3.12 SaaS INTEGRATION APPLIANCES

Appliances are a good fit for high-performance requirements. Clouds too have gone in the same path and today there are cloud appliances (also termed as “cloud in a box”). In this section, we are to see an integration appliance.

Cast Iron Systems [12].

This is quite different from the above-mentioned schemes. Appliances with relevant software etched inside are being established as a high-performance and hardware-centric solution for several IT needs. Very frequently we read and hear about a variety of integration appliances considering the complexities of connectivity, transformation, routing, mediation and governance for streamlining and simplifying business integration. Even the total cloud infrastructure comprising the prefabricated software modules is being produced as an appliance (cloud in a box). This facilitates building private clouds quicker and easier. Further on, appliance solution is being taken to clouds in order to provide the appliance functionality and feature as a service. “Appliance as a service” is a major trend sweeping the cloud service provider (CSP) industry.

Cast Iron Systems (www.ibm.com) provides pre-configured solutions for each of today’s leading enterprise and On-Demand applications. These solutions, built using the Cast Iron product offerings offer out-of-the-box connectivity to specific applications, and template integration processes (TIPs) for the most common integration scenarios. For example, the Cast Iron solution for Salesforce.com comes with built-in AppExchange connectivity, and TIPs for customer master, product master and contact data integration. Cast Iron solutions enable customers to rapidly complete application-specific integrations using a “configuration, not coding” approach. By using a pre-configured template, rather than starting from scratch with complex software tools and writing lots of code, enterprises complete business-critical projects in days rather than months. Large and midsize companies in a variety of industries use Cast Iron solutions to solve their most common integration needs. From the image below, it is clear Cast Iron systems have readymade.

3.13 CONCLUSION

SaaS in sync with cloud computing has brought in strategic shifts for businesses as well as IT industries. Increasingly SaaS applications are being hosted in cloud infrastructures and the pervasive Internet is the primary communication infrastructure. These combinations of game-changing concepts and infrastructures have really come as a boon and blessing as the world is going through the economic slump and instability. The goal of “more with less” is being accomplished with the maturity of these freshly plucked and published ideas. Applications are studiously being moved to clouds, which are exposed as services, which are delivered via the Internet to user agents or humans and accessed through the ubiquitous web browsers. The unprecedented adoption is to instigate and instil a number of innovations as it has already created a lot of buzz on newer business, pricing, delivery and accessibility models. Ubiquity and utility will become common connotations. Value-added business transformation, augmentation, optimization along with on-demand IT will be the ultimate output. In the midst of all the enthusiasm and optimism, there are some restricting factors that need to be precisely factored out and resolved comprehensively in order to create an extended ecosystem for intelligent collaboration. Integration is one such issue and hence a number of approaches are being articulated by professionals. Product vendors, consulting and service organizations are eagerly coming out with integration platforms, patterns, processes, and best practices. There are generic as well as specific (niche) solutions. Pure SaaS middleware as well as standalone middleware solutions are being studied and prescribed based on “as-is” situation and to-be” aspiration. As the business and technical cases of cloud middleware suites are steadily evolving and enlarging, the realization of internet service bus (the internet-scale ESB) is being touted as the next big thing for the exotic cloud space. In this chapter, we have elaborated and expounded the need for a creative and futuristic ISB that streamlines and simplifies the integration among clouds (public, private, and hybrid).

REFERENCES

1. M. Armbrust, A. Fox, R. Griffith, A. Joseph, R. Katz, A. Konwinski, G. Lee, D. Patterson, A. Rabkin, I. Stoica, M. Zaharia. Above the Clouds: A Berkeley View of Cloud Computing. Technical Report No. UCB/EECS-2009-28, University of California at Berkley, USA, Feb. 10, 2009.

2. R. Buyya, C. S. Yeo, and S. Venugopal, Market-Oriented Cloud Computing Vision, Hype, and Reality for Delivering IT Services as Computing Utilities, Proceedings of the 10th IEEE International Conference on High Performance Computing and Communications, Sept. 25–27, 2008, Dalian, China.

3. Arista, “Cloud Networking: Design Patterns for ‘Cloud Centric’ Application Environments”, January 2009.

4. http://www.jitterbit.com

5. http://www.dell.com

6. http://www.bungeeconnect.com/

7. http://www.opsource.net/

8. http://www.snaplogic.com

9. http://www.pervasiveintegration.com/

10. http://www.bluewolf.com

11. http://www.informaticaondemand.com

12. http://www.castiron.com/

13. http://www.microsoft.com/azure/servicebus.mspx

14. http://linxter.com/

15. http://www.cloudmq.com/

16. Mohammad Mehedi Hassan et al., “A framework of sensor-cloud integration opportunities and challenges”, Proceedings of the Conference On Ubiquitous Information Management and Communication, Korea, 2009.

17. Robert G. Siebeck et al., “Cloudbased Enterprise Mashup Integration Services for B2B Scenarios”, MEM2009 workshop, Spain, 2009.

End of sample

 To search for additional titles please go to

 http://search.overdrive.com.

OEBPS/page-template.xpgt

	

	

	
	

	

	
	

OEBPS/images/f225-01.jpg
oeong propy

puT

GET

7 JR—

Data with MDS

| immsrano

@\

OEBPS/images/f224-02.jpg
User

Service Provider

Create a job
Get the manifest file

Verify the manifest file
with received signature

v
Sign the manifest file Operate as the file
Email the manifest file demand

v

Ship the device with

signe

d file

Ship the device,
email the log with MDS

OEBPS/images/f224-01.jpg
Mobile Laptop Station

& &

SaaS
PaaS
IaaS

Cloud
(Network Fabric)

Interet

Stiiane Sarver Fim.

OEBPS/images/f218-02.jpg
Section B: Result File Download

OEBPS/images/e500-05.jpg
0, VM used by the same user with the same configuration,
fe = { fresume, VM to be resumed (if suspended),
Thoot T Iefg, otherwise

OEBPS/images/t501-01.jpg
S +001 = () VA °S +501 = () [Epafx “B°3) WA) SAABNUEISUL JBY) 20IN0S2I) O} INOS BYEP) WOy § 371
JO BIEP 10} At 13JSURT) Y S (§)42(PUE ‘SLIUEISUL 01 SWA JO I2GUINY 21 St N *S21SqESIS UL 12JSURI) 0] BIEP) JO 715) SIS A SPUOIG U1 PAINSEAN,

o1 = §07 + 07 = " N 600 + (SMafx =1 S - ST + 07 = Py ASTINA

o1 = % 081 = %1 4 0% N - 600 + (S)ofy = (&juo “Bguod) ¢ = *1 ureld-TNA
efu S-600 + 84T =7+ saywd A

S €81 + 07 = " S ST+ §1 = Py 49X

N-bS+ 011 =% +% (parwar-aid) o MA

N - T+0T=" 4+ 35001 = 57 + oyearys

N N -€€0 + 00T =1+ (parearo-axd) o Kojdopey
S-08+06="7+"Y S 001 + LT = SIUIAINA

0€1 = %1 4+ 109 (uasard) o (parwaro-axd) o oura(

[exoway g IoysueIL wonwar) a8 WA

OEBPS/images/e500-06.jpg
0, VM is used by the same user with the same configuration,
=1 luop, VM stops with no removal necessary,
Ietoomps VM removal necessary,

OEBPS/images/e503-01.jpg

OEBPS/images/t502-01.jpg
Location

Continent Country Hosters Machines (Total)
Europe Finland 2 8
Sweden 2 8
United Kingdom 2 20
Netherlands 2 15
North America United States (West) 2 35
Canada (West) 1 15
United States (Central) 1 15
United States (East) 2 32
Canada (East) | 10
Australia Australia 2 8

OEBPS/images/t504-01.jpg
ExtNet VM Image
Policy ~CPU Memory (infout) Time start Size Bandwidth Virtualization

Name ~ (Units) (Units) (Units) (min) (sec) (GB) (Mbit) Penalty
Policy 0 0.4 360 0 0
Policy | 0.4 360 30 500
Policy2 0.4 360 60 500
Policy3 0.4 360 90 500
Policy4 0.4 360 120 500

OEBPS/images/e503-02.jpg

OEBPS/images/t505-01.jpg
Transfer

VM Start Image Size Bandwidth Virtualization
Policy Name (sec) (GB) (Mbit) Penalty
VM start (1-6) 20-170 100

VM size (1-6) 80 100

VM transfer (1-6) 80 100-100

Virtualization penalty 80 100

(1-6)

OEBPS/images/f504-01.jpg
H 0= ldeal ¥ Policy | -Ar Policy2 D= Policy3 =d Policy 4
£ 20% >
g -
7 15 —
E 0% ===
£ 5% =
Z R
0% - + ' T
200 30% 40% 50% 60% 70% 80% 90%

OEBPS/images/f505-01.jpg
V- 80% Load

- 70% Load

04 06 08 12 14
VM size [GB]

02

OEBPS/images/f432-01.jpg
- e
Customr A Lase Syt Admisaor
Dottt
E—
P
Aueaizstion and e
oo
— = —
e
[r— AcoumingBiing
A -
S e
"
Prontasion Prvning s
ki o R Engie Monsonng Sy
T
J— Foy Je— P
VAt brvsoing BNl || o Nner | | W Mg
T —
———— [
P

Daa Center

OEBPS/images/f434-01.jpg
CPU
Mem

CPU
Mem

CPU
Mem

CPU
Mem

CPU
Mem

A B c
1 2 3 4 5 6 7

40 40 20 20 10 40 20

20 10 40 20 40 20 20
A B c
2 3 4 5 6 7 1
40 20 20 10 40 20 40
10 40 20 40 20 20 20
A B c
2 3 4 5 6 7 1
40 20 20 10 40 20 40
10 40 20 40 20 20 20
A B c
2 3 5 6 7 1 4
40 20 10 40 20 40 20
10 40 40 20 20 20 40
A B

1 2 3 4 5 6 7
40 40 20 20 10 40 20
20 10 40 20 40 20 20

OEBPS/images/f433-01.jpg
Policy-Based System

1 1 1 1
Provisioning Optimization Rules Monitoring

Engine Engine Engine System
Z|Z z|Z Z|Z
N N 2|7

VM [VM, VN[VM, VMg VM VM,

v | [vmu [v] [v]

PM, PM°

OEBPS/images/f462-01.jpg
Your Application

Payment: Amazon FPS/DevPay

Amazon SimpleDB Domains

Amazon SNS Topics

Amazon Elastic
MapReduce JobFlows

3 Auto- || Elastic |[Cloud
g Secaling || LB || Watch
&

3 Amazon EC2 Instances
@ (On-Demand, Spot, Reserved)
g

<

Amazon
Virtual Private Cloud

Amazon $3
Objects and
Buckets

Amazon
Cloud
Front

OEBPS/images/f441-01.jpg

OEBPS/images/f471-01.jpg
Lalle Lalia

Method in Method in
- - - = -

‘Tight coupling (procedural programming)

T scunvonpiiis Gkdbneridind plissss niingsenndy

OEBPS/images/f465-01.jpg
Infrastrcture Cost 3%

‘Too much excess capaciy|
“Opportunity cost”

Huge capital
expenditure

Youjustlostyour
customers

- Predicted demand

Actual demand
Scale-up approach

Traditional scale-out
approach

Automated elasticity

Automated Elasticity + Scalahility

Time t

OEBPS/images/f480-01.jpg
Input dataset (List of Document Urls)

|

Grep The Web

Reghx — 5

GetStatus Cbplication Subsetof
—_— document
Utls that

matched the
RegEx

OEBPS/images/f478-01.jpg
Only Permit
Web layer
access fo

App Layer

Only Permit
App layer
access fo
DB Layer

‘Amazon EC2
Security Group
Firewall

Rj—

Port 80 (HTTP)
and 443 (HTTPS)
of Web Layer
open to Intemnet

Only Port 22
(SSH) of App layer
open to only
developers in
corporate office
network

All other
traffic denied

OEBPS/images/f481-01.jpg
StartGrep
RegEx

GetStatus

Input Files
(Alexa Crawl)

User info,
Job status info,

13

Manage phases

Launch, Monitor,
Shutdown

Get Output
.

OEBPS/images/f483-01.jpg
Amazon SQS

Hadoop Cluster on
Amazon SimpleDB Amazon EC2 Amazon S3

OEBPS/images/f482-01.jpg
il

OEBPS/images/f493-01.jpg
s
s
:
S
B
E
Z

00

|

Al
G W

Ao Assut-

Dungeons e Onlos
"o Maix Olie.
oot Warrt
ettt

e
ity of HoroeuVillin

Pz i
Sphers

Linsige 1

St Was Gl
ShcoadLie
Toootown Onlios
Thsasioe

EvecQuestOuine Adveatues
"Nrie

“Th Resim O

1997 1998 1999 2000 21

001

2002 2003 2004 2005 2006 2007

Phake:

2008

OEBPS/images/f486-01.jpg
Regular Expression
“AC*)zon”

Format of the line in the Input datasct

[URL] [Title] [charset] [size] [S3 Object Key of .gz file] [offset]

hitp://www.amazon.com/ gp/browse. himl?node=3435361 Amazon Web us-ascii 3500
72008/01/08/51/1/51_1_20080108072442_crawl100.are.gz 70150864

Mapper Implementation
Key = line number and value = line in the input dataset

Create a signed URL (using Amazon AWS credentials) using the contents of key-value

Read (fetch) Amazon S3 Object (file) into a buffer

Run regular expression on that buffer

I there is mateh, collect the output in new set of key-value pairs (key = line, value = up to 5 matches)

Reducer Implementation Pass-through (Built-in Identity Function) and write the results back to S3.

OEBPS/images/e499-02.jpg
0, VM pre-created or cached,
e = tsuspend, VM to be suspended,
fimage , on-the-fly image creation and/or configuration

OEBPS/images/e499-01.jpg
I =1+

LThL+L

OEBPS/images/e500-02.jpg

OEBPS/images/e500-01.jpg
£+ 6+ VMzipped, copied, and unzipped,
“

{ 0, VM already present,
fo=

VM is copied as is

OEBPS/images/e500-04.jpg
"u(size(VMimage)

OEBPS/images/e500-03.jpg

OEBPS/images/t378-01.jpg
Aug. 04 Mar. 06 Sep. °07
Number of jobs (1000s) 29 171 2217
Avg. completion time (sec) 634 874
Machine years used 217 2,002 11,081
Map input data (TB) 403,152
Map output data (TB) 758 6,743 34,774
Reduce output data (TB) 193 2970 14,018
Avg. machines per job 157 268 394
Unique implementations
Map 395 1,958 4,083
Reduce 269 1.208 2,418

OEBPS/images/t380-01.jpg
“[gs] wooyay
“[es] Aedopuiog
151 1oxoAPIN

proj
aiiqnd pue oyeAug

eAR[

eARL

P vreq
X SO %W
XNUIT ‘SMOPUIA
QAV[s—11SEN
aAIsUSIII-TIEp puE
s
-ondwo)

[£1] woo o

(se)
voneordde qopy

Aqny

Aqny

TOSAN

puv sovdsapdn,
‘umanb
Busso

Juapuadapur-§0
ded

QAsURIUI-BIEQ

[0s] Anssoatun) yoaL 1oA.

proj) srqnd
pue aeand uo pakojdap
2q uwd “wyouy Sursn

#

S41N pue
“SAID ‘SAAqUIM

SMOPUIA 10N
anR[g—IAISE

aasuau
~omnduwios pue -vyeq

(1] 310
Goreasay B{ON

(@1
prop onqnd
pue areaud

wopig

Suepy

SdsnD

X SO

Qe “xnu
SAB[S—IOISEIN

[6v] 00qa0uq
“[8¥] woo6y
“Luy] 081N

“lov] npreg
(zod) prop
auqnd

pue oeAug
sodid
doopeg
Busn +4D
Bunuvons
doopey Sursn
sanin
T12US VAV

VAVI
€S ‘a101gpno|y
‘SAaH

woped-ssox)
PTa——

aB00n

sisnp
28000 uo
pafojdoc

wopAg
pue vy

++0

S4D

xnury
QAR[g—IASE

a

a

a

suonvorddy
pue s13s() owiog

Jwowikojdaqy

JuawuoIA Y
Sunuweigoq
fBojoupay
voneuowlduy

waskg aBeiong

wiopeg
Mo Iy

sn20,g

URDOPUD

oukyg

LANmpaydey

oxiq

doopep

sonpoydeiy
a18000

OEBPS/images/t379-01.jpg
Imp Name Start Last Distribution
Owner and Website Time Release Model
Google Google 2004 — Internal use by
MdpReduce Google
mapreduce.html
Apache Hadoop 2004 Hadoop0.20.0 Open source
http://hadoop April 22, 2009
.apache.org/
GridGain GridGain 2005 GridGain 2.1.1 Open source
February 26,
2009
Nokia 2008 Disco 0.2.3 Open source
September 9,
2009
Geni.com 2007 Skynet09.3 Open source
May 31, 2008
.rubyforge.org
Manjrasoft ~ MapReduce.net 2008 Ancka 1.0 Commercial

(Optional service
of Ancka)

http
-manjrasoft.com/
products.html

March 27, 2009

OEBPS/images/title.jpg
CLOUD COMPUTING

Principles and Paradigms

Edited by

Rajkumar Buyya
‘The University of Melbourne and Manjrasot Py Ltd., Australia

James Broberg
‘The University of Melbourne, Austraia

Andrzej Goscinski
Deakin University, Australia

() WILEY

AJOHN WILEY & SONS, INC., PUBLICATION

OEBPS/images/f384-01.jpg
Disco Master

Worker Supervisor Worker Supervisor ‘Worker Supervisor

Covoo T cou | O crox oo | Il oo | L o oo I cou_ I crox
e [W[P | N[e o [W[Ty | W[e |
o | v] e e | v [Vo Vo || Ve

Loca Dik

OEBPS/images/f006-01.jpg
LIRS

Hacdware Virtualization
Multi-core chips

Utility &
Grid
Computing.

iscribuied Compating:
RO S

Autonomic Computing
Data Center Automation

Saieay Mibsasciit

OEBPS/images/f383-01.jpg
Public Data Center (Mostly Amazon)

Powerset/Microsoft
A9.com

i
i
! NetSeer
|
!
i

| Comell University Web Lab

Rackspace |
Information Sciences Institute (ISD)! Baidu
WorldLingo | FOX Audience Network

TIIT, Hyderabad i

| g |
| 1 i
! i i
[I
i | i
i ‘ ! 1
| Cooliris Hadoop Korean User | [EMACosluil |
| Lasr. fm Group i i |
! ! Faccbook | o
| (Cimis e | The Lydia News ! Yoo
| ETHZurich Sysems Group | Analysis Project | !
| Redpoll Rapleaf | |]
| AOL g etz i]
| Contextweb Deepdyve | Quanteast i |
I Adobe | . i |
| Search Wik |
| Alibaba University of Glasgow- | | !
| TerierTeam | | |
| ! 1 i

Private Data Center_

Less than 100 Node 9 100-1000 +¢— More than 1000 —»

OEBPS/images/f386-01.jpg
Google MapReduce Mars on GPU
Hadoop Filemap

GridGain
Disco BashReduce

Stynec' | MapSharn MapReduce.net

‘The Holumbus Framework Data- and Compute-
Intensive

Applicati
Data-Intensive Applications ppications

Phoenix QT Concurrent

Mapkeiug Multi-core Programming

OEBPS/images/f385-01.jpg
Application Application Application
Machine Learning Bioonformatics S Web Search
WinDF (Distributed File System) CIFS/NTFS

D

OEBPS/images/f015-01.jpg
& services:

* available on
subscription basis
(pay a5 you go)

Leasing public
cloud servies
‘when private cloud
capacity is
insufficient

OEBPS/images/f396-01.jpg
Presentation Layer

Application Layer

Database Layer

Browser

‘Web Dispatcher

DBMS

e

OEBPS/images/t022-01.jpg
SINA

wia seumdprop SBmoiss IX§d XSd swopu asyds
01 01 on amwyA ®A WA oMWA. SmMAA xoury msudong A
smopuy
ox o1 on Y o oN mwesux mog Smoudosg OWA oy
sonns
ssudu dH as1
mwpun wpun 5 SA ®A QoD WA oo oy Armsudog wiopelg
on o o oN N o muoq xurwopd oA lO Ao
(ennp)
ox o 5 N on o ON mwesisx SmCTHed womKmN D XAd4uwdo
(sozren w) soH e e 1D
oN oN =X ®A ®A Tod vemuy ON WANTX ODITAX ol ghogndy ngaNuRdo
(emaanuado FngNuado
e vonwEau g sonuiEul D s
oN oN) 24 LN o ON WANTX SMEA xnurl g gondy snquiN
N o oN N wa o ON WA X IIDSM DA xnory asa smdipng
o oN oN ON ®A 7od vemuy WX sm o o a0 A Aveous
ORITINX
ARdiH ‘o
Y o1 on Y o WD mwesX TIDIND swopu Ammudoi sEnwsd)
(5AD) 21015
aunon
01 01 on Y o ey wx s oy Armsudog afonddy
(aHd
juaudy)
OnITINX wopmd A
ox ox 01 oN = o o A ‘o o 2 ooy stpudy
R Gouwolly SHOWSN proond UonmapmuA GMowwediH dupug sonuod wueor]
wea Wi jouomummy womosyowwuq P oommwl sgeers puopug SSETIAY o wiopvld
wunspy. N wonmmsu

OEBPS/images/f395-01.jpg
Ty] A Public Cloud

OEBPS/images/f010-01.jpg
Virtual Machine 2 Virtual Machine N

Virtwal Machine 1

Ui st
[

E3ES

User software

(Emisne)
(==]
[£2 Windows)

(Virtual Machine Monitor (Hypervisor))
[Hardware]

‘ User software ‘

OEBPS/images/f014-01.jpg
Service ‘Main Access & B
Class. Management Tool ervice conteat

Ef Cloud Applications
|
e Wb Browser Socil networks, Office suies, CRM,
Sus Video processing
Cloud Clowd Platform
Development
Environment Programming languages, Framevorls,
Mashups editors, Structured data
Virtual Cloud Infrastructure
Infrastructure
ety ‘Compute Servers, Data Storage,

17 Firewall, Load Balancer

OEBPS/images/f397-01.jpg
Virtual Execution Environment Host

DI

&)

Virtual Execution Environment Host

OEBPS/images/f046-01.jpg
+ Abstract Compute/Storage/Bandwidth Resources
+ Amazon Web Services[10.9] - EC2, S3, SDB, CDN, CloudWatch

PaaS « Absiracted Programming Platform with encapsulated infrastructure
(2L < Google Apps Engine(Java/Python), Microsoft Azure, Anckal13]

« Application with encapsulated infrastructure & platform
VST « Salesforce.com; Gmail; Yahoo Mail; Facebook; Twitter
g

Cloud App!
Public Clouds

odels

Private Clouds

OEBPS/images/t029-01.jpg
resiud jo

fEN
o oo sianas
o fa (XL'PQ@) pop
40 629-01 91-570 o muy WX moH von o HSS “ISTA THod s womdvpry
xL
Qv
0PIy YD
a
Wiy
o s propd
4000175 T-ST0 D $-91/1 PISO WO %001 -G sn o
o
40 806 §-50 a0 91 wx o0t o HSS wavrIsTd PHDoD
o
40 0T-6 91-S0 D P-1 ‘wowwoig w7z o wyx mop o Hss 0D M 3N ool
(ungon
Fod o o
wx SMTID wEsn vomuy
s swnis sosdip s Je—
ozl 1340 o1 sy oyydeizosn)

omy

oo

[—

OEBPS/images/f045-01.jpg
+“Pay per use’ — Lovwer Cost Barriers

+ On Demand Resources — Autoscaling

(6101741010 Capex vs OPEX — No capital expenses (CAPEX) and only operational expenses OPEX.
+ SLA driven operations — Much Lower TCO

+ Atractive NFR support: Availability, Relability

« ‘Infnite” Elastc availability - Compute/Storage/Bandwidth
» Automatic Usage Monitoring and Metering

Technology «Jobs/Tasks Virualized and Transparently ‘Movabie*
 Inegrsion and ineropersbiliy “support for ybrid ops
« Transpuenily encapsulated & abstacted IT festures.

OEBPS/images/f408-01.jpg
SP

VM image
Remoe Storage

5 % VMimage
Remote Storuge

SP

1-SMI
2-VMI

SITE: Control zone

=5

User

Rouer —
L Manager
vEE
VHI E Manager
Internet FrnEad Weh
Mmge(L
3] i
D
Rouer
Swith i; {g
ST e Vg Vo e
ntemet User Loca Storage HosT Loca Storage

RPTE- Ncucttion sone:

OEBPS/images/f401-01.jpg

OEBPS/images/f416-01.jpg
i Aunqerreay
ampnnseul 10§ Y200

oY 20120195

suorworgddy
1 osudmg

E

0718 <= 2um asuodsar
umed s ssuodsay

s

—G®

(asy)19praoag 201> voeoyddy

wonbay
aoag wopeanddy

OEBPS/images/f414-01.jpg
Response with certain
response time => SLO.

“Application Service.
Request
Application 1T

Application IIT

(" Enterprise Data Centre I

Application Service,
Request

Response with certain
response time => SLO.

Application IIT

OEBPS/images/f419-01.jpg
hmaueay. Nemans 071 <= aun asuodsar
om0y 19910 \ f———

.5_
_—
.

e 1 N %
7)) =

; N st
astadsapug

v wanbay
IS i poia saviog somanddy

(dSV)19p1A0aq 201A15G uoyedyddy

OEBPS/images/f417-01.jpg
=

Resource

e

Resource

(©)
Capacity Capacity
8
i /
Resource usage (App-A) Resource usage (App-A)
Time Time
@
Capacity
Capacity " _ Resource usage (App-B)
. - Bl
&
Resource usage (App-A) Shige:_
Resource usage (App-A)

L

Time

OEBPS/images/f421-01.jpg
Admission Control Mechanisms

!—‘—\

Request Based Session Based

!—‘—\

QoS Agnostic QoS Aware
(Plain Vanilla) (Class Based)

OEBPS/images/f420-01.jpg
Load Balancing Algorithms

!—‘—\

Class-agnostic Class-aware
Client-aware Content-aware Client plus

By i

OEBPS/images/f430-01.jpg
Average Response lime (sec)

20

SLO

20 50 90

Poeisniae o O amliend s Applution Server

OEBPS/images/f426-01.jpg
Application Lifecycle through Service Provider Platform

Declineapplicaion

e s ||t]l e

Extimat cor Toreach|

Costis sccptable 1

Onboarding

Createcrate policies 8P/

OPIPE) forcach of the SLA

Validated polcies wrtts

Stagethe app o pr-proden

Comomer vlidaton of a7
spainst SLA

Pre-Production

Stagethe sppto prod ey and
made live

Comtomer request for ey

3

Cease

e .

)

OEBPS/images/f327-01.jpg
Worktlow Management

Workflow ‘Application]
Planner Composition el Parial 55
Workflow Description and Qos SE
Engine [
Workflow Submission Handler . Storage and
g Replication
Workflow Language Parser Storage
(XWFL. BPEL ...) - Broker
3 Replica
\fﬂ‘,‘; . Replication
Directory Service

Workflow Task Manager
Coordinator Factory
Event
Eions Task Manager
Workflow Scheduler
" Data Providence
Tasks Dispatcher i

I — Qe > >

: L MG

Data Movement

Monitoring Interface

Resource Plug-in

Energy Consumption
-

Measurements

Resource Utilization

T

calable Application

“ Market Maker | | Manager

==

B1G @& u|

E
g

OEBPS/images/f330-01.jpg
1. Task Submission Service
2. Negotiation Service
3. Reservation Service

-

SOAP Request 2
R]
B

3 Ancka

3 Platform as a Service
3
SOAP Response]
2
b

OEBPS/images/f329-01.jpg

OEBPS/images/f335-01.jpg
o
o
E

£
S
24
S

=1

Topology 1

OEBPS/images/f332-01.jpg
‘Az Storage Service

SaaS
(e.g. Salesforce.com)

OEBPS/images/f084-01.jpg

OEBPS/images/f338-01.jpg
Dynamic scaling of EC2 Compute resources

3600

34004 O Experiment | [E Experiment 2 |
3200

3000 pd

2800 /

26001 prd

2400+

2200

umber of tasks comple

2000

1800

1600

1400+

1200

20 VMs were added
1000

w0 L

600+ 7 VMs were added

400

200

0 3 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95
Timeline for the deadline of the application (minutes)

OEBPS/images/f082-01.jpg
! “Azure Service Platform

Nt Services Service Bus

Googl App Engine Windowes Az
Application ¥ 4 Capplications

Console Application
Exposing Web Services
via Servios Bus

OEBPS/images/f337-01.jpg
LEvolutionary Multi-objective Optimization - 2 Objectives

005 01 015 02 095

OEBPS/images/f077-01.jpg
Management 2 &
Steale Dsas_eConmss
Resources ety
Mg Qs

Engine Queve Engine Queve Engine Queve Engine Queve Engine Queue|
Listener Listener Listener Listener Listener

OEBPS/images/t349-01.jpg
Coordination Communication Deployment

Data Access

Client-server Pub-sub Replication
P2P Stream At-home
Master-worker (TF, BoT) Point-to-point Brokering
Consensus Broadcast Co-allocation

Data processing pipeline

Co-access
One-to-one
One-to-many
Scatter-gather
All-to-all

“The patterns are placed into a category that represents the predominant context in which they

appear and address; this
Source: Adapted from Jha et al. [2).

not o imply that each pattern addresses only one issue exclusively

OEBPS/images/f074-01.jpg

OEBPS/images/f339-01.jpg

OEBPS/images/f073-01.jpg
%%i

S:.l:sﬁxee

Microsoft
\THE CLDUD\

Zolo
T~iwmo 7

’E\ |
[

OEBPS/images/f068-02.jpg

OEBPS/images/f350-01.jpg
SaaS

Paa$

TaaS

Portal
TG Scince

Portal.

Windows
Azure

‘Comput.
Drug Disc.

Google
AppEngine

Amazon Elastic
MapReduce

Bio
Ensemble Mmie
SAGA

MapRoduce.

Hadoop
(MapReduce)

Eucalyptus

Bio P SAGA

Ensemble l l MapReduce

Private Clouds/
T i VORI R B e RSl

OEBPS/images/f068-01.jpg

OEBPS/images/f100-01.jpg
Cloud Data Center(s)
(€DO)

[
S Uemnd - minainioal

cloud resources
Use of load-balanced male decisions
and localised cloud based on the
resources to increase potential saving
availability and and profit
Reduce response time.

resources to support additional
Soabir'as Back-my.

OEBPS/images/f092-01.jpg
WSN 1

OEBPS/images/f088-01.jpg
Mashup
Integration
Services
Platform.
(i, Google
App. Engine)

COMPANY B

oI

S IPS P

| [Ee | [[A [
v | [| o] [| [| [
oF OB ok ok oF ok
——— PeE—m———

(i.e. FAST)

(i.e. SAP Research Roofiop)

Routing Engine

Identity
Management

Error Handling

and Monitoring

GpenlD/Oauth
(Google)

=)

OEBPS/images/t357-01.jpg
Number of workers

| De oo Data Ts T Ts—
TeraGrid AWS Size (MB) (sec) (sec) Tspawn (5¢0)
4 — 10 8.8 68 20
= 1 10 43 15
- 2 10 78 25
— 3 10 8.7 1.0
= 4 10 13.0 27
— 41 10 113 27
— 42 10 116 21
- 2 100 79 26
— 4 100 124 32
= 10 100 2.0 39
— 41 100 162 75
— 4 100 123 85 38
- 6(3) 100 187 135 52
— 8.(1) 100 311 183 128
= 8(2) 100 279 198 8.1
- 8 (4) 100 274 19.9 7.5

“The master places the workers either on clouds or on the TeraGrid (TG). The configurations,
separated by horizontal lines, are classified as either all workers on the TG or having all workers on
EC2. For the latter, unless otherwise explicitly indicated by a number in parentheses, every worker
igned to a unique VM. In the final set of rows, the number in parentheses indicates the number
of VMs used. It is interesting to note the significant spawning times, and its dependence on the
number of VM, which typically increase with the number of VMs. Tspaun does not include
cgtantiatian of the VM

OEBPS/images/f356-01.jpg
'SAGA-based MapReduce

Packige

e

Jab

Description
ooy [

Reduce
Client

Remote (Stave) Tobs

Fike Package

OEBPS/images/t359-01.jpg
Standard Difference

Walltime Deviation from
Resources Middleware (sec) (sec) Local (sec)
1 L F 68.7 9.4 —
2 L s 1313 8.7 626
3 L C 155.0 16.6 863
4 L ES 89.8 5.7 211
5 L F,C 17.7 17.7 49.0
6 L F,C 1335 325 648
7 L F,S.C 18.3 76.1
8 Q N 50.6 4229
9 E A 233 2855
10 EQ S, A 609 2940
1 LQE FESA 609 3409
12 L D 53 100.1
13 P D 415 2410

Resources: L, local; P, Purdue; Q. Queen Bee; E, AWS/EC2
Middleware: F, FORK/SAGA; S, SSH/SAGA; A, AWS/SAGA; C, Condor/SAGA; D, Condor/
DAGMan.

OEBPS/images/t357-02.jpg
Number of Workers

| Tero Rl Size Ts Tspawn Ts—
TG AWS Eucalyptus (MB) (sec) (sec) Tspawn (s6€)
— 1 1 10 53 38 15
= 2 2 10 10.7 8.8 19
— 1 1 100 6.7 38 29
— 2 2 100 10.3 73 30
1 — 1 10 4.7 33 14
1 — 1 100 6.4 34 3.0
2 2 10 7.4 59 15
3 3 - 10 116 10.3 16
4 4 — 10 13.7 116 21
5 5 — 10 332 29.4 38
10 10 — 10 332 2838 24

“The first set of data establishes cloudcloud interoperability. The second set (rows 5—11) shows
interoperability between grids and clouds (EC2). The experimental conditions and measurements

OEBPS/images/f362-01.jpg
Runtime (in sec)

§

Science Clond LONI Scr/Stp
Scrlfp

CondorPool LONIScr/ep LONIScridrp LONI Scidrp
Sct/Bp ScienceCloud CondorP. Condor P Scr/3rp
Scr2p Scrfdrp el Cloud Ser/lip

Resource #cores/#replicas

OEBPS/images/f360-01.jpg
C

Distributed Application

D

Biglob APl

[Biglob Cloud) (Biglob TG J (Biganandm)
7

\

Application Layer /

\

Physical Resource Lifer \
Nimbus/ Amazon/ TeraGrid (Globus) TeraGrid (Condor-G)
Eacalypis Cloud Front Node ’ ‘ Front Node
VMa Node n Noden
SSH BJ Agent Condor

OEBPS/images/e050-01.jpg

OEBPS/images/f374-01.jpg
Infrastructure.

Computing To Data

System

3 O

Conventional Supercomputing
(Data To Computing)

System |

System collects and maintins data (Shared, actve data

o | Dot stored i scpanate repostony (o sappor for colletion or
managemen)

Programming Model

[

Computation colocated with strage (Faste access)

Data Broughtnto system for computation (Time consurming and s
intractivity)

Application
Programs.

! Machine-Dependent
Programming Models
Runtime
System

Har

are

Machine-Dependent
—p 1 amming Models

ardware.

Applcation programs witen n erms o high-level
operations on duta

Programs described at very low leve specify detailed contol of
processing and commanications

Runtime sysiem controls sheduling, Toad Balancing -~

Rely on small nomber of software packages (WAtien by specialist,
limits classes of problems and solution methods)

OEBPS/images/e049-04.jpg

OEBPS/images/t364-01.jpg
Distr.

Application Interoperability Scale-Out Extensibility Adaptivity Simplicity
SAGA MapReduce Y Y Y Y
SAGA Montage ¥ Y Y Y

Biomolecular Ensemble X Y Y Y Y

OEBPS/images/e049-03.jpg

OEBPS/images/f377-01.jpg
() fork N ~_ (1) fork
(Difork

Split 0
Split 1
Split 2
Split 3
Split 4

(4) local write

Input Map Intermediate files Reduce Output
files g o el dlikn) — files

OEBPS/images/9781118002209.jpg
CLOUD COMPUTING

Principles and Paradigms

Edited by

Rajkumar Buyya
‘The University of Melbourne and Manjrasot Py Ltd., Australia

James Broberg
‘The University of Melbourne, Austraia

Andrzej Goscinski
Deakin University, Australia

() WILEY

AJOHN WILEY & SONS, INC., PUBLICATION

OEBPS/images/e049-02.jpg

OEBPS/images/f376-01.jpg
TREI-Lade

Adgnting

TP

map(String key, String value):
1/ key: document name

1 value: document contents
foreach word w in value:
Emidntermediate(w, 1"

Map (Document Name, Content)
n = (Word, 1)

(t01)
——Map— (be.l)
(or1)

(not,1)
Map— (10.1)
(be,1)

(t01)

€ ——Mup—p
2 (be.1)

— For each (Word)

tobe or) (B.txt = not to be) (C.txi

reduce(String key, Iterator values):
I key: a word

11 values: a list of counts

int result = 0;
foreach v in value:
result += Parselnt(
Emit(AsString(resul);

For each (Word)
Reduce (Word, List,(1)) — (Word, Sum ()

ote)
Dy

fbo) b Reduce— (be3)
)

(00LT) Y Reduce = (not.1)

Partation

OEBPS/images/e049-01.jpg
P—=P.+ P—= Pope + P

OEBPS/images/f048-01.jpg
Distributed System Fallacies
and the Promise of the Cloud.

. MeuScheduing
- . .
Oy T R—]

Challenges in Cloud Technologies

OEBPS/images/f067-01.jpg

OEBPS/images/f053-01.jpg
Isolate Map

«Runtime. « Messages - Approximate -AugmentTest »Optimize—
Envimnment mapping: ot Casesand revork and
« Licensing marshalling & functonality Test tente
«Libraries de-marshalling using cloud Automation «Significanty
Dependency « Mapping. runtime «Run Proof-of- salisty
« Applications Eavimnments support APL Concepts cloudonomics
Dependency « Mapping. New +Test Migration of migration
« Laencies librries & Usecases strategy « Optimize
Bottlenecks runtime - Amalysis «Security “Testew compliance
« Performance: approximations «Design festcases due with standards.
bottlenecks o cloud and
« Archiectural augmentation overnance
Dependencies “Testfor « Deliverbest
Production ‘migration ROL
Loads « Develop
roadmap for
everaging new

OEBPS/images/f052-01.jpg

OEBPS/images/f051-01.jpg
[o e

OEBPS/images/f144-01.jpg
et
oo —
|

—

OEBPS/images/f142-02.jpg

OEBPS/images/f261-01.jpg

OEBPS/images/f143-01.jpg

OEBPS/images/t033-01.jpg
(paseq-surog

++D
o ‘dHd
‘uoyifd ‘d

oN) doopey “Aqny ‘vavr 2onpoyduy
10§ opmg “Suprose)) onseyg
201 uozvwry oN ¢§ uoznury oonpoydepy omwydseuuwy “Bid puv oalp] 01d wreC) ozeury
Sunuweigosd
Sa vozewry qom poseq sjoo1 suonwodde
201 uozvwry X “TOSIBIs0d asonboy QuIpuRWIWO) S[vY U0 Aqmy oM JITESe
SIS TOS orpmg [EnsiA suonwoddy amzy
st “a8e101s ananb oS0y QM smopuim
wEp umQ X 4OT8/197L oIS 10j S[00] 21nZYy LAN pueosudmug yosomny
Sunuuweigod
qon
paseq-isanbay
“s3ensue
vnwioj prvzim poseq (WD ds9)
st asequip yi-pox qom “Adl suonwodde
mepumg mapun 10lq0 umQ ‘mopopy paseq-asdipi xody sudug wooaio
Sunuweizosd
11020 qom aai suonwodde
wEp umQ X oquidig posvqsnboy paseq-osdipd e ‘woyikd Qpm ouBugddy
OdH
SAAH ‘SNEAN sonpoydupy Nas “suonwondde
201 uozvwry on WYL YISEL SPRIYL suoepumg LAN osudion N wyouy
s1opord Suneg suondo SPPOIN sjoo Spomowely asq) WL
simonnseyup onrwomy 2uSISIAG Sunuwmizog dopad(“ofenguey

puayoeg

Sunuueidosq

OEBPS/images/f268-01.jpg
—

(@ vicabemipsava) |
e
s

o)

& Poviion |
= ()|

S —
[PE—

|
|
)
|

[aPowsian | |
|

OEBPS/images/f216-02.jpg
<west-03.eit.deakin.edu.au cpu-usage-percent="12.5
cwest-20.eit.deakin.edu.au cpu-usage-percent="63" />

OEBPS/images/f264-01.jpg
Ancka Container
>

OEBPS/images/f214-02.jpg
<rvwi:state rvwi:element-identifier= "resource-state">
<cluster-states>

<west-03.eit.deakin.edu.au free-memory="7805776" />

...Other Cluster Node Entries...
</cluster-state>

est of Stateful WSDL...

OEBPS/images/f141-01.jpg
e
T
[—
T

OEBPS/images/f280-01.jpg
<contact> il oonmeTe.

<name> Smith </name> <name> Smith </name> <na*> Smith </na*>
<phone>7324451000 </phone> <phone> 7324451000 </phone> <>
<email> smith@gmail.com </email> <email> * </email> <>
<dep> ece </dep> <dep> * </dep> <dep>ece </dep>
<Jeontact> <Jeontact> <Jcontact>

(a) (b) ()

OEBPS/images/f496-01.jpg
Game Operator #1 Game Operator #2

«{ MMOG Load Prediction ‘ ‘ MMOG Load Prediction }-

‘ Resource Allocation ‘ ‘ Resource Allocation ‘
: :

: 1 é
éklg#iﬁi 7
i t‘

N MMOG #1 MMOG #2

Replication

Lewand: §Actvecutty (les) § Shadow catlty Glaved). [Seever

OEBPS/images/f140-02.jpg
= — & s e e e (S|

OEBPS/images/f277-01.jpg
Application

Master/Worker/BOT
Programming ~ Workflow | MapReduce/
layer Scheduling | Monitoring Hadoop
consistency
Clueiing Coordination Publish/Subscribe
. Anomaly Detection
Service layer
Discovery Event Messaging
Replication Load balancing
Infrastructure Content-based routing Content security
layer
§ Self-organizing layer

Data center/Grid/Cloud

OEBPS/images/f300-01.jpg
Increased Market

Codtipeessung productivity pressure

T T

« Convertfixed costs = Speed andease of + Meet new
into variable costs use competition
* Reduce (IT) « Collaboration « New markets
administration costs * New technologies (expansion)
« Increase liquidity « New business
models
+ Consolidation

« Speed « Security
« Flexibility « Cost benefits
« Scalability « Transparency

OEBPS/images/f140-01.jpg
I

OEBPS/images/f282-01.jpg
Space sharing zone

Robust/Secure

Masters tasks | Task 1
Management| Computing Task2 | Get tasks Secure Workers
agent agent Task3 ———=! [‘Computing agent

Scheduling | Monitoring

Comet

Comet

Directly send results

III Request Handler

| 5. Send results
| directly to master

Datacenter

1. Request a task

Unsecured Workers

Computing agent

OEBPS/images/f139-02.jpg
e

S e i

OEBPS/images/f281-01.jpg
Lo

M

|

=l

[

= e

i

32 4o 51

13

32 do 51

13

3

63

(b)

(a)

OEBPS/images/f560-01.jpg
Study the result; redesign
systems to reflect learning —
change standards and
regulations where
necessary: communicae it
broadly: retrain ...

Undersiand the gap between
residents” expectations and what
is being delivered; set priorities
for closing gaps: develop
an action plan to

close the gaps

FOR CITIES

Implement changes;
collect data to determine
if gaps are closing ...

Observe the effects of the
change and test — analyze data
and pinpoint problems

OEBPS/images/f139-01.jpg
e ——————

OEBPS/images/f285-01.jpg
CometClouc

[Local space
B Replica space

OEBPS/images/f138-01.jpg

OEBPS/images/f283-01.jpg
‘ Research site 1 Jl Research site 2)-- ‘ ResemchsnenJ

o H ooH.

CometCloud
i

[

CloudIBnd i

VT b et ki

OEBPS/images/f137-01.jpg
Management Server 2
IP:17216225

Management Server 1
1P:172.162.22

Miiiajghiiant Consls

OEBPS/images/f134-01.jpg
o -t i

‘mriect of Migration on Web Server 1ransmission Rate

100 st recopy. 62 secs futerjeratons
70 e
765 Mbivsec Sama
500
o0
EIT T —
400 L
165 m ol downime
200 TS s T = Sampk over 100 s
100 concurent clens | - Sumpleoverso0ms
o T T T T T T T T T T T T
o 1 2 W 4 s e W s % w0 0 i

g i iy

130

OEBPS/images/f288-01.jpg
3

10| —m— inawple
—e—rdatwple

o

Average time (ms)
g
o

2000 4000 6000 8000 10000 12000
Number of tuples (average 110 bytes each)

C

‘Time (ms)

Number of Nodes

OEBPS/images/f142-01.jpg
e o
- P
F e freotiiecrsOp——
e e zcre |
=
¢l

-

R
[e —]

S ———

OEBPS/images/f133-01.jpg
VM running normally on
Host A

(Overhead due to copying

Downtime
(VM Out of Service)

Stage 0: Pre-Migration
“Active VM on Host A
Allernate physical host may be presclected for migration
Block devices mirrored and free resources mainiained

¥
Stage T Reservation

. Stage 5: Activation

Intialize a container on the target host

Stage 2: lirative Pre-copy
Enable shadow paging
Copy dirty pages in successive rounds,

— 1
Stage 3: Siop and copy
‘Suspend VM on host A
CGeneraie ARP to redirect trafic to Host B
‘Synchronize all remaining VM stae to Host B

¥
Stage 4 Commiment
VM sate on Host A is eleased

VM starts on Host B
Connects to local devices
resumes normal operation

OEBPS/images/f291-01.jpg
g alaas s 1

425000

‘Number of workers

Workload

EREELL

(suonvmurs

0 13quiny) propoA

Siapiom Jo saquiny

235000

888

(swonununs o soquin)

Proppom.

Time (ms)

Time (ms)

OEBPS/images/f290-01.jpg
e

Execution time (sec)

00 (b) 7000
|

160 5 1000 scenarios || 3

140 2 5000

120 £ Jow

100 H

804 3000
60 2000
40

% 1000
0 0

5 10 20 4o
Number of workers

80

5 10 20 40
Number of workers

80

OEBPS/images/f294-01.jpg
&

Execution time (min)

5

Used budget ($)

|[m100EC2

025TW
|| m Scheduled

|

OEBPS/images/f293-01.jpg
&

Number of workers

5

Cost per task ($)

o

Used budget ($)

—e—EC2 schedule
—&—TW schedule

0.03

123456780910111213

Time (min)

0,024

0.02

0.01 4

001

0.00

—— EC2cost
—— TW cost

35

123456789

Time (min)

101112 13

304
254
204
154
1.04
054
0.0

—a— Used budget
—— Budget limit

123456780910111213

Time (min)

OEBPS/images/f126-01.jpg
FIGURE 5.2. A layered virtualization technology architecture.

OEBPS/images/f309-01.jpg

OEBPS/images/f125-01.jpg
(omamos wewdordaq o wommy o vomeiny o Bumortiond WA)
Fopomiog iy po SpEoTNA
o oy o o,

SN ARy O1SAUPTA FA 10 UIERI

o s o WA

s G Bt v o e o oG (5 P vom % p{sommsumin
WA [y sostsadAF] by AUy UOREIBIN 3AT] £A)

UNPEN LA 10 VORI 33015 AT

T PR 0 D S A

WA om0 01 5971)¢

e L E———
o jomasomy paneg LA P Pt prnaeng

(IO wonrapmpos woreammn poe prory (Emppnon)
250 P 1200) PUoID A sV Ve o-{531a5 Survosiaci pu vermvy J¢f (Sumsony)

A R | o proip oo 4 Y
o
e o ST} N0)Y (mpasrry

puoi) udiug muaqn)

OEBPS/images/f308-01.jpg
End-to-End SLAs

5
7
2
&
g
2
&

OEBPS/images/t116-01.jpg
‘Traditional Supply Chain Concepts

Emerging ICT
Concepts

Efficient SC

Responsive SC

Cloud SC

Primary goal

Product design
strategy

Pricing strategy
Manufacturing
ategy

Inventory
strategy

Lead time
strategy

Supplier
strategy

Transportation
stra

y

Supply demand at
the lowest level of
cost

Maximize
performance at the
minimum product
cost

Lower margins
because price is a
prime customer
driver

Lower costs
through high
utilization

Minimize
inventory to
lower cost

Reduce but not
at the expense of
costs,

Select based on
cost and quality

Greater reliance
on low cost modes

Respond quickly
to demand
(changes)

Create modularity
o allow
postponement

of product
differentiation

Higher margins,

customer driver
Maintain capacity
flexibility to meet
unexpected
demand

Maintain buffer
inventory to meet
unexpected
demand

Aggressively
reduce even if the
cost

significant

Select based on
speed, flexibility,
and quantity
Greater reliance
on responsive
modes

Supply demand at the
lowest level of costs
and respond quickly
to demand

Create modularity to
allow individual
setting while
maximizing the
performance of
services

Lower margins, as
high competition and
comparable products

High utilization while
flexible reaction on
demand

Optimize of buffer for
unpredicted demand,
and best utilization

Strong service-level
agreements (SLA) for
ad hoc provision

Select on complex
optimum of speed.
cost, and flexibility
Implement highly
responsive and low
cost modes

*Based on references 54 and 57.

OEBPS/images/f314-01.jpg
Dynamic Services

Al legal equirements
cost (German, EU and US) or
monitring systems validtion fulfilled
with cockpit

funcionaiy-

with daily

updaes

Deutsche
Telekom/DKK
project

Migrated one of the
world's largest SAP
systems oa
dynamic platform.
9B duabase

First customer
on the dynamic
p\Mlmn

(Dynamic Data
Cener in Fraakturt

OEBPS/images/f115-01.jpg
SO WO, (RIONRAN, T

Fuctional

lnnovative,

el Dl Livi Chiation: =

OEBPS/images/f311-01.jpg
BeEe BEE BEE - BEBEE

Application Ardnve

OEBPS/images/f114-01.jpg
Business Model

OEBPS/images/f324-01.jpg
“Workiioyy iansgemient Sysiem.—
schedules jobs in workflow to remote.
resources based on user-specified QoS
requirements and SLA-based
negotiation with remote resources
capable of meeting those demands.

Local cluster with fixed
‘number of resources

A storage service such as FTP or Amazon 3

for temporary storage of application
‘components, such as executable and data
files, and output (result) files.

s

Amazon EC2 instances
10 it 6 O Josal chustir

OEBPS/images/f112-01.jpg
New Market Entrants

+ Geographical factors
+ Entrant srategy
+ Routes to market

!

Supplicrs

« Level of quality

« Supplier’s size.

« Bidding processes/
capabiliies

Cloud Market

Coststructue.
Productservice ranges.

* Differentiation, stategy
+ Number/size of plasers

Buyers (Consumers)

Buyersize
Buyers number
+ Productiservice
+ Requirements

T

Technology Devclopment
+ Substtutes

* Trends

+ Legislative effects

OEBPS/images/f315-01.jpg
Performance

1 month
test
system

3 month

development

system

miw

Performance upgrades for quaterly reports
available on a day-by-day base

VN

2 weeks
training system

\

2006 |

2007 |

2008

OEBPS/images/f106-01.jpg
s Towiop

Build Run Consume

- Y

OEBPS/images/f101-01.jpg
(1) Software Provision: Cloud provids instances
of software but data is maintained within user’s

ooao

E;-- Gy

3 Solution Provision: Software and storage are
maintained i cloud and the user does not
cimiadeiis 8 dal cankir

ooa
e @

(2) Storage Provision: Cloud provides data
‘management and software accesses data
remotely from user's data center

ooo

-

(4) Redundancy Services: Cloud is used asan
altemative or extension of user's data center
T aliwars s sikaae

OEBPS/images/f131-01.jpg
Ruseig Provisioned Vi

I
&

OEBPS/images/f130-01.jpg
Requirements Analysis
« IT request

VMs In Operation

+ Serving web rquests

+ Migration services

+ Scal on-demand
compute resources

OEBPS/images/f203-01.jpg
Clients

Dynamic Broker

r Service

[s | [s |
. =

Cluster Nodes

Example Cluster

OEBPS/images/f201-02.jpg

OEBPS/images/f201-01.jpg
= h

Dynamic Broker

Dynamic

Maching ;

3

OEBPS/images/f200-01.jpg
Provider =

Drovtbued
Broker Daa
Web Seviee
2 [Fubtcaion] |~
3
B

OEBPS/images/f524-01.jpg
Resolve wimetacdn org

Return P of closest MetaCDN gatew’
oo metacdn.org

GCD)

‘GET hitp:/metacdn.org/MelaCDN/FilMapperTitemid=1

processRequest

JaeoRedirect ()

FITTP 302 Redieet o
hitpmetacdn-us-sername.s3.amazonivs com/Mlename.pdf

Resolve mefacdns-username 3 amazonaws com

Return IP of metacds-Us-sername. 3 amazonas.com.

_—

(GET hip/metacd-us-usermame 3 amazonas com/filname pdf

Return replica i

il

OEBPS/images/f523-01.jpg
RETBOURN

®RMIT

UNIVERSITY

OEBPS/images/t526-02.jpg
SDN SDN SDN SDN

S3US S3EU #1 # #3 #4 Coral
Melbourne, Australia 1378 1458 0.663 0.703 1.195 0816 5.452
Paris, France 0.533 - 0.538 1.078 0316 EREY
Vienna, Austria 0723 0442 0.585 1.088 0.406 3.171
Seoul. South Korea 0.856 1 0.848 3.318
San Diego. USA - 0.361 0.775 - 4.655
Secaucus, NJ. USA 0.621 0475 1.263 0.516 1.916

OEBPS/images/f199-01.jpg
cdariniiioge Tmlns.

gl =rhtbp: {1 schanag. AR1B0SE, oTg/ Wl / =

<resource-info identifier=rresourcelD">
<state>
<description name=tv aribite;="value," -
anribute,
..Other description Elements...
</aescription>
Other description Elemens.
</state>
<characteristics>
<description name="" />
Ovher description Elemens.

</characteristics>
</resource-info>

Other resource-info elements
</resources>

</types>
nassage name-"MethodSoapIn's...</massages
<message mame-"MathodSoapout’s...</messages

</portType>

<types>.

rcounterservicasoapts.
"countarsarvicasoap
tns :CountexServicesoapts. .. < /wedl :binding>

ervice name-'Counterservicers.
R R

</wsdl:services

OEBPS/images/t526-01.jpg
S3US S3EU SDN#1 SDN#2 SDN #3 SDN #4 Coral
Melbourne, Australia 264.3 389.1 30 366.8 4084 4055 1737
483.8

416.8 1042 530.2
211

Paris, France 703.1

Vienna, Austria 538.7

Seoul, South Korea
San Diego. CA, USA
Secaucus, NJ. USA

3235 5946 380.1 506.1

3385
1949 860.8 967.1 5728 - 636.4

OEBPS/images/f198-01.jpg
Connector

Resource

[swcawn]

Characteristic Attrib.

Web Service
]
Client State Atrib
7
Characteristic Attrib,

OEBPS/images/f537-01.jpg
Applications
and Services

Virtual
Engine

Hardware, Replicated

Storage Server

Scale out

OEBPS/images/e180-02.jpg
MP = z,..: Xn:migr(i) -abs(xi3! — 5t) (6.7)

- e

OEBPS/images/t527-01.jpg
Atlanta, California, Beijing, Melbourne, Rio, Vienna, Poznan, Paris,
USA USA China Australia Brazil Austria Poland France

RAN 6170 4412 281 3594 800 2033 7519 1486
GEO 6448 2757 229 6519 521 2192 9008 2138
COST 3275 47 117 402 1149 523 1740 265

UTIL 3350 505 177 411 1132 519 1809 280

OEBPS/images/e180-01.jpg
f(X)=b+v

OEBPS/images/f540-01.jpg
Applications

and Services

APIs and
Engines

Scale out

Scale out

Hardware,

Infrastructure Infrastructure

Resource imitaions (e.. memory) P J

OEBPS/images/e179-02.jpg

OEBPS/images/f543-01.jpg
5 m

necessitates

OEBPS/images/e179-01.jpg

OEBPS/images/f562-01.jpg

OEBPS/images/e177-04.jpg
(6.4)

OEBPS/images/f559-01.jpg
UNFREEZE TRANSITION REFREEZE

OEBPS/images/e177-03.jpg
(6.3

OEBPS/images/e177-02.jpg
m= z’l:m, (62

OEBPS/images/e177-01.jpg

OEBPS/images/t564-01.jpg
souvg pajjonuooun
a1 Jo amirey o 10/puv Fuvyp 01
anp ssougsng pue 1 01 uondnisip

apow Sunysyory

ampmy
a1 10y o1qerun00w Kysed ofgurs ou
pue pioa0i Yow) ou “wsEgPw

& u aeiado [e01dde ou st 210
~u03 0u Yy 3P 2q U 2w
= oy e 10
onowid w2q aonovid pue ss2201d yuawaFeuv
pue juswpSeuv 2Furyo Sundope 2anoexd aBueyp euioguy 10 dgpads oN (eandussip)
10 Spuag 2y Jo s ON uswBeuvw oFu ey [eusioy 1dopy onoey) soss001d yuouaBeury SFuEd ON. auoN soupy 1w
woyps Suppen
pur uopezzioIne 2Fuey? 1004
onowid pue
ss2001d JuowRF L Fuwyd o
woneiado ssousng alquieados uopwzyEnu/uOyEApITULS ON.
01 aadusip Ciax [ips o3¢ saFuv) ssoc01d jwowaReuv 2w sassa01d wos Yo [212] sso01d uswaBeue
By 001 (105 51 2763 Ay 10f01g FFUVG SZENU puE SAPITPUEIS 1v $9552001d JO ISBIEILY ofuwys jo wuvnodwr o dody SI0D Glqmedoy 719N
w0 ayenar i0f
~01d yuousanoxduy ssa0d wo,
wonuiFaiuy 11 puv sousnq om0 soonaud pue sassoc0id uou
L1Jo anye jo uopepoidde 1m0 -afvuvw ofuey> SupipiEPUE SAOUD pupa g1
s sowi
1oytew pue onuaNs R pue spnpoad jo Gyenb e
mgeigod 22U ~sns pus sysu oFeuvw 0] Suppen
51505 onpoyy ou 30 [ew g $peou waford pue jo1u0> YW UL vy
womrses wowudye semoned 01 ss2o0id a1 1dvpe pue pozipiTpuUwIS puv pozienu)
o5n/12WONSN J0 0IFop UK OIS] PUE SSENG MDA ‘OA10A> ‘9Fuep 03 sem puy wwd “ssa0oad puv KFojopoysowt yudw
Kaenb Jo P22 2y MMAPY uoweriduay s2001d smonIRUO) wowsSeu puv uoneAuRIQ -fvuvw ofue aypads pidopy SAOWD paEUE ploa
aw
pides v uy pue jueIsuod st Buvy>
e 532208 2akopdwd “KemnD
ssoupnaduod w21y woneziuedio o Kouarduos 210>
5 T o joed B oupuopad
uowusye Qg founaduwod feuon ssodoid Supaoadu uo st sn0) 41
aFareas] pue ssoust x gy wwopeiado djopwis Ly u+d pawndy 5o
(g0 a10yg ey 12T J24H 1XON 01 Yred wonEAuEIQ Jo SR WD 0 gpads wmug vondusaq

o) 10) sypuag puv simSY 3

Sd0UD

OEBPS/images/f227-01.jpg
Encrvplzd DL A0n0e

IEsary puondo

somauno) weq amag

femany awiodioy

roup

i

siausg fpung

OEBPS/images/t567-01.jpg
Nontechnical

Disagrec

Does your organization have a good common un-
derstanding of why business objectives have been met
or missed in the past?

Does your organization have a good common un-
derstanding of why projects have succeeded or failed
in the past?

Does your organization have a change champion?

Does your organization perceive change as unneces-
sary disruption to business?

Does your organization view changes as the man-
agement fad of the day?

Does your organization adopt an industry standard
change best practice and
approach?

Does your organization adopt and adapt learning

organization philosophy and practice?

How familiar is your organization with service pro-
visioning with an external service provider?

Technical

Does your organization implement any industry
management standards?

o ITIL

* COBIT

o ITSM

o others

Does your organization have a well-established pol-
icy to classify and manage the full lifecycle of all
corporate data?

Can you tell which percentage of your applications is
CPU-intensive, and which percentage of your appli-
cations is data-intensive?

OEBPS/images/f226-01.jpg
PUT hitpi/ferry blob.core.windows netmovic/mov.avi
“eomp=block &blockid=Blockld] &timeout=30

HTTR/1.1 Content Length: 2174344

‘Content-MDS: FIXZLUNMul/KZSKDeIPcOA==
Authorization:SharedKeyjerry:FSasdUDvefs PIVbATSRC HewK 8KeeSZY +2nalac=
xoms-date: Sun, 13 Sept 2009 22:30:25 GMT

Roms-rsion: 2009-04-14

‘GET hitpjery.blob core windows net/movies/mov.avi
HITR/LL

Authorization:Share dKe jerry ZE3IMUkOMidy/nedSkSVi7 4IUG/RMwiPsL+uYSDj Y=
xoms-date: Sun, 13 Sept 2009 22:40:34 GMT

Roms-rsion: 2009-04-14

OEBPS/images/e563-01.jpg
Estimated total business performance improvement
Total CMMM investment(TCO)

ROIT(CMMM) =

OEBPS/images/e175-01.jpg

OEBPS/images/f233-01.jpg
i daaTransforn(T)

P
Clients. Query Results = i
Aervbs Pamiddar:

OEBPS/images/f618-01.jpg
Expected Quality of Service/
Quality Perceived Quality

Experienced
Quality

+ Market Recommendation
* Customer Needs
'+ Value of Service

OEBPS/images/f165-01.jpg
Phy Rl Netwark:
Virtual LAN-Red Virtual LAN-Blue

(Ranged) (Ranged)

B n,,,.,
] e
firA

N
:

e
s

OEBPS/images/f228-01.jpg
USERI USER2

MDS_1 MDS_1/2

OEBPS/images/f617-01.jpg
Producer/
Service Provider

Broker/
Agent

Wholesaler/
Distributor

Consumer

Retailer/
Dealer

OEBPS/images/f164-01.jpg
Shared FS

CLUSTER NODE CLUSTER NODE CLUSTER NODE

OEBPS/images/e238-01.jpg

OEBPS/images/f620-01.jpg
Service
Design

Continuous Service
Improvement

Service
Transition

i

Service
Operation

OEBPS/images/f152-01.jpg
Management Kit

Software Development Kit

Container

Programming Models

Model

Foundation Services

Fabric Services

Infrastructure %

Amazon
Private Cloud Microsoft Google

ssus § g B

LAN network Do Cantes

OEBPS/images/f237-01.jpg
“Lliet gaherytos.
‘metadata (m) and. No server
modified file () processing

Input ile

Clientstore Server store

(2) Pre-process and store

(1) Client generatesa
random challenge R

®
(2) Server computes

o
(3) Client verifies

ot ;

Client store Server store
£ Vindlt aurver peesnmiion:

OEBPS/images/t621-01.jpg
Juowar0duy

Aoeqpasy
201105 prop

aa1] 08 01 Aprar
S1 1801 S301A10 PROP

(das)
SBuyoeg udisoq
2014198 10 Jupad

suonduosap a21ass
projo put suaw

301125 POy “odar Bunouo 91 Jo UONANpOIg -oN[q VIAIS PO -aimbou ssoursng awoong
spoou saniiquded
ssauisnq 190w 0} 1001100 SBY 01AIS swawaxmbai ssou
20IA135 PRO JO AN[PA PWNSUOD PNOP OY) TRYI AINSIY 1SN 99U 0F DIALIS
o1 oroxdwr pue urey O] AN[EA 2IAIIS O] UONEPI[EA PUT JUAW pnojo paroxdur uoISIIp ssou
-urw Afsnonunuoy pnop o amsug -Kojdop Juswidofaascy /Mou o UBISA] -ISTq AY) SN FIRETS
uononpoad
Joumsuoo 0 yioddns [puonuiado 01 S0AAIS JO LONIS sonnpqudes pue soAn0lqo
90IAIOS PIOP JON[TA 0IAIIS PUR SIOARS -URI] A 10] SIIAIDS “sass001d ‘soommws “sopijod ‘sardorens
or0dW] PURUMURY PO JO UONINPOI] pnop oqy dopady pnop ayi jo uBOQ ssouisng oy sugaq uonduosa(y
Juoworoxdwy uoneidQ 0nng uonIsuRI] 20IAIS uBiso(] 01A18 ABoreng vorang aseyq 21A10S

201A13G STONURUOD)

OEBPS/images/f150-01.jpg
St L

OEBPS/images/e239-02.jpg
3G

OEBPS/images/f624-01.jpg
Service Strategy

Service

Design

Aschitectures

Standards

SDPs

OEBPS/images/f148-01.jpg
(Client-side Intertace (via network)

Clien.side API Translator

Cloud Controller ‘Walrus (53)

Storage Controller
(EBS)

OEBPS/images/e239-01.jpg

OEBPS/images/f622-01.jpg
Business Requirements/

Customers

Service

Strategy

Policies

Resources and
Constrains,

Objectives

OEBPS/images/f145-01.jpg

OEBPS/images/f260-01.jpg
Public Cloud

Private Cloud

o PP

Physical Desktops/Servers Virtual Machines

OEBPS/images/f144-02.jpg
T8 e) el (BRG]

OEBPS/images/f258-01.jpg
Applications: Development and Management_|

Management Kit

Software Development Kit e S i, Pocial

[[] [sempes] | | [t s i anaassgemen

Middleware: Container

Foundation Services

[T o | [T it |t i [

Foundation Services

T, (eu—— wr—

[T ——

Fabric Services.

'Hurdwurel’mﬂling' Di'numicResnurcervummng .

Platform Abstraction Layer (PAL)

ECMA 334-335: NET or Mono/Windows and Linux and Mac

Physical Resources Virtualized Resources

Private Cloud (LAN)

OEBPS/images/f625-01.jpg
Service Design

Service
Transition

[Transition
Plans

Tesied
Solutions

SKMS

OEBPS/images/f218-01.jpg
Section A: Submission Outcome

Outcome: Your job 38888 ("execution.sh”) has been submitted
Job ID: 38888

Report: [26/05/2009 10:39:03 AM: You job is still running.
26/05/2009 10:39:55 AM: You job appears to have finished.

26/05/2009 10:39:55 AM: Please collect your result files.

OEBPS/images/f217-04.jpg
Section B: Job I

Exccutble| |
Data Files: Browse_
Name of Output File:

le Submission

OEBPS/images/f217-03.jpg
Hardware Software
Cluster [Nodes Mem. Amount Mem. Free Disk Free | CPU Archi. CPU Speed |OS Name | OS Ver. |OS Archi.
Deakin| 20 9 3 = 9 - 2 - =

OEBPS/images/f217-02.jpg
Section A: Hardware

Numbe of Nodes:

cru| =] | [Cigatiere &

ection B: Software

OEBPS/images/f217-01.jpg
22/01/2009 2:00:58 PM-Connector [Update] :

Passing 36 attribute updates to the web service...

* Updating west-03.eit.deakin.edu.au-state in
cpu-usage-percent to 12.5

OEBPS/images/f216-01.jpg
<west-20.eit.deakin.edu.au
Api-iNage -peroeite¥ 64 .50 /b

OEBPS/images/f215-02.jpg
<ArrayOfServiceMatch>
<ServiceMatch>
<Url >http://einstein/rvws/rvwi_cluster
ClusterMonitorService. asme</Url>

<Wsdl:

ervice Stateful WSDL...< /Wsd1>

<Metadata>
<service-meta>

<Functionalty main="monitor" />

Other Provider Attributes.
</service-meta>
</Metadata>
</ServiceMatch>
¢ AL T RVDESREViCaNEt ol

OEBPS/images/f215-01.jpg
CaEL-A0 ALt caniln, Ao, e,
cpu-system-usage="1.5"
cpu-usage-percent="16.8"
free-memory="12104"
T U e

.001489594"

OEBPS/images/f214-01.jpg
22/01/2009 1:51:52 PM-Connector [Update] :
Passing 23 attribute updates to the web service.

* Updating west-03.eit.deakin.edu.au-state in
free-memory to 7805776

* Updating west-03.eit.deakin.edu.au-state in
ready-queue-last-five-minutes to 0.00

Other attribute updates from various cluster nodes.

OEBPS/images/f213-01.jpg
Client System

Web Browser

Caa System
{VMuware VM)

Caa$ Service

Dynamic Broker

System Dynamic Broker
(VMware VM)
bihoo e 5 Publisher Web
Service System Connector 5
{VMware VM) e
Cluster Deakin

OEBPS/images/f212-01.jpg
Section A: Execution Outcome
Outcome: |Completed Successfully

Time Finished: |16:59

Report: | Aftera total of 2 days and 7 hours, your job has a
completed exceution.
v
< >

Section B : Results Download

OEBPS/images/f211-02.jpg
Section A: Submission Outcome

Outcome: [Submitted Successfully

Job ID: |cj404
Report: | pefegating Submission request.... Request Accepted. a
Job has been started.
v
< >

Section B: Job Control

Collect Results ->

OEBPS/images/f211-01.jpg
Section A: Identification
Job Name: | Travelling Sales Man
Job Owner | Joe Bloggs

Section B: Job File Specification
Executible |My_exec.exe

Seript: | my_scriptpl

Data files: | custom_set.dat

Proven.dat A
Control dat
Recent.dat

v

Output Filename: [outdat
Section C: Execution Specification

Estimated Tme: |3d 14h

OEBPS/images/f210-02.jpg
Cluster A Cluster B

select select
Hardware
Number of Nodes : ®l
Amount of Memory : [l
Free Memory © =l
Disk Free -
CPU: [
Architecture - =]
Speed
Software
Operating System :
Architecture -
Version -

Refine Search

OEBPS/images/f210-01.jpg
Section A: Hardware

Number of Nodes:
Amount of Memory:
Free Memory:

Disk Free:

CPU:

Section B: Software

Operating System:

0
0 aB
s B
s aB
Pentium 4 viehin v 32 GHz

Windows XP wiService Pack 2

OEBPS/images/f209-01.jpg
File Manager

I T

Caas Service Example Cluster

Interface

Client

OEBPS/images/f506-01.jpg
W 70% Losd ¥ 80% Load

| 90% Load -+ 95% Load

i T T T
20 40 60 80 100 120 140 160
VM start [scconds]

OEBPS/images/f506-03.jpg
Average under-allocation

70%Load -7~ 80% Load
| 90%Load =+ 95% Load

T T
0% 2% 4% 6% 8% 10% 12% 14%
fetimliastion fenaliy

OEBPS/images/f506-02.jpg
Average under-allocation

25%

20%

15%

70% Load -7~ 80% Load
-4 90% Load _-#- 95% Load

400 600 800 1000
VM transfer bandwidth [Mbps]

1200

OEBPS/images/f208-01.jpg
Job Manager Scheduler

S

Example Cluster
Caa Service

Interface

Client

OEBPS/images/f514-01.jpg
$USD/month

120000

100000

80000

g

40000

20000

Amazon 53 (all) ——
Amazon CF US/EU
Amazon CF HK/SING
Amazon CF JAP
Nirvarix SDN

Rackspace Cloud Files —-O-
Windows Azure Storage NA/EU ——@-—
‘Windows Azure Storage APAC
‘Traditional CDN (av)

50000 100000

Outgoing TB Data/month

150000

250000

OEBPS/images/f207-02.jpg
4. E 3
File Manager Data Storage

&

Job Manager Scheduler

Example Cluster

CaaS Service | _)
Interface

Client

OEBPS/images/t514-01.jpg
Amazon Microsoft Microsoft

s3 Amazon Rackspace Azure Azure
Cost Nirvanix US/EU S3US. Cloud Storage Storage
Type SDN“ Standard” N. Californi Fils NAJ/EU Asia Pacific
Incoming 0.18 0.10 0.10 0.08 0.10 0.30

data

(S/GB)

Outgoing ~ 0.18 0.15 015 0.22 0.15 0.45

data

(S/GB)

Storage 025 0.15 0.165 0.15 0.15 0.15

(S/GB)

Requests 0.0 0.01 0.011 0.02 0.001 0.001

(/1000

PUT)

Requests 0.0 0.01 0.011 0.00 0.01 0.01

(/10,000

GET)

“Pricing valid for storage, uploads, and download usage under 2 TB/month.
b Pricing valid for first 50 TB/month of storage used and first 1 GB/month data transfer out.

OEBPS/images/f207-01.jpg
Dynamic Broker

Cluster Finder

Result Organizer

5.

Caa$ Service Interface

6.

Client

OEBPS/images/f517-01.jpg
o, © ,0 O © O

\ | 4 i \ /
S o> sasn> asn> <>
/
SN oRapa1 1503 18] 52090 S0 || MAUAOISD AIPOMAN N
qnis g [o018 QA IS 1SOd dLLH woddng
SapostHdu woroanpas wopumy o105 oM dvOs || euod paseq (@ s vaey
10752.p73] poOT EED 100 @M

ONADPPN

qnis ey
TR asequieq Jowony Jool Ty

e NaOUPIV NI 9D NP NI
an v
oo NI

—rr L s F——
) NG OGN SoNaonn
e progec P et
T PO Ty Faswmay S Ty
et
TS
TioNGOTPH ONCOD N T e PAmog D)
e —] s e
ETETITR YN Y ooy SIGS SF1 proy Siqs sty 0 15T

OEBPS/images/f206-01.jpg
[Restvommie |

o] i e

Dynamic
Broker

Guerrair |

[

fanager

CasS Servi

ce Interface

Client

Example Cluster

OEBPS/images/t515-01.jpg
Rackspace Microsoft

Nirvanix ~ Amazon Amazon Cloud Azure
Feature SDN S3 Cloud Front Files Storage
SLA 99 9.9 99.9 99.9 9.9
Max. size 256 GB 5GB 5Gb 5GB 50 GB
U.S. PoP Yes Yes Yes Yes Yes
EU PoP Yes Yes Yes Yes Yes
Asia PoP Yes No Yes Yes Yes
Aus PoP No No No Yes No
File ACL Yes Yes Yes Yes Yes
Replication Yes No Yes Yes No

API Yes Yes Yes Yes Yes

OEBPS/images/t205-01.jpg
Type Attribute Name Aturibute Deseription Source
Characteristics ~ core-count Number of cores on a cluster Cluster node
node
core-speed Speed of each core
coresspeed-unit Unit for the core speed (¢.2.,
gigahertz)
hardware- Hardware architecture of each
architecture cluster node (e.., 32-bit Intel)
totak-disk ‘Total amount of physical
storage space
totak-disk-unit Storage amount unit (e.g.,
gigabytes)
totak-memory ‘Total amount of physical
memory
totak-memory-unit Memory amount measurement
(.. gigabytes)
Software-name Name of an installed piece of
software,
software-version Version of a installed piece of
software
software- Architecture of a installed piece
architecture of software
node<ount Total number of nodes in the Generated
cluster. Node count differs
from core<ount as each node
ina cluster can have many
cores.
State free-disk Amount of free disk space Cluster node
free-memory Amount of free memory
osname Name of the installed operating
system
oswversion Version of the running
operating system
processes-count Number of processes
processes-running Number of processes running
cpu-usage-percent Overall percent of CPU used. Generated

As this metric is for the node
itself, this value becomes
averaged over cluster core

‘memory-free-
ercent

Amount of free memory on the
cluster node

OEBPS/images/f519-01.jpg
AmazonSIConnector
e Foldr(fldername, locaton)

Tl
] i
o e, (. B
yrefieging Do,
e IeURE ks eV AS
Yioaties; dui) (creaic Folderifoldername, Tocation).
ey i, Pty
s d create Filefile, foldcrname,
FeaureNeSapponedtreepion | L] (e, o
o o s TRl
i Tomm(euRL) fleoet,
Tkl loction i i)
e e
i Androads) e
e Tomem B
ecepton pomtei s
FaturNatSupportcdEception iF il

FeatureNoSupportedFcepton g

lceFilesndFolders)

NirvanixConsector
(el drmame. locaton) |
kcFolderfolernane)
creacEil e, foldername,
locuson,dac)
creacFile (leURL foldername,

e Tomen ey o
TenumNotSapponedEsccpion

s oo ot
FenumotSappoc Eseepion

L e aion)

e

AndFldes()
ektcFilesAndoldrs)

OEBPS/images/f204-01.jpg
SRRrinitiong: Zning s veGlLs "RbLes/ [SCURRN : XNLEORP DR/ WL 15
<resource-info rasource-identifisr-tesourceld">
<state element-idantifiar-velemenid">

<cluster-state alament-identifisr-rcluster-stata-root's

<cluster-node-name Trea-disk-"" fraa-memory-
native-os-versions=r' processes-count=1"
Pprocesses-running="" cpu-usage-percen
elenent - 1dentiLar-"sareElementld®
memory-fres-percent="r />

* nativa-os-nam

Other Cluster Node State Elements,
</cluster-state>
</states

<characteristics alement-identifier-vcharacterisicElementd">

<cluster-charactaristics node-count=""

alenent-identifier—nclustar-characteristics-rootns

<cluster-node-name cora-count="" cora-spes
hardwara-architacture-"" total-disk-"" total-memory-'"
total-aisk-unit-"" total-memory-unit-""
&lenent -1dent i Fiar=rcharacterisicElementld® />

» cora-spead-unt

Other Cluster Node Characteristic Elements.
</cluster-characteristics>
</characteristics>
</resource-info>
</resources>

<types>.

<massage name-"MsthodsoapIn”s
<message name-"MethodSoapout’s. ..

<PortType mame="Counterservicesoap’s

<binding name="Counterservicesoap"

<vsdl:service name-"Counterservica’s
</wsdl:definitionss

OEBPS/images/f518-01.jpg
RMIT

UNIVERSITY
Register new MetaCDN account:
Usemanme: ioebloggs Full Name: Joe Bloggs.
Password: Email [ioe@blogs.com
Preferred Providers: M Nivanix SON Amezon 53
Mosso Cloud Files) Microsoft Azure Storage Service
) Shared/Private Host
NivaniSON | Amazon's3 | Mosso Cloud Fles | Microsofl Azure Storage Senice _ SharsclPrvale Host

Enter your Amazon $3 Credentals:

AWS Accass Koy: e
AWS Secret Key: [rrmemereresmraree
Enable CloudFront:]

Al rademarks mentioned herein are the exclusive property of their respecive owners
“This project is supported by the:

OEBPS/images/f520-01.jpg
MetaCDN
User

i

1

Content

- Credentials or Provider
;
hosted has QoS Monitor
M M

