

 [image: First Edition.]

 97 Things Every Programmer Should Know

Edited by
Kevlin Henney

Editor
Mike Loukides

Copyright © 2010 Kevlin Henney

O'Reilly books may be purchased for educational, business, or sales promotional
 use. Online editions are also available for most titles (http://my.safaribooksonline.com). For more information, contact our
 corporate/institutional sales department: (800) 998-9938 or
 corporate@oreilly.com.

The O'Reilly logo is a registered trademark of O'Reilly Media, Inc. 97
 Things Every Programmer Should Know and related trade dress are
 trademarks of O'Reilly Media, Inc.
Many of the designations used by manufacturers and sellers to distinguish their
 products are clarified as trademarks. Where those designations appear in this book,
 and O'Reilly Media, Inc. was aware of a trademark claim, the designations have been
 printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the
 publisher and authors assume no responsibility for errors and omissions, or for
 damages resulting from the use of the information contained herein.

[image:]

O'Reilly Media

Dedication

To absent friends

Preface

The newest computer can merely compound, at speed, the oldest problem in
 the relations between human beings, and in the end the communicator will be
 confronted with the old problem, of what to say and how to say
 it.
—Edward R. Murrow

PROGRAMMERS HAVE A LOT ON THEIR MINDS. Programming
 languages, programming techniques, development environments, coding style, tools,
 development process, deadlines, meetings, software architecture, design patterns, team
 dynamics, code, requirements, bugs, code quality. And more. A lot.
There is an art, craft, and science to programming that extends far beyond the
 program. The act of programming marries the discrete world of computers with the fluid
 world of human affairs. Programmers mediate between the negotiated and uncertain truths
 of business and the crisp, uncompromising domain of bits and bytes and higher
 constructed types.
With so much to know, so much to do, and so many ways of doing so, no single person or
 single source can lay claim to "the one true way." Instead, 97 Things Every
 Programmer Should Know draws on the wisdom of crowds and the voices of
 experience to offer not so much a coordinated big picture as a crowdsourced mosaic of
 what every programmer should know. This ranges from code-focused advice to culture, from
 algorithm usage to agile thinking, from implementation know-how to professionalism, from
 style to substance.
The contributions do not dovetail like modular parts, and there is no intent that they
 should—if anything, the opposite is true. The value of each contribution comes from its
 distinctiveness. The value of the collection lies in how the contributions complement,
 confirm, and even contradict one another. There is no overarching narrative: it is for
 you to respond to, reflect on, and connect together what you read, weighing it against
 your own context, knowledge, and experience.
Permissions

The licensing of each contribution follows a nonrestrictive, open source model.
 Every contribution is freely available online and licensed under a Creative Commons
 Attribution 3.0 License, which means that you can use the individual contributions
 in your own work, as long as you give credit to the original author:
	http://creativecommons.org/licenses/by/3.0/us/

How to Contact Us

Please address comments and questions concerning this book to the
 publisher:
	O'Reilly Media, Inc.
	1005 Gravenstein Highway North
	Sebastopol, CA 95472
	800-998-9938 (in the United States or Canada)
	707-829-0515 (international or local)
	707-829-0104 (fax)

On the web page for this book, we list errata and any additional information. You
 can access this page at:
	http://www.oreilly.com/catalog/9780596809485/

The companion website for this book, where you can find all the contributions,
 contributor biographies, and more, is at:
	http://programmer.97things.oreilly.com

You can also follow news and updates about this book and the website on
 Twitter:
	http://twitter.com/97TEPSK

To comment or ask technical questions about this book, send email to:
	bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the
 O'Reilly Network, see our website at:
	http://www.oreilly.com/

Safari® Books Online

Safari Books Online is an on-demand digital library that lets you easily search
 over 7,500 technology and creative reference books and videos to find the answers
 you need quickly.
With a subscription, you can read any page and watch any video from our library
 online. Read books on your cell phone and mobile devices. Access new titles before
 they are available for print, and get exclusive access to manuscripts in development
 and post feedback for the authors. Copy and paste code samples, organize your
 favorites, download chapters, bookmark key sections, create notes, print out pages,
 and benefit from tons of other time-saving features.
O'Reilly Media has uploaded this book to the Safari Books Online service. To have
 full digital access to this book and others on similar topics from O'Reilly and
 other publishers, sign up for free at http://my.safaribooksonline.com.

Acknowledgments

Many people have contributed their time and their insight, both directly and
 indirectly, to the 97 Things Every Programmer Should Know
 project. They all deserve credit.
Richard Monson-Haefel is the 97 Things series editor and also the editor of the
 first book in the series, 97 Things Every Software Architect Should
 Know, to which I contributed. I would like to thank Richard for
 trailblazing the series concept and its open contribution approach, and for
 enthusiastically supporting my proposal for this book.
I would like to thank all those who devoted the time and effort to contribute
 items to this project: both the contributors whose items are published in this book
 and the others whose items were not selected, but whose items are also published on
 the website. The high quantity and quality of contributions made the final selection
 process very difficult—the hardcoded number in the book's title unfortunately meant
 there was no slack to accommodate just a few more. I am also grateful for the
 additional feedback, comments, and suggestions provided by Giovanni Asproni, Paul
 Colin Gloster, and Michael Hunger.
Thanks to O'Reilly for the support they have provided this project, from hosting
 the wiki that made it possible to seeing it all the way through to publication in
 book form. People at O'Reilly I would like to thank specifically are Mike Loukides,
 Laurel Ackerman, Edie Freedman, Ed Stephenson, and Rachel Monaghan.
It is not simply the case that the book's content was developed on the Web: the
 project was also publicized and popularized on the Web. I would like to thank all
 those who have tweeted, retweeted, blogged, and otherwise spread the word.
I would also like to thank my wife, Carolyn, for bringing order to my chaos, and
 to my two sons, Stefan and Yannick, for reclaiming some of the chaos.
I hope this book will provide you with information, insight, and
 inspiration.
Enjoy!
—Kevlin Henney

Chapter 1. Act with Prudence

Seb Rose

[image: image with no caption]

Whatever you undertake, act with prudence and consider the
 consequences.
—Anon

NO MATTER HOW COMFORTABLE A SCHEDULE LOOKS at the
 beginning of an iteration, you can't avoid being under pressure some of the time. If you
 find yourself having to choose between "doing it right" and "doing it quick," it is
 often appealing to "do it quick" with the understanding that you'll come back and fix it
 later. When you make this promise to yourself, your team, and your customer, you mean
 it. But all too often, the next iteration brings new problems and you become focused on
 them. This sort of deferred work is known as technical debt, and it
 is not your friend. Specifically, Martin Fowler calls this deliberate
 technical debt in his taxonomy of technical debt,[1] and it should not be confused with inadvertent technical
 debt.
Technical debt is like a loan: you benefit from it in the short term, but you have to
 pay interest on it until it is fully paid off. Shortcuts in the code make it harder to
 add features or refactor your code. They are breeding grounds for defects and brittle
 test cases. The longer you leave it, the worse it gets. By the time you get around to
 undertaking the original fix, there may be a whole stack of not-quite-right design
 choices layered on top of the original problem, making the code much harder to refactor
 and correct. In fact, it is often only when things have got so bad that you
 must fix the original problem, that you actually do go back to
 fix it. And by then, it is often so hard to fix that you really can't afford the time or
 the risk.
There are times when you must incur technical debt to meet a deadline or implement a
 thin slice of a feature. Try not to be in this position, but if the situation absolutely
 demands it, then go ahead. But (and this is a big but) you must
 track technical debt and pay it back quickly, or things go rapidly downhill. As soon as
 you make the decision to compromise, write a task card or log it in your issue-tracking
 system to ensure that it does not get forgotten.
If you schedule repayment of the debt in the next iteration, the cost will be minimal.
 Leaving the debt unpaid will accrue interest, and that interest should be tracked to
 make the cost visible. This will emphasize the effect on business value of the project's
 technical debt and enables appropriate prioritization of the repayment. The choice of
 how to calculate and track the interest will depend on the particular project, but track
 it you must.
Pay off technical debt as soon as possible. It would be imprudent to do
 otherwise.

[1] http://martinfowler.com/bliki/TechnicalDebtQuadrant.html

Chapter 2. Apply Functional Programming Principles

Edward Garson

[image: image with no caption]

FUNCTIONAL PROGRAMMING has recently enjoyed renewed interest from the mainstream programming
 community. Part of the reason is because emergent properties of the
 functional paradigm are well positioned to address the challenges posed by our
 industry's shift toward multicore. However, while that is certainly an important
 application, it is not the reason this piece admonishes you to know thy
 functional programming.
Mastery of the functional programming paradigm can greatly improve the quality of the
 code you write in other contexts. If you deeply understand and apply the functional paradigm, your designs will exhibit a much higher
 degree of referential transparency.
Referential transparency is a very desirable property: it implies that functions
 consistently yield the same results given the same input, irrespective of where and when
 they are invoked. That is, function evaluation depends less—ideally, not at all—on the
 side effects of mutable state.
A leading cause of defects in imperative code is attributable to mutable variables.
 Everyone reading this will have investigated why some value is not as expected in a
 particular situation. Visibility semantics can help to mitigate these insidious defects,
 or at least to drastically narrow down their location, but their true culprit may in
 fact be the providence of designs that employ inordinate mutability.
And we certainly don't get much help from the industry in this regard. Introductions
 to object orientation tacitly promote such design, because they often show examples
 composed of graphs of relatively long-lived objects that happily call mutator methods on
 one another, which can be dangerous.
However, with astute test-driven design, particularly when being sure to "Mock Roles,
 not Objects,"[2] unnecessary mutability can be designed away.
The net result is a design that typically has better responsibility allocation with
 more numerous, smaller functions that act on arguments passed into them, rather than
 referencing mutable member variables. There will be fewer defects, and furthermore they
 will often be simpler to debug, because it is easier to locate where a rogue value is
 introduced in these designs than to otherwise deduce the particular context that results
 in an erroneous assignment. This adds up to a much higher degree of
 referential transparency, and positively nothing will get these ideas as deeply into
 your bones as learning a functional programming language, where this model of
 computation is the norm.
Of course, this approach is not optimal in all situations. For example, in
 object-oriented systems, this style often yields better results with domain model
 development (i.e., where collaborations serve to break down the complexity of business
 rules) than with user-interface development.
Master the functional programming paradigm so you are able to judiciously apply the
 lessons learned to other domains. Your object systems (for one) will resonate with
 referential transparency goodness and be much closer to their functional counterparts
 than many would have you believe. In fact, some would even assert that, at their apex,
 functional programming and object orientation are merely a reflection of each
 other, a form of computational yin and yang.

[2] http://www.jmock.org/oopsla2004.pdf

Chapter 3. Ask, "What Would the User Do?" (You Are Not the User)

Giles Colborne

[image: image with no caption]

WE ALL TEND TO ASSUME THAT OTHER PEOPLE THINK LIKE US.
 But they don't. Psychologists call this the false consensus bias.
 When people think or act differently from us, we're quite likely to label them
 (subconsciously) as defective in some way.
This bias explains why programmers have such a hard time putting themselves in the
 users' position. Users don't think like programmers. For a start, they spend
 much less time using computers. They neither know nor care how a computer works. This
 means they can't draw on any of the battery of problem-solving techniques so familiar to
 programmers. They don't recognize the patterns and cues programmers use to work with,
 through, and around an interface.
The best way to find out how a user thinks is to watch one. Ask a user to complete a task using a similar piece of software to what
 you're developing. Make sure the task is a real one: "Add up a column of numbers" is OK;
 "Calculate your expenses for the last month" is better. Avoid tasks that are too
 specific, such as "Can you select these spreadsheet cells and enter a
 SUM formula below?"—there's a big clue in that question. Get
 the user to talk through his or her progress. Don't interrupt. Don't try to help. Keep
 asking yourself, "Why is he doing that?" and "Why is she not doing that?"
The first thing you'll notice is that users do a core of things similarly. They try to
 complete tasks in the same order—and they make the same mistakes in the same places. You
 should design around that core behavior. This is different from design meetings, where
 people tend to listen when someone says, "What if the user wants to…?" This leads to
 elaborate features and confusion over what users want. Watching users eliminates this
 confusion.
You'll see users getting stuck. When you get stuck, you look around. When users get
 stuck, they narrow their focus. It becomes harder for them to see solutions elsewhere on
 the screen. It's one reason why help text is a poor solution to poor user interface
 design. If you must have instructions or help text, make sure to locate it right next to
 your problem areas. A user's narrow focus of attention is why tool tips are more useful
 than help menus.
Users tend to muddle through. They'll find a way that works and stick with it, no
 matter how convoluted. It's better to provide one really obvious way of doing things
 than two or three shortcuts.
You'll also find that there's a gap between what users say they want and what they
 actually do. That's worrying, as the normal way of gathering user requirements is to ask
 them. It's why the best way to capture requirements is to watch users. Spending an hour
 watching users is more informative than spending a day guessing what they want.

Chapter 4. Automate Your Coding Standard

Filip van Laenen

[image: image with no caption]

YOU'VE PROBABLY BEEN THERE, TOO. At the beginning of a
 project, everybody has lots of good intentions—call them "new project's resolutions."
 Quite often, many of these resolutions are written down in documents. The ones about
 code end up in the project's coding standard. During the kick-off meeting, the lead developer goes
 through the document and, in the best case, everybody agrees that they will try to
 follow them. Once the project gets underway, though, these good intentions are
 abandoned, one at a time. When the project is finally delivered, the code looks like a
 mess, and nobody seems to know how it came to be that way.
When did things go wrong? Probably already at the kick-off meeting. Some of the
 project members didn't pay attention. Others didn't understand the point. Worse, some
 disagreed and were already planning their coding standard rebellion. Finally, some got
 the point and agreed, but when the pressure in the project got too high, they had to let
 something go. Well-formatted code doesn't earn you points with a customer that wants
 more functionality. Furthermore, following a coding standard can be quite a boring task
 if it isn't automated. Just try to indent a messy class by hand to find out for
 yourself.
But if it's such a problem, why is it that we want a coding standard in the first
 place? One reason to format the code in a uniform way is so that nobody can "own" a
 piece of code just by formatting it in his or her private way. We may want to prevent
 developers from using certain antipatterns in order to avoid some common bugs. In all, a
 coding standard should make it easier to work in the project, and maintain development
 speed from the beginning to the end. It follows, then, that everybody should agree on
 the coding standard, too—it does not help if one developer uses three spaces to indent
 code, and another uses four.
There exists a wealth of tools that can be used to produce code quality reports and to
 document and maintain the coding standard, but that isn't the whole solution. It should
 be automated and enforced where possible. Here are a few examples:
	Make sure code formatting is part of the build process, so that everybody runs
 it automatically every time they compile the code.

	Use static code analysis tools to scan the code for unwanted antipatterns. If
 any are found, break the build.

	Learn to configure those tools so that you can scan for your own,
 project-specific antipatterns.

	Do not only measure test coverage, but automatically check the results, too.
 Again, break the build if test coverage is too low.

Try to do this for everything that you consider important. You won't be able to
 automate everything you really care about. As for the things that you can't
 automatically flag or fix, consider them a set of guidelines supplementary to the coding
 standard that is automated, but accept that you and your colleagues may not follow them
 as diligently.
Finally, the coding standard should be dynamic rather than static. As the project
 evolves, the needs of the project change, and what may have seemed smart in the
 beginning isn't necessarily smart a few months later.

Chapter 5. Beauty Is in Simplicity

Jørn Ølmheim

[image: image with no caption]

THERE IS ONE QUOTE, from Plato, that I think is particularly good for all software developers to know
 and keep close to their hearts:
Beauty of style and harmony and grace and good rhythm depends on
 simplicity.

In one sentence, this sums up the values that we as software developers should aspire
 to.
There are a number of things we strive for in our code:
	Readability

	Maintainability

	Speed of development

	The elusive quality of beauty

Plato is telling us that the enabling factor for all of these qualities is
 simplicity.
What is beautiful code? This is potentially a very subjective question. Perception
 of beauty depends heavily on individual background, just as much of our perception of
 anything depends on our background. People educated in the arts have a different
 perception of (or at least approach to) beauty than people educated in the sciences.
 Arts majors tend to approach beauty in software by comparing software to works of art,
 while science majors tend to talk about symmetry and the golden ratio, trying to reduce
 things to formulae. In my experience, simplicity is the foundation of most of the
 arguments from both sides.
Think about source code that you have studied. If you haven't spent time studying
 other people's code, stop reading this right now and find some open source code to
 study. Seriously! I mean it! Go search the Web for some code in your language of choice,
 written by some well-known, acknowledged expert.
You're back? Good. Where were we? Ah, yes…I have found that code that resonates with
 me, and that I consider beautiful, has a number of properties in common. Chief among
 these is simplicity. I find that no matter how complex the total application or system
 is, the individual parts have to be kept simple: simple objects with a single
 responsibility containing similarly simple, focused methods with descriptive names. Some
 people think the idea of having short methods of 5–10 lines of code is extreme, and some
 languages make it very hard to do, but I think that such brevity is a desirable goal
 nonetheless.
The bottom line is that beautiful code is simple code. Each individual part is kept
 simple with simple responsibilities and simple relationships with the other parts of the
 system. This is the way we can keep our systems maintainable over time, with clean,
 simple, testable code, ensuring a high speed of development throughout the lifetime of
 the system.
Beauty is born of and found in simplicity.

Chapter 6. Before You Refactor

Rajith Attapattu

[image: image with no caption]

AT SOME POINT, every programmer will need to refactor
 existing code. But before you do so, please think about the following, as this could save you
 and others a great deal of time (and pain):
	The best approach for restructuring starts by taking stock of the
 existing codebase and the tests written against that code. This
 will help you understand the strengths and weaknesses of the code as it
 currently stands, so you can ensure that you retain the strong points while
 avoiding the mistakes. We all think we can do better than the existing
 system…until we end up with something no better—or even worse—than the previous
 incarnation because we failed to learn from the existing system's
 mistakes.

	Avoid the temptation to rewrite everything. It is best to
 reuse as much code as possible. No matter how ugly the code is, it has already
 been tested, reviewed, etc. Throwing away the old code—especially if it was in
 production—means that you are throwing away months (or years) of tested,
 battle-hardened code that may have had certain workarounds and bug fixes you
 aren't aware of. If you don't take this into account, the new code you write may
 end up showing the same mysterious bugs that were fixed in the old code. This
 will waste a lot of time, effort, and knowledge gained over the years.

	Many incremental changes are better than one massive
 change. Incremental changes allows you to gauge the impact on the system
 more easily through feedback, such as from tests. It is no fun to see a hundred
 test failures after you make a change. This can lead to frustration and pressure
 that can in turn result in bad decisions. A couple of test failures at a time is
 easier to deal with, leading to a more manageable approach.

	After each development iteration, it is important to ensure that the
 existing tests pass. Add new tests if the existing tests are not
 sufficient to cover the changes you made. Do not throw away the tests from the
 old code without due consideration. On the surface, some of these tests may not
 appear to be applicable to your new design, but it would be well worth the
 effort to dig deep down into the reasons why this particular test was
 added.

	Personal preferences and ego shouldn't get in the way. If
 something isn't broken, why fix it? That the style or the structure of the code
 does not meet your personal preference is not a valid reason for restructuring.
 Thinking you could do a better job than the previous programmer is not a valid
 reason, either.

	New technology is an insufficient reason to refactor. One
 of the worst reasons to refactor is because the current code is way behind all
 the cool technology we have today, and we believe that a new language or
 framework can do things a lot more elegantly. Unless a cost-benefit analysis
 shows that a new language or framework will result in significant improvements
 in functionality, maintainability, or productivity, it is best to leave it as it
 is.

	Remember that humans make mistakes. Restructuring will
 not always guarantee that the new code will be better—or even as good as—the
 previous attempt. I have seen and been a part of several failed restructuring
 attempts. It wasn't pretty, but it was human.

Chapter 7. Beware the Share

Udi Dahan

[image: image with no caption]

IT WAS MY FIRST PROJECT AT THE COMPANY. I'd just finished my degree and was anxious to prove myself, staying late
 every day going through the existing code. As I worked through my first feature, I took
 extra care to put in place everything I had learned—commenting, logging, pulling out
 shared code into libraries where possible, the works. The code review that I had felt so
 ready for came as a rude awakening—reuse was frowned upon!
How could this be? Throughout college, reuse was held up as the epitome of quality
 software engineering. All the articles I had read, the textbooks, the seasoned software
 professionals who taught me—was it all wrong?
It turns out that I was missing something critical.
Context.
The fact that two wildly different parts of the system performed some logic in the
 same way meant less than I thought. Up until I had pulled out those libraries of shared
 code, these parts were not dependent on each other. Each could evolve independently.
 Each could change its logic to suit the needs of the system's changing business
 environment. Those four lines of similar code were accidental—a temporal anomaly, a
 coincidence. That is, until I came along.
The libraries of shared code I created tied the shoelaces of each foot to the other.
 Steps by one business domain could not be made without first synchronizing with the
 other. Maintenance costs in those independent functions used to be negligible, but the
 common library required an order of magnitude more testing.
While I'd decreased the absolute number of lines of code in the system, I had
 increased the number of dependencies. The context of these dependencies is critical—had
 they been localized, the sharing may have been justified and had some positive value.
 When these dependencies aren't held in check, their tendrils entangle the larger
 concerns of the system, even though the code itself looks just fine.
These mistakes are insidious in that, at their core, they sound like a good idea. When
 applied in the right context, these techniques are valuable. In the wrong context, they
 increase cost rather than value. When coming into an existing codebase with no knowledge
 of where the various parts will be used, I'm much more careful these days about what is
 shared.
Beware the share. Check your context. Only then, proceed.

Chapter 8. The Boy Scout Rule

Robert C. Martin (Uncle Bob)

[image: image with no caption]

THE BOY SCOUTS HAVE A RULE: "Always leave the campground cleaner than you found it." If you find a
 mess on the ground, you clean it up regardless of who might have made it. You intentionally improve the environment for the
 next group of campers. (Actually, the original form of that rule, written by Robert
 Stephenson Smyth Baden-Powell, the father of scouting, was "Try and leave this world a little
 better than you found it.")
What if we followed a similar rule in our code: "Always check a module in cleaner than
 when you checked it out"? Regardless of who the original author was, what if we always
 made some effort, no matter how small, to improve the module? What would be the
 result?
I think if we all followed that simple rule, we would see the end of the relentless
 deterioration of our software systems. Instead, our systems would gradually get better
 and better as they evolved. We would also see teams caring for the
 system as a whole, rather than just individuals caring for their own small part.
I don't think this rule is too much to ask. You don't have to make every module
 perfect before you check it in. You simply have to make it a little bit
 better than when you checked it out. Of course, this means that any code
 you add to a module must be clean. It also means that you clean up
 at least one other thing before you check the module back in. You might simply improve
 the name of one variable, or split one long function into two smaller functions. You
 might break a circular dependency, or add an interface to decouple policy from
 detail.
Frankly, this just sounds like common decency to me—like washing your hands after you
 use the restroom, or putting your trash in the bin instead of dropping it on the floor.
 Indeed, the act of leaving a mess in the code should be as socially unacceptable as
 littering. It should be something that just isn't done.
But it's more than that. Caring for our own code is one thing. Caring for the
 team's code is quite another. Teams help one another and clean
 up after one another. They follow the Boy Scout rule because it's good for everyone, not
 just good for themselves.

Chapter 9. Check Your Code First Before Looking to Blame Others

Allan Kelly

[image: image with no caption]

DEVELOPERS—ALL OF US!— often have trouble believing our
 own code is broken. It is just so improbable that, for once, it must be the
 compiler that's broken.
Yet, in truth, it is very (very) unusual that code is broken by a bug in the compiler,
 interpreter, OS, app server, database, memory manager, or any other piece of system
 software. Yes, these bugs exist, but they are far less common than we might like to
 believe.
I once had a genuine problem with a compiler bug optimizing away a loop variable, but
 I have imagined my compiler or OS had a bug many more times. I have wasted a lot of my
 time, support time, and management time in the process, only to feel a little foolish
 each time it turned out to be my mistake after all.
Assuming that the tools are widely used, mature, and employed in various technology
 stacks, there is little reason to doubt the quality. Of course, if the tool is an early
 release, or used by only a few people worldwide, or a piece of seldom downloaded,
 version 0.1, open source software, there may be good reason to suspect the software.
 (Equally, an alpha version of commercial software might be suspect.)
Given how rare compiler bugs are, you are far better putting your time and energy into
 finding the error in your code than into proving that the compiler is wrong. All the
 usual debugging advice applies, so isolate the problem, stub out calls, and surround it
 with tests; check calling conventions, shared libraries, and version numbers; explain it
 to someone else; look out for stack corruption and variable type mismatches; and try the
 code on different machines and different build configurations, such as debug and
 release.
Question your own assumptions and the assumptions of others. Tools from different
 vendors might have different assumptions built into them—so too might different tools
 from the same vendor.
When someone else is reporting a problem you cannot duplicate, go and see what they
 are doing. They may be doing something you never thought of or are doing something in a
 different order.
My personal rule is that if I have a bug I can't pin down, and I'm starting to think
 it's the compiler, then it's time to look for stack corruption. This is especially true
 if adding trace code makes the problem move around.
Multithreaded problems are another source of bugs that turn hair gray and induce
 screaming at the machine. All the recommendations to favor simple code are multiplied
 when a system is multithreaded. Debugging and unit tests cannot be relied on to find
 such bugs with any consistency, so simplicity of design is paramount.
So, before you rush to blame the compiler, remember Sherlock Holmes's advice, "Once
 you eliminate the impossible, whatever remains, no matter how improbable, must be the
 truth," and opt for it over Dirk Gently's, "Once you eliminate the improbable, whatever
 remains, no matter how impossible, must be the truth."

Chapter 10. Choose Your Tools with Care

Giovanni Asproni

[image: image with no caption]

MODERN APPLICATIONS ARE VERY RARELY BUILT FROM SCRATCH.
 They are assembled using existing tools—components, libraries, and frameworks—for a number of good reasons:
	Applications grow in size, complexity, and sophistication, while the time
 available to develop them grows shorter. It makes better use of developers' time
 and intelligence if they can concentrate on writing more business-domain code
 and less infrastructure code.

	Widely used components and frameworks are likely to have fewer bugs than the
 ones developed in-house.

	There is a lot of high-quality software available on the Web for free, which
 means lower development costs and greater likelihood of finding developers with
 the necessary interest and expertise.

	Software production and maintenance is human-intensive work, so buying may be
 cheaper than building.

However, choosing the right mix of tools for your application can be a tricky business requiring some thought. In fact,
 when making a choice, you should keep in mind a few things:
	Different tools may rely on different assumptions about their context—e.g.,
 surrounding infrastructure, control model, data model, communication protocols,
 etc.—which can lead to an architectural mismatch between
 the application and the tools. Such a mismatch leads to hacks and workarounds
 that will make the code more complex than necessary.

	Different tools have different lifecycles, and upgrading one of them may
 become an extremely difficult and time-consuming task since the new
 functionality, design changes, or even bug fixes may cause incompatibilities
 with the other tools. The greater the number of tools, the worse the problem can
 become.

	Some tools require quite a bit of configuration, often by means of one or more
 XML files, which can grow out of control very quickly. The application may end
 up looking as if it was all written in XML plus a few odd lines of code in some
 programming language. The configurational complexity will make the application
 difficult to maintain and to extend.

	Vendor lock-in occurs when code that depends heavily on specific vendor
 products ends up being constrained by them on several counts: maintainability,
 performances, ability to evolve, price, etc.

	If you plan to use free software, you may discover that it's not so free after
 all. You may need to buy commercial support, which is not necessarily going to
 be cheap.

	Licensing terms matter, even for free software. For example, in some
 companies, it is not acceptable to use software licensed under the GNU license
 terms because of its viral nature—i.e., software developed with it must be
 distributed along with its source code.

My personal strategy to mitigate these problems is to start small by using only the
 tools that are absolutely necessary. Usually the initial focus is on removing the need
 to engage in low-level infrastructure programming (and problems), e.g., by using some
 middleware instead of using raw sockets for distributed applications. And then add more
 if needed. I also tend to isolate the external tools from my business domain objects by
 means of interfaces and layering, so that I can change the tool if I have to with a
 minimal amount of pain. A positive side effect of this approach is that I generally end
 up with a smaller application that uses fewer external tools than originally
 forecast.

Chapter 11. Code in the Language of the Domain

Dan North

[image: image with no caption]

PICTURE TWO CODEBASES. In one, you come across:
if (portfolioIdsByTraderId.get(trader.getId())
 .containsKey(portfolio.getId())) {...}
You scratch your head, wondering what this code might be for. It seems to be getting
 an ID from a trader object; using that to get a map out of a, well, mapof-maps,
 apparently; and then seeing if another ID from a portfolio object exists in the inner
 map. You scratch your head some more. You look for the declaration of portfolioIdsByTraderId and discover this:
Map<int, Map<int, int>> portfolioIdsByTraderId;
Gradually, you realize it might have something to do with whether a trader has access
 to a particular portfolio. And of course you will find the same lookup fragment—or, more
 likely, a similar but subtly different code fragment—whenever something cares whether a
 trader has access to a particular portfolio.
In the other codebase, you come across this:
if (trader.canView(portfolio)) {...}
No head scratching. You don't need to know how a trader knows. Perhaps there is one of
 these maps-of-maps tucked away somewhere inside. But that's the trader's business, not
 yours.
Now which of those codebases would you rather be working in?
Once upon a time, we only had very basic data structures: bits and bytes and
 characters (really just bytes, but we would pretend they were letters and punctuation).
 Decimals were a bit tricky because our base-10 numbers don't work very well in binary,
 so we had several sizes of floating-point types. Then came arrays and strings (really
 just different arrays). Then we had stacks and queues and hashes and linked lists and
 skip lists and lots of other exciting data structures that don't exist in the
 real world. "Computer science" was about spending lots of effort mapping
 the real world into our restrictive data structures. The real gurus could even remember
 how they had done it.
Then we got user-defined types! OK, this isn't news, but it does change the game
 somewhat. If your domain contains concepts like traders and portfolios, you can model
 them with types called, say, Trader and Portfolio. But, more importantly than this, you
 can model relationships between them using domain terms,
 too.
If you don't code using domain terms, you are creating a tacit (read: secret)
 understanding that this int over here means the way to identify a
 trader, whereas that int over there means the way to identify a
 portfolio. (Best not to get them mixed up!) And if you represent a business concept
 ("Some traders are not allowed to view some portfolios—it's illegal") with an
 algorithmic snippet—say, an existence relationship in a map of keys—you aren't doing the
 audit and compliance guys any favors.
The next programmer to come along might not be in on the secret, so why not make it
 explicit? Using a key as a lookup to another key that performs an existence check is not
 terribly obvious. How is someone supposed to intuit that's where the business rules
 preventing conflict of interest are implemented?
Making domain concepts explicit in your code means other programmers can gather the
 intent of the code much more easily than by trying to retrofit an algorithm into what
 they understand about a domain. It also means that when the domain model evolves—which
 it will, as your understanding of the domain grows—you are in a good position to evolve
 the code. Coupled with good encapsulation, the chances are good that the rule will exist
 in only one place, and that you can change it without any of the dependent code being
 any the wiser.
The programmer who comes along a few months later to work on the code will thank you.
 The programmer who comes along a few months later might be you.

Chapter 12. Code Is Design

Ryan Brush

[image: image with no caption]

IMAGINE WAKING UP TOMORROW
 and learning that the construction industry has made the breakthrough of the
 century. Millions of cheap, incredibly fast robots can fabricate materials out of thin
 air, have a near-zero power cost, and can repair themselves. And it gets better: given
 an unambiguous blueprint for a construction project, the robots can build it without
 human intervention, all at negligible cost.
One can imagine the impact on the construction industry, but what would happen
 upstream? How would the behavior of architects and designers change if construction costs were negligible? Today, physical and
 computer models are built and rigorously tested before investing in construction. Would
 we bother if the construction was essentially free? If a design collapses, no big
 deal—just find out what went wrong and have our magical robots build another one. There
 are further implications. With models obsolete, unfinished designs evolve by repeatedly building and improving upon an
 approximation of the end goal. A casual observer may have trouble distinguishing an
 unfinished design from a finished product.
Our ability to predict timelines will fade away. Construction costs are more easily
 calculated than design costs—we know the approximate cost of installing a girder, and
 how many girders we need. As predictable tasks shrink toward zero, the less predictable
 design time starts to dominate. Results are produced more quickly, but reliable
 timelines slip away.
Of course, the pressures of a competitive economy still apply. With construction costs
 eliminated, a company that can quickly complete a design gains an edge in the market.
 Getting design done fast becomes the central push of engineering firms. Inevitably,
 someone not deeply familiar with the design will see an unvalidated version, see the
 market advantage of releasing early, and say, "This looks good enough."
Some life-or-death projects will be more diligent, but in many cases, consumers learn
 to suffer through the incomplete design. Companies can always send out our magic robots
 to "patch" the broken buildings and vehicles they sell. All of this points to a
 startlingly counterintuitive conclusion: our sole premise was a dramatic reduction in
 construction costs, with the result that quality got worse.
It shouldn't surprise us that the preceding story has played out in software. If we
 accept that code is design—a creative process rather than a mechanical one—the
 software crisis is explained. We now have a design
 crisis: the demand for quality, validated designs exceeds our capacity to
 create them. The pressure to use incomplete design is strong.
Fortunately, this model also offers clues to how we can get better. Physical
 simulations equate to automated testing; software design isn't complete until it is
 validated with a brutal battery of tests. To make such tests more effective, we are
 finding ways to rein in the huge state space of large systems. Improved languages and
 design practices give us hope. Finally, there is one inescapable fact: great designs are
 produced by great designers dedicating themselves to the mastery of their craft. Code is
 no different.

End of sample

 To search for additional titles please go to

 http://search.overdrive.com.

OEBPS/httpatomoreillycomsourceoreillyimages501242.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages501188.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages501140.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages501238.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages501162.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages501168.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages501152.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages501264.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages501156.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages501170.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages501222.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages501144.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages501220.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages501208.png.jpg
=7
R

OEBPS/httpatomoreillycomsourceoreillyimages501119.jpg
e daE Yl

EENEE
eavae

w B aQl
dedin
EdERZEo
PEdLEE £,
Celflim®M 35
Deanmd =X
GSdMie :o
SCCEL T EE
ds@De g2

HEPE SRS

—
()
=
=
©
&0
(@)
=

a

ey

Edited by Kevlin Henn

O'REILLY®

OEBPS/httpatomoreillycomsourceoreillyimages501192.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages501200.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages501172.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages501268.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages501146.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages501164.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages501150.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages501254.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages501182.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages501262.png.jpg
o

OEBPS/httpatomoreillycomsourceoreillyimages501244.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages501232.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages501204.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages501272.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages501210.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages501260.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages501190.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages501226.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages501124.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages501196.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages501134.png.jpg
€

OEBPS/httpatomoreillycomsourceoreillyimages501174.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages501230.png.jpg
i h
>

OEBPS/httpatomoreillycomsourceoreillyimages501180.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages501214.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages501128.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages501194.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages501206.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages501138.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages501236.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages501256.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages501186.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages501266.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages501246.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages501218.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages501130.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages501228.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages501240.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages501178.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages501198.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages501202.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages501176.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages501250.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages501148.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages501234.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages501212.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages501216.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages501126.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages501154.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages501158.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages501142.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages501166.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages501184.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages501258.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages501252.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages501248.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages501136.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages501224.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages501270.png.jpg

OEBPS/oreilly_large.gif
O’REILLY

OEBPS/httpatomoreillycomsourceoreillyimages501160.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages501132.png.jpg

