

 [image: First Edition]

 C# Database Basics

Michael Schmalz

Editor
Simon St. Laurent

Copyright © 2012 Michael Schmalz

O’Reilly books may be purchased for educational, business, or sales
 promotional use. Online editions are also available for most titles
 (http://my.safaribooksonline.com).
 For more information, contact our corporate/institutional sales
 department: (800) 998-9938 or corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo
 are registered trademarks of O’Reilly Media, Inc. C# Database
 Basics, the image of a capybara, and related trade dress are
 trademarks of O’Reilly Media, Inc.
Many of the designations used by manufacturers and sellers to
 distinguish their products are claimed as trademarks. Where those
 designations appear in this book, and O’Reilly Media, Inc. was aware of a
 trademark claim, the designations have been printed in caps or initial
 caps.

While every precaution has been taken in the preparation of this
 book, the publisher and authors assume no responsibility for errors or
 omissions, or for damages resulting from the use of the information
 contained herein.

[image:]

O'Reilly Media

SPECIAL OFFER: Upgrade this ebook with O’Reilly

Click here for more information on this offer!
Please note that upgrade offers are not available from sample content.

Preface

Using databases in C# can be daunting for developers moving from VB6,
 VBA, or Access. From the differences in the .NET syntax to the curly braces
 and semicolons, just looking at the code in C# for the first time can be
 intimidating. As you start to use C#, the small changes you need to make
 become easier and the code starts to flow nicely. However, you will likely
 find that many ways of working with data and databases that were easy in VB6
 and VBA can be challenging when attempted for the first time in C#.
When you were programming in Classic VB, you could count on a good
 solid example of how to use a particular method, and it would be in context.
 For instance, if you were looking at a connection string example, it would
 likely include how to connect to the database, and it would probably also
 include a recordset or query. In C# and the other .NET languages, you will
 find fewer full examples and more examples that simply show the syntax. Or
 worse, they’ll show the other objects in the example, but won’t explain how
 to create those objects or explain where the object needs to be declared (at
 the form level or at the procedure level).
What led to this book was a challenge that I faced while doing
 something that I thought should have been very simple. I wanted to create a
 form with a datagrid that would load a table or query at runtime with the
 ability to filter, sort, and edit the records. I could do this task with
 Classic VB in a few minutes and in even less time with VBA inside of Access.
 With C#, there were pieces that were very simple, but only simple when
 building the connection to a single database and a single table that you
 define at design time. Getting code to change the datasource at runtime or
 connecting to a different table when your database schema changes was
 significantly more challenging. In addition, the help available online from
 within Visual Studio or even from an Internet search wasn’t very complete.
 It isn’t enough to know the method that you need to call; you need to
 understand where the variables are declared, the changes that are needed to
 the properties on the datagrid, the “using” references that are required,
 etc. Once you see it, the code is very clear, but it is less than
 straightforward when you are starting out.
Objectives

This book teaches you some specific items to help you get started
 with C# and databases. You won’t tackle a full project, but rather you
 will get a chance to use C# in a way that helps you learn by example. Many
 programmers learn best by simply doing: using a concept in code that can
 eventually be applied to situations in the future. That is the essence of
 what you will accomplish by reading this book. No knowledge of C# or even
 VB is really required, but specific differences between Classic VB and C#
 will be highlighted. You don’t even need to purchase any software; you can
 use the freely available Visual Studio Express and SQL Server Express if
 you don’t have the full version of Visual Studio and/or Microsoft Office
 (for Access Databases). Also, you should generally be able to cut and
 paste code that you generate while working through this book to use in
 your other projects.
When you finish this book, you should be able to do the
 following:
	Create a Windows Forms Application with a datagrid

	Connect to multiple data sources (Access and SQL Server)

	Add, Edit, and Update database data with a source set at
 runtime

	Connect to a datasource at design time that cannot be
 changed

	Understand roles of DataTable, DataView, BindingSource, Filters,
 and other objects

	Understand that where variables are declared impacts the
 code

	Build a simple webservice that connects to a database

As you follow the examples in this book, you will gain confidence in
 using C# and will be able to leverage this knowledge in other projects.
 Also, it is worth noting that both VB.Net and C# are powerful languages,
 and one isn’t necessarily better than the other. Typically, in the past,
 people have used VB and VB.Net for data-rich and line-of-business
 applications and C# for the enterprise-level applications. But, this
 distinction is changing. It is true that if you are building a business
 application, many of the functions that you might want to use, such as net
 present value or other time value of money calculations, are built in to
 VB.Net and not to C#, which makes VB.Net the natural choice when you need
 that functionality. However, given how data-intense the world is becoming,
 you simply must know how to access, add, update, and delete data in C# if
 you plan to program with it. You will be able to do that if you follow the
 examples in this book.

Conventions Used in This Book

The following typographical conventions are used in this
 book:
	Italic
	Indicates new terms, URLs, email addresses, filenames, and
 file extensions.

	Constant width
	Used for program listings, as well as within paragraphs to
 refer to program elements such as variable or function names,
 databases, data types, environment variables, statements, and
 keywords.

	Constant width bold
	Shows commands or other text that should be typed literally by
 the user.

	Constant width italic
	Shows text that should be replaced with user-supplied values
 or by values determined by context.

Tip
This icon signifies a tip, suggestion, or general note.

Caution
This icon indicates a warning or caution.

Using Code Examples

This book is here to help you get your job done. In general, you may
 use the code in this book in your programs and documentation. You do not
 need to contact us for permission unless you’re reproducing a significant
 portion of the code. For example, writing a program that uses several
 chunks of code from this book does not require permission. Selling or
 distributing a CD-ROM of examples from O’Reilly books does require
 permission. Answering a question by citing this book and quoting example
 code does not require permission. Incorporating a significant amount of
 example code from this book into your product’s documentation does require
 permission.
We appreciate, but do not require, attribution. An attribution
 usually includes the title, author, publisher, and ISBN. For example:
 “C# Database Basics by Michael Schmalz (O’Reilly).
 Copyright 2012 Michael Schmalz, 978-1-449-30998-5.”
If you feel your use of code examples falls outside fair use or the
 permission given above, feel free to contact us at
 permissions@oreilly.com.

Safari® Books Online

Note
Safari Books Online is an on-demand digital library that lets you
 easily search over 7,500 technology and creative reference books and
 videos to find the answers you need quickly.

With a subscription, you can read any page and watch any video from
 our library online. Read books on your cell phone and mobile devices.
 Access new titles before they are available for print, and get exclusive
 access to manuscripts in development and post feedback for the authors.
 Copy and paste code samples, organize your favorites, download chapters,
 bookmark key sections, create notes, print out pages, and benefit from
 tons of other time-saving features.
O’Reilly Media has uploaded this book to the Safari Books Online
 service. To have full digital access to this book and others on similar
 topics from O’Reilly and other publishers, sign up for free at http://my.safaribooksonline.com.

How to Contact Us

Please address comments and questions concerning this book to the
 publisher:
	O’Reilly Media, Inc.
	1005 Gravenstein Highway North
	Sebastopol, CA 95472
	800-998-9938 (in the United States or Canada)
	707-829-0515 (international or local)
	707-829-0104 (fax)

We have a web page for this book, where we list errata, examples,
 and any additional information. You can access this page at:
	http://shop.oreilly.com/product/0636920021469.do

To comment or ask technical questions about this book, send email
 to:
	bookquestions@oreilly.com

For more information about our books, courses, conferences, and
 news, see our website at http://www.oreilly.com.
Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia
Watch us on YouTube: http://www.youtube.com/oreillymedia

Chapter 1. First Steps: Form with a Datagrid

It’s time to dive into C#. Whether you’re moving from Visual Basic or
 Microsoft Access, getting started means moving through a number of things
 that look familiar but work just a little differently.
Installing Software

If you haven’t done it already, you can go to the Microsoft website
 and download the Express version of Visual Studio 2010 for C#. The site is
 presently at http://www.microsoft.com/visualstudio/en-us. At the bottom
 of the page, you can go to Express Product Downloads, or you can download
 the 90-day trial of the full version. Links change all the time, so if it
 isn’t there when you look, a simple search from a search engine will
 direct you to where you can download it. Once you have it installed and
 opened it, you will see a screen similar to the one shown in Figure 1-1.
[image: The main screen for the Microsoft Visual C# 2010 Express]

Figure 1-1. The main screen for the Microsoft Visual C# 2010 Express

Note
If you want the Express version of SQL Server, it is available on
 the Express Product Downloads page as well. If you don’t have Microsoft
 Access loaded on your computer, you will need this to work with the data
 examples. The examples we will use are virtually interchangeable between
 the two platforms. The main difference is the connection string you will
 use. While SQL Server has many additional features, it is beyond the
 scope of this book.

Now that you have the programs installed, you are ready to create a
 new project. To do this, from the main screen in Visual Studio, you can go
 to File→New Project, or simply press Ctrl+Shift+N to bring up the new
 project dialog box that you see in Figure 1-2.
[image: The C# New Project Dialog, where you will find the Windows Forms Application]

Figure 1-2. The C# New Project Dialog, where you will find the Windows Forms
 Application

If you click on the Windows Forms Application and enter
 FirstTestApplication into the name field in that
 dialog box, you will get a screen like you see in Figure 1-3. The Solution
 Explorer will be on the right (if you don’t see that, press Ctrl+W, then
 press the S key); it shows all of the objects that are in your solution.
 (Note that a solution can contain multiple projects.) Below that, you will
 see the Properties Window, where you will view and edit the object
 properties. To the left of the screen, you will see the Toolbox Window
 (you may see more or fewer tools, depending on what you have installed).
 You can use items in the Toolbox by dragging and dropping onto your form
 just like you would in Classic VB. At the bottom of the screen, you will
 notice the Error Window. This window will show you errors and warnings as
 you write code. This can be very helpful for you as you learn the
 language. You don’t need to wait until you compile to find errors.
[image: The screen for a blank new Windows Forms Application]

Figure 1-3. The screen for a blank new Windows Forms Application

Basic Syntax

Most of the work you’ll be doing here involves object manipulation,
 not complex object creation, so you don’t need to know the entire C#
 language to get started. There are some key differences between VB6 and C#
 that are helpful to be aware of up front. These will be briefly covered
 here and also in more detail as they come up in the code examples
 throughout the book.
C# Operators

These can take some time to get used to. The standard Boolean
 operations that you may have been used to in Classic VB are sometimes
 the same and sometimes slightly different in C#. In Table 1-1, you will see the
 VB6 Operator and the C# Operator. Having compile errors due to using the
 VB-style operators is easy to fix when you know about it.
Table 1-1. The differences are in the equality and inequality operators.
 Be careful to use the == when you are testing for equality and = when
 you are trying to set a value.
	Operator
 Name
	VB6
 Operator
	C#
 Operator

	Equality
 Operator
	=
	==

	Inequality
 Operator
	<>
	!=

	Greater
 Than
	>
	>

	Less Than
	<
	<

	Greater Than or
 Equal
	>=
	>=

	Less Than or
 Equal
	<=
	<=

Outside of the Boolean operators, there are some other slight
 differences in operators that can save you some time. The first is the
 increment operator. In VB, you might have done something like:
X = X + 1
Whereas in C#, you can use:
X + = 1;
The addition, subtraction, multiplication, and division increment
 operators are +=, –=, *=, and /=.
 So, anywhere that you would use something like X = X (operator) Y, you
 can use these as shortcuts.
In addition, there are a few other operators that can help you
 with intense data operations that were not in Classic VB. For example,
 if you have a situation where you are trying to evaluate an OR
 expression and each side of the OR expression is data- and
 processor-intensive, you can use the || operator. Doing this will only
 evaluate the expressions until it gets a true; once an expression
 returns true, the statement returns true and the rest of the expressions
 are not evaluated. In non-processor-intensive operations, you won’t get
 much time savings from this. But, when you are looking at thousands of
 rows of data for potentially thousands of customers, you might be able
 to use this operator to save some time. These aren’t the only operator
 changes, however, these are the ones that are relevant to the examples
 in this book.

Selection Statements

The other changes that can take some getting used to are the
 selection statements. In Classic VB, we had If
 ... Then ... Else and Select ...
 Case. In C#, we have if ...
 else and switch ... case.
 Let’s assume that we have an integer variable called count that we are trying to evaluate and we
 have a string variable called reply
 that we want to populate with a message. See if you can spot the
 differences compared to VB for both statements:
If (count == 0) {
 reply = "The count is 0";
}
else {
 reply = "The count is not 0";
}
switch (count) {
 case 0:
 reply = "The count is 0";
break;
default:
 reply="The count is not 0";
break;
}
Notice that in VB, we would have had to use the Then keyword, which is not used in C#. Also,
 where we would use Select ... Case in
 VB, we have to use switch ... case.
 In addition, in VB, we have a capital letter at the beginning of the
 keywords, whereas in C#, they are in all lowercase. Finally, take note
 of the braces and semicolons that you don’t use in VB. Again, these
 differences certainly stand out in terms of how they look, but once you
 write a few statements, you will easily pick up on them.
There are many other differences between the languages—I
 highlighted these examples because they are often used in data-intensive
 applications. You can get a full list of operators, keywords, and
 statements in the help that comes with Visual Studio. Also, the
 Intellisense in Visual Studio is fantastic and can greatly help you, and
 the error window also gives surprisingly good help, particularly when
 you are missing a curly brace, semicolon, or an
 includes statement.
If you are used to working in Microsoft Access, you can get
 spoiled by things that are done for you automatically. It is pretty
 straightforward to make a form in Access that will let you add, update,
 and delete records. In addition, changing the source data for a grid can
 really be accomplished with one line of code in VBA. But, building the
 same functionality from a C# application take some work. Even if you get
 all of the syntax correct, you have to be careful where you declare
 objects in C#, where you initialize them, etc. Once you realize where
 things need to be done, it becomes very easy, and you’ll move quickly up
 the learning curve.
For this example, we will be showing the screens from Visual
 Studio 2010 Express, but the code doesn’t change if you use a different
 version. In addition, we will be using the Northwind Database that comes
 with Access. Using the Northwind Database poses some challenges that you
 will run into when using databases where you don’t have control of the
 schema. These instances will be pointed out and you’ll learn how to
 handle them.
Note
If you don’t have Access or the Northwind Database, you can
 download the database from the Microsoft website.

First, open up Visual Studio and go to File→New Project. Pick
 Visual C# and select Windows Forms Application. On the bottom of that
 dialog box, type in EditingDatabaseTest and then
 click OK, as shown in Figure 1-4. Once
 you do that, you will see the screen shown in Figure 1-5.
[image: The New Project window]

Figure 1-4. The New Project window

[image: Editing your project]

Figure 1-5. Editing your project

To start with, we’ll recreate more or less what Access does
 automatically when you build a form. You will fill a grid with data, add
 buttons to filter the data, and have a second grid that will let you
 choose different tables with which to populate the first grid. In
 addition, you will be adding code to allow you to add, update, and
 delete rows of data. While this seems pretty simple, you’ll see that
 there is some planning involved to make this work.
Take a look at the toolbox on the left side of your screen. (If
 the toolbox isn’t there, go to View→Toolbox to show it.) Take notice of
 the sections—you will be using controls from the Common Controls and
 Data sections for this sample. On the form, drag on a datagrid from the
 Data section, a text box from the Common Controls section, a combo box
 from the Common Controls section, two buttons from the Common Controls
 section, and a second datagrid from the Data section. When you add the
 datagrid, you will get the popup dialog shown in Figure 1-6. For the first
 datagrid, leave the boxes checked to add, update, and delete records.
 For the second datagrid, uncheck those boxes. On both, leave the
 datasource as None. You can create a project datasource and use it here,
 but we are going to start with programming the datasource because it
 will give you more flexibility. You can lay out these controls however
 you’d like; you can see how I did it in Figure 1-7. If you pressed F5 to start the
 project, it would open up and nothing would function yet.
[image: Choosing data sources for the datagrid]

Figure 1-6. Choosing data sources for the datagrid

[image: An initial form layout]

Figure 1-7. An initial form layout

Next, you will need to put in some code to get the controls
 functioning. You can get to the code for a Form by pressing F7, or you
 can right-click on the form’s name in the Solution Explorer on the
 righthand side of your screen and select View Code from the list. Once
 there, you will see the lines of code shown in Example 1-1 prefilled for
 you.
Example 1-1. Basic code to make the controls function
using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Windows.Forms;

namespace EditingDatabaseTest
{
 public partial class Form1 : Form
 {
 public Form1()
 {
 InitializeComponent();
 }

 }
}

The first thing you’ll notice in the code is the using keyword. These lines of code are very
 similar to adding a reference in VBA. When you add a
 using directive, it turns on the Intellisense for the
 objects, properties, and methods related to that namespace. Please note
 that you can and often do have to add references to a C# project; I’m
 only describing it this way to give you a familiar example.
There is an additional using
 directive that you will need to add for this example to work. Right
 under using System.Data;, add the
 following line of code:
using System.Data.OleDb;
This line of code tells C# to use the .NET Framework Provider for
 OLE DB. You will use objects, properties, and methods in this namespace
 to connect to the datasource. Also, you need some of the variables and
 objects that you are using to remain available continuously while the
 form is open. For this reason, you need to declare those at the class
 level and not in the individual procedures that you will be writing. Add
 the necessary lines to have your code read as shown in Example 1-2.
Example 1-2. Connecting to the datasource with OLE DB
using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Data.OleDb;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Windows.Forms;

namespace EditingDatabaseTest
{
 public partial class Form1 : Form
 {
 public string connString;
 public string query;
 public OleDbDataAdapter dAdapter;
 public DataTable dTable;
 public OleDbCommandBuilder cBuilder;
 public DataView myDataView;

 public Form1()
 {
 InitializeComponent();
 }

 }
}

You need the objects and variables that are declared to remain
 available because these will be
 necessary for the updating, sorting, filtering, and other operations
 that you’ll program. If you didn’t declare them at the class level,
 those objects won’t be available outside of
 the procedure in which they were declared. After the InitializeComponent(); statement, add the following
 lines of code:
 connString = "Provider=Microsoft.ACE.OLEDB.12.0;Data
Source=C:\\users\\michael\\documents\\Northwind 2007.accdb";
 query = "SELECT * FROM Customers";
 dAdapter = new OleDbDataAdapter(query, connString);
 dTable = new DataTable();
 cBuilder = new OleDbCommandBuilder(dAdapter);
 cBuilder.QuotePrefix = "[";
 cBuilder.QuoteSuffix = "]";
 myDataView = dTable.DefaultView;
The connection string is very similar to what you would see in
 VBA. However, you should notice the \\ in the path name. If you use a single
 \, you will get an unrecognized
 escape sequence error. The query variable is a string that defines the
 Select statement that you are using to access the
 data. The OleDbDataAdapter is the
 class that holds the data commands and
 connection that you will use to fill the DataTable. The OleDbCommandBuilder class generates the
 commands that reconcile changes that happen in a DataTable and the connected database.
Since you are connecting to the Northwind Database, you need the
 QuotePrefix and QuoteSuffix properties defined with the square
 brackets. This is because the Northwind Database has spaces in the field
 names. If you try to update a cell in your datagrid that has spaces in
 field names without these properties defined, you will get an error. You
 can always trap that error, but it would make updating impossible in
 tables with spaces in field names. If you don’t add these properties and
 your datasource doesn’t have spaces in field names, you will still be
 able to run error-free. However, I recommend always adding these lines
 just in case. Next, add the following lines of code to finish up this
 first procedure:
 dAdapter.Fill(dTable);
 BindingSource bndSource = new BindingSource();
 bndSource.DataSource = dTable;
 this.dataGridView1.DataSource = bndSource;
 for (int q = 0; q <= dataGridView1.ColumnCount - 1; q++)
 {
 this.comboBox1.Items.Add (this.dataGridView1.Columns[q].HeaderText.ToString());
 }
 OleDbConnection xyz = new OleDbConnection(connString);
 xyz.Open();
 DataTable tbl = xyz.GetSchema("Tables");

 dataGridView2.DataSource = tbl;
 DataView tbl_dv = tbl.DefaultView;
You are accomplishing several things
 with this code. First, you are filling the DataTable with the data in the data adapter.
 Then, you are creating a binding source for the form. (The BindingSource class is part of the System.Windows.Forms namespace.) Then, you are
 finally ready to set the datasource for the datagrid. Once you do this,
 the data you selected will populate the grid.
The next part of the code is a for loop, which is being used to
 populate the combo box with the field names. The code isn’t going to do
 anything with this data, but you could use that to set the sort field or
 do any other number of tasks. It is being included here simply to show
 you an example of how to iterate through the columns of a
 datagrid.
Finally, the bottom section of that code snippet is being used to
 populate the second datagrid with the schema of the OleDbConnection.
[image: A populated datagrid]

Figure 1-8. A populated datagrid

If you press F5 at this point, the form will open and you will see
 the screen in Figure 1-8. Because you told
 the first datagrid that it could add, update, and delete, you will be
 able to edit those fields. But, you didn’t add code yet to reconcile
 those changes in the database. So, you can edit the field and everything
 will show on the screen like it is changed; however, if you close the
 form and open it again, the changes will not be in the database. Also,
 you will notice that the bottom datagrid cannot be edited. This is
 because you unchecked the boxes. The important thing to note here is
 that those settings only impact the grid; they do not impact the
 database. If you search for help on datagrids in C# online, you will see
 many questions from people who made the change in the grid but didn’t
 add the code to apply the updates—they can’t understand why the data
 isn’t being changed in the database.
So, let’s add the code for updates. Add this code right below the
 curly brace ending the Form1()
 procedure:
private void Cell_Update(object sender, DataGridViewCellEventArgs e)
 {
 try
 {
 dAdapter.Update(dTable);
 this.textBox1.Text = "Updated " + System.DateTime.Now.ToString();
 }
 catch (OleDbException f)
 {
 this.textBox1.Text = "Not Updated " + f.Source.ToString();
 }
 }
Once you do this, you need to set up the grid to call this
 procedure. Switch to the design view screen (Shift+F7),
 right-click on the first datagrid, and select Properties. On
 that box, click on the lightning bolt to get to the events and
 find the event called RowValidated. In that event, select Cell_Update from the drop-down box. It should
 be the only item available in the list at this time.
When you are creating an application, the last thing you want to
 do is have your users get dropped to a debug window or throw an
 unhandled exception. So, what I’ve done in this section of code is put
 the code that does the updating in a try ...
 catch statement. You could
 accomplish that update in one line of code: dAdapter.Update(dTable);. However, that
 code can throw an error for any number of reasons. For example,
 you could be updating a table that doesn’t have a primary key defined
 (that will always throw an error), or you might have skipped the
 step where you define the QuotePrefix and QuoteSuffix on the command builder and you
 have a table with spaces in field names. So, when that happens,
 you want the code to handle that exception gracefully. In this case, the
 code will try to execute that line and if it works, it will update the
 text box telling the user that it updated. If there is an OleDbException, it will update the text box,
 telling the user that it wasn’t updated. The grid will also show a red X
 on the left side of the row that didn’t
 update. Note that you are only trapping an OleDbException. You can trap all exceptions
 instead of defining one, but it is best to write specific sections of
 code to handle each type of error you may get.
The other item to note is the dAdapter variable. If you declare that
 variable in the Form1() procedure, it will run fine
 when the application first starts running, but it will give you an error
 when writing the update section of code because the dAdapter variable will be out of
 context.

Adding Filtering

The next thing you are going to program here is the filtering
 functionality. Go back to the design view on the form and change the
 button text for the buttons to be Set Filter and Clear Filter. Then come
 back to the code window and we’ll add the procedures for this
 functionality.
There are a number of ways that you can add filtering
 functionality. What you’ll do here is essentially the filter by
 selection functionality from Access, but we will default to using the
 entire field. You can do wildcards and such, but for now, we will focus
 on the basics. Enter the following code below the
 update procedure:
private void filter_click(object sender, EventArgs e)
 {
 string mystr;
 if (myDataView.RowFilter == "")
 {
 mystr = "[" + dataGridView1.CurrentCell.OwningColumn.HeaderText.ToString() + "]";
 mystr += " = '" + dataGridView1.CurrentCell.Value.ToString() + "'";
 myDataView.RowFilter = mystr;
 }
 else
 {
 mystr = myDataView.RowFilter + " and ";
 mystr += "[" + dataGridView1.CurrentCell.OwningColumn.HeaderText.ToString() + "]";
mystr += " = '" + dataGridView1.CurrentCell.Value.ToString() + "'";
 myDataView.RowFilter = mystr;
 }
 }
A couple of things are important here. First, there is a line of
 code checking to see if the grid is already filtered. If the grid is
 filtered, clicking the filter button again adds to the filter. If the
 filter is empty, the code just sets the filter. Second, since we are not
 using the OleDbCommandBuilder class
 here, the brackets will not be added to our column names automatically.
 So, you just need to add the square bracket to the front and back of the
 column name. Finally, you should take a look at all of the properties
 and methods that are available on the CurrentCell. In this case, you are referencing
 the OwningColumn of the cell and the
 HeaderText of that column; the
 HeaderText is the same as the field
 name in the table. Also, as in the other procedure, the object that we
 are referring to (myDataView in this
 case) is declared at the class level, so it is available to all
 procedures in the form.
Next, you will want to set this code to run when the Set Filter
 button is clicked. So, go back to the design view and right-click on the
 first button (you should have already set the Text property to Set
 Filter), then click on the lightning bolt to show the events. Find the
 click event and in the drop-down box, select filter_click.
Go back to the code view and add the following lines of code
 underneath the filter_click procedure:
private void clear_filter(object sender, EventArgs e)
 {
 myDataView.RowFilter = "";
 }
Switch back to the design view and set the click event for the
 second button to clear_filter, just like you did
 for the first button. You may notice that only
 clear_filter and
 filter_click are available when you have another
 event already programmed for the row updating. This is because the
 Cell_Update procedure is specific to
 DataGridViewCellEventArgs, so it will
 only show up for datagrid events.
Once you have done this, press F5, and when the form opens, click
 in the first cell under Job Title, which should say owner. Then click on
 the button to Set Filter. You will see a form like the one shown in
 Figure 1-9.
[image: Setting a filter]

Figure 1-9. Setting a filter

If you click Clear Filter, it will remove the Filter. This
 functionality is fairly simple, but you can see how actually programming
 it is a bit complex. It wouldn’t make sense to go through all of this if
 all we wanted to do was edit a static table. If you wanted to do that,
 you could create a project datasource, which would set the code to allow
 updates, adds, deletes, etc. So, what I’m trying to show here is how you
 can select a different table and populate the first datagrid.
Your next task is to add another button to the form and call it
 Change Source. Add the following code below the last procedure you
 wrote:
private void change_data_source(object sender, EventArgs e)
 {
 string tbl_str = dataGridView2.CurrentRow.Cells[2].Value.ToString();
 query = "SELECT * FROM [" + tbl_str + "]";
 dAdapter = new OleDbDataAdapter(query, connString);
 dTable = new DataTable();
 cBuilder = new OleDbCommandBuilder(dAdapter);
 cBuilder.QuotePrefix = "[";
 cBuilder.QuoteSuffix = "]";
 myDataView = dTable.DefaultView;
 dAdapter.Fill(dTable);
 BindingSource bSource = new BindingSource();
 bSource.DataSource = dTable;
 this.dataGridView1.DataSource = bSource;

 for (int q = 0; q <= dataGridView1.ColumnCount - 1; q++)
 {
 this.comboBox1.Items.Add(this.dataGridView1.Columns[q].HeaderText.ToString());
 }

 }
This is essentially the same code as our opening code except that
 we are setting the table name equal to the third column of the schema
 grid. Please note that the columns of the grid are 0-based, so the third
 column has an int index of 2. Once
 you’ve done this, go back to the design view and set the click event to
 change_data_source. Your final form
 should look like the one shown in Figure 1-10.
[image: Form with an added Change Source button]

Figure 1-10. Form with an added Change Source button

Some Other Considerations

You should be aware of some errors that you will see with the
 datagrid, particularly with the Northwind Database. If you try to add
 records to some tables, you will see a red exclamation point to the left
 of the row, and if you hover over it, you will see “An INSERT INTO query
 cannot contain a multi-valued field.” This is because some of the tables
 in the Northwind Database take advantage of an Access-only feature of
 storing more than one value in a field (for example, multiple examples
 from a list). Since you won’t be able to insert records into the
 database if your table has a field like that, I would avoid it if you
 are planning on updating outside of Access.
Let’s take a look at a situation where you can update. In the
 second datagrid, click on the cell that says Invoices (you will need to
 scroll down), and then click the Change Source button. The data in the
 first datagrid will change to show the Invoices table. Then scroll down
 to the bottom and try to add a new row. Use 125 as the Order ID and use
 7/1/2011 as the Invoice Date, then put zeroes in the columns with
 numbers. Then tab down to the next row or click off the row that you are
 trying to add.
When you do this, you will get a red exclamation point. When you
 hover over it, it will tell you that you need a related record in the
 table Orders. So, change the Order ID to 58 (which exists in the Orders
 table), and then click off the row. You will see that the update works.
 Then, click on Inventory Transactions (right above Invoices in the
 bottom grid) and click on Change Source. Then, go right back to Invoices
 and hit the Change Source button again. If you scroll to the bottom, you
 will see the row of data that you added and you’ll see that the database
 added the primary key automatically.
Now, you can try to delete that row. Click on the space right to
 the left of the first column on that row that you added. This will
 highlight the row. Now press the Delete key. This deletes the row from
 the database.
You can see from this example that while this is slightly more
 complicated than doing the same
 thing in Access, once you have the pattern down, it is
 relatively straightforward to add a datagrid and change the datasource,
 filter, etc.
Example 1-3 provides the
 full code listing for the example in this chapter.
Example 1-3. Putting all of the code together
using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Data.OleDb;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Windows.Forms;

namespace EditingDatabaseTest
{
 public partial class Form1 : Form
 {
 public string connString;
 public string query;
 public OleDbDataAdapter dAdapter;
 public DataTable dTable;
 public OleDbCommandBuilder cBuilder;
 public DataView myDataView;

 public Form1()
 {
 InitializeComponent();
 connString = "Provider=Microsoft.ACE.OLEDB.12.0;
Data Source=C:\\users\\michael\\documents\\Northwind 2007.accdb";
 query = "SELECT * FROM Customers";
 dAdapter = new OleDbDataAdapter(query, connString);
 dTable = new DataTable();
 cBuilder = new OleDbCommandBuilder(dAdapter);
 cBuilder.QuotePrefix = "[";
 cBuilder.QuoteSuffix = "]";
 myDataView = dTable.DefaultView;
 dAdapter.Fill(dTable);
 BindingSource bndSource = new BindingSource();
 bndSource.DataSource = dTable;
 this.dataGridView1.DataSource = bndSource;
 for (int q = 0; q <= dataGridView1.ColumnCount - 1; q++)
 {
 this.comboBox1.Items.Add(this.dataGridView1.Columns[q].HeaderText.ToString());
 }
 OleDbConnection xyz = new OleDbConnection(connString);
 xyz.Open();
 DataTable tbl = xyz.GetSchema("Tables");

 dataGridView2.DataSource = tbl;
 DataView tbl_dv = tbl.DefaultView;
 }

 private void Cell_Update(object sender, DataGridViewCellEventArgs e)
 {
 try
 {
 dAdapter.Update(dTable);
 this.textBox1.Text = "Updated " + System.DateTime.Now.ToString();
 }
 catch (OleDbException f)
 {
 this.textBox1.Text = "Not Updated " + f.Source.ToString();
 }
 }

 private void filter_click(object sender, EventArgs e)
 {
 string mystr;
 if (myDataView.RowFilter == "")
 {
 mystr = "[" + dataGridView1.CurrentCell.OwningColumn.HeaderText.ToString() + "]";
 mystr += " = '" + dataGridView1.CurrentCell.Value.ToString() + "'";
 myDataView.RowFilter = mystr;
 }
 else
 {
 mystr = myDataView.RowFilter + " and ";
 mystr += "[" + dataGridView1.CurrentCell.OwningColumn.HeaderText.ToString() + "]";
 mystr += " = '" + dataGridView1.CurrentCell.Value.ToString() + "'";
 myDataView.RowFilter = mystr;
 }
 }

 private void clear_filter(object sender, EventArgs e)
 {
 myDataView.RowFilter = "";
 }

 private void change_data_source(object sender, EventArgs e)
 {
 string tbl_str = dataGridView2.CurrentRow.Cells[2].Value.ToString();
 query = "SELECT * FROM [" + tbl_str + "]";
 dAdapter = new OleDbDataAdapter(query, connString);
 dTable = new DataTable();
 cBuilder = new OleDbCommandBuilder(dAdapter);
 cBuilder.QuotePrefix = "[";
 cBuilder.QuoteSuffix = "]";
 myDataView = dTable.DefaultView;
 dAdapter.Fill(dTable);
 BindingSource bSource = new BindingSource();
 bSource.DataSource = dTable;
 this.dataGridView1.DataSource = bSource;

 for (int q = 0; q <= dataGridView1.ColumnCount - 1; q++)
 {
 this.comboBox1.Items.Add(this.dataGridView1.Columns[q].HeaderText.ToString());
 }

 }

 }
}

Before we head to the next chapter and connect to SQL Server,
 let’s review some of the differences between data access inside of
 Microsoft Access and from C#. One of the biggest challenges is setting
 the events to fire at the right time and declaring the variables in the
 right place. In this example, it was done for you. But when you are
 writing from scratch, it is easy to get this part wrong. You’ll know
 when it happens when you try to access a variable that Visual Studio
 says is out of context. So, when that happens, you’ll know exactly where
 to look.
The events are a little trickier. As an example, some people will
 go through the events that are available in the datagrid, and they might
 choose an event like CellEndEdit to
 put the update code in. However, you will end up with errors when you
 try to add new rows because you will be missing required fields when the
 update fires right after the first column is updated. If you look around
 some of the technology forums, you’ll see some debate about where to
 fire the update event. My personal opinion is that doing it after the
 row validates is best, as it will only fire when you leave a row. You
 also have the option of having a Save button and only firing the updates
 when that button is pressed. The point is that you have options for when
 you call events and you can test them to see where it works the best in
 your particular application.
The final item of importance is to understand when you are dealing
 with an object or control that is in the Windows Forms namespace or the
 System.Data namespace, and when you
 are in the System.Data.OleDb
 namespace. There are times when you may want to try something, but you
 can’t find the object or method that you want. When you run into
 situations like that, all you need to do is hover over the class name
 where you declare the variable and it will tell you what namespace that
 class is in.

End of sample

 To search for additional titles please go to

 http://search.overdrive.com.

OEBPS/httpatomoreillycomsourceoreillyimages973077.png
<

Updated 11/17/2011 1:4302 PY

[Comne |

[ABLE_CATALOG TABLE_SCHEMA TABLE NAME _ CHECK OPTION _IS_UPDATABLE
HumanResources | vEmployee NONE No
HumanResources | vEmployeeDepar... | NONE o
HumanResources | vEmployeeDepar... | NONE o
HumanResources | vlobCandidate | NONE o
HumanResources | vlobCandidateE... | NONE o
HumanResources | viobCar NONE No

OEBPS/httpatomoreillycomsourceoreillyimages973095.png
KR of48 [b M & X H

OrderID: 30

Order Date: | Sunday . January 15.2006 [~

Shipped Date: Sunday . Januay 22,2006 @+
D 27
OrderID: 30

Uni Price: 14

OEBPS/httpatomoreillycomsourceoreillyimages973103.png
‘Specify the keys that relate tables in your dataset.

ParentTale ChigTabe
o) (Orderetsis =
e
ey Colorrs Forsn Koy Catas
Orderd
o e—

© Both Relation and Foreign Key Constraint
© Foreign Key Constraint Only.

© Relation Only
UpdateRue [None -
Deteruie [None B

Accepieoct ke [None

]

[E] Nested Relation

OEBPS/httpatomoreillycomsourceoreillyimages973109.png
Sort by: [Defout Search nstaled Templates
J sot e [

L

E
E
2
E
#
#
&
&

= Type: VisualC#

An empty project for creating an
application with a Web user interface

ASPINET Web Application
ASPINET MVC 2 Web Application
ASPINET MVC3 Web Application
ASPINET Empty Web Application

ASPINET MVC 2 Empty Web Application

ASPINET Dynamic Data Entiies Web Application
ASPINET Dynamic Data Ling to SQL Web Application

ASP.NET AJAX Server Control

ASP.NET AJAX Server Control Extender

Online Templates

Name: Chapters_WebService

Location: cusers\michael\documents\wisual studio 2010\Projects

Solton: [Creste new sluion

Create directory for solution
(] Add to source control

Solution name: Chapterb_WebService

OEBPS/httpatomoreillycomsourceoreillyimages973111.png
Name:

) @ 8 o e B 18 W S

Visual C#

Visual C#

Visual C#

Visual C#

Visual C#

Visual C#

Visual C#

Visual C#

Visual C#

Visual C#

Visual CG#

Chapter_WS.asmx

Search Installed Templates

Type: Visual C#

Avisually designed class for creating a
Web Service

OEBPS/httpatomoreillycomsourceoreillyimages973063.png
Dockin Parent Container

OEBPS/httpatomoreillycomsourceoreillyimages973089.png
Data Source Configuration Wizard

% Choose a Database Model

What type of database model do you want to use?

u @

Dataset | Entity Data
Model

“The database model you choose determines the types of data objects your application code uses. A dataset file will
be added to your project.

— =l

OEBPS/httpatomoreillycomsourceoreillyimages973067.png
(4 Fom1
D Company Last Name. Fist Name. |rim T
> Compary A Bedecs Arra Owrer
2 |Company B | Gratacos Solsona | Antonio | Owner
3 | Company C. | Axen Thomas Purchasing Rey
4 |Company D Lee. | Christina Purchasing Ma.
5 | Company E |0"Donnell Martin | Owner v
< i]]

[[|

TABLE CATALOG TABLE SCHEMA _TABLE NANE TABLE TYPE___TABLE GUD __DESCRI ~
» (Customers TaBLE =l

(Customers Bxended | VIEW.
Employee Privieges | TABLE.
Employees TABLE

Employess Extended | VIEW -
I v

OEBPS/httpatomoreillycomsourceoreillyimages973053.png
= Microsoft Visual C¥ 2010 Bxpres
Fie Edt View Debug Tooks Window Help

P SH@ kDB -85 &) Upaze | 5 el]

Ther are o usble contols i i roup
Drag an tem ono thister 0 dd 10 the
toolbox

rortin
0 0o || 4,0 Waming:

Descrption N Lne” | Cowmn | Project

OEBPS/httpatomoreillycomsourceoreillyimages973069.png
5 Form1
Emal -
[} Company Last Name Fist Name. A JbTHe
» Company A Bedecs Ama Owner
2 |Company & (Gretacos Solsona | Antorio Owrer
B (Company E |0Dormne Matin owner |
7 (Company G Xe Ming Yang Owner
7 |Company @ Bagel [dean Phippe |Owner -
gl i J 3

Updated 10/14/20111:32:14 A
Set iter Clar Fiter

TABLE_CATALOG TABLE_SCHEMA TABLE NAME __ TABLE_TYPE
» (Customers. TABLE

|Customers Bxten... |VIEW
Employee Privieg...| TABLE.
Employees TABLE
Employess Exten.. | VIEW -

TABLE_GUID. mpmé

OEBPS/httpatomoreillycomsourceoreillyimages973083.png
Order ID.

Ondered | Tuesday . diy 052011 @~

Shoped © Toesdoy . Wy 052011 B-0

D
Order ID.
Quartty
Unkt Price.
Discourt

=y

[esous] [Adohewonervea

OEBPS/httpatomoreillycomsourceoreillyimages973123.png
dbo.tbl_Products...WS_DATABASE.MDF)

OEBPS/httpatomoreillycomsourceoreillyimages973073.png
Fie Edt View Refacor Project Buld Debug Data Tools Window Help

0% R a5 | 32 62|

s EdtingbatabuseTestForml

There st no wsable contol itz group.
Drag a tem onto this et 1o dd fo the
toolor.

DA SddsaB[9-0-8-5r g
209303

[fomi0

& |Updste |5 5350 Bl g o]~

Susing System;
using Systen.Collections.Generis
using Systen.Conponenthiodel;
using Systen.ata;
using System.ata. SalClient;
using systen.Draving;
using System.Ling;
using System.Text;
using System.indows. Foras;

Snasespace EditingdatabaseTest
1
9 public partial class forml : form

€

public string comstring
public string query;
public OleDbDatardapter dAdspter
public DotoTable dTable;

public OleDbCommandsuilder couilder;

|0 Wamings | (1) 0 Messages:

01

02

o Trie G
The et mmepace name OkRDBDRAGpe Fom.s v
e

Thetpe oramepace ame

o ot fund e
ot iing g oo ey

Fomlcr 1 ®

Thetype or namespace name OleDbDotaAdspter Forml.cs 7 =
could notbefound (ar you missing 3 sing.

rectiv o an assembly rference’)
Thetype ormamespace ame.
0ieDbCommandBuide oud not be fund

Forml.cx » =

EdtingOatsbaseTest

EdtingatsbascTest

JElSEIEE
TE| 3 Solution itingDatabaseTest 1 project
| + @ csingpmabserest
4 Propetis
2 R
@ fomicy
@ progmes
B]

OEBPS/httpatomoreillycomsourceoreillyimages973143.png
Data from Customers table.

Edit Delete Select 21 CO"PAY Thay Bernard LTI (PR 21th Minneapolis MN 99999
U Manager 0100 2
Purchasing (123)555 789
Luciana chasing 2t Milwaukee WI 99999
Assistant -0100
Sireet
— 789
Edit Delete Select 23 O™ Botin Michael ‘Purchasing (123)5: 23th Portland OR 99999
w Manager 0100
Street
789
Owner (129559 2 G ot 99999
Street
. 789
Loty (E)EED 25th Chicage L 99999

Manager -0100 e

OEBPS/httpatomoreillycomsourceoreillyimages973139.png
Configure Data Source.
Refresh Schema
Edit Colums.

Edit Templates

OEBPS/orm_front_cover.jpg
L R R R RREERSSSSSSESEEESSZS=S—S=mR
Moving from Visual Basic and VBA to C#

C# Database
Basics

O’REILLY*® Michael Schmalz

OEBPS/httpatomoreillycomsourceoreillyimages973135.png
% Configure the Select Statement

How would you like to retrieve data from your database?

© Specify a custom SQL statement or stored procedure
© Specify columns from a table o view

OEBPS/httpatomoreillycomsourceoreillyimages973091.png
T ——
Data Source Configuration Wizard

% Choose Your Database Objects

Which database objects do you want in your dataset?

— e

OEBPS/httpatomoreillycomsourceoreillyimages973145.png
190 Add Reference 2l =

NET [COM [Projects | Browse [Recent
Filtered to: NET Framework 4 Client Profile
Component Name Version Runtime P~
System Activities Presentation 4000 030319 [
System.Addin.Contract 4000 w003 C
System.Addin 4000 w0030 C
System.ComponentModel.Compositi.. 4000 w0030 C
System.ComponentModel.DataAnnot... 4000 w0030 C
| || system.Configuration 4000 030319 C
System.Configuration.nstall 4000 w0030 C
System.Core 4000 w0030 C
System.Data DataSetBxtensions 4000 w0030 C
System.Data 4000 o039 C.
‘ il 3

OEBPS/httpatomoreillycomsourceoreillyimages973061.png
|5 =25 B8]

> A Vindows o S

e 2 Sobion tngbabucTet L o)
e 2 3 iaigtmeton

saton 4 Propes

Chedin @ e

Chacdtistor Dromis

ComboBox @ progams

Dutimider

s

®r

Linklabel
Ligox

Be>aEuE

Listview
MaskedTenton
MonthColendar
Notyicon
NumeicUpDown
Picuregor
Progresgar
Radiobutton
RichTestox
Tettor

T 0 0cre 8 owari: [N

Treetiow
B Webbrouser Desetin

 Container:
> Menu: & Toolbars
P

X Poiner

@ oo

§ Sindinghavigator

OEBPS/httpatomoreillycomsourceoreillyimages973075.png
EnployeelD___ NatonallDNumber _CortactlD LognlD ManagerlD ___ Tee =
y 14417807 1209 advertureworks... |16 Producton Tec |
2) sdverturenors... |6 Vikeing s
B E dverturenorks.. | 12 Engincerng e
4 Tizs7est 120 sdverturewors... |3 Serior Tool e
5 ooz [1008 sdvertureworks.._| 263 ool Designer

Updated 11/17/2011 1:3305 P1

[Comne |

TABLE CATALOG TABLE SCHEMA TABLE NAVE __TABLE TYPE
» sdes Store BASE TABLE
| AdventureWorks | Procucion ProducPhol | BASE TABLE
| AdventureWorks | Procuction ProductProductP.._ | BASE TABLE
AdventureWokcs | Sales StoreCortact | BASE TABLE
AdventureWokcs | Person Addess BASE TABLE
| AdventureWorks | Producion ProductReview | BASE TABLE

OEBPS/httpatomoreillycomsourceoreillyimages973125.png
Enter the category you would like to see:

The count of the rows returned is:

OEBPS/httpatomoreillycomsourceoreillyimages973121.png
4" dentity Specification
(s Identity)
Identity Increment
Identity Seed

Indesable
s Columnset

e

OEBPS/httpatomoreillycomsourceoreillyimages973131.png
Sesrch Instlled Templates o
Types Visus! C#
Aform for Web Applicstions

Web Form Visual CG#

Empty Page (Razor) Visual C#

Helper (Razor) Visual C#

Layout Page (Razor) Visual C#

Web Page (Razor) Visual &
Master Page Visual &
Web User Control Visual &
ADO.NET Entiy Data Model Visual &

ADO.NET Self-Tracking Entity Generator Visual C#

O
&
[P ET— -
2

Name: Default.aspx Place code in separate file

Select master page

OEBPS/httpatomoreillycomsourceoreillyimages973055.png
- Type: Visual C#
A project for creating an application with a
Windows Forms user interface

Visusl G2
W concoe sppiaion Vil G2
B cis tary Visusl G2
[5H] wer Browser Appiicaion Visusl G2
Gl emptyProject Vil G2 |
[viiowecumet Ve
Jr o[Ve
[[Ve
Jr- [P Ve
ConenPipineExenson by 4) Vs [
Q0 _empty Content Prject 1) Visual C#_~

Name: WindowsFormsApplicationl

OEBPS/httpatomoreillycomsourceoreillyimages973117.png
Eie Edt View Project Buld Debug Tem

Data_Test Toos Window Help

D-d@|4a@[9-0-]»
pubiar:

Crestepublsh Sttings | <) - £ @) InstallWeb Compenents

dows Phone Emultor

lloewuy |33 RIS~
[OPBEBABR

Chaptes W.asmecs X

=

95 Choptes, WebSenice Chaptess WS

Glrale

Tt)

Susing System;

1.2 Chaoters Webservice

T e e okt . [T e e cotecttons et = o
oz | | [imine syetencotscions. e &
; ot “
ik iy e
e e o) s
using System.Web; ‘Build Deployment Package fpcontiy
i S o
using System.Configuration; Pubish...
ettt e
nmespce Chapters ebsrvice = o
3 1) coomarys Convertto Web Appiiation
T e esrtgtion tor crpers s [
1 [webSery. New tem. CtrteShifte A
B e, n | b
Grsenl Py
‘App_GlobalResources | Add 3 > Add Deployable Dependencies...
App_LogaResources % Glas.. Add Librory Pockage Reference...
&, View Class Diagram
e " p—
Theme c System.Collections.ObjectModel.Coll| Debug. L
- ' o [e
4 cu CtreX.
0 0mors | i\ 0 Warmings | (1) 0 Messages. @ paste ctev
secpion
o=

23 erortis |2

OEBPS/httpatomoreillycomsourceoreillyimages973127.png
Enter the category you would like to see:
Vegetables Button

Product
|Green Pepper|
|Celery
[Carrots
[Beets

The count of the rows returned is:
N

OEBPS/httpatomoreillycomsourceoreillyimages973137.png
Advanced SQL Generation Options (2l = J

Additional INSERT, UPDATE, and DELETE statements can be generated to update the data

‘Generate INSERT, UPDATE, and DELETE statements
‘Generates INSERT, UPDATE, and DELETE statements based on your SELECT

Statement. You must have al primary key fields selected for this option to be.
enabled.

[[] Use optimistic concurrency
Modifies UPDATE and DELETE statements to detect whether the database has

changed since the record was loaded into the DataSet. This helps prevent
concurrency conflicts.

==l

OEBPS/httpatomoreillycomsourceoreillyimages973113.png
Chapter6_WS

The following operations are supported. For a formal definition, please review the Service Description,

o listTest

OEBPS/oreilly_large.gif
O’REILLY

OEBPS/httpatomoreillycomsourceoreillyimages973079.png
Dynamic SQL generation is not against

Troubleshooting tips:
Get general help for this exception. -

‘Search for more Help Onling

Actions:
View Deta
Copy exception detailto the clipboard

OEBPS/httpatomoreillycomsourceoreillyimages973087.png
Data Source Configuration Wizard

% Choose a Data Source Type

Where will the application get data from?

U & B G

Lets you connect to a database and choose the database objects for your application.

<reioe | R = ||

OEBPS/httpatomoreillycomsourceoreillyimages973099.png
of 0} > M [X H

Order D:
OnderDate: Tusdy . dy 212011 @+
Shipped Date: Thusday . iy 212011 @+ TR of 0} [b M [X |

Order ID:

o] northwind_2007Dataset %7 i T ordersT: & ager

4 order_De 95} order_DetailsT:

OEBPS/httpatomoreillycomsourceoreillyimages973057.png
Fie_Edt_View Prject Buld Debug DataTools Window Help
(- Sd@ s aB|9-¢-8-5|»

e |5 Ex BEE

Al s A Toa|FUBE-BRR| §HateHE DAL=
Fomics gl

Al Windows Forms - i

2 ommen Ganiels = [S) 123 Sobion FisTesApplcation projec)
ponir & @ Fintresthoptcation
Suton 82 Propeies
Chectton 2 Refrences
CheckedListBox “ j’g“'::‘:lhq
. Do

@ progumes

bl
Uoitabe
e |
Lisviow v
MkedTetgor

1 Montncaenda

= Neicon

@ Momectpooun

R FistTesthpplcation rjectProperies -

@ brogusn T

© Rudibuton Pt FsTesdppaon oo

% RaTottor

W Tetsor

b Tele ' 0irors || 0 Warmings | (1) 0 Mesages X X

R Oescrpton Fie tne” | Con | projct

Cortines

Menus & Toolous

o Frject e

P Theame of th e containing b,

e Coniuration,snd e nfonmaton o the

ot

F Bindinghavigator d

OEBPS/httpatomoreillycomsourceoreillyimages973081.png
< i]

D Company LatNome Ftame LT wme 5
, Company A [Bedecs v Owner

2 CompanyB_|Gretacos Slsona | Petorio Owner

B CompanyC_|Aen Thomas Puchasing Re

4 |Company D Lee |Christina Purchasing Ma.

s (CompanyE|0'Domnel Mot ower -

Updated 10/16/2011 22330 PY [ﬁ*“" rqﬂm

/ALOG TABLE_SCHEMA TABLENAME __ TABLE_TYPE

TABLE_GUID.

[osones__[1a01E

i,]

e —

OEBPS/httpatomoreillycomsourceoreillyimages973097.png
Embed in ToolStripContainer
Insert Standard Items.

RenderMode:
Dock:
Gripstyle:

OEBPS/httpatomoreillycomsourceoreillyimages973107.png
i Forml =lE] x|
M o415 ofg | > M % X [

OrderID: 44
Shioped Date: | Sunday . January 22,2006 @ P4 o3[b M| X |
[
OrderID: 44
Quantty: 250000
Uni Price: 18

Discount: 0

OEBPS/httpatomoreillycomsourceoreillyimages973105.png
TableAdapter Configuration Wizard @]

Choose Methods to Generate jwl
The TableAdapter methods load and save data between your application and the database.
Which methods do you want to add to the TableAdapter?

Fill DataTable

Creates a method that takes a DataTable or DataSet as a parameter and executes the SQL statement or SELECT stored
procedure entered on the previous page.

Method name: Fill

Returna DataTable

Creates a method that returns a new DataTable filled with the results of the SQL statement or SELECT stored
procedure entered on the previous page.

Method name: GetData

Create methods to send updates directly to the database (GenerateDBDirectMethods)
Creates Insert, Update, and Delete methods that can be called to send individual row changes directly to the database.

<Previous | Net> | [Fnsh][Concel

OEBPS/httpatomoreillycomsourceoreillyimages973059.png
Search Installed Templates

Type: Visual C#

A project for creating an application with a
Windows Forms user interface

[indews rms ppcaion veice
H— Vice
BB Contpvicrin Vice
[custiay Vice
5] Wersowsr opicaten Vice
T e Vice
@ ‘Windows Game (4.0) Visual C#
B vty ot Vice
Xbox 360 Game (4.0) Visual C#
B oo cametion, 00 Vice
[——— Vice
m [Empty Content Project (4.0) Visual C#
o imgoner

OEBPS/httpatomoreillycomsourceoreillyimages973141.png
Edit Delete Ovaer 235550100 123 200 St
Puschasing

Edit Deete e Thomas B e Q295550100 A2ss5001 123 300 S

Edi Deete Lee Cisina hepasis 235550100 (msssoi0n 123 4m e

EditDelete O Dommell Martia Ovwaer 23550100 amsssoi0n 123 smse

. o rancisco Puchasing s «

Edi Deete PezOmen 235550100 (msssot0n 1236t s

Edit Deete Xie Ming-Yang Ovwner 293550100 555001 123 T e

Purchasing 5

Edit Delte Andersen Elizsben, IS e (2555010 amssso0n 138w swe
- Purchasing

Edit Deete Morensen s E 23550100 amssso0n 123 smse

EditDelete 10 Company J Wacker Roland ctasing 293550100 asssoi0n 123 10w

OEBPS/httpatomoreillycomsourceoreillyimages973071.png
n Company Last Name: Fist Name e e
, Company A [Bedecs v Owner
2 CompanyB_|Gretacos Slsona | Petorio Owner
B CompanyC_|Aen Thomas Puchasing Re
4 |Company D Lee |Christina Purchasing Ma.
=L e [omere vatn Ower -
< m v

Updated 10/14/2011 15451 Al

[Comne |

LS CoULS I e e s T e
 — N
o o
Employee Privileg... | TABLE
Employees TABLE

Employees Exten_.. |VIEW -

:

OEBPS/httpatomoreillycomsourceoreillyimages973133.png
e Contents of folder
2D CChaptey 3 Northwind 2007 accd

Focine [Vicrsoft Access Databases (b acede))

OEBPS/httpatomoreillycomsourceoreillyimages973085.png
Your project currently has no data sources
associated with it. Add a new data source, then

data-bind items by dragging from this window
‘onto forms or existing controls.

‘Add New Data Source

OEBPS/httpatomoreillycomsourceoreillyimages973115.png
Chapter6_WS [

Ciick here for a complete list of operations.

Test
Test

To test the operation using the HTTP POST protocal, clck the ‘Invoke' button.

Paramater Value

thisist:

Trvoke

SOAP 1.1
The following is sample SOAP 1.1 request and response. The placeholders shown need to be replaced vith actual values.

BOST /Chapter6_WS.asmx HTTR/1.1

Host: localhost

Content-Type: text/xml; charse

Content-Length: length
‘chapter6_ws/listTest”

SoRPAction:

utE-8m2>
http:/ /waw.w3.0rg/2001/XMISchema~instance” xmlns:xsd="http:

<soap:Envelope xmlns:xs: /. %3.05G/2001/XMESchema” xmlns:so;
<soap:Body>.
<listTest xmlns="chapter6 ws">
<thisList>string</thisList>
</1istTest>
</soap:Body>
</soap:Envelope>

OEBPS/httpatomoreillycomsourceoreillyimages973119.png
{

Sesrch Instlled Templates o

Type: Visual C#
An empty SQL Server database

e 08) & &

WS Database.mdf

OEBPS/httpatomoreillycomsourceoreillyimages973065.png

OEBPS/httpatomoreillycomsourceoreillyimages973093.png

OEBPS/httpatomoreillycomsourceoreillyimages973129.png
ot Do [Scrchntolea Templte
P——
ety Webste

ASP.NET Web Site Visual C#
ASP.NET Web Site (Razor)

ASP.NET Empty Web Site

ASP.NET Dynamic Data Entiies Web Site

ASP.NET Dynarmic Data Ling to SQL Web Site

WCF Service

ASP.NET Reports Web Ste:

ASP.NET Crystal Reports Web Site:

@
@
i 4
i
R
e
2

File System v CUsers\Michael\Documents\Visual Studio 2010\WebSites\Chapter?

OEBPS/httpatomoreillycomsourceoreillyimages973101.png
 Northwind_2007DataSetsd X [R R T

Te. Order Details T Orders

Order DetailsTableAdapter

'8 OrdersTableAdapter

