

 [image: TCP/IP Network Administration, 3rd Edition]

 TCP/IP Network Administration, 3rd Edition

Craig Hunt

Editor
Deb Cameron

Copyright © 2010 O'Reilly Media, Inc.

[image:]

Dedication

To Alana, the beginning of a new life.

Preface

The first edition of TCP/IP Network Administration was written in 1992. In the decade since, many
 things have changed, yet some things remain the same. TCP/IP is still the
 preeminent communications protocol for linking together diverse computer
 systems. It remains the basis of interoperable data communications and
 global computer networking. The underlying Internet Protocol (IP),
 Transmission Control Protocol, and User Datagram Protocol (UDP) are
 remarkably unchanged. But change has come in the way TCP/IP is used and
 how it is managed.
A clear symbol of this change is the fact that my mother-in-law has
 a TCP/IP network connection in her home that she uses to exchange
 electronic mail, compressed graphics, and hypertext documents with other
 senior citizens. She thinks of this as “just being on the Internet,” but
 the truth is that her small system contains a functioning TCP/IP protocol
 stack, manages a dynamically assigned IP address, and handles data types
 that did not even exist a decade ago.
In 1991, TCP/IP was a tool of sophisticated users. Network
 administrators managed a limited number of systems and could count on the
 users for a certain level of technical knowledge. No more. In 2002, the
 need for highly trained network administrators is greater than ever
 because the user base is larger, more diverse, and less capable of
 handling technical problems on its own. This book provides the information
 needed to become an effective TCP/IP network administrator.
TCP/IP Network Administration was the first
 book of practical information for the professional TCP/IP network
 administrator, and it is still the best. Since the first edition was
 published there has been an explosion of books about TCP/IP and the
 Internet. Still, too few books concentrate on what a system administrator
 really needs to know about TCP/IP administration. Most books are either
 scholarly texts written from the point of view of the protocol designer,
 or instructions on how to use TCP/IP applications. All of those books lack
 the practical, detailed network information needed by the Unix system
 administrator. This book strives to focus on TCP/IP and Unix and to find
 the right balance of theory and practice.
I am proud of the earlier editions of TCP/IP Network Administration. In this edition, I have done everything I can
 to maintain the essential character of the book while making it better.
 Dynamic address assignment based on Dynamic Host Configuration Protocol
 (DHCP) is covered. The Domain Name System material has been updated to
 cover BIND 8 and, to a lesser extent, BIND 9. The email configuration is
 based on current version of sendmail 8, and the operating system examples
 are from the current versions of Solaris and Linux. The routing protocol
 coverage includes Routing Information Protocol version 2 (RIPv2), Open
 Shortest Path First (OSPF), and Border Gateway Protocol (BGP). I have also
 added a chapter on Apache web server configuration, new material on
 xinetd, and information about building
 a firewall with iptables. Despite the
 additional topics, the book has been kept to a reasonable length.
TCP/IP is a set of communications protocols that define how
 different types of computers talk to each other. TCP/IP Network Administration is a book about building your own network based
 on TCP/IP. It is both a tutorial covering the “why” and “how” of TCP/IP
 networking, and a reference manual for the details about specific network
 programs.
Audience

This book is intended for everyone who has a Unix computer
 connected to a TCP/IP network.[1] This obviously includes the network managers and the
 system administrators who are responsible for setting up and running
 computers and networks, but it also includes any user who wants to
 understand how his or her computer communicates with other systems. The
 distinction between a “system administrator” and an “end user” is a
 fuzzy one. You may think of yourself as an end user, but if you have a
 Unix workstation on your desk, you’re probably also involved in system
 administration tasks.
Over the last several years there has been a rash of books for
 “dummies” and “idiots.” If you really think of yourself as an “idiot”
 when it comes to Unix, this book is not for you. Likewise, if you are a
 network administration “genius,” this book is probably not suitable
 either. If you fall anywhere between these two extremes, however, you’ll
 find this book has a lot to offer.
This book assumes that you have a good understanding of computers
 and their operation and that you’re generally familiar with Unix system
 administration. If you’re not, the Nutshell Handbook Essential System Administration by Æleen Frisch (published by O’Reilly
 & Associates) will fill you in on the basics.

[1] Much of this text also applies to non-Unix systems. Many of
 the file formats and commands and all of the protocol descriptions
 apply equally well to Windows 9x, Windows NT/2000, and other
 operating systems. If you’re an NT administrator, you should read
 Windows NT TCP/IP Network Administration
 (O’Reilly).

Organization

Conceptually, this book is divided into three parts: fundamental
 concepts, tutorial, and reference. The first three chapters are a basic
 discussion of the TCP/IP protocols and services. This discussion
 provides the fundamental concepts necessary to understand the rest of
 the book. The remaining chapters provide a “how-to” tutorial. Chapter 4–Chapter
 7 discuss how to plan a network installation and configure the
 basic software necessary to get a network running. Chapter 8–Chapter 11 discuss how to set up various
 important network services. Chapter
 12 and Chapter 13 cover how to
 perform the ongoing tasks that are essential for a reliable network:
 security and troubleshooting. The book concludes with a series of
 appendixes that are technical references for important commands and
 programs.
This book contains the following chapters:
Chapter 1 gives the history of
 TCP/IP, a description of the protocol architecture, and a basic
 explanation of how the protocols function.
Chapter 2 describes addressing
 and how data passes through a network to reach the proper
 destination.
Chapter 3 discusses the
 relationship between clients and server systems and the various services
 that are central to the function of a modern internet.
Chapter 4 begins the discussion
 of network setup and configuration. This chapter discusses the
 preliminary configuration planning needed before you configure the
 systems on your network.
Chapter 5 describes how to
 configure TCP/IP in the Unix kernel, and how to configure the system to
 start the network services.
Chapter 6 tells you how to
 identify a network interface to the network software. This chapter
 provides examples of Ethernet and PPP interface configurations.
Chapter 7 describes how to set
 up routing so that systems on your network can communicate properly with
 other networks. It covers the static routing table, commonly used
 routing protocols, and gated, a
 package that provides the latest implementations of several routing
 protocols.
Chapter 8 describes how to
 administer the name server program that converts system names to
 Internet addresses.
Chapter 9 describes how to
 configure many common network servers. The chapter discusses the DHCP
 configuration server, the LPD print server, the POP and IMAP mail
 servers, the Network File System (NFS), the Samba file and print server,
 and the Network Information System (NIS).
Chapter 10 discusses how to
 configure sendmail, which is the daemon responsible for delivering
 electronic mail.
Chapter 11 describes how the
 Apache web server software is configured.
Chapter 12 discusses how to
 live on the Internet without excessive risk. This chapter covers the
 security threats introduced by the network, and describes the plans and
 preparations you can make to meet those threats.
Chapter 13 tells you what to do
 when something goes wrong. It describes the techniques and tools used to
 troubleshoot TCP/IP problems and gives examples of actual problems and
 their solutions.
Appendix A is a reference guide
 to the various programs used to configure a serial port for TCP/IP. The
 reference covers dip, pppd, and chat.
Appendix B is a reference guide
 to the configuration language of the gated routing package.
Appendix C is a reference guide
 to the Berkeley Internet Name Domain (BIND) name server software.
Appendix D is a reference guide
 to the Dynamic Host Configuration Protocol Daemon (dhcpd).
Appendix E is a reference guide
 to sendmail syntax, options, and flags.
Appendix F lists the contents of
 the Apache configuration file discussed in Chapter 11.
Appendix G contains detailed
 protocol references taken directly from the RFCs that support the
 protocol troubleshooting examples in Chapter
 13. This appendix explains how to obtain your own copies of the
 RFCs.

Unix Versions

Most of the examples in this book are taken from Red Hat Linux,
 currently the most popular Linux distribution, and from Solaris 8, the
 Sun operating system based on System V Unix. Fortunately, TCP/IP
 software is remarkably standard from system to system, and because of
 this uniformity, the examples should be applicable to any Linux, System
 V, or BSD-based Unix system. There are small variations in command
 output or command-line options, but these should not present a
 problem.
Some of the ancillary networking software is identified separately
 from the Unix operating system by its own release number. Many such
 packages are discussed, and when appropriate are identified by their
 release numbers. The most important of these packages are:
	BIND
	Our discussion of the BIND software is based on version 8
 running on a Solaris 8 system. BIND 8 is the version of the BIND
 software delivered with Solaris, and supports all of the standard
 resource records. There are relatively few administrative
 differences between BIND 8 and the newer BIND 9 release for basic
 configurations.

	sendmail
	Our discussion of sendmail is based on release 8.11.3. This
 version should be compatible with other releases of sendmail
 v8.

Conventions

This book uses the following typographical conventions:
	Italic
	is used for the names of files, directories, hostnames,
 domain names, and to emphasize new terms when they are
 introduced.

	Constant width
	is used to show the contents of files or the output from
 commands. It is also used to represent commands, options, and
 keywords in text.

	Constant width bold
	is used in examples to show commands typed on the command
 line.

	Constant width italic
	is used in examples and text to show variables for which a
 context-specific substitution should be made. (The variable
 filename, for example, would be
 replaced by some actual filename.)

	%, #
	Commands that you would give interactively are shown using
 the default C shell prompt (%).
 If the command must be executed as root, it is shown using the
 default superuser prompt (#).
 Because the examples may include multiple systems on a network,
 the prompt may be preceded by the name of the system on which the
 command was given.

	[option]
	When showing command syntax, optional parts of the command
 are placed within brackets. For example, ls [
 -l] means that the -l option is not required.

We’d Like to Hear from You

We have tested and verified all of the information in this book to
 the best of our ability, but you may find that features have changed (or
 even that we have made mistakes!). Please let us know about any errors
 you find, as well as your suggestions for future editions, by
 writing:
	O’Reilly & Associates, Inc.
	1005 Gravenstein Highway North
	Sebastopol, CA 95472
	(800) 998-9938 (in the United States or Canada)
	(707) 829-0515 (international or local)
	(707) 829-0104 (fax)

There is a web page for this book, where we list errata, examples,
 or any additional information. You can access this page at:
	http://www.oreilly.com/catalog/tcp3

To comment or ask technical questions about this book, send email
 to:
	bookquestions@oreilly.com

For more information about books, conferences, Resource Centers,
 and the O’Reilly Network, see our web site at:
	http://www.oreilly.com

To find out what else Craig is doing, visit his web site, http://www.wrotethebook.com.

Acknowledgments

I would like to thank the many people who helped in the
 preparation of this book. All of the people who contributed to the first
 and second editions deserve thanks because so much of their input lives
 on in this edition. For the first edition that’s John Wack, Matt Bishop,
 Wietse Venema, Eric Allman, Jeff Honig, Scott Brim, and John Dorgan. For
 the second edition that’s Eric Allman again, Bryan Costales, Cricket
 Liu, Paul Albitz, Ted Lemon, Elizabeth Zwicky, Brent Chapman, Simson
 Garfinkel, Jeff Sedayao, and Æleen Frisch.
The third edition has also benefited from many contributors—a
 surprising number of whom are authors in their own right. They set me
 straight about the technical details and improved my prose. Three
 authors are due special thanks. Cricket Liu, one of the authors of the
 best book ever written about DNS, provided many comments that improved
 the sections on Domain Name System. David Collier-Brown, one of the
 authors of Using Samba, did a complete technical
 review of the Samba material. Charles Aulds, author of a best-selling
 book on Apache administration, provided insights into Apache
 configuration. All of these people helped me make this book better than
 earlier editions. Thanks!
All the people at O’Reilly & Associates have been very
 helpful. Deb Cameron, my editor, deserves a special thanks. Deb kept
 everything moving forward while balancing the demands of a beautiful
 newborn daughter, Bethany Rose. Emily Quill was the production editor
 and project manager. Jeff Holcomb and Jane Ellin performed quality
 control checks. Leanne Soylemez provided production assistance. Tom
 Dinse wrote the index. Edie Freedman designed the cover, and Melanie
 Wang designed the interior format of the book. Neil Walls converted the
 book from Microsoft Word to Framemaker. Chris Reilley and Robert
 Romano’s illustrations from the earlier editions have been updated by
 Robert Romano and Jessamyn Read.
Finally, I want to thank my family—Kathy, Sara, David, and
 Rebecca. They keep my feet on the ground when the pressure to meet
 deadlines is driving me into orbit. They are the best.

Chapter 1. Overview of TCP/IP

All of us who use a Unix desktop system—engineers, educators,
 scientists, and business people—have second careers as Unix system
 administrators. Networking these computers gives us new tasks as network
 administrators.
Network administration and system administration are two
 different jobs. System administration tasks such as adding users and doing backups are isolated to
 one independent computer system. Not so with network administration. Once
 you place your computer on a network, it interacts with many other
 systems. The way you do network administration tasks has effects, good and
 bad, not only on your system but on other systems on the network. A sound
 understanding of basic network administration benefits everyone.
Networking your computers dramatically enhances their ability to
 communicate—and most computers are used more for communication than
 computation. Many mainframes and supercomputers are busy crunching the
 numbers for business and science, but the number of these systems in use
 pales in comparison to the millions of systems busy moving mail to a
 remote colleague or retrieving information from a remote repository.
 Further, when you think of the hundreds of millions of desktop systems
 that are used primarily for preparing documents to communicate ideas from
 one person to another, it is easy to see why most computers can be viewed
 as communications devices.
The positive impact of computer communications increases with the
 number and type of computers that participate in the network. One of the
 great benefits of TCP/IP is that it provides interoperable communications
 between all types of hardware and all kinds of operating systems.
The name “TCP/IP” refers to an entire suite of data communications protocols. The
 suite gets its name from two of the protocols that belong to it: the
 Transmission Control Protocol (TCP) and the Internet Protocol (IP). TCP/IP
 is the traditional name for this protocol suite and it is the name used in
 this book. The TCP/IP protocol suite is also called the Internet Protocol
 Suite (IPS). Both names are acceptable.
This book is a practical, step-by-step guide to configuring and
 managing TCP/IP networking software on Unix computer systems. TCP/IP is
 the leading communications software for local area networks and enterprise
 intranets, and it is the foundation of the worldwide Internet. TCP/IP is
 the most important networking software available to a Unix network
 administrator.
The first part of this book discusses the basics of TCP/IP and how
 it moves data across a network. The second part explains how to configure
 and run TCP/IP on a Unix system. Let’s start with a little history.
TCP/IP and the Internet

In 1969 the Advanced Research Projects Agency (ARPA) funded a research and
 development project to create an experimental packet-switching network.
 This network, called the ARPAnet, was built to study
 techniques for providing robust, reliable, vendor-independent data
 communications. Many techniques of modern data communications were
 developed in the ARPAnet.
The experimental network was so successful that many of the
 organizations attached to it began to use it for daily data
 communications. In 1975 the ARPAnet was converted from an experimental
 network to an operational network, and the responsibility for
 administering the network was given to the Defense Communications Agency (DCA).[2] However, development of the ARPAnet did not stop just
 because it was being used as an operational network; the basic TCP/IP
 protocols were developed after the network was operational.
The TCP/IP protocols were adopted as Military Standards (MIL STD) in 1983, and
 all hosts connected to the network were required to convert to the new protocols. To ease this conversion,
 DARPA[3] funded Bolt, Beranek, and Newman (BBN) to implement TCP/IP
 in Berkeley (BSD) Unix. Thus began the marriage of Unix and TCP/IP.
About the time that TCP/IP was adopted as a standard, the term
 Internet came into common usage. In 1983 the old
 ARPAnet was divided into MILNET, the unclassified part of the Defense Data Network
 (DDN), and a new, smaller ARPAnet. “Internet” was used to
 refer to the entire network: MILNET plus ARPAnet.
In 1985 the National Science Foundation (NSF) created NSFNet and
 connected it to the then-existing Internet. The original NSFNet linked
 together the five NSF supercomputer centers. It was smaller than the
 ARPAnet and no faster: 56Kbps. Still, the creation of the NSFNet was a
 significant event in the history of the Internet because NSF brought
 with it a new vision of the use of the Internet. NSF wanted to extend
 the network to every scientist and engineer in the United States. To
 accomplish this, in 1987 NSF created a new, faster backbone and a
 three-tiered network topology that included the backbone, regional
 networks, and local networks. In 1990 the ARPAnet formally passed out of
 existence, and in 1995 the NSFNet ceased its role as a primary Internet
 backbone network.
Today the Internet is larger than ever and encompasses hundreds of
 thousands of networks worldwide. It is no longer dependent on a core (or
 backbone) network or on governmental support. Today’s Internet is built
 by commercial providers. National network providers, called tier-one providers, and regional network providers create
 the infrastructure. Internet Service Providers (ISPs) provide local access and user services. This network of networks
 is linked together in the United States at several major interconnection
 points called Network Access Points (NAPs).
The Internet has grown far beyond its original scope. The original
 networks and agencies that built the Internet no longer play an
 essential role for the current network. The Internet has evolved from a
 simple backbone network, through a three-tiered hierarchical structure,
 to a huge network of interconnected, distributed network hubs. It has
 grown exponentially since 1983—doubling in size every year. Through all
 of this incredible change one thing has remained constant: the Internet
 is built on the TCP/IP protocol suite.
A sign of the network’s success is the confusion that surrounds
 the term internet. Originally it was used only as
 the name of the network built upon IP. Now internet
 is a generic term used to refer to an entire class of networks. An
 internet (lowercase “i”) is any collection of separate physical
 networks, interconnected by a common protocol, to form a single logical
 network. The Internet (uppercase “I”) is the worldwide collection of
 interconnected networks, which grew out of the original ARPAnet, that
 uses IP to link the various physical networks into a single logical
 network. In this book, both “internet” and “Internet” refer to networks
 that are interconnected by TCP/IP.
Because TCP/IP is required for Internet connection, the growth of
 the Internet spurred interest in TCP/IP. As more organizations became
 familiar with TCP/IP, they saw that its power can be applied in other
 network applications as well. The Internet protocols are often used for
 local area networking even when the local network is not connected to
 the Internet. TCP/IP is also widely used to build enterprise networks.
 TCP/IP-based enterprise networks that use Internet techniques and web
 tools to disseminate internal corporate information are called
 intranets. TCP/IP is the foundation
 of all of these varied networks.
TCP/IP Features

The popularity of the TCP/IP protocols did not grow rapidly just because the
 protocols were there, or because connecting to the Internet mandated
 their use. They met an important need (worldwide data communication)
 at the right time, and they had several important features that
 allowed them to meet this need. These features are:
	Open protocol standards, freely available and developed independently from
 any specific computer hardware or operating system. Because it is
 so widely supported, TCP/IP is ideal for uniting different
 hardware and software components, even if you don’t communicate
 over the Internet.

	Independence from specific physical network hardware. This allows
 TCP/IP to integrate many different kinds of networks. TCP/IP can
 be run over an Ethernet, a DSL connection, a dial-up line, an
 optical network, and virtually any other kind of physical
 transmission medium.

	A common addressing scheme that allows any TCP/IP
 device to uniquely address any other device in the entire network,
 even if the network is as large as the worldwide Internet.

	Standardized high-level protocols for consistent, widely
 available user services.

Protocol Standards

Protocols are formal rules of behavior. In international
 relations, protocols minimize the problems caused by cultural
 differences when various nations work together. By agreeing to a
 common set of rules that are widely known and independent of any
 nation’s customs, diplomatic protocols minimize misunderstandings;
 everyone knows how to act and how to interpret the actions of others.
 Similarly, when computers communicate, it is necessary to define a set
 of rules to govern their communications.
In data communications, these sets of rules are also called
 protocols. In homogeneous networks, a single
 computer vendor specifies a set of communications rules designed to
 use the strengths of the vendor’s operating system and hardware
 architecture. But homogeneous networks are like the culture of a
 single country—only the natives are truly at home in it. TCP/IP
 creates a heterogeneous network with open protocols that are independent of operating
 system and architectural differences. TCP/IP protocols are available
 to everyone and are developed and changed by consensus, not by the
 fiat of one manufacturer. Everyone is free to develop products to meet
 these open protocol specifications.
The open nature of TCP/IP protocols requires an open standards development process and publicly available
 standards documents. Internet standards are developed by the
 Internet Engineering Task Force (IETF) in open, public
 meetings. The protocols developed in this process are published
 as Requests for Comments (RFCs).[4] As the title “Request for Comments” implies, the style
 and content of these documents are much less rigid than in most
 standards documents. RFCs contain a wide range of interesting and
 useful information, and are not limited to the formal specification of
 data communications protocols. There are three basic types of RFCs:
 standards (STD), best current practices (BCP), and informational
 (FYI).
RFCs that define official protocol standards are STDs and are given an STD number in addition to an RFC
 number. Creating an official Internet standard is a rigorous process.
 Standards track RFCs pass through three
 maturity levels before becoming standards:
	Proposed Standard
	This is a protocol specification that is important enough
 and has received enough Internet community support to be
 considered for a standard. The specification is stable and well
 understood, but it is not yet a standard and may be withdrawn
 from consideration to be a standard.

	Draft Standard
	This is a protocol specification for which at least two
 independent, interoperable implementations exist. A draft
 standard is a final specification undergoing widespread testing.
 It will change only if the testing forces a change.

	Internet Standard
	A specification is declared a standard only after extensive
 testing and only if the protocol defined in the specification is
 considered to be of significant benefit to the Internet
 community.

There are two categories of standards. A Technical Specification (TS) defines a protocol. An Applicability Statement (AS) defines when the protocol is to be used. There are three
 requirement levels that define the applicability
 of a standard:
	Required
	This standard protocol is a required part of every TCP/IP
 implementation. It must be included for the TCP/IP stack to be
 compliant.

	Recommended
	This standard protocol should be included in every TCP/IP
 implementation, although it is not required for minimal
 compliance.

	Elective
	This standard is optional. It is up to the software
 vendor to implement it or not.

Two other requirements levels (limited use
 and not recommended) apply to RFCs that are not
 part of the standards track. A "limited use” protocol is used only in special
 circumstances, such as during an experiment. A protocol is "not recommended " when it has limited functionality or is outdated.
 There are three types of non-standards track
 RFCs:
	Experimental
	An experimental RFC is limited to use in research and
 development.

	Historic
	A historic RFC is outdated and no longer
 recommended for use.

	Informational
	An informational RFC provides information of general
 interest to the Internet community; it does not define an
 Internet standard protocol.

A subset of the informational RFCs is called the FYI (For Your Information) notes. An FYI document is
 given an FYI number in addition to an RFC number. FYI documents
 provide introductory and background material about the Internet and
 TCP/IP networks. FYI documents are not mentioned in RFC 2026 and are
 not included in the Internet standards process. But there are several
 interesting FYI documents available.[5]
Another group of RFCs that go beyond documenting protocols are
 the Best Current Practices (BCP) RFCs. BCPs formally
 document techniques and procedures. Some of these document the way
 that the IETF conducts itself; RFC 2026 is an example of this type of
 BCP. Others provide guidelines for the operation of a network or
 service; RFC 1918, Address Allocation for Private Internets, is an example of this type of BCP. BCPs that
 provide operational guidelines are often of great interest to network
 administrators.
There are now more than 3,000 RFCs. As a network system
 administrator, you will no doubt read several. It is as important to
 know which ones to read as it is to understand them when you do read
 them. Use the RFC categories and the requirements levels to help you
 determine which RFCs are applicable to your situation. (A good
 starting point is to focus on those RFCs that also have an STD
 number.) To understand what you read, you need to understand the
 language of data communications. RFCs contain protocol implementation
 specifications defined in terminology that is unique to data communications.

[2] DCA has since changed its name to Defense Information Systems
 Agency (DISA).

[3] During the 1980s, ARPA, which is part of the U.S. Department
 of Defense, became Defense Advanced Research Projects Agency
 (DARPA). Whether it is known as ARPA or DARPA, the agency and its
 mission of funding advanced research have remained the same.

[4] Interested in finding out how Internet standards are
 created? Read RFC 2026, The Internet Standards Process.

[5] To find out more about FYI documents, read RFC 1150,
 FYI on FYI: An Introduction to the FYI Notes.

A Data Communications Model

To discuss computer networking, it is necessary to use terms that have special meaning. Even
 other computer professionals may not be familiar with all the terms in
 the networking alphabet soup. As is always the case, English and
 computer-speak are not equivalent (or even necessarily compatible)
 languages. Although descriptions and examples should make the meaning of
 the networking jargon more apparent, sometimes terms are ambiguous. A
 common frame of reference is necessary for understanding data
 communications terminology.
An architectural model developed by the International Standards
 Organization (ISO) is frequently used to describe the structure and
 function of data communications protocols. This architectural model,
 which is called the Open Systems Interconnect
 (OSI) Reference Model, provides a common reference for discussing communications.
 The terms defined by this model are well understood and widely used in
 the data communications community—so widely used, in fact, that it is
 difficult to discuss data communications without using OSI’s
 terminology.
The OSI Reference Model contains seven layers
 that define the functions of data communications protocols.
 Each layer of the OSI model represents a function performed when data is
 transferred between cooperating applications across an intervening
 network. Figure 1-1 identifies
 each layer by name and provides a short functional description for it.
 Looking at this figure, the protocols are like a pile of building blocks
 stacked one upon another. Because of this appearance, the structure is
 often called a stack or protocol stack.
[image: The OSI Reference Model]

Figure 1-1. The OSI Reference Model

A layer does not define a single protocol—it defines a data
 communications function that may be performed by any number of
 protocols. Therefore, each layer may contain multiple protocols, each
 providing a service suitable to the function of that layer. For example,
 a file transfer protocol and an electronic mail protocol both provide
 user services, and both are part of the Application Layer.
Every protocol communicates with its peers. A
 peer is an implementation of the same protocol in the
 equivalent layer on a remote system; i.e., the local file transfer
 protocol is the peer of a remote file transfer protocol. Peer-level
 communications must be standardized for successful communications to
 take place. In the abstract, each protocol is concerned only with
 communicating to its peers; it does not care about the layers above or
 below it.
However, there must also be agreement on how to pass data between
 the layers on a single computer, because every layer is involved in
 sending data from a local application to an equivalent remote
 application. The upper layers rely on the lower layers to transfer the
 data over the underlying network. Data is passed down the stack from one
 layer to the next until it is transmitted over the network by the
 Physical Layer protocols. At the remote end, the data is passed up the
 stack to the receiving application. The individual layers do not need to
 know how the layers above and below them function; they need to know
 only how to pass data to them. Isolating network communications
 functions in different layers minimizes the impact of technological
 change on the entire protocol suite. New applications can be added
 without changing the physical network, and new network hardware can be
 installed without rewriting the application software.
Although the OSI model is useful, the TCP/IP protocols don’t match
 its structure exactly. Therefore, in our discussions of TCP/IP, we use
 the layers of the OSI model in the following way:
	Application Layer
	The Application Layer is the level of the protocol
 hierarchy where user-accessed network processes reside. In this
 text, a TCP/IP application is any network process that occurs
 above the Transport Layer. This includes all of the processes that
 users directly interact with as well as other processes at this
 level that users are not necessarily aware of.

	Presentation Layer
	For cooperating applications to exchange data, they must
 agree about how data is represented. In OSI, the Presentation
 Layer provides standard data presentation routines. This function
 is frequently handled within the applications in TCP/IP, though
 TCP/IP protocols such as XDR and MIME also perform this function.

	Session Layer
	As with the Presentation Layer, the Session Layer is
 not identifiable as a separate layer in the TCP/IP protocol
 hierarchy. The OSI Session Layer manages the sessions
 (connections) between cooperating applications. In TCP/IP, this
 function largely occurs in the Transport Layer, and the term
 “session” is not used; instead, the terms “socket” and “port” are used to describe the path over which cooperating
 applications communicate.

	Transport Layer
	 Much of our discussion of TCP/IP is directed to the
 protocols that occur in the Transport Layer. The Transport Layer
 in the OSI reference model guarantees that the receiver gets the
 data exactly as it was sent. In TCP/IP, this function is performed
 by the Transmission Control Protocol (TCP).
 However, TCP/IP offers a second Transport Layer service,
 User Datagram Protocol (UDP), that does not perform the end-to-end
 reliability checks.

	Network Layer
	The Network Layer manages connections across the network
 and isolates the upper layer protocols from the details of the
 underlying network. The Internet Protocol (IP), which isolates the
 upper layers from the underlying network and handles the
 addressing and delivery of data, is usually described as TCP/IP’s
 Network Layer.

	Data Link Layer
	The reliable delivery of data across the underlying
 physical network is handled by the Data Link Layer. TCP/IP rarely
 creates protocols in the Data Link Layer. Most RFCs that relate to
 the Data Link Layer discuss how IP can make use of existing data
 link protocols.

	Physical Layer
	The Physical Layer defines the characteristics of the
 hardware needed to carry the data transmission
 signal. Features such as voltage levels and the number and
 location of interface pins are defined in this layer. Examples of
 standards at the Physical Layer are interface connectors
 such as RS232C and V.35, and standards for local area network wiring such as
 IEEE 802.3. TCP/IP does not define physical standards—it makes use
 of existing standards.

The terminology of the OSI reference model helps us describe
 TCP/IP, but to fully understand it, we must use an architectural model
 that more closely matches the structure of TCP/IP. The next section
 introduces the protocol model we’ll use to describe TCP/IP.

TCP/IP Protocol Architecture

While there is no universal agreement about how to describe TCP/IP with a
 layered model, TCP/IP is generally viewed as being composed of fewer
 layers than the seven used in the OSI model. Most descriptions of TCP/IP
 define three to five functional levels in the protocol architecture. The
 four-level model illustrated in Figure
 1-2 is based on the three layers (Application, Host-to-Host, and
 Network Access) shown in the DOD Protocol Model in the DDN Protocol Handbook Volume 1, with the addition of a separate
 Internet layer. This model provides a reasonable pictorial
 representation of the layers in the TCP/IP protocol hierarchy.
[image: The TCP/IP architecture]

Figure 1-2. The TCP/IP architecture

As in the OSI model, data is passed down the stack when it is
 being sent to the network, and up the stack when it is being received
 from the network. The four-layered structure of TCP/IP is seen in the
 way data is handled as it passes down the protocol stack from the
 Application Layer to the underlying physical network. Each layer in the
 stack adds control information to ensure proper delivery. This control
 information is called a header because it is placed in front of the data to be
 transmitted. Each layer treats all the information it receives from the
 layer above as data, and places its own header in front of that
 information. The addition of delivery information at every layer is
 called encapsulation. (See Figure 1-3 for an illustration of
 this.) When data is received, the opposite happens. Each layer strips
 off its header before passing the data on to the layer above. As
 information flows back up the stack, information received from a lower
 layer is interpreted as both a header and data.
[image: Data encapsulation]

Figure 1-3. Data encapsulation

Each layer has its own independent data structures. Conceptually,
 a layer is unaware of the data structures used by the layers above and
 below it. In reality, the data structures of a layer are designed to be
 compatible with the structures used by the surrounding layers for the
 sake of more efficient data transmission. Still, each layer has its own
 data structure and its own terminology to describe that
 structure.
Figure 1-4 shows the terms
 used by different layers of TCP/IP to refer to the data being
 transmitted. Applications using TCP refer to data as a stream, while applications using
 UDP refer to data as a message. TCP calls data a segment, and UDP calls its data a
 packet. The Internet layer views all
 data as blocks called datagrams. TCP/IP uses many different types of underlying networks,
 each of which may have a different terminology for the data it
 transmits. Most networks refer to transmitted data as
 packets or frames. Figure 1-4 shows
 a network that transmits pieces of data it calls
 frames.
[image: Data structures]

Figure 1-4. Data structures

Let’s look more closely at the function of each layer, working our
 way up from the Network Access Layer to the Application Layer.

Network Access Layer

The Network Access Layer is the lowest layer of the TCP/IP protocol hierarchy. The
 protocols in this layer provide the means for the system to deliver data
 to the other devices on a directly attached network. This layer defines
 how to use the network to transmit an IP datagram. Unlike higher-level
 protocols, Network Access Layer protocols must know the details of the
 underlying network (its packet structure, addressing, etc.) to correctly
 format the data being transmitted to comply with the network
 constraints. The TCP/IP Network Access Layer can encompass the functions
 of all three lower layers of the OSI Reference Model (Network, Data
 Link, and Physical).
The Network Access Layer is often ignored by users. The design of
 TCP/IP hides the function of the lower layers, and the better-known
 protocols (IP, TCP, UDP, etc.) are all higher-level protocols. As new
 hardware technologies appear, new Network Access protocols must be
 developed so that TCP/IP networks can use the new hardware.
 Consequently, there are many access protocols—one for each physical
 network standard.
Functions performed at this level include encapsulation of IP datagrams into the frames transmitted by the
 network, and mapping of IP addresses to the physical addresses used by
 the network. One of TCP/IP’s strengths is its universal addressing
 scheme. The IP address must be converted into an address that is
 appropriate for the physical network over which the datagram is
 transmitted.
Two RFCs that define Network Access Layer protocols
 are:
	RFC 826, Address Resolution Protocol (ARP), which maps IP addresses to Ethernet
 addresses

	RFC 894, A Standard for the Transmission of IP Datagrams over Ethernet Networks, which specifies how
 IP datagrams are encapsulated for transmission over Ethernet
 networks

As implemented in Unix, protocols in this layer often appear as a
 combination of device drivers and related programs. The modules that are
 identified with network device names usually encapsulate and deliver the
 data to the network, while separate programs perform related functions
 such as address mapping.

Internet Layer

The
 layer above the Network Access Layer in the protocol hierarchy
 is the Internet Layer. The Internet Protocol (IP)
 is the most important protocol in this layer. The release of
 IP used in the current Internet is IP version 4 (IPv4), which is defined
 in RFC 791. There are more recent versions of IP. IP version 5 is an
 experimental Stream Transport (ST) protocol used for real-time data
 delivery. IPv5 never came into operational use. IPv6 is an IP standard
 that provides greatly expanded addressing capacity. Because IPv6 uses a
 completely different address structure, it is not interoperable with
 IPv4. While IPv6 is a standard version of IP, it is not yet widely used
 in operational, commercial networks. Since our focus is on practical,
 operational networks, we do not cover IPv6 in detail. In this chapter
 and throughout the main body of the text, “IP” refers to IPv4. IPv4 is
 the protocol you will configure on your system when you want to exchange
 data with remote systems, and it is the focus of this text.
The Internet Protocol is the heart of TCP/IP. IP provides the
 basic packet delivery service on which TCP/IP networks are built. All
 protocols, in the layers above and below IP, use the Internet Protocol
 to deliver data. All incoming and outgoing TCP/IP data flows through IP,
 regardless of its final destination.
Internet Protocol

The Internet Protocol is the building block of the Internet. Its
 functions include:
	Defining the datagram, which is the basic unit of
 transmission in the Internet

	Defining the Internet addressing scheme

	Moving data between the Network Access Layer and the
 Transport Layer

	Routing datagrams to remote hosts

	Performing fragmentation and re-assembly of datagrams

Before describing these functions in more detail, let’s look at
 some of IP’s characteristics. First, IP is a connectionless protocol. This means that it does not exchange control
 information (called a “handshake”) to establish an end-to-end connection before
 transmitting data. In contrast, a connection-oriented protocol exchanges control information with the remote
 system to verify that it is ready to receive data before any data is
 sent. When the handshaking is successful, the systems are said to have
 established a connection. The Internet Protocol
 relies on protocols in other layers to establish the connection if
 they require connection-oriented service.
IP also relies on protocols in the other layers to provide error
 detection and error recovery. The Internet Protocol is sometimes called an
 unreliable protocol because it contains no error
 detection and recovery code. This is not to say that the protocol
 cannot be relied on—quite the contrary. IP can be relied upon to
 accurately deliver your data to the connected network, but it doesn’t
 check whether that data was correctly received. Protocols in other
 layers of the TCP/IP architecture provide this checking when it is
 required.
The datagram

The TCP/IP protocols were built to transmit data over the
 ARPAnet, which was a packet-switching network. A packet is a block of data that
 carries with it the information necessary to deliver it, similar to
 a postal letter, which has an address written on its envelope. A
 packet-switching network uses the addressing information in the
 packets to switch packets from one physical network to another,
 moving them toward their final destination. Each packet travels the
 network independently of any other packet.
The datagram is the packet format defined
 by the Internet Protocol. Figure
 1-5 is a pictorial representation of an IP datagram. The
 first five or six 32-bit words of the datagram are control
 information called the header. By default, the header is five words long; the sixth
 word is optional. Because the header’s length is variable, it
 includes a field called Internet Header Length
 (IHL) that indicates the header’s length in words. The
 header contains all the information necessary to deliver the
 packet.
[image: IP datagram format]

Figure 1-5. IP datagram format

The Internet Protocol delivers the datagram by checking the
 Destination Address in word 5 of the header. The Destination Address is a
 standard 32-bit IP address that identifies the destination network
 and the specific host on that network. (The format of IP addresses
 is explained in Chapter 2.) If the
 Destination Address is the address of a host on the local network,
 the packet is delivered directly to the destination. If the
 Destination Address is not on the local network, the packet is
 passed to a gateway for delivery. Gateways are devices that switch
 packets between the different physical networks. Deciding which
 gateway to use is called routing. IP makes the routing decision for each individual packet.

Routing datagrams

Internet gateways are commonly (and perhaps more accurately)
 referred to as IP routers because they use
 Internet Protocol to route packets between networks. In traditional
 TCP/IP jargon, there are only two types of network
 devices—gateways and
 hosts. Gateways forward packets between
 networks, and hosts don’t. However, if a host is connected to more
 than one network (called a multi-homed host), it can forward packets between the networks. When a
 multi-homed host forwards packets, it acts just like any other
 gateway and is in fact considered to be a gateway. Current data
 communications terminology makes a distinction between gateways and
 routers,[6] but we’ll use the terms gateway
 and IP router interchangeably.
Figure 1-6 shows the
 use of gateways to forward packets. The hosts (or end systems) process packets through all four protocol
 layers, while the gateways (or intermediate systems) process the packets only up to the Internet
 Layer where the routing decisions are made.
[image: Routing through gateways]

Figure 1-6. Routing through gateways

Systems can deliver packets only to other devices attached to
 the same physical network. Packets from A1
 destined for host C1 are forwarded through
 gateways G1 and G2. Host
 A1 first delivers the packet to gateway
 G1, with which it shares network
 A. Gateway G1 delivers the
 packet to G2 over network
 B. Gateway G2 then
 delivers the packet directly to host C1 because
 they are both attached to network C. Host
 A1 has no knowledge of any gateways beyond
 gateway G1. It sends packets destined for both
 networks C and B to that
 local gateway and then relies on that gateway to properly forward
 the packets along the path to their destinations. Likewise, host
 C1 sends its packets to G2
 to reach a host on network A, as well as any
 host on network B.
Figure 1-7 shows
 another view of routing. This figure emphasizes that the underlying
 physical networks a datagram travels through may be different and
 even incompatible. Host A1 on the token ring
 network routes the datagram through gateway G1
 to reach host C1 on the Ethernet. Gateway
 G1 forwards the data through the X.25 network
 to gateway G2 for delivery to
 C1. The datagram traverses three physically
 different networks, but eventually arrives intact at
 C1.
[image: Networks, gateways, and hosts]

Figure 1-7. Networks, gateways, and hosts

Fragmenting datagrams

As a datagram is routed through different networks, it may be
 necessary for the IP module in a gateway to divide the datagram into
 smaller pieces. A datagram received from one network may be too
 large to be transmitted in a single packet on a different network.
 This condition occurs only when a gateway interconnects dissimilar
 physical networks.
Each type of network has a maximum transmission unit (MTU), which is the largest packet that it can
 transfer. If the datagram received from one network is longer than
 the other network’s MTU, the datagram must be divided into smaller
 fragments for transmission. This process is
 called fragmentation. Think of a train
 delivering a load of steel. Each railway car can carry more steel
 than the trucks that will take it along the highway, so each railway
 car’s load is unloaded onto many different trucks. In the same way
 that a railroad is physically different from a highway, an Ethernet
 is physically different from an X.25 network; IP must break an
 Ethernet’s relatively large packets into smaller packets before it
 can transmit them over an X.25 network.
The format of each fragment is the same as the format of any
 normal datagram. Header word 2 contains information that identifies
 each datagram fragment and provides information about how to
 re-assemble the fragments back into the original datagram. The
 Identification field identifies what datagram the
 fragment belongs to, and the Fragmentation Offset field tells what piece of the
 datagram this fragment is. The Flags field has a “More Fragments” bit that tells IP
 if it has assembled all of the datagram fragments.

Passing datagrams to the transport layer

When IP receives a datagram that is addressed to the local host, it
 must pass the data portion of the datagram to the correct Transport
 Layer protocol. This is done by using the protocol number from word 3 of the datagram header. Each Transport Layer
 protocol has a unique protocol number that identifies it to IP.
 Protocol numbers are discussed in Chapter
 2.
You can see from this short overview that IP performs many
 important functions. Don’t expect to fully understand datagrams,
 gateways, routing, IP addresses, and all the other things that IP
 does from this short description; each chapter will add more details
 about these topics. So let’s continue on with the other protocol in
 the TCP/IP Internet Layer.

Internet Control Message Protocol

An integral part of IP is the Internet Control Message Protocol (ICMP) defined in RFC 792. This protocol is part of the
 Internet Layer and uses the IP datagram delivery facility to send its
 messages. ICMP sends messages that perform the following control,
 error reporting, and informational functions for TCP/IP:
	Flow control
	When datagrams arrive too fast for processing, the
 destination host or an intermediate gateway sends an ICMP
 Source Quench Message back to the sender. This
 tells the source to stop sending datagrams temporarily.

	Detecting unreachable destinations
	When a destination is unreachable, the system detecting
 the problem sends a Destination Unreachable Message to the datagram’s source. If the unreachable
 destination is a network or host, the message is sent by an
 intermediate gateway. But if the destination is an unreachable
 port, the destination host sends the message. (We discuss ports
 in Chapter 2.)

	Redirecting routes
	A gateway sends the ICMP Redirect Message to tell a host to use another
 gateway, presumably because the other gateway is a better
 choice. This message can be used only when the source host is on
 the same network as both gateways. To better understand this,
 refer to Figure 1-7. If
 a host on the X.25 network sent a datagram to
 G1, it would be possible for
 G1 to redirect that host to
 G2 because the host,
 G1, and G2 are all
 attached to the same network. On the other hand, if a host on
 the token ring network sent a datagram to
 G1, the host could not be redirected to use
 G2. This is because G2
 is not attached to the token ring.

	Checking remote hosts
	A host can send the ICMP Echo Message to see if a remote system’s Internet
 Protocol is up and operational. When a system receives an echo
 message, it replies and sends the data from the packet back to
 the source host. The ping
 command uses this message.

[6] In current terminology, a gateway moves data between
 different protocols, and a router moves data between different
 networks. So a system that moves mail between TCP/IP and X.400
 is a gateway, but a traditional IP gateway is a router.

Transport Layer

The protocol layer just above the Internet Layer is the
 Host-to-Host Transport Layer, usually shortened to
 Transport Layer. The two most important protocols
 in the Transport Layer are Transmission Control Protocol (TCP) and User Datagram Protocol (UDP). TCP provides reliable data delivery service
 with end-to-end error detection and correction. UDP provides
 low-overhead, connectionless datagram delivery service. Both protocols
 deliver data between the Application Layer and the Internet Layer.
 Applications programmers can choose whichever service is more
 appropriate for their specific applications.
User Datagram Protocol

The User Datagram Protocol gives application programs direct access to a datagram
 delivery service, like the delivery service that IP provides. This
 allows applications to exchange messages over the network with a
 minimum of protocol overhead.
UDP is an unreliable, connectionless datagram protocol. As
 noted, “unreliable” merely means that there are no techniques in the
 protocol for verifying that the data reached the other end of the
 network correctly. Within your computer, UDP will deliver data
 correctly. UDP uses 16-bit Source Port and Destination Port numbers in word 1 of the message header to deliver data
 to the correct applications process. Figure 1-8 shows the UDP message
 format.
[image: UDP message format]

Figure 1-8. UDP message format

Why do applications programmers choose UDP as a data transport
 service? There are a number of good reasons. If the amount of data
 being transmitted is small, the overhead of creating connections and
 ensuring reliable delivery may be greater than the work of
 re-transmitting the entire data set. In this case, UDP is the most
 efficient choice for a Transport Layer protocol. Applications that fit
 a query-response model are also excellent candidates for using UDP. The
 response can be used as a positive acknowledgment to the query. If a
 response isn’t received within a certain time period, the application
 just sends another query. Still other applications provide their own
 techniques for reliable data delivery and don’t require that service
 from the Transport Layer protocol. Imposing another layer of
 acknowledgment on any of these types of applications is
 inefficient.

Transmission Control Protocol

Applications that require the transport protocol to provide reliable data delivery
 use TCP because it verifies that data is delivered across the network
 accurately and in the proper sequence. TCP is a
 reliable,
 connection-oriented,
 byte-stream protocol. Let’s look at each of these
 characteristics in more detail.
TCP provides reliability with a mechanism called Positive Acknowledgment with Re-transmission (PAR). Simply stated, a system using PAR sends the data
 again unless it hears from the remote system that
 the data arrived OK. The unit of data exchanged between cooperating
 TCP modules is called a segment (see Figure
 1-9). Each segment contains a checksum that the recipient uses to verify that the data is
 undamaged. If the data segment is received undamaged, the receiver
 sends a positive acknowledgment back to the
 sender. If the data segment is damaged, the receiver discards it.
 After an appropriate timeout period, the sending TCP module re-transmits any segment for
 which no positive acknowledgment has been received.
[image: TCP segment format]

Figure 1-9. TCP segment format

TCP is connection-oriented. It establishes a logical end-to-end
 connection between the two communicating hosts. Control information,
 called a handshake, is exchanged between the two endpoints to establish a
 dialogue before data is transmitted. TCP indicates the control
 function of a segment by setting the appropriate bit in the Flags
 field in word 4 of the segment header.
The type of handshake used by TCP is called a
 three-way handshake because three segments are exchanged. Figure 1-10 shows the simplest form
 of the three-way handshake. Host A begins the
 connection by sending host B a segment with the
 “Synchronize sequence numbers” (SYN) bit set. This segment tells host B
 that A wishes to set up a connection, and it
 tells B what sequence number host
 A will use as a starting number for its segments.
 (Sequence numbers are used to keep data in the proper order.) Host
 B responds to A with a
 segment that has the “Acknowledgment” (ACK) and SYN bits set.
 B’s segment acknowledges the receipt of
 A’s segment, and informs A
 which sequence number host B will start with.
 Finally, host A sends a segment that acknowledges
 receipt of B’s segment, and transfers the first
 actual data.
[image: Three-way handshake]

Figure 1-10. Three-way handshake

After this exchange, host A’s TCP has
 positive evidence that the remote TCP is alive and ready to receive
 data. As soon as the connection is established, data can be
 transferred. When the cooperating modules have concluded the data
 transfers, they will exchange a three-way handshake with segments
 containing the “No more data from sender” bit (called the FIN bit) to close the connection. It is the end-to-end
 exchange of data that provides the logical connection between the two
 systems.
TCP views the data it sends as a continuous stream of bytes, not
 as independent packets. Therefore, TCP takes care to maintain the
 sequence in which bytes are sent and received. The Sequence Number and Acknowledgment Number fields in the TCP segment header
 keep track of the bytes.
The TCP standard does not require that each system start
 numbering bytes with any specific number; each system chooses the
 number it will use as a starting point. To keep track of the data
 stream correctly, each end of the connection must know the other end’s
 initial number. The two ends of the connection synchronize byte-numbering systems by exchanging SYN segments during
 the handshake. The Sequence Number field in the SYN segment contains
 the Initial Sequence Number (ISN), which is the starting point for the
 byte-numbering system. For security reasons the
 ISN should be a random number.
Each byte of data is numbered sequentially from the ISN, so the
 first real byte of data sent has a Sequence Number of ISN+1. The
 Sequence Number in the header of a data segment identifies the
 sequential position in the data stream of the first data byte in the
 segment. For example, if the first byte in the data stream was
 sequence number 1 (ISN=0) and 4000 bytes of data have already been
 transferred, then the first byte of data in the current segment is
 byte 4001, and the Sequence Number would be 4001.
The Acknowledgment Segment (ACK) performs two functions:
 positive acknowledgment and flow control. The acknowledgment tells the sender how much data has
 been received and how much more the receiver can accept. The
 Acknowledgment Number is the sequence number of the next byte the
 receiver expects to receive. The standard does not require an
 individual acknowledgment for every packet. The acknowledgment number
 is a positive acknowledgment of all bytes up to that number. For
 example, if the first byte sent was numbered 1 and 2000 bytes have
 been successfully received, the Acknowledgment Number would be
 2001.
The Window field contains the window,
 or the number of bytes the remote end is able to accept. If the
 receiver is capable of accepting 6000 more bytes, the window would be
 6000. The window indicates to the sender that it can continue sending
 segments as long as the total number of bytes that it sends is smaller
 than the window of bytes that the receiver can accept. The receiver
 controls the flow of bytes from the sender by changing the size of the
 window. A zero window tells the sender to cease transmission until it
 receives a non-zero window value.
Figure 1-11 shows a TCP
 data stream that starts with an Initial Sequence Number of 0. The
 receiving system has received and acknowledged 2000 bytes, so the
 current Acknowledgment Number is 2001. The receiver also has enough
 buffer space for another 6000 bytes, so it has advertised a window of
 6000. The sender is currently sending a segment of 1000 bytes starting
 with Sequence Number 4001. The sender has received no acknowledgment
 for the bytes from 2001 on, but continues sending data as long as it
 is within the window. If the sender fills the window and receives no
 acknowledgment of the data previously sent, it will, after an
 appropriate timeout, send the data again starting from the first
 unacknowledged byte.
[image: TCP data stream]

Figure 1-11. TCP data stream

In Figure 1-11
 re-transmission would start from byte 2001 if no further
 acknowledgments are received. This procedure ensures that data is
 reliably received at the far end of the network.
TCP is also responsible for delivering data received from IP to
 the correct application. The application that the data is bound for is
 identified by a 16-bit number called the port number. The Source Port and Destination Port are contained in the first word of the segment header.
 Correctly passing data to and from the Application Layer is an
 important part of what the Transport Layer services do.

Application Layer

At the top of the TCP/IP protocol architecture is the
 Application Layer. This layer includes all
 processes that use the Transport Layer protocols to deliver data. There
 are many applications protocols. Most provide user services, and new
 services are always being added to this layer.
The most widely known and implemented applications protocols
 are:
	Telnet
	The Network Terminal Protocol, which provides remote login over
 the network.

	FTP
	The File Transfer Protocol, which is used for interactive file transfer.

	SMTP
	The Simple Mail Transfer Protocol, which delivers
 electronic mail.

	HTTP
	The Hypertext Transfer Protocol, which delivers web
 pages over the network.

While HTTP, FTP, SMTP, and Telnet are the most widely implemented
 TCP/IP applications, you will work with many others as both a user and a
 system administrator. Some other commonly used TCP/IP applications
 are:
	Domain Name System (DNS)
	Also called name service, this
 application maps IP addresses to the names assigned to network
 devices. DNS is discussed in detail in this book.

	Open Shortest Path First (OSPF)
	Routing is central to the way TCP/IP works. OSPF is used by network
 devices to exchange routing information. Routing is also a major
 topic of this book.

	Network File System (NFS)
	This protocol allows files to be shared by various hosts on the
 network.

Some protocols, such as Telnet and FTP, can be used only if the
 user has some knowledge of the network. Other protocols, like OSPF, run
 without the user even knowing that they exist. As the system
 administrator, you are aware of all these applications and all the
 protocols in the other TCP/IP layers. And you’re responsible for
 configuring them!

Summary

In this chapter we discussed the structure of TCP/IP, the protocol
 suite upon which the Internet is built. We have seen that TCP/IP is a
 hierarchy of four layers: Applications, Transport, Internet, and Network
 Access. We have examined the function of each of these layers. In the
 next chapter we look at how the IP datagram moves through a network when
 data is delivered between hosts.

Chapter 2. Delivering the Data

In Chapter 1, we touched on the
 basic architecture and design of the TCP/IP protocols. From that
 discussion, we know that TCP/IP is a hierarchy of four layers. In this
 chapter, we explore in finer detail how data moves between the protocol
 layers and the systems on the network. We examine the structure of
 Internet addresses, including how addresses route data to its final
 destination and how address structure is locally redefined to create
 subnets. We also look at the protocol and port numbers used to deliver
 data to the correct applications. These additional details move us from an
 overview of TCP/IP to the specific implementation issues that affect your
 system’s configuration.
Addressing, Routing, and Multiplexing

To deliver data between two Internet hosts, it is necessary to
 move the data across the network to the correct host, and within that
 host to the correct user or process. TCP/IP uses three schemes to
 accomplish these tasks:
	Addressing
	 IP addresses, which uniquely identify every host on the network,
 deliver data to the correct host.

	Routing
	Gateways deliver data to the correct network.

	Multiplexing
	Protocol and port numbers deliver data to the correct software module within
 the host.

Each of these functions—addressing between hosts, routing between
 networks, and multiplexing between layers—is necessary to send data
 between two cooperating applications across the Internet. Let’s examine
 each of these functions in detail.
To illustrate these concepts and provide consistent examples,
 we’ll use an imaginary corporate network. Our imaginary company brings
 together authors to write computer books and conduct training. Our
 company network is made up of several networks at our training
 facilities and publishing office, as well as a connection to the
 Internet. We are responsible for managing the Ethernet in the computing
 center. This network’s structure, or topology, is shown in Figure 2-1.
[image: Sample network topology]

Figure 2-1. Sample network topology

The icons in the figure represent computer systems. There are, of
 course, several other imaginary systems on our imaginary network, but
 we’ll use the hosts rodent (a workstation) and
 crab (a system that serves as a gateway) for most
 of our examples. The thick line is our computer center Ethernet, and the
 oval is the local network that connects our various corporate networks.
 The cloud is the Internet, and the numbers are IP addresses.

The IP Address

An IP address is a 32-bit value that uniquely identifies every
 device attached to a TCP/IP network. IP addresses are usually written as
 four decimal numbers separated by dots (periods) in a format called
 dotted decimal notation .[7] Each decimal number represents an 8-bit byte of the 32-bit
 address, and each of the four numbers is in the range 0-255 (the decimal
 values possible in a single byte).
IP addresses are often called host addresses. While this is common usage, it is slightly
 misleading. IP addresses are assigned to network interfaces, not to
 computer systems. A gateway, such as crab (see
 Figure 2-1), has a different
 address for each network to which it is connected. The gateway is known
 to other devices by the address associated with the network that it
 shares with those devices. For example, rodent
 addresses crab as 172.16.12.1 while external hosts
 address it as 10.104.0.19.
Systems can be addressed in three different ways. Individual
 systems are directly addressed by a host address, which is called a
 unicast address . A unicast packet is addressed to one individual host.
 Groups of systems can be addressed using a multicast address, e.g., 224.0.0.9. Routers along the path from the source to the destination
 recognize the special address and route copies of the packet to each
 member of the multicast group.[8] All systems on a network are addressed using the broadcast
 address, e.g., 172.16.255.255. The broadcast address depends on the
 broadcast capabilities of the underlying physical network.
The broadcast address is a good example of the fact that not
 all network addresses or host addresses can be assigned to a network
 device. Some host addresses are reserved for special uses. On all networks, host numbers 0 and 255 are reserved. An IP address with all
 host bits set to 1 is a broadcast address.[9] The broadcast address for network 172.16 is
 172.16.255.255. A datagram sent to this address is delivered to every
 individual host on network 172.16. An IP address with all host bits set
 to 0 identifies the network itself. For example, 10.0.0.0 refers to
 network 10, and 172.16.0.0 refers to network 172.16. Addresses in this
 form are used in routing tables to refer to entire networks.
Network addresses with a first byte value greater than 223 cannot
 be assigned to a physical network, because those addresses are reserved
 for special use. There are two other network addresses that are used
 only for special purposes: network 0.0.0.0 designates the
 default route and network 127.0.0.1 is the loopback address. The default route is used to simplify the routing
 information that IP must handle. The loopback address simplifies network
 applications by allowing the local host to be addressed in the same
 manner as a remote host. These special network addresses play an
 important part when configuring a host, but these addresses are not
 assigned to devices on real networks. Despite these few exceptions, most
 addresses are assigned to physical devices and are used by IP to deliver
 data to those devices.
The Internet Protocol moves data between hosts in the form of
 datagrams. Each datagram is delivered to the address
 contained in the Destination Address (word 5) of the datagram’s header. The Destination Address
 is a standard 32-bit IP address, which contains sufficient information
 to uniquely identify a network and a specific host on that
 network.
Address Structure

An IP address contains a network part and
 a host part, but the format of these parts is not the same in every IP
 address. The number of address bits used to identify the network and
 the number used to identify the host vary according to the prefix
 length of the address. The prefix length is determined by the address
 bit mask.
An address bit mask works like this: if a bit is on in the mask,
 that equivalent bit in the address is interpreted as a network bit; if
 a bit in the mask is off, the bit belongs to the host part of the
 address. For example, if address 172.22.12.4 is given the network mask
 255.255.255.0, which has 24 bits on and 8 bits off, the first 24 bits
 are the network number and the last 8 bits are the host address.
 Combining the address and the mask tells us that this is the address
 of host 4 on network 172.22.12.
Specifying both the address and the mask in dotted decimal
 notation is cumbersome when writing out addresses. A shorthand
 notation is available for writing an address with its associated
 address mask. Instead of writing network 172.31.26.32 with a mask of
 255.255.255.224, we can write 172.31.26.32/27. The format of this
 notation is address/prefix-length, where
 prefix-length is the number of bits in the network portion of the
 address. Without this notation, the address 172.31.26.32 could easily
 be misinterpreted.
Organizations usually obtain official IP addresses by purchasing a block of addresses from their
 Internet service provider. The ISP normally assigns a single
 organization a continuous block of addresses that is appropriate for
 the needs of the organization. For example, a moderately large
 business might purchase 192.168.16.0/20 while a small business might
 buy 192.168.32.0/24. Because the prefix shows the length of the
 network portion of the address, the number of host addresses that are
 available to an organization (the host portion of the address) is
 determined by subtracting the prefix from the total number of bits in
 an address, which is 32. Thus a prefix of 20 leaves 12 bits that are
 available to be locally assigned. This is called a “12-bit block” of
 addresses. A prefix of 24 creates an “8-bit block.” Of
 the two sample address blocks, the first is a 12-bit block that
 encompasses 4,096 addresses from 192.168.16.0 to 192.168.31.255, and
 the second is an 8-bit block that includes the 256 addresses from
 192.168.32.0 to 192.168.32.255.
Each of these address blocks appears to the outside world to be
 a single “network” address. Thus external routers have one route to
 the block 192.168.16.0/20 and one route to the block 192.168.32.0/24,
 regardless of the size of the address block. Internally, however, the
 organization may have several separate physical networks within the
 address block. The flexibility of address masks means that service
 providers can assign arbitrary length blocks of addresses to their
 customers, and the customers can subdivide those address blocks using
 different length masks.

Subnets

The structure of an IP address can be locally modified by
 using host address bits as additional network address bits.
 Essentially, the “dividing line” between network address bits and host
 address bits is moved, creating additional networks but reducing the
 maximum number of hosts that can belong to each network. These newly
 designated network bits define an address block within the larger
 address block, which is called a subnet.
Organizations usually decide to subnet in order to overcome
 topological or organizational problems. Subnetting allows
 decentralized management of host addressing. With the standard addressing scheme,
 a central administrator is responsible for managing host addresses for
 the entire network. By subnetting, the administrator can delegate
 address assignment to smaller organizations within the overall
 organization—which may be a political expedient, if not a technical
 requirement. If you don’t want to deal with the data processing
 department, for example, assign them their own subnet and let them
 manage it themselves.
Subnetting can also be used to overcome hardware differences and distance limitations. IP routers can
 link dissimilar physical networks together, but only if each physical
 network has its own unique network address. Subnetting divides a
 single address block into many unique subnet addresses, so that each
 physical network can have its own unique address.
A subnet is defined by changing the bit mask of the IP address.
 A subnet mask functions in the same way as a normal address mask: an
 “on” bit is interpreted as a network bit; an “off” bit belongs to the
 host part of the address. The difference is that a subnet mask is only
 used locally. On the outside, the address is still interpreted using
 the address mask known to the outside world.
Assume you have a small real estate business that has been
 assigned the address block 192.168.32.0/24. The bit mask associated
 with that address block is 255.255.255.0, and the block contains 256
 addresses. Further, assume that your business has 10 offices, each
 with a half-dozen computers, and that you want to allocate some
 addresses to each office and keep some for future expansion. You can
 subdivide the 256 address block with a subnet mask that extends the
 network portion of the address by a few additional bits.
To subdivide 192.168.32.0/24 into 16 subnets, use the mask
 255.255.255.240, i.e., 192.168.32.0/28. The first three bytes contain
 the original network address block; the fourth byte is divided between
 the subnet address and the address of the host on that subnet.
 Applying this mask defines the four high-order bits of the fourth byte
 as the subnet part of the address, and the remaining four bits—the
 last four bits of the fourth byte—as the host portion of the address.
 This creates 16 subnets that each contain 14 host addresses, which is
 better suited to the network topology of your small real estate
 business. Table 2-1 shows
 the subnets and host addresses produced by applying this subnet mask
 to network address 192.168.32.0/24.
Table 2-1. Effects of a subnet mask
	Network number
	Host address range
	Broadcast address

	192.168.32.0
	192.168.32.1 - 192.168.32.14
	192.168.32.15

	192.168.32.16
	192.168.32.17 - 192.168.32.30
	192.168.32.31

	192.168.32.32
	192.168.32.33 - 192.168.32.46
	192.168.32.47

	192.168.32.48
	192.168.32.49 - 192.168.32.62
	192.168.32.63

	192.168.32.64
	192.168.32.65 - 192.168.32.78
	192.168.32.79

	192.168.32.80
	192.168.32.81 - 192.168.32.94
	192.168.32.95

	192.168.32.96
	192.168.32.97 - 192.168.32.110
	192.168.32.111

	192.168.32.112
	192.168.32.113 - 192.168.32.126
	192.168.32.127

	192.168.32.128
	192.168.32.129 - 192.168.32.142
	192.168.32.143

	192.168.32.144
	192.168.32.145 - 192.168.32.158
	192.168.32.159

	192.168.32.160
	192.168.32.161 - 192.168.32.174
	192.168.32.175

	192.168.32.176
	192.168.32.177 - 192.168.32.190
	192.168.32.191

	192.168.32.192
	192.168.32.193 - 192.168.32.206
	192.168.32.207

	192.168.32.208
	192.168.32.209 - 192.168.32.222
	192.168.32.223

	192.168.32.224
	192.168.32.225 - 192.168.32.238
	192.168.32.239

	192.168.32.240
	192.168.32.241 - 192.168.32.254
	192.168.32.255

In Table 2-1, the
 first row describes a subnet with a subnet number that is all 0s (the
 first four bits of the fourth byte are all set to 0). The last row in
 the table describes a subnet with a subnet number that is all 1s (the
 first four bits of the fourth byte are all set to 1). Originally, the
 RFCs implied that you should not use subnet numbers of all 0s
 or all 1s. However, RFC 1812, Requirements for IP Version 4 Routers, makes it clear that subnets of all 0s and all 1s
 are legal and should be supported by all routers. Some older routers
 did not allow the use of these addresses despite the newer RFCs.
 Today’s router software and hardware should make it possible for you
 to reliably use all subnet addresses.
You don’t have to manually calculate a table like this to know
 what subnets and host addresses are produced by a subnet mask. The
 calculations have already been done for you. RFC 1878, Variable Length Subnet Table For IPv4, lists all possible subnet masks and the valid
 addresses they produce.
RFC 1878 describes all 32 prefix values. But little
 documentation is needed because the prefix is easy to understand and
 remember. Writing 10.104.0.19 as 10.104.0.19/8 shows that this address
 has 8 bits for the network number and therefore 24 bits for the host
 number. Unfortunately, things are not always this neat. Sometimes the
 address is not given an explicit address mask, and you need to know
 how to determine the natural mask that an address will be assigned by
 default.

The Natural Mask

 Originally, the IP address space was divided into a few
 fixed-length structures called address classes.
 The three main address classes were class A,
 class B, and class C. IP
 software determined the class, and therefore the structure, of an
 address by examining its first few bits. Address classes are no longer
 used, but the same rules that were used to determine the address class
 are now used to create the default address mask, which is called the
 natural mask . These rules are as follows:
	If the first bit of an IP address is 0, the default mask is
 8 bits long (prefix 8). This is the same as the old class A
 network address format. The first 8 bits identify the network, and
 the last 24 bits identify the host.

	If the first 2 bits of the address are 1 0, the default mask
 is 16 bits long (prefix 16), which is the same as the old class B
 network address format. The first 16 bits identify the network,
 and the last 16 bits identify the host.

	If the first 3 bits of the address are 1 1 0, the default
 mask is 24 bits long (prefix 24). This mask is the same as the old
 class C network address format. The first 24 bits are the network
 address, and the last 8 bits identify the host.

	If the first 4 bits of the address are 1 1 1 0, it is a
 multicast address. These addresses were sometimes
 called class D addresses, but they don’t
 really refer to specific networks. Multicast addresses are used to
 address groups of computers all at one time. They identify a group
 of computers that share a common application, such as a
 videoconference, as opposed to a group of computers that share a
 common network. All bits in a multicast address are significant
 for routing, so the default mask is 32 bits long (prefix
 32).

When an IP address is written in dotted decimal format, it is
 sometimes easier to think of the address as four 8-bit bytes instead
 of as a 32-bit value. We can look at the address as composed of full
 bytes of network address and full bytes of host address when using the
 natural mask, because the three default masks all create prefix
 lengths that are multiples of 8. A simple way to determine the
 default mask is to look at the first byte of the
 address. If the value of the first byte is:
	Less than 128, the default address mask is 8 bits long; the
 first byte is the network number, and the next three bytes are the host address.

	From 128 to 191, the default address mask is 16 bits long;
 the first two bytes identify the network, and the last two bytes
 identify the host.

	From 192 to 223, the default address mask is 24 bits long;
 the first three bytes are the network address, and the last byte
 is the host number.

	From 224 to 239, the address is multicast. The entire
 address identifies a specific multicast group; therefore the
 default mask is 32 bits.

	Greater than 239, the address is reserved. We can ignore
 reserved addresses.

Figure 2-2 illustrates
 the two techniques for determining the default address structure. The
 first address is 10.104.0.19. The first bit of this address is 0;
 therefore, the first 8 bits define the network and the last 24 bits
 define the host. Explained in a byte-oriented manner, the first byte
 is less than 128, so the address is interpreted as host 104.0.19 on
 network 10. One byte specifies the network and three bytes specify the
 host.
[image: Default IP address formats]

Figure 2-2. Default IP address formats

The second address is 172.16.12.1. The two high-order bits are 1
 0, meaning that 16 bits define the network and 16 bits define the
 host. Viewed in a byte-oriented way, the first byte falls between 128
 and 191, so the address refers to host 12.1 on network 172.16. Two
 bytes identify the network and two identify the host.
Finally, in the address 192.168.16.1, the three high-order bits
 are 1 1 0, indicating that 24 bits represent the network and 8 bits
 represent the host. The first byte of this address is in the range
 from 192 to 223, so this is the address of host 1 on network
 192.168.16—three network bytes and one host byte.
Evaluating addresses according to the class rules discussed
 above limits the length of network numbers to 8, 16, or 24 bits—1, 2,
 or 3 bytes. The IP address, however, is not really byte-oriented. It
 is 32 contiguous bits. The address bit mask
 provides a flexible way to define the network and host
 portions of an address. IP uses the network portion of the address to
 route the datagram between networks. The full address, including the
 host information, is used to identify an individual host. Because of
 the dual role of IP addresses, the flexibility of address masks not
 only makes more addresses available for use, but also has a positive
 impact
 on routing.

CIDR Blocks and Route Aggregation

The IP address, which provides universal addressing across all of the networks
 of the Internet, is one of the great strengths of the TCP/IP protocol
 suite. However, the original class structure of the IP address had
 weaknesses. The TCP/IP designers did not envision the enormous scale
 of today’s network. When TCP/IP was being designed, networking was
 limited to large organizations that could afford substantial computer
 systems. The idea of a powerful Unix system on every desktop did not
 exist. At that time, a 32-bit address seemed so large that it was
 divided into classes to reduce the processing load on routers, even
 though dividing the address into classes sharply reduced the number of
 host addresses actually available for use. For example, assigning a
 large network a single class B address instead of six class C
 addresses reduced the load on the router because the router needed to
 keep only one route for that entire organization. However, an
 organization that was assigned the class B address probably did not
 have 64,000 computers, so most of the host addresses available to the
 organization were never used.
The class-structured address design was critically strained
 by the rapid growth of the Internet. At one point it appeared that all
 class B addresses might be rapidly exhausted. The rapid depletion of
 the class B addresses showed that three primary address classes were
 not enough: class A was much too large and class C was much too small.
 Even a class B address was too large for many networks, but was used
 because it was better than the alternatives.
The obvious solution to the class B address crisis was to force
 organizations to use multiple class C addresses. There were millions
 of these addresses available and they were in no immediate danger of
 depletion. As is often the case, the obvious solution was not as
 simple as it seemed. Each class C address requires its own entry
 within the routing table. Assigning thousands or millions of class C
 addresses would cause the routing table to grow so rapidly that the
 routers would soon be overwhelmed. The solution required the new way
 of looking at addresses that address masks provide; it also required a
 new way of assigning addresses.
Originally network addresses were assigned in more or less
 sequential order as they were requested. This worked fine when the
 network was small and centralized. However, it did not take network
 topology into account. Thus, only random chance determined if the same
 intermediate routers would be used to reach network 195.4.12.0 and
 network 195.4.13.0, which makes it difficult to reduce the size of the
 routing table. Addresses can be aggregated only if they
 are contiguous numbers and are reachable through the same route. For
 example, if addresses are contiguous for one service provider, a
 single route can be created for that aggregation because that service
 provider will have a limited number of connections to the Internet.
 But if one network address is in France and the next contiguous
 address is in Australia, creating a consolidated route for these addresses is not possible.
Today, large, contiguous blocks of addresses are assigned to large network service
 providers in a manner that better reflects the topology of the
 network. The service providers then allocate chunks of these address
 blocks to the organizations to which they provide network services.
 Because the assignment of addresses reflects the topology of the
 network, it permits route aggregation. Under this scheme, we know that
 network 195.4.12.0 and network 195.4.13.0 are reachable through the
 same intermediate routers. In fact, both of these addresses are in the
 range of the addresses assigned to Europe, 194.0.0.0 to
 195.255.255.255.
Assigning addresses that reflect the topology of the network
 enables route aggregation but does not implement it. As long as
 network 195.4.12.0 and network 195.4.13.0 were interpreted as separate
 class C addresses, they still required separate entries in the routing
 table. The development of address masks not only increased the usable
 address space, but it improved routing.
The use of an address mask instead of the old address classes to
 determine the destination network is called Classless Inter-Domain Routing (CIDR).[10] CIDR requires modifications to the routers and routing protocols. The
 protocols need to distribute, along with the destination addresses,
 address masks that define how the addresses are interpreted. The
 routers and hosts need to know how to interpret these addresses as
 “classless” addresses and how to apply the bit mask that accompanies
 the address. All new operating systems and routing protocols support
 address masks.
CIDR was intended as an interim solution, but it has proved much
 more durable than its designers imagined. CIDR has provided address
 and routing relief for many years and is capable of providing it for
 many more years to come. The long-term solution for address depletion
 is to replace the current addressing scheme with a new one. In the
 TCP/IP protocol suite, addressing is defined by the IP protocol.
 Therefore, to define a new address structure, the Internet Engineering
 Task Force (IETF) created a new version of IP called IPv6.

IPv6

IPv6 is an improvement on the IP protocol based on 20 years of
 operational experience. The original motivation for the new protocol
 was the threat of address depletion. IPv6 has a very large 128-bit
 address, so address depletion is not an issue. The large address also
 makes it possible to use a hierarchical address structure to reduce
 the burden on routers while still maintaining more than enough
 addresses for future network growth. But large addresses are only one
 of the benefits of the new protocol. Other benefits of IPv6
 are:
	Improved security built into the protocol

	Simplified, fixed-length, word-aligned headers to speed
 header processing and reduce overhead

	Improved techniques for handling header options

IPv6 has several good features, but it is still not widely used.
 This is partly because enhancements to IPv4, improvements in hardware
 performance, and changes in the way that networks are configured have
 reduced the demand for the new features of IPv6.
A critical shortage of addresses did not materialize for three reasons:
	CIDR makes the assignment of addresses more flexible, which
 in turn makes more addresses available and permits aggregation to
 reduce the burden on routers.

	Private addresses and NAT have greatly reduced the demand
 for official addresses. Many organizations prefer to use private
 addresses for all systems on their internal networks because
 private addresses reduce the administrative burden and improve
 security.

	Permanent, fixed address assignment is less common than
 dynamic address assignment. The majority of systems use dynamic
 addresses temporarily assigned by the configuration protocol
 DHCP.

The creation of the IPsec standards for IPv4 lessened the need
 for the security enhancements of IPv6. In fact, many of the security
 tools and features available for IPv4 systems are not being fully
 utilized, indicating that the demand for tools that secure the link
 may have been overestimated.
IPv6 eliminates hop-by-hop segmentation, has a more efficient header
 design, and features enhanced option processing. These things make it
 more efficient to process IPv6 packets than to handle IPv4 packets.
 However, for the vast majority of systems, this increased efficiency
 is not needed because processing IP datagrams is a very minor task.
 Most systems are at the edge of the network and handle relatively few
 communications packets. Processor speed and memory have increased
 enormously while hardware prices have fallen. Most managers would
 rather buy more hardware using the proven IPv4 protocol than risk
 implementing the new IPv6 protocol just to save a few machine cycles.
 Only those systems located near the core of the network would truly
 benefit from this efficiency, and although important, those systems
 are relatively few in number.
All of these things have worked together to lessen the demand
 for IPv6. This lack of demand has limited the number of
 organizations that have adopted IPv6 as their primary communications
 protocol, and a large user community is the one thing that a protocol
 needs to be truly successful. We use communications protocols to
 communicate with other people. If there are not enough people using
 the protocol, we don’t feel the need to use it. IPv6 is still in the
 early-adopter phase. Most organizations do not use IPv6 at all, and
 many that do use it only for experimental purposes.[11] Between organizations, most IPv6 communications are
 encapsulated inside IPv4 datagrams and sent over the Internet inside
 IPv4 tunnels. It will be some time before it is the primary protocol
 of operational networks.
If you run an operational network, you should not be overly
 concerned with IPv6. The current generation of TCP/IP (IPv4), with the
 enhancements that CIDR and other extensions provide, should be more
 than adequate for your current network needs. On your network and the
 Internet, you will use IPv4 and 32-bit IP addresses.

[7] Addresses are occasionally written in other formats, e.g., as
 hexadecimal numbers. Whatever the notation, the structure and
 meaning of the address are the same.

[8] This is only partially true. Multicasting is not supported by
 every router. Sometimes it is necessary to tunnel through routers
 and networks by encapsulating the multicast packet inside a unicast
 packet.

[9] There are configuration options that affect the default
 broadcast address. Chapter 5
 discusses these options.

[10] CIDR is pronounced “cider.”

[11] Both Solaris and Linux include support for IPv6 if you wish
 to experiment with it.

Internet Routing Architecture

Chapter 1 described the evolution of the Internet architecture over the years.
 Along with these architectural changes have come changes in the way that
 routing information is disseminated within the network.
In the original Internet structure, there was a hierarchy of
 gateways. This hierarchy reflected the fact that the Internet was built
 upon the existing ARPAnet. When the Internet was created, the ARPAnet
 was the backbone of the network: a central delivery medium to carry
 long-distance traffic. This central system was called the
 core, and the centrally managed gateways that
 interconnected it were called the core gateways.

In that hierarchical structure, routing information about all of
 the networks on the Internet was passed into the core gateways. The core
 gateways processed the information and then exchanged it among
 themselves using the Gateway to Gateway Protocol
 (GGP). The processed routing information was then passed back
 out to the external gateways. The core gateways maintained accurate
 routing information for the entire Internet.
Using the hierarchical core router model to distribute routing
 information has a major weakness: every route must be processed by the
 core. This places a tremendous processing burden on the core, and as the
 Internet grew larger the burden increased. In network-speak, we say that
 this routing model does not “scale well.” For this reason, a new model
 emerged.
Even in the days of a single Internet core, groups of independent
 networks called autonomous systems existed outside of the core. The term autonomous system (AS)
 has a formal meaning in TCP/IP routing. An autonomous system is not
 merely an independent network. It is a collection of networks and
 gateways with its own internal mechanism for collecting routing
 information and passing it to other independent network systems. The
 routing information passed to the other network systems is called
 reachability information. Reachability information simply says which networks can be
 reached through that autonomous system. In the days of a single Internet
 core, autonomous systems passed reachability information into the core
 for processing. The Exterior Gateway Protocol
 (EGP) was the protocol used to pass reachability information
 between autonomous systems and into the core.
The new routing model is based on co-equal collections of
 autonomous systems called routing
 domains. Routing domains exchange routing information with other
 domains using Border Gateway Protocol (BGP). Each routing domain processes the information it receives
 from other domains. Unlike the hierarchical model, this model does not
 depend on a single core system to choose the “best” routes. Each routing
 domain does this processing for itself; therefore, this model is more
 expandable. Figure 2-3
 represents this model with three intersecting circles. Each circle is a
 routing domain. The overlapping areas are border areas, where routing
 information is shared. The domains share information but do not rely on
 any one system to provide all routing information.
[image: Routing domains]

Figure 2-3. Routing domains

The problem with this model is: how are “best” routes determined
 in a global network if there is no central routing authority, like the
 core, that is trusted to determine the “best” routes? In the days of the
 NSFNET, the policy routing database (PRDB)
 was used to determine whether the reachability information
 advertised by an autonomous system was valid. But now, even the NSFNET
 does not play a central role.
To fill this void, NSF created the Routing Arbiter (RA) servers when it created the Network Access Points (NAPs) that provide interconnection points for the various
 service provider networks. A route arbiter is located at each NAP. The
 server provides access to the Routing Arbiter Database (RADB), which replaced the PRDB. ISPs can query servers to
 validate the reachability information advertised by an autonomous
 system.
The RADB is only part of the Internet Routing Registry (IRR). As befits a distributed routing architecture, there are
 multiple organizations that validate and register routing information.
 Europeans were the pioneers in this. The Reseaux IP Europeens (RIPE)
 Network Control Center (NCC) provides the routing registry for European IP networks. Big network
 carriers provide registries for their customers. All of the registries
 share a common format based on the RIPE-181 standard.
Many ISPs do not use the route servers. Instead they depend on
 formal and informal bilateral agreements, where two ISPs get together and decide what
 reachability information each will accept from the other. They create,
 in effect, private routing policies. Small ISPs have criticized the
 routing policies of the tier-one providers, claiming that they limit
 competition. In response, most tier-one providers have promised to make
 the policies public, which should clarify the basis for the current
 architecture and may even spark more changes.
Creating an effective routing architecture continues to be a major
 challenge for the Internet, and the routing architecture will certainly
 evolve over time. No matter how it is derived, the routing information
 eventually winds up in your local gateway, where it is used by IP to
 make routing
 decisions.

The Routing Table

Gateways route data between networks, but all network devices, hosts as
 well as gateways, must make routing decisions. For most hosts, the
 routing decisions are simple:
	If the destination host is on the local network, the data is
 delivered to the destination host.

	If the destination host is on a remote network, the data is
 forwarded to a local gateway.

IP routing decisions are simply table lookups. Packets are routed
 toward their destinations as directed by the routing table (also called the forwarding table). The routing table maps destinations to the router and
 network interface that IP must use to reach that destination. Examining
 the routing table on a Linux system shows this.
On a Linux system, use the route
 command with the -n option to display
 the routing table.[12] The -n option prevents
 route from converting IP addresses to
 hostnames, which gives a clearer display. Here is a routing table from a
 sample Red Hat system:
 # route -n
Kernel IP routing table
Destination Gateway Genmask Flags Metric Ref Use Iface
172.16.55.0 0.0.0.0 255.255.255.0 U 0 0 0 eth0
172.16.50.0 172.16.55.36 255.255.255.0 UG 0 0 0 eth0
127.0.0.0 0.0.0.0 255.0.0.0 U 0 0 0 lo
0.0.0.0 172.16.55.1 0.0.0.0 UG 0 0 0 eth0
On a Linux system, the route
 -n command displays the routing table
 with the following fields:
	Destination
	The value against which the destination IP address is
 matched.

	Gateway
	The router to use to reach the specified destination.

	Genmask
	The address mask used to match an IP address to the value shown
 in the Destination field.

	Flags
	Certain characteristics of this route. The possible Linux
 flag values are:[13]

	U
	Indicates that the route is up and operational.

	H
	Indicates that this is a route to a specific host (most routes
 are to networks).

	G
	Indicates that the route uses an external gateway.
 The system’s network interfaces provide routes to directly
 connected networks. All other routes use external gateways.
 Directly connected networks do not have the G flag set; all other
 routes do.

	R
	Indicates a route that was installed, probably by a dynamic
 routing protocol running on this system, using the reinstate option.

	D
	Indicates that this route was added because of an
 ICMP Redirect Message. When a system learns of a route via an ICMP
 Redirect, it adds the route to its routing table so that
 additional packets bound for that destination will not need to be
 redirected. The system uses the D flag to mark these
 routes.

	M
	Indicates a route that was modified, probably by a dynamic
 routing protocol running on this system, using the mod option.

	A
	Indicates a cached route that has an associated entry in the
 ARP table.

	C
	Indicates that this route came from the kernel routing cache.
 Most systems use two routing tables: the Forwarding Information
 Base (FIB), which is the table we are interested in because it is
 used for the routing decision, and the kernel routing cache, which
 lists the source and destination of recently used routes. This
 flag is documented, but I have never seen the C flag in a routing
 table listing, even when listing the routing cache.

	L
	Indicates that the destination of this route is one
 of the addresses of this computer. These “local routes” are found
 only in the routing cache.

	B
	Indicates a route whose destination is a broadcast address.
 These “broadcast routes” are found only in the routing cache.
 Solaris assigns the flag to both broadcast addresses and network
 addresses; i.e., both 172.16.255.255 and 172.16.0.0 are given the
 B flag by Solaris systems that live on network
 172.16.0.0/16.

	I
	Indicates a route that uses the loopback interface for some
 purpose other than addressing the loopback network. These
 “internal routes” are found only in the routing cache.

	!
	Indicates that datagrams bound for this destination
 will be rejected. Linux permits you to manually install “negative”
 routes. These are routes that explicitly block data bound for a
 specific destination. This is Linux-specific and rarely used, but
 it is a possible flag setting.

	Metric
	The “cost” of the route. The metric is used to sort duplicate
 routes if any appear in the table. Beyond this, a dynamic routing
 protocol is required to make use of the metric.

	Ref
	The number of times the route has been referenced to establish
 a connection. This value is not used by Linux systems.

	Use
	The number of times this route was looked up by IP.

	Iface
	The name of the network interface[14] used by this route.

Each entry in the routing table starts with a destination value. The destination value is the key against which the IP
 address is matched to determine if this is the correct route to use to
 reach the IP address. The destination value is usually called the
 “destination network,” although it does not need to be a network
 address. The destination value can be a host address, a multicast
 address, an address block that covers an aggregation of many networks,
 or a special value for the default route or loopback address. In all
 cases, however, the Destination field contains the value against which the destination
 address from the IP packet is matched to determine if IP should deliver
 the datagram using this route.
The Genmask field is the bit mask that IP applies to the destination address from
 the packet to see if the address matches the destination value in the
 table. If a bit is on in the bit mask, the corresponding bit in the
 destination address is significant for matching the address. Thus, the
 address 172.16.50.183 would match the second entry in the sample table
 because ANDing the address with 255.255.255.0 yields 172.16.50.0.
When an address matches an entry in the table, the Gateway
 field tells IP how to reach the specified destination. If
 the Gateway field contains the IP address of a router, the router is
 used. If the Gateway field contains all 0s (0.0.0.0 when route is run with -n) or an asterisk (* when route is run without -n), the destination network is a directly
 connected network and the “gateway” is the computer’s network interface.
 The last field displayed for each table entry is the network interface
 used for the route. In the example, it is either the first Ethernet
 interface (eth0) or the loopback interface
 (lo). The destination, gateway, mask, and interface
 define the route.
The remaining four fields (Ref, Use, Flags, and Metric) display
 supporting information about the route. These informational fields are of only marginal value. Some systems keep an
 accurate count in the Ref field; others, such as Linux, don’t really use it. Linux
 uses the Use field to count the number of times a route needed to be
 looked up because it was not in the routing cache when IP needed it.
 Some other systems show the number of packets transmitted via the route
 in the Use field. The Flags field displays information that is often obvious even
 without the flags: every route has the U flag set because every route in
 the routing table is up by definition, and looking at the Gateway field
 tells you whether or not an external gateway is used without looking for
 the G flag. The Metric value is used only if you run some version of the
 Routing Information Protocol (RIP) on your system. Don’t
 be distracted by this information. The heart of the routing table is the
 route, which is composed of the destination, the mask, the gateway, and
 the interface.
IP uses the information from the routing table (the forwarding
 table) to construct the routes used for active connections. The routes
 associated with active connections are stored in the routing cache. On Linux systems, the routing cache can be examined by adding the
 -C argument to the route command line:
 $ route -Cn
Kernel IP routing cache
Source Destination Gateway Flags Metric Ref Use Iface
127.0.0.1 127.0.0.1 127.0.0.1 l 0 0 0 lo
192.203.230.10 172.16.55.3 172.16.55.3 l 0 0 0 lo
172.16.55.1 172.16.55.255 172.16.55.255 ibl 0 0 243 lo
172.16.55.2 172.16.55.255 172.16.55.255 ibl 0 0 15 lo
172.16.55.3 192.203.230.10 172.16.55.1 0 0 0 eth0
127.0.0.1 127.0.0.1 127.0.0.1 l 0 0 0 lo
172.16.55.3 132.163.4.9 172.16.55.1 0 0 0 eth0
172.16.55.2 172.16.55.3 172.16.55.3 il 0 0 149 lo
172.16.55.3 172.16.55.2 172.16.55.2 0 1 0 eth0
132.163.4.9 172.16.55.3 172.16.55.3 l 0 0 0 lo
The routing cache is different from the routing table because the
 cache shows established routes. The routing table is used to make
 routing decisions; the routing cache is used after
 the decision is made. The routing cache shows the source and destination
 of a network connection and the gateway and interface used to make that
 connection.
Linux provides a good example for showing the contents of the
 routing table because the Linux route
 command displays the table so clearly. On Solaris systems, the route command has a very different syntax.
 When running Solaris, display the routing table’s contents with the
 netstat -nr command. The -r option tells
 netstat to display the routing table,
 and the -n option tells netstat to display the table in numeric
 form.[15]
 % netstat -nr
Routing Table: IPv4
Destination Gateway Flags Ref Use Interface
----------- ----------- ----- ---- ----- ---------
127.0.0.1 127.0.0.1 UH 1 298 lo0
default 172.16.12.1 UG 2 50360
172.16.12.0 172.16.12.2 U 40 111379 dnet0
172.16.2.0 172.16.12.3 UG 4 1179
172.16.1.0 172.16.12.3 UG 10 1113
172.16.3.0 172.16.12.3 UG 2 1379
172.16.4.0 172.16.12.3 UG 4 1119
The first table entry is the loopback route
 for the local host. This is the loopback address mentioned
 earlier as a reserved network number. Because every system uses the
 loopback route to send datagrams to itself, an entry for the loopback
 interface is in every host’s routing table. The H flag is set because
 Solaris creates a route to a specific host (127.0.0.1), not a route to
 an entire network (127.0.0.0). We’ll see the loopback facility again
 when we discuss kernel configuration and the ifconfig command. For now, however, our real
 interest is in external routes.
 Another unique entry in this routing table is the one with
 the word “default” in the destination field. This entry is for the
 default route, and the gateway specified in this
 entry is the default gateway. The default route is
 the other reserved network number mentioned earlier: 0.0.0.0. The
 default gateway is used whenever there is no specific route in the table
 for a destination network address. For example, this routing table has
 no entry for network 192.168.16.0. If IP receives any datagrams
 addressed to this network, it will send them via the default gateway
 172.16.12.1.
All of the gateways that appear in the routing table are on
 networks directly connected to the local system. In the sample shown
 above, this means that the gateway addresses all begin with 172.16.12
 regardless of the destination address. This is the only network to which
 this sample host is directly attached, and therefore it is the only
 network to which it can directly deliver data. The gateways that a host
 uses to reach the rest of the Internet must be on its subnet.
In Figure 2-4, the IP
 layer of two hosts and a gateway on our imaginary network is replaced by
 a small piece of a routing table, showing destination networks and the
 gateways used to reach those destinations. Assume that the address mask
 used for network 172.16.0.0 is 255.255.255.0. When the source host
 (172.16.12.2) sends data to the destination host (172.16.1.2), it
 applies the address mask to determine that it should look for the
 destination network address 172.16.1.0 in the routing table. The routing
 table in the source host shows that data bound for 172.16.1.0 is sent to
 gateway 172.16.12.3. The source host forwards the packet to the gateway.
 The gateway does the same steps and looks up the destination address in
 its routing table. Gateway 172.16.12.3 then makes direct delivery
 through its 172.16.1.5 interface. Examining the routing tables in Figure 2-4 shows that all systems list
 only gateways on networks to which they are directly connected. This is
 illustrated by the fact that 172.16.12.1 is the default gateway for both
 172.16.12.2 and 172.16.12.3, but because 172.16.1.2 cannot reach network
 172.16.12.0 directly, it has a different default route.
[image: Table-based routing]

Figure 2-4. Table-based routing

A routing table does not contain end-to-end routes. A route points only to the next gateway, called the
 next hop, along the path to the destination
 network.[16] The host relies on the local gateway to deliver the data,
 and the gateway relies on other gateways. As a datagram moves from one
 gateway to another, it should eventually reach one that is directly
 connected to its destination network. It is this last gateway that
 finally delivers the data to the destination host.
IP uses the network portion of the address to route the datagram
 between networks. The full address, including the host information, is
 used to make final delivery when the datagram reaches the destination
 network.

[12] The netstat command is used
 to examine the routing table on Solaris 8 systems. A Solaris example
 is covered later in this chapter.

[13] The flags R, M, C, I, and ! are specific to Linux. The
 other flags are used on most Unix systems.

[14] The network interface is the
 network access hardware and software that IP uses to
 communicate with the physical network. See Chapter 6 for details.

[15] Linux incorporates the address mask information in the routing
 table display. Solaris 8 supports address masks; it just doesn’t
 show them when displaying the routing table.

[16] As we’ll see in Chapter 7,
 some routing protocols, such as OSPF and BGP, obtain end-to-end
 routing information. Nevertheless, the packet is still passed to the
 next-hop router.

Address Resolution

The IP address and the routing table direct a datagram to a specific physical
 network, but when data travels across a network, it must obey the
 physical layer protocols used by that network. The physical networks
 underlying the TCP/IP network do not understand IP addressing. Physical
 networks have their own addressing schemes, and there are as many
 different addressing schemes as there are different types of physical
 networks. One task of the network access protocols is to map IP
 addresses to physical network addresses.
The most common example of this Network Access Layer function is
 the translation of IP addresses to Ethernet addresses. The protocol that
 performs this function is Address Resolution Protocol (ARP), which is defined in RFC 826.
The ARP software maintains a table of translations between IP
 addresses and Ethernet addresses. This table is built dynamically. When
 ARP receives a request to translate an IP address, it checks for the
 address in its table. If the address is found, it returns the Ethernet
 address to the requesting software. If the address is not found, ARP
 broadcasts a packet to every host on the Ethernet. The packet contains
 the IP address for which an Ethernet address is sought. If a receiving
 host identifies the IP address as its own, it responds by sending its
 Ethernet address back to the requesting host. The response is then
 cached in the ARP table.
The arp command displays the contents of the ARP table. To
 display the entire ARP table, use the arp -a command. Individual entries can be displayed by specifying
 a hostname on the arp command line.
 For example, to check the entry for rodent in the
 ARP table on crab, enter:
 % arp rodent
rodent (172.16.12.2) at 0:50:ba:3f:c2:5e
Checking all entries in the table with the -a option produces the following
 output:
 % arp -a

Net to Media Table: IPv4
Device IP Address Mask Flags Phys Addr
------ -------------------- --------------- ----- ---------------
dnet0 rodent 255.255.255.255 00:50:ba:3f:c2:5e
dnet0 crab 255.255.255.255 SP 00:00:c0:dd:d4:da
dnet0 224.0.0.0 240.0.0.0 SM 01:00:5e:00:00:00
This table tells you that when crab forwards
 datagrams addressed to rodent, it puts those
 datagrams into Ethernet frames and sends them to Ethernet address
 00:50:ba:3f:c2:5e.
One of the entries in the sample table
 (rodent) was added dynamically as a result of
 queries by crab. Two of the entries
 (crab and 224.0.0.0) are
 static entries added as a result of the configuration of
 crab. We know this because both these entries have
 an S, for “static,” in the Flags field. The special
 224.0.0.0 entry is for all multicast addresses. The
 M flag means “mapping” and is used only for the multicast entry. On a
 broadcast medium like Ethernet, the Ethernet broadcast address is used
 to make final delivery to a multicast group.
The P flag on the crab entry means that this
 entry will be “published.” The “publish” flag indicates that when an ARP
 query is received for the IP address of crab, this
 system answers it with the Ethernet address 00:00:c0:dd:d4:da. This is
 logical because this is the ARP table on crab.
 However, it is also possible to publish Ethernet addresses for other
 hosts, not just for the local host. Answering ARP queries for other
 computers is called proxy ARP.
For example, assume that 24seven is the
 server for a remote system named clock connected
 via a dial-up telephone line. Instead of setting up routing to the
 remote system, the administrator of 24seven could
 place a static, published entry in the ARP table with the IP address of
 clock and the Ethernet address of
 24seven. Now when 24seven
 hears an ARP query for the IP address of clock, it
 answers with its own Ethernet address. The other systems on the network
 therefore send packets destined for clock to
 24seven. 24seven then forwards
 the packets on to clock over the telephone line.
 Proxy ARP is used to answer queries for systems that can’t answer for
 themselves.
ARP tables normally don’t require any attention because they are
 built automatically by the ARP protocol, which is very stable. However,
 if things go wrong, the ARP table can be manually adjusted. See Section 13.4.2 in Chapter 13 .

Protocols, Ports, and Sockets

Once data is routed through the network and delivered to a
 specific host, it must be delivered to the correct user or process. As
 the data moves up or down the TCP/IP layers, a mechanism is needed to
 deliver it to the correct protocols in each layer. The system must be
 able to combine data from many applications into a few transport
 protocols, and from the transport protocols into the Internet Protocol.
 Combining many sources of data into a single data stream is called multiplexing.
Data arriving from the network must be
 demultiplexed: divided for delivery to multiple
 processes. To accomplish this task, IP uses protocol numbers to identify transport protocols, and the transport
 protocols use port numbers to identify applications.
Some protocol and port numbers are reserved to identify
 well-known services . Well-known services are standard network protocols, such
 as FTP and Telnet, that are commonly used throughout the network. The
 protocol numbers and port numbers are assigned to well-known services by
 the Internet Assigned Numbers Authority (IANA). Officially
 assigned numbers are documented at http://www.iana.org . Unix systems define protocol and port numbers in two
 simple text files.
Protocol Numbers

The protocol number is a single byte in the third word
 of the datagram header. The value identifies the protocol in the layer
 above IP to which the data should be passed.
 On a Unix system, the protocol numbers are defined in
 /etc/protocols. This file is a simple table
 containing the protocol name and the protocol number associated with
 that name. The format of the table is a single entry per line,
 consisting of the official protocol name, separated by whitespace from
 the protocol number. The protocol number is separated by whitespace
 from the “alias” for the protocol name. Comments in the table begin
 with #. An
 /etc/protocols file is shown below:
% cat /etc/protocols
#ident "@(#)protocols 1.5 99/03/21 SMI" /* SVr4.0 1.1 */

#
Internet (IP) protocols
#
ip 0 IP # pseudo internet protocol number
icmp 1 ICMP # internet control message protocol
ggp 3 GGP # gateway-gateway protocol
tcp 6 TCP # transmission control protocol
egp 8 EGP # exterior gateway protocol
pup 12 PUP # PARC universal packet protocol
udp 17 UDP # user datagram protocol
hmp 20 HMP # host monitoring protocol
xns-idp 22 XNS-IDP # Xerox NS IDP
rdp 27 RDP # "reliable datagram" protocol

#
Internet (IPv6) extension headers
#
hopopt 0 HOPOPT # Hop-by-hop options for IPv6
ipv6 41 IPv6 # IPv6 in IP encapsulation
ipv6-route 43 IPv6-Route # Routing header for IPv6
ipv6-frag 44 IPv6-Frag # Fragment header for IPv6
esp 50 ESP # Encap Security Payload for IPv6
ah 51 AH # Authentication Header for IPv6
ipv6-icmp 58 IPv6-ICMP # IPv6 internet control message protocol
ipv6-nonxt 59 IPv6-NoNxt # IPv6No next header extension header
ipv6-opts 60 IPv6-Opts # Destination Options for IPv6
The listing above is the contents of the
 /etc/protocols file from a Solaris 8 workstation.
 This list of numbers is by no means complete. If you refer to the
 Protocol Numbers section of the IANA web site, you’ll see many more
 protocol numbers. However, a system needs to include only the numbers
 of the protocols that it actually uses. Even the list shown above is
 more than this specific workstation needed; for example, the second
 half of this table is used only on systems that run IPv6. Don’t worry
 if your system doesn’t use IPv6 or many of these other protocols. The
 additional entries do no harm.
What exactly does this table mean? When a datagram arrives and
 its destination address matches the local IP address, the IP layer
 knows that the datagram has to be delivered to one of the transport
 protocols above it. To decide which protocol should receive the
 datagram, IP looks at the datagram’s protocol number. Using this
 table, you can see that if the datagram’s protocol number is 6, IP
 delivers the datagram to TCP; if the protocol number is 17, IP
 delivers the datagram to UDP. TCP and UDP are the two transport layer
 services we are concerned with, but all of the protocols listed in the
 first half of the table use IP datagram delivery service directly.
 Some, such as ICMP, EGP, and GGP, have already been mentioned. Others
 haven’t, but you don’t need to be concerned with the minor protocols
 in order to configure and manage a TCP/IP network.

Port Numbers

After IP passes incoming data to the transport protocol,
 the transport protocol passes the data to the correct application
 process. Application processes (also called network services) are identified by port numbers, which are 16-bit values. The
 source port number, which identifies the process that sent the data,
 and the destination port number, which identifies the process that
 will receive the data, are contained in the first header word of each
 TCP segment and UDP packet.
Port numbers below 1024 are reserved for well-known services
 (like FTP and Telnet) and are assigned by the IANA. Well-known port
 numbers are considered “privileged ports” that should not be bound to
 a user process. Ports numbered from 1024 to 49151 are “registered
 ports.” IANA tries to maintain a registry of services that use these ports, but it does not
 officially assign port numbers in this range. The port numbers from
 49152 to 65535 are the “private ports.” Private port numbers are
 available for any use.
Port numbers are not unique between transport layer protocols;
 the numbers are unique only within a specific transport protocol. In
 other words, TCP and UDP can and do assign the same port numbers. It
 is the combination of protocol and port numbers that uniquely
 identifies the specific process to which the data should be
 delivered.
On Unix systems, port numbers are defined in the
 /etc/services file. There are many more network
 applications than there are transport layer protocols, as the size of
 the /etc/services table shows. A partial
 /etc/services file from a Solaris 8 workstation
 is shown here:
 rodent% head -22 /etc/services
#ident "@(#)services 1.25 99/11/06 SMI" /* SVr4.0 1.8 */
#
#
Copyright (c) 1999 by Sun Microsystems, Inc.
All rights reserved.
#
Network services, Internet style
#
tcpmux 1/tcp
echo 7/tcp
echo 7/udp
discard 9/tcp sink null
discard 9/udp sink null
systat 11/tcp users
daytime 13/tcp
daytime 13/udp
netstat 15/tcp
chargen 19/tcp ttytst source
chargen 19/udp ttytst source
ftp-data 20/tcp
ftp 21/tcp
telnet 23/tcp
The format of this file is very similar to the
 /etc/protocols file. Each single-line entry
 starts with the official name of the service separated by whitespace
 from the port number/protocol pairing associated with that service.
 The port numbers are paired with transport protocol names because
 different transport protocols may use the same port number. An
 optional list of aliases for the official service name may be provided after the port
 number/protocol pair.
The /etc/services file,
 combined with the /etc/protocols file, provides
 all of the information necessary to deliver data to the correct
 application. A datagram arrives at its destination based on the
 destination address in the fifth word of the datagram header. Using
 the protocol number in the third word of the datagram
 header, IP delivers the data from the datagram to the proper transport
 layer protocol. The first word of the data delivered to the transport
 protocol contains the destination port number that tells the transport
 protocol to pass the data up to a specific application. Figure 2-5 shows this delivery
 process.
[image: Protocol and port numbers]

Figure 2-5. Protocol and port numbers

Despite its size, the /etc/services file
 does not contain the port number of every important network service.
 You won’t find the port number of every Remote Procedure Call (RPC) service in the services file. Sun developed a
 different technique for reserving ports for RPC services that doesn’t
 involve getting a well-known port number assignment from IANA. RPC
 services generally use registered port numbers, which do not need to
 be officially assigned. When an RPC service starts, it registers its
 port number with the portmapper.
 The portmapper is a
 program that keeps track of the port numbers being used by RPC
 services. When a client wants to use an RPC service, it queries the
 portmapper running on the server to
 discover the port assigned to the service. The client can find
 portmapper because it is assigned
 well-known port 111. portmapper
 makes it possible to install widely used services without formally
 obtaining a well-known port.

Sockets

Well-known ports are standardized port numbers that
 enable remote computers to know which port to connect to for a
 particular network service. This simplifies the connection process because
 both the sender and receiver know in advance that data bound for a
 specific process will use a specific port. For example, all systems
 that offer Telnet do so on port 23.
Equally important is a second type of port number called a
 dynamically allocated port. As the
 name implies, dynamically allocated ports are not pre-assigned; they
 are assigned to processes when needed. The system ensures that it does
 not assign the same port number to two processes, and that the numbers
 assigned are above the range of well-known port numbers, i.e., above
 1024.
Dynamically allocated ports provide the flexibility needed to
 support multiple users. If a telnet user is assigned port number 23
 for both the source and destination ports, what port numbers are
 assigned to the second concurrent telnet user? To uniquely identify
 every connection, the source port is assigned a dynamically allocated
 port number, and the well-known port number is used for the
 destination port.
In the telnet example, the first user is given a random source
 port number and a destination port number of 23 (telnet). The second
 user is given a different random source port number and the same
 destination port. It is the pair of port numbers,
 source and destination, that uniquely identifies each network
 connection. The destination host knows the source port because it is
 provided in both the TCP segment header and the UDP packet header.
 Both hosts know the destination port because it is a well-known
 port.
Figure 2-6 shows the
 exchange of port numbers during the TCP handshake. The source host randomly generates a source port, in this
 example 3044. It sends out a segment with a source port of 3044 and a
 destination port of 23. The destination host receives the segment and
 responds back using 23 as its source port and 3044 as its destination
 port.
[image: Passing port numbers]

Figure 2-6. Passing port numbers

The combination of an IP address and a port number is called a
 socket. A socket uniquely identifies a single
 network process within the entire Internet. Sometimes the terms
 “socket” and “port number” are used interchangeably. In fact,
 well-known services are frequently referred to as “well-known
 sockets.” In the context of this discussion, a “socket” is the
 combination of an IP address and a port number. A pair of sockets, one
 socket for the receiving host and one for the sending host, define the
 connection for connection-oriented protocols such as TCP.
Let’s build on the example of dynamically assigned ports and
 well-known ports. Assume a user on host 172.16.12.2 uses Telnet to
 connect to host 192.168.16.2. Host 172.16.12.2 is the source host. The
 user is dynamically assigned a unique port number, 3382. The
 connection is made to the telnet service on the remote host, which is,
 according to the standard, assigned well-known port 23. The socket for
 the source side of the connection is 172.16.12.2.3382 (IP address
 172.16.12.2 plus port number 3382). For the destination side of the
 connection, the socket is 192.168.16.2.23 (address 192.168.16.2 plus
 port 23). The port of the destination socket is known by both systems
 because it is a well-known port. The port of the source socket is
 known by both systems because the source host informed the destination
 host of the source socket when the connection request was made. The
 socket pair is therefore known by both the source and destination
 computers. The combination of the two sockets uniquely identifies this
 connection; no other connection in the Internet has this socket pair.

Summary

This chapter has shown how data moves through the global Internet
 from one specific process on the source computer to a single cooperating
 process on the other side of the world. TCP/IP uses globally unique
 addresses to identify any computer on the Internet. It uses protocol
 numbers and port numbers to uniquely identify a single process running
 on that computer.
Routing directs the datagrams destined for a remote process
 through the maze of the global network. Routing uses part of the IP
 address to identify the destination network. Every system maintains a
 routing table that describes how to reach remote networks. The routing
 table usually contains a default route that is used if the table does
 not contain a specific route to the remote network. A route only
 identifies the next computer along the path to the destination. TCP/IP
 uses hop-by-hop routing to move datagrams one step closer to the
 destination until the datagram finally reaches the destination
 network.
At the destination network, final delivery is made by using the
 full IP address (including the host part) and converting that address to
 a physical layer address. Address Resolution Protocol (ARP) is an
 example of the type of protocol used to convert IP addresses to physical
 layer addresses. It converts IP addresses to Ethernet addresses for
 final delivery.
These first two chapters described the structure of the TCP/IP
 protocol stack and the way in which it moves data across a network. In
 the next chapter, we move up the protocol stack to look at the type of
 services the network provides to simplify configuration and use.

Chapter 3. Network Services

Some network servers provide essential computer-to-computer services. These differ from
 application services in that they are not directly accessed by end users.
 Instead, these services are used by networked computers to simplify the
 installation, configuration, and operation of the network.
The functions performed by the servers covered in this chapter are
 varied:
	Name service for converting IP addresses to hostnames

	Configuration servers that simplify the installation of
 networked hosts by handling part or all of the TCP/IP
 configuration

	Electronic mail services for moving mail through the network
 from the sender to the recipient

	File servers that allow client computers to transparently share
 files

	Print servers that allow printers to be centrally maintained and
 shared by all users

Servers on a TCP/IP network should not be confused with traditional PC LAN servers.
 Every Unix host on your network can be both a server and a client. The
 hosts on a TCP/IP network are “peers.” All systems are equal, and the network is not dependent on
 any one server. All of the services discussed in this chapter can be
 installed on one or several systems on your network.
We begin with a discussion of name service. It is an essential
 service that you will certainly use on your network.
Names and Addresses

The Internet Protocol document[17] defines names, addresses, and routes as follows:
A name indicates what we seek. An address indicates where it is.
 A route indicates how to get there.

Names, addresses, and routes all require the network
 administrator’s attention. Routes and addresses were covered in the
 previous chapter. This section discusses names and how they are
 disseminated throughout the network. Every network interface attached to
 a TCP/IP network is identified by a unique 32-bit IP address. A name
 (called a hostname) can be assigned
 to any device that has an IP address. Names are assigned to devices
 because, compared to numeric Internet addresses, names are easier to
 remember and type correctly. Names aren’t required by the network
 software, but they do make it easier for humans to use the
 network.
In most cases, hostnames and numeric addresses can be used
 interchangeably. A user wishing to telnet to the workstation at IP
 address 172.16.12.2 can enter:
% telnet 172.16.12.2
or use the hostname associated with that address and enter the
 equivalent command:
% telnet rodent.wrotethebook.com
Whether a command is entered with an address or a hostname, the
 network connection always takes place based on the IP address. The
 system converts the hostname to an address before the network connection
 is made. The network administrator is responsible for assigning names and
 addresses and storing them in the database used for the
 conversion.
Translating names into addresses isn’t simply a “local” issue. The
 command telnet rodent.wrotethebook.com is expected to work correctly on every
 host that’s connected to the network. If
 rodent.wrotethebook.com is connected to the
 Internet, hosts all over the world should be able to translate the name
 rodent.wrotethebook.com into the proper address.
 Therefore, some facility must exist for disseminating the hostname
 information to all hosts on the network.
There are two common methods for translating names into addresses.
 The older method simply looks up the hostname in a table called the
 host table.[18] The newer technique uses a distributed database system
 called the Domain Name System (DNS) to translate
 names to addresses. We’ll examine the host table first.

[17] RFC 791, Internet Protocol, Jon
 Postel, ISI, 1981, page 7.

[18] Sun’s Network Information Service (NIS) is an improved
 technique for accessing the host table. NIS is discussed later in
 this chapter.

The Host Table

The host table is a simple text file
 that associates IP addresses with hostnames. On most Unix systems, the
 table is in the file /etc/hosts. Each table entry in /etc/hosts
 contains an IP address separated by whitespace from a list of hostnames
 associated with that address. Comments begin with #.
The host table on rodent might contain the
 following entries:

Table of IP addresses and hostnames

172.16.12.2 rodent.wrotethebook.com rodent
127.0.0.1 localhost
172.16.12.1 crab.wrotethebook.com crab loghost
172.16.12.4 jerboas.wrotethebook.com jerboas
172.16.12.3 horseshoe.wrotethebook.com horseshoe
172.16.1.2 ora.wrotethebook.com ora
172.16.6.4 linuxuser.articles.wrotethebook.com linuxuser
The first entry in the sample table is for
 rodent itself. The IP address 172.16.12.2 is
 associated with the hostname
 rodent.wrotethebook.com and the alternate hostname
 (or alias) rodent. The hostname and all of its
 aliases resolve to the same IP address, in this case
 172.16.12.2.
Aliases provide for name changes, alternate spellings, and shorter
 hostnames. They also allow for “generic hostnames.” Look at the entry
 for 172.16.12.1. One of the aliases associated with that address is
 loghost. loghost is a special hostname used
 by Solaris in the syslog.conf configuration file. Some systems preconfigure programs
 like syslogd to direct their output
 to the host that has a certain generic name. You can direct the output
 to any host you choose by assigning it the appropriate generic name as
 an alias. Other commonly used generic hostnames are
 lprhost, mailhost, and
 dumphost.
The second entry in the sample file assigns the address 127.0.0.1
 to the hostname localhost. As we have discussed,
 the network address 127.0.0.0/8 is reserved for the loopback network. The host address 127.0.0.1 is a special
 address used to designate the loopback address of the local host—hence
 the hostname localhost. This special addressing
 convention allows the host to address itself the same way it addresses a
 remote host. The loopback address simplifies software by allowing common
 code to be used for communicating with local or remote processes. This
 addressing convention also reduces network traffic because the
 localhost address is associated with a loopback
 device that loops data back to the host before it is written out to the
 network.
Although the host table system has been superseded by DNS, it is
 still widely used for the following reasons:
	Most systems have a small host table containing name and
 address information about the important hosts on the local network.
 This small table is used when DNS is not running, such as during the
 initial system startup. Even if you use DNS, you should create a small
 /etc/hosts file containing entries for your
 host, for localhost, and for the gateways and
 servers on your local net.

	Sites that use NIS use the host table as input to the NIS host database. You
 can use NIS in conjunction with DNS, but even when they are used
 together, most NIS sites create host tables that have an entry for
 every host on the local network. Chapter
 9 explains how to use NIS with DNS.

	Very small sites that are not connected to the Internet
 sometimes use the host table. If there are few local hosts and the
 information about those hosts rarely changes, and there is also no
 need to communicate via TCP/IP with remote sites, then there is
 little advantage to using DNS.

The old host table system is inadequate for the global Internet for two reasons: inability to scale
 and lack of an automated update process. Prior to the
 development of DNS, an organization called the Network Information Center (NIC) maintained a large table
 of Internet hosts called the NIC host table. Hosts
 included in the table were called registered
 hosts, and the NIC placed hostnames
 and addresses into this file for all sites on the Internet.
Even when the host table was the primary means of translating
 hostnames to IP addresses, most sites registered only a limited number
 of key systems. But even with limited registration, the table grew so
 large that it became an inefficient way to convert hostnames to IP
 addresses. There is no way that a simple table could provide adequate
 service for the enormous number of hosts on today’s Internet.
Another problem with the host table system is that it lacks a
 technique for automatically distributing information about newly
 registered hosts. Newly registered hosts can be referenced by name as
 soon as a site receives the new version of the host table. However,
 there is no way to guarantee that the host table is distributed to a
 site, and no way to know who had a current version of the table and who
 did not. This lack of guaranteed uniform distribution is a major
 weakness of the host table
 system.

DNS

 DNS overcomes both major weaknesses of the host
 table:
	DNS scales well. It doesn’t rely on a single large table;
 it is a distributed database system that doesn’t bog down as the
 database grows. DNS currently provides information on approximately
 100,000,000 hosts, while fewer than 10,000 were listed in the host
 table.

	DNS guarantees that new host information will be disseminated
 to the rest of the network as it is needed.

Information is automatically disseminated, and only to those who
 are interested. Here’s how it works. If a DNS server receives a request
 for information about a host for which it has no information, it passes
 on the request to an authoritative server. An authoritative server is any server responsible for
 maintaining accurate information about the domain being queried. When
 the authoritative server answers, the local server saves, or
 caches , the answer for future use. The next time the local
 server receives a request for this information, it answers the request
 itself. The ability to control host information from an authoritative
 source and to automatically disseminate accurate information makes DNS
 superior to the host table, even for networks not connected to the
 Internet.
In addition to superseding the host table, DNS also replaces an
 earlier form of name service. Unfortunately, both the old and new
 services were called name service. Both are listed
 in the /etc/services file. In that file, the old
 software is assigned UDP port 42 and is called
 nameserver or name; DNS name
 service is assigned port 53 and is called domain.
 Naturally, there is some confusion between the two name servers. There
 shouldn’t be—the old name service is outdated. This text discusses DNS
 only; when we refer to “name service,” we always mean DNS.
The Domain Hierarchy

 DNS is a distributed hierarchical system for resolving
 hostnames into IP addresses. Under DNS, there is no central database
 with all of the Internet host information. The information is
 distributed among thousands of name servers organized into a hierarchy
 similar to the hierarchy of the Unix filesystem. DNS has a
 root domain at the top of the domain hierarchy that is served by a group of
 name servers called the root servers.
Just as directories in the Unix filesystem are found by
 following a path from the root directory through subordinate
 directories to the target directory, information about a domain is
 found by tracing pointers from the root domain through subordinate
 domains to the target domain.
Directly under the root domain are the top-level domains. There are two basic types of top-level domains—geographic and
 organizational. Geographic domains have been set aside for each country
 in the world and are identified by a two-letter country code. Thus,
 this type of domain is called a country code top-level domain (ccTLD). For example, the ccTLD for the United
 Kingdom is .uk, for Japan it is
 .jp, and for the United States it is
 .us. When .us is used as the
 top-level domain, the second-level domain is usually a state’s
 two-letter postal abbreviation (e.g., .wy.us for
 Wyoming). U.S. geographic domains are usually used by state
 governments and K-12 schools but are not widely used for other
 hosts.
Within the United States, the most popular top-level domains are
 organizational—that is, membership in a domain is based
 on the type of organization (commercial, military, etc.) to which the
 system belongs.[19] These domains are called generic top-level domains or general-purpose top-level domains (gTLDs).
The official generic top-level domains are:
	com
	Commercial organizations

	edu
	Educational institutions

	gov
	Government agencies

	mil
	Military organizations

	net
	Network support organizations, such as network operation
 centers

	int
	International governmental or quasi-governmental
 organizations

	org
	Organizations that don’t fit into any of the above, such
 as nonprofit organizations

	aero
	Organizations involved in the air-transport industry

	biz
	Businesses

	coop
	Cooperatives

	museum
	Museums

	pro
	Professionals, such as doctors and lawyers

	info
	Sites providing information

	name
	Individuals

These are the fourteen current gTLDs. The first seven domains in
 the list (com, edu,
 gov, mil,
 net, int, and
 org) have been part of the domain system since
 the beginning. The last seven domains in the list
 (aero, biz,
 coop, museum,
 pro, info, and
 name) were added in 2000 to increase the number
 of top-level domains. One motivation for creating the new gTLDs is the
 huge size of the .com domain. It is so large that
 it is difficult to maintain an efficient .com
 database. Whether or not these new gTLDs will be effective in drawing
 registrations away from the .com domain remains
 to be seen.
Figure 3-1 illustrates
 the domain hierarchy using six of the original organizational
 top-level domains. At the top is the root. Directly below the root
 domain are the top-level domains. The root servers have complete
 information only about the top-level domains. No servers, not even the
 root servers, have complete information about all domains, but the
 root servers have pointers to the servers for the second-level
 domains.[20] So while the root servers may not know the answer to a
 query, they know who to ask.
[image: Domain hierarchy]

Figure 3-1. Domain hierarchy

Creating Domains and Subdomains

 Several domain name registrars have been authorized by
 the Internet Corporation for Assigned Names and Numbers
 (ICANN), a nonprofit organization that was formed to take over the
 responsibility for allocating domain names and IP addresses.
 (Previously, the U.S. government oversaw this process.) ICANN has
 authorized these registrars to allocate domains. To obtain a domain,
 you apply to a registrar for authority to create a domain under one of
 the top-level domains. (The details of applying for a domain name are
 covered in Chapter 4.) Once the
 authority to create a domain is granted, you can create additional
 domains, called subdomains, under your domain. Let’s look at how this works at our imaginary
 company.
Our company is a commercial, profit-making (we hope) enterprise.
 It clearly falls into the com domain. We apply
 for authority to create a domain named
 wrotethebook within the com
 domain. The request for the new domain contains the hostnames and
 addresses of the servers that will provide name service for the new
 domain. When the registrar approves the request, it adds pointers in
 the com domain to the new domain’s name servers.
 Now when queries are received by the root servers for the
 wrotethebook.com domain, the queries are referred
 to the new name servers.
The registrar’s approval grants us complete authority over our
 new domain. Any registered domain has authority to divide its domain
 into subdomains. Our imaginary company can create separate domains for
 the division that handles special events
 (events.wrotethebook.com) and for the division
 that coordinates the preparation of magazine articles
 (articles.wrotethebook.com) without consulting
 the registrar or any other “higher authority.” The decision to add
 subdomains is completely up to the local domain administrator. The
 registrars delegate authority and distribute control over names to
 individual organizations. Once that authority has been delegated, the
 individual organization is responsible for managing the names it has
 been assigned.
A new subdomain becomes accessible when pointers to the servers
 for the new domain are placed in the domain above it (see Figure 3-1). Remote servers cannot
 locate the wrotethebook.com domain until a
 pointer to its server is placed in the com
 domain. Likewise, the subdomains events and
 articles cannot be accessed until pointers to
 them are placed in wrotethebook.com. The DNS
 database record that points to the name servers for a domain is the NS
 (name server) record. This record contains the name of the domain and
 the name of the host that is a server for that domain. Chapter 8 discusses the actual DNS
 database. For now, let’s just think of these records as
 pointers.
Figure 3-2 illustrates
 how the NS records are used as pointers. A local server has a request
 to resolve linuxuser.articles.wrotethebook.com
 into an IP address. The server has no information on
 wrotethebook.com in its cache, so it queries a
 root server (a.root-servers.net in our example)
 for the address. The root server replies with an NS record that points
 to crab.wrotethebook.com as the source of
 information on wrotethebook.com. The local server
 queries crab, which points it to
 linuxmag.articles.wrotethebook.com as the server
 for articles.wrotethebook.com. The local server
 then queries linuxmag.articles.wrotethebook.com
 and finally receives the desired IP address. The local server caches
 the A (address) record and each of the NS records. The next time it
 has a query for
 linuxuser.articles.wrotethebook.com, it will
 answer the query itself. And the next time the server has a query for
 other information in the wrotethebook.com domain,
 it will go directly to crab without involving a
 root server.
[image: A DNS query]

Figure 3-2. A DNS query

Figure 3-2 provides
 examples of both recursive and nonrecursive searches. The remote
 servers are examples of nonrecursive servers. The remote servers tell the local server who to
 ask next. The local server must follow the pointers itself. The local
 server is an example of a recursive server. In a
 recursive search, the server follows the pointers and returns the
 final answer for the query. The root servers generally perform only
 nonrecursive searches. Most other servers perform
 recursive searches.

Domain Names

Domain names reflect the domain hierarchy. They are written from most
 specific (a hostname) to least specific (a top-level domain), with
 each part of the domain name separated by a dot.[21] A fully qualified domain name (FQDN)
 starts with a specific host and ends with a top-level domain.
 rodent.wrotethebook.com is the FQDN of
 workstation rodent, in the
 wrotethebook domain, of the
 com domain.
Domain names are not always written as fully qualified domain
 names. They can be written relative to a default domain in the same way that Unix pathnames are written
 relative to the current (default) working directory. DNS adds the
 default domain to the user input when constructing the query for the
 name server. For example, if the default domain is
 wrotethebook.com, a user can omit the
 wrotethebook.com extension for any hostnames in
 that domain. crab.wrotethebook.com could be
 addressed simply as crab; DNS adds the default
 domain wrotethebook.com.
On most systems, the default domain name is added only if there is no dot in
 the requested hostname. For example,
 linuxuser.articles would not be extended and
 would therefore not be resolved by the name server because
 articles is not a valid top-level domain. But the
 hostname crab, which contains no dot, would be
 extended with wrotethebook.com, giving the valid
 domain name crab.wrotethebook.com. Like almost
 everything on a Unix system, this behavior is configurable, as you’ll
 see in Chapter 8.
How the default domain is used and how queries are constructed
 vary depending on the software configuration. For this reason, you
 should exercise caution when embedding a hostname in a program. Only a
 fully qualified domain name or an IP address is immune from changes in
 the name server software.

BIND, Resolvers, and named

 The implementation of DNS used on Unix systems is the
 Berkeley Internet Name Domain (BIND) software. Descriptions in this text are based on
 the BIND name server implementation.
DNS software is conceptually divided into two components—a
 resolver and a name server. The resolver
 is the software that forms the query; it asks the
 questions. The name server is the process that responds to the query; it answers
 the questions.
The resolver does not exist as a distinct process running on the
 computer. Rather, the resolver is a library of software routines
 (called the resolver code) that is linked into any program that needs to look up
 addresses. This library knows how to ask the name server for host
 information.
Under BIND, all computers use resolver code, but not all
 computers run the name server process. A computer that does not run a
 local name server process and relies on other systems for all name
 service answers is called a resolver-only system.
 Resolver-only configurations are common on single-user systems. Larger
 Unix systems usually run a local name server process.
The BIND name server runs as a distinct process called
 named (pronounced “name” “d”). Name servers are classified
 differently depending on how they are configured. The three main
 categories of name servers are:
	Master
	 The master server (also
 called the primary server) is the server
 from which all data about a domain is derived. The master server
 loads the domain’s information directly from a disk file created
 by the domain administrator. Master servers are
 authoritative, meaning they have complete information about their
 domain and their responses are always accurate. There should be
 only one master server for a domain.

	Slave
	Slave servers (also known as
 secondary servers) transfer the entire domain database from the
 master server. A particular domain’s database file is called a
 zone file; copying this file to a slave
 server is called a zone file transfer. A slave
 server assures that it has current information about a domain by
 periodically transferring the domain’s zone file. Slave servers
 are also authoritative for their domain.

	Caching-only
	 Caching-only servers get the
 answers to all name service queries from other name servers.
 Once a caching server has received an answer to a query, it
 caches the information and will use it in the future to answer
 queries itself. Most name servers cache answers and use them in
 this way. What makes the caching-only server unique is that this
 is the only technique it uses to build its domain database.
 Caching servers are non-authoritative,
 meaning that their information is second-hand and
 incomplete, though usually accurate.

The relationship between the different types of servers is an
 advantage that DNS has over the host table for most networks, even
 very small networks. Under DNS, there should be only one primary name
 server for each domain. DNS data is entered into the primary server’s
 database by the domain administrator. Therefore, the administrator has central control of the
 hostname information. An automatically distributed, centrally
 controlled database is an advantage for a network of any size. When
 you add a new system to the network, you don’t need to modify the
 /etc/hosts files on every node in the network;
 you modify only the DNS database on the primary server. The
 information is automatically disseminated to the other servers by full
 zone transfers or by caching single answers.

Network Information Service

 The Network Information Service (NIS)[22] is an administrative database system developed by Sun
 Microsystems. It provides central control and automatic dissemination
 of important administrative files. NIS can be used in conjunction with
 DNS or as an alternative to it.
NIS and DNS have similarities and differences. Like DNS, the Network Information Service overcomes the
 problem of accurately distributing the host table, but unlike DNS, it
 provides service only for local area networks. NIS is not intended as
 a service for the Internet as a whole. Another difference is that NIS
 provides access to a wider range of information than DNS—much more
 than name-to-address conversions. It converts several standard Unix
 files into databases that can be queried over the network. These
 databases are called NIS maps.
NIS converts files such as /etc/hosts and
 /etc/networks into maps. The maps
 can be stored on a central server where they can be centrally
 maintained while still being fully accessible to the NIS clients.
 Because the maps can be both centrally maintained and automatically
 disseminated to users, NIS overcomes a major weakness of the host
 table. But NIS is not an alternative to DNS for Internet hosts because
 the host table, and therefore NIS, contains only a fraction of the
 information available to DNS. For this reason DNS and NIS are usually
 used together.
This chapter has introduced the concept of hostnames and
 provided an overview of the various techniques used to translate
 hostnames into IP addresses. This is by no means the complete story.
 Assigning hostnames and managing name service are important tasks for
 the network administrator. These topics are revisited several times in
 this book and discussed in extensive detail in Chapter 8.
Name service is not the only service that you will install on
 your network. Another service that you are sure to use is electronic
 mail.

[19] There is no relationship between the organizational and
 geographic domains in the U.S. Each system belongs to either an
 organizational domain or a geographic domain,
 not both.

[20] Figure 3-1 shows two
 second-level domains: nih under
 gov and wrotethebook
 under com.

[21] The root domain is identified by a single dot; i.e., the
 root name is a null name written simply as ".".

[22] NIS was formerly called the “Yellow Pages,” or
 yp. Although the name has changed, the
 abbreviation yp is still used.

Mail Services

 Users consider electronic mail the most important network
 service because they use it for interpersonal communications. Some
 applications are newer and fancier; others consume more network
 bandwidth; and others are more important for the continued operation of
 the network. But email is the application people use to communicate with
 each other. It isn’t very fancy, but it is vital.
TCP/IP provides a reliable, flexible email system built on a few
 basic protocols. These protocols are Simple Mail Transfer Protocol (SMTP), Post Office Protocol
 (POP), Internet Message Access Protocol (IMAP), and
 Multipurpose Internet Mail Extensions (MIME). There
 are other TCP/IP mail protocols that have some interesting features, but
 they are not yet widely implemented.
Our coverage concentrates on the four protocols you are most
 likely to use building your network: SMTP, POP, IMAP, and MIME. We start
 with SMTP, the foundation of all TCP/IP email systems.
Simple Mail Transfer Protocol

 SMTP is the TCP/IP mail delivery protocol. It moves mail
 across the Internet and across your local network. SMTP is defined in
 RFC 821, A Simple Mail Transfer Protocol. It runs over the reliable, connection-oriented
 service provided by Transmission Control Protocol
 (TCP), and it uses well-known port number 25.[23] Table 3-1
 lists some of the simple, human-readable commands used by SMTP.
Table 3-1. SMTP commands
	Command
	Syntax
	Function

	Hello
	HELO
 <sending-host>

 EHLO <sending-host>

	Identify sending SMTP

	From
	MAIL
 FROM:<from-address>

	Sender address

	Recipient
	RCPT
 TO:<to-address>

	Recipient address

	Data
	DATA
	Begin a message

	Reset
	RSET
	Abort a message

	Verify
	VRFY <string>

	Verify a username

	Expand
	EXPN <string>

	Expand a mailing list

	Help
	HELP
 [string]
	Request online help

	Quit
	QUIT
	End the SMTP session

SMTP is such a simple protocol you can literally do it yourself.
 telnet to port 25 on a remote host
 and type mail in from the command line using the SMTP commands. This
 technique is sometimes used to test a remote system’s SMTP server, but
 we use it here to illustrate how mail is delivered between systems.
 The example below shows mail that Daniel on
 rodent.wrotethebook.com manually input and sent
 to Tyler on crab.wrotethebook.com.
$ telnet crab 25
Trying 172.16.12.1...
Connected to crab.wrotethebook.com.
Escape character is '^]'.
220 crab.wrotethebook.com ESMTP Sendmail 8.9.3+Sun/8.9.3; Thu, 19 Apr 2001 16:28:01-0400 (EDT)
HELO rodent.wrotethebook.com
250 crab.wrotethebook.com Hello rodent [172.16.12.2], pleased to meet you
MAIL FROM:<daniel@rodent.wrotethebook.com>
250 <daniel@rodent.wrotethebook.com>... Sender ok
RCPT TO:<tyler@crab.wrotethebook.com>
250 <tyler@crab.wrotethebook.com>... Recipient ok
DATA
354 Enter mail, end with "." on a line by itself
Hi Tyler!
.
250 QAA00316 Message accepted for delivery
QUIT
221 crab.wrotethebook.com closing connection
Connection closed by foreign host.
The user input is shown in bold type. All of the other lines are
 output from the system. This example shows how simple it is. A TCP
 connection is opened. The sending system identifies itself. The
 From address and the To
 address are provided. The message transmission begins with the DATA
 command and ends with a line that contains only a period (.). The session terminates
 with a QUIT command. Very simple, and very few commands are
 used.
There are other commands (SEND, SOML, SAML, and TURN) defined in
 RFC 821 that are optional and not widely implemented. Even some of the
 commands that are implemented are not commonly used. The commands
 HELP, VRFY, and EXPN are designed more for interactive use than for
 the normal machine-to-machine interaction used by SMTP. The following
 excerpt from a SMTP session shows how these odd commands
 work.
 HELP
214-This is Sendmail version 8.9.3+Sun
214-Topics:
214- HELO EHLO MAIL RCPT DATA
214- RSET NOOP QUIT HELP VRFY
214- EXPN VERB ETRN DSN
214-For more info use "HELP <topic>".
214-For local information contact postmaster at this site.
214 End of HELP info
HELP RSET
214-RSET
214- Resets the system.
214 End of HELP info
VRFY <jane>
250 <jane@brazil.wrotethebook.com>
VRFY <mac>
250 Kathy McCafferty <<mac>>
EXPN <admin>
250-<sara@horseshoe.wrotethebook.com>
250 David Craig <<david>>
250-<tyler@wrotethebook.com>
The HELP command prints out a summary of the commands
 implemented on the system. The HELP RSET command specifically requests
 information about the RSET command. Frankly, this help system isn’t
 very helpful!
The VRFY and EXPN commands are more useful but are often disabled for
 security reasons because they provide user account information that
 might be exploited by network intruders. The EXPN <admin> command asks for a listing of
 the email addresses in the mailing list admin,
 and that is what the system provides. The VRFY command asks for information about an individual instead of a
 mailing list. In the case of the VRFY <mac> command,
 mac is a local user account, and the user’s
 account information is returned. In the case of VRFY <jane>, jane is
 an alias in the /etc/aliases file. The value
 returned is the email address for jane found in
 that file. The three commands in this example are interesting but
 rarely used. SMTP depends on the other commands to get the real work
 done.
SMTP provides direct end-to-end mail delivery. Other mail
 systems, like UUCP and X.400, use store and forward
 protocols that move mail toward its destination one hop at a time,
 storing the complete message at each hop and then forwarding it on to
 the next system. The message proceeds in this manner until final
 delivery is made. Figure 3-3
 illustrates both store-and-forward and direct-delivery mail systems.
 The UUCP address clearly shows the path that the mail takes to its
 destination, while the SMTP mail address implies direct
 delivery.[24]
[image: Mail delivery systems]

Figure 3-3. Mail delivery systems

Direct delivery allows SMTP to deliver mail without relying on
 intermediate hosts. If the delivery fails, the local system knows it
 right away. It can inform the user that sent the mail or queue the
 mail for later delivery without reliance on remote systems. The
 disadvantage of direct delivery is that it requires both systems to be
 fully capable of handling mail. Some systems cannot handle mail,
 particularly small systems such as PCs or mobile systems such as
 laptops. These systems are usually shut down at the end of the day and
 are frequently offline. Mail directed from a remote host fails with a
 “cannot connect” error when the local system is turned off or is offline. To
 handle these cases, features in the DNS system are used to route the
 message to a mail server in lieu of direct delivery. The mail is then
 moved from the server to the client system when the client is back
 online. One of the protocols TCP/IP networks use for this task
 is POP.

Post Office Protocol

 There are two versions of Post Office Protocol: POP2 and
 POP3. POP2, defined in RFC 937, uses port 109, and POP3, defined in
 RFC 1725, uses port 110. These are incompatible protocols that
 use different commands, although they perform the same basic
 functions. The POP protocols verify the user’s login name and password
 and move the user’s mail from the server to the user’s local mail
 reader. POP2 is rarely used anymore, so this section focuses on
 POP3.
A sample POP3 session clearly illustrates how a POP protocol
 works. POP3 is a simple request/response protocol, and just as with
 SMTP, you can type POP3 commands directly into its well-known port
 (110) and observe their effect. Here’s an example with the user input
 shown in bold type:
% telnet crab 110
Trying 172.16.12.1 ...
Connected to crab.wrotethebook.com.
Escape character is '^]'.
+OK crab POP3 Server Process 3.3(1) at Mon 16-Apr-2001 4:48PM-EDT
USER hunt
+OK User name (hunt) ok. Password, please.
PASS Watts?Watt?
+OK 3 messages in folder NEWMAIL (V3.3 Rev B04)
STAT
+OK 3 459
RETR 1
+OK 146 octets
...The full text of message 1...
 DELE 1
+OK message # 1 deleted
RETR 2
+OK 155 octets
...The full text of message 2...
 DELE 2
+OK message # 2 deleted
RETR 3
+OK 158 octets
...The full text of message 3...
 DELE 3
+OK message # 3 deleted
QUIT
+OK POP3 crab Server exiting (0 NEWMAIL messages left) Connection closed by foreign host.
The USER command provides the username, and the PASS command provides the password for the account of
 the mailbox that is being retrieved. (This is the same username and
 password the user would use to log into the mail server.) In response
 to the STAT command, the server sends a count of the number of
 messages in the mailbox and the total number of bytes contained in
 those messages. In the example, there are three messages that contain
 a total of 459 bytes. RETR 1 retrieves the full text of the first message. DELE 1
 deletes that message from the server. Each message is
 retrieved and deleted in turn. The client ends the session with the
 QUIT command. Simple! Table 3-2 lists the full set of
 POP3 commands.
Table 3-2. POP3 commands
	Command
	Function

	USER username

	The user’s account name

	PASS password

	The user’s password

	STAT
	Display the number of unread
 messages/bytes

	RETR n
	Retrieve message number
 n

	DELE n
	Delete message number n

	LAST
	Display the number of the last message
 accessed

	LIST [n]
	Display the size of message
 n or of all messages

	RSET
	Undelete all messages; reset message number to
 1

	TOP n l
	Print the headers and l
 lines of message n

	NOOP
	Do nothing

	QUIT
	End the POP3 session

The retrieve (RETR) and delete (DELE) commands use message numbers that allow messages to be processed
 in any order. Additionally, there is no direct link between retrieving
 a message and deleting it. It is possible to delete a message that has
 never been read or to retain a message even after it has been read.
 However, POP clients do not normally take advantage of these
 possibilities. On an average POP server, the entire contents of the
 mailbox are moved to the client and either deleted from the server or
 retained as if never read. Deletion of individual messages on the
 client is not reflected on the server because all of the messages are
 treated as a single unit that is either deleted or retained after the
 initial transfer of data to the client. Email clients that want to
 remotely maintain a mailbox on the server are more likely to
 use IMAP.

Internet Message Access Protocol

Internet Message Access Protocol (IMAP) is an alternative to POP. It provides the same basic
 service as POP and adds features to support mailbox synchronization,
 which is the ability to read individual mail messages on a client or
 directly on the server while keeping the mailboxes on both systems
 completely up to date. IMAP provides the ability to manipulate
 individual messages on the client or the server and to have those
 changes reflected in the mailboxes of both systems.
IMAP uses TCP for reliable, sequenced data delivery. The IMAP
 port is TCP port 143.[25] Like the POP protocol, IMAP is also a request/response
 protocol with a small set of commands. The IMAP command set is
 somewhat more complex than the one used by POP because IMAP does more,
 yet there are still fewer than 25 IMAP commands. Table 3-3 lists the basic set of
 IMAP commands as defined in RFC 2060, Internet Message Access Protocol - Version 4rev1.
Table 3-3. IMAP4 commands
	Command
	Function

	CAPABILITY
	List the features supported by the
 server

	NOOP
	Literally “No Operation”

	LOGOUT
	Close the connection

	AUTHENTICATE
	Request an alternate authentication
 method

	LOGIN
	Provide the username and password for plain-text
 authentication

	SELECT
	Open a mailbox

	EXAMINE
	Open a mailbox as read-only

	CREATE
	Create a new mailbox

	DELETE
	Remove a mailbox

	RENAME
	Change the name of a mailbox

	SUBSCRIBE
	Add a mailbox to the list of active
 mailboxes

	UNSUBSCRIBE
	Delete a mailbox name from the list of active
 mailboxes

	LIST
	Display the requested mailbox names from the set
 of all mailbox names

	LSUB
	Display the requested mailbox names from the set
 of active mailboxes

	STATUS
	Request the status of a mailbox

	APPEND
	Add a message to the end of the specified
 mailbox

	CHECK
	Force a checkpoint of the current
 mailbox

	CLOSE
	Close the mailbox and remove all messages marked
 for deletion

	EXPUNGE
	Remove from the current mailbox all messages
 marked for deletion

	SEARCH
	Display all messages in the mailbox that match
 the specified search criterion

	FETCH
	Retrieve a message from the
 mailbox

	STORE
	Modify a message in the mailbox

	COPY
	Copy the specified messages to the end of the
 specified mailbox

	UID
	Locate a message based on the message’s unique
 identifier

This command set clearly illustrates the “mailbox” orientation
 of IMAP. The protocol is designed to remotely maintain mailboxes that
 are stored on the server. The protocol commands show that. Despite the
 increased complexity of the protocol, it is still possible to run a
 simple test of your IMAP server using telnet and a small number of the IMAP
 commands.
$ telnet localhost 143
Trying 127.0.0.1...
Connected to rodent.wrotethebook.com.
Escape character is '^]'.
* OK rodent.wrotethebook.com IMAP4rev1 v12.252 server ready
a0001 LOGIN craig Wats?Watt?
a0001 OK LOGIN completed
a0002 SELECT inbox
* 3 EXISTS
* 0 RECENT
* OK [UIDVALIDITY 965125671] UID validity status
* OK [UIDNEXT 5] Predicted next UID
* FLAGS (\Answered \Flagged \Deleted \Draft \Seen)
* OK [PERMANENTFLAGS (* \Answered \Flagged \Deleted \Draft \Seen)] Permanent flags
* OK [UNSEEN 1] first unseen message in /var/spool/mail/craig
a0002 OK [READ-WRITE] SELECT completed
a0003 FETCH 1 BODY[TEXT]
* 1 FETCH (BODY[TEXT] {1440}
... an e-mail message that is 1440 bytes long ...
* 1 FETCH (FLAGS (\Seen))
a0003 OK FETCH completed
a0004 STORE 1 +FLAGS \DELETED
* 1 FETCH (FLAGS (\Seen \Deleted))
a0004 OK STORE completed
a0005 CLOSE
a0005 OK CLOSE completed
a0006 LOGOUT
* BYE rodent.wrotethebook.com IMAP4rev1 server terminating connection
a0006 OK LOGOUT completed
Connection closed by foreign host.
The first three lines and the last line come from telnet; all other messages come from IMAP.
 The first IMAP command entered by the user is LOGIN, which provides
 the username and password from /etc/passwd used to authenticate this user.
 Notice that the command is preceded by the string A0001. This is a tag,
 which is a unique identifier generated by the client for each command.
 Every command must start with a tag. When you manually type in
 commands for a test, you are the source of the tags.
IMAP is a mailbox-oriented protocol. The SELECT command selects the mailbox that will be used. In
 the example, the user selects a mailbox named “inbox”. The IMAP server
 displays the status of the mailbox, which contains three messages.
 Associated with each message are a number of flags. The flags are used
 to manage the messages in the mailbox by marking them as Seen, Unseen,
 Deleted, and so on.
The FETCH command downloads a message from the mailbox. In
 the example, the user downloads the text of the message, which is what
 you normally see when reading a message. It is possible, however, to
 download only the headers or flags.
After the message is downloaded, the user deletes it. This is
 done by writing the Deleted flag with the STORE command. The DELETE command is not used to delete messages; it
 deletes entire mailboxes. Individual messages are marked for deletion
 by setting the Delete flag. Messages with the Delete flag set are not
 deleted until either the EXPUNGE command is issued or the mailbox is explicitly
 closed with the CLOSE command, as is done in the example. The session is
 then terminated with the LOGOUT command.
Clearly, the IMAP protocol is more complex than POP; it is just
 about at the limits of what can reasonably be typed in manually. Of
 course, you don’t really enter these commands manually. The desktop
 system and the server exchange them automatically. They are shown here
 only to give you a sense of the IMAP protocol. About the only IMAP
 test you would ever do manually is to test if imapd is up and running. To do that, you
 don’t even need to log in; if the server answers the telnet, you know it is up and running. All
 you then need to do is send the LOGOUT command to gracefully
 close the connection.

Multipurpose Internet Mail Extensions

 The last email protocol on our quick tour is
 Multipurpose Internet Mail Extensions
 (MIME).[26] As its name implies, MIME is an extension of the
 existing TCP/IP mail system, not a replacement for it. MIME is more
 concerned with what the mail system delivers than with the mechanics
 of delivery. It doesn’t attempt to replace SMTP or TCP; it extends the
 definition of what constitutes “mail.”
The structure of the mail message carried by SMTP is defined in
 RFC 822, Standard for the Format of ARPA Internet Text Messages. RFC 822 defines a set of mail
 headers that are so widely accepted they are used by many mail systems
 that do not use SMTP. This is a great benefit to email because it
 provides a common ground for mail translation and delivery through
 gateways to different mail networks. MIME extends RFC 822 into two
 areas not covered by the original RFC:
	Support for various data types. The mail system defined by
 RFC 821 and RFC 822 transfers only 7-bit ASCII data. This is
 suitable for carrying text data composed of U.S. ASCII characters,
 but it does not support several languages that have richer
 character sets, nor does it support binary data transfer.

	Support for complex message bodies. RFC 822 doesn’t provide
 a detailed description of the body of an electronic message. It
 concentrates on the mail headers.

MIME addresses these two weaknesses by defining encoding
 techniques for carrying various forms of data and by defining a
 structure for the message body that allows multiple objects to be
 carried in a single message. RFC 1521, Multipurpose Internet Mail Extensions Part One: Format of Internet Message Bodies,
 defines two headers that give structure to the mail message body and
 allow it to carry various forms of data. These are the
 Content-Type header and the
 Content-Transfer-Encoding header.
As the name implies, the Content-Type header defines the
 type of data being carried in the message. The header has a Subtype
 field that refines the definition. Many subtypes have been defined
 since the original RFC was released. A current list of MIME types can
 be obtained from the Internet.[27] The original RFC defines seven initial content types and
 a few subtypes:
	text
	Text data. RFC 1521 defines text subtypes
 plain and richtext. More than 30 subtypes have since been added,
 including enriched,
 xml and html.

	application
	 Binary data. The primary subtype defined in RFC
 1521 is octet-stream, which indicates the data is a stream of 8-bit
 binary bytes. One other subtype,
 PostScript, is defined in the standard. Since then more than
 200 subtypes have been defined. They specify binary data
 formatted for a particular application. For example,
 msword is an application subtype.

	image
	 Still graphic images. Two subtypes are defined in
 RFC 1521: jpeg and
 gif. More than 20 additional subtypes have
 since been added, including widely used image data standards
 such as tiff, cgm, and
 g3fax.

	video
	Moving graphic images. The initially defined
 subtype was mpeg, which is a widely used standard for computer video
 data. A few others have since been added, including
 quicktime.

	audio
	Audio data. The only subtype initially defined for
 audio was basic, which means the sounds are encoded using pulse
 code modulation (PCM). About 20 additional audio types, such as
 MP4A-LATM, have since been added.

	multipart
	Data composed of multiple independent sections. A
 multipart message body is made up of several independent parts.
 RFC 1521 defines four subtypes. The primary subtype is
 mixed, which means that each part of the message can be
 data of any content type. Other subtypes are
 alternative, meaning that the same data is repeated in each
 section in different formats;
 parallel, meaning that the data in the various parts is to
 be viewed simultaneously; and
 digest, meaning that each section is data of the type
 message. Several subtypes have since been
 added, including support for voice messages
 (voice-message) and
 encrypted messages.

	message
	 Data that is an encapsulated mail message. RFC
 1521 defines three subtypes. The primary subtype,
 rfc822, indicates that the data is a complete RFC 822
 mail message. The other subtypes, partial
 and External-body, are both designed to handle large messages.
 partial allows large encapsulated messages
 to be split among multiple MIME messages.
 External-body points to an external source
 for the contents of a large message body so that only the
 pointer, not the message itself, is contained in the MIME
 message. Two additional subtypes that have been defined are
 news for carrying network news and
 http for HTTP traffic formatted to comply with MIME
 content typing.

 The Content-Transfer-Encoding
 header identifies the type of encoding used on the data. Traditional
 SMTP systems forward only 7-bit ASCII data with a line length of less
 than 1000 bytes. Since the data from a MIME system may be forwarded
 through gateways that support only 7-bit ASCII, the data can be
 encoded. RFC 1521 defines six types of encoding. Some types are used
 to identify the encoding inherent in the data. Only two types are
 actual encoding techniques defined in the RFC. The six encoding types
 are:
	7bit
	 U.S. ASCII data. No encoding is performed on 7-bit
 ASCII data.

	8bit
	 Octet data. No encoding is performed. The data is
 binary, but the lines of data are short enough for SMTP
 transport; i.e., the lines are less than 1000 bytes long.

	binary
	 Binary data. No encoding is performed. The data is
 binary and the lines may be longer than 1000 bytes. There is no
 difference between binary and
 8bit data except the line length
 restriction; both types of data are unencoded byte (octet)
 streams. MIME does not modify unencoded bitstream data.

	quoted-printable
	 Encoded text data. This encoding technique handles
 data that is largely composed of printable ASCII text. The ASCII
 text is sent unencoded, while bytes with a value greater than
 127 or less than 33 are sent encoded as strings made up of the
 equals sign followed by the hexadecimal value of the byte. For
 example, the ASCII form feed character, which has the
 hexadecimal value of 0C, is sent as =0C.
 Naturally, there’s more to it than this—for example, the literal
 equals sign has to be sent as =3D, and the
 newline at the end of each line is not encoded. But this is the
 general idea of how quoted-printable data
 is sent.

	base64
	 Encoded binary data. This encoding technique can
 be used on any byte-stream data. Three octets of data are
 encoded as four 6-bit characters, which increases the size of
 the file by one-third. The 6-bit characters are a subset of U.S.
 ASCII, chosen because they can be handled by any type of mail
 system. The maximum line length for base64
 data is 76 characters. Figure
 3-4 illustrates this 3-to-4 encoding technique.

	x-token
	Specially encoded data. It is possible for
 software developers to define their own private encoding
 techniques. If they do so, the name of the encoding technique
 must begin with X-. Doing this is strongly
 discouraged because it limits interoperability between mail
 systems.

[image: base64 encoding]

Figure 3-4. base64 encoding

The number of supported data types and encoding techniques grows
 as new data formats appear and are used in message transmissions. New
 RFCs constantly define new data types and encoding. Read the latest
 RFCs to keep up with MIME developments.
MIME defines data types that SMTP was not designed to
 carry. To handle these and other future requirements, RFC 1869, SMTP Service Extensions,
 defines a technique for making SMTP extensible.
 The RFC does not define new services for SMTP; in fact, the only
 service extensions mentioned in the RFC are defined in other RFCs.
 What this RFC does define is a simple mechanism for systems to
 negotiate which SMTP extensions are supported. The RFC defines a new
 hello command (EHLO) and the legal responses to that command.
 One response is for the receiving system to return a list of the SMTP
 extensions it supports. This response allows the sending system to
 know what extended services can be used, and to avoid those that are
 not implemented on the remote system. SMTP implementations that
 support the EHLO command are called Extended SMTP (ESMTP).
Several ESMTP service extensions have been defined for MIME
 mailers. Table 3-4 lists
 some of these. The table lists the EHLO keyword associated with each
 extension, the number of the RFC that defines it, and its purpose.
 These service extensions are just an example. Other have been
 defined to support SMTP enhancements.
Table 3-4. SMTP service extensions
	Keyword
	RFC
	Function

	8BITMIME
	1652
	Accept 8bit binary data

	CHUNKING
	1830
	Accept messages cut into chunks

	CHECKPOINT
	1845
	Checkpoint/restart mail
 transactions

	PIPELINING
	1854
	Accept multiple commands in a single
 send

	SIZE
	1870
	Display maximum acceptable message
 size

	DSN
	1891
	Provide delivery status
 notifications

	ETRN
	1985
	Accept remote queue processing
 requests

	ENHANCEDSTATUSCODES
	2034
	Provide enhanced error codes

	STARTTLS
	2487
	Use Transport Layer Security to encrypt the email
 exchange

	AUTH
	2554
	Use strong authentication to identify the email
 source

It is easy to check which extensions are supported by your
 server by using the EHLO command.
 The following example is from a generic Solaris 8 system, which comes
 with sendmail 8.9.3:
> telnet localhost 25
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
220 crab.wrotethebook.com ESMTP Sendmail 8.9.3+Sun/8.9.3; Mon, 23 Apr 2001 11:00:35-0400 (EDT)
EHLO crab
250-crab.wrotethebook.com Hello localhost [127.0.0.1], pleased to meet you
250-EXPN
250 HELP
250-8BITMIME
250-SIZE
250-DSN
250-ETRN
250-VERB
250-ONEX
250-XUSR
QUIT
221 crab.foobirds.org closing connection
Connection closed by foreign host.
The sample system lists nine commands in response to the EHLO
 greeting. Two of these, EXPN and HELP, are standard SMTP commands that aren’t
 implemented on all systems (the standard commands are listed in Table 3-1). 8BITMIME, SIZE, DSN,
 and ETRN are ESMTP extensions, all of which are described in Table 3-4. The last three keywords
 in the response are VERB, ONEX, and XUSR. All of these are specific to
 sendmail version 8. None is defined in an RFC. VERB simply places the sendmail server in verbose mode. ONEX
 limits the session to a single message transaction. XUSR
 is equivalent to the -U sendmail
 command-line argument.[28] As the last three keywords indicate, the RFCs allow for
 private ESMTP extensions.
The specific extensions implemented on each system are
 different. For example, on a generic Solaris 2.5.1 system, only three keywords (EXPN, SIZE, and HELP) are
 displayed in response to EHLO. The extensions available depend on the
 version of sendmail that is running and on how sendmail is
 configured.[29] The purpose of EHLO is to identify these differences at
 the beginning of the SMTP mail exchange.
ESMTP and MIME are important because they provide a standard way
 to transfer non-ASCII data through email. Users share lots of
 application-specific data that is not 7-bit ASCII. Many users depend
 on email as a file transfer mechanism.
SMTP, POP, IMAP, and MIME are essential parts of the mail
 system, but other email protocols may also be essential in the future.
 The one certainty is that the network will continue to change. You
 need to track current developments and include helpful technologies in
 your planning. Two technologies that users find helpful are file
 sharing and printer sharing. In the next section we look at file and
 print
 servers.

[23] Most standard TCP/IP applications are assigned a well-known
 port so that remote systems know how to connect the
 service.

[24] The address doesn’t have anything to do with whether a
 system is store and forward or direct delivery. It just happens
 that UUCP provides an address that helps to illustrate this
 point.

[25] The /etc/services file
 lists two different ports for IMAP: 143 and 220. Port 220 is used
 by IMAP 3. IMAP 4 uses port number 143, which is the same port
 used by IMAP 2

[26] MIME is also an integral part of the Web and HTTP.

[27] Go to ftp://ftp.isi.edu/in-notes/iana/assignments/media-types
 to retrieve the file media-types.

[28] See Appendix E for a list
 of the sendmail command-line arguments.

[29] See Chapter 10 for the
 details of sendmail configuration.

File and Print Servers

File and print services make the network more convenient for
 users. Not long ago, disk drives and high-quality printers were
 relatively expensive, and diskless workstations were common. Today,
 every system has a large hard drive and many have their own high-quality
 laser printers, but the demand for resource-sharing services is higher
 than ever.
File Sharing

 File sharing is not the same as file transfer; it is not
 simply the ability to move a file from one system to another. A true
 file-sharing system does not require you to move files across the
 network. It allows files to be accessed at the record level so that it
 is possible for a client to read a record from a file located on a
 remote server, update that record, and write it back to the
 server—without moving the entire file from the server to the
 client.
File sharing is transparent to the user and to the application
 software running on the user’s system. Through file sharing, users and
 programs access files located on remote systems as if they were local
 files. In a perfect file-sharing environment, the user neither knows
 nor cares where files are actually stored.
File sharing didn’t exist in the original TCP/IP protocol suite.
 It was added to support diskless workstations. Several TCP/IP
 protocols for file sharing have been defined, but two hold the lion’s
 share of the file sharing market:
	NetBIOS/Server Message Block
	NetBIOS was originally defined by IBM. It is the
 basic networking used on Microsoft Windows systems. Unix systems
 can act as file and print servers for Windows clients by running
 the Samba software package that implements NetBIOS and
 Server Message Block (SMB) protocols.

	Network File System
	NFS was defined by Sun Microsystems to support
 their diskless workstations. NFS is designed primarily for LAN
 applications and is implemented for all Unix systems and many
 other operating systems.

For file sharing between Unix systems, you will probably use
 NFS, as it is the most widely used Unix file-sharing protocol. If you
 need to support Windows clients using Unix servers, you will probably
 use Samba. For a detailed discussion of both of these tools, see Chapter 9.

Print Services

 A print server allows printers to be shared by everyone
 on the network. Printer sharing is not as important as file sharing,
 but it is a useful network service. The advantages of printer sharing
 are:
	Fewer printers are needed, and less money is spent on
 printers and supplies.

	Reduced maintenance. There are fewer machines to maintain,
 and fewer people spending time fiddling with printers.

	Access to special printers. Very high-quality color printers
 and very high-speed printers are expensive and needed only
 occasionally. Sharing these printers makes the best use of
 expensive resources.

There are two techniques commonly used for sharing printers on a
 corporate network. One technique is to use the sharing services
 provided by Samba. This is the technique preferred by Windows
 clients. The other approach is to use the traditional Unix lpr command and an lpd
 server. Print server configuration is also covered in Chapter 9.
This chapter concludes with a discussion of the various types of
 TCP/IP configuration servers. Unlike email, file sharing, and print
 servers, configuration servers are not used on every network. However,
 the demand for easier installation and improved mobility makes
 configuration servers an important part of many networks.

Configuration Servers

 The powerful features that add to the utility and
 flexibility of TCP/IP also add to its complexity. TCP/IP is not as easy
 to configure as some other networking systems. TCP/IP requires that the
 configuration provide hardware, addressing, and routing information. It
 is designed to be independent of any specific underlying network
 hardware, so configuration information that can be built into the
 hardware in some network systems cannot be built in for TCP/IP. The
 information must be provided by the person responsible for the
 configuration. This assumes that every system is run by people who are
 knowledgeable enough to provide the proper information to configure the
 system. Unfortunately, this assumption does not always prove
 correct.
Configuration servers make it possible for the network
 administrator to control TCP/IP configuration from a central point. This
 relieves the end user of some of the burden of configuration and
 improves the quality of the information used to configure
 systems.
TCP/IP has used three protocols to simplify the task of
 configuration: RARP, BOOTP, and DHCP. We begin with RARP, the oldest and
 most basic of these configuration tools.
Reverse Address Resolution Protocol

RARP, defined in RFC 903, is a protocol that converts a physical
 network address into an IP address, which is the reverse of what
 Address Resolution Protocol (ARP) does. A Reverse Address Resolution
 Protocol server maps a physical address to an IP address for a client
 that doesn’t know its own IP address. The client sends out a broadcast
 using the broadcast services of the physical network.[30] The broadcast packet contains the client’s physical
 network address and asks if any system on the network knows what IP
 address is associated with the address. The RARP server responds with
 a packet that contains the client’s IP address.
The client knows its physical network address because it is
 encoded in the Ethernet interface hardware. On most systems, you can
 easily check the value with a command. For example, on a Solaris 8
 system, the superuser can type:
ifconfig dnet0
dnet0: flags=1000843<UP,BROADCAST,RUNNING,MULTICAST,IPv4> mtu 1500 index 2
 inet 172.16.12.1 netmask ffffff00 broadcast 172.16.12.255
 ether 0:0:c0:dd:d4:da
The ifconfig command
 can set or display the configuration values for a
 network interface.[31] dnet0 is the device name of the
 Ethernet interface. The Ethernet address is displayed after the
 ether label. In the example, the address is
 0:0:c0:dd:d4:da.
The RARP server looks up the IP address that it uses in its
 response to the client in the /etc/ethers
 file. The /etc/ethers file contains the
 client’s Ethernet address followed by the client’s hostname. For
 example:
2:60:8c:48:84:49 clock
0:0:c0:a1:5e:10 ring
0:80:c7:aa:a8:04 24seven
8:0:5a:1d:c0:7e limulus
8:0:69:4:6:31 arthropod
To respond to a RARP request, the server must also resolve the
 hostname found in the /etc/ethers file into an IP
 address. DNS or the hosts file is used for this
 task. The following hosts file entries could be
 used with the ethers file shown above:
clock 172.16.3.10
ring 172.16.3.16
24seven 172.16.3.4
limulus 172.16.3.7
arthropod 172.16.3.21
Given these sample files, if the server receives a RARP request
 that contains the Ethernet address 0:80:c7:aa:a8:04, it matches it to
 24seven in the /etc/ethers
 file. The server uses the name 24seven to look up
 the IP address. It then sends the IP address 172.16.3.4 out as its ARP
 response.
RARP is a useful tool, but it provides only the IP address.
 There are still several other values that need to be manually
 configured. Bootstrap Protocol (BOOTP) is a more flexible
 configuration tool that provides more values than just the IP address
 and can deliver those values via the network.
BOOTP is defined in RFCs 951 and 1532. The RFCs describe
 BOOTP as an alternative to RARP; when BOOTP is used, RARP is not
 needed. BOOTP, however, is a more comprehensive configuration protocol
 than RARP. It provides much more configuration information and has the
 potential to offer still more. The original specification allowed
 vendor extensions as a vehicle for the protocol’s evolution. RFC 1048
 first formalized the definition of these extensions, which have been
 updated over time and are currently defined in RFC 2132. BOOTP and its
 extensions became the basis for the Dynamic Host Configuration
 Protocol (DHCP). DHCP has superseded BOOTP, so DHCP is the
 configuration protocol that you will use on your network.

Dynamic Host Configuration Protocol

Dynamic Host Configuration Protocol (DHCP) is defined in RFCs 2131
 and 2132. It’s designed to be compatible with BOOTP. RFC 1534 outlines
 interactions between BOOTP clients and DHCP servers and between DHCP
 clients and BOOTP servers. DHCP is the correct configuration protocol
 for your network because DHCP exceeds the capabilities of BOOTP while
 maintaining support for existing BOOTP clients.
DHCP uses the same UDP ports as BOOTP (67 and 68) and the same
 basic packet format. But DHCP is more than just
 an update of BOOTP. The new protocol expands the function of
 BOOTP in two areas:
	The configuration parameters provided by a DHCP server
 include everything defined in the Requirements for Internet Hosts RFC. DHCP provides a client with a
 complete set of TCP/IP configuration values.

	DHCP permits automated allocation of IP addresses.

DHCP expands the original BOOTP packet in order to indicate the
 DHCP packet type and to carry a complete set of configuration
 information. DHCP calls the values in this part of the packet
 options. To handle the full set of configuration
 values from the Requirements for Internet Hosts
 RFC, the Options field is large and has a variable format.
You don’t usually need to use the full set of configuration
 values. Don’t get me wrong; it’s not that the values are
 unnecessary—all the parameters are needed for a complete TCP/IP
 configuration. It’s just that you don’t need to
 define values for them. Default values are
 provided in most TCP/IP implementations, and the defaults need to be
 changed only in special circumstances. The expanded configuration
 parameters of DHCP make it a more complete protocol than BOOTP, but
 they are not the most useful features of DHCP.
For most network administrators, automatic allocation of IP
 addresses is a more interesting feature. DHCP allows addresses to be
 assigned in four ways:
	Permanent fixed addresses
	As always, the administrator can continue to assign addresses
 without using the DHCP system. While this happens completely
 outside of DHCP, DHCP makes allowances for it by permitting
 addresses to be excluded from the range of addresses under the
 control of the DHCP server. Most networks have some permanently
 assigned addresses.

	Manual allocation
	The network administrator keeps complete control over
 addresses by specifically assigning them to clients in the DHCP
 configuration. This is exactly the same way that addresses are
 handled under BOOTP. Manual allocation fails to take full
 advantage of the power of DHCP but might be needed if you have
 BOOTP clients.

	Automatic allocation
	The DHCP server permanently assigns an address
 from a pool of addresses. The administrator is not involved in
 the details of assigning a client an address. This technique
 fails to take advantage of the DHCP server’s ability to collect
 and reuse addresses.

	Dynamic allocation
	The server assigns an address to a DHCP client for
 a limited period of time. The limited life of the address is
 called a lease. The client can return the address to the server at
 any time but must request an extension from the server to retain
 the address longer than the time permitted. The server
 automatically reclaims the address after the lease expires if
 the client has not requested an extension. Dynamic allocation
 uses the full power of DHCP.

Dynamic allocation is useful in any network, particularly a
 large distributed network where many systems are being added and
 deleted. Unused addresses are returned to the pool of addresses
 without relying on users or system administrators to deliberately
 return them. Addresses are used only when and where they’re needed.
 Dynamic allocation allows a network to make the maximum use of a
 limited set of addresses. It is particularly well suited to mobile
 systems that move from subnet to subnet and therefore must be
 constantly reassigned addresses appropriate for their current network
 location. Even in the smallest network, dynamic allocation simplifies
 the network administrator’s job.
Dynamic address allocation does not work for every system. Name
 servers, email servers, login hosts, and other shared systems are
 always online, and they are not mobile. These systems are accessed by
 name, so a shared system’s domain name must resolve to the correct
 address. Shared systems are manually allocated permanent, fixed
 addresses.
Dynamic address assignment has major repercussions for DNS. DNS
 is required to map hostnames to IP addresses. It cannot perform this
 job if IP addresses are constantly changing and DNS is not informed of
 the changes. To make dynamic address assignment work for all types of
 systems, we need a DNS that can be dynamically updated by the DHCP
 server. Dynamic DNS (DDNS) is available, but it is not yet widely
 used.[32] When fully deployed, it will help make dynamic addresses
 available to systems that provide services and to those that use
 them.
Given the nature of dynamic addressing, most sites assign
 permanent fixed addresses to shared servers. This happens through
 traditional system administration and is not handled by DHCP. In
 effect, the administrator of the shared server is given an address and
 puts that address in the shared server’s configuration. Using DHCP for
 some systems doesn’t mean it must be used for all systems.
DHCP servers can support BOOTP clients. However, a DHCP client
 is needed to take full advantage of the services offered by DHCP.
 BOOTP clients do not understand dynamic address leases. They do not
 know that an address can time out and that it must be renewed. BOOTP clients must be
 manually or automatically assigned permanent addresses. True dynamic
 address assignment is limited to DHCP clients.
Therefore, most sites that use DHCP have a mixture of:
	Permanent addresses assigned to systems that can’t use
 DHCP

	Manual addresses assigned to BOOTP clients

	Dynamic addresses assigned to all DHCP clients

All of this begs the question of how a client that doesn’t know
 its own address can communicate with a server. DHCP defines a simple
 packet exchange that allows the client to find a server and obtain a
 configuration.
How DHCP works

The DHCP client broadcasts a packet called a
 DHCPDISCOVER message that contains, at a minimum, a transaction
 identifier and the client’s DHCP identifier, which is normally the
 client’s physical network address. The client sends the broadcast
 using the address 255.255.255.255, which is a special address called
 the limited broadcast address.[33] The client waits for a response from the server. If a
 response is not received within a specified time interval, the
 client retransmits the request. DHCP uses UDP as a transport
 protocol and, unlike RARP, does not require any special Network
 Access Layer protocols.
The server responds to the client’s message with a
 DHCPOFFER packet. DHCP uses two different well-known port
 numbers. UDP port number 67 is used for the server, and UDP port number
 68 is used for the client. This is very unusual. Most software uses
 a well-known port on the server side and a randomly generated port
 on the client side. (How and why random source port numbers are used
 is described in Chapter 1.) The random port number ensures that each
 pair of source/destination ports identifies a unique path for
 exchanging information. A DHCP client, however, is still in the
 process of booting. It probably does not know its IP address. Even
 if the client generates a source port for the
 DHCPDISCOVER packet, a server response that is
 addressed to that port and the client’s IP address won’t be read by
 a client that doesn’t recognize the address. Therefore, DHCP sends
 the response to a specific port on all hosts. A broadcast sent to
 UDP port 68 is read by all hosts, even by a system that doesn’t know
 its specific address. The system then determines if it is the
 intended recipient by checking the transaction identifier and the
 physical network address embedded in the response.
The server fills in the DHCPOFFER packet
 with the configuration data it has for the client. A DHCP server can
 provide every TCP/IP configuration value a client needs, provided
 the server is properly configured. Chapter 9 is a tutorial on setting up a
 DHCP server, and Appendix D is a
 complete list of all of the DHCP configuration parameters.
As the name implies, the DHCPOFFER packet
 is an offer of configuration data. That offer
 has a limited lifetime—typically 120 seconds. The client must
 respond to the offer before the lifetime expires. This is done
 because more than one server may hear the
 DHCPDISCOVER packet from the client and respond
 with a DHCPOFFER. If the servers did not
 require a response from the client, multiple servers might commit
 resources to a single client, thus wasting resources that could be
 used by other clients. If a client receives multiple
 DHCPOFFER packets, it responds to only one and
 ignores the others.
The client responds to the DHCPOFFER with
 a DHCPREQUEST message. The
 DHCPREQUEST message asks the server to assign
 the client the configuration information that was offered. The
 server checks the information in the
 DHCPREQUEST to make sure that the client got
 everything right and that all of the offered data is still
 available. If everything is correct, the server sends the client a
 DHCPACK message letting the client know that it
 is now configured to use all of the information from the original
 DHCPOFFER packet. Figure 3-5 shows the normal packet
 flow when DHCP is used to configure a client.
[image: DHCP client/server protocol]

Figure 3-5. DHCP client/server protocol

[30] Like ARP, RARP is a Network Access Layer protocol that uses
 physical network services residing below the Internet Layer. See
 the discussion of TCP/IP protocol layers in Chapter 1.

[31] See Chapter 6 for
 information about the ifconfig
 command.

[32] See Chapter 8 for more
 information about DDNS.

[33] This address is useful because, unlike the normal
 broadcast address, it doesn’t require the system to know the
 address of the network it is on.

End of sample

 To search for additional titles please go to

 http://search.overdrive.com.

OEBPS/httpatomoreillycomsourceoreillyimages60319.png
bk -
| peotsenic T et
emin s | Fertaonfst
o et o
Soma s
Dot e
otors oté

Grabegins e

OEBPS/httpatomoreillycomsourceoreillyimages60363.png
gateway: hoseshoe. oot

e ())

OEBPS/httpatomoreillycomsourceoreillyimages60381.png
To:

craigh@ora.com

From: craig

Subject: Sendnail Test
Ignore this test.

maior

craigh@ora. con. .. Connecting to ora.com. via esmtp...

220-

>

250-:
250-|
250-

250
>
250
>
250
>
354
55>
250

Tuby.ora.com ESMTP Sendmail

EHLO Todent.wrotethebook. com

ruby.ora.con Hello pleased to meet you

EXPN

VERB

HELP

MAIL From:<craig@rodent.wrotethebook.com> SIZE=64
<craigerodent .urotethebook.com>. .. Sender ok
RCPT To: <craighgora. com>

<craighgora.com. .. Recipient ok

DATA

Enter mail, end with "." on a line by itself

$AA27399 Message accepted for deliver,

craigh@ora.con. .. Message accepted for livery

Closing connection to ora.com.

>
221

QuIT
ruby.ora.com closing connection

cpent user
oo

i
ety

Lalhorone
moavn)

wrten st
oo
(w08
Tt g
s

=)

OEBPS/httpatomoreillycomsourceoreillyimages60395.png
Admintool: Modify User

useR wRTTY
[
usor 0: 1001
pnary il
e e [—
covement: [T

Lognshels ¢ _ | Minkesh

~ACCOUNT SECURITY

Password: Normal Password... s
Min hange: [T days
Max change:[T88 days

wa actve: [T days
oeson D o 1| tone 1| e 4
o

Wami
HOME DIRECTORY.

[e —

Jaays

ok | mwy| Reset| concel| e

OEBPS/httpatomoreillycomsourceoreillyimages60317.png

OEBPS/httpatomoreillycomsourceoreillyimages60323.png

OEBPS/httpatomoreillycomsourceoreillyimages60365.png
Subnec

OEBPS/httpatomoreillycomsourceoreillyimages60329.png
Ak data

) daumhsbn

OEBPS/httpatomoreillycomsourceoreillyimages60377.png
addresstoers

ot

it ks

oot

rewrten e

kathy.mccafferty < @ rodent

$+ <@ 3

kathy.nccafferty rodent

$1 <@ $2

kathy.mccafferty < @ rodent

$0 >

. wrotethebook.com >

OEBPS/httpatomoreillycomsourceoreillyimages60343.png
Source Destination
126122 102.168.16.2

304425 —’ﬁ

2304

{—)

30423

[

OEBPS/httpatomoreillycomsourceoreillyimages60399.png
wewhe the remote location the user thelogin ime the lapsed
e

agedn g

‘craig pts/s 128.66.12.24 Sun Dec 8 21:47 - 21:52 (00:05)
tedoeoraniette et tetoqutane
userloggedinfom loggedin

OEBPS/httpatomoreillycomsourceoreillyimages60337.png
e —
routing datais exhanged

OEBPS/httpatomoreillycomsourceoreillyimages60404.png
- >

Router: e e hgh el Firewal: ropodets e rwaet e o e
e ohihe Py popadetsar ruadet alesatdesadiote

OEBPS/httpatomoreillycomsourceoreillyimages60379.png
1 o st s e

OEBPS/httpatomoreillycomsourceoreillyimages60387.png
Netscape: Test Page for Apache Intallation on web Site

4]

v 4 3 D oa

3
HIECEN

1| S 4y o e e

€5 e |
| £ Wetkhai £ R £ Pespie £ Yellow Poges 2 Dawniond Caendar S Crannsle
10 Worked: The Apache Web Srveris Instlled o this Web St

T —
g e e e e S
o e s S e A T R el

E O ——

o Wt v b e o e b T i
e
ot s

o

{a v @

OEBPS/httpatomoreillycomsourceoreillyimages60414.png
= Netscape
Fle Edt Vew Go Commumenbr

v v 3 @& 2 @ 3
Bk Pt e Seah Nesape Pt Sewiy Swp S

§" Bookrarks 4 Location: bty / /e et ocg/ieas/1c /|) Whats Relsid
£ Webiil Radio Pecple Vellow Pages Downioad 4 Calendr (f Char

kR I e SERE)
LT R L

0 s i e e et 8 pe seprraan. et

e e

o (saceion) speeitsestion s
Tt L I 2 SO s pacsaenny
RPN bites) (onfoietis Bhoisa, HHCiOgd) (ovreleted 2y WELERES
R a3 edind” ok

2320 Tatemer potivities Buscd v coxt sepeoioises (romat,
BRI T S Wl N Sr o
Beinn“sep D1-8585. (Focnat! TETI0644 Dytes] (seatas EnPomATIOL)

BB BEIR R EE R ke sroonrs)
[

A T P T = T e T e
BT O T et R L
it st R R R)

1326 polley issues Intersamasceing networks. 3n. seiner
LA AR B D e
ko

ol e 5 0 aB () 2

OEBPS/httpatomoreillycomsourceoreillyimages60410.png
Soarce 1t Gateway 2nd Gateway Destination

decenento 1
orvard

decenent o0
e emr

e

decenent o2
orvard
-—
decenento 1
orvard
—
ecivedat desination
potumeaciabe
e e

- .

OEBPS/httpatomoreillycomsourceoreillyimages60325.png
’47 L —

o le n
Soutce Fort Destnation Port
Length Checksum

databeginshere

OEBPS/httpatomoreillycomsourceoreillyimages60355.png
72640

7216120

OEBPS/httpatomoreillycomsourceoreillyimages60359.png
e ety o

Processorypn s
ot

Mmory ety Devs (7D)
P ot vy contgraton
Sttt sigort (D 01)

Toghony gy

rADEML sppt
Fp—

[e——

oA () sppart

0 C0-roM anves ot 3t 0E)
vestcars sppert.

s st
otk

ot sevng
[Eepe———

St oo o i

OEBPS/httpatomoreillycomsourceoreillyimages60327.png
i Haoeigmenthumbe
=, T ofet | esened Fags Vindow
l s Onecksum Urgent Pointer

. Opiors tdiog

Grabegins e

OEBPS/httpatomoreillycomsourceoreillyimages60373.png
Iininal %’L‘l Jsoeninh

sendmal

TP

OEBPS/httpatomoreillycomsourceoreillyimages60331.png
Window 6000

: awent k
DotaReceed Sqment ;
: -~ :
It oo jam o jem s jem jroor |
e it Seqne
Jumberd Number 2001 Number 01

OEBPS/httpatomoreillycomsourceoreillyimages60347.png
anosenesne

oalsener bunikon

Tnsmagarids wotehebnokom

inciser avticios. wolethabosk.com A 173.18.0.4

OEBPS/httpatomoreillycomsourceoreillyimages60321.png
HostC1

)
Gatenay G2 Py
nenet et
ke | e

OEBPS/httpatomoreillycomsourceoreillyimages60371.png
Admintool: Printers

e it | Browse

[
F Local rntr... Descrption
T B pocess to Panter.

s pokto

Defauit Printer: ps

OEBPS/httpatomoreillycomsourceoreillyimages212520.jpg
Help for Unix System Administrators

O’REILLY* Craig Hunt

OEBPS/httpatomoreillycomsourceoreillyimages60383.png
NENE N6 RN e —
| @ Home B Netscape O Searcn) Shop IBookmarks . WebMail . Contact “ Paople v Vellow Pad
Test Page)
T — ————

£ g0l o read this e f medrs thel the Apicha Wab sarver ietalled @ hi it s Serking
properly.

1f you are the administrator of this website:
You may now ad conten this disectory, e replace i page. Note tha il youdo 50,
| peopie visiting your website il e this page. vt ot orr content

1 you have upgraded from Red H Limax 6.2 and ealier,then you are sing this page becaise
the defat DocumentRoot set n /eec/xetod/contrerpd cont s charged. Any subdisectories
hich existod under hons g SO PO b2 moves 1o /v e, ARGFTAEIRLy, the co

Jone e 1 b 0 1 o @ the configraion flecan be updited socordingly

o

If you are a member of the general public:

OEBPS/httpatomoreillycomsourceoreillyimages60311.png
@ spplcationLayer
e T
==

O Froentationtayer
st oo ot
opcars

G

aagesesins eween
@piators

prvesen-t-enerar
Geionondorecion

© tetwarkiyer
g oo s w1
Geuppioes.

© atatinkloyer
vty e
Pyt

© iysalager
efns eyttt e
ek,

OEBPS/httpatomoreillycomsourceoreillyimages60361.png
yom en
y “n
Man Menu

Network device support

Universal TUNITAP device driver support

General Instruments Surfboard 1000
Ethernet (10 or 100Mbit)
Ethernet (1000 Mbit)

FDDI driver support

Help
Help
Hlp

Help
Help

OEBPS/httpatomoreillycomsourceoreillyimages60406.png

OEBPS/httpatomoreillycomsourceoreillyimages60357.png
Ele 91 Yow Seucn o eovmats Towe b

(€ N6 N X YT e — o |

[5 vove minencare O, sewen) Sup Chonoumens . Wetws . Conac . Pl veto pges o
s by ICANN and currenty

Companies sccredited as r

operatio

OEBPS/httpatomoreillycomsourceoreillyimages60313.png
© ApplcationLayer
o ai——
B

© ot to ot Transprtayer
ot nd oy

© nemeriayer
efesthedasgon atndes eraing
o

© tetwarkhcessLoyer

i oftas for g
pu

OEBPS/httpatomoreillycomsourceoreillyimages60369.png
min

sunet

m169.23 9 1721690
1721691
Timlus
m1619
611
il
QLTS

%

OEBPS/httpatomoreillycomsourceoreillyimages60393.png
= Apache Status - Netscape &

Ele Edt View Search Go Gookmarks Tasks Help

QO 0O @ OFmmmws)Es= <N

4 Home 5] Netscape O\ Search 4 Shop E3Bookmarks v Red Hat Network . Tr

Apache Server Status for i
rodent.wrotethebook.com

Server Version: Apache/1 319 (Unix) (Red-Hat/L inww)
Server Built: Mar 29 2001 12:52:37

Current Time: Tuesday, 27-Nov-2001 15:47:19 EST

Restart Time: Tuesday. 27-Nov-2001 154357 EST

Parent Server Generation: 0 4

‘Server uptime: 3 minutes 22 seconds

Total accesses: § - Total Traic: 35 kB

|| CPU Usage: 102506 cud cs0 - 0336% CPU load
(0396 recquests/sec — 177 B second - 4480 B/request

1 requests currently being processed. 7 idle servers

v,

Scorebourd Key:
“Waiting for Connection, s’ Stating up, "R’ Reading Request

Sending Reply. "’ Keepalive (rea). "s” DNS Lookup,

Logging, "6 Gracefully finishing, *." Open siot with o current process

O T 0

B & /A 07 B3 | Documsnt: Dovs 0640 005} =

OEBPS/httpatomoreillycomsourceoreillyimages60397.png
£ B Yeu Go ponars paens i

4> A0 @ R B
e U reien vone wersoun

Locaton, [T e R

« redhat

Open wi Mol e
o
ot

oste Name

20020450 e (AHSA2002.015)
20020125 vim-entanced (FHEA-2002017)
20020125 (e (FHSA2002.018)
20020123 KFreast (RHEA-2002.010)
20020122 kemebemp (FHSA-2002:007)
20020122 2t (FHSAZ002015)

com R i 5 T ok At (=

Red Hat Linux 7.2 General Advisories

Synopsie

Now 3y packages avalable
Updated vim parkages are aval
Now rync packages avalablo
Now XFro638 2,10, bosa 542,
Updated 24 keinel avalatle
Updated a package avalie

OEBPS/oreilly_large.gif
O’REILLY

OEBPS/httpatomoreillycomsourceoreillyimages60385.png
- £ ot view Serch Go ocknans Lasks op

i 2

. 4 Hone 0 escape O, Searcn) Shop Chbeatmarks . Webwal % Contct . Poope Vel Pa

I=F Tooce-gn 05 36 - 5
[= O5wey-2000 12:86 -
[=]9) 02mov-2000 0217 -
[po— emaeom 02 -
[= -0eea000 00:2 -
O cogmins a-ct-g00 01 -
S, e 101 -

O som o -

=) s 41
||y oo 1

[oy s-ocrom1 045 -
[pey Dok 06 -
[y sS-oce-t0m 1038 -

[=] . 0-et-2000 1742 -
= P 12-qun2000 0347 -
© e, 12-0ce-2001 0856 -

OEBPS/httpatomoreillycomsourceoreillyimages60408.png
hop caunt gateway IP oddress.
' SUL.BARRNET..NET (131.119.254.5) 1200 ms. 2020 ms, 3480 ms,

qoteway ame. round-tp time for each packet

OEBPS/httpatomoreillycomsourceoreillyimages60315.png
ApplictionLayer

Tansportayr

Network s Loyer

ot heate

Header

Header

Header

OEBPS/httpatomoreillycomsourceoreillyimages60391.png
x)
[Aumortes

Vou have contfcates on fle that identy hese cenficate autortes

Cortets ame | Secuty Dew,
¥ A0 ECOM, INC

» Aadst 4G

gatmore

b BaEngire
 Carngie nc
 EquitasSecure
 EquiesSecur nc

b Forngre nc
 alErgine o

RSh Osts Securty, e

> Thate

b TradeEngine nc

 Untao Siaes Pt Sarice

puisa
b vensign, nc E
e (e Coaee)

OEBPS/httpatomoreillycomsourceoreillyimages60416.png
[= Netscape: Your Search Results B
Fie Eat Vew Go Comruncsor

3 ¥ 3 & =2 @ 4:513-
Back ool Reload Home Search Nefscape Pret Secuty Shop.

| Bookmaite 4 Netie: bty /e co-editor.oro/c /| 7 Whats Relsed

]lmm.wlnmgpqagmmp.,,.¢nw..h.u¢e.amgc>.

DR BIPoerkes NErod Frpumbe (1 i STANDARD
lREG2IS7.

——T
TG0 Sinpi i Trasier Postl | Aug-01-1952 A5G Obsiires~ STANGARD |
REGOC Protool RECTE.
RECTZZ
Ghadered
L B
EECTG SMTPSerice 6 Deember [ASCH Obsolres PROPOSED
Evensionsfor Veuiend 2000 BECTES . STANDARD
Teansmission of Osieret
| Lorge o Binwy | |
MIE Messoges
RECHE Deler BySMTP D T 000 SR 0

f Sersice Extension_Newaaa |

\!’!7!7 sren \'—H

OEBPS/httpatomoreillycomsourceoreillyimages60351.png
originalData H i 1

BbitByes 0100100000110100100100001

VLI

obiByes 010010/000110[100100100001
/o] Vo

Transmitted Octets 00010010/00000110/0010010000100001

| | | |

Encoded Data S G k h

OEBPS/httpatomoreillycomsourceoreillyimages60353.png

OEBPS/httpatomoreillycomsourceoreillyimages60345.png
Root-

e o il o an 0
i ot
— — ——

i

ik

OEBPS/httpatomoreillycomsourceoreillyimages60339.png
Source Host Destination Host

Applaton Appaton
Tonsor Gateway Tarspor.
Desoaten | Gaevay Destnaion_ Gateway Desoaten | Gaeway
T I T2ig10 TS 210 i1
i g iRz i a0
L i 1/ it ki
Neowrt s etworkhcess Neowrk s

w6122 maeRa_ maes mas2

mae120 2610

OEBPS/httpatomoreillycomsourceoreillyimages60400.png
3 cot test.txt
This is a test file.
§ gog ~-xecipient craig.hunt@wrotethebook.con --encrypt test.txt
g Warning: using insecure nenory!
§ cat test.txt.gpg

¥oo%ig 2) %Ll 0 LIt e 600 Sip-E) 0 017 i 1061
€E632[00AT16E-WY $2°6 $Be 67K 9170081 gy [CyOUGTEY"g THn2(0"Rx
FOTS® Y[ui¥ER2 haq"7%1-1\P0 6/07"DTeB3alln'soNBe 3}/ORémsti
¢ m test.txt

OEBPS/httpatomoreillycomsourceoreillyimages60367.png
horseshoe
)
0
@b
15)
0 2
auids smith

OEBPS/httpatomoreillycomsourceoreillyimages60402.png

OEBPS/httpatomoreillycomsourceoreillyimages60333.png
rodent
1622

6120

misns

horseshoe
o

OEBPS/httpatomoreillycomsourceoreillyimages60349.png
UUCP: Store and forward de

=] [[=] [=F— |
risten
<y estmeniononf—>

local user

kristen

OEBPS/httpatomoreillycomsourceoreillyimages60412.png
) The tansfes fom workstaion A to worksatin v the ackbone routers, vk foe.
€ et o ottt pto, ot oo o ot o
A —————

Worstation

OEBPS/httpatomoreillycomsourceoreillyimages60335.png
10 104 0 19
2Ahostis
n 1 2 1
Toneterkbis T6tobis
e
192 168 1 1

24 network bits

OEBPS/httpatomoreillycomsourceoreillyimages60389.png
curity Errort Unknoun G

“ocainostacalomain I b ie hat uses 2 sacury certfcate
10 1denly Selt. However, Netscape © doss nol recognis e
Cetficate Autiorty it ssued s cerfcate

Allhough the Cerlicate Autarly I unracognizad, you can choase
o explicily accept e cetfcats used by tis web sl

Before accepiing ihis cotficats, you should examine s i’
cerifcate careily

A you wiling to accopt s corbicate for 1o purpose of
Ideniying T wab e Mocaastocaldonain®s

O accapt i corcte parnaneniy

© Accept s cericate emporarly for tis session

O Do ot accept i ceriicate and do not comnect o tis et
st

OEBPS/httpatomoreillycomsourceoreillyimages60341.png
TENET
=

|

ItemetProtacl

Immmu

g besdr a
vt
wads - e

B sognenthate

ot

OEBPS/httpatomoreillycomsourceoreillyimages60375.png
the Define Macro Commond thevolue assigned to the macro

DDwrotethebook.com

thename f themarobeng defied

