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Dedication



To Alana, the beginning of a new life.


Preface



The first edition of TCP/IP Network Administration was written in 1992. In the decade since, many
    things have changed, yet some things remain the same. TCP/IP is still the
    preeminent communications protocol for linking together diverse computer
    systems. It remains the basis of interoperable data communications and
    global computer networking. The underlying Internet Protocol (IP),
    Transmission Control Protocol, and User Datagram Protocol (UDP) are
    remarkably unchanged. But change has come in the way TCP/IP is used and
    how it is managed.
A clear symbol of this change is the fact that my mother-in-law has
    a TCP/IP network connection in her home that she uses to exchange
    electronic mail, compressed graphics, and hypertext documents with other
    senior citizens. She thinks of this as “just being on the Internet,” but
    the truth is that her small system contains a functioning TCP/IP protocol
    stack, manages a dynamically assigned IP address, and handles data types
    that did not even exist a decade ago.
In 1991, TCP/IP was a tool of sophisticated users. Network
    administrators managed a limited number of systems and could count on the
    users for a certain level of technical knowledge. No more. In 2002, the
    need for highly trained network administrators is greater than ever
    because the user base is larger, more diverse, and less capable of
    handling technical problems on its own. This book provides the information
    needed to become an effective TCP/IP network administrator.
TCP/IP Network Administration was the first
    book of practical information for the professional TCP/IP network
    administrator, and it is still the best. Since the first edition was
    published there has been an explosion of books about TCP/IP and the
    Internet. Still, too few books concentrate on what a system administrator
    really needs to know about TCP/IP administration. Most books are either
    scholarly texts written from the point of view of the protocol designer,
    or instructions on how to use TCP/IP applications. All of those books lack
    the practical, detailed network information needed by the Unix system
    administrator. This book strives to focus on TCP/IP and Unix and to find
    the right balance of theory and practice.
I am proud of the earlier editions of TCP/IP Network Administration. In this edition, I have done everything I can
    to maintain the essential character of the book while making it better.
    Dynamic address assignment based on Dynamic Host Configuration Protocol
    (DHCP) is covered. The Domain Name System material has been updated to
    cover BIND 8 and, to a lesser extent, BIND 9. The email configuration is
    based on current version of sendmail 8, and the operating system examples
    are from the current versions of Solaris and Linux. The routing protocol
    coverage includes Routing Information Protocol version 2 (RIPv2), Open
    Shortest Path First (OSPF), and Border Gateway Protocol (BGP). I have also
    added a chapter on Apache web server configuration, new material on
    xinetd, and information about building
    a firewall with iptables. Despite the
    additional topics, the book has been kept to a reasonable length.
TCP/IP is a set of communications protocols that define how
    different types of computers talk to each other. TCP/IP Network Administration is a book about building your own network based
    on TCP/IP. It is both a tutorial covering the “why” and “how” of TCP/IP
    networking, and a reference manual for the details about specific network
    programs.
Audience



This book is intended for everyone who has a Unix computer
      connected to a TCP/IP network.[1] This obviously includes the network managers and the
      system administrators who are responsible for setting up and running
      computers and networks, but it also includes any user who wants to
      understand how his or her computer communicates with other systems. The
      distinction between a “system administrator” and an “end user” is a
      fuzzy one. You may think of yourself as an end user, but if you have a
      Unix workstation on your desk, you’re probably also involved in system
      administration tasks.
Over the last several years there has been a rash of books for
      “dummies” and “idiots.” If you really think of yourself as an “idiot”
      when it comes to Unix, this book is not for you. Likewise, if you are a
      network administration “genius,” this book is probably not suitable
      either. If you fall anywhere between these two extremes, however, you’ll
      find this book has a lot to offer.
This book assumes that you have a good understanding of computers
      and their operation and that you’re generally familiar with Unix system
      administration. If you’re not, the Nutshell Handbook Essential       System Administration by Æleen Frisch (published by O’Reilly
      & Associates) will fill you in on the basics.



[1] Much of this text also applies to non-Unix systems. Many of
          the file formats and commands and all of the protocol descriptions
          apply equally well to Windows 9x, Windows NT/2000, and other
          operating systems. If you’re an NT administrator, you should read
          Windows NT TCP/IP Network Administration
          (O’Reilly).



Organization



Conceptually, this book is divided into three parts: fundamental
      concepts, tutorial, and reference. The first three chapters are a basic
      discussion of the TCP/IP protocols and services. This discussion
      provides the fundamental concepts necessary to understand the rest of
      the book. The remaining chapters provide a “how-to” tutorial. Chapter 4–Chapter
      7 discuss how to plan a network installation and configure the
      basic software necessary to get a network running. Chapter 8–Chapter 11 discuss how to set up various
      important network services. Chapter
      12 and Chapter 13 cover how to
      perform the ongoing tasks that are essential for a reliable network:
      security and troubleshooting. The book concludes with a series of
      appendixes that are technical references for important commands and
      programs.
This book contains the following chapters:
Chapter 1 gives the history of
      TCP/IP, a description of the protocol architecture, and a basic
      explanation of how the protocols function.
Chapter 2 describes addressing
      and how data passes through a network to reach the proper
      destination.
Chapter 3 discusses the
      relationship between clients and server systems and the various services
      that are central to the function of a modern internet.
Chapter 4 begins the discussion
      of network setup and configuration. This chapter discusses the
      preliminary configuration planning needed before you configure the
      systems on your network.
Chapter 5 describes how to
      configure TCP/IP in the Unix kernel, and how to configure the system to
      start the network services.
Chapter 6 tells you how to
      identify a network interface to the network software. This chapter
      provides examples of Ethernet and PPP interface configurations.
Chapter 7 describes how to set
      up routing so that systems on your network can communicate properly with
      other networks. It covers the static routing table, commonly used
      routing protocols, and gated, a
      package that provides the latest implementations of several routing
      protocols.
Chapter 8 describes how to
      administer the name server program that converts system names to
      Internet addresses.
Chapter 9 describes how to
      configure many common network servers. The chapter discusses the DHCP
      configuration server, the LPD print server, the POP and IMAP mail
      servers, the Network File System (NFS), the Samba file and print server,
      and the Network Information System (NIS).
Chapter 10 discusses how to
      configure sendmail, which is the daemon responsible for delivering
      electronic mail.
Chapter 11 describes how the
      Apache web server software is configured.
Chapter 12 discusses how to
      live on the Internet without excessive risk. This chapter covers the
      security threats introduced by the network, and describes the plans and
      preparations you can make to meet those threats.
Chapter 13 tells you what to do
      when something goes wrong. It describes the techniques and tools used to
      troubleshoot TCP/IP problems and gives examples of actual problems and
      their solutions.
Appendix A is a reference guide
      to the various programs used to configure a serial port for TCP/IP. The
      reference covers dip, pppd, and chat.
Appendix B is a reference guide
      to the configuration language of the gated routing package.
Appendix C is a reference guide
      to the Berkeley Internet Name Domain (BIND) name server software.
Appendix D is a reference guide
      to the Dynamic Host Configuration Protocol Daemon (dhcpd).
Appendix E is a reference guide
      to sendmail syntax, options, and flags.
Appendix F lists the contents of
      the Apache configuration file discussed in Chapter 11.
Appendix G contains detailed
      protocol references taken directly from the RFCs that support the
      protocol troubleshooting examples in Chapter
      13. This appendix explains how to obtain your own copies of the
      RFCs.

Unix Versions



Most of the examples in this book are taken from Red Hat Linux,
      currently the most popular Linux distribution, and from Solaris 8, the
      Sun operating system based on System V Unix. Fortunately, TCP/IP
      software is remarkably standard from system to system, and because of
      this uniformity, the examples should be applicable to any Linux, System
      V, or BSD-based Unix system. There are small variations in command
      output or command-line options, but these should not present a
      problem.
Some of the ancillary networking software is identified separately
      from the Unix operating system by its own release number. Many such
      packages are discussed, and when appropriate are identified by their
      release numbers. The most important of these packages are:
	BIND
	Our discussion of the BIND software is based on version 8
            running on a Solaris 8 system. BIND 8 is the version of the BIND
            software delivered with Solaris, and supports all of the standard
            resource records. There are relatively few administrative
            differences between BIND 8 and the newer BIND 9 release for basic
            configurations.

	sendmail
	Our discussion of sendmail is based on release 8.11.3. This
            version should be compatible with other releases of sendmail
            v8.




Conventions



This book uses the following typographical conventions:
	Italic
	is used for the names of files, directories, hostnames,
            domain names, and to emphasize new terms when they are
            introduced.

	Constant width
	is used to show the contents of files or the output from
            commands. It is also used to represent commands, options, and
            keywords in text.

	Constant width bold
	is used in examples to show commands typed on the command
            line.

	Constant width italic
	is used in examples and text to show variables for which a
            context-specific substitution should be made. (The variable
            filename, for example, would be
            replaced by some actual filename.)

	%, #
	Commands that you would give interactively are shown using
            the default C shell prompt (%).
            If the command must be executed as root, it is shown using the
            default superuser prompt (#).
            Because the examples may include multiple systems on a network,
            the prompt may be preceded by the name of the system on which the
            command was given.

	[ option ]
	When showing command syntax, optional parts of the command
            are placed within brackets. For example, ls [
            -l ] means that the -l option is not required.




We’d Like to Hear from You



We have tested and verified all of the information in this book to
      the best of our ability, but you may find that features have changed (or
      even that we have made mistakes!). Please let us know about any errors
      you find, as well as your suggestions for future editions, by
      writing:
	O’Reilly & Associates, Inc.
	1005 Gravenstein Highway North
	Sebastopol, CA 95472
	(800) 998-9938 (in the United States or Canada)
	(707) 829-0515 (international or local)
	(707) 829-0104 (fax)

There is a web page for this book, where we list errata, examples,
      or any additional information. You can access this page at:
	http://www.oreilly.com/catalog/tcp3

To comment or ask technical questions about this book, send email
      to:
	bookquestions@oreilly.com

For more information about books, conferences, Resource Centers,
      and the O’Reilly Network, see our web site at:
	http://www.oreilly.com

To find out what else Craig is doing, visit his web site, http://www.wrotethebook.com.
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Chapter 1. Overview of TCP/IP



All of us who use a Unix desktop system—engineers, educators,
    scientists, and business people—have second careers as Unix system
    administrators. Networking these computers gives us new tasks as network
    administrators.
Network administration and system administration are two
    different jobs. System administration tasks such as adding users and doing backups are isolated to
    one independent computer system. Not so with network administration. Once
    you place your computer on a network, it interacts with many other
    systems. The way you do network administration tasks has effects, good and
    bad, not only on your system but on other systems on the network. A sound
    understanding of basic network administration benefits everyone.
Networking your computers dramatically enhances their ability to
    communicate—and most computers are used more for communication than
    computation. Many mainframes and supercomputers are busy crunching the
    numbers for business and science, but the number of these systems in use
    pales in comparison to the millions of systems busy moving mail to a
    remote colleague or retrieving information from a remote repository.
    Further, when you think of the hundreds of millions of desktop systems
    that are used primarily for preparing documents to communicate ideas from
    one person to another, it is easy to see why most computers can be viewed
    as communications devices.
The positive impact of computer communications increases with the
    number and type of computers that participate in the network. One of the
    great benefits of TCP/IP is that it provides interoperable communications
    between all types of hardware and all kinds of operating systems.
The name “TCP/IP” refers to an entire suite of data communications protocols. The
    suite gets its name from two of the protocols that belong to it: the
    Transmission Control Protocol (TCP) and the Internet Protocol (IP). TCP/IP
    is the traditional name for this protocol suite and it is the name used in
    this book. The TCP/IP protocol suite is also called the Internet Protocol
    Suite (IPS). Both names are acceptable.
This book is a practical, step-by-step guide to configuring and
    managing TCP/IP networking software on Unix computer systems. TCP/IP is
    the leading communications software for local area networks and enterprise
    intranets, and it is the foundation of the worldwide Internet. TCP/IP is
    the most important networking software available to a Unix network
    administrator.
The first part of this book discusses the basics of TCP/IP and how
    it moves data across a network. The second part explains how to configure
    and run TCP/IP on a Unix system. Let’s start with a little history.
TCP/IP and the Internet



In 1969 the  Advanced Research Projects Agency (ARPA) funded a research and
      development project to create an experimental packet-switching network.
      This network, called the  ARPAnet, was built to study
      techniques for providing robust, reliable, vendor-independent data
      communications. Many techniques of modern data communications were
      developed in the ARPAnet.
The experimental network was so successful that many of the
      organizations attached to it began to use it for daily data
      communications. In 1975 the ARPAnet was converted from an experimental
      network to an operational network, and the responsibility for
      administering the network was given to the  Defense Communications Agency (DCA).[2] However, development of the ARPAnet did not stop just
      because it was being used as an operational network; the basic TCP/IP
      protocols were developed after the network was operational.
The TCP/IP protocols were adopted as Military Standards (MIL STD) in 1983, and
      all hosts connected to the network were required  to convert to the new protocols. To ease this conversion,
      DARPA[3] funded Bolt, Beranek, and Newman (BBN) to implement TCP/IP
      in Berkeley (BSD) Unix. Thus began the marriage of Unix and TCP/IP.
About the time that TCP/IP was adopted as a standard, the term
      Internet came into common usage. In 1983 the old
      ARPAnet was divided into MILNET, the unclassified part of the Defense Data Network
       (DDN), and a new, smaller ARPAnet. “Internet” was used to
      refer to the entire network: MILNET plus ARPAnet.
In 1985 the  National Science Foundation (NSF) created NSFNet and
      connected it to the then-existing Internet. The original NSFNet linked
      together the five NSF supercomputer centers. It was smaller than the
      ARPAnet and no faster: 56Kbps. Still, the creation of the NSFNet was a
      significant event in the history of the Internet because NSF brought
      with it a new vision of the use of the Internet. NSF wanted to extend
      the network to every scientist and engineer in the United States. To
      accomplish this, in 1987 NSF created a new, faster backbone and a
      three-tiered network topology that included the backbone, regional
      networks, and local networks. In 1990 the ARPAnet formally passed out of
      existence, and in 1995 the NSFNet ceased its role as a primary Internet
      backbone network.
Today the Internet is larger than ever and encompasses hundreds of
      thousands of networks worldwide. It is no longer dependent on a core (or
      backbone) network or on governmental support. Today’s Internet is built
      by commercial providers. National network providers, called  tier-one providers, and regional network providers create
      the infrastructure. Internet Service Providers (ISPs) provide local access and user services. This network of networks
      is linked together in the United States at several major interconnection
      points called Network Access Points (NAPs).
The Internet has grown far beyond its original scope. The original
      networks and agencies that built the Internet no longer play an
      essential role for the current network. The Internet has evolved from a
      simple backbone network, through a three-tiered hierarchical structure,
      to a huge network of interconnected, distributed network hubs. It has
      grown exponentially since 1983—doubling in size every year. Through all
      of this incredible change one thing has remained constant: the Internet
      is built on the TCP/IP protocol suite.
A sign of the network’s success is the confusion that surrounds
      the term internet. Originally it was used only as
      the name of the network built upon IP. Now internet
      is a generic term used to refer to an entire class of networks. An
      internet (lowercase “i”) is any collection of separate physical
      networks, interconnected by a common protocol, to form a single logical
      network. The Internet (uppercase “I”) is the worldwide collection of
      interconnected networks, which grew out of the original ARPAnet, that
      uses IP to link the various physical networks into a single logical
      network. In this book, both “internet” and “Internet” refer to networks
      that are interconnected by TCP/IP.
Because TCP/IP is required for Internet connection, the growth of
      the Internet spurred interest in TCP/IP. As more organizations became
      familiar with TCP/IP, they saw that its power can be applied in other
      network applications as well. The Internet protocols are often used for
      local area networking even when the local network is not connected to
      the Internet. TCP/IP is also widely used to build enterprise networks.
      TCP/IP-based enterprise networks that use Internet techniques and web
      tools to disseminate internal corporate information are called
       intranets. TCP/IP is the foundation
      of all of these varied networks.
TCP/IP Features



The popularity of the TCP/IP protocols did not grow rapidly just because the
        protocols were there, or because connecting to the Internet mandated
        their use. They met an important need (worldwide data communication)
        at the right time, and they had several important features that
        allowed them to meet this need. These features are:
	Open protocol standards, freely available and developed independently from
            any specific computer hardware or operating system. Because it is
            so widely supported, TCP/IP is ideal for uniting different
            hardware and software components, even if you don’t communicate
            over the Internet.

	Independence from specific physical network hardware. This allows
            TCP/IP to integrate many different kinds of networks. TCP/IP can
            be run over an Ethernet, a DSL connection, a dial-up line, an
            optical network, and virtually any other kind of physical
            transmission medium.

	A common addressing scheme that allows any TCP/IP
            device to uniquely address any other device in the entire network,
            even if the network is as large as the worldwide Internet.

	Standardized high-level protocols for consistent, widely
            available user services.




Protocol Standards



Protocols are formal rules of behavior. In international
        relations, protocols minimize the problems caused by cultural
        differences when various nations work together. By agreeing to a
        common set of rules that are widely known and independent of any
        nation’s customs, diplomatic protocols minimize misunderstandings;
        everyone knows how to act and how to interpret the actions of others.
        Similarly, when computers communicate, it is necessary to define a set
        of rules to govern their communications.
In data communications, these sets of rules are also called
        protocols. In homogeneous networks, a single
        computer vendor specifies a set of communications rules designed to
        use the strengths of the vendor’s operating system and hardware
        architecture. But homogeneous networks are like the culture of a
        single country—only the natives are truly at home in it. TCP/IP
        creates a heterogeneous network  with open protocols that are independent of operating
        system and architectural differences. TCP/IP protocols are available
        to everyone and are developed and changed by consensus, not by the
        fiat of one manufacturer. Everyone is free to develop products to meet
        these open protocol specifications.
The open nature of TCP/IP protocols requires an open  standards development process and publicly available
        standards documents. Internet standards are developed by the
        Internet Engineering Task Force (IETF) in open, public
        meetings. The protocols developed in this process are published
        as Requests for Comments  (RFCs).[4] As the title “Request for Comments” implies, the style
        and content of these documents are much less rigid than in most
        standards documents. RFCs contain a wide range of interesting and
        useful information, and are not limited to the formal specification of
        data communications protocols. There are three basic types of RFCs:
        standards (STD), best current practices (BCP), and informational
        (FYI).
RFCs that define official protocol standards are  STDs and are given an STD number in addition to an RFC
        number. Creating an official Internet standard is a rigorous process.
        Standards track RFCs pass through three
        maturity levels before becoming standards:
	Proposed Standard
	This is a protocol specification that is important enough
              and has received enough Internet community support to be
              considered for a standard. The specification is stable and well
              understood, but it is not yet a standard and may be withdrawn
              from consideration to be a standard.

	Draft Standard
	This is a protocol specification for which at least two
              independent, interoperable implementations exist. A draft
              standard is a final specification undergoing widespread testing.
              It will change only if the testing forces a change.

	Internet Standard
	A specification is declared a standard only after extensive
              testing and only if the protocol defined in the specification is
              considered to be of significant benefit to the Internet
              community.



There are two categories of standards. A Technical Specification (TS)  defines a protocol. An Applicability Statement (AS)  defines when the protocol is to be used. There are three
        requirement levels that define the applicability
        of a standard:
	Required
	This standard protocol is a required part of every TCP/IP
              implementation. It must be included for the TCP/IP stack to be
              compliant.

	Recommended
	This standard protocol should be included in every TCP/IP
              implementation, although it is not required for minimal
              compliance.

	Elective
	This standard is optional. It is up to the software
              vendor to implement it or not.



Two other requirements levels (limited use
        and not recommended) apply to RFCs that are not
        part of the standards track. A "limited use” protocol is used only in special
        circumstances, such as during an experiment. A protocol is "not recommended " when it has limited functionality or is outdated.
        There are three types of non-standards track
        RFCs:
	Experimental
	An experimental RFC is limited to use in research and
              development.

	Historic
	A historic RFC is outdated and no longer
              recommended for use.

	Informational
	An informational RFC provides information of general
              interest to the Internet community; it does not define an
              Internet standard protocol.



A subset of the informational RFCs is called the FYI (For Your Information) notes. An FYI document is
        given an FYI number in addition to an RFC number. FYI documents
        provide introductory and background material about the Internet and
        TCP/IP networks. FYI documents are not mentioned in RFC 2026 and are
        not included in the Internet standards process. But there are several
        interesting FYI documents available.[5]
Another group of RFCs that go beyond documenting protocols are
        the Best Current Practices (BCP) RFCs. BCPs formally
        document techniques and procedures. Some of these document the way
        that the IETF conducts itself; RFC 2026 is an example of this type of
        BCP. Others provide guidelines for the operation of a network or
        service; RFC 1918, Address Allocation for Private Internets, is an example of this type of BCP. BCPs that
        provide operational guidelines are often of great interest to network
        administrators.
There are now more than 3,000 RFCs. As a network system
        administrator, you will no doubt read several. It is as important to
        know which ones to read as it is to understand them when you do read
        them. Use the RFC categories and the requirements levels to help you
        determine which RFCs are applicable to your situation. (A good
        starting point is to focus on those RFCs that also have an STD
        number.) To understand what you read, you need to understand the
        language of data communications. RFCs contain protocol implementation
        specifications defined in terminology that is unique  to data communications.




[2] DCA has since changed its name to Defense Information Systems
          Agency (DISA).

[3] During the 1980s, ARPA, which is part of the U.S. Department
          of Defense, became Defense Advanced Research Projects Agency
          (DARPA). Whether it is known as ARPA or DARPA, the agency and its
          mission of funding advanced research have remained the same.

[4] Interested in finding out how Internet standards are
            created? Read RFC 2026, The Internet Standards Process.

[5] To find out more about FYI documents, read RFC 1150,
            FYI on FYI: An Introduction to the FYI Notes.



A Data Communications Model



To discuss computer networking, it is necessary to use terms that have special meaning. Even
      other computer professionals may not be familiar with all the terms in
      the networking alphabet soup. As is always the case, English and
      computer-speak are not equivalent (or even necessarily compatible)
      languages. Although descriptions and examples should make the meaning of
      the networking jargon more apparent, sometimes terms are ambiguous. A
      common frame of reference is necessary for understanding data
      communications terminology.
An architectural model developed by the International Standards
      Organization (ISO) is frequently used to describe the structure and
      function of data communications protocols. This architectural model,
      which is called the Open Systems Interconnect
      (OSI) Reference Model, provides a common reference for discussing communications.
      The terms defined by this model are well understood and widely used in
      the data communications community—so widely used, in fact, that it is
      difficult to discuss data communications without using OSI’s
      terminology.
The OSI Reference Model contains seven layers
      that define the functions of data communications protocols.
      Each layer of the OSI model represents a function performed when data is
      transferred between cooperating applications across an intervening
      network. Figure 1-1 identifies
      each layer by name and provides a short functional description for it.
      Looking at this figure, the protocols are like a pile of building blocks
      stacked one upon another. Because of this appearance, the structure is
      often called a stack  or protocol stack.
[image: The OSI Reference Model]

Figure 1-1. The OSI Reference Model

A layer does not define a single protocol—it defines a data
      communications function that may be performed by any number of
      protocols. Therefore, each layer may contain multiple protocols, each
      providing a service suitable to the function of that layer. For example,
      a file transfer protocol and an electronic mail protocol both provide
      user services, and both are part of the Application Layer.
Every protocol communicates with its peers. A
      peer   is an implementation of the same protocol in the
      equivalent layer on a remote system; i.e., the local file transfer
      protocol is the peer of a remote file transfer protocol. Peer-level
      communications must be standardized for successful communications to
      take place. In the abstract, each protocol is concerned only with
      communicating to its peers; it does not care about the layers above or
      below it.
However, there must also be agreement on how to pass data between
      the layers on a single computer, because every layer is involved in
      sending data from a local application to an equivalent remote
      application. The upper layers rely on the lower layers to transfer the
      data over the underlying network. Data is passed down the stack from one
      layer to the next until it is transmitted over the network by the
      Physical Layer protocols. At the remote end, the data is passed up the
      stack to the receiving application. The individual layers do not need to
      know how the layers above and below them function; they need to know
      only how to pass data to them. Isolating network communications
      functions in different layers minimizes the impact of technological
      change on the entire protocol suite. New applications can be added
      without changing the physical network, and new network hardware can be
      installed without rewriting the application software.
Although the OSI model is useful, the TCP/IP protocols don’t match
      its structure exactly. Therefore, in our discussions of TCP/IP, we use
      the layers of the OSI model in the following way:
	Application Layer
	The Application Layer is the level of the protocol
            hierarchy where user-accessed network processes reside. In this
            text, a TCP/IP application is any network process that occurs
            above the Transport Layer. This includes all of the processes that
            users directly interact with as well as other processes at this
            level that users are not necessarily aware of.

	Presentation Layer
	For cooperating applications to exchange data, they must
            agree about how data is represented. In OSI, the Presentation
            Layer provides standard data presentation routines. This function
            is frequently handled within the applications in TCP/IP, though
            TCP/IP protocols such as XDR and MIME also perform this function.

	Session Layer
	As with the Presentation Layer, the Session Layer is
            not identifiable as a separate layer in the TCP/IP protocol
            hierarchy. The OSI Session Layer manages the sessions
            (connections) between cooperating applications. In TCP/IP, this
            function largely occurs in the Transport Layer, and the term
            “session” is not used; instead, the terms “socket” and “port” are used to describe the path over which cooperating
            applications communicate.

	Transport Layer
	 Much of our discussion of TCP/IP is directed to the
            protocols that occur in the Transport Layer. The Transport Layer
            in the OSI reference model guarantees that the receiver gets the
            data exactly as it was sent. In TCP/IP, this function is performed
            by the Transmission Control Protocol (TCP).
            However, TCP/IP offers a second Transport Layer service,
            User Datagram Protocol   (UDP), that does not perform the end-to-end
            reliability checks.

	Network Layer
	The Network Layer manages connections across the network
            and isolates the upper layer protocols from the details of the
            underlying network. The Internet Protocol (IP), which isolates the
            upper layers from the underlying network and handles the
            addressing and delivery of data, is usually described as TCP/IP’s
            Network Layer.

	Data Link Layer
	The reliable delivery of data across the underlying
            physical network is handled by the Data Link Layer. TCP/IP rarely
            creates protocols in the Data Link Layer. Most RFCs that relate to
            the Data Link Layer discuss how IP can make use of existing data
            link protocols.

	Physical Layer
	The Physical Layer defines the characteristics of the
            hardware needed to carry the data transmission
            signal. Features such as voltage levels and the number and
            location of interface pins are defined in this layer. Examples of
            standards at the Physical Layer are interface connectors
            such as RS232C and V.35, and standards for local area network wiring such as
            IEEE 802.3. TCP/IP does not define physical standards—it makes use
            of existing standards.



The terminology of the OSI reference model helps us describe
      TCP/IP, but to fully understand it, we must use an architectural model
      that more closely matches the structure of TCP/IP. The next section
      introduces the protocol model we’ll use to describe TCP/IP.

TCP/IP Protocol Architecture



While there is   no universal agreement about how to describe TCP/IP with a
      layered model, TCP/IP is generally viewed as being composed of fewer
      layers than the seven used in the OSI model. Most descriptions of TCP/IP
      define three to five functional levels in the protocol architecture. The
      four-level model illustrated in Figure
      1-2 is based on the three layers (Application, Host-to-Host, and
      Network Access) shown in the DOD Protocol Model in the DDN       Protocol Handbook Volume 1, with the addition of a separate
      Internet layer. This model provides a reasonable pictorial
      representation of the layers in the TCP/IP protocol hierarchy.
[image: The TCP/IP architecture]

Figure 1-2. The TCP/IP architecture

As in the OSI model, data is passed down the stack when it is
      being sent to the network, and up the stack when it is being received
      from the network. The four-layered structure of TCP/IP is seen in the
      way data is handled as it passes down the protocol stack from the
      Application Layer to the underlying physical network. Each layer in the
      stack adds control information to ensure proper delivery. This control
      information is called a header   because it is placed in front of the data to be
      transmitted. Each layer treats all the information it receives from the
      layer above as data, and places its own header in front of that
      information. The addition of delivery information at every layer is
      called  encapsulation. (See Figure 1-3 for an illustration of
      this.) When data is received, the opposite happens. Each layer strips
      off its header before passing the data on to the layer above. As
      information flows back up the stack, information received from a lower
      layer is interpreted as both a header and data.
[image: Data encapsulation]

Figure 1-3. Data encapsulation

Each layer has its own independent data structures. Conceptually,
      a layer is unaware of the data structures used by the layers above and
      below it. In reality, the data structures of a layer are designed to be
      compatible with the structures used by the surrounding layers for the
      sake of more efficient data transmission. Still, each layer has its own
      data structure and its own terminology to describe that
      structure.
Figure 1-4 shows the terms
      used by different layers of TCP/IP to refer to the data being
      transmitted. Applications using TCP refer to data as a stream, while applications using
      UDP refer to data as a  message. TCP calls data a  segment, and UDP calls its data a
       packet. The Internet layer views all
      data as blocks called datagrams. TCP/IP uses many different types of underlying networks,
      each of which may have a different terminology for the data it
      transmits. Most networks refer to transmitted data as
      packets or frames.  Figure 1-4 shows
      a network that transmits pieces of data it calls
      frames.
[image: Data structures]

Figure 1-4. Data structures

Let’s look more closely at the function of each layer, working our
      way up from the Network Access Layer to the   Application Layer.

Network Access Layer



The Network Access Layer   is the lowest layer of the TCP/IP protocol hierarchy. The
      protocols in this layer provide the means for the system to deliver data
      to the other devices on a directly attached network. This layer defines
      how to use the network to transmit an IP datagram. Unlike higher-level
      protocols, Network Access Layer protocols must know the details of the
      underlying network (its packet structure, addressing, etc.) to correctly
      format the data being transmitted to comply with the network
      constraints. The TCP/IP Network Access Layer can encompass the functions
      of all three lower layers of the OSI Reference Model (Network, Data
      Link, and Physical).
The Network Access Layer is often ignored by users. The design of
      TCP/IP hides the function of the lower layers, and the better-known
      protocols (IP, TCP, UDP, etc.) are all higher-level protocols. As new
      hardware technologies appear, new Network Access protocols must be
      developed so that TCP/IP networks can use the new hardware.
      Consequently, there are many access protocols—one for each physical
      network standard.
Functions performed at this level include encapsulation     of IP datagrams into the frames transmitted by the
      network, and mapping of IP addresses to the physical addresses used by
      the network. One of TCP/IP’s strengths is its universal addressing
      scheme. The IP address must be converted into an address that is
      appropriate for the physical network over which the datagram is
      transmitted.
Two RFCs that define Network Access Layer protocols
      are:
	RFC 826, Address Resolution Protocol           (ARP), which maps IP addresses to Ethernet
          addresses

	RFC 894, A Standard for the Transmission of           IP Datagrams over Ethernet Networks, which specifies how
          IP datagrams are encapsulated for transmission over Ethernet
          networks



As implemented in Unix, protocols in this layer often appear as a
      combination of device drivers and related programs. The modules that are
      identified with network device names usually encapsulate and deliver the
      data to the network, while separate programs perform related functions
      such as address mapping.

Internet Layer



The
      layer   above the Network Access Layer in the protocol hierarchy
      is the Internet Layer. The Internet Protocol (IP)
      is the most important protocol in this layer. The release of
      IP used in the current Internet is IP version 4 (IPv4), which is defined
      in RFC 791. There are more recent versions of IP. IP version 5 is an
      experimental Stream Transport (ST) protocol used for real-time data
      delivery. IPv5 never came into operational use. IPv6 is an IP standard
      that provides greatly expanded addressing capacity. Because IPv6 uses a
      completely different address structure, it is not interoperable with
      IPv4. While IPv6 is a standard version of IP, it is not yet widely used
      in operational, commercial networks. Since our focus is on practical,
      operational networks, we do not cover IPv6 in detail. In this chapter
      and throughout the main body of the text, “IP” refers to IPv4. IPv4 is
      the protocol you will configure on your system when you want to exchange
      data with remote systems, and it is the focus of this text.
The Internet Protocol is the heart of TCP/IP. IP provides the
      basic packet delivery service on which TCP/IP networks are built. All
      protocols, in the layers above and below IP, use the Internet Protocol
      to deliver data. All incoming and outgoing TCP/IP data flows through IP,
      regardless of its final destination.
Internet Protocol



The Internet   Protocol is the building block of the Internet. Its
        functions include:
	Defining the datagram, which is the basic unit of
            transmission in the Internet

	Defining the Internet addressing scheme

	Moving data between the Network Access Layer and the
            Transport Layer

	Routing datagrams to remote hosts

	Performing fragmentation and re-assembly of datagrams



Before describing these functions in more detail, let’s look at
        some of IP’s characteristics. First, IP is a connectionless protocol. This means that it does not exchange control
        information (called a “handshake”) to establish an end-to-end connection before
        transmitting data. In contrast, a connection-oriented protocol exchanges control information with the remote
        system to verify that it is ready to receive data before any data is
        sent. When the handshaking is successful, the systems are said to have
        established a connection. The Internet Protocol
        relies on protocols in other layers to establish the connection if
        they require connection-oriented service.
IP also relies on protocols in the other layers to provide error
        detection and error recovery. The Internet Protocol is sometimes called an
        unreliable protocol because it contains no error
        detection and recovery code. This is not to say that the protocol
        cannot be relied on—quite the contrary. IP can be relied upon to
        accurately deliver your data to the connected network, but it doesn’t
        check whether that data was correctly received. Protocols in other
        layers of the TCP/IP architecture provide this checking when it is
        required.
The datagram



The TCP/IP   protocols were built to transmit data over the
          ARPAnet, which was a packet-switching network.  A packet is a block of data that
          carries with it the information necessary to deliver it, similar to
          a postal letter, which has an address written on its envelope. A
          packet-switching network uses the addressing information in the
          packets to switch packets from one physical network to another,
          moving them toward their final destination. Each packet travels the
          network independently of any other packet.
The datagram is the packet format defined
          by the Internet Protocol. Figure
          1-5 is a pictorial representation of an IP datagram. The
          first five or six 32-bit words of the datagram are control
          information called the header. By default, the header is five words long; the sixth
          word is optional. Because the header’s length is variable, it
          includes a field called Internet Header Length
           (IHL) that indicates the header’s length in words. The
          header contains all the information necessary to deliver the
          packet.
[image: IP datagram format]

Figure 1-5. IP datagram format

The Internet Protocol delivers the datagram by checking the
          Destination Address in word 5 of the header. The Destination Address is a
          standard 32-bit IP address that identifies the destination network
          and the specific host on that network. (The format of IP addresses
          is explained in Chapter 2.) If the
          Destination Address is the address of a host on the local network,
          the packet is delivered directly to the destination. If the
          Destination Address is not on the local network, the packet is
          passed to a gateway for delivery.   Gateways are devices that switch
          packets between the different physical networks. Deciding which
          gateway to use is called routing. IP makes the routing decision for each individual packet.

Routing datagrams



Internet     gateways are commonly (and perhaps more accurately)
          referred to as IP routers because they use
          Internet Protocol to route packets between networks. In traditional
          TCP/IP jargon, there are only two types of network
          devices—gateways and
          hosts. Gateways forward packets between
          networks, and hosts don’t. However, if a host is connected to more
          than one network (called a multi-homed host),  it can forward packets between the networks. When a
          multi-homed host forwards packets, it acts just like any other
          gateway and is in fact considered to be a gateway. Current data
          communications terminology makes a distinction between gateways and
          routers,[6] but we’ll use the terms gateway
          and IP router interchangeably.
Figure 1-6 shows the
          use of gateways to forward packets. The hosts (or end systems) process packets through all four protocol
          layers, while the gateways (or intermediate systems) process the packets only up to the Internet
          Layer where the routing decisions are made.
[image: Routing through gateways]

Figure 1-6. Routing through gateways

Systems can deliver packets only to other devices attached to
          the same physical network. Packets from A1
          destined for host C1 are forwarded through
          gateways G1 and G2. Host
          A1 first delivers the packet to gateway
          G1, with which it shares network
          A. Gateway G1 delivers the
          packet to G2 over network
          B. Gateway G2 then
          delivers the packet directly to host C1 because
          they are both attached to network C. Host
          A1 has no knowledge of any gateways beyond
          gateway G1. It sends packets destined for both
          networks C and B to that
          local gateway and then relies on that gateway to properly forward
          the packets along the path to their destinations. Likewise, host
          C1 sends its packets to G2
          to reach a host on network A, as well as any
          host on network B.
Figure 1-7 shows
          another view of routing. This figure emphasizes that the underlying
          physical networks a datagram travels through may be different and
          even incompatible. Host A1 on the token ring
          network routes the datagram through gateway G1
          to reach host C1 on the Ethernet. Gateway
          G1 forwards the data through the X.25 network
          to gateway G2 for delivery to
          C1. The datagram traverses three physically
          different networks, but eventually arrives intact at
          C1.
[image: Networks, gateways, and hosts]

Figure 1-7. Networks, gateways, and hosts


Fragmenting datagrams



As a datagram     is routed through different networks, it may be
          necessary for the IP module in a gateway to divide the datagram into
          smaller pieces. A datagram received from one network may be too
          large to be transmitted in a single packet on a different network.
          This condition occurs only when a gateway interconnects dissimilar
          physical networks.
Each type of network has a maximum transmission unit    (MTU), which is the largest packet that it can
          transfer. If the datagram received from one network is longer than
          the other network’s MTU, the datagram must be divided into smaller
          fragments for transmission. This process is
          called fragmentation. Think of a train
          delivering a load of steel. Each railway car can carry more steel
          than the trucks that will take it along the highway, so each railway
          car’s load is unloaded onto many different trucks. In the same way
          that a railroad is physically different from a highway, an Ethernet
          is physically different from an X.25 network; IP must break an
          Ethernet’s relatively large packets into smaller packets before it
          can transmit them over an X.25 network.   
The format of each fragment is the same as the format of any
          normal datagram. Header word 2 contains information that identifies
          each datagram fragment and provides information about how to
          re-assemble the fragments back into the original datagram. The
          Identification field identifies what datagram the
          fragment belongs to, and the Fragmentation Offset field tells what piece of the
          datagram this fragment is. The Flags field has a “More Fragments” bit that tells IP
          if it has assembled all of the datagram fragments.

Passing datagrams to the transport layer



When IP receives     a datagram that is addressed to the local host, it
          must pass the data portion of the datagram to the correct Transport
          Layer protocol. This is done by using the protocol number from word 3 of the datagram header. Each Transport Layer
          protocol has a unique protocol number that identifies it to IP.
          Protocol numbers are discussed in Chapter
          2.
You can see from this short overview that IP performs many
          important functions. Don’t expect to fully understand datagrams,
          gateways, routing, IP addresses, and all the other things that IP
          does from this short description; each chapter will add more details
          about these topics. So let’s continue on with the other protocol in
          the TCP/IP Internet Layer.


Internet Control Message Protocol



An   integral part of IP is the Internet Control         Message Protocol  (ICMP) defined in RFC 792. This protocol is part of the
        Internet Layer and uses the IP datagram delivery facility to send its
        messages. ICMP sends messages that perform the following control,
        error reporting, and informational functions for TCP/IP:
	Flow control
	When datagrams arrive too fast for processing, the
              destination host or an intermediate gateway sends an ICMP
               Source Quench Message back to the sender. This
              tells the source to stop sending datagrams temporarily.

	Detecting unreachable destinations
	When a destination is unreachable, the system detecting
              the problem sends a Destination Unreachable Message to the datagram’s source. If the unreachable
              destination is a network or host, the message is sent by an
              intermediate gateway. But if the destination is an unreachable
              port, the destination host sends the message. (We discuss ports
              in Chapter 2.)

	Redirecting routes
	A gateway sends the ICMP Redirect Message to tell a host to use another
              gateway, presumably because the other gateway is a better
              choice. This message can be used only when the source host is on
              the same network as both gateways. To better understand this,
              refer to Figure 1-7. If
              a host on the X.25 network sent a datagram to
              G1, it would be possible for
              G1 to redirect that host to
              G2 because the host,
              G1, and G2 are all
              attached to the same network. On the other hand, if a host on
              the token ring network sent a datagram to
              G1, the host could not be redirected to use
              G2. This is because G2
              is not attached to the token ring.

	Checking remote hosts
	A host can send the ICMP Echo Message to see if a remote system’s Internet
              Protocol is up and operational. When a system receives an echo
              message, it replies and sends the data from the packet back to
              the source host. The ping
               command uses this message.






[6] In current terminology, a gateway moves data between
              different protocols, and a router moves data between different
              networks. So a system that moves mail between TCP/IP and X.400
              is a gateway, but a traditional IP gateway is a router.



Transport Layer



The  protocol layer just above the Internet Layer is the
      Host-to-Host Transport Layer, usually shortened to
      Transport Layer. The two most important protocols
      in the Transport Layer are Transmission Control Protocol (TCP) and User Datagram Protocol (UDP). TCP provides reliable data delivery service
      with end-to-end error detection and correction. UDP provides
      low-overhead, connectionless datagram delivery service. Both protocols
      deliver data between the Application Layer and the Internet Layer.
      Applications programmers can choose whichever service is more
      appropriate for their specific applications.
User Datagram Protocol



The User Datagram Protocol gives   application programs direct access to a datagram
        delivery service, like the delivery service that IP provides. This
        allows applications to exchange messages over the network with a
        minimum of protocol overhead.
UDP is an unreliable, connectionless datagram protocol. As
        noted, “unreliable” merely means that there are no techniques in the
        protocol for verifying that the data reached the other end of the
        network correctly. Within your computer, UDP will deliver data
        correctly. UDP uses 16-bit Source Port  and Destination Port  numbers in word 1 of the message header to deliver data
        to the correct applications process. Figure 1-8 shows the UDP message
        format.
[image: UDP message format]

Figure 1-8. UDP message format

Why do applications programmers choose UDP as a data transport
        service? There are a number of good reasons. If the amount of data
        being transmitted is small, the overhead of creating connections and
        ensuring reliable delivery may be greater than the work of
        re-transmitting the entire data set. In this case, UDP is the most
        efficient choice for a Transport Layer protocol. Applications that fit
        a query-response  model are also excellent candidates for using UDP. The
        response can be used as a positive acknowledgment to the query. If a
        response isn’t received within a certain time period, the application
        just sends another query. Still other applications provide their own
        techniques for reliable data delivery and don’t require that service
        from the Transport Layer protocol. Imposing another layer of
        acknowledgment on any of these types of applications is
        inefficient.

Transmission Control Protocol



Applications   that require the transport protocol to provide reliable data delivery
        use TCP because it verifies that data is delivered across the network
        accurately and in the proper sequence. TCP is a
        reliable,
        connection-oriented,
        byte-stream protocol. Let’s look at each of these
        characteristics in more detail.
TCP provides reliability with a mechanism called Positive         Acknowledgment with Re-transmission   (PAR). Simply stated, a system using PAR sends the data
        again unless it hears from the remote system that
        the data arrived OK. The unit of data exchanged between cooperating
        TCP modules is called a segment (see Figure
        1-9). Each segment contains a checksum that the recipient uses to verify that the data is
        undamaged. If the data segment is received undamaged, the receiver
        sends a positive acknowledgment back to the
        sender. If the data segment is damaged, the receiver discards it.
        After an appropriate timeout period, the sending TCP module re-transmits any segment for
        which no positive acknowledgment has been received.
[image: TCP segment format]

Figure 1-9. TCP segment format

TCP is connection-oriented. It establishes a logical end-to-end
        connection between the two communicating hosts. Control information,
        called a handshake, is exchanged between the two endpoints to establish a
        dialogue before data is transmitted. TCP indicates the control
        function of a segment by setting the appropriate bit in the Flags
        field in word 4 of the segment header.  
The type of handshake used by TCP is called a
        three-way handshake  because three segments are exchanged. Figure 1-10 shows the simplest form
        of the three-way handshake. Host A begins the
        connection by sending host B a segment with the
        “Synchronize sequence numbers” (SYN) bit set. This segment tells host B
        that A wishes to set up a connection, and it
        tells B what sequence number host
        A will use as a starting number for its segments.
        (Sequence numbers are used to keep data in the proper order.) Host
        B responds to A with a
        segment that has the “Acknowledgment” (ACK) and SYN bits set.
        B’s segment acknowledges the receipt of
        A’s segment, and informs A
        which sequence number host B will start with.
        Finally, host A sends a segment that acknowledges
        receipt of B’s segment, and transfers the first
        actual data.
[image: Three-way handshake]

Figure 1-10. Three-way handshake

After this exchange, host A’s TCP has
        positive evidence that the remote TCP is alive and ready to receive
        data. As soon as the connection is established, data can be
        transferred. When the cooperating modules have concluded the data
        transfers, they will exchange a three-way handshake with segments
        containing the “No more data from sender” bit (called the FIN bit) to close the connection. It is the end-to-end
        exchange of data that provides the logical connection between the two
        systems.
TCP views the data it sends as a continuous stream of bytes, not
        as independent packets. Therefore, TCP takes care to maintain the
        sequence in which bytes are sent and received. The Sequence Number and Acknowledgment Number fields in the TCP segment header
        keep track of the bytes.
The TCP standard does not require that each system start
        numbering bytes with any specific number; each system chooses the
        number it will use as a starting point. To keep track of the data
        stream correctly, each end of the connection must know the other end’s
        initial number. The two ends of the connection synchronize  byte-numbering systems by exchanging SYN segments during
        the handshake. The Sequence Number field in the SYN segment contains
        the Initial Sequence Number   (ISN), which is the starting point for the
        byte-numbering system. For security reasons the
        ISN should be a random number.
Each byte of data is numbered sequentially from the ISN, so the
        first real byte of data sent has a Sequence Number of ISN+1. The
        Sequence Number in the header of a data segment identifies the
        sequential position in the data stream of the first data byte in the
        segment. For example, if the first byte in the data stream was
        sequence number 1 (ISN=0) and 4000 bytes of data have already been
        transferred, then the first byte of data in the current segment is
        byte 4001, and the Sequence Number would be 4001.
The Acknowledgment Segment (ACK) performs two functions:
        positive acknowledgment and flow control. The acknowledgment tells the sender how much data has
        been received and how much more the receiver can accept. The
        Acknowledgment Number is the sequence number of the next byte the
        receiver expects to receive. The standard does not require an
        individual acknowledgment for every packet. The acknowledgment number
        is a positive acknowledgment of all bytes up to that number. For
        example, if the first byte sent was numbered 1 and 2000 bytes have
        been successfully received, the Acknowledgment Number would be
        2001.
The Window field contains the window,
        or the number of bytes the remote end is able to accept. If the
        receiver is capable of accepting 6000 more bytes, the window would be
        6000. The window indicates to the sender that it can continue sending
        segments as long as the total number of bytes that it sends is smaller
        than the window of bytes that the receiver can accept. The receiver
        controls the flow of bytes from the sender by changing the size of the
        window. A zero window tells the sender to cease transmission until it
        receives a non-zero window value.
Figure 1-11 shows a TCP
        data stream that starts with an Initial Sequence Number of 0. The
        receiving system has received and acknowledged 2000 bytes, so the
        current Acknowledgment Number is 2001. The receiver also has enough
        buffer space for another 6000 bytes, so it has advertised a window of
        6000. The sender is currently sending a segment of 1000 bytes starting
        with Sequence Number 4001. The sender has received no acknowledgment
        for the bytes from 2001 on, but continues sending data as long as it
        is within the window. If the sender fills the window and receives no
        acknowledgment of the data previously sent, it will, after an
        appropriate timeout, send the data again starting from the first
        unacknowledged byte.
[image: TCP data stream]

Figure 1-11. TCP data stream

In Figure 1-11
        re-transmission would start from byte 2001 if no further
        acknowledgments are received. This procedure ensures that data is
        reliably received at the far end of the network.
TCP is also responsible for delivering data received from IP to
        the correct application. The application that the data is bound for is
        identified by a 16-bit number called the port number.  The Source Port  and Destination Port  are contained in the first word of the segment header.
        Correctly passing data to and from the Application Layer is an
        important part of what the Transport Layer services do.


Application Layer



At the  top of the TCP/IP protocol architecture is the
      Application Layer. This layer includes all
      processes that use the Transport Layer protocols to deliver data. There
      are many applications protocols. Most provide user services, and new
      services are always being added to this layer.
The most widely known and implemented applications protocols
      are:
	Telnet
	The Network Terminal Protocol, which provides remote login over
            the network.

	FTP
	The File Transfer Protocol, which is used for interactive file transfer.

	SMTP
	The  Simple Mail Transfer Protocol, which delivers
            electronic mail.

	HTTP
	The  Hypertext Transfer Protocol, which delivers web
            pages over the network.



While HTTP, FTP, SMTP, and Telnet are the most widely implemented
      TCP/IP applications, you will work with many others as both a user and a
      system administrator. Some other commonly used TCP/IP applications
      are:
	Domain Name System (DNS)
	Also called name service, this
             application maps IP addresses to the names assigned to network
            devices. DNS is discussed in detail in this book.

	Open Shortest Path First (OSPF)
	Routing is central to the way TCP/IP works. OSPF is used by network
            devices to exchange routing information. Routing is also a major
            topic of this book.

	Network File System (NFS)
	This protocol  allows files to be shared by various hosts on the
            network.



Some protocols, such as Telnet and FTP, can be used only if the
      user has some knowledge of the network. Other protocols, like OSPF, run
      without the user even knowing that they exist. As the system
      administrator, you are aware of all these applications and all the
      protocols in the other TCP/IP layers. And you’re responsible for
      configuring them!

Summary



In this chapter we discussed the structure of TCP/IP, the protocol
      suite upon which the Internet is built. We have seen that TCP/IP is a
      hierarchy of four layers: Applications, Transport, Internet, and Network
      Access. We have examined the function of each of these layers. In the
      next chapter we look at how the IP datagram moves through a network when
      data is delivered between hosts.

Chapter 2. Delivering the Data



In Chapter 1, we touched on the
    basic architecture and design of the TCP/IP protocols. From that
    discussion, we know that TCP/IP is a hierarchy of four layers. In this
    chapter, we explore in finer detail how data moves between the protocol
    layers and the systems on the network. We examine the structure of
    Internet addresses, including how addresses route data to its final
    destination and how address structure is locally redefined to create
    subnets. We also look at the protocol and port numbers used to deliver
    data to the correct applications. These additional details move us from an
    overview of TCP/IP to the specific implementation issues that affect your
    system’s configuration.
Addressing, Routing, and Multiplexing



To deliver data between two Internet hosts, it is necessary to
      move the data across the network to the correct host, and within that
      host to the correct user or process. TCP/IP uses three schemes to
      accomplish these tasks:
	Addressing
	 IP addresses, which uniquely identify every host on the network,
            deliver data to the correct host.

	Routing
	Gateways deliver data to the correct network.

	Multiplexing
	Protocol and port numbers deliver data to the correct software module within
            the host.



Each of these functions—addressing between hosts, routing between
      networks, and multiplexing between layers—is necessary to send data
      between two cooperating applications across the Internet. Let’s examine
      each of these functions in detail.
To illustrate these concepts and provide consistent examples,
      we’ll use an imaginary corporate network. Our imaginary company brings
      together authors to write computer books and conduct training. Our
      company network is made up of several networks at our training
      facilities and publishing office, as well as a connection to the
      Internet. We are responsible for managing the Ethernet in the computing
      center. This network’s structure, or   topology, is shown in Figure 2-1.
[image: Sample network topology]

Figure 2-1. Sample network topology

The icons in the figure represent computer systems. There are, of
      course, several other imaginary systems on our imaginary network, but
      we’ll use the hosts rodent (a workstation) and
      crab (a system that serves as a gateway) for most
      of our examples. The thick line is our computer center Ethernet, and the
      oval is the local network that connects our various corporate networks.
      The cloud is the Internet, and the numbers are IP addresses.


The IP Address



An IP address is a 32-bit value that uniquely identifies every
      device attached to a TCP/IP network. IP addresses are usually written as
      four decimal numbers separated by dots (periods) in a format called
      dotted decimal notation .[7] Each decimal number represents an 8-bit byte of the 32-bit
      address, and each of the four numbers is in the range 0-255 (the decimal
      values possible in a single byte).
IP addresses are often called host addresses. While this is common usage, it is slightly
      misleading. IP addresses are assigned to network interfaces, not to
      computer systems. A gateway, such as crab (see
      Figure 2-1), has a different
      address for each network to which it is connected. The gateway is known
      to other devices by the address associated with the network that it
      shares with those devices. For example, rodent
      addresses crab as 172.16.12.1 while external hosts
      address it as 10.104.0.19.
Systems can be addressed in three different ways. Individual
      systems are directly addressed by a host address, which is called a
      unicast address   . A unicast packet is addressed to one individual host.
      Groups of systems can be addressed using a multicast address,   e.g., 224.0.0.9. Routers along the path from the source to the destination
      recognize the special address and route copies of the packet to each
      member of the multicast group.[8] All systems on a network are addressed using the broadcast
      address, e.g., 172.16.255.255. The broadcast address depends on the
      broadcast capabilities of the underlying physical network.
The   broadcast address is a good example of the fact that not
      all network addresses or host addresses can be assigned to a network
      device. Some host addresses are reserved for special uses. On all networks, host numbers 0 and 255 are reserved. An IP address with all
      host bits set to 1 is a  broadcast address.[9] The broadcast address for network 172.16 is
      172.16.255.255. A datagram sent to this address is delivered to every
      individual host on network 172.16. An IP address with all host bits set
      to 0 identifies the network itself. For example, 10.0.0.0 refers to
      network 10, and 172.16.0.0 refers to network 172.16. Addresses in this
      form are used in routing tables to refer to entire networks.
Network addresses with a first byte value greater than 223 cannot
      be assigned to a physical network, because those addresses are reserved
      for special use. There are two other network addresses that are used
      only for special purposes: network 0.0.0.0 designates the
      default route and network 127.0.0.1 is the loopback address. The default route is used to simplify the routing
      information that IP must handle. The loopback address simplifies network
      applications by allowing the local host to be addressed in the same
      manner as a remote host. These special network addresses play an
      important part when configuring a host, but these addresses are not
      assigned to devices on real networks. Despite these few exceptions, most
      addresses are assigned to physical devices and are used by IP to deliver
      data to those devices.
The Internet Protocol moves data between hosts in the form of
        datagrams. Each datagram is delivered to the address
      contained in the Destination Address (word 5) of the datagram’s header. The Destination Address
      is a standard 32-bit IP address, which contains sufficient information
      to uniquely identify a network and a specific host on that
      network.
Address Structure



An IP address contains a network part and
        a host part, but the format of these parts is not the same in every IP
        address. The number of address bits used to identify the network and
        the number used to identify the host vary according to the prefix
        length of the address. The prefix length is determined by the address
        bit mask.
An address  bit mask works like this: if a bit is on in the mask,
        that equivalent bit in the address is interpreted as a network bit; if
        a bit in the mask is off, the bit belongs to the host part of the
        address. For example, if address 172.22.12.4 is given the network mask
        255.255.255.0, which has 24 bits on and 8 bits off, the first 24 bits
        are the network number and the last 8 bits are the host address.
        Combining the address and the mask tells us that this is the address
        of host 4 on network 172.22.12.
Specifying both the address and the mask in dotted decimal
        notation is cumbersome when writing out addresses. A shorthand
        notation is available for writing an address with its associated
        address mask. Instead of writing network 172.31.26.32 with a mask of
        255.255.255.224, we can write 172.31.26.32/27. The format of this
        notation is address/prefix-length, where
        prefix-length is the number of bits in the network portion of the
        address. Without this notation, the address 172.31.26.32 could easily
        be misinterpreted.
Organizations usually obtain official IP  addresses by purchasing a block of addresses from their
        Internet service provider. The ISP normally assigns a single
        organization a continuous block of addresses that is appropriate for
        the needs of the organization. For example, a moderately large
        business might purchase 192.168.16.0/20 while a small business might
        buy 192.168.32.0/24. Because the prefix shows the length of the
        network portion of the address, the number of host addresses that are
        available to an organization (the host portion of the address) is
        determined by subtracting the prefix from the total number of bits in
        an address, which is 32. Thus a prefix of 20 leaves 12 bits that are
        available to be locally assigned. This is called a “12-bit block” of
        addresses. A prefix of 24 creates an “8-bit block.” Of
        the two sample address blocks, the first is a 12-bit block that
        encompasses 4,096 addresses from 192.168.16.0 to 192.168.31.255, and
        the second is an 8-bit block that includes the 256 addresses from
        192.168.32.0 to 192.168.32.255.
Each of these address blocks appears to the outside world to be
        a single “network” address. Thus external routers have one route to
        the block 192.168.16.0/20 and one route to the block 192.168.32.0/24,
        regardless of the size of the address block. Internally, however, the
        organization may have several separate physical networks within the
        address block. The flexibility of address masks means that service
        providers can assign arbitrary length blocks of addresses to their
        customers, and the customers can subdivide those address blocks using
        different length masks.

Subnets



The   structure of an IP address can be locally modified by
        using host address bits as additional network address bits.
        Essentially, the “dividing line” between network address bits and host
        address bits is moved, creating additional networks but reducing the
        maximum number of hosts that can belong to each network. These newly
        designated network bits define an address block within the larger
        address block, which is called a subnet.
Organizations usually decide to subnet in order to overcome
        topological or organizational problems. Subnetting allows
        decentralized management  of host addressing. With the standard addressing scheme,
        a central administrator is responsible for managing host addresses for
        the entire network. By subnetting, the administrator can delegate
        address assignment to smaller organizations within the overall
        organization—which may be a political expedient, if not a technical
        requirement. If you don’t want to deal with the data processing
        department, for example, assign them their own subnet and let them
        manage it themselves.
Subnetting can also be used to overcome hardware differences and distance limitations. IP routers can
        link dissimilar physical networks together, but only if each physical
        network has its own unique network address. Subnetting divides a
        single address block into many unique subnet addresses, so that each
        physical network can have its own unique address.
A subnet is defined by changing the bit mask of the IP address.
        A subnet mask    functions in the same way as a normal address mask: an
        “on” bit is interpreted as a network bit; an “off” bit belongs to the
        host part of the address. The difference is that a subnet mask is only
        used locally. On the outside, the address is still interpreted using
        the address mask known to the outside world.
Assume you have a small real estate business that has been
        assigned the address block 192.168.32.0/24. The bit mask associated
        with that address block is 255.255.255.0, and the block contains 256
        addresses. Further, assume that your business has 10 offices, each
        with a half-dozen computers, and that you want to allocate some
        addresses to each office and keep some for future expansion. You can
        subdivide the 256 address block with a subnet mask that extends the
        network portion of the address by a few additional bits.
To subdivide 192.168.32.0/24 into 16 subnets, use the mask
        255.255.255.240, i.e., 192.168.32.0/28. The first three bytes contain
        the original network address block; the fourth byte is divided between
        the subnet address and the address of the host on that subnet.
        Applying this mask defines the four high-order bits of the fourth byte
        as the subnet part of the address, and the remaining four bits—the
        last four bits of the fourth byte—as the host portion of the address.
        This creates 16 subnets that each contain 14 host addresses, which is
        better suited to the network topology of your small real estate
        business. Table 2-1 shows
        the subnets and host addresses produced by applying this subnet mask
        to network address 192.168.32.0/24.
Table 2-1. Effects of a subnet mask
	Network number
	Host address range
	Broadcast address

	192.168.32.0
	192.168.32.1 - 192.168.32.14
	192.168.32.15

	192.168.32.16
	192.168.32.17 - 192.168.32.30
	192.168.32.31

	192.168.32.32
	192.168.32.33 - 192.168.32.46
	192.168.32.47

	192.168.32.48
	192.168.32.49 - 192.168.32.62
	192.168.32.63

	192.168.32.64
	192.168.32.65 - 192.168.32.78
	192.168.32.79

	192.168.32.80
	192.168.32.81 - 192.168.32.94
	192.168.32.95

	192.168.32.96
	192.168.32.97 - 192.168.32.110
	192.168.32.111

	192.168.32.112
	192.168.32.113 - 192.168.32.126
	192.168.32.127

	192.168.32.128
	192.168.32.129 - 192.168.32.142
	192.168.32.143

	192.168.32.144
	192.168.32.145 - 192.168.32.158
	192.168.32.159

	192.168.32.160
	192.168.32.161 - 192.168.32.174
	192.168.32.175

	192.168.32.176
	192.168.32.177 - 192.168.32.190
	192.168.32.191

	192.168.32.192
	192.168.32.193 - 192.168.32.206
	192.168.32.207

	192.168.32.208
	192.168.32.209 - 192.168.32.222
	192.168.32.223

	192.168.32.224
	192.168.32.225 - 192.168.32.238
	192.168.32.239

	192.168.32.240
	192.168.32.241 - 192.168.32.254
	192.168.32.255




In Table 2-1, the
        first row describes a subnet with a subnet number that is all 0s (the
        first four bits of the fourth byte are all set to 0). The last row in
        the table describes a subnet with a subnet number that is all 1s (the
        first four bits of the fourth byte are all set to 1). Originally, the
        RFCs    implied that you should not use subnet numbers of all 0s
        or all 1s. However, RFC 1812, Requirements for IP Version 4 Routers, makes it clear that subnets of all 0s and all 1s
        are legal and should be supported by all routers. Some older routers
        did not allow the use of these addresses despite the newer RFCs.
        Today’s router software and hardware should make it possible for you
        to reliably use all subnet addresses.
You don’t have to manually calculate a table like this to know
        what subnets and host addresses are produced by a subnet mask. The
        calculations have already been done for you. RFC 1878, Variable Length Subnet Table For IPv4, lists all possible subnet masks and the valid
        addresses they produce.
RFC 1878 describes all 32 prefix values. But little
        documentation is needed because the prefix is easy to understand and
        remember. Writing 10.104.0.19 as 10.104.0.19/8 shows that this address
        has 8 bits for the network number and therefore 24 bits for the host
        number. Unfortunately, things are not always this neat. Sometimes the
        address is not given an explicit address mask, and you need to know
        how to determine the natural mask that an address will be assigned by
          default.

The Natural Mask



  Originally, the IP address space was divided into a few
        fixed-length structures called address classes.
        The three main address classes were class A,
        class B, and class C. IP
        software determined the class, and therefore the structure, of an
        address by examining its first few bits. Address classes are no longer
        used, but the same rules that were used to determine the address class
        are now used to create the default address mask, which is called the
        natural mask   . These rules are as follows:
	If the first bit of an IP address is 0, the default mask is
            8 bits long (prefix 8). This is the same as the old class A
            network address format. The first 8 bits identify the network, and
            the last 24 bits identify the host.

	If the first 2 bits of the address are 1 0, the default mask
            is 16 bits long (prefix 16), which is the same as the old class B
            network address format. The first 16 bits identify the network,
            and the last 16 bits identify the host.

	If the first 3 bits of the address are 1 1 0, the default
            mask is 24 bits long (prefix 24). This mask is the same as the old
            class C network address format. The first 24 bits are the network
            address, and the last 8 bits identify the host.

	If the first 4 bits of the address are 1 1 1 0, it is a
            multicast address. These addresses were sometimes
            called class D addresses, but they don’t
            really refer to specific networks. Multicast addresses are used to
            address groups of computers all at one time. They identify a group
            of computers that share a common application, such as a
            videoconference, as opposed to a group of computers that share a
            common network. All bits in a multicast address are significant
            for routing, so the default mask is 32 bits long (prefix
            32).



When an IP address is written in dotted decimal format, it is
        sometimes easier to think of the address as four 8-bit bytes instead
        of as a 32-bit value. We can look at the address as composed of full
        bytes of network address and full bytes of host address when using the
        natural mask, because the three default masks all create prefix
        lengths that are multiples of 8. A simple way to determine the
          default mask is to look at the first byte of the
        address. If the value  of the first byte is:
	Less than 128, the default address mask is 8 bits long; the
            first byte is the network number, and the next three bytes are the host address.
            

	From 128 to 191, the default address mask is 16 bits long;
            the first two bytes identify the network, and the last two bytes
            identify the host.

	From 192 to 223, the default address mask is 24 bits long;
            the first three bytes are the network address, and the last byte
            is the host number.

	From 224 to 239, the address is multicast. The entire
            address identifies a specific multicast group; therefore the
            default mask is 32 bits.

	Greater than 239, the address is reserved. We can ignore
            reserved addresses.



Figure 2-2 illustrates
        the two techniques for determining the default address structure. The
        first address is 10.104.0.19. The first bit of this address is 0;
        therefore, the first 8 bits define the network and the last 24 bits
        define the host. Explained in a byte-oriented manner, the first byte
        is less than 128, so the address is interpreted as host 104.0.19 on
        network 10. One byte specifies the network and three bytes specify the
        host.
[image: Default IP address formats]

Figure 2-2. Default IP address formats

The second address is 172.16.12.1. The two high-order bits are 1
        0, meaning that 16 bits define the network and 16 bits define the
        host. Viewed in a byte-oriented way, the first byte falls between 128
        and 191, so the address refers to host 12.1 on network 172.16. Two
        bytes identify the network and two identify the host.
Finally, in the address 192.168.16.1, the three high-order bits
        are 1 1 0, indicating that 24 bits represent the network and 8 bits
        represent the host. The first byte of this address is in the range
        from 192 to 223, so this is the address of host 1 on network
        192.168.16—three network bytes and one host byte.
Evaluating addresses according to the class rules discussed
        above limits the length of network numbers to 8, 16, or 24 bits—1, 2,
        or 3 bytes. The IP address, however, is not really byte-oriented. It
        is 32 contiguous bits. The address bit mask
           provides a flexible way to define the network and host
        portions of an address. IP uses the network portion of the address to
        route the datagram between networks. The full address, including the
        host information, is used to identify an individual host. Because of
        the dual role of IP addresses, the flexibility of address masks not
        only makes more addresses available for use, but also has a positive
        impact 
         on routing.

CIDR Blocks and Route Aggregation



The IP address, which  provides universal addressing across all of the networks
        of the Internet, is one of the great strengths of the TCP/IP protocol
        suite. However, the original class structure of the IP address had
        weaknesses. The TCP/IP designers did not envision the enormous scale
        of today’s network. When TCP/IP was being designed, networking was
        limited to large organizations that could afford substantial computer
        systems. The idea of a powerful Unix system on every desktop did not
        exist. At that time, a 32-bit address seemed so large that it was
        divided into classes to reduce the processing load on routers, even
        though dividing the address into classes sharply reduced the number of
        host addresses actually available for use. For example, assigning a
        large network a single class B address instead of six class C
        addresses reduced the load on the router because the router needed to
        keep only one route for that entire organization. However, an
        organization that was assigned the class B address probably did not
        have 64,000 computers, so most of the host addresses available to the
        organization were never used.
The class-structured address design was critically strained
        by the rapid growth of the Internet. At one point it appeared that all
        class B addresses might be rapidly exhausted. The rapid depletion of
        the class B addresses showed that three primary address classes were
        not enough: class A was much too large and class C was much too small.
        Even a class B address was too large for many networks, but was used
        because it was better than the alternatives.
The obvious solution to the class B address crisis was to force
        organizations to use multiple class C addresses. There were millions
        of these addresses available and they were in no immediate danger of
        depletion. As is often the case, the obvious solution was not as
        simple as it seemed. Each class C address requires its own entry
        within the routing table. Assigning thousands or millions of class C
        addresses would cause the routing table to grow so rapidly that the
        routers would soon be overwhelmed. The solution required the new way
        of looking at addresses that address masks provide; it also required a
        new way of assigning addresses.
Originally network addresses were assigned in more or less
        sequential order as they were requested. This worked fine when the
        network was small and centralized. However, it did not take network
        topology into account. Thus, only random chance determined if the same
        intermediate routers would be used to reach network 195.4.12.0 and
        network 195.4.13.0, which makes it difficult to reduce the size of the
          routing table. Addresses can be aggregated only if they
        are contiguous numbers and are reachable through the same route. For
        example, if addresses are contiguous for one service provider, a
        single route can be created for that aggregation because that service
        provider will have a limited number of connections to the Internet.
        But if one network address is in France and the next contiguous
        address is in Australia, creating a consolidated route for these addresses is not possible.
Today, large, contiguous blocks  of addresses are assigned to large network service
        providers in a manner that better reflects the topology of the
        network. The service providers then allocate chunks of these address
        blocks to the organizations to which they provide network services.
        Because the assignment of addresses reflects the topology of the
        network, it permits route aggregation. Under this scheme, we know that
        network 195.4.12.0 and network 195.4.13.0 are reachable through the
        same intermediate routers. In fact, both of these addresses are in the
        range of the addresses assigned to Europe, 194.0.0.0 to
        195.255.255.255.
Assigning addresses that reflect the topology of the network
        enables route aggregation but does not implement it. As long as
        network 195.4.12.0 and network 195.4.13.0 were interpreted as separate
        class C addresses, they still required separate entries in the routing
        table. The development of address masks not only increased the usable
        address space, but it improved routing.
The use of an address mask instead of the old address classes to
        determine the destination network is called Classless         Inter-Domain Routing (CIDR).[10] CIDR requires  modifications to the routers and routing protocols. The
        protocols need to distribute, along with the destination addresses,
        address masks that define how the addresses are interpreted. The
        routers and hosts need to know how to interpret these addresses as
        “classless” addresses and how to apply the bit mask that accompanies
        the address. All new operating systems and routing protocols support
        address masks.
CIDR was intended as an interim solution, but it has proved much
        more durable than its designers imagined. CIDR has provided address
        and routing relief for many years and is capable of providing it for
        many more years to come. The long-term solution for address depletion
        is to replace the current addressing scheme with a new one. In the
        TCP/IP protocol suite, addressing is defined by the IP protocol.
        Therefore, to define a new address structure, the Internet Engineering
        Task Force (IETF)   created a new version of IP called IPv6.

IPv6



IPv6 is   an improvement on the IP protocol based on 20 years of
        operational experience. The original motivation for the new protocol
        was the threat of address depletion. IPv6 has a very large 128-bit
        address, so address depletion is not an issue. The large address also
        makes it possible to use a hierarchical address structure to reduce
        the burden on routers while still maintaining more than enough
        addresses for future network growth. But large addresses are only one
        of the benefits of the new protocol. Other benefits of IPv6
        are:
	Improved security built into the protocol

	Simplified, fixed-length, word-aligned headers to speed
            header processing and reduce overhead

	Improved techniques for handling header options



IPv6 has several good features, but it is still not widely used.
        This is partly because enhancements to IPv4, improvements in hardware
        performance, and changes in the way that networks are configured have
        reduced the demand for the new features of IPv6.
A critical shortage of addresses  did not materialize for three reasons:
	CIDR makes the assignment of addresses more flexible, which
            in turn makes more addresses available and permits aggregation to
            reduce the burden on routers.

	Private addresses and NAT have greatly reduced the demand
            for official addresses. Many organizations prefer to use private
            addresses for all systems on their internal networks because
            private addresses reduce the administrative burden and improve
            security.

	Permanent, fixed address assignment is less common than
            dynamic address assignment. The majority of systems use dynamic
            addresses temporarily assigned by the configuration protocol
            DHCP.



The creation of the IPsec standards for IPv4 lessened the need
        for the security enhancements of IPv6. In fact, many of the security
        tools and features available for IPv4 systems are not being fully
        utilized, indicating that the demand for tools that secure the link
        may have been overestimated.
IPv6 eliminates hop-by-hop segmentation, has a more efficient header
        design, and features enhanced option processing. These things make it
        more efficient to process IPv6 packets than to handle IPv4 packets.
        However, for the vast majority of systems, this increased efficiency
        is not needed because processing IP datagrams is a very minor task.
        Most systems are at the edge of the network and handle relatively few
        communications packets. Processor speed and memory have increased
        enormously while hardware prices have fallen. Most managers would
        rather buy more hardware using the proven IPv4 protocol than risk
        implementing the new IPv6 protocol just to save a few machine cycles.
        Only those systems located near the core of the network would truly
        benefit from this efficiency, and although important, those systems
        are relatively few in number.
All of these things have worked together to lessen the demand
        for IPv6. This lack of demand has limited the number of
        organizations that have adopted IPv6 as their primary communications
        protocol, and a large user community is the one thing that a protocol
        needs to be truly successful. We use communications protocols to
        communicate with other people. If there are not enough people using
        the protocol, we don’t feel the need to use it. IPv6 is still in the
        early-adopter phase. Most organizations do not use IPv6 at all, and
        many that do use it only for experimental purposes.[11] Between organizations, most IPv6 communications are
        encapsulated inside IPv4 datagrams and sent over the Internet inside
        IPv4 tunnels. It will be some time before it is the primary protocol
        of operational networks.
If you run an operational network, you should not be overly
        concerned with IPv6. The current generation of TCP/IP (IPv4), with the
        enhancements that CIDR and other extensions provide, should be more
        than adequate for your current network needs. On your network and the
        Internet, you will use IPv4 and 32-bit IP addresses.



[7] Addresses are occasionally written in other formats, e.g., as
          hexadecimal numbers. Whatever the notation, the structure and
          meaning of the address are the same.

[8] This is only partially true. Multicasting is not supported by
          every router. Sometimes it is necessary to tunnel through routers
          and networks by encapsulating the multicast packet inside a unicast
          packet.

[9] There are configuration options that affect the default
          broadcast address. Chapter 5
          discusses these options.

[10] CIDR is pronounced “cider.”

[11] Both Solaris and Linux include support for IPv6 if you wish
            to experiment with it.



Internet Routing Architecture



Chapter 1 described   the evolution of the Internet architecture over the years.
      Along with these architectural changes have come changes in the way that
      routing information is disseminated within the network.
In the original Internet structure, there was a hierarchy of
      gateways. This hierarchy reflected the fact that the Internet was built
      upon the existing ARPAnet. When the Internet was created, the ARPAnet
      was the backbone of the network: a central delivery medium to carry
      long-distance traffic. This central system was called the
      core, and the centrally managed gateways that
      interconnected it were called the core gateways.
       
In that hierarchical structure, routing information about all of
      the networks on the Internet was passed into the core gateways. The core
      gateways processed the information and then exchanged it among
      themselves using the Gateway to Gateway Protocol
      (GGP).  The processed routing information was then passed back
      out to the external gateways. The core gateways maintained accurate
      routing information for the entire Internet.
Using the hierarchical core router model to distribute routing
      information has a major weakness: every route must be processed by the
      core. This places a tremendous processing burden on the core, and as the
      Internet grew larger the burden increased. In network-speak, we say that
      this routing model does not “scale well.” For this reason, a new model
      emerged.
Even in the days of a single Internet core, groups of independent
      networks called autonomous systems existed outside of the core. The term autonomous system (AS)
      has a formal meaning in TCP/IP routing. An autonomous system is not
      merely an independent network. It is a collection of networks and
      gateways with its own internal mechanism for collecting routing
      information and passing it to other independent network systems. The
      routing information passed to the other network systems is called
      reachability information. Reachability information simply says which networks can be
      reached through that autonomous system. In the days of a single Internet
      core, autonomous systems passed reachability information into the core
      for processing. The Exterior Gateway Protocol
       (EGP) was the protocol used to pass reachability information
      between autonomous systems and into the core.
The new routing model is based on co-equal collections of
      autonomous systems called routing
      domains. Routing domains exchange routing information with other
      domains using Border Gateway Protocol  (BGP). Each routing domain processes the information it receives
      from other domains. Unlike the hierarchical model, this model does not
      depend on a single core system to choose the “best” routes. Each routing
      domain does this processing for itself; therefore, this model is more
      expandable. Figure 2-3
      represents this model with three intersecting circles. Each circle is a
      routing domain. The overlapping areas are border areas, where routing
      information is shared. The domains share information but do not rely on
      any one system to provide all routing information.
[image: Routing domains]

Figure 2-3. Routing domains

The problem with this model is: how are “best” routes determined
      in a global network if there is no central routing authority, like the
      core, that is trusted to determine the “best” routes? In the days of the
      NSFNET, the policy routing database (PRDB)
       was used to determine whether the reachability information
      advertised by an autonomous system was valid. But now, even the NSFNET
      does not play a central role.
To fill this void, NSF created the  Routing Arbiter (RA) servers when it created the Network Access Points  (NAPs) that provide interconnection points for the various
      service provider networks. A route arbiter is located at each NAP. The
      server provides access to the Routing Arbiter Database  (RADB), which replaced the PRDB. ISPs can query servers to
      validate the reachability information advertised by an autonomous
      system.
The RADB is only part of the Internet Routing Registry (IRR). As befits a distributed routing architecture, there are
      multiple organizations that validate and register routing information.
      Europeans were the pioneers in this. The Reseaux IP Europeens (RIPE)
      Network Control Center (NCC)    provides the routing registry for European IP networks. Big network
      carriers provide registries for their customers. All of the registries
      share a common format based on the RIPE-181 standard.
Many ISPs do not use the route servers. Instead they depend on
      formal and informal bilateral  agreements, where two ISPs get together and decide what
      reachability information each will accept from the other. They create,
      in effect, private routing policies. Small ISPs have criticized the
      routing policies of the tier-one providers, claiming that they limit
      competition. In response, most tier-one providers have promised to make
      the policies public, which should clarify the basis for the current
      architecture and may even spark more changes.
Creating an effective routing architecture continues to be a major
      challenge for the Internet, and the routing architecture will certainly
      evolve over time. No matter how it is derived, the routing information
      eventually winds up in your local gateway, where it is used by IP to
      make routing 
       decisions.

The Routing Table



Gateways route  data between networks, but all network devices, hosts as
      well as gateways, must make routing decisions. For most hosts, the
      routing decisions are simple:
	If the destination host is on the local network, the data is
          delivered to the destination host. 

	If the destination host is on a remote network, the data is
          forwarded to a local gateway. 



IP routing decisions are simply table lookups. Packets are routed
      toward their destinations as directed by the routing table (also called the forwarding table). The routing table maps destinations to the router and
      network interface that IP must use to reach that destination. Examining
      the routing table on a Linux system shows this.
On a Linux  system, use the route
      command with the -n option to display
      the routing table.[12] The -n option prevents
      route from converting IP addresses to
      hostnames, which gives a clearer display. Here is a routing table from a
      sample Red Hat system:
            # route -n
Kernel IP routing table
Destination   Gateway      Genmask        Flags Metric Ref   Use Iface
172.16.55.0   0.0.0.0      255.255.255.0  U     0      0       0 eth0
172.16.50.0   172.16.55.36 255.255.255.0  UG    0      0       0 eth0
127.0.0.0     0.0.0.0      255.0.0.0      U     0      0       0 lo
0.0.0.0       172.16.55.1  0.0.0.0        UG    0      0       0 eth0
On a Linux system, the route
      -n command displays the routing table
      with the following fields:
	Destination
	The value against which the destination IP address is
            matched.

	Gateway
	The router to use to reach the specified destination.

	Genmask
	The address mask used to match an IP address to the value shown
            in the Destination field.

	Flags
	Certain characteristics of this route. The possible Linux
            flag values are:[13]

	U
	Indicates that the route is up and operational.

	H
	Indicates that this is a route to a specific host (most routes
            are to networks).

	G
	Indicates that the route uses an external gateway.
            The system’s network interfaces provide routes to directly
            connected networks. All other routes use external gateways.
            Directly connected networks do not have the G flag set; all other
            routes do.

	R
	Indicates a route that was installed, probably by a dynamic
            routing protocol running on this system, using the reinstate option.

	D
	Indicates that this route was added because of an
            ICMP Redirect Message. When a system learns of a route via an ICMP
            Redirect, it adds the route to its routing table so that
            additional packets bound for that destination will not need to be
            redirected. The system uses the D flag to mark these
            routes.

	M
	Indicates a route that was modified, probably by a dynamic
            routing protocol running on this system, using the mod option.

	A
	Indicates a cached route that has an associated entry in the
            ARP table.

	C
	Indicates that this route came from the kernel routing cache.
            Most systems use two routing tables: the Forwarding Information
            Base (FIB), which is the table we are interested in because it is
            used for the routing decision, and the kernel routing cache, which
            lists the source and destination of recently used routes. This
            flag is documented, but I have never seen the C flag in a routing
            table listing, even when listing the routing cache.

	L
	Indicates that the destination of this route is one
            of the addresses of this computer. These “local routes” are found
            only in the routing cache.

	B
	Indicates a route whose destination is a broadcast address.
            These “broadcast routes” are found only in the routing cache.
            Solaris assigns the flag to both broadcast addresses and network
            addresses; i.e., both 172.16.255.255 and 172.16.0.0 are given the
            B flag by Solaris systems that live on network
            172.16.0.0/16.

	I
	Indicates a route that uses the loopback interface for some
            purpose other than addressing the loopback network. These
            “internal routes” are found only in the routing cache.

	!
	Indicates that datagrams bound for this destination
            will be rejected. Linux permits you to manually install “negative”
            routes. These are routes that explicitly block data bound for a
            specific destination. This is Linux-specific and rarely used, but
            it is a possible flag setting.

	Metric
	The “cost” of the route. The metric is used to sort duplicate
            routes if any appear in the table. Beyond this, a dynamic routing
            protocol is required to make use of the metric.

	Ref
	The number of times the route has been referenced to establish
            a connection. This value is not used by Linux systems.

	Use
	The number of times this route was looked up by IP.

	Iface
	The name of the network interface[14] used by this route.



Each entry in the  routing table starts with a destination value. The destination value is the key against which the IP
      address is matched to determine if this is the correct route to use to
      reach the IP address. The destination value is usually called the
      “destination network,” although it does not need to be a network
      address. The destination value can be a host address, a multicast
      address, an address block that covers an aggregation of many networks,
      or a special value for the default route or loopback address. In all
      cases, however, the Destination field contains the value against which the destination
      address from the IP packet is matched to determine if IP should deliver
      the datagram using this route.
The Genmask field is the  bit mask that IP applies to the destination address from
      the packet to see if the address matches the destination value in the
      table. If a bit is on in the bit mask, the corresponding bit in the
      destination address is significant for matching the address. Thus, the
      address 172.16.50.183 would match the second entry in the sample table
      because ANDing the address with 255.255.255.0 yields 172.16.50.0.
When an address matches an entry in the table, the Gateway
      field tells IP how to reach the specified destination. If
      the Gateway field contains the IP address of a router, the router is
      used. If the Gateway field contains all 0s (0.0.0.0 when route is run with -n) or an asterisk (* when route is run without -n), the destination network is a directly
      connected network and the “gateway” is the computer’s network interface.
      The last field displayed for each table entry is the network interface
      used for the route. In the example, it is either the first Ethernet
      interface (eth0) or the loopback interface
      (lo). The destination, gateway, mask, and interface
      define the route.
The remaining four fields (Ref, Use, Flags, and Metric) display
      supporting information about the route. These informational fields are of only marginal value. Some systems keep an
      accurate count in the Ref field; others, such as Linux, don’t really use it. Linux
      uses the Use field to count the number of times a route needed to be
      looked up because it was not in the routing cache when IP needed it.
      Some other systems show the number of packets transmitted via the route
      in the Use field. The Flags field displays information that is often obvious even
      without the flags: every route has the U flag set because every route in
      the routing table is up by definition, and looking at the Gateway field
      tells you whether or not an external gateway is used without looking for
      the G flag. The Metric value is used only if you run some version of the
       Routing Information Protocol (RIP) on your system. Don’t
      be distracted by this information. The heart of the routing table is the
      route, which is composed of the destination, the mask, the gateway, and
      the interface.
IP uses the information from the routing table (the forwarding
      table) to construct the routes used for active connections. The routes
      associated with active connections are stored in the routing  cache. On Linux systems, the routing cache can be examined by adding the
      -C argument to the route command line:
            $ route -Cn
Kernel IP routing cache
Source          Destination     Gateway        Flags Metric Ref Use Iface
127.0.0.1       127.0.0.1       127.0.0.1      l     0      0     0 lo
192.203.230.10  172.16.55.3     172.16.55.3    l     0      0     0 lo
172.16.55.1     172.16.55.255   172.16.55.255  ibl   0      0   243 lo
172.16.55.2     172.16.55.255   172.16.55.255  ibl   0      0    15 lo
172.16.55.3     192.203.230.10  172.16.55.1          0      0     0 eth0
127.0.0.1       127.0.0.1       127.0.0.1      l     0      0     0 lo
172.16.55.3     132.163.4.9     172.16.55.1          0      0     0 eth0
172.16.55.2     172.16.55.3     172.16.55.3    il    0      0   149 lo
172.16.55.3     172.16.55.2     172.16.55.2          0      1     0 eth0
132.163.4.9     172.16.55.3     172.16.55.3    l     0      0     0 lo
The routing cache is different from the routing table because the
      cache shows established routes. The routing table is used to make
      routing decisions; the routing cache is used after
      the decision is made. The routing cache shows the source and destination
      of a network connection and the gateway and interface used to make that
      connection.
Linux provides a good example for showing the contents of the
      routing table because the Linux route
      command displays the table so clearly. On   Solaris systems, the route command has a very different syntax.
      When running Solaris, display the routing table’s contents with the
      netstat -nr  command. The -r option tells
      netstat to display the routing table,
      and the -n option tells netstat to display the table in numeric
      form.[15]
            % netstat -nr 
Routing Table: IPv4 
Destination     Gateway        Flags  Ref    Use   Interface 
-----------    -----------     -----  ----  -----  --------- 
127.0.0.1      127.0.0.1       UH      1      298      lo0  
default        172.16.12.1     UG      2    50360          
172.16.12.0    172.16.12.2     U      40   111379      dnet0  
172.16.2.0     172.16.12.3     UG      4     1179          
172.16.1.0     172.16.12.3     UG     10     1113         
172.16.3.0     172.16.12.3     UG      2     1379         
172.16.4.0     172.16.12.3     UG      4     1119
The first table entry is the loopback route
       for the local host. This is the loopback address mentioned
      earlier as a reserved network number. Because every system uses the
      loopback route to send datagrams to itself, an entry for the loopback
      interface is in every host’s routing table. The H flag is set because
      Solaris creates a route to a specific host (127.0.0.1), not a route to
      an entire network (127.0.0.0). We’ll see the loopback facility again
      when we discuss kernel configuration and the ifconfig command. For now, however, our real
      interest is in external routes.
  Another unique entry in this routing table is the one with
      the word “default” in the destination field. This entry is for the
      default route, and the gateway specified in this
      entry is the default gateway. The default route is
      the other reserved network number mentioned earlier: 0.0.0.0. The
      default gateway is used whenever there is no specific route in the table
      for a destination network address. For example, this routing table has
      no entry for network 192.168.16.0. If IP receives any datagrams
      addressed to this network, it will send them via the default gateway
      172.16.12.1.
All of the gateways that appear in the routing table are on
      networks directly connected to the local system. In the sample shown
      above, this means that the gateway addresses all begin with 172.16.12
      regardless of the destination address. This is the only network to which
      this sample host is directly attached, and therefore it is the only
      network to which it can directly deliver data. The gateways that a host
      uses to reach the rest of the Internet must be on its subnet.
In Figure 2-4, the IP
      layer of two hosts and a gateway on our imaginary network is replaced by
      a small piece of a routing table, showing destination networks and the
      gateways used to reach those destinations. Assume that the address mask
      used for network 172.16.0.0 is 255.255.255.0. When the source host
      (172.16.12.2) sends data to the destination host (172.16.1.2), it
      applies the address mask to determine that it should look for the
      destination network address 172.16.1.0 in the routing table. The routing
      table in the source host shows that data bound for 172.16.1.0 is sent to
      gateway 172.16.12.3. The source host forwards the packet to the gateway.
      The gateway does the same steps and looks up the destination address in
      its routing table. Gateway 172.16.12.3 then makes direct delivery
      through its 172.16.1.5 interface. Examining the routing tables in Figure 2-4 shows that all systems list
      only gateways on networks to which they are directly connected. This is
      illustrated by the fact that 172.16.12.1 is the default gateway for both
      172.16.12.2 and 172.16.12.3, but because 172.16.1.2 cannot reach network
      172.16.12.0 directly, it has a different default route.
[image: Table-based routing]

Figure 2-4. Table-based routing

A routing table does not contain end-to-end routes.  A route points only to the next gateway, called the
      next hop, along the path to the destination
      network.[16] The host relies on the local gateway to deliver the data,
      and the gateway relies on other gateways. As a datagram moves from one
      gateway to another, it should eventually reach one that is directly
      connected to its destination network. It is this last gateway that
      finally delivers the data to the destination host.
IP uses the network portion of the address to route the datagram
      between networks. The full address, including the host information, is
      used to make final delivery when the datagram reaches the destination
      network.


[12] The netstat command is used
          to examine the routing table on Solaris 8 systems. A Solaris example
          is covered later in this chapter.

[13] The flags R, M, C, I, and ! are specific to Linux. The
                other flags are used on most Unix systems.

[14] The network interface is the
                network access hardware and software that IP uses to
                communicate with the physical network. See Chapter 6 for details.

[15] Linux incorporates the address mask information in the routing
          table display. Solaris 8 supports address masks; it just doesn’t
          show them when displaying the routing table.

[16] As we’ll see in Chapter 7,
          some routing protocols, such as OSPF and BGP, obtain end-to-end
          routing information. Nevertheless, the packet is still passed to the
          next-hop router.



Address Resolution



The IP address and  the routing table direct a datagram to a specific physical
      network, but when data travels across a network, it must obey the
      physical layer protocols used by that network. The physical networks
      underlying the TCP/IP network do not understand IP addressing. Physical
      networks have their own addressing schemes, and there are as many
      different addressing schemes as there are different types of physical
      networks. One task of the network access protocols is to map IP
      addresses to physical network addresses.
The most common example of this Network Access Layer function is
      the translation of IP addresses to Ethernet addresses. The protocol that
      performs this function is Address Resolution Protocol  (ARP), which is defined in RFC 826.
The ARP software maintains a table of translations between IP
      addresses and  Ethernet addresses. This table is built dynamically. When
      ARP receives a request to translate an IP address, it checks for the
      address in its table. If the address is found, it returns the Ethernet
      address to the requesting software. If the address is not found, ARP
      broadcasts a packet to every host on the Ethernet. The packet contains
      the IP address for which an Ethernet address is sought. If a receiving
      host identifies the IP address as its own, it responds by sending its
      Ethernet address back to the requesting host. The response is then
      cached in the ARP table.
The arp  command displays the contents of the ARP table. To
      display the entire ARP table, use the arp       -a command. Individual entries can be displayed by specifying
      a hostname on the arp command line.
      For example, to check the entry for rodent in the
      ARP table on crab, enter:
            % arp rodent
rodent (172.16.12.2) at 0:50:ba:3f:c2:5e
Checking all entries in the table with the -a option produces the following
      output:
            % arp -a

Net to Media Table: IPv4
Device   IP Address               Mask      Flags   Phys Addr
------ -------------------- --------------- ----- ---------------
dnet0  rodent               255.255.255.255       00:50:ba:3f:c2:5e
dnet0  crab                 255.255.255.255 SP    00:00:c0:dd:d4:da
dnet0  224.0.0.0            240.0.0.0       SM    01:00:5e:00:00:00
This table tells you that when crab forwards
      datagrams addressed to rodent, it puts those
      datagrams into Ethernet frames and sends them to Ethernet address
      00:50:ba:3f:c2:5e.
One of the entries in the sample table
      (rodent) was added dynamically as a result of
      queries by crab. Two of the entries
      (crab and 224.0.0.0) are
      static entries added as a result of the configuration of
      crab. We know this because both these entries have
      an S, for “static,” in the Flags field. The special
      224.0.0.0 entry is for all multicast addresses. The
      M flag means “mapping” and is used only for the multicast entry. On a
      broadcast medium like Ethernet, the Ethernet broadcast address is used
      to make final delivery to a multicast group.
The P flag on the crab entry means that this
      entry will be “published.” The “publish” flag indicates that when an ARP
      query is received for the IP address of crab, this
      system answers it with the Ethernet address 00:00:c0:dd:d4:da. This is
      logical because this is the ARP table on crab.
      However, it is also possible to publish Ethernet addresses for other
      hosts, not just for the local host. Answering ARP queries for other
      computers is called proxy ARP.
For example, assume that 24seven is the
      server for a remote system named clock connected
      via a dial-up telephone line. Instead of setting up routing to the
      remote system, the administrator of 24seven could
      place a static, published entry in the ARP table with the IP address of
      clock and the Ethernet address of
      24seven. Now when 24seven
      hears an ARP query for the IP address of clock, it
      answers with its own Ethernet address. The other systems on the network
      therefore send packets destined for clock to
      24seven. 24seven then forwards
      the packets on to clock over the telephone line.
      Proxy ARP is used to answer queries for systems that can’t answer for
      themselves.
ARP tables normally don’t require any attention because they are
      built automatically by the ARP protocol, which is very stable. However,
      if things go wrong, the ARP table can be manually adjusted. See Section 13.4.2 in Chapter 13 .

Protocols, Ports, and Sockets



Once data is routed through the network and delivered to a
      specific host, it must be delivered to the correct user or process. As
      the data moves up or down the TCP/IP layers, a mechanism is needed to
      deliver it to the correct protocols in each layer. The system must be
      able to combine data from many applications into a few transport
      protocols, and from the transport protocols into the Internet Protocol.
      Combining many sources of data into a single data stream is called multiplexing.
Data arriving from the network must be
      demultiplexed: divided for delivery to multiple
      processes. To accomplish this task, IP uses protocol numbers to identify transport protocols, and the transport
      protocols use port numbers to identify applications.
Some protocol and port numbers are reserved to identify
      well-known services . Well-known services are standard network protocols, such
      as FTP and Telnet, that are commonly used throughout the network. The
      protocol numbers and port numbers are assigned to well-known services by
      the  Internet Assigned Numbers Authority (IANA). Officially
      assigned numbers are documented at http://www.iana.org . Unix systems define protocol and port numbers in two
      simple text files.
Protocol Numbers



The protocol number is a single byte in the third word
        of the datagram  header. The value identifies the protocol in the layer
        above IP to which the data should be passed.
 On a Unix system, the protocol numbers are defined in
        /etc/protocols. This file is a simple table
        containing the protocol name and the protocol number associated with
        that name. The format of the table is a single entry per line,
        consisting of the official protocol name, separated by whitespace from
        the protocol number. The protocol number is separated by whitespace
        from the “alias” for the protocol name. Comments in the table begin
        with #. An
        /etc/protocols file is shown below:
% cat /etc/protocols
#ident  "@(#)protocols  1.5     99/03/21 SMI"   /* SVr4.0 1.1   */

#
# Internet (IP) protocols
#
ip            0     IP            # pseudo internet protocol number
icmp          1     ICMP          # internet control message protocol
ggp           3     GGP           # gateway-gateway protocol
tcp           6     TCP           # transmission control protocol
egp           8     EGP           # exterior gateway protocol
pup           12    PUP           # PARC universal packet protocol
udp           17    UDP           # user datagram protocol
hmp           20    HMP           # host monitoring protocol
xns-idp       22    XNS-IDP       # Xerox NS IDP
rdp           27    RDP           # "reliable datagram" protocol

#
# Internet (IPv6) extension headers
#
hopopt        0     HOPOPT        # Hop-by-hop options for IPv6
ipv6          41    IPv6          # IPv6 in IP encapsulation
ipv6-route    43    IPv6-Route    # Routing header for IPv6
ipv6-frag     44    IPv6-Frag     # Fragment header for IPv6
esp           50    ESP           # Encap Security Payload for IPv6
ah            51    AH            # Authentication Header for IPv6
ipv6-icmp     58    IPv6-ICMP     # IPv6 internet control message protocol
ipv6-nonxt    59    IPv6-NoNxt    # IPv6No next header extension header
ipv6-opts     60    IPv6-Opts     # Destination Options for IPv6
The listing above is the contents of the
        /etc/protocols file from a Solaris 8 workstation.
        This list of numbers is by no means complete. If you refer to the
        Protocol Numbers section of the IANA web site, you’ll see many more
        protocol numbers. However, a system needs to include only the numbers
        of the protocols that it actually uses. Even the list shown above is
        more than this specific workstation needed; for example, the second
        half of this table is used only on systems that run IPv6. Don’t worry
        if your system doesn’t use IPv6 or many of these other protocols. The
        additional entries do no harm.
What exactly does this table mean? When a datagram arrives and
        its destination address matches the local IP address, the IP layer
        knows that the datagram has to be delivered to one of the transport
        protocols above it. To decide which protocol should receive the
        datagram, IP looks at the datagram’s protocol number. Using this
        table, you can see that if the datagram’s protocol number is 6, IP
        delivers the datagram to TCP; if the protocol number is 17, IP
        delivers the datagram to UDP. TCP and UDP are the two transport layer
        services we are concerned with, but all of the protocols listed in the
        first half of the table use IP datagram delivery service directly.
        Some, such as ICMP, EGP, and GGP, have already been mentioned. Others
        haven’t, but you don’t need to be concerned with the minor protocols
        in order to configure and manage a TCP/IP network.

Port Numbers



After IP passes incoming data to the transport protocol,
        the transport protocol passes the data to the correct application
        process. Application processes (also called network services) are   identified by port numbers, which are 16-bit values. The
        source port number, which identifies the process that sent the data,
        and the destination port number, which identifies the process that
        will receive the data, are contained in the first header word of each
        TCP segment and UDP packet.
Port numbers below 1024 are reserved for well-known services
        (like FTP and Telnet) and are assigned by the IANA. Well-known port
        numbers are considered “privileged ports” that should not be bound to
        a user process. Ports numbered from 1024 to 49151 are “registered
        ports.” IANA tries to maintain a registry of services that use these ports, but it does not
        officially assign port numbers in this range. The port numbers from
        49152 to 65535 are the “private ports.” Private port numbers are
        available for any use.
Port numbers are not unique between transport layer protocols;
        the numbers are unique only within a specific transport protocol. In
        other words, TCP and UDP can and do assign the same port numbers. It
        is the combination of protocol and port numbers that uniquely
        identifies the specific process to which the data should be
        delivered.
On Unix  systems, port numbers are defined in the
        /etc/services file. There are many more network
        applications than there are transport layer protocols, as the size of
        the /etc/services table shows. A partial
        /etc/services file from a Solaris 8 workstation
        is shown here:
               rodent% head -22 /etc/services
#ident  "@(#)services   1.25    99/11/06 SMI"   /* SVr4.0 1.8   */
#
#
# Copyright (c) 1999 by Sun Microsystems, Inc.
# All rights reserved.
#
# Network services, Internet style
#
tcpmux          1/tcp
echo            7/tcp
echo            7/udp
discard         9/tcp           sink null
discard         9/udp           sink null
systat          11/tcp          users
daytime         13/tcp
daytime         13/udp
netstat         15/tcp
chargen         19/tcp          ttytst source
chargen         19/udp          ttytst source
ftp-data        20/tcp
ftp             21/tcp
telnet          23/tcp
The format of this file is very similar to the
        /etc/protocols file. Each single-line entry
        starts with the official name of the service separated by whitespace
        from the port number/protocol pairing associated with that service.
        The port numbers are paired with transport protocol names because
        different transport protocols may use the same port number. An
        optional list of aliases for  the official service name may be provided after the port
        number/protocol pair.
The /etc/services file,
        combined with the /etc/protocols file, provides
        all of the information necessary to deliver data to the correct
        application. A datagram arrives at its destination based on the
        destination address in the fifth word of the datagram header. Using
          the protocol number in the third word of the datagram
        header, IP delivers the data from the datagram to the proper transport
        layer protocol. The first word of the data delivered to the transport
        protocol contains the destination port number that tells the transport
        protocol to pass the data up to a specific application. Figure 2-5 shows this delivery
        process.
[image: Protocol and port numbers]

Figure 2-5. Protocol and port numbers

Despite its size, the /etc/services file
        does not contain the port number of every important network service.
        You won’t find the port number of every Remote Procedure Call (RPC) service in the  services file. Sun developed a
        different technique for reserving ports for RPC services that doesn’t
        involve getting a well-known port number assignment from IANA. RPC
        services generally use registered port numbers, which do not need to
        be officially assigned. When an RPC service starts, it registers its
        port number with the portmapper.
        The  portmapper is a
        program that keeps track of the port numbers being used by RPC
        services. When a client wants to use an RPC service, it queries the
        portmapper running on the server to
        discover the port assigned to the service. The client can find
        portmapper because it is assigned
        well-known port 111. portmapper
        makes it possible to install widely used services without formally
        obtaining a well-known port.

Sockets



Well-known ports are standardized port numbers that
        enable remote computers to know which port to connect to for a
        particular network service. This simplifies the connection process because
        both the sender and receiver know in advance that data bound for a
        specific process will use a specific port. For example, all systems
        that offer Telnet do so on port 23. 
Equally important is a second type of port number called a
         dynamically allocated port. As the
        name implies, dynamically allocated ports are not pre-assigned; they
        are assigned to processes when needed. The system ensures that it does
        not assign the same port number to two processes, and that the numbers
        assigned are above the range of well-known port numbers, i.e., above
        1024.
Dynamically allocated ports provide the flexibility needed to
        support multiple users. If a telnet user is assigned port number 23
        for both the source and destination ports, what port numbers are
        assigned to the second concurrent telnet user? To uniquely identify
        every connection, the source port is assigned a dynamically allocated
        port number, and the well-known port number is used for the
        destination port.
In the telnet example, the first user is given a random source
        port number and a destination port number of 23 (telnet). The second
        user is given a different random source port number and the same
        destination port. It is the pair of port numbers,
        source and destination, that uniquely identifies each network
        connection. The destination host knows the source port because it is
        provided in both the TCP segment header and the UDP packet header.
        Both hosts know the destination port because it is a well-known
        port.
Figure 2-6 shows the
        exchange of port numbers during the TCP handshake. The source host randomly generates a source port, in this
        example 3044. It sends out a segment with a source port of 3044 and a
        destination port of 23. The destination host receives the segment and
        responds back using 23 as its source port and 3044 as its destination
        port.
[image: Passing port numbers]

Figure 2-6. Passing port numbers

The combination of an IP address and a port number is called a
        socket. A socket uniquely identifies a single
        network process within the entire Internet. Sometimes the terms
        “socket” and “port number” are used interchangeably. In fact,
        well-known services are frequently referred to as “well-known
        sockets.” In the context of this discussion, a “socket” is the
        combination of an IP address and a port number. A pair of sockets, one
        socket for the receiving host and one for the sending host, define the
        connection for connection-oriented protocols such as TCP.
Let’s build on the example of dynamically assigned ports and
        well-known ports. Assume a user on host 172.16.12.2 uses Telnet to
        connect to host 192.168.16.2. Host 172.16.12.2 is the source host. The
        user is dynamically assigned a unique port number, 3382. The
        connection is made to the telnet service on the remote host, which is,
        according to the standard, assigned well-known port 23. The socket for
        the source side of the connection is 172.16.12.2.3382 (IP address
        172.16.12.2 plus port number 3382). For the destination side of the
        connection, the socket is 192.168.16.2.23 (address 192.168.16.2 plus
        port 23). The port of the destination socket is known by both systems
        because it is a well-known port. The port of the source socket is
        known by both systems because the source host informed the destination
        host of the source socket when the connection request was made. The
        socket pair is therefore known by both the source and destination
        computers. The combination of the two sockets uniquely identifies this
        connection; no other connection in the Internet has this socket pair.


Summary



This chapter has shown how data moves through the global Internet
      from one specific process on the source computer to a single cooperating
      process on the other side of the world. TCP/IP uses globally unique
      addresses to identify any computer on the Internet. It uses protocol
      numbers and port numbers to uniquely identify a single process running
      on that computer.
Routing directs the datagrams destined for a remote process
      through the maze of the global network. Routing uses part of the IP
      address to identify the destination network. Every system maintains a
      routing table that describes how to reach remote networks. The routing
      table usually contains a default route that is used if the table does
      not contain a specific route to the remote network. A route only
      identifies the next computer along the path to the destination. TCP/IP
      uses hop-by-hop routing to move datagrams one step closer to the
      destination until the datagram finally reaches the destination
      network.
At the destination network, final delivery is made by using the
      full IP address (including the host part) and converting that address to
      a physical layer address. Address Resolution Protocol (ARP) is an
      example of the type of protocol used to convert IP addresses to physical
      layer addresses. It converts IP addresses to Ethernet addresses for
      final delivery.
These first two chapters described the structure of the TCP/IP
      protocol stack and the way in which it moves data across a network. In
      the next chapter, we move up the protocol stack to look at the type of
      services the network provides to simplify configuration and use.

Chapter 3. Network Services



Some network servers provide essential computer-to-computer services. These differ from
    application services in that they are not directly accessed by end users.
    Instead, these services are used by networked computers to simplify the
    installation, configuration, and operation of the network.
The functions performed by the servers covered in this chapter are
    varied:
	Name service for converting IP addresses to hostnames

	Configuration servers that simplify the installation of
        networked hosts by handling part or all of the TCP/IP
        configuration

	Electronic mail services for moving mail through the network
        from the sender to the recipient

	File servers that allow client computers to transparently share
        files

	Print servers that allow printers to be centrally maintained and
        shared by all users



Servers on a TCP/IP network should not be confused with traditional PC LAN servers.
    Every Unix host on your network can be both a server and a client. The
    hosts on a TCP/IP network are “peers.”  All systems are equal, and the network is not dependent on
    any one server. All of the services discussed in this chapter can be
    installed on one or several systems on your network.
We begin with a discussion of name service. It is an essential
    service that you will certainly use on your network.
Names and Addresses



The Internet Protocol document[17] defines names, addresses, and routes as follows:
A name indicates what we seek. An address indicates where it is.
        A route indicates how to get there.


Names, addresses, and routes all require the network
      administrator’s attention. Routes and addresses were covered in the
      previous chapter. This section discusses names and how they are
      disseminated throughout the network. Every network interface attached to
      a TCP/IP network is identified by a unique 32-bit IP address. A name
       (called a hostname) can be assigned
      to any device that has an IP address. Names are assigned to devices
      because, compared to numeric Internet addresses, names are easier to
      remember and type correctly. Names aren’t required by the network
      software, but they do make it easier for humans to use the
      network.
In most cases, hostnames and numeric addresses can be used
      interchangeably. A user wishing to telnet to the workstation at IP
      address 172.16.12.2 can enter:
% telnet 172.16.12.2
or use the hostname associated with that address and enter the
      equivalent command:
% telnet rodent.wrotethebook.com
Whether a command is entered with an address or a hostname, the
      network connection always takes place based on the IP address. The
      system converts the hostname to an address before the network connection
      is made. The network administrator is responsible for assigning names and
      addresses and storing them in the database used for the
      conversion.
Translating names into addresses isn’t simply a “local” issue. The
      command telnet       rodent.wrotethebook.com is expected to work correctly on every
      host that’s connected to the network. If
      rodent.wrotethebook.com is connected to the
      Internet, hosts all over the world should be able to translate the name
      rodent.wrotethebook.com into the proper address.
      Therefore, some facility must exist for disseminating the hostname
      information to all hosts on the network.
There are two common methods for translating names into addresses.
      The older method simply looks up the hostname in a table called the
      host table.[18] The newer technique uses a distributed database system
      called the Domain Name System (DNS) to translate
      names to addresses. We’ll examine the host table first.



[17] RFC 791, Internet Protocol, Jon
          Postel, ISI, 1981, page 7.

[18] Sun’s Network Information Service (NIS) is an improved
          technique for accessing the host table. NIS is discussed later in
          this chapter.



The Host Table



The   host table is a simple text file
      that associates IP addresses with hostnames. On most Unix systems, the
      table is in the file /etc/hosts.  Each table entry in /etc/hosts
      contains an IP address separated by whitespace from a list of hostnames
      associated with that address. Comments begin with #.    
The host table on rodent might contain the
      following entries:
# 
# Table of IP addresses and hostnames 
# 
172.16.12.2     rodent.wrotethebook.com rodent 
127.0.0.1       localhost 
172.16.12.1     crab.wrotethebook.com crab loghost 
172.16.12.4     jerboas.wrotethebook.com jerboas 
172.16.12.3     horseshoe.wrotethebook.com horseshoe 
172.16.1.2      ora.wrotethebook.com ora
172.16.6.4      linuxuser.articles.wrotethebook.com linuxuser
The first entry in the sample table is for
      rodent itself. The IP address 172.16.12.2 is
      associated with the hostname
      rodent.wrotethebook.com and the alternate hostname
      (or alias) rodent. The hostname and all of its
       aliases resolve to the same IP address, in this case
      172.16.12.2.
Aliases provide for name changes, alternate spellings, and shorter
      hostnames. They also allow for “generic hostnames.” Look at the entry
      for 172.16.12.1. One of the aliases associated with that address is
      loghost.  loghost is a special hostname used
      by Solaris in the syslog.conf    configuration file. Some systems preconfigure programs
      like syslogd to direct their output
      to the host that has a certain generic name. You can direct the output
      to any host you choose by assigning it the appropriate generic name as
      an alias. Other commonly used generic hostnames are
      lprhost, mailhost, and
      dumphost.
The second entry in the sample file assigns the address 127.0.0.1
      to the hostname localhost. As we have discussed,
      the network address 127.0.0.0/8 is reserved for the   loopback network. The host address 127.0.0.1 is a special
      address used to designate the loopback address of the local host—hence
      the hostname localhost. This special addressing
      convention allows the host to address itself the same way it addresses a
      remote host. The loopback address simplifies software by allowing common
      code to be used for communicating with local or remote processes. This
      addressing convention also reduces network traffic because the
      localhost address is associated with a loopback
      device that loops data back to the host before it is written out to the
      network.
Although the host table system has been superseded by DNS, it is
      still widely used for the following reasons:
	Most systems have a small host table containing name and
          address information about the important hosts on the local network.
          This small table is used when DNS is not running, such as during the
          initial system startup. Even if you use DNS, you should create a small
          /etc/hosts file containing entries for your
          host, for localhost, and for the gateways and
          servers on your local net.

	Sites that use NIS use the host table as input to the NIS host database. You
          can use NIS in conjunction with DNS, but even when they are used
          together, most NIS sites create host tables that have an entry for
          every host on the local network. Chapter
          9 explains how to use NIS with DNS.

	Very small sites that are not connected to the Internet
          sometimes use the host table. If there are few local hosts and the
          information about those hosts rarely changes, and there is also no
          need to communicate via TCP/IP with remote sites, then there is
          little advantage to using DNS.



The old host table system is inadequate for the global Internet for two reasons: inability to scale
      and lack of an automated update process. Prior to the
      development of DNS, an organization called the  Network Information Center (NIC) maintained a large table
      of Internet hosts called the NIC host table. Hosts
      included in the table were called registered
       hosts, and the NIC placed hostnames
      and addresses into this file for all sites on the Internet.
Even when the host table was the primary means of translating
      hostnames to IP addresses, most sites registered only a limited number
      of key systems. But even with limited registration, the table grew so
      large that it became an inefficient way to convert hostnames to IP
      addresses. There is no way that a simple table could provide adequate
      service for the enormous number of hosts on today’s Internet.
Another problem with the host table system is that it lacks a
      technique for automatically distributing information about newly
      registered hosts. Newly registered hosts can be referenced by name as
      soon as a site receives the new version of the host table. However,
      there is no way to guarantee that the host table is distributed to a
      site, and no way to know who had a current version of the table and who
      did not. This lack of guaranteed uniform distribution is a major
      weakness of the host table 
      system.

DNS



 DNS overcomes both major weaknesses of the host
      table:
	DNS scales well. It doesn’t rely on a single large table;
          it is a distributed database system that doesn’t bog down as the
          database grows. DNS currently provides information on approximately
          100,000,000 hosts, while fewer than 10,000 were listed in the host
          table.

	DNS guarantees that new host information will be disseminated
          to the rest of the network as it is needed.



Information is automatically disseminated, and only to those who
      are interested. Here’s how it works. If a DNS server receives a request
      for information about a host for which it has no information, it passes
      on the request to an authoritative server.  An authoritative server is any server responsible for
      maintaining accurate information about the domain being queried. When
      the authoritative server answers, the local server saves, or
      caches , the answer for future use. The next time the local
      server receives a request for this information, it answers the request
      itself. The ability to control host information from an authoritative
      source and to automatically disseminate accurate information makes DNS
      superior to the host table, even for networks not connected to the
      Internet.
In addition to superseding the host table, DNS also replaces an
      earlier form of name service. Unfortunately, both the old and new
      services were called name service. Both are listed
      in the /etc/services file. In that file, the old
      software is assigned UDP port 42 and is called
      nameserver or name; DNS name
      service is assigned port 53 and is called domain.
      Naturally, there is some confusion between the two name servers. There
      shouldn’t be—the old name service is outdated. This text discusses DNS
      only; when we refer to “name service,” we always mean DNS.
The Domain Hierarchy



 DNS is a distributed hierarchical system for resolving
        hostnames into IP addresses. Under DNS, there is no central database
        with all of the Internet host information. The information is
        distributed among thousands of name servers organized into a hierarchy
        similar to the hierarchy of the Unix filesystem. DNS has a
        root domain at the top of the domain hierarchy that is served by a group of
        name servers called the   root servers.
Just as directories in the Unix filesystem are found by
        following a path from the root directory through subordinate
        directories to the target directory, information about a domain is
        found by tracing pointers from the root domain through subordinate
        domains to the target domain.
Directly under the root domain are the top-level domains. There   are two basic types of top-level domains—geographic and
        organizational. Geographic domains have been set aside for each country
        in the world and are identified by a two-letter country code. Thus,
        this type of domain is called a country code top-level domain (ccTLD). For example, the ccTLD for the United
        Kingdom is .uk, for Japan it is
        .jp, and for the United States it is
        .us. When .us is used as the
        top-level domain, the second-level domain is usually a state’s
        two-letter postal abbreviation (e.g., .wy.us for
        Wyoming). U.S. geographic domains are usually used by state
        governments and K-12 schools but are not widely used for other
        hosts.
Within the United States, the most popular top-level domains are
        organizational—that is, membership in a domain is based
        on the type of organization (commercial, military, etc.) to which the
        system belongs.[19] These domains are called generic top-level domains or general-purpose top-level domains (gTLDs).
The official generic top-level domains are:
	com
	Commercial organizations

	edu
	Educational institutions

	gov
	Government agencies

	mil
	Military organizations

	net
	Network support organizations, such as network operation
              centers

	int
	International governmental or quasi-governmental
              organizations

	org
	Organizations that don’t fit into any of the above, such
              as nonprofit organizations

	aero
	Organizations involved in the air-transport industry

	biz
	Businesses

	coop
	Cooperatives

	museum
	Museums

	pro
	Professionals, such as doctors and lawyers

	info
	Sites providing information

	name
	Individuals



These are the fourteen current gTLDs. The first seven domains in
        the list (com, edu,
        gov, mil,
        net, int, and
        org) have been part of the domain system since
        the beginning. The last seven domains in the list
        (aero, biz,
        coop, museum,
        pro, info, and
        name) were added in 2000 to increase the number
        of top-level domains. One motivation for creating the new gTLDs is the
        huge size of the .com domain. It is so large that
        it is difficult to maintain an efficient .com
        database. Whether or not these new gTLDs will be effective in drawing
        registrations away from the .com domain remains
        to be seen.
Figure 3-1 illustrates
        the domain hierarchy using six of the original organizational
        top-level domains. At the top is the root. Directly below the root
        domain are the top-level domains. The root servers have complete
        information only about the top-level domains. No servers, not even the
        root servers, have complete information about all domains, but the
        root servers have pointers to the servers for the second-level
        domains.[20] So while the root servers may not know the answer to a
        query, they know who to ask.
[image: Domain hierarchy]

Figure 3-1. Domain hierarchy


Creating Domains and Subdomains



 Several domain name registrars have been authorized by
        the   Internet Corporation for Assigned Names and Numbers
        (ICANN), a nonprofit organization that was formed to take over the
        responsibility for allocating domain names and IP addresses.
        (Previously, the U.S. government oversaw this process.) ICANN has
        authorized these registrars to allocate domains. To obtain a domain,
        you apply to a registrar for authority to create a domain under one of
        the top-level domains. (The details of applying for a domain name are
        covered in Chapter 4.) Once the
        authority to create a domain is granted, you can create additional
        domains, called subdomains, under your domain. Let’s look at how this works at our imaginary
        company.
Our company is a commercial, profit-making (we hope) enterprise.
        It clearly falls into the com domain. We apply
        for authority to create a domain named
        wrotethebook within the com
        domain. The request for the new domain contains the hostnames and
        addresses of the servers that will provide name service for the new
        domain. When the registrar approves the request, it adds pointers in
        the com domain to the new domain’s name servers.
        Now when queries are received by the root servers for the
        wrotethebook.com domain, the queries are referred
        to the new name servers.
The registrar’s approval grants us complete authority over our
        new domain. Any registered domain has authority to divide its domain
        into subdomains. Our imaginary company can create separate domains for
        the division that handles special events
        (events.wrotethebook.com) and for the division
        that coordinates the preparation of magazine articles
        (articles.wrotethebook.com) without consulting
        the registrar or any other “higher authority.” The decision to add
        subdomains is completely up to the local domain administrator. The
        registrars delegate authority and distribute control over names to
        individual organizations. Once that authority has been delegated, the
        individual organization is responsible for managing the names it has
        been assigned.
A new subdomain becomes accessible when pointers to the servers
        for the new domain are placed in the domain above it (see Figure 3-1). Remote servers cannot
        locate the wrotethebook.com domain until a
        pointer to its server is placed in the com
        domain. Likewise, the subdomains events and
        articles cannot be accessed until pointers to
        them are placed in wrotethebook.com. The DNS
        database record that points to the name servers for a domain is the NS
        (name server)   record. This record contains the name of the domain and
        the name of the host that is a server for that domain. Chapter 8 discusses the actual DNS
        database. For now, let’s just think of these records as
        pointers.
Figure 3-2 illustrates
        how the NS records are used as pointers. A local server has a request
        to resolve linuxuser.articles.wrotethebook.com
        into an IP address. The server has no information on
        wrotethebook.com in its cache, so it queries a
        root server (a.root-servers.net in our example)
        for the address. The root server replies with an NS record that points
        to crab.wrotethebook.com as the source of
        information on wrotethebook.com. The local server
        queries crab, which points it to
        linuxmag.articles.wrotethebook.com as the server
        for articles.wrotethebook.com. The local server
        then queries linuxmag.articles.wrotethebook.com
        and finally receives the desired IP address. The local server caches
        the A (address) record and each of the NS records. The next time it
        has a query for
        linuxuser.articles.wrotethebook.com, it will
        answer the query itself. And the next time the server has a query for
        other information in the wrotethebook.com domain,
        it will go directly to crab without involving a
        root server. 
[image: A DNS query]

Figure 3-2. A DNS query

Figure 3-2 provides
        examples of both recursive and nonrecursive searches. The remote
        servers are examples of nonrecursive servers. The remote servers tell the local server who to
        ask next. The local server must follow the pointers itself. The local
        server is an example of a recursive server. In a
        recursive search, the server follows the pointers and returns the
        final answer for the query. The root servers generally perform only
        nonrecursive searches. Most other servers perform
        recursive searches.

Domain Names



Domain names reflect the domain hierarchy. They are written from most
        specific (a hostname) to least specific (a top-level domain), with
        each part of the domain name separated by a dot.[21] A   fully qualified domain name (FQDN)
        starts with a specific host and ends with a top-level domain.
        rodent.wrotethebook.com is the FQDN of
        workstation rodent, in the
        wrotethebook domain, of the
        com domain.
Domain names are not always written as fully qualified domain
        names. They can be written relative to a default domain in the same way that Unix pathnames are written
        relative to the current (default) working directory. DNS adds the
        default domain to the user input when constructing the query for the
        name server. For example, if the default domain is
        wrotethebook.com, a user can omit the
        wrotethebook.com extension for any hostnames in
        that domain. crab.wrotethebook.com could be
        addressed simply as crab; DNS adds the default
        domain wrotethebook.com.
On most systems, the default domain name is added only if there is no dot in
        the requested hostname. For example,
        linuxuser.articles would not be extended and
        would therefore not be resolved by the name server because
        articles is not a valid top-level domain. But the
        hostname crab, which contains no dot, would be
        extended with wrotethebook.com, giving the valid
        domain name crab.wrotethebook.com. Like almost
        everything on a Unix system, this behavior is configurable, as you’ll
        see in Chapter 8.
How the default domain is used and how queries are constructed
        vary depending on the software configuration. For this reason, you
        should exercise caution when embedding a hostname in a program. Only a
        fully qualified domain name or an IP address is immune from changes in
        the name server software.

BIND, Resolvers, and named



 The implementation of DNS used on Unix systems is the
        Berkeley Internet Name Domain  (BIND) software. Descriptions in this text are based on
        the BIND name server implementation.
DNS software is conceptually divided into two components—a
        resolver and a name server. The resolver
        is the software that forms the query; it asks the
        questions. The name server is the process that responds to the query; it answers
        the questions.
The resolver does not exist as a distinct process running on the
        computer. Rather, the resolver is a library of software routines
        (called the resolver code) that is linked into any program that needs to look up
        addresses. This library knows how to ask the name server for host
        information.
Under BIND, all computers use resolver code, but not all
        computers run the name server process. A computer that does not run a
        local name server process and relies on other systems for all name
        service answers is called a resolver-only system.
        Resolver-only configurations are common on single-user systems. Larger
        Unix systems usually run a local name server process.
The BIND name server runs as a distinct process called
        named (pronounced “name” “d”). Name servers are classified
        differently depending on how they are configured. The three main
        categories of name servers are:
	Master
	   The master server (also
              called the primary server) is the server
              from which all data about a domain is derived. The master server
              loads the domain’s information directly from a disk file created
              by the domain administrator. Master servers are
              authoritative, meaning they have complete information about their
              domain and their responses are always accurate. There should be
              only one master server for a domain.

	Slave
	Slave servers (also known as
              secondary servers)  transfer the entire domain database from the
              master server. A particular domain’s database file is called a
              zone file; copying this file to a slave
              server is called a  zone file transfer. A slave
              server assures that it has current information about a domain by
              periodically transferring the domain’s zone file. Slave servers
              are also authoritative for their domain.

	Caching-only
	 Caching-only servers get the
              answers to all name service queries from other name servers.
              Once a caching server has received an answer to a query, it
              caches the information and will use it in the future to answer
              queries itself. Most name servers cache answers and use them in
              this way. What makes the caching-only server unique is that this
              is the only technique it uses to build its domain database.
              Caching servers are non-authoritative,
              meaning that their information is second-hand and
              incomplete, though usually accurate.



The relationship between the different types of servers is an
        advantage that DNS has over the host table for most networks, even
        very small networks. Under DNS, there should be only one primary name
        server for each domain. DNS data is entered into the primary server’s
        database by the domain administrator. Therefore, the administrator has central control of the
        hostname information. An automatically distributed, centrally
        controlled database is an advantage for a network of any size. When
        you add a new system to the network, you don’t need to modify the
        /etc/hosts files on every node in the network;
        you modify only the DNS database on the primary server. The
        information is automatically disseminated to the other servers by full
        zone transfers or by caching single answers.

Network Information Service



 The Network Information Service (NIS)[22] is an administrative database system developed by Sun
        Microsystems. It provides central control and automatic dissemination
        of important administrative files. NIS can be used in conjunction with
        DNS or as an alternative to it.
NIS and DNS have similarities and differences. Like DNS, the Network Information Service overcomes the
        problem of accurately distributing the host table, but unlike DNS, it
        provides service only for local area networks. NIS is not intended as
        a service for the Internet as a whole. Another difference is that NIS
        provides access to a wider range of information than DNS—much more
        than name-to-address conversions. It converts several standard Unix
        files into databases that can be queried over the network. These
        databases are called NIS maps.  
NIS converts files such as /etc/hosts and
         /etc/networks into maps. The maps
        can be stored on a central server where they can be centrally
        maintained while still being fully accessible to the NIS clients.
        Because the maps can be both centrally maintained and automatically
        disseminated to users, NIS overcomes a major weakness of the host
        table. But NIS is not an alternative to DNS for Internet hosts because
        the host table, and therefore NIS, contains only a fraction of the
        information available to DNS. For this reason DNS and NIS are usually
        used together.
This chapter has introduced the concept of hostnames and
        provided an overview of the various techniques used to translate
        hostnames into IP addresses. This is by no means the complete story.
        Assigning hostnames and managing name service are important tasks for
        the network administrator. These topics are revisited several times in
        this book and discussed in extensive detail in Chapter 8.
Name service is not the only service that you will install on
        your network. Another service that you are sure to use is electronic
        mail.



[19] There is no relationship between the organizational and
            geographic domains in the U.S. Each system belongs to either an
            organizational domain or a geographic domain,
            not both.

[20] Figure 3-1 shows two
            second-level domains: nih under
            gov and wrotethebook
            under com.

[21] The root domain is identified by a single dot; i.e., the
            root name is a null name written simply as ".".

[22] NIS was formerly called the “Yellow Pages,” or
            yp. Although the name has changed, the
            abbreviation yp is still used.



Mail Services



 Users consider electronic mail the most important network
      service because they use it for interpersonal communications. Some
      applications are newer and fancier; others consume more network
      bandwidth; and others are more important for the continued operation of
      the network. But email is the application people use to communicate with
      each other. It isn’t very fancy, but it is vital.
TCP/IP provides a reliable, flexible email system built on a few
      basic protocols. These protocols are Simple Mail Transfer Protocol (SMTP), Post Office Protocol
      (POP), Internet Message Access Protocol (IMAP), and
      Multipurpose Internet Mail Extensions (MIME). There
      are other TCP/IP mail protocols that have some interesting features, but
      they are not yet widely implemented.
Our coverage concentrates on the four protocols you are most
      likely to use building your network: SMTP, POP, IMAP, and MIME. We start
      with SMTP, the foundation of all TCP/IP email systems.
Simple Mail Transfer Protocol



   SMTP is the TCP/IP mail delivery protocol. It moves mail
        across the Internet and across your local network. SMTP is defined in
        RFC 821, A Simple Mail Transfer Protocol. It runs over the reliable, connection-oriented
        service provided by Transmission Control Protocol
        (TCP), and it uses well-known port number 25.[23] Table 3-1
        lists some of the simple, human-readable commands used by  SMTP.
Table 3-1. SMTP commands
	Command
	Syntax
	Function

	Hello
	HELO
                <sending-host> 

                EHLO <sending-host>
                
	Identify sending SMTP

	From
	MAIL
                FROM:<from-address>
                
	Sender address

	Recipient
	RCPT
                TO:<to-address>
                
	Recipient address

	Data
	DATA
	Begin a message

	Reset
	RSET
	Abort a message

	Verify
	VRFY <string>
                
	Verify a username

	Expand
	EXPN <string>
                
	Expand a mailing list

	Help
	HELP
                [string]
	Request online help

	Quit
	QUIT
	End the SMTP session




SMTP is such a simple protocol you can literally do it yourself.
        telnet to port 25 on a remote host
        and type mail in from the command line using the SMTP commands. This
        technique is sometimes used to test a remote system’s SMTP server, but
        we use it here to illustrate how mail is delivered between systems.
        The example below shows mail that Daniel on
        rodent.wrotethebook.com manually input and sent
        to Tyler on crab.wrotethebook.com.
$ telnet crab 25
Trying 172.16.12.1...
Connected to crab.wrotethebook.com.
Escape character is '^]'.
220 crab.wrotethebook.com ESMTP Sendmail 8.9.3+Sun/8.9.3; Thu, 19 Apr 2001 16:28:01-0400 (EDT)
HELO rodent.wrotethebook.com
250 crab.wrotethebook.com Hello rodent [172.16.12.2], pleased to meet you 
MAIL FROM:<daniel@rodent.wrotethebook.com>
250 <daniel@rodent.wrotethebook.com>... Sender ok
RCPT TO:<tyler@crab.wrotethebook.com>
250 <tyler@crab.wrotethebook.com>... Recipient ok
DATA
354 Enter mail, end with "." on a line by itself
Hi Tyler!
.
250 QAA00316 Message accepted for delivery
QUIT
221 crab.wrotethebook.com closing connection
Connection closed by foreign host.
The user input is shown in bold type. All of the other lines are
        output from the system. This example shows how simple it is. A TCP
        connection is opened. The sending system identifies itself. The
        From address and the To
        address are provided. The message transmission begins with the DATA
        command and ends with a line that contains only a period (.). The session terminates
        with a QUIT command. Very simple, and very few commands are
        used.
There are other commands (SEND, SOML, SAML, and TURN) defined in
        RFC 821 that are optional and not widely implemented. Even some of the
        commands that are implemented are not commonly used. The commands
        HELP, VRFY, and EXPN are designed more for interactive use than for
        the normal machine-to-machine interaction used by SMTP. The following
        excerpt  from a SMTP session shows how these odd commands
        work.
               HELP
214-This is Sendmail version 8.9.3+Sun
214-Topics:
214-    HELO    EHLO    MAIL    RCPT    DATA
214-    RSET    NOOP    QUIT    HELP    VRFY
214-    EXPN    VERB    ETRN    DSN
214-For more info use "HELP <topic>". 
214-For local information contact postmaster at this site. 
214 End of HELP info 
HELP RSET 
214-RSET 
214-    Resets the system. 
214 End of HELP info 
VRFY <jane> 
250 <jane@brazil.wrotethebook.com> 
VRFY <mac> 
250 Kathy McCafferty <<mac>> 
EXPN <admin> 
250-<sara@horseshoe.wrotethebook.com> 
250 David Craig <<david>>
250-<tyler@wrotethebook.com>
The HELP command prints out a summary of the commands
        implemented on the system. The HELP RSET command specifically requests
        information about the RSET command. Frankly, this help system isn’t
        very helpful!
The VRFY and EXPN commands are more useful but are often disabled for
        security reasons because they provide user account information that
        might be exploited by network intruders. The EXPN <admin> command asks for a listing of
        the email addresses in the mailing list admin,
        and that is what the system provides. The VRFY command asks for information about an individual instead of a
        mailing list. In the case of the VRFY <mac> command,
        mac is a local user account, and the user’s
        account information is returned. In the case of VRFY <jane>, jane is
        an alias in the   /etc/aliases file. The value
        returned is the email address for jane found in
        that file. The three commands in this example are interesting but
        rarely used. SMTP depends on the other commands to get the real work
        done.
SMTP provides direct end-to-end mail delivery. Other mail
        systems, like UUCP and X.400, use store and forward
        protocols  that move mail toward its destination one hop at a time,
        storing the complete message at each hop and then forwarding it on to
        the next system. The message proceeds in this manner until final
        delivery is made. Figure 3-3
        illustrates both store-and-forward and direct-delivery mail systems.
        The UUCP address clearly shows the path that the mail takes to its
        destination, while the SMTP mail address implies direct
        delivery.[24]
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Figure 3-3. Mail delivery systems

Direct delivery allows SMTP to deliver mail without relying on
        intermediate hosts. If the delivery fails, the local system knows it
        right away. It can inform the user that sent the mail or queue the
        mail for later delivery without reliance on remote systems. The
        disadvantage of direct delivery is that it requires both systems to be
        fully capable of handling mail. Some systems cannot handle mail,
        particularly small systems such as PCs or mobile systems such as
        laptops. These systems are usually shut down at the end of the day and
        are frequently offline. Mail directed from a remote host fails with a
        “cannot connect” error  when the local system is turned off or is offline. To
        handle these cases, features in the DNS system are used to route the
        message to a mail server in lieu of direct delivery. The mail is then
        moved from the server to the client system when the client is back
        online. One of the protocols TCP/IP networks use for this task
           is POP.

Post Office Protocol



   There are two versions of Post Office Protocol: POP2 and
        POP3. POP2, defined in RFC 937, uses port 109, and POP3, defined in
        RFC 1725, uses port 110. These are incompatible protocols that
        use different commands, although they perform the same basic
        functions. The POP protocols verify the user’s login name and password
        and move the user’s mail from the server to the user’s local mail
        reader. POP2 is rarely used anymore, so this section focuses on
        POP3.
A sample POP3 session clearly illustrates how a POP protocol
        works. POP3 is a simple request/response protocol, and just as with
        SMTP, you can type POP3 commands directly into its well-known port
        (110) and observe their effect. Here’s an example with the user input
        shown in bold type:
% telnet crab 110 
Trying 172.16.12.1 ... 
Connected to crab.wrotethebook.com. 
Escape character is '^]'. 
+OK crab POP3 Server Process 3.3(1) at Mon 16-Apr-2001 4:48PM-EDT 
USER hunt 
+OK User name (hunt) ok. Password, please. 
PASS Watts?Watt? 
+OK 3 messages in folder NEWMAIL (V3.3 Rev B04) 
STAT 
+OK 3 459 
RETR 1 
+OK 146 octets   
...The full text of message 1... 
               DELE 1
+OK message # 1 deleted 
RETR 2 
+OK 155 octets   
...The full text of message 2...
               DELE 2
+OK message # 2 deleted 
RETR 3 
+OK 158 octets   
...The full text of message 3... 
               DELE 3
+OK message # 3 deleted 
QUIT 
+OK POP3 crab Server exiting (0 NEWMAIL messages left) Connection closed by foreign host.
The USER  command provides the username, and the PASS command provides the password for the account of
        the mailbox that is being retrieved. (This is the same username and
        password the user would use to log into the mail server.) In response
        to the STAT command, the server sends a count of the number of
        messages in the mailbox and the total number of bytes contained in
        those messages. In the example, there are three messages that contain
        a total of 459 bytes. RETR 1 retrieves the full text of the first message. DELE 1
        deletes that message from the server. Each message is
        retrieved and deleted in turn. The client ends the session with the
        QUIT command. Simple! Table 3-2 lists the full set of
        POP3 commands.
Table 3-2. POP3 commands
	Command
	Function

	USER username
                
	The user’s account name

	PASS password
                
	The user’s password

	STAT
	Display the number of unread
                messages/bytes

	RETR n 
	Retrieve message number
                n 

	DELE n 
	Delete message number n
                

	LAST
	Display the number of the last message
                accessed

	LIST [n]
	Display the size of message
                n or of all messages

	RSET
	Undelete all messages; reset message number to
                1

	TOP n l 
	Print the headers and l
                lines of message n 

	NOOP
	Do nothing

	QUIT
	End the POP3 session




The retrieve (RETR) and delete (DELE) commands  use message numbers that allow messages to be processed
        in any order. Additionally, there is no direct link between retrieving
        a message and deleting it. It is possible to delete a message that has
        never been read or to retain a message even after it has been read.
        However, POP clients do not normally take advantage of these
        possibilities. On an average POP server, the entire contents of the
        mailbox are moved to the client and either deleted from the server or
        retained as if never read. Deletion of individual messages on the
        client is not reflected on the server because all of the messages are
        treated as a single unit that is either deleted or retained after the
        initial transfer of data to the client. Email clients that want to
        remotely maintain a mailbox on the server are more likely to
           use IMAP.

Internet Message Access Protocol



Internet Message Access Protocol (IMAP) is    an alternative to POP. It provides the same basic
        service as POP and adds features to support mailbox synchronization,
        which is the ability to read individual mail messages on a client or
        directly on the server while keeping the mailboxes on both systems
        completely up to date. IMAP provides the ability to manipulate
        individual messages on the client or the server and to have those
        changes reflected in the mailboxes of both systems.
IMAP uses TCP for reliable, sequenced data delivery. The IMAP
        port is TCP port 143.[25] Like the POP protocol, IMAP is also a request/response
        protocol with a small set of commands. The IMAP command set is
        somewhat more complex than the one used by POP because IMAP does more,
        yet there are still fewer than 25 IMAP commands. Table 3-3 lists the basic set of
        IMAP commands as  defined in RFC 2060, Internet Message Access Protocol -         Version 4rev1.
Table 3-3. IMAP4 commands
	Command
	Function

	CAPABILITY
	List the features supported by the
                server

	NOOP
	Literally “No Operation”

	LOGOUT
	Close the connection

	AUTHENTICATE
	Request an alternate authentication
                method

	LOGIN
	Provide the username and password for plain-text
                authentication

	SELECT
	Open a mailbox

	EXAMINE
	Open a mailbox as read-only

	CREATE
	Create a new mailbox

	DELETE
	Remove a mailbox

	RENAME
	Change the name of a mailbox

	SUBSCRIBE
	Add a mailbox to the list of active
                mailboxes

	UNSUBSCRIBE
	Delete a mailbox name from the list of active
                mailboxes

	LIST
	Display the requested mailbox names from the set
                of all mailbox names

	LSUB
	Display the requested mailbox names from the set
                of active mailboxes

	STATUS
	Request the status of a mailbox

	APPEND
	Add a message to the end of the specified
                mailbox

	CHECK
	Force a checkpoint of the current
                mailbox

	CLOSE
	Close the mailbox and remove all messages marked
                for deletion

	EXPUNGE
	Remove from the current mailbox all messages
                marked for deletion

	SEARCH
	Display all messages in the mailbox that match
                the specified search criterion 

	FETCH
	Retrieve a message from the
                mailbox

	STORE
	Modify a message in the mailbox

	COPY
	Copy the specified messages to the end of the
                specified mailbox

	UID
	Locate a message based on the message’s unique
                identifier




This command set clearly illustrates the “mailbox” orientation
        of IMAP. The protocol is designed to remotely maintain mailboxes that
        are stored on the server. The protocol commands show that. Despite the
        increased complexity of the protocol, it is still possible to run a
        simple test of  your IMAP server using telnet and a small number of the IMAP
        commands.
$ telnet localhost 143
Trying 127.0.0.1...
Connected to rodent.wrotethebook.com.
Escape character is '^]'.
* OK rodent.wrotethebook.com IMAP4rev1 v12.252 server ready
a0001 LOGIN craig Wats?Watt?
a0001 OK LOGIN completed
a0002 SELECT inbox
* 3 EXISTS
* 0 RECENT
* OK [UIDVALIDITY 965125671] UID validity status
* OK [UIDNEXT 5] Predicted next UID
* FLAGS (\Answered \Flagged \Deleted \Draft \Seen)
* OK [PERMANENTFLAGS (\* \Answered \Flagged \Deleted \Draft \Seen)] Permanent flags
* OK [UNSEEN 1] first unseen message in /var/spool/mail/craig
a0002 OK [READ-WRITE] SELECT completed 
a0003 FETCH 1 BODY[TEXT]
* 1 FETCH (BODY[TEXT] {1440}
... an e-mail message that is 1440 bytes long ...
* 1 FETCH (FLAGS (\Seen))
a0003 OK FETCH completed 
a0004 STORE 1 +FLAGS \DELETED
* 1 FETCH (FLAGS (\Seen \Deleted))
a0004 OK STORE completed
a0005 CLOSE
a0005 OK CLOSE completed
a0006 LOGOUT
* BYE rodent.wrotethebook.com IMAP4rev1 server terminating connection
a0006 OK LOGOUT completed
Connection closed by foreign host.
The first three lines and the last line come from telnet; all other messages come from IMAP.
        The first IMAP command entered by the user is LOGIN, which provides
        the username and password from /etc/passwd used to authenticate this user.
        Notice that the command is preceded by the string A0001. This is a tag,
        which is a unique identifier generated by the client for each command.
        Every command must start with a tag. When you manually type in
        commands for a test, you are the source of the tags.
IMAP is a mailbox-oriented protocol. The SELECT command selects the mailbox that will be used. In
        the example, the user selects a mailbox named “inbox”. The IMAP server
        displays the status of the mailbox, which contains three messages.
        Associated with each message are a number of flags. The flags are used
        to manage the messages in the mailbox by marking them as Seen, Unseen,
        Deleted, and so on.
The FETCH command downloads a message from the mailbox. In
        the example, the user downloads the text of the message, which is what
        you normally see when reading a message. It is possible, however, to
        download only the headers or flags.
After the message is downloaded, the user deletes it. This is
        done by writing the Deleted flag with the STORE command. The DELETE command is not used to delete messages; it
        deletes entire mailboxes. Individual messages are marked for deletion
        by setting the Delete flag. Messages with the Delete flag set are not
        deleted until either the EXPUNGE command is issued or the mailbox is explicitly
        closed with the CLOSE command, as is done in the example. The session is
        then terminated with the LOGOUT command.
Clearly, the IMAP protocol is more complex than POP; it is just
        about at the limits of what can reasonably be typed in manually. Of
        course, you don’t really enter these commands manually. The desktop
        system and the server exchange them automatically. They are shown here
        only to give you a sense of the IMAP protocol. About the only IMAP
        test you would ever do manually is to test if imapd is up and running. To do that, you
        don’t even need to log in; if the server answers the telnet, you know it is up and running. All
        you then need to do is send the LOGOUT command to gracefully
           close the connection.

Multipurpose Internet Mail Extensions



   The last email protocol on our quick tour is
        Multipurpose Internet Mail Extensions
        (MIME).[26] As its name implies, MIME is an extension of the
        existing TCP/IP mail system, not a replacement for it. MIME is more
        concerned with what the mail system delivers than with the mechanics
        of delivery. It doesn’t attempt to replace SMTP or TCP; it extends the
        definition of what constitutes “mail.”
The structure of the mail message carried by SMTP is defined in
        RFC 822, Standard for the Format of ARPA         Internet Text Messages. RFC 822 defines a set of mail
        headers that are so widely accepted they are used by many mail systems
        that do not use SMTP. This is a great benefit to email because it
        provides a common ground for mail translation and delivery through
        gateways to different mail networks. MIME extends RFC 822 into two
        areas not covered by the original RFC:
	Support for various data types. The mail system defined by
            RFC 821 and RFC 822 transfers only 7-bit ASCII data. This is
            suitable for carrying text data composed of U.S. ASCII characters,
            but it does not support several languages that have richer
            character sets, nor does it support binary data transfer.

	Support for complex message bodies. RFC 822 doesn’t provide
            a detailed description of the body of an electronic message. It
            concentrates on the mail headers.



MIME addresses these two weaknesses by defining encoding
        techniques for carrying various forms of data and by defining a
        structure for the message body that allows multiple objects to be
        carried in a single message. RFC 1521, Multipurpose Internet Mail         Extensions Part One: Format of Internet Message Bodies,
        defines two headers that give structure to the mail message body and
        allow it to carry various forms of data. These are the
        Content-Type header and the
        Content-Transfer-Encoding header.
As the name implies, the  Content-Type header defines the
        type of data being carried in the message. The header has a Subtype
        field that refines the definition. Many subtypes have been defined
        since the original RFC was released. A current list of MIME types can
        be obtained from the Internet.[27] The original RFC defines seven initial content types and
        a few subtypes:
	text
	Text data. RFC 1521 defines text subtypes
              plain and richtext. More than 30 subtypes have since been added,
              including enriched,
              xml and html.

	application
	 Binary data. The primary subtype defined in RFC
              1521 is octet-stream, which indicates the data is a stream of 8-bit
              binary bytes. One other subtype,
              PostScript, is defined in the standard. Since then more than
              200 subtypes have been defined. They specify binary data
              formatted for a particular application. For example,
              msword is an application subtype.

	image
	 Still graphic images. Two subtypes are defined in
              RFC 1521: jpeg and
              gif. More than 20 additional subtypes have
              since been added, including widely used image data standards
              such as tiff, cgm, and
              g3fax.

	video
	Moving graphic images. The initially defined
              subtype was mpeg, which is a widely used standard for computer video
              data. A few others have since been added, including
              quicktime. 

	audio
	Audio data. The only subtype initially defined for
              audio was basic, which means the sounds are encoded using pulse
              code modulation (PCM).  About 20 additional audio types, such as
              MP4A-LATM, have since been added.

	multipart
	Data composed of multiple independent sections. A
              multipart message body is made up of several independent parts.
              RFC 1521 defines four subtypes. The primary subtype is
              mixed, which means that each part of the message can be
              data of any content type. Other subtypes are
              alternative, meaning that the same data is repeated in each
              section in different formats;
              parallel, meaning that the data in the various parts is to
              be viewed simultaneously; and
              digest, meaning that each section is data of the type
              message. Several subtypes have since been
              added, including support for voice messages
              (voice-message) and
              encrypted messages.

	message
	  Data that is an encapsulated mail message. RFC
              1521 defines three subtypes. The primary subtype,
              rfc822, indicates that the data is a complete RFC 822
              mail message. The other subtypes, partial
              and External-body, are both designed to handle large messages.
              partial allows large encapsulated messages
              to be split among multiple MIME messages.
              External-body points to an external source
              for the contents of a large message body so that only the
              pointer, not the message itself, is contained in the MIME
              message. Two additional subtypes that have been defined are
              news for carrying network news and
              http for HTTP traffic formatted to comply with MIME
              content typing.



 The Content-Transfer-Encoding
        header identifies the type of encoding used on the data. Traditional
        SMTP systems forward only 7-bit ASCII data with a line length of less
        than 1000 bytes. Since the data from a MIME system may be forwarded
        through gateways that support only 7-bit ASCII, the data can be
        encoded. RFC 1521 defines six types of encoding. Some types are used
        to identify the encoding inherent in the data. Only two types are
        actual encoding techniques defined in the RFC. The six encoding types
        are:
	7bit
	 U.S. ASCII data. No encoding is performed on 7-bit
              ASCII data.

	8bit
	 Octet data. No encoding is performed. The data is
              binary, but the lines of data are short enough for SMTP
              transport; i.e., the lines are less than 1000 bytes long.

	binary
	 Binary data. No encoding is performed. The data is
              binary and the lines may be longer than 1000 bytes. There is no
              difference between binary and
              8bit data except the line length
              restriction; both types of data are unencoded byte (octet)
              streams. MIME does not modify unencoded bitstream data.

	quoted-printable
	 Encoded text data. This encoding technique handles
              data that is largely composed of printable ASCII text. The ASCII
              text is sent unencoded, while bytes with a value greater than
              127 or less than 33 are sent encoded as strings made up of the
              equals sign followed by the hexadecimal value of the byte. For
              example, the ASCII form feed character, which has the
              hexadecimal value of 0C, is sent as =0C.
              Naturally, there’s more to it than this—for example, the literal
              equals sign has to be sent as =3D, and the
              newline at the end of each line is not encoded. But this is the
              general idea of how quoted-printable data
              is sent.

	base64
	 Encoded binary data. This encoding technique can
              be used on any byte-stream data. Three octets of data are
              encoded as four 6-bit characters, which increases the size of
              the file by one-third. The 6-bit characters are a subset of U.S.
              ASCII, chosen because they can be handled by any type of mail
              system. The maximum line length for base64
              data is 76 characters. Figure
              3-4 illustrates this 3-to-4 encoding technique.

	x-token
	Specially encoded data. It is possible for
              software developers to define their own private encoding
              techniques. If they do so, the name of the encoding technique
              must begin with X-. Doing this is strongly
              discouraged because it limits interoperability between mail
              systems.



[image: base64 encoding]

Figure 3-4. base64 encoding

The number of supported data types and encoding techniques grows
        as new data formats appear and are used in message transmissions. New
        RFCs constantly define new data types and encoding. Read the latest
        RFCs to keep up with MIME developments.
MIME defines data types that SMTP was not designed to
        carry. To handle these and other future requirements, RFC 1869, SMTP Service Extensions,
        defines a technique for making SMTP extensible.
        The RFC does not define new services for SMTP; in fact, the only
        service extensions mentioned in the RFC are defined in other RFCs.
        What this RFC does define is a simple mechanism for systems to
        negotiate which SMTP extensions are supported. The RFC defines a new
        hello  command (EHLO) and the legal responses to that command.
        One response is for the receiving system to return a list of the SMTP
        extensions it supports. This response allows the sending system to
        know what extended services can be used, and to avoid those that are
        not implemented on the remote system. SMTP implementations that
        support the EHLO command are called Extended SMTP (ESMTP).    
Several ESMTP service extensions have been defined for MIME
        mailers. Table 3-4 lists
        some of these. The table lists the EHLO keyword associated with each
        extension, the number of the RFC that defines it, and its purpose.
        These service extensions are just an example. Other have been
         defined to support SMTP enhancements.
Table 3-4. SMTP service extensions
	Keyword
	RFC
	Function 

	8BITMIME
	1652
	Accept 8bit binary data

	CHUNKING
	1830
	Accept messages cut into chunks

	CHECKPOINT
	1845
	Checkpoint/restart mail
                transactions

	PIPELINING
	1854
	Accept multiple commands in a single
                send

	SIZE
	1870
	Display maximum acceptable message
                size

	DSN
	1891
	Provide delivery status
                notifications

	ETRN
	1985
	Accept remote queue processing
                requests

	ENHANCEDSTATUSCODES
	2034
	Provide enhanced error codes

	STARTTLS
	2487
	Use Transport Layer Security to encrypt the email
                exchange

	AUTH
	2554
	Use strong authentication to identify the email
                source




It is easy to check which extensions are supported by your
        server by using the EHLO command.
        The following example is from a generic Solaris 8 system, which comes
        with sendmail 8.9.3:
> telnet localhost 25 
Trying 127.0.0.1... 
Connected to localhost. 
Escape character is '^]'. 
220 crab.wrotethebook.com ESMTP Sendmail 8.9.3+Sun/8.9.3; Mon, 23 Apr 2001 11:00:35-0400 (EDT)
EHLO crab 
250-crab.wrotethebook.com Hello localhost [127.0.0.1], pleased to meet you
250-EXPN 
250 HELP 
250-8BITMIME 
250-SIZE 
250-DSN 
250-ETRN 
250-VERB 
250-ONEX 
250-XUSR
QUIT 
221 crab.foobirds.org closing connection
Connection closed by foreign host.
The sample system lists nine commands in response to the EHLO
        greeting. Two of these, EXPN  and HELP, are standard SMTP commands that aren’t
        implemented on all systems (the standard commands are listed in Table 3-1). 8BITMIME, SIZE, DSN,
        and ETRN are ESMTP extensions, all of which are described in Table 3-4. The last three keywords
        in the response are VERB, ONEX, and XUSR. All of these are specific to
        sendmail version 8. None is defined in an RFC. VERB simply places the sendmail server in verbose mode. ONEX
        limits the session to a single message transaction. XUSR
        is equivalent to the -U sendmail
        command-line argument.[28] As the last three keywords indicate, the RFCs allow for
        private ESMTP extensions.  
The specific extensions implemented on each system are
        different. For example, on a generic Solaris 2.5.1 system, only three keywords (EXPN, SIZE, and HELP) are
        displayed in response to EHLO. The extensions available depend on the
        version of sendmail that is running and on how sendmail is
        configured.[29] The purpose of EHLO is to identify these differences at
        the beginning of the SMTP mail exchange.
ESMTP and MIME are important because they provide a standard way
        to transfer non-ASCII data through email. Users share lots of
        application-specific data that is not 7-bit ASCII. Many users depend
        on email as a file transfer mechanism.
SMTP, POP, IMAP, and MIME are essential parts of the mail
        system, but other email protocols may also be essential in the future.
        The one certainty is that the network will continue to change. You
        need to track current developments and include helpful technologies in
        your planning. Two technologies that users find helpful are file
        sharing and printer sharing. In the next section we look at file and
        print 
          servers.



[23] Most standard TCP/IP applications are assigned a well-known
            port so that remote systems know how to connect the
            service.

[24] The address doesn’t have anything to do with whether a
            system is store and forward or direct delivery. It just happens
            that UUCP provides an address that helps to illustrate this
            point.

[25] The /etc/services file
            lists two different ports for IMAP: 143 and 220. Port 220 is used
            by IMAP 3. IMAP 4 uses port number 143, which is the same port
            used by IMAP 2

[26] MIME is also an integral part of the Web and HTTP.

[27] Go to ftp://ftp.isi.edu/in-notes/iana/assignments/media-types
            to retrieve the file media-types.

[28] See Appendix E for a list
            of the sendmail command-line arguments.

[29] See Chapter 10 for the
            details of sendmail configuration.



File and Print Servers



File and print services make the network more convenient for
      users. Not long ago, disk drives and high-quality printers were
      relatively expensive, and diskless workstations were common. Today,
      every system has a large hard drive and many have their own high-quality
      laser printers, but the demand for resource-sharing services is higher
      than ever.
File Sharing



 File sharing is not the same as file transfer; it is not
        simply the ability to move a file from one system to another. A true
        file-sharing system does not require you to move files across the
        network. It allows files to be accessed at the record level so that it
        is possible for a client to read a record from a file located on a
        remote server, update that record, and write it back to the
        server—without moving the entire file from the server to the
        client.
File sharing is transparent to the user and to the application
        software running on the user’s system. Through file sharing, users and
        programs access files located on remote systems as if they were local
        files. In a perfect file-sharing environment, the user neither knows
        nor cares where files are actually stored.
File sharing didn’t exist in the original TCP/IP protocol suite.
        It was added to support diskless workstations. Several TCP/IP
        protocols for file sharing have been defined, but two hold the lion’s
        share of the file sharing market:
	NetBIOS/Server Message Block
	NetBIOS was originally defined by IBM. It is the
              basic networking used on Microsoft Windows systems. Unix systems
              can act as file and print servers for Windows clients by running
              the Samba software package that implements NetBIOS and
               Server Message Block (SMB) protocols.

	Network File System
	NFS was defined by Sun Microsystems to support
              their diskless workstations. NFS is designed primarily for LAN
              applications and is implemented for all Unix systems and many
              other operating systems.



For file sharing between Unix systems, you will probably use
        NFS, as it is the most widely used Unix file-sharing protocol. If you
        need to support Windows clients using Unix servers, you will probably
        use Samba. For a detailed discussion of both of these tools, see Chapter 9.

Print Services



 A print server allows printers to be shared by everyone
        on the network. Printer sharing is not as important as file sharing,
        but it is a useful network service. The advantages of printer sharing
        are:
	Fewer printers are needed, and less money is spent on
            printers and supplies.

	Reduced maintenance. There are fewer machines to maintain,
            and fewer people spending time fiddling with printers.

	Access to special printers. Very high-quality color printers
            and very high-speed printers are expensive and needed only
            occasionally. Sharing these printers makes the best use of
            expensive resources.



There are two techniques commonly used for sharing printers on a
        corporate network. One technique is to use the sharing services
        provided by Samba. This is the technique preferred by Windows
        clients. The other approach is to use the traditional Unix lpr  command and an lpd
        server. Print server configuration is also covered in Chapter 9.
This chapter concludes with a discussion of the various types of
        TCP/IP configuration servers. Unlike email, file sharing, and print
        servers, configuration servers are not used on every network. However,
        the demand for easier installation and improved mobility makes
        configuration servers an important part of many networks.


Configuration Servers



  The powerful features that add to the utility and
      flexibility of TCP/IP also add to its complexity. TCP/IP is not as easy
      to configure as some other networking systems. TCP/IP requires that the
      configuration provide hardware, addressing, and routing information. It
      is designed to be independent of any specific underlying network
      hardware, so configuration information that can be built into the
      hardware in some network systems cannot be built in for TCP/IP. The
      information must be provided by the person responsible for the
      configuration. This assumes that every system is run by people who are
      knowledgeable enough to provide the proper information to configure the
      system. Unfortunately, this assumption does not always prove
      correct.
Configuration servers make it possible for the network
      administrator to control TCP/IP configuration from a central point. This
      relieves the end user of some of the burden of configuration and
      improves the quality of the information used to configure
      systems.
TCP/IP has used three protocols to simplify the task of
      configuration: RARP, BOOTP, and DHCP. We begin with RARP, the oldest and
      most basic of these configuration tools.
Reverse Address Resolution Protocol



RARP, defined   in RFC 903, is a protocol that converts a physical
        network address into an IP address, which is the reverse of what
        Address Resolution Protocol (ARP) does. A Reverse Address Resolution
        Protocol server maps a physical address to an IP address for a client
        that doesn’t know its own IP address. The client sends out a broadcast
        using the broadcast services of the physical network.[30] The broadcast packet contains the client’s physical
        network address and asks if any system on the network knows what IP
        address is associated with the address. The RARP server responds with
        a packet that contains the client’s IP address.
The client knows its physical network address because it is
        encoded in the Ethernet interface hardware. On most systems, you can
        easily check the value with a command. For example, on a Solaris 8
        system, the superuser can type:
# ifconfig dnet0
dnet0: flags=1000843<UP,BROADCAST,RUNNING,MULTICAST,IPv4> mtu 1500 index 2
        inet 172.16.12.1 netmask ffffff00 broadcast 172.16.12.255
        ether 0:0:c0:dd:d4:da
The ifconfig command
        can set or display the configuration values for a
        network interface.[31] dnet0 is the device name of the
        Ethernet interface. The Ethernet address is displayed after the
        ether label. In the example, the address is
        0:0:c0:dd:d4:da.
The RARP server looks up the IP address that it uses in its
        response to the client in the /etc/ethers
        file. The /etc/ethers file contains the
        client’s Ethernet address followed by the client’s hostname. For
        example:
2:60:8c:48:84:49        clock 
0:0:c0:a1:5e:10         ring 
0:80:c7:aa:a8:04        24seven 
8:0:5a:1d:c0:7e         limulus 
8:0:69:4:6:31           arthropod
To respond to a RARP request, the server must also resolve the
        hostname found in the /etc/ethers file into an IP
        address. DNS or the hosts file is used for this
        task. The following hosts file entries could be
        used with the ethers file shown above:
clock           172.16.3.10 
ring            172.16.3.16 
24seven         172.16.3.4 
limulus         172.16.3.7
arthropod       172.16.3.21
Given these sample files, if the server receives a RARP request
        that contains the Ethernet address 0:80:c7:aa:a8:04, it matches it to
        24seven in the /etc/ethers
        file. The server uses the name 24seven to look up
        the IP address. It then sends the IP address 172.16.3.4 out as its ARP
        response.
RARP is a useful tool, but it provides only the IP address.
        There are still several other values that need to be manually
        configured. Bootstrap Protocol (BOOTP) is a more flexible
        configuration tool that provides more values than just the IP address
        and can deliver those values via the network.
BOOTP is defined in RFCs 951 and 1532. The RFCs describe
        BOOTP as an alternative to RARP; when BOOTP is used, RARP is not
        needed. BOOTP, however, is a more comprehensive configuration protocol
        than RARP. It provides much more configuration information and has the
        potential to offer still more. The original specification allowed
        vendor extensions as a vehicle for the protocol’s evolution. RFC 1048
        first formalized the definition of these extensions, which have been
        updated over time and are currently defined in RFC 2132. BOOTP and its
        extensions became the basis for the Dynamic Host Configuration
        Protocol (DHCP). DHCP has superseded BOOTP, so DHCP is the
        configuration protocol that you will use on your network.

Dynamic Host Configuration Protocol



Dynamic Host   Configuration Protocol (DHCP) is defined in RFCs 2131
        and 2132. It’s designed to be compatible with BOOTP. RFC 1534 outlines
        interactions between BOOTP clients and DHCP servers and between DHCP
        clients and BOOTP servers. DHCP is the correct configuration protocol
        for your network because DHCP exceeds the capabilities of BOOTP while
        maintaining support for existing BOOTP clients.
DHCP uses the same UDP ports as BOOTP (67 and 68) and the same
        basic packet format. But DHCP is more than just
        an update of BOOTP. The new protocol expands the function of
        BOOTP in two areas:
	The configuration parameters provided by a DHCP server
            include everything defined in the Requirements for             Internet Hosts RFC. DHCP provides a client with a
            complete set of TCP/IP configuration values.

	DHCP permits automated allocation of IP addresses.



DHCP expands the original BOOTP packet in order to indicate the
        DHCP packet type and to carry a complete set of configuration
        information. DHCP calls the values in this part of the packet
        options. To handle the full set of configuration
        values from the Requirements for Internet Hosts
        RFC, the Options field is large and has a variable format.
You don’t usually need to use the full set of configuration
        values. Don’t get me wrong; it’s not that the values are
        unnecessary—all the parameters are needed for a complete TCP/IP
        configuration. It’s just that you don’t need to
        define values for them. Default values are
        provided in most TCP/IP implementations, and the defaults need to be
        changed only in special circumstances. The expanded configuration
        parameters of DHCP make it a more complete protocol than BOOTP, but
        they are not the most useful features of DHCP.
For most network administrators, automatic allocation of IP
        addresses is a more interesting feature. DHCP allows addresses to be
        assigned in four ways:
	Permanent fixed addresses
	As always, the administrator can continue to assign addresses
              without using the DHCP system. While this happens completely
              outside of DHCP, DHCP makes allowances for it by permitting
              addresses to be excluded from the range of addresses under the
              control of the DHCP server. Most networks have some permanently
              assigned addresses.

	Manual allocation
	The network administrator keeps complete control over
              addresses by specifically assigning them to clients in the DHCP
              configuration. This is exactly the same way that addresses are
              handled under BOOTP. Manual allocation fails to take full
              advantage of the power of DHCP but might be needed if you have
              BOOTP clients.

	Automatic allocation
	The DHCP server permanently assigns an address
              from a pool of addresses. The administrator is not involved in
              the details of assigning a client an address. This technique
              fails to take advantage of the DHCP server’s ability to collect
              and reuse addresses.

	Dynamic allocation
	The server assigns an address to a DHCP client for
              a limited period of time. The limited life of the address is
              called a lease. The client can return the address to the server at
              any time but must request an extension from the server to retain
              the address longer than the time permitted. The server
              automatically reclaims the address after the lease expires if
              the client has not requested an extension. Dynamic allocation
              uses the full power of DHCP.



Dynamic allocation is useful in any network, particularly a
        large distributed network where many systems are being added and
        deleted. Unused addresses are returned to the pool of addresses
        without relying on users or system administrators to deliberately
        return them. Addresses are used only when and where they’re needed.
        Dynamic allocation allows a network to make the maximum use of a
        limited set of addresses. It is particularly well suited to mobile
        systems that move from subnet to subnet and therefore must be
        constantly reassigned addresses appropriate for their current network
        location. Even in the smallest network, dynamic allocation simplifies
        the network administrator’s job.
Dynamic address allocation does not work for every system. Name
        servers, email servers, login hosts, and other shared systems are
        always online, and they are not mobile. These systems are accessed by
        name, so a shared system’s domain name must resolve to the correct
        address. Shared systems are manually allocated permanent, fixed
        addresses.
Dynamic address assignment has major repercussions for DNS. DNS
        is required to map hostnames to IP addresses. It cannot perform this
        job if IP addresses are constantly changing and DNS is not informed of
        the changes. To make dynamic address assignment work for all types of
        systems, we need a DNS that can be dynamically updated by the DHCP
        server. Dynamic DNS   (DDNS) is available, but it is not yet widely
        used.[32] When fully deployed, it will help make dynamic addresses
        available to systems that provide services and to those that use
        them.
Given the nature of dynamic addressing, most sites assign
        permanent fixed addresses to shared servers. This happens through
        traditional system administration and is not handled by DHCP. In
        effect, the administrator of the shared server is given an address and
        puts that address in the shared server’s configuration. Using DHCP for
        some systems doesn’t mean it must be used for all systems.
DHCP servers can support BOOTP clients. However, a DHCP client
        is needed to take full advantage of the services offered by DHCP.
        BOOTP clients do not understand dynamic address leases. They do not
        know that an address can time out and that it must be renewed. BOOTP clients must be
        manually or automatically assigned permanent addresses. True dynamic
        address assignment is limited to DHCP clients.
Therefore, most sites that use DHCP have a mixture of:
	Permanent addresses assigned to systems that can’t use
            DHCP

	Manual addresses assigned to BOOTP clients

	Dynamic addresses assigned to all DHCP clients



All of this begs the question of how a client that doesn’t know
        its own address can communicate with a server. DHCP defines a simple
        packet exchange that allows the client to find a server and obtain a
        configuration.
How DHCP works



The DHCP client broadcasts a packet called a
          DHCPDISCOVER   message that contains, at a minimum, a transaction
          identifier and the client’s DHCP identifier, which is normally the
          client’s physical network address. The client sends the broadcast
          using the address 255.255.255.255, which is a special address called
          the limited   broadcast address.[33] The client waits for a response from the server. If a
          response is not received within a specified time interval, the
          client retransmits the request. DHCP uses UDP as a transport
          protocol and, unlike RARP, does not require any special Network
          Access Layer protocols.
The server responds to the client’s message with a
          DHCPOFFER   packet. DHCP uses two different well-known port
          numbers. UDP port number 67 is used for the server, and UDP port number
          68 is used for the client. This is very unusual. Most software uses
          a well-known port on the server side and a randomly generated port
          on the client side. (How and why random source port numbers are used
          is described in Chapter 1.) The random port number ensures that each
          pair of source/destination ports identifies a unique path for
          exchanging information. A DHCP client, however, is still in the
          process of booting. It probably does not know its IP address. Even
          if the client generates a source port for the
          DHCPDISCOVER packet, a server response that is
          addressed to that port and the client’s IP address won’t be read by
          a client that doesn’t recognize the address. Therefore, DHCP sends
          the response to a specific port on all hosts. A broadcast sent to
          UDP port 68 is read by all hosts, even by a system that doesn’t know
          its specific address. The system then determines if it is the
          intended recipient by checking the transaction identifier and the
          physical network address embedded in the response.
The server fills in the DHCPOFFER packet
          with the configuration data it has for the client. A DHCP server can
          provide every TCP/IP configuration value a client needs, provided
          the server is properly configured. Chapter 9 is a tutorial on setting up a
          DHCP server, and Appendix D is a
          complete list of all of the DHCP configuration parameters.
As the name implies, the DHCPOFFER packet
          is an offer of configuration data. That offer
          has a limited lifetime—typically 120 seconds. The client must
          respond to the offer before the lifetime expires. This is done
          because more than one server may hear the
          DHCPDISCOVER packet from the client and respond
          with a DHCPOFFER. If the servers did not
          require a response from the client, multiple servers might commit
          resources to a single client, thus wasting resources that could be
          used by other clients. If a client receives multiple
          DHCPOFFER packets, it responds to only one and
          ignores the others.
The client responds to the DHCPOFFER with
          a DHCPREQUEST message. The
          DHCPREQUEST message asks the server to assign
          the client the configuration information that was offered. The
          server checks the information in the
          DHCPREQUEST to make sure that the client got
          everything right and that all of the offered data is still
          available. If everything is correct, the server sends the client a
          DHCPACK message letting the client know that it
          is now configured to use all of the information from the original
          DHCPOFFER packet. Figure 3-5 shows the normal packet
          flow when DHCP is used to configure a client.
[image: DHCP client/server protocol]

Figure 3-5. DHCP client/server protocol





[30] Like ARP, RARP is a Network Access Layer protocol that uses
            physical network services residing below the Internet Layer. See
            the discussion of TCP/IP protocol layers in Chapter 1.

[31] See Chapter 6 for
            information about the ifconfig
            command.

[32] See Chapter 8 for more
            information about DDNS.

[33] This address is useful because, unlike the normal
              broadcast address, it doesn’t require the system to know the
              address of the network it is on.
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