

 [image: First Edition]

 Programming HTML5 Applications

Zachary Kessin

Editor
Simon St. Laurent

Copyright © 2011 Zachary Kessin

O’Reilly books may be purchased for educational, business, or sales
 promotional use. Online editions are also available for most titles
 (http://my.safaribooksonline.com).
 For more information, contact our corporate/institutional sales
 department: (800) 998-9938 or corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo
 are registered trademarks of O’Reilly Media, Inc. Programming
 HTML5 Applications, the image of a European storm petrel, and
 related trade dress are trademarks of O’Reilly Media, Inc.
Many of the designations used by manufacturers and sellers to
 distinguish their products are claimed as trademarks. Where those
 designations appear in this book, and O’Reilly Media, Inc., was aware of a
 trademark claim, the designations have been printed in caps or initial
 caps.

While every precaution has been taken in the preparation of this
 book, the publisher and author assume no responsibility for errors or
 omissions, or for damages resulting from the use of the information
 contained herein.

[image:]

O'Reilly Media

SPECIAL OFFER: Upgrade this ebook with O’Reilly

Click here for more information on this offer!
Please note that upgrade offers are not available from sample content.

Preface

This book reflects the evolution of the Web. Less and less can
 programming be treated as a distinct activity shoehorned into web pages
 through scripts. Instead, HTML and JavaScript are now intertwined in
 producing an enchanting user experience. With this book, you can master the
 latest in this evolution.
How This Book Is Organized

The elements of this book are as follows:
	Chapter 1, The Web As Application Platform
	Introduces the reasons for programming on the new HTML5
 platforms and what they offer to the JavaScript programmer

	Chapter 2, The Power of JavaScript
	Explains some powerful features of JavaScript you may not
 already know, and why you need to use them to exploit the HTML5
 features and associated libraries covered in this book

	Chapter 3, Testing JavaScript Applications
	Shows how to create and use tests in the unique environment
 provided by JavaScript and browsers

	Chapter 4, Local Storage
	Describes the localStorage
 and sessionStorage objects that
 permit simple data caching in the browser

	Chapter 5, IndexedDB
	Shows the more powerful NoSQL database that supports local
 storage

	Chapter 6, Files
	Describes how to read and upload files from the user’s
 system

	Chapter 7, Taking It Offline
	Describes the steps you must go through to permit a user to
 use your application when the device is disconnected from the
 Internet

	Chapter 8, Splitting Up Work Through Web
 Workers
	Shows the multithreading capabilities of HTML5 and
 JavaScript

	Chapter 9, Web Sockets
	Shows how to transfer data between the browser and server more
 efficiently by using web sockets

	Chapter 10, New Tags
	Summarizes tags introduced in HTML5 that are of particular
 interest to the web programmer

	Appendix A
	Describes tools used in the book, and others that can make
 coding easier and more accurate

Conventions Used in This Book

The following typographical conventions are used in this
 book:
	Italic
	Indicates new terms, URLs, email addresses, filenames, and
 file extensions

	Constant width
	Used for program listings, as well as within paragraphs to
 refer to program elements such as variable or function names,
 databases, data types, environment variables, statements, and
 keywords

	Constant width
 bold
	Shows commands or other text that should be typed literally by
 the user

	Constant width italic
	Shows text that should be replaced with user-supplied values
 or by values determined by context

Tip
This icon signifies a tip, suggestion, or general note.

Caution
This icon indicates a warning or caution.

Using Code Examples

This book is here to help you get your job done. In general, you may
 use the code in this book in your programs and documentation. You do not
 need to contact us for permission unless you’re reproducing a significant
 portion of the code. For example, writing a program that uses several
 chunks of code from this book does not require permission. Selling or
 distributing a CD-ROM of examples from O’Reilly books does require
 permission. Answering a question by citing this book and quoting example
 code does not require permission. Incorporating a significant amount of
 example code from this book into your product’s documentation does require
 permission.
We appreciate, but do not require, attribution. An attribution
 usually includes the title, author, publisher, and ISBN. For example:
 “Programming HTML5 Applications by Zachary Kessin
 (O’Reilly). Copyright 2012 Zachary Kessin, 978-1-449-39908-5.”
If you feel your use of code examples falls outside fair use or the
 permission given here, feel free to contact us at
 permissions@oreilly.com.

Safari® Books Online

Note
Safari Books Online is an on-demand digital library that lets you
 easily search more than 7,500 technology and creative reference books
 and videos to find the answers you need quickly.

With a subscription, you can read any page and watch any video from
 our library online. Read books on your cell phone and mobile devices.
 Access new titles before they are available for print, and get exclusive
 access to manuscripts in development and post feedback for the authors.
 Copy and paste code samples, organize your favorites, download chapters,
 bookmark key sections, create notes, print out pages, and benefit from
 tons of other time-saving features.
O’Reilly Media has uploaded this book to the Safari Books Online
 service. To have full digital access to this book and others on similar
 topics from O’Reilly and other publishers, sign up for free at http://my.safaribooksonline.com.

How to Contact Us

Please address comments and questions concerning this book to the
 publisher:
	O’Reilly Media, Inc.
	1005 Gravenstein Highway North
	Sebastopol, CA 95472
	800-998-9938 (in the United States or Canada)
	707-829-0515 (international or local)
	707-829-0104 (fax)

We have a web page for this book, where we list errata, examples,
 and any additional information. You can access this page at:
	http://shop.oreilly.com/product/0636920015116.do

To comment or ask technical questions about this book, send email
 to:
	bookquestions@oreilly.com

For more information about our books, courses, conferences, and
 news, see our website at http://www.oreilly.com.
Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia
Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments

A book is a team effort, and I could not have written this book
 without a great team behind me. First of all, I must thank Simon St.
 Laurent for giving me the chance to write this book and supporting me
 through the process of putting it together. I must also thank Andy Oram
 for his editorial prowess and ability to make the book better. Also, thank you to my technical reviewers,
 Shelley Powers and Dionysios Synodinos, for great feedback.
I must also thank the Israeli developer community for existing: my
 former coworkers at Mytopia, who supported me in this project for more
 than a year, and the gang at Sayeret Lambda, which has become the place in
 Tel Aviv to talk about programming.
Finally, I would like to thank my wife, Devora, for all her support
 in this project. I could not have done it without you.

Chapter 1. The Web As Application Platform

HTML5 makes the Web a first-class environment for creating real
 applications. It reinforces
 JavaScript’s existing tool set with key extensions to the browser APIs that
 make it easier to create applications that feel (and can be) complete in
 themselves, not just views on some
 distant server process.
The Web began as a way to share files, stored on a web server, that
 changed only occasionally. Developers quickly figured out how to generate
 those files on the fly, taking the first big step toward building
 applications. The next big step was adding interactivity in the browser client. JavaScript and the
 Document Object Model (DOM) let developers create Dynamic
 HTML, as the “browser wars” raged and then suddenly stopped. After a few
 years, Ajax brought these techniques back into style, adding some tools to
 let pages communicate with the server in smaller chunks.
HTML5 builds on these 20 years of development, and fills in some
 critical gaps. On the surface, many of HTML5’s changes add support for
 features (especially multimedia and graphics) that had previously required
 plug-ins, but underneath, it gives JavaScript programmers the tools they
 need to create standalone (or at least more loosely tethered) applications
 using HTML for structure, CSS for presentation, and JavaScript for logic and
 behavior.
Adding Power to Web Applications

HTML5 raises the bar for web applications. While it still has to
 work under security constraints, it finally provides tools that desktop
 developers have expected for years:
	Local data storage
	It can store up to 5 MB of data, referenced with a
 key-value system.

	Databases
	Originally a SQLite-based API, the tide seems to have
 shifted to IndexedDB, a NoSQL system that is natively
 JavaScript.

	Files
	While applications still can’t freely access the filesystem (for obvious security reasons), they can now work with files
 the user specifies and are starting to be able to create files as
 well.

	Taking it offline
	When a laptop or phone is in airplane mode, web applications are not able to
 communicate with the server. Manifest files help developers work around that by
 caching files for later use.

	Web Workers
	Threads and forks have always been problematic, but JavaScript
 simply didn’t offer them. Web Workers provide a way to put application processes
 into separate spaces where they can work without blocking other
 code.

	Web sockets
	Hypertext Transfer Protocol (HTTP) has been the
 foundation of the Web, despite a few updates over time. Web sockets transform the request-response approach to
 create much more flexible communication systems.

There’s much more, of course—from geolocation to audio and video to
 Canvas graphics to a wide variety of minor new tags—but these provide the
 foundations for building industrial-strength applications in HTML5.

Developing Web Applications

In the old days, a complex web application might be a catalog, which
 would be static pages derived from a database, or a JavaScript loan
 calculator. But no one would have dreamed of doing complex applications in
 JavaScript. Those required Java or maybe a dedicated client/server
 application written in C or C++. Indeed, in the days before the DOM and Ajax, developing complex applications in JavaScript would
 have been pretty much impossible. However, Ajax introduced the ability to
 interact with the server without reloading the page, and the DOM allowed
 the programmer to change HTML on the fly.
In 2007, Google introduced Gears, a browser extension that gave the
 developer a lot more power than had been there before. Gears allowed the
 browser to work offline, to enable users to store more data in the browser
 and have a worker pool to offload long-running tasks. Gears has since been
 discontinued, as most of its features have migrated into HTML5 in modified
 forms.
The modern Web features a full range of sites, from things that are
 still effectively old-style collections of documents, like Wikipedia, to
 sites that offer interactions with other people, such as Facebook,
 YouTube, and eBay, to things that can serve as replacements for desktop
 applications, such as Gmail and Google Docs. Many formerly standalone
 applications, such as mail clients, have become part and parcel of the web
 experience. In the modern Web, the line between applications and pages has
 blurred. The difference at this point is only in the intent of the
 site.
Running an application in the browser has some major
 advantages for both the user and the developer. For the user, there is no
 commitment to the application: you try it out, and if you don’t like it,
 you can move on to the next page with nothing left behind to clutter up
 your disk. Trying new applications is also reasonably safe, in that they
 run in a sandboxed environment. New versions of the application are automatically downloaded
 to the browser when the developer updates the code. Web applications
 rarely have version numbers, at least public ones.
For the developer, the case is even stronger. First of all, the
 things that are an advantage to the users are also good for the
 developers. There is no installation program to write, and new versions
 can automatically be sent to the users, making small, incremental updates
 not only possible but practical. However, there are other bonuses as
 well.
The Web is cross-platform. It is possible to write a web page that will
 work on Windows XP, Windows Vista,
 Windows 7, Mac OS X, Linux, the iPhone/iPad, and Android. Doing that with
 a conventional development tool would be a monumental task. But with the
 Web and some forethought it almost comes for free. A web application built
 on standards with a library like jQuery will be able to run on major
 browsers on all those platforms and a few others. While at one point Sun
 hoped that its Java applets would define the Web as a platform, JavaScript
 has turned out to become the default web platform.
You can even run web applications on mobile devices, at least the
 ones that today are called smartphones. With a wrapper like PhoneGap, you can create an HTML5 app and package it for
 sale in the App Store, the Android Market, and more. You might create an
 application that interacts heavily with a web server, or you might create
 a completely self-contained application. Both options are
 available.
The real place that the Web, prior to HTML5, traditionally falls
 short is that a web application, running on a computer with gigabytes of
 memory and disk space, acts almost like it is running on an old VT320
 terminal. All data storage must be done on a server, all files must be loaded from the server, and every
 interaction pretty much requires a
 round-trip to the server. This can cause the user experience to feel slow,
 especially if the server is far away
 from the user. If every time the user wishes to look up something there is
 a minimum response time of 400 milliseconds before any actions can be
 taken, the application will feel slow. From my office in Tel Aviv to a
 server in California, the round-trip time for an ICMP ping is about 250
 ms. Any action on the server would be extra and slow that down even more.
 Mobile device communications can, of course, be even slower.

JavaScript’s Triumph

Though JavaScript has been a key component of web
 development since it first appeared
 in 1995, it spent a decade or so with a bad reputation. It offered weak
 performance, was saddled with a
 quirky syntax that led to mysterious bugs, and suffered from its dependence on the DOM.
 Browsers kept it locked in a “sandbox,” easing users’ security concerns
 but making it very difficult for developers to provide features that
 seemed trivial in more traditional desktop application development.
Scripting culture created its own problems. Although providing a
 very low barrier to entry is a good thing, it does come with costs. One of
 those costs is that such a language often allows inexperienced
 programmers to do some very ill-advised things. Beginning
 programmers could easily find
 JavaScript examples on the Web, cut and paste them, change a few things,
 and have something that mostly worked. Unfortunately, maintaining such code becomes more and more
 difficult over time.
With the Ajax revival, developers took a new look at JavaScript.
 Some have worked on improving the engines interpreting and running
 JavaScript code, leading to substantial speed improvements. Others focused
 on the language itself, realizing that it had some very nice features, and
 consequently developing best practices like those outlined in JavaScript:
 The Good Parts by Douglas Crockford (O’Reilly, 2008).
Beyond the core language, developers built tools that made debugging
 JavaScript much easier. Although Venkman, an early debugger, had appeared in 1998, the 2006
 release of Firebug became the gold standard of JavaScript debuggers. It
 allows the developer to track Ajax calls, view the state of the DOM and
 CSS, single-step through code, and much more. Browsers built on WebKit, notably Apple’s Safari and Google Chrome, offer similar functionality built in, and
 Opera Dragonfly provides support for Opera. Even developers
 working in the confined spaces of mobile devices can now get Firebug-like
 debugging with weinre (WEb INspector REmote).
The final key component in this massive recent investment in
 JavaScript was libraries. Developers still might not understand all the
 code they were using, but organizing that code into readily upgradeable
 and sometimes even interchangeable libraries simplified code
 management.
	jQuery
	If anything can be described as the gold standard of
 JavaScript libraries, it would have to be John Resig’s jQuery library, which forms a wrapper
 around the DOM and other JavaScript objects such as the XMLHttpRequest object, and makes
 doing all sorts of things in JavaScript a lot easier and a lot more
 fun. In many ways, jQuery is the essential JavaScript library that
 every JavaScript programmer should know.
To learn jQuery, see the jQuery
 website or a number of good books on the subject, such as
 Head First
 jQuery by Ryan Benedetti and Ronan Cranley or jQuery
 Cookbook by Cody Lindley, both published by
 O’Reilly. Many examples in this book are written using
 jQuery.

	ExtJS
	Whereas jQuery forms a wrapper around the DOM, Sencha’s ExtJS tries to abstract it
 away as much as possible. ExtJS features a rich widget set that can
 live in a web page and provide many of the widgets, such as trees,
 grids, forms, buttons, and so on, that desktop developers are
 familar with. The entire system is very well thought out, fits
 together well, and makes developing many kinds of applications a
 joy. Although the ExtJS library takes up a lot of space, the
 expenditure is worthwhile for some kinds of application
 development.
One nice feature of ExtJS is that many of its objects know how
 to save their state. So if a user takes a grid and reorganizes the
 columns, the state can be saved so that the same order appears the
 next time the user views that grid. Using localStorage in ExtJS will show how to use the
 HTML5 localStorage facility with this
 feature.

	Google Web Toolkit, etc.
	Tools such as GWT allow the programmer to write Java
 code, which is then compiled
 down to JavaScript and can be run on the browser.

Chapter 2. The Power of JavaScript

Although JavaScript is not a difficult language to program, it can be
 challenging to rise to the level of a true expert. There are several key
 factors to becoming a skilled JavaScript programmer. The techniques in this
 chapter will appear repeatedly in the libraries and programming practices
 taught in the rest of this book, so you should familiarize yourself with
 these techniques before continuing with those chapters.
There are a number of excellent tools for JavaScript programming, some
 of them listed in the Appendix A. These tools can provide you with a lot of assistance.
 Specifically, JSLint will catch a large number of errors that a programmer
 might miss. Sites such as StackOverflow
 and O’Reilly Answers will be a good source of other
 tools.
This chapter is not a full introduction to the power of JavaScript.
 O’Reilly publishes a number of excellent books on Javscript,
 including:
	JavaScript,
 The Good Parts by Douglas Crockford

	JavaScript: The
 Definitive Guide by David Flanagan

	High Performance
 JavaScript by Nicholas C. Zakas

	JavaScript
 Patterns by Stoyan Stefanov

Nonblocking I/O and Callbacks

The first key to JavaScript, after learning the language
 itself, is to understand event-driven programming. In the environment
 where JavaScript runs, operations tend to be asynchronous, which is to say
 that they are set up in one place and will execute later after some
 external event happens.
This can represent a major change from the way I/O happens in traditional languages. Take Example 2-1 as a typical case of I/O in a traditional language,
 in this case PHP. The line $db->getAll($query); requires the database to
 access the disk, and therefore will take orders of magnitude more time to
 run than the rest of the function. While the program is waiting for the
 server to execute, the query statement is blocked and the program is doing
 nothing. In a server-side language like PHP, where there can be many
 parallel threads or processes of execution, this isn’t usually a
 problem.
Example 2-1. Blocking I/O in PHP
function getFromDatabase()
{
 $db = getDatabase();
 $query = "SELECT name FROM countries";
 $result = $db->getAll($query);
 return $result;
}

In JavaScript, however, there is only one thread of execution, so if
 the function is blocked, nothing else happens and the user interface is
 frozen. Therefore, JavaScript must find a different way to handle I/O
 (including all network operations). What JavaScript does is return right
 away from a method that might be perceived as slow, leaving behind a
 function that gets called when the operation (say, downloading new data
 from the web server) is complete. The function is known as a callback. When making an Ajax call to
 the server, the JavaScript launches the request and then goes on to do
 something else. It provides a function that is called when the server call
 is finished. This function is called (hence the term
 callback) with the data that is returned from the
 server at the time when the data is ready.
As an analogy, consider two ways of buying an item at a grocery
 store. Some stores leave items behind the counter, so you have to ask a
 salesperson for the item and wait while she retrieves it. That’s like the
 PHP program just shown. Other stores have a deli counter where you can
 request an order and get a number. You can go off to do other shopping,
 and when your order is ready, you can pick it up. That situation is like a
 callback.
In general, a fast operation can be blocking, because it should
 return the data requested right away. A slow operation, such as a call to
 a server that may take several seconds, should be nonblocking and should
 return its data via a callback function. The presence of a callback option
 in a function will provide a good clue to the relative time it will take
 for an operation to run. In a single-threaded language like JavaScript, a
 function can’t block while waiting for the network or user without locking
 up the browser.
So a major step to JavaScript mastery involves using callbacks
 strategically and knowing when they’ll be triggered. When
 you use a DataStore object with Ajax, for example, the data will not be there
 for a second or two. Using a closure to create a callback is the correct way to handle
 data loading (see Closures). All such external I/O (e.g., databases, calls to the server)
 should be nonblocking in JavaScript, so learning to use closures and
 callbacks is critical.
With a few exceptions that should probably be avoided, JavaScript
 I/O does not block. The three major exceptions to this rule are the window
 methods alert(), confirm(), and prompt(). These three
 methods do, in fact, block all JavaScript on the page from the moment when
 they are called to the moment when the user dismisses the dialog. In
 addition, the XHR object can make an Ajax call to the server in asynchronous mode. This can be
 used safely in a Web Worker, but in the main window it will cause the
 browser UI to lock up, so it should be avoided there.

Lambda Functions Are Powerful

Programmers who have come to JavaScript from PHP or other procedural languages will tend to treat
 JavaScript functions like those in the languages that they have already
 used. While it is possible to use JavaScript functions in this way, it is
 missing a large chunk of what makes JavaScript functions so
 powerful.
JavaScript functions can be created with the function statement (Example 2-2) or
 the function expression (Example 2-3). These two forms
 look pretty similar, and both examples produce a function called square that will square a number. However, there are some key differences.
 The first form is subject to hoisting, which is to say that the
 function will be created at the start of the enclosing scope. So you can’t use a function statement when
 you want the function defined conditionally, because
 JavaScript won’t wait for the conditional statement to be executed before
 deciding whether to create the function. In practice, most browsers allow you to put a function inside an if, but it is not a good
 idea, as what browsers will do in this case can vary. It is much better to
 use a function statement if the definition of a function should be
 conditional.
Example 2-2. Function statement
function square(x) {
 return x * x;
} // Note lack of a ;

Example 2-3. Function expression
var square = function(x) {
 return x * x;
};

In the second form, the function expression, the function is created
 when execution gets to that point in the flow of the program. It is
 possible to define a function conditionally, or to have the function
 defined inside a larger statement.
The function expression, in addition, assigns no name to the
 function, so the function can be left anonymous. However, the example shown
 assigns a name (square) on the left
 side of the equals sign, which is a good idea for two reasons. First, when
 you are debugging a program, assigning a name allows you to tell which function you’re
 seeing in a stack trace; without it, the function will show up as
 anonymous. It can be
 quite frustrating to look at a stack trace in Firebug and see a stack of
 nine or ten functions, all of which are simply listed as anonymous. Also, assigning a function name
 allows you to call the function recursively if desired.
A function expression can be used anywhere in JavaScript that an
 expression can appear. So a function
 can be assigned to a variable as in Example 2-3, but it can also be assigned to an
 object member or passed to a function.
JavaScript functions are more like the Lisp lambdas than C functions. In C-type languages
 (including Java and C++), a function is basically a static thing. It is
 not an object on which you can operate. While you can pass objects as
 arguments to functions, there is little ability to build composite objects
 or otherwise expand objects.
Note
Back in the 1950s when Lisp was first being created, the folks at
 MIT were being heavily influenced by Alonzo Church’s Lambda Calculus, which provided a mathematical framework
 for dealing with functions and recursion. So John McCarthy used the keyword lambda
 for dealing with an anonymous function. This has propagated to other
 languages such as Perl, Python, and Ruby. Although the keyword
 lambda does not appear in JavaScript, its functions
 do the same things.

As in Lisp, functions in JavaScript are first-class citizens of the language. A function in JavaScript is just data with a special property
 that can be executed. But like all other variables in JavaScript, a
 function can be operated on. In C and similar languages, functions and
 data are in effect two separate spaces. In JavaScript, functions are data
 and can be used in every place that you can use data. A function can be
 assigned to a variable, passed as a parameter, or returned by a function.
 Passing a function to another function is a very common operation in
 JavaScript. For example, this would be used when creating a callback for a button click (see Example 2-4). Also, a function can be
 changed by simple assignment.
Example 2-4. ExtJS Button with function as handler
var button = new Ext.Button({
 text: 'Save',
 handler: function() {
 // Do Save here
 }

});

End of sample

 To search for additional titles please go to

 http://search.overdrive.com.

OEBPS/httpatomoreillycomsourceoreillyimages943992.png
Events

Event Queue

)
Event Loop

———

OEBPS/httpatomoreillycomsourceoreillyimages943986.png.jpg
Developer Tools - http://slides.html5rocks.com/#slide1

haCpRE

Elements Resources Scripts Timeline Profies | Storage | Audits Console Search Storage

DATABASES Type Size
http:fislides. htmiSros.com/ Master 102.33K8
http:iislides. htmiSrods.com/cache. manifest Manifest 108KB
http:fislides.htmi5to cs. comisreiunction02.otf Explicit 17.25K8
htp:ifslides. himiSro s, comistefLe ague Gothio. off Explicit 17 20k8
LOCAL STORAGE http:/islides. htmiSro . comistefeanvasphotor? ipg Explicit 23.58K8
htpsiislides htmiSro . comiste/canvasphotor.jpg Explicit 48.07K8
http:fislides.htmi5to s, comistofeanvasphoto.jpg Explicit 27.33K8
httpsiislides himiStods. comisic/canvasphotorbg jpg | Explicit 972.89KB
http:tfslides. htmiSto ks, comistofeanvasphotofoanvask .. | Explicit 25.59K8
COOKIES htp:iislides himiSrocs. comistc/canvasphotofcanvasl... | Explicit 1187k
; SRie PhTeScct o http:ffslides. htmiSto ks, comistofeanvasphotofexcanva... | Explicit 24.15K8
htp:ifslides. htmi5ro s, comiste/canvasphotofindex htmi | Explicit 531K8

APPLICATION CACHE http:fislides. hmiSto ks comistofeanvasphotofutilities.js | Explicit 95.26K8
http:iislides. htmiSrocks.comistcichrome. png Explicit 22108KB
hitpiiislides htmiSrodes.comisreicompile | Explicit 140 52K8
http:/islides. htmiSro ks, comiste/dwd1.png Explicit 250K
http:#fslides. htmiSrocks.comiste/gray_lines_bg.png Explicit 7.36K8
httpsislides. htmiSrocks. comisicimagpie.png Explicit 102.64K8
htp:ifslides.htmiSrocks.comisteiopacity_ba.ipg Explicit 620.50K8
http:/islides.htmiSto s, comistcfrefresh.png | Explicit 511K
http:ifslides.htmiSrocks.comisteiscrollbar.css Explicit 23.86K8
hitpifslides.htmiSrods.comisrcisvgiamoustigersvg | Explicit 100.40K8
htp:ifslides. htmiSrocks. comistciebgliangeles js Explicit 250K
http:/islides. htmiSrocks. comistcwebglieontext js Explicit 2.19KB
s htmi5rods.comistcnebglidemo js Explicit 27.30KB

s htmi5ro s comistcinebglimatiixdeds | Explicit 13.93KB

slides htmiSrocks.com

SESSION STORAGE

s htmiSro ks, comistoiwebworkersWorkerjs | Explicit
htp:ifslides. himiSrods. comistcinebworkersfannealin... | Explicit
http:fislides. htmiSro ks, comistoiwebworkersiground.js | Explicit
hitp:ifslides. htmI5ro s, comistcwe bwo ke s/mai Explicit
hitp:ifslides.htmiSro ks, comistowebworkersipoint.png | Explicit
http:iislides. htmiSrocs. comistcinebworkersipointsjs | Explicit
http:fislides htmiSto ks comistoiwebworkersiprime js | Explicit
http:iislides.htmiSro ds. comisteizippy-plus.png Explicit

€& | X | OUNCACHED

OEBPS/httpatomoreillycomsourceoreillyimages943996.png.jpg

OEBPS/oreilly_large.gif
O’REILLY

OEBPS/httpatomoreillycomsourceoreillyimages943998.png.jpg
Firebug - Gmail
Ele View Help

.
W consale~ | HTML cSS scriptDOM

o | Clear persist Profile
‘GET https:/mall.google.com/mail/?ul=2&view=5s &mset=...SxhZzllcg28PHUtGb3I1YNYYGSVEAIPSAWWMUGR tawéri
‘GET https:/mail.google.com/mall/?ui=2&ik=06ef51c814 &view=ad&aav=2Gak=nskSnU_CLVBeUSFI 200 0f 2 1
POST https/mall.google.com/mall/?ui=2&Ik=06efS1cB14...prf=1& reqid=15758B&nsc=1&mb=0&rt=|&search=inbox
‘GET https://mall.google.com/mail/?ul=2&view=jsm&name...HDVOS xhZz1icg 2BPHutab3] LVNYySSVEAIPSAWWMUGR tiw
//mail.google.com/mail/?ul=26&k=06ef51cB14...prf=1&._reqid=257588&nsc~1&mb=0&rt=&search=inbox
//mail.google.com/mall/2ul=2&1k=06ef51cB14 &rid=87e..&view=gdvé reqid=357588 &pcd=1&mbm0Grt=)
m/mail/2ui=2Gviews=]sm&name...HDVOS xhZziicg2BPHutab3]I1VNYy GSVEdIPSAWWMUGR thw
//mall.google.com/mall/2ul=2&1k=06ef51cB1a &rid=87e..&view=mick._reqld=457588&pcd=1&mb=0&rt=]
‘GET https://mall.google.com/mail/?ul=2&view=jsm&name...HDVOS xhZzicg 2BPHutab3|ILVNYy 6 SVEAIPSaWWMUGH tiw
POST https://mail.google.com/mall/?ui=2&Ik=06efS1c814... prf=1& reqid=557588&nsc=1&mb=0&rt=|&search=inbox
POST https://mall.google.com/mall/2ui=2&Ik=06erS 1c814 &rid=87e..&view=omni&. reqld=657588 &pcd=1 &mb=0&rt=]
‘GET https.//mail.google.com/mail/?ui=2&view=jsm&name...HDVOS xhZzilcg 2BPHutb3]ILVNYY 6 SVEAIPSAWWMUGR tiw
POST https:/mall.google.com/mall/?ui=2&Ik=06ef51c14 &view=au&._reqid=757588&pcd=1&mb=0&rt=] 1
POST https:/mall.google.com/mall/2ui=2&Ik=0Gef51c814 &rld=! 575086 pcd=1&mba=0&rte]
POST https://mall.google.com/mall/?ui=2&Ik=06ef51c814...prf=1& reqid=95758B&nsc=1&mb=0&rt=|&search=inbox
‘GET https://mall.google.com/mail/?ul=2&view=jsm&name... HDVOS xhZzica 2BPHutab3]ILVNYY S SVEAIPSAWWMUGR tiw
//mail.google.com/mal/?ui=2&Ik=06ef51cB14...rf=16 reqid=1057588 &nsc=16Gmb=0&rt=j&search=inbox
//mail.google.com/mall/?ul=2&Ik=06ef51cB14...rf=16 reqid=1157588 &nsc=16&mb=0&rt=j&search=inbox
‘GET https://mail.google.com/mail/channel/test?VER=3&...8tK-hbNSyAGit=79 60 &MODEInit&xx=61a05zawd5i2&t=1
‘GET https://mail.google.com/mal/?ul=2&view=jsm&name...HDVOS xhZzlcg 2BPHutab3] LV Yy SVEAIPSAWWMUGH tiw
POST https:/mall.google.com/mal/?ui=2&ik=06ef51cB14...rf=1& reqid=1257588&nscml&mb=0&rt=j&searchminbox
‘GET https://mail.google.com/mail/?ul=2&view=]sm&name... HDVOS xhZzlcg 2BPHutqb3]ILVNYY 6 SVEAIPSaWWMUGR tew
POST https://mail.google.com/mall/2ui=2&ik=06efS1c814...r=1& reqid=1357588 &nscm1&mb=0&rt=j&search=inbox
‘GET https://mall.google.com/mall/?ul=2&view=]sm&name...HDVOS xhZzlcg 2BPHutab3]ILVNYy 6 SVGAIPSAWWMUGR tiw
‘GET https://mall.google. com/mall/channel/test?VER=BE...-hbNSYAGIt=99 16 &TYPE=xmihttp&zx=bol ThnagBinwit=1
/imail.google.com/mail/?ui=2&ik=06ef51cB14...rf=1& reqid=1457588 &nsc=1Gmb=0&rt=j&search=inbox
//mail.google.com/mall/?ui=2&ik=06ef51cB14...rf=16_reqid=1557588&nsc=16Gmb=0&rt=|&search=inbox
‘GET https://mall.google.com/mail/?ul=2&view=]sm&name...HDVOS xhZzlicg 2BPHutab3]ILVN Yy SVEAIPSAWWMUGH tiw
‘GET https:/mail.google.com/mail/?ul=2&view=]sm&name... HDVOS xhZzllcg 2BPHutab3] LvN Yy SVGAIPSaWWMUGR trw
POST https://mail.google.com/mall/2ui=2&1k=06efS1cB14...rf=16 reqid=1657588&nscm1&mb=0krt=j&search=inbox
‘GET https://mail.google.com/mail/2ui=2&view=]sm&name... HDVOS xhZzlicg 2BPHutab3]ILVNYy 6 SVEAIPSAWWMUGH tiw
POST https:/mail.google.com/mail/channel/bind?VER=8...yA&It=12247 &RID=15495 &CVER=8&zx=6pmtq3bgwdoh &t=1
‘GET https://mail.google.com/mail/2ui=2&view=]sm&name... HDVOS xhZzilcg 2BPHutab3]ILVNYy 6 SVGAIPSAWWMUGH tiw
POST https://mall.google.com/mall/2ui=2&Ik=06ef51cB14...xf=1& reqid=1757588&nsc=1&mb=0&rt=]&search=inbox
‘GET https://mail.google.com/mail/channel/bind?VER=8...6FBD&Cl=0&AID =9 &TYPE=xmihttp&zx=Ius94x3n89i&tml
POST https:/mall.google.com/mall/channel/bind?VER =8 &..DF1 6ECA3FBD&RID=15496 &AID=&zx=1ym6uadxOdek&t=1
POST https://mall.google.com/mall/2ui=2&Ik=06efS1cB14...rf=1& reqid=1857588&nscm1&mb=0&rt=j&search=inbox
POST https://mail.google.com/mall/?ui=2&ik=06ef51c814...rf=16_reqid=1957588 &nsc=1&mb=0&rt=j&search=inbox
POST https://mall.google.com/mall/2ui=2&Ik=06efS1cB14...rf=16 reqid=2057588 &nsc=1&mb=0&rt=]&search=inbox
POST https://mail.google.com/mal/?ui=2&ik=06efS1cB14...r=16 reqid=2157588 &nsc=1&mb=0&rt=j&search=inbox

mail?u...tdwfri (line 240)
mail?u..tdwtri (line 240)
mail?u...tdw&fri (line 240)
twtri (line 240)
tawtri (line 240)
(Wi (1ine 240)
tawtri (line 240)
tdwa el (line 240)
twtrl (line 240)
mail?u...tdw&trl (line 240)
twtri (line 240)
twtri (line 240)
tawtri (line 240)
tawtri (line 240)
tawtri (line 240)
twtri (line 240)
Wi (line 240)
twtri (line 240)
dwEei (line 240)
twtri (line 240)
tawtri (line 240)
tw&tri (line 240)
twtri (line 240)
tawtri (line 240)
twtri (line 240)
twtri (line 240)
twtri (line 240)
twtri (line 240)
tawtri (line 240)
twtri (line 240)
tawatri (line 240)
twtri (line 240)
tdwael (line 240)
Wi (1ine 240)
twtri (line 240)
mail?u...taw&tri (line 240)
tawtri (line 240)
dwEei (line 240)
twatri (line 240)
tawtri (line 240)

OEBPS/httpatomoreillycomsourceoreillyimages943994.png
Main JavaScript
task

Create worker

: Worker

v

A

A

v

A

v

A

OEBPS/httpatomoreillycomsourceoreillyimages943982.png
Bl Edt Options Hep

=lolx|

Base URL [beaffwn.example ol

st slow

g b= |& @

o©|Ld

e | souee |

type Ijtecontains(@class,
sssertelementpresent _fjrjtd[contains(@class, x-g1id

Command [Target [Lvalue |
open Jexamplesigric.html

cick Jidvlcontains(@class, -exam.
waitForElementPresent.fjrftd[contains(@class, x-grid.

“egrid.. My Test Rec

Conmend |

|

B —

v |

Log| Reference | ULElement | Rollp
typeQocator; value)

Arguments:
© Iocator - an slement ocator
 yalie - the value o tyve

OEBPS/httpatomoreillycomsourceoreillyimages943990.png
O s B & &

General Tabs Content Appications _ Privacy Securty Advanced

General Network | Update | Encrypton |

Connection

Configure how Firefox connects to the Inernet Settings

Offine Storage

e upto [50 M ofspacefor thecache Clear tow

I~ Tl e when webske sk to store data for offine Use Exceptions |

The folowing websites have stored data for oflne use:

e

ol |t

OEBPS/httpatomoreillycomsourceoreillyimages943975.jpg
Programming

HTMIS
Applications

O’REILLY*

Zachary Kessin

OEBPS/httpatomoreillycomsourceoreillyimages943984.png.jpg
Developer Tools - https://mail.google.com/mail /21

® s 530D
o I

Elemerts Resowces Scripts Timele _Profles.

Value
sesssonid 0123433421

DATABASES
LOCAL STORAGE

mail.goc

SESSION STORAGE
COOKIES

i i googie com

APPLICATION CACHE

(B rasnaecon

OEBPS/httpatomoreillycomsourceoreillyimages943988.png
Firefox - Choose User Profile x|

Firefox stores infarmation about your settings, preferences,
and other user items in your user profile.

Create Profile... |
Rename Profile. .. |
Delete Profile... |

[~ waork offline
IV Don't ask at startup

Skart Firefox I Exit

OEBPS/httpatomoreillycomsourceoreillyimages943980.png
Developer Tools - file:

& |l

:/Work /current/ch02/test.html

(& gleuly WO Wer

Timeline Profiles Storage Audits Console

~

Search Scripts

Elements Resources
< » | closure_button.js +

1/$(document').ready (function Ready() {

+ i
» | [¢ | \¢
¥ Watch Expressions

Paused

wvar button, tools;
tools ['save', 'add', 'delete'];
console.info(§{ div#tooTbar'));

\@ Refresh |

tools. forEach(function (tool) {
conso'le.info(ton'l),
wvar hutton S(cbuttons ').text(tool). attr{{
css:
}) appEndTD(d1v#tuu'|bar ')

¥ Call Stack
ceventhandle jquens-1.4.3.minjs63

jquens-1.4.3.min.js:56
c.event.add.h.handle.n

¥ Scope Variables

¥ Local

» this: HTMLButtonElement

¥ Closure

¥ button: Object[1]

» 0: HTMLButtonETement
context: undefined
length: 1

» previbject: Object[1]
selector: ".appendTo(diwv#..
> _proto__ Object o]

tool: “delete”

Object

¥ Breakpoints

V! closure_button.js:11
console.info(tool, button);

¥ DOM Breakpoints

o Breakpoints

» Workers I” Debug

