

 [image: Better, Faster, Lighter Java]

 Better, Faster, Lighter Java

Bruce A. Tate

Justin Gehtland

Editor
Mike Loukides

Copyright © 2009 O'Reilly Media, Inc.

[image:]

O'Reilly Media

SPECIAL OFFER: Upgrade this ebook with O’Reilly

Click here for more information on this offer!
Please note that upgrade offers are not available from sample content.

A Note Regarding Supplemental Files

Supplemental files and examples for this book can be found at http://examples.oreilly.com/9780596006761/. Please use a standard desktop web browser to access these files, as they may not be accessible from all ereader devices.
All code files or examples referenced in the book will be available online. For physical books that ship with an accompanying disc, whenever possible, we’ve posted all CD/DVD content. Note that while we provide as much of the media content as we are able via free download, we are sometimes limited by licensing restrictions. Please direct any questions or concerns to booktech@oreilly.com.

Preface

In 2001, I was with Steve Daniel, a respected kayaker. We were at
Bull Creek after torrential rains, staring at the rapid that we later
named Bores. The left side of the rapid had water, but we wanted no
part of it. We were here to run the V, a violent six-foot drop with
undercut ledges on the right, a potential keeper hydraulic on the
left, and a boiling tower of foam seven feet high in the middle. I
didn't see a clean route. Steve favored staying
right and cranking hard to the left after the drop to avoid the
undercut ledge. I was leaning left, where I'd have a
tricky setup, and where it would be tough to identify my line, but I
felt that I could find it and jump over the hydraulic after making a
dicey move at the top. We both dismissed the line in the middle.
Neither of us thought we could keep our boats upright after running
the drop and hitting the tower, which we called a haystack because of
its shape. Neither of us was happy with our intended line, so we
stood there and stared.
Then a funny thing happened. A little boy, maybe 11 years old, came
over with a $10 inflatable raft. He shoved it into the main current,
and without paddle, life jacket, helmet, or any skill whatsoever, he
jumped right in. He showed absolutely no fear. The stream predictably
took him where most of the water was going, right into the
"tower of power." The horizontal
force of the water shot him through before the tower could budge him
an inch. We both laughed hysterically. He should have been dead, but
he made it—using an approach that more experienced kayakers
would never have considered. We had our line.
In 2004, I went with 60 kids to Mexico to build houses for the poor.
I'd done light construction of this kind before, and
we'd always used portable cement mixers to do the
foundation work. This group preferred another method.
They'd pour all of the ingredients on the
ground—cement, gravel, and sand. We'd mix up
the piles with shovels, shape it like a volcano, and then pour water
in the middle. The water would soak in, and we'd
stir it up some more, and then shovel the fresh cement where we
wanted it. The work was utterly exhausting. I later told the project
director that he needed cement mixers; they would have saved a lot of
backbreaking effort.
He asked me how to maintain the mixers. I didn't
know. He asked where he might store them. I couldn't
tell him. He then asked how he might transport them to the sites,
because most groups tended to bring vans and not pickup trucks. I
finally got the picture. He didn't use cement mixers
because they were not the right tool for the job for remote sites in
Mexico. They might save a half a day of construction effort, but they
added just as much or more work to spare us that
effort. The tradeoff, once fully understood, not only failed on a
pure cost basis, but wouldn't work at all given the
available resources.
In 2003, I worked with an IT department to simplify their design.
They used a multilayered EJB architecture because they believed that
it would give them better scalability and protect their database
integrity through sophisticated transactions. After much
deliberation, we went from five logical tiers to two, completely
removed the EJB session and entity beans, and deployed on Tomcat
rather than Web Logic or JBoss. The new architecture was simpler,
faster, and much more reliable.
It never ceases to amaze me how often the simplest answer turns out
to be the best one. If you're like the average J2EE
developer, you probably think you could use a little dose of
simplicity about now. Java complexity is growing far beyond our
capability to comprehend. XML is becoming much more sophisticated,
and being pressed into service where simple parsed text would easily
suffice. The EJB architecture is everywhere, whether
it's warranted or not. Web services have grown from
a simple idea and three major APIs to a mass of complex, overdone
standards. I fear that they may also be forced into the mainstream. I
call this tendency "the bloat."
Further, so many of us are trained to look for solutions that match
our predetermined complicated notions that we don't
recognize simple solutions unless they hit us in the face. As we
stare down into the creek at the simple database problem, it
becomes a blob of EJB. The interfaces
become web services. This transformation happens
to different developers at different times, but most enterprise
developers eventually succumb. The solutions you see match the
techniques you've learned, even if
they're inappropriate; you've been
trained to look beyond the simple solutions that are staring you in
the face.
Java is in a dangerous place right now, because the real drivers, big
vendors like Sun, BEA, Oracle, and IBM, are all motivated to build
layer upon layer of sophisticated abstractions, to keep raising the
bar and stay one step ahead of the competition. It's
not enough to sell a plain servlet container anymore. Tomcat is
already filling that niche. Many fear that JBoss will fill a similar
role as a J2EE application server killer. So, the big boys innovate
and build more complex, feature-rich servers. That's
good—if the servers also deliver value that we, the customers,
can leverage.
More and more, though, customers can't keep up. The
new stuff is too hard. It forces us to know too much. A typical J2EE
developer has to understand relational databases, the Java
programming languages, EJB abstractions, JNDI for services, JTA for
transactions, JCA and data sources for connection management, XML for
data representation, Struts for abstracting user interface MVC
designs, and so on. Then, she's got to learn a whole
set of design patterns to work around holes in the J2EE
specification. To make things worse, she needs to keep an eye on the
future and at least keep tabs on emerging technologies like Java
Server Faces and web services that could explode at any moment.
To top it off, it appears that we are approaching an event horizon of
sorts, where programmers are going to spend more time writing code to
support their chosen frameworks than to solve their actual problems.
It's just like with the cement mixers in Mexico: is
it worth it to save yourself from spending time writing database
transactions if you have to spend 50% of your time writing code
supporting CMP?
Development processes as we know them are also growing out of
control. No human with a traditional application budget can
concentrate on delivering beautiful object interaction diagrams,
class diagrams, and sophisticated use cases and still have enough
time to create working code. We spend as much or more time on a
project on artifacts that will never affect the
program's performance, reliability, or stability. As
requirements inevitably change due to increasing competitive
pressures, these artifacts must also change, and we find that rather
than aiding us, these artifacts turn into a ball, tied to a rope,
with the other end forming an ever-tightening noose around our necks.
There's a better way.
A few independent developers are trying to rethink enterprise
development, and building tools that are more appropriate for the
job. Gavin King, creator of Hibernate, is building a persistence
framework that does its job with a minimal API and gets out of the
way. Rod Johnson, creator of Spring, is building a container
that's not invasive or heavy or complicated. They
are not attempting to build on the increasingly precarious J2EE
stack. They're digging through the muck to find a
more solid foundation. In short, I'm not trying to
start a revolution. It's already started.
That's the subject of this book. I recommend that we
re-imagine what J2EE could and should be, and move back down to a
base where we can apply real understanding and basic principles to
build simpler applications. If you're staring at the
rapids, looking at solutions you've been taught will
work—but you still don't quite see how to get
from point A to point B without real pain—it's
time to rethink what you're doing.
It's time to get beyond the orthodox approaches to
software development and focus on making complex tasks simple. If you
embrace the fundamental philosophies in this book,
you'll spend more time on what's
important. You'll build simpler solutions. When
you're done, you'll find that your
Java is better, faster, and lighter.
Who Should Read This Book?

This book isn't for uber-programmers who already
have all the answers. If you think that J2EE does everything that you
need it to do and you can make it sing, this book is not for you.
Believe me, there are already enough books out there for you.
If you've already cracked the code for simplicity
and flexibility, I'm probably not going to teach you
too much that's new. The frameworks I hold up as
examples have been around for years—although incredibly, people
are only now starting to write about them. The techniques I show will
probably seem like common sense to you. I'll take
your money, but you'll probably be left wanting when
you're done.
This book is for the frustrated masses. It's
intended for those intermediate-to-advanced developers with some real
experience with Java who are looking for answers to the spiraling
complexity. I'll introduce you to some ideas with
power and bite. I know that you won't read a phone
book. You haven't got time, so I'll
keep it short. I'll try to show you techniques with
real examples that will help you do things better than you did
before.

Organization of This Book

This book consists of 11 chapters and a Bibliography:
	
 Chapter 1, The Inevitable Bloat

	This chapter highlights the problems inherent in the large-scale
enterprise Java frameworks that most programmers work with today. I
will cover not only what's wrong with these bloated
frameworks, but how they got that way. Finally, I will lay out the
core principles we'll cover in the rest of the book.

	
 Chapter 2, Keep It Simple

	Many programmers fall into the same trap, believing that the more
complicated their code, the better it must be. In fact, simplicity is
the hallmark of a well-written application. This chapter defines the
principle of simplicity, while drawing a distinction between simple
and simplistic. I will also examine the tools and processes that help
you achieve simplicity, like JUnit, Ant, and Agile development.

	
 Chapter 3, Do One Thing, and Do It Well

	Programmers need to resist the urge to solve huge problems all at
once. Code that tries to do too much is often too entangled to be
readable, much less maintainable. This chapter traces the path from
being presented with a problem, to truly understanding the problem
and its requirements, to finally solving the problem through
multiple, simple, and targeted layers. It finally describes how to
design your layers to avoid unnecessary coupling.

	
 Chapter 4, Strive for Transparency

	The programming community has tried for years to solve the problem of
cross-cutting concerns. Generic services, like logging or database
persistence, are necessary for most applications but have little to
do with the actual problem domain. This chapter examines the methods
for providing these kinds of services without unnecessarily affecting
the code that solves your business problem—that is, how to
solve them transparently. The two main methods we examine are
reflection and code generation.

	
 Chapter 5, You Are What You Eat

	Every choice of technology or vendor you make is an embodiment of
risk. When you choose to use Java, or log4j, or JBoss, or Struts, you
are hitching yourself to their wagon. This chapter examines some of
the reasons we choose certain technologies for our projects, some
traditional choices that the marketplace has made (and why they may
have been poor choices), and some strategies for making the right
decisions for your project.

	
 Chapter 6, Allow for Extension

	You simply can not know every use to which your application will be
put when you write it. Any application that is worth the effort put
into it will have a life outside the imagination of its authors. Your
application needs to allow for extension after its release to the
world. This chapter examines the techniques for providing extension
points, from interfaces and inheritance to configuration and the
plug-in model.

	
 Chapter 7, Hibernate

	Hibernate is an open source persistence framework that provides
transparent object-to-relational mapping. It is a straightforward and
simple implementation that focuses on the job of persisting your
domain objects so that they can in turn focus on solving the business
problems at hand.

	
 Chapter 8, Spring

	Spring is an open source application service provider framework on
which to deploy enterprise applications. It has a simple, lightweight
container for your objects, and provides access to a variety of core
J2EE services. However, it does so without all the heavy requirements
of standard J2EE frameworks, and with no intrusion into the design of
your domain objects.

	
 Chapter 9, Simple Spider

	Building on the principles this book espouses, this chapter examines
the construction of a sample application, the Simple Spider. This
application provides indexing and search capabilities for a web site
by crawling its pages, indexing them with Lucene, and providing
multiple interfaces for searching the results.

	
 Chapter 10, Extending jPetStore

	Having built the Simple Spider, we now examine how easy it is to
extend an application (the jPetstore sample from Chapter 8) if you follow the principles in this book.
We replace the existing jPetstore search feature with the Simple
Spider, then replace the persistence layer with Hibernate.

	
 Chapter 11, Where Do We Go from Here?

	Finally, this chapter looks ahead to what is coming on the horizon,
new trends and technologies that are here or just around the corner,
and how the ideas in this book are part of a changing landscape in
enterprise Java development.

	
 Bibliography

	Contains a listing of resources and references.

Conventions Used in This Book

This book is by two authors, but with one voice. The stories come
from the real-life experiences of Bruce and Justin. In everywhere but
this paragraph, we've combined our voices, so that
we don't confuse you. Don't worry.
We both agree about everything that you see here.
The following typographical conventions are used in this book:
	
 Italic

	Used for filenames, directories, emphasis, and first use of a
technical term.

	
 Constant width

	Used in code examples and for class names, method names, and objects.

	
 Constant width italic

	Indicates an item that should be replaced with an actual value in
your program.

	
 Constant width bold

	Used for user input in text and in examples showing both input and
output. Also used for emphasis in code, and in order to indicate a
block of text included in an annotated call-out.

Comments and Questions

Please address comments and questions concerning this book to the
publisher:
	O'Reilly Media, Inc.
	1005 Gravenstein Highway North
	Sebastopol, CA 95472
	(800) 998-9938 (in the United States or Canada)
	(707) 829-0515 (international/local)
	(707) 829-0104 (fax)

There is a web page for this book, which lists errata, examples, or
any additional information. You can access this page at:
	
 http://www.oreilly.com/catalog/bfljava/

To comment or ask technical questions about this book, send email to:
	
 bookquestions@oreilly.com

For information about books, conferences, Resource Centers, and the
O'Reilly Network, see the O'Reilly
web site at:
	
 http://www.oreilly.com

Acknowledgments

This book has been a real pleasure to write and I hope that
translates to something that's a joy for you to
read. The names on the cover are necessarily only a small part of the
total team effort that it took to produce this book. It would be
impossible to thank every person that contributed, but I feel the
obligation to try.
Both Bruce and Justin would like to thank Michael Loukides for his
gentle encouragement, expert touch, and steady hand. At times, it may
have seemed like this book would write itself, but
don't underestimate your impact on it. Thanks for
giving us the freedom to do something unique, and the gentle guidance
and leadership when the book required it. We also greatly appreciate
our outstanding technical reviewers, including Stuart Holloway, Andy
Hunt, Dave Thomas, and Glenn Vanderburg. We respect each of you
deeply. It's truly an honor to have such a combined
brain-trust review our book. Special thanks go to Rod Johnson for his
quick response and thorough attention while editing the Spring
chapter. I'm astounded by what he's
accomplished.
Many heartfelt thanks also go to the production and marketing teams
at O'Reilly, including David Chu for doing whatever
it takes to speed the project along, Robert Romano for his work on
the graphics, Daniel H. Steinberg for keeping us in front of his
community, Colleen Gorman for her experienced, delicate editing, and
Kyle Hart for her tireless promotion.
This book is about lighter, faster technologies and it relies heavily
on the opinions and work of some pioneers. Thanks to the folks at
IntelliJ, for use of a fantastic IDE. We used it to create many of
the examples in this book. Thanks to Ted Neward, for his help in
understanding JSR 175, and for his unique perspective. Ted, you scare
me, only in a good way (sometimes). For his work on Spring, we thank
again Rod Johnson. Thanks also to those who contributed to the open
source JPetstore examples, including Clinton Began for his original
JPetstore, which formed the foundation for Spring's
version, and Juergen Hoeller's work to port that
example to Spring. Gavin King and crew we thank for a fantastic
persistence framework. Your remarkable accomplishments are rewriting
Java history in the area of transparent persistence. We also would
like to thank Doug Cutting and the entire Lucene maintenance team for
their work on that excellent product. Dave Thomas and Mike Clark are
Java leaders in the areas of test-driven development and decoupled
designs. Thanks to both for providing credible examples for this
book.
Bruce A. Tate

I would like to personally thank Jay Zimmerman for giving me a soap
box for this critical message. As a mentor, you've
taught me how to run a small business, you've
trusted me with your customers, and you've been a
jovial friend on the road. Thanks go to Maciej for helping to get the
ball rolling and for help outlining this book. Thanks also go to Mike
Clark for your ideas on unit testing, and your friendship. Most
importantly, I thank my family. You are all the reason that I write.
Thanks to Kayla and Julia for your smiles, kisses, and hugs when I am
down; to my greatest love Maggie, for your inspiration and
understanding; and most of all Connie, for 32 years of loving those
who have been the closest to me. Connie, this book is for you.

Justin Gehtland

I would like to personally thank Stuart Halloway for being
preternaturally busy all the time. I'd also like to
say thanks to Ted Neward, Kevin Jones, and Erik Hatcher for forming a
gravitational well pulling me towards Java. Mostly,
I'd like to thank my wife Lisa and daughter Zoe, who
prove to me constantly that work isn't everything.
Someday, perhaps, I'll write a book
you'd both like to read.

Chapter 1. The Inevitable Bloat

Java development is in crisis. Though Java's market
share has been steadily growing, all is not well.
I've seen enterprise Java development efforts fail
with increasing regularity. Even more alarming is that fewer and
fewer people are surprised when things do go wrong. Development is
getting so cumbersome and complex that it's
threatening to collapse under its own weight. Typical applications
use too many design patterns, too much XML, and too many Enterprise
JavaBeans. And too many beans leads to what I'll
call the bloat.
Bloat Drivers

I'll illustrate the bloat by comparing
it
with the famous Lewis and Clark expedition. They started with a huge,
heavily loaded 55-foot keel boat. Keel boats were well designed for
traversing massive rivers like the Missouri and the Mississippi, but
quickly bogged down when the expedition needed to navigate and
portage the tighter, trickier rivers out West. Lewis and Clark
adapted their strategy; they moved from the keel boats to canoes, and
eventually to horseback. To thrive, we all must do the same. Java has
not always been hard, and it doesn't have to be
today. You must once again discover the lighter, nimbler vessels that
can get you where you need to go. If the massive, unwieldy frameworks
hinder you, then don't be afraid to beach them. To
use the right boat, you've got to quit driving the
bloat.
Over time, most successful frameworks, languages, and libraries
eventually succumb to bloat. Expansion does not happen
randomly—powerful forces compel evolution. You
don't have to accept my premise blindly.
I've got plenty of anecdotal evidence. In this
chapter, I'll show you many examples of the bloat in
applications, languages, libraries, frameworks, middleware, and even
in the operating system itself.
Enterprise Mega-Frameworks

Java developers live with a

 painful reality: huge enterprise
frameworks are en vogue. That might be good news to you if
you're among the 10% of Java developers who are
working on the hardest problems, and your applications happen to fit
those enterprise frameworks perfectly. The rest of us are stuck with
excruciating complexity for little or no benefit. Successful J2EE
vendors listen to the market:
	Vendors can charge mega-dollars for mega-frameworks. Selling software
means presenting the illusion of value. Big companies have deep
pockets, so vendors build products that they can sell to the big
boys.

	It's hard to compete with other mega-frameworks if
you don't support the same features. Face it.
Software buyers respond to marketing tally sheets like
Pavlov's dogs responded to the dinner bell.

	Collaboration can increase bloat. Whenever you get multiple agendas
driving a software vision, you get software that supports multiple
agendas, often with unintended consequences. That's
why we have two dramatically different types of EJB. The process
satisfied two dramatically different agendas.

You can almost watch each new enterprise framework succumb to the
bloat, like chickens being fattened for market. In its first
incarnation, XML was slightly tedious, but it provided tremendous
power. In truth, XML in its first iteration did almost everything
that most developers needed it to. With the additions of XML Schema
and the increased use of namespaces, XML is dramatically more
cumbersome than ever before. True, Schema and namespaces make it
easier to manage and merge massive types. Unfortunately, once-simple
web services are taking a similar path.
But none of those frameworks approach the reputation that Enterprise
JavaBeans (EJB) has achieved for bloat. EJB
container-managed persistence (CMP) is the poster
child for tight coupling, obscure development models, integrated
concerns, and sheer weight that are all characteristic of the bloat
(Figure 1-1).
[image: In theory, EJB's beans simplify enterprise programming]

Figure 1-1. In theory, EJB's beans simplify enterprise programming

 Figure 1-1 shows the EJB container-based
architecture. Beans plug into a container that provides services. The
premise is sound: you'd like to use a set of system
services like persistence, distribution, security, and transactional
integrity. The EJB is a bean that snaps into the container, which
implements the set of services that the bean will use. Within the
bean, the developer is free to focus on business concerns in the
bean.
My favorite childhood story was The Cat in the
Hat by Dr. Seuss, who should have been a programmer. I
loved the game called "Up, up, with the
fish," in which the Cat tries to keep too many
things in the air at once. As an EJB programmer,
it's not quite as funny, because
you're the one doing the juggling. Consider this
very simple example in Example 1-1. I want a simple
counter, and I want it to be persistent. Now, I'll
play the Cat, and climb up on the ball to lob
the first toy into
the air.
Example 1-1. Counter example: implementation
 package com.betterjava.ejbcounter;

 import javax.ejb.*;
 import java.rmi.*;

 /**
 * CMP bean that counts
 */

[1] public abstract class Counter implements EntityBean{

 private EntityContext context = null;

 public abstract Long getID();
 public abstract void setID(Long id);

 public abstract int getCount();
 public abstract void setCount(int count);

Ͽ
 public abstract Object ejbCreate(Long id, int count);

 throws CreateException {

 setId(id);
 setCount(count);

 return null;
 }

 public void ejbPostCreate(Long id, int count)
 throws CreateException { }

 public void setEntityContext(EntityContext c) {
 context = c;
 }

 public void unsetEntityContext() {
 context = null;
 }

 public void ejbRemove() throws RemoveException { }
 public void ejbActivate() { }
 public void ejbPassivate() { }
 public void ejbStore() { }
 public void ejbLoad() { }

[3] public void increment() {

 int i=getCount();
 i++;
 setCount(i);
 }

 public void clear() {

 setCount(0);
 }

 }

The first file, called the bean, handles the implementation. Note
that this class has the only business logic that you will find in the
whole counter application. It accesses two member variables through
getters and setters, the counter value and ID, which will both be
persistent. It's also got two other methods, called
clear and

 increment, that reset and increment the
counter, respectively.
For such a simple class, we've got an amazing amount
of clutter. You can see the invasive nature of EJB right from the
start:
	
 [1] This class implements the EJB interface, and
you've got to use it in the context of an EJB
container. The code must be used inside a container. In fact, you can
use it only within an EJB container. You cannot run the code with
other types of containers.

	
 [2] You see several lifecycle methods that have nothing to do
with our business function of counting:
ejbActivate, ejbPassivate,
ejbStore, ejbLoad,
ejbRemove, setEntityContext,
and unsetEntityContext.

	
 [3] Unfortunately, I've had to tuck all of
the application logic away into a corner. If a reader of this
application did not know EJB, he'd be hard-pressed
to understand exactly what this class was designed to do.

I'm not going to talk about the limitations of
container-managed persistence. If you're still
typing along, you've got four classes to go. As the
Cat said, "But that is not all, no that is not
all." Example 1-2 shows the next
piece of our EJB counter: the local interface.
Example 1-2. Local interface
package com.betterjava.ejbcounter;

import javax.ejb.*;

/**
 * Local interface to the Counter EJB.
 */

public interface CounterLocal extends EJBLocalObject {

 public abstract Long getID();
 public abstract void setID(Long);
 public abstract int getCount();
 public abstract void setCount(int count);

}

This is the interface, and it is used as a template for code
generation. Things started badly, and they're
deteriorating. You're tightly coupling the interface
to EJBLocalObject. You are also dealing with
increasing repetition. Notice that I've had to
repeat all of my implementation's accessors,
verbatim, in the interface class. This example shows just one
instance of the mind-boggling repetition that plagues EJB. To
effectively use EJB, you simply must use a tool or framework that
shields you from the repetition, like XDoclet, which generates code
from documentation comments in the code. If you're a
pure command-line programmer, that's invasive. But,
"`Have no fear,'
said the Cat." Let's push onward to
Example 1-3.
Example 1-3. LocalHome interface
package com.betterjava.ejbcounter;

import javax.ejb.*;
import java.rmi.*;
import java.util.*;

/**
 * Home interface to the local Counter EJB.
 */
public interface CounterLocalHome extends EJBLocalHome {

 public Collection findAll() throws FinderException;

 public CounterLocal findByPrimaryKey(Long id) throws FinderException;

 public CounterLocal create(Long id, int count)
 throws CreateException;
}

In Example 1-3, you find the methods that support
the container's management of our persistent object.
Keep in mind that this class is a generic, standalone persistent
class, with no special requirements for construction, destruction, or
specialized queries. Though you aren't building any
specialized behavior at all, you must still create a default local
home interface that builds finder methods and templates for the
lifecycle of the bean, like creation and destruction.
At this point, I'm going to trust that
you've gotten the message. I'll
omit the painful deployment descriptor that has configuration and
mapping details and the primary key object. I'm also
not going to include a data transfer object (DTO), though for
well-documented reasons, you're not likely to get
acceptable performance without one. Dr. Seuss sums it up nicely:
"And this mess is so big and so deep and so tall, we
cannot pick it up. There is no way at all."
You'd be hard-pressed to find a persistence
framework with a more invasive footprint. Keep in mind that
every persistent class requires the same handful
of support interfaces, deployment descriptors, and classes. With all
of this cumbersome, awkward goo, things get dicey. Some Cats have
enough dexterity to keep all of those toys in the air. Most
don't.

Progress

Developers do not want their

 programming languages
to stay still. They want them to be enhanced and improved over time;
so, we must continually add. Yet language vendors and standards
boards can't simply remove older interfaces. In
order to be successful, languages must maintain backwards
compatibility. As a result, additions are not usually balanced with
subtractions (Figure 1-2). That's
a foolproof recipe for bloat.
[image: Backwards compatibility with progress leads to bloat]

Figure 1-2. Backwards compatibility with progress leads to bloat

If you'd like to see an example of this principle in
action, look no further than the deprecated classes and methods in
Java. Deprecated literally

 means "to disapprove of
strongly," or "to desire the
removal of." In Java, Sun warns against the use of
deprecated classes and methods, because they may be removed in some
future release. I assume that they are defining either
remove or future very
loosely, because deprecated methods never disappear. In fact, if you
look at the AWT presentation library for Java,
you'll find many methods that have been deprecated
since Version 1.1, over a half a decade ago. You can also look at the
other side of the equation. The next few versions of Java are
literally packed with new features.
If you're wondering about the impact of these
changes on the overall size of the Java runtimes, then
you're asking the right questions.
Let's take a very basic metric: how big was the Zip
file for the Windows version of the standard edition SDK? Table 1-1 shows the story. In Version 1.1, you would
have to download just under 3.7 megabytes. That number has grown to
38 megabytes for JDK 1.4!
Table 1-1. Zip file size for standard edition Java developer kit in Version 1.1 and Version 1.4
	
 JDK version, for Windows

 	
 Zip file size

	
 JDK 1.1

 	
 3.7 MB

	
 J2SE 1.2

 	
 20.3 MB

	
 J2SE 1.3

 	
 33.2 MB

	
 J2SE1.4

 	
 38.0 MB

You may ask, so what? Computers are getting faster, and Java is doing
more for me than ever before. It may seem like
you've got a free ride, but the ever-growing
framework will cost you, and others:
	Some of the growth is occurring

 in
the standard libraries. If the bloat were purely in add-on libraries,
then you could perhaps avoid it by choosing not to install the
additional libraries. But you can't dodge the
standard libraries. That means that your resource requirements will
increase.

	Java is harder to learn. Early

 versions of Java allowed most programmers to
pick up a few books, or go to class for a week. Today, the learning
curve is steeper for all but the most basic tasks. While the steep
curve may not directly affect you, it does affect your project teams
and the cost of developers.

	It's harder to find what you need. Since the
libraries continue to grow, you need to wade through much more data
to find the classes and methods that you need to do your job.

	You need to make more decisions. As alternatives appear in the basic
Java toolkits (and often in open source projects),
you've got to make more decisions between many tools
that can do similar jobs. You must also learn alternatives to
deprecated classes and methods.

	You can't fully ignore old features: people still
use deprecated methods. How many Vectors have you
seen in the past couple of years?

Platforms are not immune to the bloat. That's a fact
of life that's beyond your control. My point is not
to add needless anxiety to your life, but to point out the extent of
the problems caused by the bloat.

Economic Forces

To be more specific,

 success drives bloat. The marketplace
dictates behavior. Microsoft does not upgrade their operating systems
to please us, or to solve our problems. They do so to make money. In
the same way, commercial drivers will continue to exert pressure on
Java to expand, so you'll buy Java products and
align yourself with their vision. Beyond license fees, Sun does not
make money directly from Java, but it's far from a
purely altruistic venture. The Java brand improves
Sun's credibility, so they sell more hardware,
software, and services.
Market leaders in the software industry cannot stay still. They must
prompt users to upgrade, and attract new customers. Most vendors
respond to these challenges by adding to their feature set. For just
one example, try installing Microsoft Office. Check out the size of
the Word application. Though most users do little more than compose
memos and email, Word has grown to near-Biblical proportions. Word
has its own simple spreadsheet, a graphics program, and even web
publishing built in. Most Word users have noticed few substantive
changes over the years. To me, the last life-changing enhancements in
Word were the real-time spelling checker and change tracking. Upgrade
revenue and the needs of the few are definitely driving Word
development today. Keep in mind that I'm an author,
and spend way too much time in that application. Of course, we
can't blame Microsoft. They're
trying to milk a cash cow, just like everyone else. Yet, like many
customers, I would be much happier with a cheaper word processor that
started faster, responded faster, and crashed less.
Within the Java industry, BEA is an interesting illustration of this
phenomenon. To this point, BEA has built a strong reputation by
delivering an outstanding application server. From 2001 to the
present, BEA and IBM have been fighting a fierce battle to be the
market-leading J2EE application server. IBM increased their WebSphere
brand to include everything from their traditional middleware (the
layer of software between applications and the operating system) to
extensions used to build turnkey e-commerce sites and portals. Two
minor competing products, JBoss and Oracle9iAS,
were starting to eat away at BEA's low-end market
share. Both of these products were inexpensive. Oracle priced their
product aggressively for users of their database, and JBoss was an
open source project, so BEA was under tremendous pressure to build
more value into their product and stay competitive. They responded by
extending their server to enterprise solutions for building portal
software, messaging middleware, and business integration. They also
started a number of other initiatives in the areas of data (Liquid
Data), user interface development (NetUI), and simplified application
development (WorkBench). Building a great J2EE application server is
simply not enough for BEA any more. They, too, must expand—and
extend the inevitable bloat.

Misuse

Nothing drives bloat more
 than misuse. If you go to
Daddy's toolkit and borrow his cool pipe wrench when
you need to drive a nail, something's going to go
awry. The book Antipatterns, by William J.
Brown, et al. (Wiley & Sons), refers to this problem as the
golden hammer. When
you've got a golden hammer, everything starts to
look like a nail. Misuse comes in many forms:
	
 Framework overkill

	I've seen a departmental calendar built with
Enterprise JavaBeans. I've also seen tiny programs
use XML for a two-line configuration file.

	
 Design patterns

	These days, it's almost too easy to use a design
pattern. When you trade power for simplicity too many times, you get
bloat.

	
 Sloppy reuse

	If you try to stuff a round peg in a square hole,
you'll have to adapt the hole or the peg. Too many
adaptations will often lead to bloat. Cut-and-paste programming also
leads to bloat.

	
 Poor process

	Like fungus in a college refrigerator, bloat best grows in dark,
isolated places. Isolated code with no reviews and one owner lets
bloat thrive unchecked.

Many developers wear golden hammers as a badge of honor. Reaching for
the wrong tool for the job is nearly a rite of passage in some of the
places that I've worked. It's a
practice that may save a few minutes in the short term, but it will
cost you in the end.

Options

There are many possible solutions
for
dealing with the bloat in Java. Head-on is but one possibility. It
takes courage and energy to take on the bloat, and you may not wish
to fight this battle. You've got alternatives, each
with a strong historical precedent:
	Change nothing; hope that Java will change
	This strategy means letting your productivity and code quality slide.
Initially, this is the option that most developers inevitably choose,
but they're just delaying the inevitable. At some
point, things will get too hard, and current software development as
we know it will not be sustainable. It's happened
before, and it's happening now. The COBOL
development model is no longer sufficient, but that
doesn't keep people from slogging ahead with it.
Here, I'm talking about the development model, not
the development language. Java development is just now surpassing
COBOL as the most-used language in the world, begging the question,
"Do you want to be the COBOL developer of the
21st century?"

	Buy a highly integrated family of tools, frameworks, or applications,
and let a vendor shield you from the bloat.
	In this approach, you try to use bloat to your best advantage. You
may put your trust in code generation tools or frameworks that rely
on code generation, like EJB, Struts, or Model Driven Architecture
(MDA). You're betting that it can reduce your pain
to a tolerable threshold, and shield you from lower-level issues. The
idea has some promise, but it's dangerous.
You've got to have an incredible amount of foresight
and luck to make this approach succeed. If you previously bet big on
CORBA or DCE, then you know exactly what I mean.

	Quit Java for another object-oriented language.
	Languages may have a long shelf-life, but they're
still limited. For many, the decision to switch languages is too
emotional. For others, like author Stuart Halloway, the decision is
purely pragmatic. The long-time CTO of the respected training company
DevelopMentor and tireless promoter of their Java practice recently
decided to choose Objective C for an important project because Java
was not efficient enough for his needs. Alternatives are
out there. C# has some features that Java developers have
long craved, like delegation, and C#
hasn't been around long enough to suffer the bloat
that Java has. Ruby is surprisingly simple and productive, and works
very well for GUI prototyping and development.

	Quit object-oriented languages for another paradigm
	Every 15 to 20 years, the current programming model runs out of gas.
The old paradigms simply cannot support the increasing sophistication
of developers. We've seen programming languages with
increasingly rich programming models: machine language, assembly
languages, high-level languages, structured programming languages,
object-oriented languages. In fact, today you're
probably noticing increased activity around a new programming model
called aspect-oriented programming (see Chapter 11). Early adopters were using object
technology 15 years before it hit the mainstream. Unfortunately, new
programming paradigms traditionally have been very difficult to time.
Guess too early and you'll get burned.

	Spend time and effort becoming a master craftsman.
	An inordinate amount of bloated code comes not from people who know
too much about writing software, but from people who know too little.
The temptation when faced with a problem that you
don't fully understand is to put everything and the
kitchen sink into the solution, thus guarding against every unknown.
The problem is that you can't guard against unknowns
very effectively; frankly, all the extra complexity is likely to
generate side effects that will kill the application. Thoroughly
understanding not just your problem domain but the craft of software
development as well leads to better, smaller, more focused designs
that are easier to implement and maintain.

Each of these techniques has a time and a place. Research teams and
academics need to explore new programming models, so they will
naturally be interested in other programming paradigms. Many serious,
complex problems require sophisticated enterprise software, and the
developers working on these problems will look to complex frameworks
that can hopefully shield them from the bloat. Small, isolated
development projects often have fewer integration requirements, so
they make effective use of other programming languages, or paradigms.
But for most day-to-day Java applications, the alternatives are too
risky. My choice is to actively fight the bloat.

Five Principles for Fighting the Bloat

You can't fight the bloat by being
simple-minded. You
can't simply fill your programs with simple
cut-and-paste code, full of bubble sorts and hardwiring. You cannot
forget everything you've learned to date.
It's an interesting paradox, but
you're going to need your creativity and guile to
create simple but flexible systems. You've got to
attack the bloat in intelligent ways.
The bloat happened because the extended Java community compromised on
core principles. Many of these compromises were for good reasons, but
when core principles slide often enough, bad things happen. To truly
fight the bloat, you've got to drive a new stake in
the ground, and build a new foundation based on basic principles.
You've got to be intentional and aggressive. In this
book, I'll introduce five basic principles.
Together, they form a foundation for better, faster, lighter Java.
1. Keep It Simple

Good programmers value simplicity.
You've

 probably noticed a resurgence of interest
in this core value, driven by newer, Agile development methods like
eXtreme Programming (XP). Simple code is easier to write, read, and
maintain. When you free yourself with this principle, you can get
most of your code out of the way in a hurry, and save time for those
nasty, interesting bits that require more energy and more attention.
And simple code has some more subtle benefits as well. It can:
	Give you freedom to fail. If your simple solution
doesn't work, you can throw it away with a clear
conscience: you don't have much invested in the
solution anyway.

	Make testing easier. Testability makes your applications easier to
build and more reliable for your users.

	Protect you from the effects of time and uncertainty. As time passes
and people on a project change, complex code is nearly impossible to
enhance or maintain.

	Increase the flexibility of your team. If code is simple,
it's easier to hand it from one developer to the
next.

	Self-document your code, and lessen the burden of technical writing
that accompanies any complex application.

More than any core principle, simplicity is the cornerstone of good
applications, and the hallmark of good programmers. Conversely,
complexity is often a warning sign of an incomplete grasp of the
problem. This doesn't mean that you need to build
applications with simple behavior. You can easily use simple
constructs, like recursion, and simple classes, like nodes, to get
some complex structures and behaviors. Figure 1-3
shows one simple node class consisting of a collection and a string.
That's a simple structure, but I use it to represent
a family tree, with many complex relationships. I've
captured the complex relationships in concept, including children,
spouses, parents, grandparents, uncles, and nieces.
[image: A simple node class, a string, and a collection form the foundation of a family tree]

Figure 1-3. A simple node class, a string, and a collection form the foundation of a family tree

I'm not advocating simplicity across the board,
above all else. I'm merely suggesting that you value
simplicity as a fundamental foundation of good code. You
don't have to over-simplify everything, but
you'll be much better off if you pick the simplest
approach that will work.

2. Do One Thing, and Do It Well

 Focus is the second principle,
and it builds upon simplicity. This basic
premise has two underlying concepts: concentrate on one idea per
piece, and decouple your building blocks. Object-oriented programming
languages give you the power to encapsulate single ideas. If you
don't take advantage of this capability,
you're not getting the full benefits of
object-orientation.
Focus is the premise behind perhaps the most popular design pattern
ever, model-view-controller (MVC), shown in Figure 1-4. Each component of this design pattern
elegantly separates the concerns of one particular aspect of the
problem. The view encapsulates the user interface, the model
encapsulates the underlying business logic, and the controller
marshals data between them.
[image: Each rectangle encapsulates a single aspect of an application]

Figure 1-4. Each rectangle encapsulates a single aspect of an application

These ideas seem simple, but they carry incredible power:
	Building blocks, designed with a single purpose, are simple. By
maintaining focus, it's easier to maintain
simplicity. The converse is also true. If you muddy the waters by
dividing your focus, you'll be amazed at how quickly
you get bogged down in complex, tedious detail.

	Encapsulated functionality is easier to replace, modify, and extend.
When you insulate your building blocks, you protect yourself from
future changes. Don't underestimate the power of
decoupled building blocks. I'm not just talking
about saving a few hours over a weekend—I'm
talking about a principle that can change your process. When you
decouple, you have freedom to fail that comes from your freedom to
refactor.

	You can easily test a single-purpose building block. Most developers
find that testing drives better designs, so it should not come as a
surprise that decoupled designs are easier to test.

3. Strive for Transparency

The third principle is transparency. When

 you can separate the primary purpose of a
block of code from other issues, you're building
transparent code. A transparent persistence framework lets you save
most any Java object without worrying about persistence details. A
transparent container will accept any Java object without requiring
invasive code changes.
The EJB counter in Example 1-1 is a framework that
is not transparent. Look at the alternative counter, in Hibernate or
JDO, shown in Example 1-4.
Example 1-4. Transparent counter
package com.betterjava.ejbcounter;

import java.util.*;

public class Counter {

 private string name;
 private int count;

 public void setName(long newName) {
 name = newName;
 }

 public string getName() {
 return name;
 }

 public int getCount() {
 return count;
 }

 public void clear() {
 count = 0;
 }

 public void increment() {
 count += 1;
 }
}

That's it. The code is transparent,
it's simple, and it encapsulates one
concept—counting. Transparency, simplicity, and focus are all
related concepts. In fact, in this example, we used transparency to
achieve focus, leading to simplicity.

4. Allow for Extension

Simple applications usually come in

 two forms: extensible
and dead-end. If you want your code to last,
you've got to allow for extension.
It's not an easy problem to solve. You probably want
your frameworks to be easy to use, even when you're
solving hard problems. OO design principles use layered software
(which we call abstractions) to solve
this
problem. Instead of trying to organize millions of records of data on
a filesystem, you'd probably rather use a relational
database. Rather than use native networking protocols like TCP/IP,
you'd probably rather use some kind of remote
procedure call, like Java's remote
method invocation (RMI). Layered
software can make complex problems much easier to solve. They can
also dramatically improve reuse and even testability.
When you build a new abstraction, you've got to
engage in a delicate balancing act between power and simplicity. If
you oversimplify, your users won't be able to do
enough to get the job done. If you undersimplify, your users will
gain little from your new abstraction level. Fortunately,
you've got a third choice. You can build a very
simple abstraction layer and allow the user to access the layer below
yours. Think of them as convenient trap doors that let your users
have access to the floors below.
For example, you might want to build a utility to write a message.
You might decide to provide facilities to write named serialized
messages. Most users may be satisfied with this paradigm. You might
also let your users have full access to the JMS connection, so they
can write directly to the queue if the need arises.

5. You Are What You Eat

My mother always told
me that I am what I eat. For once, she was
right. Applications build upon a foundation. Too many developers let
external forces easily dictate that foundation. Vendors, religion,
and hype can lead you to ruin. You've got to learn
to listen to your own instincts and build consensus within your team.
Be careful of the concepts you internalize.
Look at it this way: a little heresy goes a long way. You can find a
whole lot of advice in the Java community, and not all of it is good.
Even commonly accepted practices come up short. If
you've been around for 10 years or more,
you've probably been told that inheritance is the
secret to reuse (it's not) or that client-server
systems are cheaper (they're not) or that you want
to pool objects for efficiency (you don't). The most
powerful ideas around the whole high-tech industry bucked some kind
of a trend:
	Java lured C++ developers away with an interpreted, garbage-collected
language. C++ developers typically demand very high performance. Most
conventional wisdom suggested that customers would be much more
interested in client-side Java than server-side Java due to
performance limitations. So far, the opposite has been true.

	Many Java experts said that reflection was far too slow to be
practical. Bucking the trend, many new innovative frameworks like
Hibernate and Spring use reflection as a cornerstone.

	Whole consulting practices were built around EJB.
We're only now beginning to understand how ugly and
invasive that technology is, from top to bottom.

Java development without a little heresy would be a dull place, and a
dangerous one. You've got to challenge conventional
thinking. When you don't, bloat happens.

Summary

In this book, I'm going to take my own medicine.
I'll keep it simple and short. At this point,
you're probably wondering how five simple principles
can change anything at all. Please indulge me. In the pages to come,
I'll lay out the five simple principles.
I'll then show you the ideas in practice.
You'll see how two successful and influential
frameworks used these principles, and how to build applications with
these frameworks. You'll see an example of a
persistent domain model, an enterprise web application, a
sophisticated service, and extension using these core concepts. My
plan is simple. I'll show you a handful of basic
principles. I'll show you how to succeed with the
same ideas to build better, faster, lighter Java.
If you tend to value a book by the weight of its pages, go find
another one. If you'd rather weigh the ideas, then
welcome aboard. It all begins and ends with simplicity. And
that's the subject of Chapter 2.

Chapter 2. Keep It Simple

Simplicity should be a core value for all Java programmers, but
it's not. Most developers have yet to establish
simplicity as a core value. I'll never forget when
one of my friends asked for a code review and handed me a nine-page,
hideously complex blob with seemingly random Java tokens. All kinds
of thoughts swarmed through my mind in a period of seconds. At first,
I thought it was a joke, but he kept staring expectantly. My next
thought was that he hated me; I couldn't think of
anything I'd done to deserve it. Finally, I began to
read. After three pages of pure torture, I glanced up. He was
grinning from ear to ear. My slackened jaw fell open, and I finally
realized that he was proud of this code.
It's a cult. If you've coded for
any length of time, you've run across someone from
this warped brotherhood. Their creed: if you can write complicated
code, you must be good.
The Value of Simplicity

Simplicity may be the core value. You
can
write simple code faster, test it more thoroughly with less effort,
and depend on it once it's done. If you make
mistakes, you can throw it away without reservation. When
requirements change, you can refactor with impunity. If
you've never thought about simplicity in software
development before, let's first talk about what
simplicity is not:
	Simple does not mean simple-minded. You'll still
think just as hard, but you'll spend your energy on
simplicity, elegance, and the interactions between simple components.
e=mc2 is a remarkably simple formula that
forms the theory of relativity, one of the most revolutionary ideas
ever.

	Simple code does not necessarily indicate simple behavior. Recursion,
multithreading, and composition can let you build applications out of
simple building blocks with amazingly complex behavior.

	Writing simple code does not mean taking the easy way out. Cutting
and pasting is often the fastest way to write a new method, but
it's not always the simplest solution, and rarely
the best solution. Simple code is clean, with little replication.

	A simple process is not an undisciplined process. Extreme programming
is a process that embraces simplicity, and it's
quite rigorous in many ways. You must code all of your test cases
before writing your code; you must integrate every day; and you must
make hard decisions on project scope in order to keep to your
schedule.

Simple code is clean and beautiful. Learn to seek simplicity, and
you'll step over the line from engineer to artist.
Consider the evolution of a typical guitar player. Beginners aspire
to play just about anything that they can master. Intermediate
players learn to cram more notes and complex rhythms into
ever-decreasing spaces. If you've ever heard one of
the great blues players, you know that those players have mastered
one more skill—they learn what not to
play. Bo Diddley embraces silence and simplicity with every fiber of
his being. He strips his music to the bare essence of
what's required. Then, when he does add the extra,
unexpected notes, they have much more power and soul.
Coding simply accrues benefits throughout the development process.
Take a look at the typical object-oriented development iteration in
Figure 2-1. Here, I'm trying to
show the typical steps of an object-oriented cycle. Notice that you
can see the tangible impact of simplicity in every phase of each
iteration. I should also point out that you can have a dramatic
impact outside of the typical development iterations, and into the
production part of an application's lifecycle,
because your code will be easier to fix and maintain.
[image: Each iteration in an object-oriented project has steps for designing, coding, testing, and reacting to the results of those tests]

Figure 2-1. Each iteration in an object-oriented project has steps for designing, coding, testing, and reacting to the results of those tests

Here are some reasons to write
simple code. They correspond to the
numbers in Figure 2-1:
	Given simple tools, takes less time, and is less prone to error.

	Easier to write.

	Usually easier to test.

	Usually more reliable in production.

	Easier to refactor before deployment.

	Easier to refactor to fix production problems.

	Easier to maintain.

You're probably wishing I would get right to the
point and talk about new design patterns that help create simpler
code. Here's the bad news: you
can't address simplicity that way.
You've got to pay attention to the process
you're using to build code, the foundation
you're building on, and the basic building blocks
you're using in your everyday programming life
before you can truly embrace simplicity.
Choosing the Foundations

If you want to build simple
applications, you're going
to have to build on simple frameworks. You need processes, tools,
frameworks, and patterns that support the concepts in this book. Face
it: if you build on top of an unintelligible, amorphous blob,
you're probably going to be writing code that looks
like sticky, tangled masses of goo. That goes for foundations you
code, technologies you buy, and design patterns you reuse.
Technology you buy

Two values should govern every layer

 that you add to your system: value and
simplicity. When it comes to value, remember that there are no free
rides. Each layer must pay its own way. When I say
pay, I'm generally not talking
about the software sales price. Over your development cycle, most of
your costs—like time and effort to develop, deploy, and
maintain your code—will dwarf the sales price of any given
component. You'll want to answer some pointed
questions for each and every new piece of software:
	
 How does it improve your life?

	Many a project has
used XML for every message,
configuration file, or even document. If two elements of a system are
necessarily tightly coupled, XML only adds cost and complexity.
Often, pure text with hash tables works fine. Likewise, even if the
two elements are loosely coupled but the data is simple enough
(key/value pairs, or a simple rectangular table), then XML is
probably still overkill.

	
 What is the cost?

	If a technology marginally improves your life, you should be willing
to pay only a marginal cost. Too often, developers compromise on
major values for minimal gain. Adopting EJB CMP for a project because
it comes free with an application server often seems wise, until the
true, invasive complexity of the beast shows itself.

	
 Is it easy to integrate and extend?

	Many technologies work well within their own domain, but make
assumptions that make even basic extensions difficult. Be especially
careful with frameworks for distributed communication, persistence,
and user interfaces.

	
 Will it cause you to compromise your core principles?

	If you're striving for simplicity and independence,
you should not consider ultra-invasive technologies. If you need
portability at any cost, then you shouldn't use a
tool that forces you to adopt nonstandard SQL.

	
 Can you maintain it and manage it in production?

	Client-server technologies often broke down because they were too
expensive to deploy. Web developers live with the limitations of the
user interface because the deployment advantages on the client are so
significant.

	
 Is it a fad technology that will leave you hanging when it falls from fashion?

	Look across the pond at developers moving from
Micrsoft's ASP to ASP.NET. While ASP was the
platform, VBScript was the language of choice for many developers.
Sure, it was nonstandard (the standard is JavaScript, or Ecmascript,
depending on who you ask), but it looked just like VB and was
comfortable. With the advent of ASP.NET, guess which language is
still supported? Hint: it isn't VBScript. Now there
is a lot of rewriting going on that need never
have happened.

"Buy over build" is a great motto,
but you've got to watch what you buy.
It's really just a cost comparison. How much would
it cost you and your team to develop the equivalent functionality
with the equivalent stability but more targeted to your specific
needs? When you look at it this way, everything is a
"buy." Your own development shop is
just one more vendor.

Design patterns

Treat design patterns like
 a framework that you purchase.
Each one has a cost and a benefit. Like a purchases framework, each
design pattern must pay its own way. If you want to embrace
simplicity, you can't build in each and every design
pattern from the famous Gang of Four book, Design
Patterns, by Erich Gamma, Richard Helm, et al.
(Addison-Wesley).
True, many design patterns allow for contingencies.
That's good. Many Java gurus get in trouble when
they try to predict what the future might hold.
That's bad. The best rule of thumb is to use design
patterns when you've physically established a need,
today. You need expertise on your team that can recognize when a
given situation is crying out for a particular pattern. Too often,
developers buy the Gang of Four book, or one like it, crack it open
to a random page, and apply a pattern that has no problem. Instead,
it's better to find a difficult problem, and then
apply the right pattern in response. You need experts on a team to
apply any technology. Design patterns are no exception. In other
words, don't impose design patterns. Let them
emerge.

Your own code

Of course, much of your foundation will be code that you or your
peers write. It goes without saying that the simplicity of each layer
affects the simplicity of the layers above.
You may find that you're forced to use a
particularly ugly foundation that looks only slightly better than a
random string of characters. Further, you may find that
it's impossible to junk it and start from scratch
with a simpler foundation. When this happens, you can do what moms
and pet owners do when they need to feed their charge a bitter pill:
they hide it in peanut butter or cheese. I call this technique
rebasing. When you rebase, your overriding
concern is the interface. Your goal is to give your clients a better
interface and usage model than the code below you. An example of
rebasing is
 providing a data
access object layer, which hides the details of a data
store, over the EJB entities. You can then keep that skeleton deep in
the closet, or clean it out at your leisure. Your clients will be
protected, and be able to provide a much cleaner interface.

End of sample

 To search for additional titles please go to

 http://search.overdrive.com.

OEBPS/httpatomoreillycomsourceoreillyimages113230.png
Pressuretoadd

Boat | Corentplaform Bloat

Pressure toremove

OEBPS/httpatomoreillycomsourceoreillyimages113294.png
Lﬂ\

Pocesor

OEBPS/httpatomoreillycomsourceoreillyimages113290.png
Base ode
]
Deveperony)
g
anpaie
(sdminr s
ol
ngon
mass)
o
e
)

OEBPS/httpatomoreillycomsourceoreillyimages113304.png
Project

Longid
Suingrame
Date tinestamp

projeeon Fon

Longprojectd
LongPersold

Longid
Sting ame

OEBPS/httpatomoreillycomsourceoreillyimages113240.png
Simpiidty

Refactoring

Automatedunittests

OEBPS/httpatomoreillycomsourceoreillyimages113314.png
Page

Page2

Page2 —

Page3 aged

e

fage1
Amanom

!

ilons of pages at
Amazon om

Paged

OEBPS/httpatomoreillycomsourceoreillyimages113228.png
8 8
Component | component

busess | Business
logic lagic
BB containerervices

Tansactons perstence ditibutionsecuity

OEBPS/httpatomoreillycomsourceoreillyimages113260.png
Cient1

OEBPS/httpatomoreillycomsourceoreillyimages113250.png
L4

Manporier — -

Prject

Time

Newsaope—|

OEBPS/httpatomoreillycomsourceoreillyimages113270.png
Fild I mml mmml

OEBPS/httpatomoreillycomsourceoreillyimages113246.png
Applcation
(3
Bank
acont
Test
accont

OEBPS/httpatomoreillycomsourceoreillyimages113306.png
I

personaldA0

i - Crsmnmion)
il o)
P =)

IDBC datasource
factory

Mybatasource

)

OEBPS/httpatomoreillycomsourceoreillyimages113238.png
Picka
problem

[

Tysometing
simple

OEBPS/httpatomoreillycomsourceoreillyimages113286.png
17| TramsactionaThing

.
PerstetThing

)

27| PesstentTansactonalTing

PersstetPerson

37 PesstentTansacionaPerson

OEBPS/httpatomoreillycomsourceoreillyimages113254.png
Iterace

Higher-levellayer

|

Inteface
-~
Softwarelayer
Iterace

Lower evellayer

Inteface

Peerlaper

OEBPS/httpatomoreillycomsourceoreillyimages113308.png
entation layer

Coollr |1 pestoreseieunl
Navigaton N

o] S R —
Domain model "

Tansaciontategy e

0RO |+ datatcesontoram
Tansaction manager

Datasoure —

OEBPS/httpatomoreillycomsourceoreillyimages247993.jpg
Better, Faster,
) Lighter Java

O’REILLYO Bruce A. Tate & Justin Gebtland

OEBPS/httpatomoreillycomsourceoreillyimages113302.png
Topic

Suingid
Datetimestamp
Datemodifed
ListofPosts posts

Post

Longid " Vet

Stingsubject
Suingtext

Stingid
Sting asord

User

OEBPS/httpatomoreillycomsourceoreillyimages113256.png
| Modetwrapper
(stutsaction) 1
Contrller View
Gende) [7| s
Gient {
Upstream view Downstreamview
))

OEBPS/httpatomoreillycomsourceoreillyimages113320.png
Mostly prorietary

]
i

Pesstence
ol
Searty
Diecoy
Messaging

Stongapensource penetation

OEBPS/oreilly_large.gif
O’REILLY

OEBPS/httpatomoreillycomsourceoreillyimages113266.png
PersistenObject

Dog

OEBPS/httpatomoreillycomsourceoreillyimages113280.png
Traditional deployment

ey e
W Wi
e e
i, i, -
Distribution services Distribution services Resouree
i pclooet Jhpilooet
e e e
A Disributionservices

Resource tier

Resaurcetier

Businessdomai model
Prsitncesenvce

oo
oot

ROBS
tored procedores

ROBS
Stored procdures

OEBPS/httpatomoreillycomsourceoreillyimages113268.png
Tansparent
omponent

Services
Peristence Secuty Distibution Transactions

OEBPS/httpatomoreillycomsourceoreillyimages113312.png
Modelbean) Vaidator (bean)

i —

Controler (0)0) Sucesview
(Senietlke AP
Taluevien
T U T
Digatcherservie)
‘ Gient
nputorm Outptview
())

OEBPS/httpatomoreillycomsourceoreillyimages113284.png
Higher level

OEBPS/httpatomoreillycomsourceoreillyimages113232.png
Fober e
XN

Undalyle
2

A AN

NichaelTte Gyt Bcelate Maggiehoe
EN g PLN)
Chelate
Kyl ate hiaate
Namesting "
GilderHodes

OEBPS/httpatomoreillycomsourceoreillyimages113300.png
il

persondA0

by (oo

il
==

IDBC datasource
factory

Mybatasource

)

OEBPS/httpatomoreillycomsourceoreillyimages113234.png
="

Contoller

]

OEBPS/httpatomoreillycomsourceoreillyimages113244.png
it

——

Witsite Wnitsiie

G
o)

Tnictest

OEBPS/httpatomoreillycomsourceoreillyimages113236.png

OEBPS/httpatomoreillycomsourceoreillyimages113264.png
Controllers:

Peristence | Tamsaction | Searty | RPC | Messaging | User Business
senie | sevice | senie | sevice | senice | interface domainmodel

OEBPS/httpatomoreillycomsourceoreillyimages113252.png
Desgn > (ode > Tk Deploy > Design > Code > Test > Deply

OEBPS/httpatomoreillycomsourceoreillyimages113262.png
Clent userinerface
Application businesservices

Database | Tramsacton | Searity | RPC | Messaging
senice | senice | senice | senice | senice

OEBPS/httpatomoreillycomsourceoreillyimages113276.png
Ui
controller

Net

tame
s

part
Hame
Namber

part

Name
Namber

Name

Hamber

OEBPS/httpatomoreillycomsourceoreillyimages113298.png
Appiiationlogic

Dataaccessobject | Datasource | DBCconnection

OEBPS/httpatomoreillycomsourceoreillyimages113292.png
System

User

pacagemyPacagecom TateGames om
mplode View
S 1020

GlorDarked

OEBPS/httpatomoreillycomsourceoreillyimages113296.png
‘Bootstrap loader
Loats:_ coreclses.
Ptl: bootcass pth

!

Extensions oader

Loats:_extensons
Pl javaetdis

[

‘System oader
Loas: App dsses
Pl CLASPATH

OEBPS/httpatomoreillycomsourceoreillyimages113310.png
Category Product.
ategonD productd
description descrition
autzgonld
Gart Garten em
artems. item [
quntiy prductd
addiem insioct listhice
renovelen uniost
getoalrice
Iecunt Order Tinelen
wertane wertane entumber
eml ilinghddress fenld
fisthame shippinghddress quantty
lasthame. e uitice

orerD

OEBPS/httpatomoreillycomsourceoreillyimages113318.png
2 o

SearchProducts

Controller Pvﬂﬂurman ‘
Ainas
sy estorepge
™ Hashilapof
Poducton
s

SearchProducts .

OEBPS/httpatomoreillycomsourceoreillyimages113248.png
OrderProducer OnderConsumer OrterHandler

e el mesge o=
v

o s bnd Ot | Oer

il

packrde(order
onlessgel)

OEBPS/httpatomoreillycomsourceoreillyimages113242.png
T

st o
T o—

[U
Runs: 111 Y Emors: 0 Failures: 0

e

== D

1 o G O L

Finished: 008 ssconds

OEBPS/httpatomoreillycomsourceoreillyimages113278.png
Getto Get
pouer) Sponser

Tedhvial

Preciose
sales

Gose

OEBPS/httpatomoreillycomsourceoreillyimages113258.png
Application Application

[rae]

New s Testase

OEBPS/httpatomoreillycomsourceoreillyimages113282.png
nizational
sandards

Aoplcation Teamskiland
e G

Inactf
b= schedules

OEBPS/httpatomoreillycomsourceoreillyimages113274.png
Template

cass <arabel>
widsayelo) |
Sytem.aut prnth(

" varabe?> sasHe s oo
)]’ lass HelloWorld {
idsahelo){

“Bcesaps T

it = okt
b2 = st

Sytem.outpinch(
Data
vaiabll = HelloWord !
aiabie2 = Buce

OEBPS/httpatomoreillycomsourceoreillyimages113288.png

OEBPS/httpatomoreillycomsourceoreillyimages113316.png
Indertinks

Qergbean

Indenink

Hidean

Gonfghean

Indespattean

e Interfaces

be— services

be— Hodel

OEBPS/httpatomoreillycomsourceoreillyimages113272.png
Myllass

i dasometing(){
SptemoutprdhC el

] I

Original dass

Logging enhancer

s

i doSometing()
TogenterMyCass dosometing')

Sytemoutrind("hello);
logeit'lyClass doSomething)
)

}

Enhanced dlass

