

 [image: Essential System Administration, 3rd Edition]

 Essential System Administration, 3rd Edition

Æleen Frisch

Editor
Mike Loukides

Copyright © 2009 O'Reilly Media, Inc.

[image:]

O'Reilly Media

Dedication

For Frank Willison
"Part of the problem is passive-aggressive behavior, my
 pet peeve and bête noire, and I don't like it either. Everyone should
 get off their high horse, particularly if that horse is my bête noire.
 We all have pressures on us, and nobody's pressure is more important
 than anyone else's."

"Thanks also for not lending others your O'Reilly books.
 Let others buy them. Buyers respect their books. You seem to recognize
 that `lend' and `lose' are synonyms where books are concerned. If I had
 been prudent like you, I would still have Volume 3 (Cats-Dorc) of the
 Encyclopedia Britannica."

SPECIAL OFFER: Upgrade this ebook with O’Reilly

Click here for more information on this offer!
Please note that upgrade offers are not available from sample content.

Preface

This book is an agglomeration of lean-tos and annexes and there is
 no knowing how big the next addition will be, or where it will be put.
 At any point, I can call the book finished or unfinished.
—Alexander Solzhenitsyn

A poem is never finished, only abandoned.
—Paul Valery

This book covers the fundamental and essential tasks of Unix system
 administration. Although it includes information designed for people new
 to system administration, its contents extend well beyond the basics. The
 primary goal of this book is to make system administration on Unix systems
 straightforward; it does so by providing you with exactly the information
 you need. As I see it, this means finding a middle ground between a
 general overview that is too simple to be of much use to anyone but a
 complete novice, and a slog through all the obscurities and eccentricities
 that only a fanatic could love (some books actually suffer from both these
 conditions at the same time). In other words, I won't leave you hanging
 when the first complication arrives, and I also won't make you wade
 through a lot of extraneous information to find what actually
 matters.
This book approaches system administration from a task-oriented
 perspective, so it is organized around various facets of the system
 administrator's job, rather than around the features of the Unix operating
 system, or the workings of the hardware subsystems in a typical system, or
 some designated group of administrative commands. These are the raw
 materials and tools of system administration, but an effective
 administrator has to know when and how to apply and deploy them. You need
 to have the ability, for example, to move from a user's complaint ("This
 job only needs 10 minutes of CPU time, but it takes it three hours to get
 it!") through a diagnosis of the problem ("The system is thrashing because
 there isn't enough swap space"), to the particular command that will solve
 it (swap or swapon). Accordingly, this book covers all
 facets of Unix system administration: the general concepts, underlying
 structure, and guiding assumptions that define the Unix environment, as
 well as the commands, procedures, strategies, and policies essential to
 success as a system administrator. It will talk about all the usual
 administrative tools that Unix provides and also how to use them more
 smartly and efficiently.
Naturally, some of this information will constitute advice about
 system administration; I won't be shy about letting you know what my
 opinion is. But I'm actually much more interested in giving you the
 information you need to make informed decisions for your own situation
 than in providing a single, univocal view of the "right way" to administer
 a Unix system. It's more important that you know what the issues are
 concerning, say, system backups, than that you adopt anyone's specific
 philosophy or scheme. When you are familiar with the problem and the
 potential approaches to it, you'll be in a position to decide for yourself
 what's right for your system.
Although this book will be useful to anyone who takes care of a Unix
 system, I have also included some material designed especially for system
 administration professionals. Another way that this book covers essential
 system administration is that it tries to convey the essence of what
 system administration is, as well as a way of approaching it when it is
 your job or a significant part thereof. This encompasses intangibles such
 as system administration as a profession, professionalism (not the same
 thing), human and humane factors inherent in system administration, and
 its relationship to the world at large. When such issues are directly
 relevant to the primary, technical content of the book, I mention them. In
 addition, I've included other information of this sort in special sidebars
 (the first one comes later in this Preface). They are designed to be
 informative and thought-provoking and are, on occasion, deliberately
 provocative.
The Unix Universe

More and more, people find themselves taking care of multiple
 computers, often from more than one manufacturer; it's quite rare to
 find a system administrator who is responsible for only one system
 (unless he has other, unrelated duties as well). While Unix is widely
 lauded in marketing brochures as the "standard" operating system "from
 microcomputers to supercomputers"—and I must confess to having written a
 few of those brochures myself—this is not at all the same as there being
 a "standard" Unix.At this point, Unix is hopelessly plural, and nowhere
 is this plurality more evident than in system administration. Before
 going on to discuss how this book addresses that fact, let's take a
 brief look at how things got to be the way they are now.
Figure P-1 attempts to
 capture the main flow of Unix development. It illustrates a simplified
 Unix genealogy, with an emphasis on influences and family relationships
 (albeit Faulknerian ones) rather than on strict chronology and
 historical accuracy. It traces the major lines of descent from an
 arbitrary point in time: Unix Version 6 in 1975 (note that the dates in
 the diagram refer to the earliest manifestation of each version). Over
 time, two distinct flavors (strains) of Unix emerged from its beginnings
 at AT&T Bell Laboratories—which I'll refer to as System V and
 BSD—but there was also considerable cross-influence between them (in
 fact, a more detailed diagram would indicate this even more
 clearly).
[image: Unix genealogy (simplified)]

Figure P-1. Unix genealogy (simplified)

Note
For a Unix family tree at the other extreme of detail, see
 http://perso.wanadoo.fr/levenez/unix/. Also, the
 opening chapters of Life with
 UNIX, by Don Libes and Sandy Ressler (PTR Prentice Hall),
 give a very entertaining overview of the history of Unix. For a more
 detailed written history, see A Quarter
 Century of UNIX by Peter Salus (Addison-Wesley).

The split we see today between System V and BSD occurred after
 Version 6.[1] developers at the University of California, Berkeley,
 extended Unix in many ways, adding virtual memory support, the C shell,
 job control, and TCP/IP networking, to name just a few. Some of these
 contributions were merged into the AT&T code lines at various
 points.
System V Release 4 was often described as a merger of the System V
 and BSD lines, but this is not quite accurate. It incorporated the most
 important features of BSD (and SunOS) into System V. The union was a
 marriage and not a merger, however, with some but not all
 characteristics from each parent dominant in the offspring (as well as a
 few whose origins no one is quite sure of).
The diagram also includes OSF/1.
In 1988, Sun and AT&T agreed to jointly develop future
 versions of System V. In response, IBM, DEC, Hewlett-Packard, and other
 computer and computer-related companies and organizations formed the
 Open Software Foundation (OSF), designing it with the explicit goal of
 producing an alternative, compatible, non-AT&T-dependent, Unix-like
 operating system. OSF/1 is the result of this effort (although its
 importance is more as a standards definition than as an actual operating
 system implementation).
The proliferation of new computer companies throughout the 1980s
 brought dozens of new Unix systems to market—Unix was usually chosen as
 much for its low cost and lack of serious alternatives as for its
 technical characteristics—and also as many variants. These vendors
 tended to start with some version of System V or BSD and then make small
 to extensive modifications and customizations. Extant operating systems
 mostly spring from System V Release 3 (usually Release 3.2), System V
 Release 4, and occasionally 4.2 or 4.3 BSD (SunOS is the major
 exception, derived from an earlier BSD version). As a further
 complication, many vendors freely intermixed System V and BSD features
 within a single operating system.
Recent years have seen a number of efforts at standardizing Unix.
 Competition has shifted from acrimonious lawsuits and countersuits to
 surface-level cooperation in unifying the various versions. However,
 existing standards simply don't address system administration at
 anything beyond the most superficial level. Since vendors are free to do
 as they please in the absence of a standard, there is no guarantee that
 system administrative commands and procedures will even be similar under
 different operating systems that uphold the same set of
 standards.
Unix Versions Discussed in This Book

How do you make sense out of the myriad of Unix variations? One
 approach is to use computer systems only from a single vendor.
 However, since that often has other disadvantages, most of us end up
 having to deal with more than one kind of Unix system. Fortunately,
 taking care of n different kinds
 of systems doesn't mean that you have to learn as many different
 administrative command sets and approaches. Ultimately, we get back to
 the fact that there are really just two distinct Unix varieties; it's
 just that the features of any specific Unix implementation can be an
 arbitrary mixture of System V and BSD features (regardless of its
 history and origins). This doesn't always ensure that there are only
 two different commands to perform the same administrative
 function—there are cases where practically every vendor uses a
 different one—but it does mean that there are generally just two
 different approaches to the area or issue. And once you understand the
 underlying structure, philosophy, and assumptions, learning the
 specific commands for any given system is simple.
When you recognize and take advantage of this fact, juggling
 several Unix versions becomes straightforward rather than impossibly
 difficult. In reality, lots of people do it every day, and this book
 is designed to reflect that and to support them. It will also make
 administering heterogeneous environments even easier by systematically
 providing information about different systems all in one place.
[image: Unix versions discussed in this book]

Figure P-2. Unix versions discussed in this book

The Unix versions covered by this book appear in Figure P-2, which illustrates the
 influences on the various operating systems, rather than their actual
 origins. If the version on your system isn't one of them, don't
 despair. Read on anyway, and you'll find that the general information
 given here applies to your system as well in most cases.
The specific operating system levels covered in this book
 are:
	AIX Version 5.1

	FreeBSD Version 4.6 (with a few glances at the upcoming
 Version 5)

	HP-UX Version 11 (including many Version 11i
 features)

	Linux: Red Hat Version 7.3 and SuSE Version 8

	Solaris Versions 8 and 9

	Tru64 Version 5.1

This list represents some changes from the second edition of
 this book. We've dropped SCO Unix and IRIX and added FreeBSD. I
 decided to retain Tru64 despite the recent merger of Compaq and
 Hewlett-Packard, because it's likely that some Tru64 features will
 eventually make their way into future HP-UX versions.
When there are significant differences between versions, I've
 made extensive use of headers and other devices to indicate which
 version is being considered. You'll find it easy to keep track of
 where we are at any given point and even easier to find out the
 specific information you need for whatever version you're interested
 in. In addition, the book will continue to be useful to you when you
 get your next, different Unix system—and sooner or later, you
 will.
The book also covers a fair amount of free software that is not
 an official part of any version of Unix. In general, the packages
 discussed can be built for any of the discussed operating
 systems.
Why Vendors Like Standards
Standards are supposed to help computer users by minimizing
 the differences between products from different vendors and ensuring
 that such products will successfully work together. However,
 standards have become a weapon in the competitive arsenal of
 computer-related companies, and vendor product literature and
 presentations are often a cacophony of acronyms. Warfare imagery
 dominates discussions comparing standards compliance rates for
 different products.
For vendors of computer-related products, upholding standards
 is in large part motivated by the desire to create a competitive
 advantage. There is nothing wrong with that, but it's important not
 to mistake it for the altruism that it is often purported to be.
 "Proprietary" is a dirty word these days, and "open systems" are all
 the rage, but that doesn't mean that what's going on is anything
 other than business as usual.
Proprietary features are now called "extensions" and
 "enhancements," and defining new standards has become a site of
 competition. New standards are frequently created by starting from
 one of the existing alternatives, vendors are always ready to argue
 for the one they developed, and successful attempts are then touted
 as further evidence of their product's superiority (and occasionally
 they really are).
Given all of this, though, we have to at least suspect that it
 is not really in most vendors' interest for the standards definition
 process to ever stop.

[1] The movement from Version 7 to System III in the System V line
 is a simplification of strict chronology and descent. System III was
 derived from an intermediate release between Version 6 and Version 7
 (CB Unix), and not every Version 7 feature was included in System
 III. A word about nomenclature: The successive releases of Unix from
 the research group at Bell Labs were originally known as
 "editions"—the Sixth Edition, for example—although these versions
 are now generally referred to as "Versions." After Version 6, there
 are two distinct sets of releases from Bell Labs: Versions 7 and
 following (constituting the original research line), and System III
 through System V (commercial implementations started from this
 line). Later versions of System V are called "Releases," as in
 System V Release 3 and System V Release 4.

Audience

This book will be of interest to:
	Full or part-time administrators of Unix computer systems. The
 book includes help both for Unix users who are new to system
 administration and for experienced system administrators who are new
 to Unix.

	Workstation and microcomputer users. For small, standalone
 systems, there is often no distinction between the user and the
 system administrator. And even if your workstation is part of a
 larger network with a designated administrator, in practice, many
 system management tasks for your workstation will be left to
 you.

	Users of Unix systems who are not full-time system managers
 but who perform administrative tasks periodically.

This book assumes that you are familiar with Unix user commands:
 that you know how to change the current directory, get directory
 listings, search files for strings, edit files, use I/O redirection and
 pipes, set environment variables, and so on. It also assumes a very
 basic knowledge of shell scripts: you should know what a shell script
 is, how to execute one, and be able to recognize commonly used features
 like if statements and comment characters. If you need help at this
 level, consult Learning the UNIX Operating
 System, by Grace Todino-Gonguet, John Strang, and Jerry Peek,
 and the relevant editions of UNIX in a
 Nutshell (both published by O'Reilly &
 Associates).
If you have previous Unix experience but no administrative
 experience, several sections in Chapter
 1 will show you how to make the transition from user to system
 manager. If you have some system administration experience but are new
 to Unix, Chapter 2 will explain the
 Unix approach to major system management tasks; it will also be helpful
 to current Unix users who are unfamiliar with Unix file, process, or
 device concepts.
This book is not designed for people who are already Unix wizards.
 Accordingly, it stays away from topics like writing device
 drivers.

Organization

This book is the foundation volume for O'Reilly & Associates'
 system administration series. As such, it provides you with the
 fundamental information needed by everyone who takes care of Unix
 systems. At the same time, it consciously avoids trying to be all things
 to all people; the other books in the series treat individual topics in
 complete detail. Thus, you can expect this book to provide you with the
 essentials for all major administrative tasks by discussing both the
 underlying high-level concepts and the details of the procedures needed
 to carry them out. It will also tell you where to get additional
 information as your needs become more highly specialized.
These are the major changes in content with respect to the second
 edition (in addition to updating all material to the most recent
 versions of the various operating systems):
	Greatly expanded networking coverage, especially of network
 server administration, including DHCP, DNS (BIND 8 and 9), NTP,
 network monitoring with SNMP, and network performance tuning.

	Comprehensive coverage of email administration, including
 discussions of sendmail, Postfix, procmail, and setting up POP3 and
 IMAP.

	Additional security topics and techniques, including the
 secure shell (ssh), one-time
 passwords, role-based access control (RBAC), chroot jails and sandboxing, and
 techniques for hardening Unix systems.

	Discussions of important new facilities that have emerged in
 the time since the second edition. The most important of these are
 LDAP, PAM, and advanced filesystem features such as logical volume
 managers and fault tolerance features.

	Overviews and examples of some new scripting and automation
 tools, specifically Cfengine and Stem.

	Information about device types that have become available or
 common on Unix systems relatively recently, including USB devices
 and DVD drives.

	Important open source packages are covered, including the
 following additions: Samba (for file and printer sharing with
 Windows systems), the Amanda enterprise backup system, modern
 printing subsystems (LPRng and CUPS), font management, file and
 electronic mail encryption and digital signing (PGP and GnuPG), the
 HylaFAX fax service, network monitoring tools (including RRDTool,
 Cricket and NetSaint), and the GRUB boot loader.

Chapter Descriptions

The first three chapters of the book provide some essential
 background material required by different types of readers. The
 remaining chapters generally focus on a single administrative area of
 concern and discuss various aspects of everyday system operation and
 configuration issues.
Chapter 1 describes some
 general principles of system administration and the
 root account. By the end of this chapter, you'll
 be thinking like a system administrator.
Chapter 2 considers the ways
 that Unix structure and philosophy affect system administration. It
 opens with a description of the man online help facility and then goes
 on to discuss how Unix approaches various operating system functions,
 including file ownership, privilege, and protection; process creation
 and control; and device handling. This chapter closes with an overview
 of the Unix system directory structure and important configuration
 files.
Chapter 3 discusses the
 administrative uses of Unix commands and capabilities. It also
 provides approaches to several common administrative tasks. It
 concludes with a discussion of the cron and syslog facilities and
 package management systems.
Chapter 4 describes how to
 boot up and shut down Unix systems. It also considers Unix boot
 scripts in detail, including how to modify them for the needs of your
 system. It closes with information about how to troubleshoot booting
 problems.
Chapter 5 provides an overview
 of TCP/IP networking on Unix systems. It focuses on fundamental
 concepts and configuring TCP/IP client systems, including interface
 configuration, name resolution, routing, and automatic IP address
 assignment with DHCP. The chapter concludes with a discussion of
 network troubleshooting.
Chapter 6 details how to add
 new users to a Unix system. It also discusses Unix login
 initialization files and groups. It covers user authentication in
 detail, including both traditional passwords and newer authentication
 facilities like PAM. The chapter also contains information about using
 LDAP for user account data.
Chapter 7 provides an overview
 of Unix security issues and solutions to common problems, including
 how to use Unix groups to allow users to share files and other system
 resources while maintaining a secure environment. It also discusses
 optional security-related facilities such as dialup passwords and
 secondary authentication programs. The chapter also covers the more
 advanced security configuration available by using access control
 lists (ACLs) and role-based access control (RBAC). It also discusses
 the process of hardening Unix systems. In reality, though, security is
 something that is integral to every aspect of system administration,
 and a good administrator consciously considers the security
 implications of every action and decision. Thus, expecting to be able
 to isolate and abstract security into a separate chapter is
 unrealistic, and so you will find discussion of security-related
 issues and topics in every chapter of the book.
Chapter 8 returns to the topic
 of networking. It discusses configuring and managing various
 networking daemons, including those for DNS, DHCP, routing, and NTP.
 It also contains a discussion of network monitoring and management
 tools, including the SNMP protocol and tools, Netsaint, RRDTool, and
 Cricket.
Chapter 9 covers all aspects
 of managing the email subsystem. It covers user mail programs,
 configuring the POP3 and IMAP protocols, the sendmail and Postfix mail
 transport agents, and the procmail and fetchmail facilities.
Chapter 10 discusses how
 discrete disk partitions become part of a Unix filesystem. It begins
 by describing the disk mounting commands and filesystem configuration
 files. It also considers Unix disk partitioning schemes and describes
 how to add a new disk to a Unix system. In addition, advanced features
 such as logical volume managers and software striping and RAID are
 covered. It also discusses sharing files with remote Unix and Windows
 systems using NFS and Samba.
Chapter 11 begins by
 considering several possible backup strategies before going on to
 discuss the various backup and restore services that Unix provides. It
 also covers the open source Amanda backup facility.
Chapter 12 discusses Unix
 handling of serial lines, including how to add and configure new
 serial devices. It covers both traditional serial lines and USB
 devices. It also includes a discussion of the HylaFAX fax
 service.
Chapter 13 covers printing on
 Unix systems, including both day-to-day operations and configuration
 issues. Remote printing via a local area network is also discussed.
 Printing using open source spooling systems is also covered, via
 Samba, LPRng, and CUPS.
Chapter 14 considers Unix
 shell scripts, scripts, and programs in other languages and
 environments such as Perl, C, Expect, and Stem. It provides advice
 about script design and discusses techniques for testing and debugging
 them. It also covers the Cfengine facility, which provides high level
 automation features to system administrators.
Chapter 15 provides an
 introduction to performance issues on Unix systems. It discusses
 monitoring and managing use of major system resources: CPU, memory,
 and disk. It covers controlling process execution, optimizing memory
 performance and managing system paging space, and tracking and
 apportioning disk usage. It concludes with a discussion of network
 performance monitoring and tuning.
Chapter 16 discusses when and
 how to create a customized kernel, as well as related system
 configuration issues. It also discusses how to view and modify tunable
 kernel parameters.
Chapter 17 describes the
 various Unix accounting services, including printer accounting.
Appendix A covers the most
 important Bourne shell and bash
 features.
Afterword contains some final
 thoughts on system administration and information about the System
 Administrator's Guild (SAGE).

Conventions Used in This Book

The following typographic and usage conventions are used in this
 book:
	italic
	Used for filenames, directory names, hostnames, and URLs.
 Also used liberally for annotations in configuration file
 examples.

	constant width
	Used for names of commands, utilities, daemons, and other
 options. Also used in code and configuration file examples.

	constant width italic
	Used to indicate variables in code.

	constant width
 bold
	Used to indicate user input on a command line.

	 constant width bold
 italic
	Used to indicate variables in command-line user
 input.

Warning
Indicates a warning.

Tip
Indicates a note.

Note
Indicates a tip.

	he, she
	This book is meant to be straightforward and to the point.
 There are times when using a third-person pronoun is just the best
 way to say something: "This setting will force the user to change
 his password the next time he logs in." Personally, I don't like
 always using "he" in such situations, and I abhor "he or she" and
 "s/he," so I use "he" some of the time and "she" some of the time,
 alternating semi-randomly. However, when the text refers to one of
 the example users who appear from time to time throughout the
 book, the appropriate pronoun is always used.

Comments and Questions

Please address comments and questions concerning this book to the
 publisher:
	O'Reilly & Associates, Inc.
	1005 Gravenstein Highway North
	Sebastopol, CA 95472
	(800) 998-9938 (in the United States or Canada)
	(707) 829-0515 (international/local)
	(707) 829-0104 (fax)

There is a web page for this book, which lists errata, examples,
 or any additional information. You can access this page at:
	http://www.oreilly.com/catalog/esa3/

To comment or ask technical questions about this book, send email
 to:
	bookquestions@oreilly.com

For more information about books, conferences, Resource Centers,
 and the O'Reilly Network, see the O'Reilly web site at:
	http://www.oreilly.com

Acknowledgments

Many people have helped this book at various points in its
 successive incarnations. In writing this third edition, I'm afraid I
 fell at times into the omnipresent trap of writing a different book
 rather than revising the one at hand; although this made the book take
 longer to finish, I hope that readers will benefit from my rethinking
 many topics and issues.
I am certain that few writers have been as fortunate as I have in
 the truly first-rate set of technical reviewers who read and critiqued
 the manuscript of the third edition. They were, without doubt, the most
 meticulous group I have ever encountered:
	Jon Forrest

	Peter Jeremy

	Jay Kreibich

	David Malone

	Eric Melander

	Jay Migliaccio

	Jay Nelson

	Christian Pruett

	Eric Stahl

Luke Boyett, Peter Norton and Nate Williams also commented on
 significant amounts of the present edition.
My thanks go also to the technical reviews of the first two
 editions. The second edition reviewers were Nora Chuang, Clem Cole, Walt
 Daniels, Drew Eckhardt, Zenon Fortuna, Russell Heise, Tanya Herlick,
 Karen Kerschen, Tom Madell, Hanna Nelson, Barry Saad, Pamela Sogard,
 Jaime Vazquez, and Dave Williams; first edition reviewers were Jim
 Binkley, Tan Bronson, Clem Cole, Dick Dunn, Laura Hook, Mike Loukides,
 and Tim O'Reilly. This book still benefits from their comments.
Many other people helped this edition along by pointing out bugs
 and providing important information at key points: Jeff Andersen, John
 Andrea, Jay Ashworth, Christoph Badura, Jiten Bardwaj, Clive Blackledge,
 Mark Burgess, Trevor Chandler, Douglas Clark, Joseph C. Davidson, Jim
 Davis, Steven Dick, Matt Eakle, Doug Edwards, Ed Flinn, Patrice
 Fournier, Rich Fuchs, Brian Gallagher, Michael Gerth, Adam Goodman,
 Charles Gordon, Uri Guttman, Enhua He, Matthias Heidbrink, Matthew A.
 Hennessy, Derek Hilliker, John Hobson, Lee Howard, Colin Douglas Howell,
 Hugh Kennedy, Jonathan C. Knowles, Ki Hwan Lee, Tom Madell, Sean
 Maguire, Steven Matheson, Jim McKinstry, Barnabus Misanik, John
 Montgomery, Robert L. Montgomery, Dervi Morgan, John Mulshine, John
 Mulshine, Darren Nickerson, Jeff Okimoto, Guilio Orsero, Jerry Peek,
 Chad Pelander, David B. Perry, Tim Rice, Mark Ritchie, Michael Saunby,
 Carl Schelin, Mark Summerfield, Tetsuji Tanigawa, Chuck Toporek, Gary
 Trucks, Sean Wang, Brian Whitehead, Bill Wisniewski, Simon Wright, and
 Michael Zehe.
Any errors that remain are mine alone.
I am also grateful to companies who loaned me or provided access
 to hardware and/or software:
	Gaussian, Inc. gave me access to several computer systems.
 Thanks to Mike Frisch, Jim Cheeseman, Jim Hess, John Montgomery,
 Thom Vreven and Gary Trucks.

	Christopher Mahmood and Jay Migliaccio of SuSE, Inc. gave me
 advance access to SuSE 8.

	Lorien Golarski of Red Hat gave me access to their beta
 program.

	Chris Molnar provided me with an advance copy of KDE version
 3.

	Angela Loh of Compaq arranged for an equipment loan of an
 Alpha Linux system.

	Steve Behling, Tony Perraglia and Carlos Sosa of IBM expedited
 AIX releases for me and also provided useful information.

	Adam Goodman and the staff of Linux
 Magazine provided feedback on early versions of some
 sections of this book. Thanks also for their long suffering patience
 with my habitual lateness.

I'd also like to thank my stellar assistant Cat Dubail for all of
 her help on this third edition. Felicia Bear also provided important
 editorial help. Thanks also to Laura Lasala, my copy editor for the
 second edition.
At O'Reilly & Associates, my deepest gratitude goes to my
 amazing editor Mike Loukides, whose support and guidance brought this
 edition to completion. Bob Woodbury and Besty Waliszewski provided
 advice and help at key points. Darren Kelly helped with some technical
 issues regarding the index. Finally, my enthusiastic thanks go to the
 excellent production group at O'Reilly & Associates for putting the
 finishing touches on all three editions of this book.
Finally, no one finishes a task of this size without a lot of
 support and encouragement from their friends. I'd like to especially
 thank Mike and Mo for being there for me throughout this project. Thanks
 also to the furry Frischs: Daphne, Susan, Lyta, and Talia.
—ÆF; Day 200 of 2002; North Haven, CT, USA

Chapter 1. Introduction to System Administration

The traditional way to begin a book like this is to provide a list
 of system administration tasks—I've done it several times myself at this
 point. Nevertheless, it's important to remember that you have to take such
 lists with a grain of salt. Inevitably, they leave out many intangibles,
 the sorts of things that require lots of time, energy, or knowledge, but
 never make it into job descriptions. Such lists also tend to suggest that
 system management has some kind of coherence across the vastly different
 environments in which people find themselves responsible for computers.
 There are similarities, of course, but what is important on one system
 won't necessarily be important on another system at another site or on the
 same system at a different time. Similarly, systems that are very
 different may have similar system management needs, while nearly identical
 systems in different environments might have very different needs.
But now to the list. In lieu of an idealized list, I offer the
 following table showing how I spent most of my time in my first job as
 full-time system administrator (I managed several central systems driving
 numerous CAD/CAM workstations at a Fortune 500 company) and how these
 activities have morphed in the intervening two decades.
Table 1-1. Typical system administration tasks
	Then: early 1980s
	Now: early 2000s

	Adding new users.
	I still do it, but it's automated, and I only have to
 add a user once for the entire network. Converting to LDAP did
 take a lot of time, though.

	Adding toner to electrostatic
 plotters.
	Printers need a lot less attention—just clearing the
 occasional paper jam—but I still get my hands dirty changing those
 inkjet tanks.

	Doing backups to tape.
	Backups are still high priority, but the process is
 more centralized, and it uses CDs and occasionally spare disks as
 well as tape.

	Restoring files from backups that users accidentally
 deleted or trashed.
	This will never change.

	Answering user questions ("How do I send mail?"),
 usually not for the first or last time.
	Users will always have questions. Mine also whine
 more: "Why can't I have an Internet connection on my desk?" or
 "Why won't IRC work through the firewall?"

	Monitoring system activity and trying to tune system
 parameters to give these overloaded systems the response time of
 an idle system.
	Installing and upgrading hardware to keep up with
 monotonically increasing resource appetites.

	Moving jobs up in the print queue, after more or less
 user whining, pleading, or begging, contrary to stated policy
 (about moving jobs, not about whining).
	This is one problem that is no longer an issue for
 me. Printers are cheap, so they are no longer a scare resource
 that has to be managed.

	Worrying about system security, and plugging the most
 noxious security holes I inherited.
	Security is always a worry, and keeping up with
 security notices and patches takes a lot of time.

	Installing programs and operating system updates.

	Same.

	Trying to free up disk space (and especially
 contiguous disk space).
	The emphasis is more on high performance disk I/O
 (disk space is cheap): RAID and so on.

	Rebooting the system after a crash (always at late
 and inconvenient times).
	Systems crash a lot less than they used to
 (thankfully).

	Straightening out network glitches ("Why isn't
 hamlet talking to
 ophelia?"). Occasionally, this involved
 physically tracing the Ethernet cable around the building,
 checking it at each node.
	Last year, I replaced my last Thinnet network with
 twisted-pair cabling. I hope never to see the former again.
 However, I now occasionally have to replace cable segments that
 have malfunctioned.

	Rearranging furniture to accommodate new equipment;
 installing said equipment.
	Machines still come and go on a regular basis and
 have to be accommodated.

	Figuring out why a program/command/account suddenly
 and mysteriously stopped working yesterday, even though the user
 swore he changed nothing.
	Users will still be users.

	Fixing—or rather, trying to fix—corrupted CAD/CAM
 binary data files.
	The current analog of this is dealing with email
 attachments that users don't know how to access. Protecting users
 from potentially harmful attachments is another concern.

	Going to meetings.
	No meetings, but lots of casual
 conversations.

	Adding new systems to the network.
	This goes without saying: systems are virtually
 always added to the network.

	Writing scripts to automate as many of the above
 activities as possible.
	Automation is still the administrator's
 salvation.

As this list indicates, system management is truly a hodgepodge of
 activities and involves at least as many people skills as computer skills.
 While I'll offer some advice about the latter in a moment, interacting
 with people is best learned by watching others, emulating their successes,
 and avoiding their mistakes.
Currently, I look after a potpourri of workstations from many
 different vendors, as well as a couple of larger systems (in terms of
 physical size but not necessarily CPU power), with some PCs and Macs
 thrown in to keep things interesting. Despite these significant hardware
 changes, it's surprising how many of the activities from the early 1980s I
 still have to do. Adding toner now means changing a toner cartridge in a
 laser printer or the ink tanks in an inkjet printer; backups go to 4 mm
 tape and CDs rather than 9-track tape; user problems and questions are in
 different areas but are still very much on the list. And while there are
 (thankfully) no more meetings, there's probably even more furniture-moving
 and cable-pulling.
Some of these topics—moving furniture and going to or avoiding
 meetings, most obviously—are beyond the scope of this book. Space won't
 allow other topics to be treated exhaustively; in these cases, I'll point
 you in the direction of another book that takes up where I leave off. This
 book will cover most of the ordinary tasks that fall under the category of
 "system administration." The discussion will be relevant whether you've
 got a single PC (running Unix), a room full of mainframes, a building full
 of networked workstations, or a combination of several types of computers.
 Not all topics will apply to everyone, but I've learned not to rule out
 any of them a priori for a given
 class of user. For example, it's often thought that only big systems need
 process-accounting facilities, but it's now very common for small
 businesses to address their computing needs with a moderately-sized Unix
 system. Because they need to be able to bill their customers individually,
 they have to keep track of the CPU and other resources expended on behalf
 of each customer. The moral is this: take what you need and leave the
 rest; you're the best judge of what's relevant and what isn't.
Thinking About System Administration

I've touched briefly on some of the nontechnical aspects of system
 administration. These dynamics will probably not be an issue if it
 really is just you and your PC, but if you interact with other people at
 all, you'll encounter these issues. It's a cliché that system
 administration is a thankless job—one widely-reprinted cartoon has a
 user saying "I'd thank you but system administration is a thankless
 job"—but things are actually more complicated than that. As another
 cliché puts it, system administration is like keeping the trains on
 time; no one notices except when they're late.
System management often seems to involve a tension between
 authority and responsibility on the one hand and service and cooperation
 on the other. The extremes seem easier to maintain than any middle
 ground; fascistic dictators who rule "their system" with an iron hand,
 unhindered by the needs of users, find their opposite in the harried
 system managers who jump from one user request to the next, in continual
 interrupt mode. The trick is to find a balance between being accessible to users and their
 needs—and sometimes even to their mere wants—while still maintaining
 your authority and sticking to the policies you've put in place for the
 overall system welfare. For me, the goal of effective system
 administration is to provide an environment where users can get done
 what they need to, in as easy and efficient a manner as possible, given
 the demands of security, other users' needs, the inherent capabilities
 of the system, and the realities and constraints of the human community
 in which they all are located.
To put it more concretely, the key to successful, productive
 system administration is knowing when to solve a CPU-overuse problem
 with a command like:[1]
kill -9 `ps aux | awk '$1=="chavez" {print $2}'
(This command blows away all of user chavez's
 processes.) It's also knowing when to use:
$ write chavez
You've got a lot of identical processes running on dalton.
Any problem I can help with?
^D
and when to walk over to her desk and talk with her face-to-face.
 The first approach displays Unix finesse as well as administrative brute
 force, and both tactics are certainly appropriate—even vital—at times.
 At oth er times, a simpler, less aggressive approach will work
 better to resolve your system's performance problems in addition to the
 user's confusion. It's also important to remember that there are some
 problems no Unix command can address.
To a great extent, successful system administration is a
 combination of careful planning andhabit, however much it may seem like crisis intervention
 at times. The key to handling a crisis well lies in having had the
 foresight and taken the time to anticipate and plan for the type of
 emergency that has just come up. As long as it only happens once in a
 great while, snatching victory from the jaws of defeat can be very
 satisfying and even exhilarating.
On the other hand, many crises can be prevented altogether by a determined
 devotion to carrying out all the careful procedures you've designed:
 changing the root password regularly, faithfully making backups (no
 matter how tedious), closely monitoring system logs, logging out and
 clearing the terminal screen as a ritual, testing every change several
 times before letting it loose, sticking to policies you've set for
 users' benefit—whatever you need to do for your system. (Emerson said,
 "A foolish consistency is the hobgoblin of little minds," but not a wise
 one.)
My philosophy of system administration boils down to a few
 basic strategies that can be applied to virtually any of its component
 tasks:
	Know how things work. In these days, when operating systems
 are marketed as requiring little or no system administration, and
 the omnipresent simple-to-use tools attempt to make system
 administration simple for an uninformed novice, someone has to
 understand the nuances and details of how things really work. It
 should be you.

	Plan it before you do it.

	Make it reversible (backups help a lot with this
 one).

	Make changes incrementally.

	Test, test, test, before you unleash it on the world.

I learned about the importance of reversibility from a friend who
 worked in a museum putting together ancient pottery fragments. The
 museum followed this practice so that if better reconstructive
 techniques were developed in the future, they could undo the current
 work and use the better method. As far as possible, I've tried to do the
 same with computers, adding changes gradually and preserving a path by
 which to back out of them.
A simple example of this sort of attitude in action concerns
 editing system configuration files. Unix systems rely on many
 configuration files, and every major subsystem has its own files (all of
 which we'll get to). Many of these will need to be modified from time to
 time.
I never modify the original copy of the configuration file, either as delivered with the system or
 as I found it when I took over the system. Rather, I always make a copy
 of these files the first time I change them, appending the suffix
 .dist to the filename; for example:
cd /etc
cp inittab inittab.dist
chmod a-w inittab.dist
I write-protect the .dist file so I'll always
 have it to refer to. On systems that support it, use the cp command's -p option to replicate the file's current
 modification time in the copy.
I also make a copy of the current configuration file before
 changing it in any way so undesirable changes can be easily undone. I
 add a suffix like . old or . sav to the filename for these copies. At the
 same time, I formulate a plan (at least in my head) about how I would
 recover from the worst consequence I can envision of an unsuccessful
 change (e.g., I'll boot to single-user mode and copy the old version
 back).
Once I've made the necessary changes (or the first major change,
 when several are needed), I test the new version of the file, in a safe
 (nonproduction) environment if possible. Of course, testing doesn't
 always find every bug or prevent every problem, but it eliminates the
 most obvious ones. Making only one major change at a time also makes
 testing easier.
Note
Some administrators use the a revision control system to track
 the changes to important system configuration files (e.g., CVS or
 RCS). Such packages are designed to track and manage changes to
 application source code by multiple programmers, but they can also be
 used to record changes to configuration files. Using a revision
 control system allows you to record the author and reason for any
 particular change, as well as reconstruct any previous version of a
 file at any time.

The remaining sections of this chapter discuss some important
 administrative tools. The first describes how to become the superuser
 (the Unix privileged account). Because I believe a good system manager
 needs to have both technical expertise and an awareness of and
 sensitivity to the user community of which he's a part, this first
 chapter includes a section on Unix communication commands. The goal of
 these discussions—as well as of this book as a whole—is to highlight how
 a system manager thinks about system tasks and problems, rather than
 merely to provide literal, cookbook solutions for common
 scenarios.
Important administrative tools of other kinds are covered in later
 chapters of this book.

[1] On HP-UX systems, the command is ps
 -ef. Solaris systems can run either form depending on
 which version of ps comes first
 in the search path. AIX and Linux can emulate both versions,
 depending on whether a hyphen is used with options (System V style)
 or not (BSD style).

Becoming Superuser

On a Unix system, the superuser refers to a privileged account with unrestricted
 access to all files and commands. The username of this account is
 root. Many administrative tasks and
 their associated commands require superuser status.
There are two ways to become the superuser. The first is to log in
 as root directly. The second way is
 to execute the command su while
 logged in to another user account. The su command may be used to change one's current
 account to that of a different user after entering the proper password.
 It takes the username corresponding to the desired account as its
 argument; root is the default when
 no argument is provided.
After you enter the su
 command (without arguments), the system prompts you for
 the root password. If you type the
 password correctly, you'll get the normal root account prompt (by
 default, a number sign: #), indicating that you have successfully become
 superuser and that the rules normally restricting file access and
 command execution do not apply. For example:
$ su
Password: Not echoed
#
If you type the password incorrectly, you get an error message and
 return to the normal command prompt.
You may exit from the superuser account with exit or Ctrl-D. You may suspend the shell and
 place it in the background with the suspend command; you can return to it later
 using fg.
When you run su, the new shell
 inherits the environment from your current shell environment rather than
 creating the environment that root
 would get after logging in. However, you can simulate an actual
 root login session with the
 following command form:
$ su -
Warning
Unlike some other operating systems, the Unix superuser has all
 privileges all the time: access to all files, commands, etc.
 Therefore, it is entirely too easy for a superuser to crash the
 system, destroy important files, and create havoc inadvertently. For
 this reason, people who know the superuser password (including the
 system administrator) should not do their routine
 work as superuser. Only use superuser status
 when it is needed .

The root account should
 always have a password, and this password should be changed
 periodically. Only experienced Unix users with special requirements
 should know the superuser password, and the number of people who know it
 should be kept to an absolute minimum.
To set or change the superuser password, become superuser and
 execute one of the following commands:
passwd
 Works most of the time.
passwd root
 Solaris and FreeBSD systems when su'd to root.
Generally, you'll be asked to type the old superuser password and
 then the new password twice. The root password should also be changed whenever someone who
 knows it stops using the system for any reason (e.g., transfer, new job,
 etc.), or if there is any suspicion that an unauthorized user has
 learned it. Passwords are discussed in detail in Chapter 6.
I try to avoid logging in directly as root. Instead, I su to root only as necessary, exiting from or
 suspending the superuser shell when possible. Alternatively, in a
 windowing environment, you can create a separate window in which you
 su to root, again executing commands there only as
 necessary.
For security reasons, it's a bad idea to leave any logged-in
 session unattended; naturally, that goes double for a root session. Whenever I leave a workstation
 where I am logged in as root, I log
 out or lock the screen to prevent anyone from sneaking onto the system.
 The xlock command will lock an X session; the password of the user
 who ran xlock must be entered to
 unlock the session (on some systems, the root password can also unlock sessions locked
 by other users).[2] While screen locking programs may have security pitfalls
 of their own, they do prevent opportunistic breaches of system security
 that would otherwise be caused by a momentary lapse into
 laziness.
Tip
If you are logged in as root on a serial console, you should also
 use a locking utility provided by the operating system. In some cases,
 if you are using multiple virtual consoles, you will need to lock each
 one individually.

Controlling Access to the Superuser Account

On many systems, any user who knows the root password may become
 superuser at any time by running su. This is true for HP-UX, Linux, and
 Solaris systems in general.[3] Solaris allows you to configure some aspects of how the
 command works via settings in the /etc/default/su configuration file.
Traditionally, BSD systems limited access to su to members of group 0 (usually named
 wheel); under FreeBSD, if the wheel group has a null user list in the group file
 (/etc/group), any user may su to root; otherwise, only members of the
 wheel group can use it. The default configuration
 is a wheel group consisting of
 just root.
AIX allows the system administrator to specify who can use
 su on an account-by-account basis
 (no restrictions are imposed by default). The following commands
 display the current groups that are allowed to su to root and then
 limit that same access to the system and
 admins groups:
lsuser -a sugroups root
root sugroups=ALL
chuser sugroups="system,admins" root
Most Unix versions also allow you to restrict direct
 root logins to certain terminals. This topic is
 discussed in Chapter 12.
An Armadillo?
The armadillo typifies one attribute that a successful
 system administrator needs: a thick skin. Armadillos thrive under
 difficult environmental conditions through strength and
 perseverance, which is also what system administrators have to do a
 lot of the time (see the colophon at the back of the book for more
 information about the armadillo). System managers will find other
 qualities valuable as well, including the quickness and cleverness
 of the mongoose (Unix is the snake), the sense of adventure and
 playfulness of puppies and kittens, and at times, the chameleon's
 ability to blend in with the surroundings, becoming invisible even
 though you're right in front of everyone's eyes.
Finally, however, as more than one reader has noted, the
 armadillo also provides a cautionary warning to system
 administrators not to become so single-mindedly or narrowly focused
 on what they are doing that they miss the big picture. Armadillos
 who fail to heed this advice end up as roadkill.

Running a Single Command as root

su also has a mode whereby a
 single command can be run as root
 . This mode is not a very convenient way to
 interactively execute superuser commands, and I tend to see it as a
 pretty unimportant feature of su.
 Using su -c can be very useful in
 scripts, however, keeping in mind that the target user need not be
 root.
Nevertheless, I have found that it does have one important use
 for a system administrator: it allows you to fix something quickly
 when you are at a user's workstation (or otherwise not at your own
 system) without having to worry about remembering to exit from an
 su session.[4] There are users who will absolutely take advantage of
 such lapses, so I've learned to be cautious.
You can run a single command as root by using a command of this
 form:
$ su root -c "
 command
where command is replaced by the command
 you want to run. The command should be enclosed in quotation marks if
 it contains any spaces or special shell characters. When you execute a
 command of this form, su prompts
 for the root password. If you
 enter the correct password, the specified command runs as root, and subsequent commands are run
 normally from the original shell. If the command produces an error or
 is terminated (e.g. with CTRL-C), control again returns to the
 unprivileged user shell.
The following example illustrates this use of su to unmount and eject the CD-ROM mounted
 in the /cdrom directory:
$ su root -c "eject /cdrom"
Password: root password entered
Commands and output would be slightly different on other
 systems.
You can start a background command as root by including a final ampersand within
 the specified command (inside the
 quotation marks), but you'll want to consider the security
 implications of a user bringing it to the foreground before you do
 this at a user's workstation.

sudo: Selective Access to Superuser Commands

Standard Unix takes an all-or-nothing approach to granting
 root access, but often what you
 actually want is something in between. The freely available sudo facility allows specified users to run specific
 commands as root without having
 to know the root password
 (available at http://www.courtesan.com/sudo/).[5]
For example, a non-root
 user could use this sudo command to
 shut down the system:
$ sudo /sbin/shutdown ...
Password:
sudo requires only the user's
 own password to run the command, not the root password. Once a user has successfully
 given a password to sudo, she may
 use it to run additional commands for a limited period of time without
 having to enter a password again; this period defaults to five
 minutes. A user can extend the time period by an equal amount by
 running sudo -v before it expires.
 She can also terminate the grace period by running sudo -K.
sudo uses a configuration
 file, usually /etc/sudoers
 , to determine which users may use the sudo command and the other commands
 available to each of them after they've started a sudo session. The configuration file must be
 set up by the system administrator. Here is the beginning of a sample
 version:
Host alias specifications: names for host lists
Host_Alias PHYSICS = hamlet, ophelia, laertes
Host_Alias CHEM = duncan, puck, brutus

User alias specifications: named groups of users
User_Alias BACKUPOPS = chavez, vargas, smith

Command alias specifications: names for command groups
Cmnd_Alias MOUNT = /sbin/mount, /sbin/umount
Cmnd_Alias SHUTDOWN = /sbin/shutdown
Cmnd_Alias BACKUP = /usr/bin/tar, /usr/bin/mt
Cmnd_Alias CDROM = /sbin/mount /cdrom, /bin/eject
These three configuration file sections define sudo aliases—uppercase symbolic names—for
 groups of computers, users and commands, respectively. This example
 file defines two sets of hosts (PHYSICS and CHEM), one set of users
 (BACKUPOPS), and four command aliases. For example, the MOUNT command
 alias is defined as the mount and
 umount commands. Following good
 security practice, all commands include the full pathname for the
 executable.
The final command alias illustrates the use of arguments within
 a command list. This alias consists of a command to mount a CD at
 /cdrom and to eject the media
 from the drive. Note, however, that it does not grant general use of
 the mount command.
The final section of the file (see below) specifies which users
 may use the sudo command, as well
 as what commands they can run with it and which computers they may run
 them on. Each line in this section consists of a username or alias,
 followed by one or more items of the form:
 host = command(s) [: host = command(s) ...]
where host is a hostname or a host alias,
 and command(s) are one or more commands or
 command aliases, with multiple commands or hosts separated by commas.
 Multiple access specifications may be included for a single user,
 separated by colons. The alias ALL stands for all hosts or commands,
 depending on its context.
Here is the remainder of our example configuration file:
User specifications: who can do what where
root ALL = ALL
%chem CHEM = SHUTDOWN, MOUNT
chavez PHYSICS = MOUNT: achilles = /sbin/swapon
harvey ALL = NOPASSWD: SHUTDOWN
BACKUPOPS ALL, !CHEM = BACKUP, /usr/local/bin
The first entry after the comment grants root access to all commands on all hosts.
 The second entry applies to members of the chem group (indicated by the initial
 percent sign), who may run system shutdown and mounting commands on
 any computer in the CHEM list.
The third entry specifies that user chavez may run the mounting commands on the
 hosts in the PHYSICS list and may also run the swapon command on host achilles. The next entry allows user
 harvey to run the shutdown command on any system, and sudo will not require him to enter his
 password (via the NOPASSWD: preceding the command list).
The final entry applies to the users specified for the BACKOPS
 alias. On any system except those in the CHEM list (the preceding
 exclamation point indicates exclusion), they may run the command
 listed in the BACKUP alias as well as any command in the /usr/local/bin directory.
Users can use the sudo -l
 command form to list the commands available to them via this
 facility.
Warning
Commands should be selected for use with sudo with some care. In particular, shell
 scripts should not be used, nor should any utility which provides
 shell escapes —the ability to execute a shell command from within a
 running interactive program (editors, games, and even output display
 utilities like more and less are common examples). Here is the
 reason: when a user runs a command with sudo, that command runs as root, so if the command lets the user
 execute other commands via a shell escape, any command he runs from
 within the utility will also be run as root, and the whole purpose of sudo—to grant
 selective access to superuser command—will be
 subverted. Following similar reasoning, because most text editors
 provide shell escapes, any command that allows the user to invoke an
 editor should also be avoided. Some administrative utilities (e.g.,
 AIX's SMIT) also provide shell escapes.

The sudo package provides the
 visudo command for editing
 /etc/sudoers. It locks the file,
 preventing two users from modifying the file simultaneously, and it
 performs syntax checking when editing is complete (if there are
 errors, the editor is restarted, but no explicit error messages are
 given).
There are other ways you might want to customize sudo. For example, I want to use a somewhat
 longer interval for password-free use. Changes of this sort must be
 made by rebuilding sudo from source
 code. This requires rerunning the configure script with options. Here is the
 command I used, which specifies a log file for all sudo operations, sets the password-free
 period to ten minutes, and tells visudo to use the text editor specified in the EDITOR environment variable:
cd
 sudo-source-directory
./configure --with-logpath=/var/log/sudo.log \
 --with-timeout=10 --with-env-editor
Once the command completes, use the make command to rebuild sudo.[6]
sudo's logging facility is
 important and useful in that it enables you to keep track of
 privileged commands that are run. For this reason, using sudo can sometimes be preferable to using
 su even when limiting root-level command access is not an
 issue.
Warning
The one disadvantage of sudo is that it provides no integrated
 remote-access password protection. Thus, when you run sudo from an insecure remote session,
 passwords are transmitted over the network for any eavesdropper to
 see. Of course, using SSH can overcome this limitation.

[2] For some unknown reason, FreeBSD does not provide xlock. However, the xlockmore (see http://www.tux.org/~bagleyd/xlockmore.html) utility
 provides the same functionality (it's actually a follow-on to
 xlock).

[3] When the PAM authentication facility is in use, it controls
 access to su (see Section 6.5).

[4] Another approach is always to open a new window when you
 need to do something at a user's workstation. It's easy to get
 into the habit of always closing it down as you leave.

[5] Administrative roles are another, more sophisticated way of
 partitioning root access.
 They are discussed in detail in Section 7.5.

[6] A couple more configuration notes: sudo can also be integrated into the PAM
 authentication system (see Section 6.5). Use the - -use-pam option to configure. On the other hand, if your
 system does not use a shadow password file, you must use the
 - -disable-shadow
 option.

Communicating with Users

The commands discussed in this section are simple and familiar to
 most Unix users. For this reason, they're often overlooked in system
 administration discussions. However, I believe you'll find them to be an
 indispensable part of your repertoire. One other important
 communications mechanism is electronic mail (see Chapter 9).
Sending a Message

A system administrator frequently needs to send a message to a
 user's screen (or window). write is
 one way to do so:
$ write
 username[tty]
where username indicates the user to whom
 you wish to send the message. If you want to write to a user who is logged in more than
 once, the tty argument may be
 used to select the appropriate terminal or window. You can find out
 where a user is logged in using the who command.
 Once the write
 command is executed, communication is established between your
 terminal and the user's terminal: lines that you type on your terminal
 will be transmitted to him. End your message with a CTRL-D. Thus, to
 send a message to user harvey for which no reply
 is needed, execute a command like this:
$ write harvey
 The file you needed has been restored.
 Additional lines of message text
 ^D
In some implementations (e.g., AIX, HP-UX and Tru64), write may also be used over a network by
 appending a hostname to the username. For example, the command below
 initiates a message to user chavez on the host
 named hamlet:
$ write chavez@hamlet
When available, the rwho
 command may be used to list all users on the local subnet (it requires
 a remote who daemon be running on the remote system).
The talk command is a more
 sophisticated version of write. It
 formats the messages between two users in two separate spaces on the
 screen. The recipient is notified that someone is calling her, and she
 must issue her own talk command to
 begin communication. Figure
 1-1 illustrates the use of talk.
[image: Two-way communication with talk]

Figure 1-1. Two-way communication with talk

Users may disable messages from both write and talk by using the command mesg n (they can include it in their .
 login or .
 profile initialization file).
 Sending messages as the superuser overrides this command. Be aware,
 however, that sometimes users have good reasons for turning off
 messages.
Note
In general, the effectiveness of system messages is inversely
 proportional to their frequency.

Sending a Message to All Users

If you need to send a message to every user on the system, you
 can use the wall command. wall stands
 for "write all" and allows the administrator to send a message to all
 users simultaneously.
To send a message to all users, execute the command:
$ wall
 Followed by the message you want to send, terminated with CTRL-D on a separate line
 ^D
Unix then displays a phrase like:
Broadcast Message from root on console ...
to every user, followed by the text of your message. Similarly,
 the rwall command sends a message
 to every user on the local subnet.
Anyone can use this facility; it does not require superuser
 status. However, as with write and
 talk, only messages from the
 superuser override users' mesg n
 commands. A good example of such a message would be to give advance
 warning of an imminent but unscheduled system shutdown.

The Message of the Day

Login time is a good time to communicate certain types of
 information to users. It's one of the few times that you can be
 reasonably sure of having a user's attention (sending a message to the
 screen won't do much good if the user isn't at the workstation). The
 file /etc/motd is the system's message of the day. Whenever anyone logs in, the system
 displays the contents of this file. You can use it to display
 system-wide information such as maintenance schedules, news about new
 software, an announcement about someone's birthday, or anything else
 considered important and appropriate on your system. This file should
 be short enough so that it will fit entirely on a typical screen or
 window. If it isn't, users won't be able to read the entire message as
 they log in.
On many systems, a user can disable the message of the day by
 creating a file named . hushlogin in her home directory.

Specifying the Pre-Login Message

On Solaris, HP-UX, Linux and Tru64 systems, the contents of the
 file /etc/issue is displayed immediately before the login prompt on
 unused terminals. You can customize this message by editing this
 file.
On other systems, login prompts are specified as part of the
 terminal-related configuration files; these are discussed in Chapter 12.

About Menus and GUIs

For several years now, vendors and independent programmers have
 been developing elaborate system administration applications. The first
 of these were menu-driven, containing many levels of nested menus
 organized by subsystem or administrative task. Now, the trend is toward
 independent GUI-based tools, each designed to manage some particular
 system area and perform the associated tasks.
Whatever their design, all of them are designed to allow even
 relative novices to perform routine administrative tasks. The scope and
 aesthetic complexity of these tools vary considerably, ranging from
 shell scripts employing simple selections lists and prompts to
 form-based utiliti es running under X. A few even offer a mouse-based
 interface with which you perform operations by dragging icons around
 (e.g., dropping a user icon on top of a group icon adds that user to
 that group, dragging a disk icon into the trash unmounts a filesystem,
 and the like).
In this section, we'll take a look at such tools, beginning with
 general concepts and then going on to a few practical notes about the
 tools available on the systems we are considering (usually things I wish
 I had known about earlier). The tools are very easy to use, so I won't
 be including detailed instructions for using them (consult the
 appropriate documentation for that).
Ups and Downs

Graphical and menu-based system administration tools have some
 definite good points:
	They can provide a quick start to system administration,
 allowing you to get things done while you learn about the
 operating system and how things work. The best tools include aids
 to help you learn the underlying standard administrative
 commands.
Similarly, these tools can be helpful in figuring out how to
 perform some task for the first time; when you don't know how to
 begin, it can be hard to find a solution with just the manual
 pages.

	They can help you get the syntax right for complex commands
 with lots of options.

	They make certain kinds of operations more convenient by
 combining several steps into a single menu screen (e.g., adding a
 user or installing an operating system upgrade).

On the other hand, they have their down side as well:
	Typing the equivalent command is usually significantly
 faster than running it from an administrative tool.

	Not all commands are always available through the menu
 system, and sometimes only part of the functionality is
 implemented for commands that are included. Often only the most
 frequently used commands and/or options are available. Thus,
 you'll still need to execute some versions of commands by
 hand.

	Using an administrative tool can slow down the learning
 process and sometimes stop it altogether. I've met inexperienced
 administrators who had become convinced that certain operations
 just weren't possible simply because the menu system didn't happen
 to include them.

	The GUI provides unique functionality accessible only
 through its interface, so creating scripts to automate frequent
 tasks becomes much more difficult or impossible, especially when
 you want to do things in a way that the original author did not
 think of.

In my view, an ideal administrative tool has all of these
 characteristics:
	The tool must run normal operating system commands, not
 opaque, undocumented programs stored in some obscure,
 out-of-the-way directory. The tool thus makes system
 administration easier, leaving the thinking to the human using
 it.

	You should be able to display the commands being run,
 ideally before they are executed.

	The tool should log of all its activities (at least
 optionally).

	As much as possible, the tool should validate the values the
 user enters. In fact, novice administrators frequently assume that
 the tools do make sure their selections are reasonable, falsely
 thinking that they are protected from anything harmful.

	All of the options for commands included in the tool should
 be available for use, except when doing so would violate the next
 item.

	The tool should not include every administrative command.
 More specifically, it should deliberately omit commands that could
 cause catastrophic consequences if they are used incorrectly.
 Which items to omit depends on the sort of administrators the tool
 is designed for; the scope of the tool should be directly
 proportional to the amount of knowledge its user is assumed to
 have. In the extreme case, dragging a disk icon into a trash can
 icon should never do anything other than dismount it, and there
 should not be any way to, say, reformat an existing filesystem.
 Given that such a tool is consciously designed for
 minimally-competent administrators, including such capabilities is
 just asking for trouble.

In addition, these features make using an administrative tool
 much more efficient, but they are not absolutely essential:
	A way of specifying the desired starting location within a
 deep menu tree when you invoke the tool.

	A one-keystroke exit command that works at every point
 within menu system.

	Context-sensitive help.

	The ability to limit access to subsections of the tool by
 user.

	Customization features.

If one uses these criteria, AIX's SMIT comes closest to an ideal
 administrative tool, a finding that many have found ironic.
As usual, using menu interfaces in moderation is probably the
 best approach. These applications are great when they save you time
 and effort, but relying on them to lead you through every situation
 will inevitably lead to frustration and disappointment somewhere down
 the line.
The Unix versions we are considering offer various system
 administration facilities. They are summarized and compared in Table 1-2. The table columns hold
 the Unix version, tool command or name, tool type, whether or not the
 command to be run can be previewed before execution, whether or not
 the facility can log its actions and whether or not the tool can be
 used to administer remote systems.
Table 1-2. Some system administration facilities
	Unix Version
	Command/tool
	Type
	Command preview?
	Creates logs?[7]
	Remote admin?

	AIX
	 smit

 WSM
	menu
 GUI
	yes
 no
	yes
 no
	no
 yes

	FreeBSD
	 sysinstall

	menu
	no
	no
	no

	HP-UX
	 sam

	both
	no
	yes
	yes

	Linux
	 linuxconf

	both
	no
	no
	no

	Red Hat Linux
	 redhat-config-*
	GUI
	no
	no
	no

	SuSE Linux
	 yast

 yast2

	menu
 GUI
	no
 no
	no
 no
	no
 no

	Solaris
	 admintool

 CDE admin tools

 AdminSuite/SMC
	menu
 GUI

 menu
	no
 no
 no
	no
 no

 yes
	no
 no

 yes

	Tru64
	 sysman

 sysman
 -station
	menu
 menu
	no
 no
	no
 no
	no
 yes

	[7] Some tools do some rather half-hearted logging to
 the syslog facility, but it's not very useful.

There are also some other tools on some of these systems that
 will be mentioned in this book when appropriate, but they are ignored
 here.
Why Menus and Icons Aren't Enough
Every site needs at least one experienced system administrator
 who can perform those tasks that are beyond the abilities of the
 administrative tool. Not only does every current tool leave
 significant amounts of uncovered territory, but they also all suffer
 from limitations inherent in programs designed for routine
 operations under normal system conditions. When the system is in
 trouble, and these assumptions no longer hold, the tools don't
 work.
For example, I've been in a situation where the administrative
 tool couldn't configure a replacement because the old disk hadn't
 been unconfigured properly before being removed. One part of the
 tool thought the old disk was still on the system and wouldn't
 replace it, while another part wouldn't delete the old configuration
 data because it couldn't access the corresponding physical
 disk.
I was able to solve this problem because I understood enough
 about the device database on that system to fix things manually. Not
 only will such things happen to every system from time to time, they
 will happen to everyone, sooner or later. It's a lot easier to coax
 a system back to life from single user mode after a power failure
 when you understand, for example, what the Check Filesystem
 Integrity menu item actually does. In the end,
 you need to know how things really work.

AIX: SMIT and WSM

AIX offers two main system admini stration facilities: the System Management Interface
 Tool (SMIT) and the Workspace System Manager (WSM) facility. Both of
 them run in both graphical and text mode.
SMIT consists of a many-leveled series of nested menus. Its main
 menu is illustrated in Figure
 1-2.
[image: The AIX SMIT facility]

Figure 1-2. The AIX SMIT facility

One of SMIT's most helpful features is command preview: if you
 click on the Command button or press F6, SMIT displays the command to
 be executed by the current dialog. This feature is illustrated in the
 window on the right in Figure
 1-2.
You can also go directly to any screen by including the
 corresponding fast path keyword on the smit command line. Many SMIT fast paths are
 the same as the command executed from a particular screen. Many other
 fast paths fall into a predictable pattern, beginning with one of the
 prefixes mk (make or start),
 ch (change or reconfigure),
 ls (list), or rm (remove or stop), to which an object code
 is appended: mkuser, chuser, lsuser, rmuser for working with user accounts;
 mkprt, chprt, lsprt, rmprt for working with printers, and so on.
 Thus, it's often easy to guess the fast path you want.
You can display the fast path for any SMIT screen by pressing F8 in the ASCII version of the
 tool:
Current fast path:
 "mkuser"
If the screen doesn't have a fast path, the second line will be
 blank. Other useful fast paths that are harder to guess include the
 following:
	chgsys
	View/change AIX parameters.

	configtcp
	Reconfigure TCP/IP.

	crfs
	Create a new filesystem.

	lvm
	Main Logical Volume Manager menu.

	_nfs
	Main NFS menu.

	spooler
	Manipulate print jobs.

Here are a few additional SMIT notes:
	The smitty command may be used to start the ASCII version of
 SMIT from within an X session (where the graphical version is
 invoked by default).

	Although I like them, many people are annoyed by the SMIT
 log files. You can use a command like this one to eliminate the
 SMIT log files:
$ smit -s /dev/null -l /dev/null ...
You can define an alias in your shell initialization file to
 get rid of these files permanently (C shell users would omit the
 equals sign):
alias smit="/usr/sbin/smitty -s /dev/null -l /dev/null"

	smit -x provides a
 command preview mode. The commands that would be run are written
 to the log file but not executed.

	Newer versions of smit
 have the following annoying feature: when a command has
 successfully completed, and you click Done to close the output
 window, you are taken back to the command setup window. At this
 point, to exit, you must click Cancel, not OK. Doing the latter
 will cause the command to run again, which is not what you want
 and is occasionally quite troublesome!

The WSM facility contains a variety of GUI-based tools for
 managing various aspects of the system. Its functionality is a
 superset of SMIT's, and it has the advantage of being able to
 administer remote systems (it requires that remote systems be running
 a web server). You can access WSM via the Common Desktop Environment's
 Applications area: click on the file cabinet icon (the one with the
 calculator peeking out of it); the system administration tools are
 then accessible under the System_Admin icon. You can also run a
 command-line version of WSM via the wsm command.
The WSM tools are run on a remote system via a Java-enabled web
 browser. You can connect to the tools by pointing the browser at
 http://hostname/wsm.html, where hostname corresponds to the
 desiredremote system. Of course, you can also run the text
 version by entering the wsm command
 into a remote terminal session.

HP-UX: SAM

HP-UX provides the System Administration Manager, also known
 as SAM. SAM is easy to use and can perform a variety of
 system management tasks. SAM operates in both menu-based and GUI mode,
 although the latter requires support for Motif.
The items on SAM's menus invoke a combination of regular HP-UX
 commands and special scripts and programs, so it's not always obvious
 what they do. One way to find out more is to use SAM's built-in
 logging feature. SAM allows you to specify the level of detail in log
 file displays, and you can optionally keep the log open as you are
 working in order to monitor what is actually happening. The SAM main
 window and log display are illustrated in Figure 1-3.
[image: The HP-UX SAM facility]

Figure 1-3. The HP-UX SAM facility

If you really want to know what SAM is doing, you'll need to
 consult its configuration files, stored in the subdirectories of
 /usr/sam/lib. Most subdirectories have
 two-character names, closely related to a top-level icon or menu item.
 For example, the ug subdirectory contains files
 for the Users and Groups module, and the pm
 subdirectory contains those for Process Management. If you examine the
 .tm file there, you can figure out what some of
 the menu items do. This example illustrates the kinds of items to look
 for in these files:
#egrep '^task [a-z]|^ *execute' pm.tm
task pm_get_ps {
 execute "/usr/sam/lbin/pm_parse_ps"
task pm_add_cron {
 execute "/usr/sam/lbin/cron_change ADD /var/sam/pm_tmpfile"
task pm_add_cron_check {
 execute "/usr/sam/lbin/cron_change CHECK /var/sam/pm_tmpfile"
task pm_mod_nice {
 execute "unset UNIX95;/usr/sbin/renice -n %$INT_ID% %$STRING_ID%"
task pm_rm_cron {
 execute "/usr/sam/lbin/cron_change REMOVE /var/sam/pm_tmpfile"
The items come in pairs, relating a menu item or icon and an
 actual HP-UX command. For example, the fourth pair in the previous
 output allows you to figure out what the Modify Nice Priority menu
 item does (runs the renice
 command). The second pair indicates that the item related to adding
 cron entries executes the listed
 shell script; you can examine that file directly to get further
 details.
There is another configuration file for each main menu item in
 the /usr/sam/lib/C subdirectory, named
 pm.ui in this case. Examining the lines
 containing "action" and "do" provides similar information. Note that
 "do" entries that end with parentheses (e.g., do pm_forcekill_xmit()) indicate a call to
 a routine in one of SAM's component shared libraries, which will mean
 the end of the trail for your detective work.
SAM allows you to selectively grant access to its functional
 areas on a per-user basis. Invoke it via sam
 -r to set up user privileges and restrictions. In this mode,
 you select the user or group for which you want to define allowed
 access, and then you navigate through the various icons and menus,
 enabling or disabling items as appropriate. When you are finished, you
 can save these settings and also save groups of settings as named
 permission templates that can subsequently be applied to other users
 and groups.
In this mode, the SAM display changes, and the icons are colored
 indicating the allowed access: red for prohibited, green for allowed,
 and yellow when some features are allowed and others are
 prohibited.
You can use SAM for remote administration by selecting the Run SAM on Remote
 System icon from the main window. The first time you connect to a
 specific remote system, SAM automatically sets up the
 environment.

Solaris: admintool and Sun Management Console

From a certain point of view, current versions of Solaris
 actually offer three distinct tool options:
	admintool , the menu-based system administration package
 available under Solaris for many years. You must be a member of
 the sysadmin group to run
 this program.

	A set of GUI-based tools found under the System_Admin icon
 of the Applications Manager window under the Common Desktop
 Environment (CDE), which is illustrated on the left in Figure 1-4. Select the
 Applications →
 Application Manager menu path from the CDE's menu to open this
 window. Most of these tools are very simple, one-task utilities
 related to media management, although there is also an icon there
 for admintool.

	The Solaris AdminSuite, whose components are controlled by
 the Sun Management Console (SMC). The facility's main
 window is illustrated on the right in Figure 1-4.
In some cases, this package is included with the Solaris
 operating system. It is also available for (free) download (from
 http://www.sun.com/bigadmin/content/adminpack/). In
 fact, it is well worth the overnight download required if you have
 only a slow modem (two nights if you want the documentation as
 well).
This tool can be used to perform administrative tasks
 onremote systems. You specify the system on which you
 want to operate when you log in to the facility.

[image: Solaris system administration tools]

Figure 1-4. Solaris system administration tools

Linux: Linuxconf

Many Linux systems, including some Red Hat versions, offer
 the Linuxconf graphical administrative tool written by
 Jacques Gélinas. This tool can also be used with other
 Linux distributions (see http://www.solucorp.qc.ca/linuxconf/). It is
 illustrated in Figure
 1-5.
[image: The Linuxconf facility]

Figure 1-5. The Linuxconf facility

The tool's menu system is located in the area on the left, and
 forms related to the current selection are displayed on the right.
 Several of the program's subsections can be accessed directly via
 separate commands (which are in fact just links to the main linuxconf executable): fsconf, mailconf, modemconf, netconf, userconf, and uucpconf, which administer filesystems,
 electronic mail, modems, networking parameters, users and groups and
 UUCP, respectively.
Early versions of Linuxconf were dreadful: bug-rich and
 unbelievably slow. However, more recent versions have improved quite a
 bit, and the current version is pretty good. Linuxconf leans toward
 supporting all available options at the expense of novice's
 ease-of-use at times (a choice with which I won't quarrel). As a
 result, it is a tool that can make many kinds of configuration tasks
 easier for an experienced administrator; less expert users may find
 the number of settings in some dialogs to be somewhat daunting. You
 can also specify access to Linuxconf and its various subsections on a
 per-user basis (this is configured via the user account
 settings).

Red Hat Linux: redhat-config-*

Red Hat Linux provides several GUI-based administration tools,
 including these:
	 redhat-config-bindconf
	Configure the DNS server (redhat-config-bind under Version
 7.2).

	redhat-config-network
	Configure the networking on the local host (new with Red
 Hat Version 7.3).

	redhat-config-printer-gui
	Configure and manage print queues and the print
 server.

	redhat-config-services
	Select servers to be started at boot time.

	redhat-config-date and
 redhat-config-time
	Set the date and/or time.

	redhat-config-users
	Configure user accounts and groups.

There are often links to some of these utilities with different
 (shorter) names. They can also be accessed via icons from the System
 Settings icon under Start Here. Figure 1-6 illustrates the dialogs
 for creating a new user account (left) and specifying the local
 system's DNS server (right).
[image: Red Hat Linux system configuration tools]

Figure 1-6. Red Hat Linux system configuration tools

SuSE Linux: YaST2

The "YaST" in YaST2 stands for "yet another setup tool." It is a
 follow-on to the original YaST, and like the previous program (which
 is also available), it is a somewhat prettied up menu-based
 administration facility. The program's main window is illustrated in
 Figure 1-7.
[image: The SuSE Linux YaST2 facility]

Figure 1-7. The SuSE Linux YaST2 facility

The yast2 command is used to
 start the tool. Generally, the tool is easy to use and does its job
 pretty well. It does have one disadvantage, however. Whenever you add
 a new package or make other kinds of changes to the system
 configuration, the SuSEconfig
 script runs (actually, a series of scripts in /sbin/conf.d). Before SuSE Version 8, this
 process was fiendishly slow.
SuSEconfig 's actions are controlled by the settings in the
 /etc/rc.config configuration
 file, as well as those in /etc/rc.config.d (SuSE Version 7) or
 /etc/sysconfig (SuSE Version 8).
 Its slowness stems from the fact that every action is performed every
 time anything changes on the system; in other words, it has no
 intelligence whatsoever that would allow it to operate only on items
 and areas that were modified.
Even worse, on SuSE 7 systems, SuSEconfig's actions are occasionally just
 plain wrong. A particularly egregious example occurs with the Postfix
 electronic mail package. By default, the primary Postfix configuration
 file, main.cf, is overwritten
 every time the Postfix SuSEconfig
 subscript is executed.[8] The latter happens every time SuSEconfig runs, which is practically every
 time you change anything on the system with YaST or YaST2 (regardless
 of its lack of relevance to Postfix). The net result is that any local
 customizations to main.cf get
 lost. Clearly, adding a new game package, for example, shouldn't
 clobber a key electronic-mail configuration file.
Fortunately, these problems have been cleared up in SuSE Version
 8. I do also use YaST2 on SuSE 7 systems, but I've examined all of the
 component subscripts thoroughly and made changes to configuration
 files to disable actions I didn't want. You should do the same.

FreeBSD: sysinstall

FreeBSD offers only the sysinstall utility in terms of administrative tools, the same
 program that manages operating system installations and upgrades (its
 main menu is illustrated in Figure
 1-8). Accordingly, the tasks that it can handle are limited to
 the ones that come up in the context of operating system
 installations: managing disks and partitions, basic networking
 configuration, and so on.
[image: The FreeBSD sysinstall facility]

Figure 1-8. The FreeBSD sysinstall facility

Both the Configure and Index menu items are of interest for
 general system administration tasks. The latter is especially useful
 in that it lists individually all the available operations the tool
 can perform.

Tru64: SysMan

The Tru64 operating system offers the SysMan facility. This tool is essentially menu driven
 despite the fact that it can run in various graphical environments,
 including via a Java 1.1-enabled browser. SysMan can run in two
 different modes, as shown in Figure
 1-9: as a system administration utility for the local system or
 as a monitoring and management station for the network. These two
 modes of operations are selected with the sysman command's -menu and -station options, respectively; -menu is the default.
[image: The SysMan facility]

Figure 1-9. The SysMan facility

This utility does not have any command preview or logging
 features, but it does have a variety of "accelerators": keywords that can be used to initiate a
 session at a particular menu point. For example, sysman shutdown takes you directly to the
 system shutdown dialog. Use the command sysman -list to obtain a complete list of
 all defined accelerators.
One final note: the insightd
 daemon must be running in order to be able to access the SysMan online
 help.

Other Freely Available Administration Tools

The freely available operating systems often provide some
 additional administrative tools as part of the various window manager
 packages that they include. For example, both the Gnome and KDE
 desktop environments include several administrative applets and
 utilities. Those available under KDE on a SuSE Linux system are
 illustrated in Figure
 1-10.
[image: KDE administrative tools on a SuSE Linux system]

Figure 1-10. KDE administrative tools on a SuSE Linux system

We will consider some of the best of these tools from time to
 time in this book.
The Ximian Setup Tools

The Ximian project brings together the latest release of
 the Gnome desktop, the Red Carpet web-based system software update
 facility, and several other items into what is designed to be a
 commercial-quality desktop environment. As of this writing, it is
 available for several Linux distributions and for Solaris systems.
 Additional ports, including to BSD, are planned for the
 future.
The Ximian Setup Tools are a series of applets designed to
 facilitate system administration, ultimately in a multiplatform
 environment. Current modules allow you to administer boot setup
 (i.e., kernel selection), disks, swap space, users, basic
 networking, shared filesystems, printing, and the system time. The
 applet for the latter is illustrated in Figure 1-11.
[image: The Ximian Setup Tools]

Figure 1-11. The Ximian Setup Tools

This applet, even in this early incarnation, goes well beyond
 a simple dialog allowing you to set the current date and time; it
 also allows you to specify time servers for Internet-based time
 synchronization. The other tools are of similar quality, and the
 package seems very promising for those who want GUI-based system
 administration tools.

VNC

I'll close this section by briefly looking at one additional
 administrative tool that can be of great use for remote
 administration, especially in a heterogeneous environment. It is
 called VNC, which stands for "virtual network computing." The package
 is available for a wide variety of Unix systems[9] at http://www.uk.research.att.com/vnc/. It is shown in
 Figure 1-12.
[image: Using VNC for remote system administration]

Figure 1-12. Using VNC for remote system administration

The illustration depicts the entire desktop on a SuSE Linux
 system. You can see several of its icons along the left edge, as well
 as the tool bar at the bottom of the screen (where you can determine
 that it is running the KDE window manager).
The four open windows are three individual VNC sessions to
 different remote computers, each running a different operating system
 and a local YaST session. Beginning at the upper left and moving
 clockwise, the remote sessions are a Red Hat Linux system (Linuxconf
 is open), a Solaris system (we can see admintool), and an HP-UX system (running
 SAM).
VNC has a couple of advantages over remote application sessions
 displayed via the X Windows system:
	With VNC you see the entire desktop, not just one
 application window. Thus, you can access applications via the
 remote system's own icons and menus (which may be much less
 convenient to initiate via commands).

	You eliminate missing font issues and many other display and
 resource problems, because you are using the X server on the
 remote system to generate the display images rather than the one
 on the local system.

In order to use VNC, you must download the software and build or
 install the five executables that comprise it (conventionally, they
 are placed in /usr/local/bin).
 Then you must start a server process on systems that you want to
 administer remotely, using the vncserver command:
garden-$ vncserver
You will require a password to access your desktops.

Password: Not echoed.
Verify:

New 'X' desktop is garden:1

Creating default startup script /home/chavez/.vnc/xstartup
Starting applications specified in /home/chavez/.vnc/xstartup
Log file is /home/chavez/.vnc/garden:1.log
This example starts a server on host garden. The first time you run the vncserver command, you will be asked for a
 password. This password, which is independent of your normal Unix
 password, will be required in order to connect to the server.
Once the server is running, you connect to it by running the
 vncviewer command. In this example,
 we connect to the vncserver on
 garden:
desert-$ vncviewer garden:1
The parameter given is the same as was indicated when the server
 was started. VNC allows multiple servers to be running
 simultaneously.
In order to shut down a VNC server, execute a command like this
 one on the remote system (i.e., the system where the server was
 started):
garden-$ vncserver -kill :1
Warning
Only the VNC server password is required for connection.
 Usernames are not checked, so an ordinary user can connect to a
 server started by root if she
 knows the proper password. Therefore, it is important to select
 strong passwords for the server password (see Section 6.4) and to use a
 different password from the normal one if such cross-user
 connections are needed.
Additionally, VNC passwords are sent in plain text over the
 network. Thus, using VNC is problematic on an insecure network. In
 such circumstances, VNC traffic can be encrypted by tunneling it
 through a secure protocol, such as SSH.

[8] You can prevent this by setting POSTFIX_CREATECF to no in
 /etc/rc.config.d/postfix.rc.config.

[9] Official binary versions of the various tools are available
 for a few systems on the main web page. In addition, consult the
 contrib area for ports to
 additional systems. It is also usually easy to build the tools
 from source code.

Where Does the Time Go?

We'll close this chapter with a brief look at a nice utility that
 can be useful for keeping track of how you spend your time, information
 that system administrators will find comes in handy all too often. It is
 called plod and was written by
 Hal Pomeranz (see http://bullwinkle.deer-run.com/~hal/plod/). While there
 are similar utilities with a GUI interface (e.g., gtt and karm, from the Gnome and KDE window manager
 packages, respectively), I prefer this simpler one that doesn't require
 a graphical environment.
plod works by maintaining a log
 file containing time stamped entries that you provide; the files'
 default location is ~/.logdir/yyyymm, where yyyy and mm indicate the current year and month,
 respectively. plod log files can
 optionally be encrypted.
The command has lots of options, but its simplest form is the
 following:
$ plod [text]
If some text is included on the command, it is written to the log
 file (tagged with the current date and time). Otherwise, you enter the
 command's interactive mode, in which you can type in the desired text.
 Input ends with a line containing a lone period.
Once you've accumulated some log entries, you can use the
 command's -C, -P, and -E
 options to display them, either as continuous output, piped through a
 paging command like more (although
 less is the default), or via an
 editor (vi is the default). You can
 specify a different paging program or editor with the PAGER and EDITOR environment variables
 (respectively).
You can also use the -G option
 to search plod log files; it differs
 from grep in that matching entries
 are displayed in their entirety. By default, searches are not case
 sensitive, but you can use -g to make
 them so.
Here is an example command that searches the current log
 file:
$ plod -g hp-ux

05/11/2001, 22:56 --
Starting to configure the new HP-UX box.

05/11/2001, 23:44 --
Finished configuring the new HP-UX box.
Given these features, plod can
 be used to record and categorize the various tasks that you perform. We
 will look at a script which can read and summarize plod data in Chapter 14.

Chapter 2. The Unix Way

It's easy to identify the most important issues and concerns system
 managers face, regardless of the type of computers they have. Almost every
 system manager has to deal with user accounts, system startup and
 shutdown, peripheral devices, system performance, security—the list could
 go on and on. While the commands and procedures you use in each of these
 areas vary widely across different computer systems, the general approach
 to such issues can be remarkably similar. For example, the process of
 adding users to a system has the same basic shape everywhere: add the user
 to the user account database, allocate some disk space for him, assign a
 password to the account, enable him to use major system facilities and
 applications, and so on. Only the commands to perform these tasks are different on different systems.
In other cases, however, even the approach to an administrative task or issue
 will change from one computer system to the next. For example, "mounting
 disks" doesn't mean the same thing on a Unix system that it does on
 aVMS orMVS system (where they're not always even called disks). No
 matter what operating system you're using—Unix, Windows 2000, MVS—you need
 to know something about what's happening inside, at least more than an
 ordinary user does.
Like it or not, a system administrator is generally called on to be
 the resident guru. If you're responsible for a multiuser system, you'll
 need to be able to answer user questions, come up with solutions to
 problems that are more than just band-aids, and more. Even if you're
 responsible only for your own workstation, you'll find yourself dealing
 with aspects of the computer's operation that most ordinary users can
 simply ignore. In either case, you need to know a fair amount about how
 Unix really works, both to manage your system and to navigate the
 eccentric and sometimes confusing byways of the often jargon-ridden
 technical documentation.
This chapter will explore the Unix approach to some basic computer
 entities: files, processes, and devices. In each case, I will discuss how
 the Unix approach affects system administration procedures and objectives.
 The chapter concludes with an overview of the standard Unix directory
 structure.
If you have managed non-Unix computer systems, this chapter will
 serve as a bridge between the administrative concepts you know and the
 specifics of Unix. If you have some familiarity with user-level Unix
 commands, this chapter will show you their place in the underlying
 operating system structure, enabling you to place them in an
 administrative context. If you're already familiar with things like file
 modes, inodes, special files, and fork-and-exec, you can probably skip
 this chapter.
Files

Files are central to Unix in ways that are not true for some other
 operating systems. Commands are executable files, usually stored in standard locations in the
 directory tree. System privileges and permissions are controlled in
 large part via access to files. Device I/O and file I/O are
 distinguished only at the lowest level. Even most interprocess
 communication occurs via file-like entities. Accordingly, the Unix view
 of files and its standard directory structure are among the first things
 a new administrator needs to know about.
Like all modern operating systems, Unix has a hierarchical
 (tree-structured) directory organization, know collectively as the
 filesystem .[1] The base of this tree is a directory called the root directory. The root directory has the
 special name / (the forward slash character). On Unix systems, all
 user-available disk space is transparently combined into a single
 directory tree under /, and the physical disk a file resides on is not
 part of a Unix file specification. We'll discuss this topic in more
 detail later in this chapter.
Access to files is organized around file ownership and protection.
 Security on a Unix system depends to a large extent on the interplay
 between the ownership and protection settings on its files and the
 system's user account and group[2] structure (as well as factors like physical access to the
 machine). The following sections discuss the basic principles of Unix
 file ownership and protection.
File Ownership

Unix file ownership is a bit more complex than it is under some
 other operating systems. You are undoubtedly familiar with the basic
 concept of a file having an owner: typically, the user who created it
 and has control over it. On Unix systems, files have two owners: a
 user owner and a group owner. What is unusual about Unix file
 ownership is that these two owners are decoupled. A file's group
 ownership is independent of the user who owns it. In other words,
 although a file's group owner is often, perhaps even usually, the same
 as the group its user owner belongs to, this is not required. In fact,
 the user owner of a file does need not even need to be a member of the
 group that owns it. There is no necessary connection between them at
 all. In such a case, when file access is specified for a file's group
 owner, it applies to members of that group and not to other members of
 its user owner's group, who are treated simply as part of "other": the
 rest of the world.
The motivation behind this group ownership of files is to allow file protections
 and permissions to be organized according to your needs. The key point
 here is flexibility. Because Unix lets users be in more than one
 group, you are free to create groups as you need them. Files can be
 made accessible to almost completely arbitrary collections of the
 system's users. Group file ownership means that giving someone access
 to an entire set of files and commands is as simple as adding her to
 the group that owns them; similarly, taking access away from someone
 else involves removing her from the relevant group.
To consider a more concrete example, suppose user chavez , who is in the
 chem group, needs access to some
 files usually used by the physics
 group. There are several ways you can give her access:
	Make copies of the files for her. If they change, however,
 her copies will need to be updated. And if she needs to make
 changes too, it will be hard to avoid ending up with two versions
 that need to be merged together. (Because of inconveniences like
 these, this choice is seldom taken.)

	Make the files world-readable. The disadvantage of this
 approach is that it opens up the possibility that someone you
 don't want to look at the files will see them.

	Make chavez a member of
 the physics group. This is
 the best alternative and also the simplest. It involves changing
 only the group configuration file. The file permissions don't need
 to be modified at all, since they already allow access for
 physics group members.

Displaying file ownership

To display a file's user and group ownership, use the long
 form of the ls command by including the -l option (-lg under Solaris):
$ ls -l
-rwxr-xr-x 1 root system 120 Mar 12 09:32 bronze
-r--r--r-- 1 chavez chem 84 Feb 28 21:43 gold
-rw-rw-r-- 1 chavez physics 12842 Oct 24 12:04 platinum
-rw------- 1 harvey physics 512 Jan 2 16:10 silver
Columns three and four display the user and group owners for
 the listed files. For example, we can see that the file bronze is owned by user root and group system. The next two files are both owned
 by user chavez, but they have
 different group owners; gold is
 owned by group chem, while
 platinum is owned by group
 physics. The last file,
 silver, is owned by user
 harvey and group physics.

Who owns new files?

When a new file is created, its user owner is the user who
 creates it. On most Unix systems, the group owner is the
 current[3] group of the user who creates the file. However, on
 BSD-style systems, the group owner is the same as the group owner of
 the directory in which the file is created. Of the versions we are
 considering, FreeBSD and Tru64 Unix operate in the second manner by
 default.
Most current Unix versions, including all of those we are
 considering, allow a system to selectively use BSD-style group
 inheritance from the directory group ownership by setting the set
 group ID (setgid) attribute on the directory, which we discuss in
 more detail later in this chapter.

Changing file ownership

If you need to change the ownership of a file, use the
 chown and chgrp
 commands. The chown command
 changes the user owner of one or more files:
chown
 new-owner files
where new-owner is the
 username (or user ID) of the new owner for the specified files. For
 example, to change the owner of the file brass to user harvey, execute this chown command:
chown harvey brass
On most systems, only the superuser can run the chown command.
If you need to change the ownership of an entire directory
 tree, you can use the -R option
 (R for recursive). For example, the following
 command will change the user owner to harvey for the directory /home/iago/new/tgh and all files and
 subdirectories contained underneath it:
chown -R harvey /home/iago/new/tgh
You can also change both the user and group owner in a single
 operation, using this format:
chown
 new-owner
For example, to change the user owner to chavez and the group owner to chem for chavez's home directory and all the files
 underneath it, use this command:
chown -R chavez:chem /home/chavez
If you just want to change a file's group ownership, use the
 chgrp command:
$ chgrp
 new-group files
where new-group is the
 group name (or group ID) of the desired group owner for the
 specified files. chgrp also
 supports the -R option.
 Non-root users of chgrp must be both the owner of the file
 and a member of the new group to change a file's group ownership
 (but need not be a member of its current group).

File Protection

Once ownership is set up properly, the next natural issue to
 consider is how to protect files from unwanted access (or the reverse:
 how to allow access to those people who need it). The protection on a
 file is referred to as its file
 mode on Unix systems. File modes are set with the chmod command; we'll look at chmod after discussing the file protection
 concepts it relies on.
Types of file and directory access

Unix supports three types of file access: read, write, and execute, designated by the
 letters r, w, and
 x, respectively. Table 2-1 shows the meanings of
 those access types.
Table 2-1. File access types
	Access
	Meaning for a file
	Meaning for a directory

	 r
	View file contents.
	Search directory contents (e.g., use ls).

	 w
	Alter file contents.
	Alter directory contents (e.g., delete or
 rename files).

	 x
	Run executable file.
	Make it your current directory (cd to it).

The file access types are fairly straightforward. If you have
 read access to a file, you can see what's in it. If you have write
 access, you can change what's in it. If you have execute access and
 the file is a binary executable program, you can run it. To run a
 script, you need both read and execute access, since the shell has
 to read the commands to interpret them. When you run a compiled
 program, the operating system loads it into memory for you and
 begins execution, so you don't need read access yourself.
The corresponding meanings for directories may seem strange at
 first, but they do make sense. If you have execute access to a
 directory, you can cd to it (or
 include it in a path that you want to cd to). You can also access files in the
 directory by name. However, to list all the files in the directory
 (i.e., to run the ls command
 without any arguments), you also need read access to the directory.
 This is consistent because a directory is just a file whose contents
 are the names of the files it contains, along with information
 pointing to their disk locations. Thus, to cd to a directory, you need only execute
 access since you don't need to be able to read the directory file
 itself. In contrast, if you want to run any command lists or use
 files in the directory via an explicit or implicit wildcard—e.g.,
 ls without arguments or cat *.dat—you do need read access to the
 directory file itself to expand the wildcards.
Table 2-2
 illustrates the workings of these various access types by listing
 some sample commands and the minimum access you would need to
 successfully execute them.
Table 2-2. File protection examples
	 	Minimum access
 needed

	Command
	On file itself
	On directory file is in

	 cd
 /home/chavez
	N/A
	 x

	 ls
 /home/chavez/*.c
	(none)r
	 rx

	 ls -l
 /home/chavez/*.c
	(none)r
	 rxx

	 cat myfile

	 r
	 x

	 cat
 >>myfile
	 w
	 x

	 runme
 (executable)
	 x
	 x

	 cleanup.sh
 (script)
	 rx
	 x

	 rm myfile

	(none)
	 wx

Some items in this list are worth a second look. For example,
 when you don't have access to any of the component files, you still
 need only read access to a directory in order to do a simple
 ls; if you include -l (or any other option that lists file
 sizes), you also need execute access to the directory. This is
 because the file sizes must be determined from the disk information,
 an action which implicitly changes the directory in question. In
 general, any operation that involves more than simply reading the
 list of filenames from the directory file is going to require
 execute access if you don't have access to the relevant files
 themselves.
Note especially that write access on a file is
 not required to delete it; write access to the directory
 where the file resides is sufficient (although in this case, you'll
 be asked whether to override the protection on the file):
$ rm copper
rm: override protection 440 for copper? y
If you answer yes, the
 file will be deleted (the default response is no). Why does this
 work? Because deleting a file actually means removing its entry from
 the directory file (among other things), which is a form of altering
 the directory file, for which you need only write access to the
 directory. The moral is that write access to directories is very
 powerful and should be granted with care.
Given these considerations, we can summarize the different
 options for protecting directories as shown in Table 2-3.
Table 2-3. Directory protection summary
	 Access granted
	Resulting availability

	 -- - (no access)

	Does not allow any activity of any kind within
 the directory or any of its subdirectories.

	 r -- (read access only)

	Allows users to list the names of the files in
 the directory, but does not reveal any of their attributes
 (i.e., size, ownership, mode, and so on).

	 -- x (execute access
 only)
	Lets users work with programs in the directory
 specified by full pathname, but hides all other files.

	 r-x (read and execute
 access)
	Lets users work with programs in the directory
 and list the contents of the directory, but does not allow
 them to create or delete files in the directory.

	 -wx (write and execute
 access)
	Used for a drop-box directory. Users can change
 to the directory and leave files there, but can't discover
 the names of files placed there by others. The sticky bit is
 also usually set on such directories (see below).

	 rwx (full access)

	Lets users work with programs in the directory,
 look at the contents of the directory, and create or delete
 files in the directory.

Access classes

Unix defines three basic classes of file access for which
 protection may be specified separately:
	 User access (u)
	Access granted to the owner of the file.

	Group access (g)
	Access granted to members of the same group as the group
 owner of the file (but does not apply to the owner himself,
 even if he is a member of this group).

	Other access (o)
	Access granted to all other normal users.

Unix file protection specifies the access types available to
 members of each of the three access classes for the file or
 directory.
The long version of the ls
 command also displays file permissions in addition to user and group
 ownership:
$ ls -l
-rwxr-xr-x 1 root system 120 Mar 12 09:32 bronze
-r--r--r-- 1 chavez chem 84 Feb 28 21:43 gold
-rw-rw-r-- 1 chavez physics 12842 Oct 24 12:04 platinum
The set of letters and hyphens at the beginning of each line
 represents the file's mode. The 10 characters are interpreted as
 indicated in Table
 2-4.
Table 2-4. Interpreting mode strings
	 	 	 User
 access
	Group access
	Other
 access

	File
	type1
	read2
	write3
	exec4
	read5
	write6
	exec7
	read8
	write9
	exec10

	 bronze

	-
	r
	w
	x
	r
	-
	x
	r
	-
	x

	 gold

	-
	r
	-
	-
	r
	-
	-
	r
	-
	-

	 platinum

	-
	r
	w
	-
	r
	w
	-
	r
	-
	-

	 /etc/passwd
	-
	r
	w
	-
	r
	-
	-
	r
	-
	-

	 /etc/shadow
	-
	r
	-
	-
	-
	-
	-
	-
	-
	-

	 /etc/inittab
	-
	r
	w
	-
	r
	w
	-
	r
	-
	-

	 /bin/sh

	-
	r
	-
	x
	r
	-
	x
	r
	-
	x

	 /tmp

	d
	r
	w
	x
	r
	w
	x
	r
	w
	t

The first character indicates the file type: a hyphen
 indicates a plain file, and a d
 indicates a directory (other possibilities are discussed later in
 this chapter). The remaining nine characters are arranged in three
 groups of three. Moving from left to right, the groups represent
 user, group, and other access. Within each group, the first
 character denotes read access, the second character write access,
 and the third character execute access. If a certain type of access
 is allowed, its code letter appears in the proper position within
 the triad; if it is not granted, a hyphen appears instead.
For example, in the previous listing, read access and no other
 is granted for all users on the file gold. On the file bronze, the owner—in this case, root—is allowed read, write, and execute
 access, while all other users are allowed only read and execute
 access. Finally, for the file platinum, the owner (chavez) and all members of the group
 physics are allowed read and
 write access, while everyone else is granted only read
 access.
The remaining entries in Table 2-4 (below the line) are
 additional examples illustrating the usual protections for various
 common system files.

Setting file protection

The chmod command is used
 to specify the access mode for files:
$ chmod
 access-string files
chmod's second argument is
 an access string, which states
 the permissions you want to set (or remove) for the listed files. It
 has three parts: the code for one or more access classes, the
 operator, and the code for one or more access types.
Figure 2-1 illustrates
 the structure of an access string. To create an access string, you
 choose one or more codes from the access class column, one operator
 from the middle column, and one or more access types from the third
 column. Then you concatenate them into a single string (no spaces).
 For example, the access string u+w says to add
 write access for the user owner of the file. Thus, to add write
 access for yourself for a file you own (lead, for example), use:
$ chmod u+w lead
To add write access for everybody, use the all access class:
$ chmod a+w lead
To remove write access, use a minus sign instead of a plus
 sign:
$ chmod a-w lead
This command sets the permissions on the file lead to allow only read access for all
 users:
$ chmod a=r lead
If execute or write access had previously been set for
 any access class, executing this command removes it.
[image: Constructing an access string for chmod]

Figure 2-1. Constructing an access string for chmod

You can specify more than one access type and more than one
 access class. For example, the access string
 g-rw says to remove read and write access from
 the group access. The access string go=r says
 to set the group and other access to read-only (no execute access,
 no write access), changing the current setting as needed. And the
 access string go+rx says to add both read and
 execute access for both group and other users.
You can also include more than one set of operation-access
 type pairs for any given access class specification. For example,
 the access string u+x-w adds execute access and
 removes write access for the user owner. You can combine multiple
 access strings by separating them with commas (no spaces between
 them). Thus, the following command adds write access for the file
 owner and removes write access and adds read access for the group
 and other classes for the files bronze and brass:
$ chmod u+w,og+r-w bronze brass
The chmod command supports
 a recursive option (-R), to change the mode of a directory and
 all files under it. For example, if user chavez wants to protect all the files
 under her home directory from everyone else, she can use the
 command:
$ chmod -R go-rwx /home/chavez

Beyond the basics

So far, this discussion has undoubtedly made chmod seem more rigid than it actually is.
 In reality, it is a very flexible command. For example, both the
 access class and the access type may be omitted under some
 circumstances.
When the access class is omitted, it defaults to
 a. For example, the following command grants
 read access to all users for the current directory and every file
 under it:
$ chmod -R +r .
On some systems, this form operates slightly differently than
 a chmod a+r command. When the
 a access class is omitted, the specified
 permissions are compared against the default permissions currently
 in effect (i.e., as specified by the umask). When there is
 disagreement between them, the current default permissions take
 precedence. We'll look at this in more detail when we consider the
 umask a bit later.
The access string may be omitted altogether when using the =
 operator; this form has the effect of removing all access. For
 example, this command prevents any access to the file lead by anyone other than its
 owner:
$ chmod go= lead
Similarly, the form chmod
 = may be used to remove all
 access from a file (subject to constraints on some systems, to be
 discussed shortly).
The X access type grants execute access to the specified
 access classes only when execute access is already set for some
 access class. A typical use for this access type is to grant group
 or other read and execute access to all the directories and
 executable files within a subtree while granting only read access to
 all other types of files (the first group will all presumably have
 user execute access set). For example:
$ ls -lF
-rw------- 1 chavez chem609 Nov 29 14:31 data_file.txt
drwx------ 2 chavez chem512 Nov 29 18:23 more_stuff/
-rwx------ 1 chavez chem161 Nov 29 18:23 run_me*
$ chmod go+rX *
$ ls -lF
-rw-r--r-- 1 chavez chem609 Nov 29 14:31 data_file.txt
drwxr-xr-x 2 chavez chem512 Nov 29 18:23 more_stuff/
-rwxr-xr-x 1 chavez chem161 Nov 29 18:23 run_me*
By specifying X, we avoid making
 data_file.txt executable, which
 would be a mistake.
chmod also supports the
 u, g, and
 o access types, which may be used as a shorthand
 form for the corresponding class's current settings (determined
 separately for each specified file). For example, this command makes
 the other access the same as the current group access for each file
 in the current directory:
$ chmod o=g *
If you like thinking in octal, or if you've been around Unix a
 long time, you may find numeric modes more convenient than
 incantations like go+rX. Numeric modes are
 described in the next section.

Specifying numeric file modes

The method just described for specifying f ile modes uses symbolic modes, since code letters are
 used to refer to each access class and type. The mode may also be
 set as an absolute mode by
 converting the symbolic representation used by ls to a numeric form. Each access triad
 (for a different user class) is converted to a single digit by
 setting each individual character in the triad to 1 or 0, depending
 on whether that type of access is permitted or not, and then taking
 the resulting three-digit binary number and converting it to an
 integer (which will be between 0 and 7). Here is a sample
 conversion:
	 	user	group	other
	Mode	r	w	x	r	-	x	r	-	-
	Convert to
 binary	1	1	1	1	0	1	1	0	0
	Convert to octal
 digit	7	5	4
	Corresponding absolute
 mode	754

To set the protection on a file to match those above, you
 specify thenumeric file mode 754 to chmod as the access string:
$ chmod 754 pewter

Specifying the default file mode

You can use the umask
 command to specif y the default mode for newly created files. Its
 argument is a three-digit numeric mode that represents the access to
 be inhibited—masked out—when a
 file is created. Thus, the value is the octal complement of the
 desired numeric file mode.
If masks confuse, you can compute the umask value by
 subtracting the numeric access mode you want to assign from 777. For
 example, to obtain the mode 754 by default, compute 777 - 754 = 023;
 this is the value you give to umask:
$ umask 023
Note that leading zeros are included to make the mask three
 digits long.
Once this command is executed, all future files created are
 given this protection automatically. You usually put a umask command in the system-wide login
 initialization file and in the individual login initialization files
 you give to users when you create their accounts (see Chapter 6).
As we mentioned earlier, the chmod command's actions are affected by
 the default permissions when no explicit access class is specified,
 as in this example:
% chmod +rx *
In such cases, the current umask is taken into account before
 the file access mode is changed. More specifically, an individual
 access permission is not changed unless the umask allows it to be
 set.
It takes a concrete example to fully appreciate this aspect of
 chmod:
$ umask
 Displays the current value.
23
$ ls -l gold silver
---------- 1 chavez chem 609 Oct 24 14:31 gold
-rwxrwxrwx 1 chavez chem 12874 Oct 22 23:14 silver
$ chmod +rwx gold
$ chmod -rwx silver
$ ls -l gold silver
-rwxr-xr-- 1 chavez chem 609 Nov 12 09:04 gold
-----w--wx 1 chavez chem 12874 Nov 12 09:04 silver
The current umask of 023 allows all access for the user, read
 and execute access for the group, and read-only access for other
 users. Thus, the first chmod
 command acts as one would expect, setting access in accordance with
 what is allowed by the umask. However, the interaction between the
 current umask and chmod's "-"
 operator may seem somewhat bizarre. The second chmod command clears only those access
 bits that are permitted by the
 umask; in this case, write access for group and write and execute
 access for other remain turned on.

Special-purpose access modes

The simple file access modes described previously do not exhaust the Unix
 possibilities. Table 2-5
 lists the other defined file modes.
Table 2-5. Special-purpose access modes
	Code
	Name
	Meaning

	 t
	save text mode, sticky bit
	Files: Keep executable in memory after
 exit.Directories: Restrict deletions to each user's own
 files.

	 s
	setuid bit
	 Files:
 Set process user ID on execution.

	 s
	setgid bit
	Files: Set process group ID on
 execution.Directories: New files inherit directory group
 owner.

	 l
	file locking
	Files: Set mandatory file locking on
 reads/writes (Solaris and Tru64 and sometimes Linux). This
 mode is set via the group access type and requires that
 group execute access is off. Displayed as S in ls -l listings.

The t access type turns on the sticky bit (the formal name is save text mode, which is where the
 t comes from). For files, this traditionally
 told the Unix operating system to keep an executable image in memory
 even after the process that was using it had exited. This feature is
 seldom implemented in current Unix implementations. It was designed
 to minimize startup overhead for frequently used programs like
 vi. We'll consider the sticky bit
 on directories below.
When the set user ID (setuid) or set group ID (setgid) access
 mode is set on an executable file, processes that run it are granted
 access to system resources based upon the file's user or group
 owner, rather than based on the user who created the process. We'll
 consider these access modes in detail later in this chapter.

Save-text access on directories

The sticky bit has a different meaning when it is set on
 directories. If the sticky bit is set on a directory, a user may
 only delete files that she owns or for which she has explicit
 write permission granted, even when she has write access to the
 directory (thus overriding the default Unix behavior). This feature
 is designed to be used with directories like /tmp, which are world-writable, but in
 which it may not be desirable to allow any user to delete files at
 will.
The sticky bit is set using the user access class. For
 example, to turn on the sticky bit on /tmp, use this command:
chmod u+t /tmp
Oddly, Unix displays the sticky bit as a "t" in the other
 execute access slot in long directory listings:
$ ls -ld /tmp
drwxrwxrwt 2 root 8704 Mar 21 00:37 /tmp

Setgid access on directories

 Setgid access on a directory has a special meaning.
 When this mode is set, it means that files created in that directory
 will have the same group ownership as the directory itself (rather
 than the user owner's primary group), emulating the default behavior
 on BSD-based systems (FreeBSD and Tru64). This approach is useful
 when you have groups of users who need to share a lot of files.
 Having them work from a common directory with the setgid attribute
 means that correct group ownership will be automatically set for new
 files, even if the people in the group don't share the same primary
 group.
To place setgid access on a directory, use a command like this
 one:
chmod g+s /pub/chem2

Numerical equivalents for special access modes

The special access modes can also be set numerically. They are set via an additional octal
 digit prepended to the mode whose bits correspond to the sticky bit
 (lowest bit: 1), setgid/file locking (middle bit: 2), and setuid
 (high bit: 4). Here are some examples:
chmod 4755 uid
 Setuid access
chmod 2755 gid
 Setgid access
chmod 6755 both
 Setuid and setgid access: 2 highest bits on
chmod 1777 sticky
 Sticky bit
chmod 2745 locking
 File locking (note that group execute is off)
ls -ld
-rwsr-sr-x 1 root chem 0 Mar 30 11:37 both
-rwxr-sr-x 1 root chem 0 Mar 30 11:37 gid
-rwxr-Sr-x 1 root chem 0 Mar 30 11:37 locking
drwxrwxrwt 2 root chem 8192 Mar 30 11:39 sticky
-rwsr-xr-x 1 root chem 0 Mar 30 11:37 uid

How to Recognize a File Access Problem

My first rule of thumb about any user problem that comes up is
 this: it's usually a file ownership or protection problem.[4] Seriously, though, the majority of the problems users
 encounter that aren't the result of hardware problems really are file
 access problems. One classic tip-off of a file protection problem is
 something that worked yesterday, or last week, or even last year,
 but doesn't today. Another clue is that something works differently
 for root than it does for other users.
In order to work properly, programs and commands must have
 access to the input and output files they use, any scratch areas they
 access, and any permanent files they rely on, including the special
 files in /dev (which act as
 device interfaces).
When such a problem arises, it can come from either the file
 permissions being wrong or the protection being correct but the
 ownership (user and/or group) being wrong.
The trickiest problem of this sort I've ever seen was at a
 customer site where I was conducting a user training course. Suddenly,
 their main text editor, which happened to be a clone of the VAX/VMS
 editor EDT, just stopped working. It seemed to start up fine, but then
 it would bomb out when it got to its initialization file. But the
 editor worked without a hitch when root ran it. The system administrator
 admitted to "changing a few things" the previous weekend but didn't
 remember exactly what. I checked the protections on everything I could
 think of, but found nothing. I even checked the special files
 corresponding to the physical disks in /dev. My company ultimately had to send out
 a debugging version of the editor, and the culprit turned out to be
 /dev/null, which the system
 administrator had decided needed protecting against random
 users!
There are at least three morals to this story:
	For the local administrator: always
 test every change before going on to the next one—multiple, random
 changes almost always wreak havoc. Writing them down as you do
 them also makes troubleshooting easier.

	For me: if you know it's a protection
 problem, check the permissions on
 everything.

	For the programmer who wrote the editor:
 always check the return value of system calls
 (but that's another book).

If you suspect a file protection problem, try running the
 command or program as root. If it
 works fine, it's almost certainly a protection problem.
A common, inadvertent way of creating file ownership problems is
 by accidentally editing files as root. When you save the file, the file's
 owner is changed by some editors. The most obscure variation on this
 effect that I've heard of is this: someone was editing a file as
 root using an editor that
 automatically creates backup files whenever the edited file is saved.
 Creating a backup file meant writing a new file to the directory
 holding the original file. This caused the ownership on the directory to be set to root.[5] Since this happened in the directory used by UUCP (the
 Unix-to-Unix copy facility), and correct file and directory ownership
 are crucial for UUCP to function, what at first seemed to be an
 innocuous change to an inconsequential file broke an entire Unix
 subsystem. Running chown uucp on
 the directory fixed everything again.

Mapping Files to Disks

This section will change our focus from files as objects to files as collections of data on
 disk. Users need not be aware of the actual disk locations of files
 they access, but administrators need to have at least a basic
 conception of how Unix maps files to disk blocks in order to
 understand the different file types and the purpose and functioning of
 the various filesystem commands.
An inode (pronounced
 "eye-node") is the data structure on disk that describes and stores a
 file's attributes, including its physical location on disk. When a
 filesystem is initially created, a specific number of inodes are
 created. In most cases, this becomes the maximum number of files of
 all types, including directories, special files, and links (discussed
 later) that can exist in the filesystem. A typical formula is one inode for every 8 KB of actual
 file storage. This is more than sufficient in most
 situations.[6] Inodes are given unique numbers, and each distinct file
 has its own inode. When a new file is created, an unused inode is
 assigned to it.
Information stored in inodes includes the following:
	User owner and group owner IDs.

	File type (regular, directory, etc., or 0 if the inode is
 unused).

	Access modes (permissions).

	Most recent inode modification, data access, and data
 modification times. If the file'smetadata does not change, the first item will
 correspond to the file creation time.

	Number of hard links to the file (links are discussed later
 in this chapter). This is 0 if the inode is unused, and one for
 most regular files.

	Size of the file.

	Disk addresses of:
	Disk locations for the data blocks that make up the
 file, and/or

	Disk locations of disk blocks that hold the disk
 locations of the file's data blocks (indirect blocks), and/or

	Disk locations of disk blocks that hold the disk
 locations of indirect blocks (double
 indirect blocks: two disk addresses removed from
 the actual data blocks).[7]

In short, inodes store all available information about the file
 except its name and directory location. The inodes themselves are
 stored elsewhere on disk.
On Unix systems, it is reasonably safe to say that "everything
 is a file": the operating system even represents I/O devices as files.
 Accordingly, there are several different kinds of files, each with a
 different function.
Regular files

Regular files are files containing data. They are normally
 called simply "files." These may be ASCII text files, binary data
 files, executable program binaries, program input or output, and so
 on.

Directories

A directory is a binary
 file consisting of a list of the other files it contains, possibly
 including otherdirectories (try running od
 -c on one to see this). Directory entries are
 filename-inode number pairs. This is the mechanism by which inodes
 and directory locations are associated; the data on disk has no
 knowledge of its (purely logical) location within its
 filesystem.

Special files: character and block device files

 Special files are the mechanism used for device I/O
 under Unix. They reside in the directory /dev and its subdirectories, as well as
 the directory /devices under
 Solaris.
Generally, there are two types of special files: character special files, corresponding to
 character-based or raw device access, and block special files, corresponding to
 block I/O device access. Character special files are used for
 unbuffered data transfers to and from a device (e.g., a terminal).
 In contrast, block special files are used when data is transferred
 in fixed-size chunks known as blocks
 (e.g., most file I/O). Both kinds of special files exist
 for some devices (including disks). Character special files
 generally have names beginning with r (for "raw")—/dev/rsd0a, for example—or reside in
 subdirectories of /dev whose
 names begin with r -- /dev/rdsk/c0t3d0s7, for example. The
 corresponding block special files have the same name, minus the
 initial r: /dev/disk0a, /dev/dsk/c0t3d0s7. Special files are
 discussed in more detail in later in this chapter.

Links

A link is a mechanism
 that allows several filenames (actually, directory entries) to refer
 to a single file on disk. There are two kinds of links: hard links
 and symbolic or soft links. A hard link associates two (or more)
 filenames with the same inode. Hard links are separate directory
 entries that all share the same disk data blocks. For example, the
 command:
$ ln index hlink
creates an entry in the current directory named hlink with the same inode number as
 index, and the link count in
 the corresponding inode is increased by 1. Hard links may not span
 filesystems, because inode numbers are unique only within a
 filesystem. In addition, hard links should be used only for files
 and not for directories, and correctly implemented versions of
 ln won't let you create the
 latter.
Symbolic links, on the other hand, are pointer files that
 refer to a different file or directory elsewhere in the filesystem.
 Symbolic links may span filesystems, because they point to a Unix
 pathname, not to a specific inode.
Symbolic links are created with the -s option to ln .
The two types of links behave similarly, but they are not
 identical. As an example, consider a file index to which there is a hard link
 hlink and a symbolic link
 slink. Listing the contents
 using either name with a command like cat will result in the same output. For
 both index and hlink, the disk contents pointed to by
 the addresses in their common inode will be accessed and displayed.
 For slink, the disk contents
 referenced by the address in its inode contain the pathname for
 index; when it is followed,
 index's inode will be accessed
 next, and finally its data blocks will be displayed.
In directory listings, hlink will be indistinguishable from
 index. Changes made to either
 file will affect both of them, since they share the same disk
 blocks. However, moving either file with the mv command will not affect the other one,
 since moving a file involves only altering a directory entry (keep
 in mind that pathnames are not stored in the inode). Similarly,
 deleting index will not affect
 hlink, which will still point
 to the same inode (the corresponding disk blocks are only freed when
 an inode's link count reaches zero).
If a new file in the current directory named index is subsequently created, there will
 be no connection between it and hlink, because when the new file is
 created, it will be assigned a free inode. Although they are
 initially created by referencing an existing file, hard links are
 linked only to an inode, not to the other file. In fact, all regular
 files are technically hard links (i.e., inodes with a link count
 ≥1).
In contrast, a symbolic link slink to index will behave differently. The
 symbolic link appears as a separate entry in directory
 listings, marked as a link with an "l" as the first character in
 the mode string:
% ls -l
-rw------- 2 chavez chem 5228 Mar 12 11:36 index
-rw------- 2 chavez chem 5228 Mar 12 11:36 hlink
lrwxrwxrwx 1 chavez chem 5 Mar 12 11:37 slink -> index
Symbolic links are always very small files, while every hard
 link to a given file (inode) is exactly the same size (hlink is naturally the same length as
 index).
Changes made by referencing either the real filename or the
 symbolic link will affect the contents of index. Deleting index will also break the symbolic link;
 slink will point nowhere. But
 if another file index is
 subsequently recreated, slink
 will once again be linked to it.[8] Deleting slink
 will have no effect on index.
Figure 2-2 illustrates
 the differences between hard and symbolic links. In the first
 picture, index and hlink share the inode N1 and its
 associated data blocks. The symbolic link slink has a different inode, N2, and
 therefore different data blocks. The contents of inode N2's data
 blocks refer to the pathname to index.[9] Thus, accessing slink eventually reaches the data blocks
 for inode N1.
[image: Comparing hard and symbolic links]

Figure 2-2. Comparing hard and symbolic links

When index is deleted (in
 the second picture), hlink is
 associated with inode N1 by its own directory entry. Accessing
 slink will generate an error,
 however, since the pathname it references does not exist. When a new
 index is created (in the third
 picture), its gets a new inode, N3. This new file clearly has no
 relationship to hlink, but it
 does act as the target for slink.
Using the cd command can be a bit tricky when dealing with
 symbolic links to directories, as these examples illustrate:
$ pwd; cd ./htdocs
/home/chavez
$ cd ../bin
../bin: No such file or directory.
$ pwd
/public/web2/apache/htdocs
$ ls -l /home/chavez/htdocs
lrwxrwxrwx 1 chavez chem 18 Mar 30 12:06 htdocs ->
 /public/web/apache/htdocs
The subdirectory htdocs
 in the current directory is a symbolic link (its target is indicated
 in the final command). Accordingly, the second cd command does not work as expected, and
 the current directory does not change to /home/chavez/bin. Similar effects would
 occur with a command like this one:
$ cd /home/chavez/htdocs/../cgi-bin; pwd
/public/web2/apache/cgi-bin
For more information about links, see the ln manual page, and experiment with
 creating and modifying linked files.
Tru64 Context-Dependent Symbolic Links

In a Tru64 clustered environment, many standard system files
 and directories are actually a type of symbolic link known as context-dependent symbolic links
 (CDSLs). They are symbolic links with a variable
 component that is resolved to a specific cluster host at access
 time. For example, consider this directory listing (the output is
 wrapped to fit):
$ ls -lF /var/adm/c*
-rw-r--r-- 1 root system 91 May 30 13:07 cdsl_admin.inv
-rw-r--r-- 1 root adm 232 May 30 13:07 cdsl_check_list
lrwxr-xr-x 1 root adm 43 Jan 3 12:09 collect.dated@ ->
 ../cluster/members/{memb}/adm/collect.dated
lrwxr-xr-x 1 root adm 35 Jan 3 12:04 crash@ ->
 ../cluster/members/{memb}/adm/crash/
lrwxr-xr-x 1 root adm 34 Jan 3 12:04 cron@ ->
 ../cluster/members/{memb}/adm/cron/
The first two files are regular files that reside in the
 /var/adm directory. The
 remaining three files are context-dependent symbolic links,
 indicated by the {memb}
 component. When such a file is accessed, this component is
 resolved to a directory named membern, where n indicates the host's number within
 the cluster.
Occasionally, you may need to create such a link. The
 mkcdsl command serves this
 purpose, as in this example (output is wrapped):
cd /var/adm
mkcdsl pacct
ls -l pacct
lrwxr-xr-x 1 root adm 43 Jan 3 12:09 pacct ->
 ../cluster/members/{memb}/adm/pacct
The ln -s command may
 also be used to create context-dependent symbolic links:
ln -s "../cluster/members/{memb}/adm/pacct" ./pacct
The cdslinvchk -verify
 command may be used to verify that all expected
 CDSLs are present on a system. It reports its findings to the file
 /var/adm/cdsl_check_list.
 Here is some sample output (wrapped to fit):
Expected CDSL: ./usr/var/X11/Xserver.conf ->
 ../cluster/members/{memb}/X11/Xserver.conf
An administrator or application has replaced this CDSL with:
-rw-r--r-- 1 root system 4545 Jan 3 12:41
 /usr/var/X11/Xserver.conf
This report indicates that there is one missing CDSL.

Sockets

A socket, whose official name is a Unix domain socket , is a special type of file used for communications
 between processes. A socket may be thought of as a communications
 end point, tied to a particular local system port, to which
 processes may attach. For example, on a BSD-style system, the socket
 /dev/printer is used by
 processes to send messages to the program lpd (the line-printer spooling daemon),
 informing it that it has work to do.

Named pipes

Named pipes are pipes opened by applications for interprocess communication (they are "named" in the
 sense that applications refer to them by their pathname). They are a
 System V feature that has migrated to all versions of Unix. Named
 pipes often reside in the /dev
 directory. They are also known as FIFOs (for "first-in, first-out").

Using ls to identify file types

The long directory listing (produced by the ls -l command) identifies the type of each file it lists
 via the initial character of the permissions string:
	 -

	Plain file (hard link)

	 d

	Directory

	 l

	Symbolic link

	 b

	Block special file

	 c

	Character special file

	 s

	Socket

	 p

	Named pipe

For example, the following ls
 -l output includes each of the file types discussed above, in the same order:
-rw------- 2 chavez chem 28 Mar 12 11:36 gold.dat
-rw------- 2 chavez chem 28 Mar 12 11:36 hlink.dat
drwx------ 2 chavez chem 512 Mar 12 11:36 old_data
lrwxrwxrwx 1 chavez chem 8 Mar 12 11:37 zn.dat -> gold.dat
brw-r----- 1 root system 0 Mar 2 15:02 /dev/sd0a
crw-r----- 1 root system 0 Jun 12 1989 /dev/rsd0a
srw-rw-rw- 1 root system 0 Mar 11 08:19 /dev/log
prw------- 1 root system 0 Mar 11 08:32 /usr/lib/cron/FIFO
Note that the -l option
 also displays the target file for symbolic links (following the
 -> symbol).
ls has other options to
 make identifying file types easy. On many systems, the -F option will append a special character
 to each filename, indicating its type:
-rw------- 2 chavez chem 28 Mar 12 11:36 gold.dat
-rw------- 2 chavez chem 28 Mar 12 11:36 hlink.dat
drwx------ 2 chavez chem 512 Mar 12 11:36 old_data/
-rwxr-x--- 1 chavez chem 23478 Feb 23 09:45 test_prog*
lrwxrwxrwx 1 chavez chem 8 Mar 12 11:37 zn.dat@ -> gold.dat
srw-rw-rw- 1 root system 0 Mar 11 08:19 /dev/log=
prw------- 1 root system 0 Mar 11 08:32 /usr/lib/cron/FIFO|
Note than an asterisk indicates an executable file (program or
 script). Some versions of ls also
 support a -o option, which
 color-codes filenames in the output based on their file type.
You can use the -i option
 to ls to determine the equivalent
 file in the case of hard links. Using -i tells ls to display the inode number associated
 with each filename. Here is an example:
$ ls -i /dev/rmt0 /dev/rmt/*
290 /dev/rmt0 293 /dev/rmt/c0d6ln
292 /dev/rmt/c0d6h291 /dev/rmt/c0d6m
295 /dev/rmt/c0d6hn294 /dev/rmt/c0d6mn
290 /dev/rmt/c0d6l
From this display, we can determine that the special files
 /dev/rmt0 (the default tape
 drive for many commands, including tar) and /dev/rmt/c0d6l are equivalent, because
 they both reference inode number 290.
ls can't distinguish
 between text and binary files (both are "regular" files). You can
 use the file command to do so. Here is an example:
file *
appoint: ... executable not stripped
bin: directory
clean: symbolic link to bin/clean
fort.1: empty
gold.dat: ascii text
intro.ms: [nt]roff, tbl, or eqn input text
run_me.sh: commands text
xray.c: ascii text
The file appoint is an
 executable image; the additional information provided for such files
 differs from system to system. Note that file tries to figure out what the contents
 of ASCII files are, with varying success.

[1] Or file system—the two forms refer to the
 same thing. To make things even more ambiguous, these terms are also
 used to refer to the collection of files on an individual formatted
 disk partition.

[2] On Unix systems, individual user accounts are organized into
 groups. Groups are simply collections of users,
 defined by the entries in /etc/passwd and
 /etc/group. The mechanics of defining groups
 and designating users as members of them are described in Chapter 6. Using groups effectively to
 enhance system security is discussed in Chapter 7.

[3] See Section 6.1
 for information about how the user's primary group is
 determined.

[4] At least, this was the case before the Internet.

[5] Clearly, the system itself was somewhat "broken" as well,
 since adding a file to a directory should never change the
 directory's ownership. However, it is also possible to do this
 accidentally with text editors that allow you to edit a
 directory.

[6] There are a couple of circumstances where this may not hold.
 One is a filesystem containing an enormous number of very small
 files. The traditional example of this is the USENET news spool
 directory tree (although some modern news servers now use a better
 storage scheme). News files are typically both very small and
 inordinately numerous, and their numbers have been known to exceed
 normal inode limits. A second potential problem situation occurs
 with facilities that make extensive use of symbolic links for
 functions such as source code version control, again characterized
 by many, many tiny files. In such cases, you can run out of inodes
 before disk capacity is exhausted. You will want to take these
 factors into account when preparing the disk (see Chapter 10). At the other extreme,
 filesystems that are designed to hold only a few very large files
 might save a nontrivial amount of space by being configured with
 far fewer than the normal number of inodes.

[7] In traditional System V filesystems, inode disk
 addresses can point to triple indirect blocks. FreeBSD
 also uses triple indirect blocks.

[8] Symbolic links are actually interpreted only when
 accessed, so they can't really be said to point anywhere at
 other times. But conceptually, this is what they do.

[9] Some operating systems, including FreeBSD, store the
 target of the symbolic link in the inode itself, provided the
 target is short enough.

Processes

In simple terms, a process is
 a single executable program that is running in its own address
 space.[10] It is distinct from a job or a command, which, on Unix
 systems, may be composed of many processes working together to perform a
 specific task. Simple commands like ls are executed as a single process. A
 compound command containing pipes will execute one process per pipe
 segment. For Unix systems, managing CPU resources must be done in large
 part by controlling processes, because the resource allocation and batch
 execution facilities available with other multitasking operating systems
 are underdeveloped or missing.
Unix processes come in several types. We'll look at the most
 common here.
Interactive Processes

Interactive processes are initiated from and controlled by a
 terminal session. Interactive processes may run either in the foreground or the background. Foreground processes remain
 attached to the terminal; the foreground process is the one with which
 the terminal communicates directly. For example, typing a Unix command
 and waiting for its output means running a foreground process.
While a foreground process is running, it alone can receive
 direct input from the terminal. For example, if you run the diff command on two very large files, you
 will be unable to run another command until it finishes (or you kill
 it with CTRL-C).
Job control allows a
 process to be moved between the foreground and the background at will.
 For example, when a process is moved from the foreground to the
 background, the process is temporarily stopped, and terminal control
 returns to its parent process (usually a shell). The background job
 may be resumed and continue executing unattached to the terminal
 session that launched it. Alternatively, it may eventually be brought
 to the foreground, and once again become the terminal's current
 process. Processes may also be started initially as background
 processes.
Table 2-6 reviews the
 ways to control foreground and background processes provided by most
 current shells.
Table 2-6. Controlling processes
	Form
	Meaning and examples

	 &

	Run command in background.

 $ long_cmd &

	 ^Z

	Stop foreground process.
 $ long_cmd
 ^Z Stopped
$

	 jobs

	List background processes.

 $ jobs
[1] - Stopped emacs
[2] - big_job &
[3] + Stopped long_cmd

	 %
 n
	Refers to background job number n.
 $ kill %2

	 fg

	Bring background process to foreground.

 $ fg %1

	 %?
 str
	Refers to the background job command containing
 the specified characters.
 $ fg %?em

	 bg

	Restart stopped background process.

 $ long_cmd
 ^Z Stopped
$ bg
[3] long_cmd &

	 ~^Z

	Suspend rlogin
 session.
 bridget-27 $ ~^Z
Stopped
henry-85 $

	 ~~^Z

	Suspend second-level rlogin session. Useful for nested
 rlogins; each additional
 tilde says to pop back to the next highest level of rlogin. Thus, one tilde pops all the
 way back to the lowest level job (the job on the local
 system), two tildes pops back to the first rlogin session, and so on.

 bridget-28 $ ~~^Z
Stopped
peter-46 $

Batch Processes

Batch processes are not associated with any terminal. Rather,
 they are submitted to a queue, from which jobs are executed
 sequentially. Unix offers a very primitive batch command, but vendors whose customers
 require queuing have generally implemented something more substantial.
 Some of the best known are the Network Queuing System (NQS), developed
 by NASA and used on many high-performance computers including Crays,
 as well as several network-based process-scheduling systems from
 various vendors. These facilities usually support heterogeneous as
 well as homogeneous networks, and they attempt to distribute the
 aggregate CPU load evenly among the workstations in the network, a
 process known as load balancing
 or load
 leveling.

Daemons

Daemons are server processes, often initiated at boot time, that run
 continuously while the system is up, waiting in the background until a
 process requires their service.[11] For example, network daemons are idle until a process
 requests network access.
Table 2-7 provides a
 brief overview of the most important Unix daemons.
Table 2-7. Important Unix daemons
	Facility
	Description
	Daemon Names

	 init

	First created process
	 init

	 syslog

	System status/error message
 logging
	 syslogd

	email
	Mail message transport
	 sendmail

	printing
	Print spooler
	 lpd, lpsched, qdaemon, rlpdaemon

	cron
	Periodic process execution
	 crond

	tty
	Terminal support.
	 getty (and
 similar)

	sync
	Disk buffer flushing
	 update,
 syncd, syncher, fsflush, bdflush, kupdated

	paging and swapping
	Daemons to support virtual memory
 management
	 pagedaemon,
 vhand, kpiod, pageout, swapper, kswapd, kreclaimd

	 inetd

	Master TCP/IP daemon, responsible for starting
 many others on demand: telnetd, ftpd, rshd, imapd, pop3d, fingerd, rwhod (see /etc/inetd.conf for a full list)

	 inetd

	name resolution
	DNS server process
	 named

	routing
	Routing daemon
	 routed,
 gated

	DHCP
	Dynamic network client
 configuration
	 dhcpd,
 dhcpsd

	RPC
	Remote procedure call facility network
 port-to-service mapper
	 portmap,
 rpcbind

	NFS
	Network File System: native Unix network file
 sharing
	 nfsd,
 rpc.mountd, rpc.nfsd, rpc.statd, rpc.lockd, nfsiod

	Samba
	File/print sharing with Windows
 systems
	 smbd,
 nmbd

	WWW
	HTTP server
	 httpd

	network time
	Network time synchronization
	 timed,
 ntpd

Process Attributes

Unix processes have many associated attributes. Some of the
 most important are:
	 Process ID (PID)
	A unique identifying number used to refer to the
 process.

	Parent process ID (PPID)
	The PID of the process's parent
 process (the process that created it).

	Nice number
	The process's scheduling priority, which is a number indicating
 its importance relative to other processes. This needs to be
 distinguished from its actual execution priority, which is
 dynamically changed based on both the process's nice number and
 its recent CPU usage. See Section 15.3 for a detailed
 discussion of nice numbers and their effect on execution
 priority.

	TTY
	The terminal (or pseudo-terminal) device associated with
 the process.

	 Real and effective user ID (RUID, EUID)
	A process's real UID is the UID of the user who started
 it. Its effective UID is the UID that is used to determine the
 process's access to system resources (such as files and
 devices). Usually the real and effective UIDs are the same, and
 the process accordingly has the same access rights as the user
 who launched it. However, when the setuid access mode is set on
 an executable image, then the EUIDs of processes executing it
 are set to the UID of the file's user owner, and they are
 accorded corresponding access rights.

	 Real and effective group ID (RGID, EGID)
	A process's real GID is the user's primary or current
 group. Its effective GID, used to determine the process's access
 rights, is the same as the real GID except when the setgid
 access mode is set on an executable image. The EGIDs of
 processes executing such files are set to the GID of the file's
 group owner, and they are given corresponding access to system
 resources.

The life cycle of a process

A new process is created in the following manner. An
 existing process makes an exact copy of itself, a procedure known as
 forking. The new process,
 called the child process
 , has the same environment as its parent process, although it is assigned a
 different process ID. Then, this image in the child process's
 address space is overwritten by the one the child will run; this is
 done via the exec system call.
 Hence, the often-used phrase fork-and-exec. The new program (or
 command) completely replaces the one duplicated from the parent.
 However, the environment of the parent still remains, including the
 values of environment variables; the assignments of standard input,
 standard output, and standard error; and its execution
 priority.
Let's make this picture a bit more concrete. What happens when
 a user runs a command like grep?
 First, the user's shell process forks, creating a new shell process
 to run the command. Then, the new shell process execs grep, which overlays the shell's
 executable image in memory with grep's, which begins executing. When the
 grep command finishes, the
 process dies.
This is the way that all Unix processes are created. The
 ultimate ancestor for every process on a Unix system is the process
 with PID 1, init, created during
 the boot process (see Chapter 4).
 init creates many other processes
 (all by fork-and-exec). Among them are usually one or more executing
 the getty program. The gettys are each assigned to a different
 serial line; they display the login prompt and wait for someone to
 respond to it. When someone does, the getty process execs the login program, which validates user
 logins, among other activities.[12]
Once the username and password are verified,[13] login execs the
 user's shell. Forking is not always required to run a new program,
 and login does not fork in this
 case. After logging in, the user's shell is the same process as the
 getty that was watching the
 unused serial line. That process changed programs twice by execing a
 new executable, and it will go on to create new processes to execute
 the commands that the user types. Figure 2-3 illustrates
 Unixprocess creation in the context of initial user
 login.
[image: Unix process creation: fork and exec]

Figure 2-3. Unix process creation: fork and exec

When any process exits, it sends a signal to inform its parent
 process that is has completed. So, when a user logs out, her login
 shell sends a signal to its parent, init, as it dies, letting init know that it's time to create a new
 getty process for the terminal.
 init forks again and starts the
 getty, and the whole cycle
 repeats itself again and again as different users use that
 terminal.

Setuid and setgid file access and process execution

The purpose of the setuid and setgid access modes is to allow
 ordinary users to perform tasks requiring privileges and access
 rights that are ordinarily denied to them. For example, on many
 systems the write command is
 owned by the tty group, which
 also owns all of the terminal and pseudo-terminal device files. The
 write command has setgid access,
 allowing any user to use it to write a message to another user's
 terminal or window (to which they do not normally have any access).
 When users execute write, their
 effective GID is set to that of the group owner of the executable
 file (often /usr/bin/write) for
 the duration of the command.
Setuid and/or setgid access are also used by the printing
 subsystem, by programs like mailers, and by some other system
 facilities. However, setuid programs are also notorious security
 risks. In practice, setuid almost always means setuid to root, and the danger is that somehow,
 through program stupidity or their own cleverness or both, users
 will figure out a way to perform additional, unauthorized functions
 while the setuid command is running or to retain their inherited
 root status after the command
 ends. In general, setuid access should be avoided since it involves
 greater security risks than setgid, and almost any function can be
 performed by using the latter in conjunction with carefully designed
 groups. See Chapter 7 for a more
 detailed discussion of the security issues involved with setuid and
 setgid programs. Keep in mind, though, that while setgid programs
 are safer than setuid ones, they are not risk-free
 themselves.

The relationship between commands and files

The Unix operating system does not distinguish between
 commands and files in the ways that some systems do. Aside from a
 few com mands that are built into each Unix shell, Unix
 commands are executable files stored in one of several standard
 locations within the filesystem. Access to commands is exactly
 equivalent to access to these files. By default, there is no other
 privilege mechanism. Even I/O is handled via special files, stored in the directory
 /dev, which function as
 interfaces to the device drivers. All I/O operations look just like
 ordinary file operations from the user's point of view.
Unix shells use search
 paths to locate the executable's images for commands that
 users enter. In its simplest form, a search path is simply an
 ordered list of directories in which to look for command
 executables, and it is typically set in an initialization file
 ($HOME/.profile or $HOME/.login). A faulty (incomplete)
 search path is the most common cause for "Command not found" error
 messages.
Search paths are stored in the PATH
 environment variable. Here is a typical
 PATH:
$ echo $PATH
/bin:/usr/ucb:/usr/bin:/usr/local/bin:.:$HOME/bin
The various directories in the PATH are
 separated by colons. The search path is used whenever a command name
 is entered without an explicit directory location. As an example,
 consider the following command:
$ od data.raw
The od command is used to
 display a raw dump of a file. To locate this command, the operating
 system first looks for a file named od in /bin. If such a file exists, it is
 executed. If there is no od file
 in the /bin directory,
 /usr/ucb is checked next,
 followed by /usr/bin (where
 od is in fact usually located).
 If it were necessary, the search would continue in /usr/local/bin, the current directory,
 and finally the bin
 subdirectory of the user's home directory.
The order of the directories in the search path is important
 when more than one version of a command exists. Such effects come
 into play most frequently when both the BSD and the System V
 versions of commands are available on a system. In this case, you
 should put the directory holding the versions you want to use first
 in your search path. For example, if you want to use the BSD
 versions of commands such as ls
 and ln on a System V-based
 system, then put /usr/ucb ahead
 of /usr/bin in your search
 path. Similarly, if you want to use the System V-compatible commands
 available on some systems, put /usr/5bin ahead of /usr/bin and /usr/ucb in your search path. These same
 considerations will obviously apply to users' search paths that you
 define for them in their initialization files (see Section 4.2).
Most of the Unix administrative utilities are located in the
 directories /sbin and /usr/sbin. However, the locations of
 administrative commands can vary widely between Unix versions. These
 directories typically aren't in the search path unless you put them
 there explicitly. When executing administrative commands, you can
 either add these directories to your search path or provide the full
 pathname for the command, as in the example below:
/usr/sbin/ping hamlet
I'm going to assume in my examples that the administrative
 directories have been added to the search path. Thus, I won't be
 including the full pathname for any of the commands I'll be
 discussing.
The Unix Way of System Administration
System administrators are stereotypically arrogant,
 single-minded, and opinionated. For Unix system administrators,
 the stereotype was born in the days when Unix was this bizarre
 operating system that ran on only a few systems, and the local
 Unix guru was some guy who generally kept to himself, locked away
 with his system—or so the story goes.
The skepticism I'm exhibiting with this view of Unix
 system managers does not mean that there is no truth in it at all.
 Like most caricatures, this one has roots in reality. For example,
 it is all too easy to find people who will tell you that there is
 one right editor to use, one right shell for writing scripts, one
 right way to do anything you care to name. Discussing the
 advantages and liabilities of alternative approaches to problems
 can be both useful and entertaining, but only within
 reason.
Since you're reading this introductory chapter, I'm assuming
 that you are only beginning your exploration of Unix
 administration. I certainly want to encourage you to consider for
 yourself all the tasks and issues you will face as you proceed and
 to provide help when I can. You'll quickly form your own opinions
 and define what system administration is for you. Doing so is a
 process, which can continue for as long and range as widely as you
 want it to. However, if you get to a point where fanaticism
 replaces thinking, you've gone too far.

[10] I am not distinguishing between processes and threads at this
 point.

[11] Daemon is an ancient Greek word meaning "divinity" or
 "spirit" (but keep the character of the Greek gods in mind). The
 OED defines it as a "tutelary deity": the guardian of a particular
 person, place or thing. More recently, the poet Yeats wrote at length about daemons, defining them
 as that which we continually struggle against yet paradoxically
 need in order to survive, simultaneously the source of our pain
 and of our strength, even in some sense, the very essence of our
 being. For Yeats, the daemon is "of all things not impossible the
 most difficult."

[12] The process is similar for an X terminal window. In the
 latter case, the xterm or
 other process is created by the window manager in use, which was
 itself started by a series of other X-related processes,
 ultimately deriving from a command issued from the login shell
 (e.g., startx) or as part of
 the login process itself.

[13] If the login attempt fails, login exits, sending a signal to its
 parent process, init,
 indicating it should create a new getty process for the terminal.

Devices

One of the strengths of Unix is that users don't need to worry
 about the specific characteristics of devices and device I/O very often. They don't need to
 know, for example, what disk drive a file they want to access physically
 sits on. And the Unix special file mechanism allows many device I/O
 operations to look just like file I/O. As we've noted, the administrator
 doesn't have these same luxuries, at least not all the time. This
 section discusses Unix device handling and then surveys the special
 files used to access devices.
Device files are characterized by their major and minor
 numbers , which allow the kernel to determine which device driver
 to use to access the device (via the major number), as well as its
 specific method of access (via the minor number).
Major and minor numbers appear in place of the file size in long
 directory listings. For example, consider these device files related to
 the mouse from a Linux system:
$ cd /dev; ls -l *mouse
crw-rw-r-- 1 root root 10, 10 Jan 19 03:36 adbmouse
crw-rw-r-- 1 root root 10, 4 Jan 19 03:35 amigamouse
crw-rw-r-- 1 root root 10, 5 Jan 19 03:35 atarimouse
crw-rw-r-- 1 root root 10, 8 Jan 19 03:35 smouse
crw-rw-r-- 1 root root 10, 6 Jan 19 03:35 sunmouse
crw-rw-r-- 1 root root 13, 32 Jan 19 03:36 usbmouse
The major number for all but the last special file is 10; only the
 minor number differs for these devices. Thus, all of these mouse device
 variations are handled by the same device driver, and the minor number
 indicates the variation within that general family. The final item,
 corresponding to a USB mouse, has a different major number, indicating
 that a different device driver is used.
Device files are created with the mknod command, and it takes the desired device
 name and major and minor numbers as its arguments. Many systems provide
 a script named MAKEDEV (located in
 /dev), which is an easy-to-use
 interface to mknod.
An In-Depth Device Example: Disks

We'll use disk drives as an example in this overview discussion
 of Unix devices.[14] As we've noted before, Unix organizes all
 user-accessible files into a single hierarchical directory structure.
 The files and directories it contains may be spread across several
 different disk drives.
On most Unix systems, disks are divided into one or more
 fixed-size partitions : physical subsets of the disk drive that are separately
 accessed by the operating system. There may be several partitions or
 just one on each physical disk. The disk partition containing the root
 filesystem is called the root
 partition and sometimes the root
 disk, although it obviously needn't comprise the entire
 disk drive. The disk containing the root partition is generally called
 the system disk.
The root filesystem is the first one mounted, early in the Unix boot process,
 and the remaining ones are mounted afterwards. On many operating
 systems, mounting a disk refers to the process of making the device's
 contents available. For Unix, it means something more. Like the
 overall Unix filesystem, the files and directories physically located
 on each disk partition are arranged in a tree structure.[15] An integral part of the process of mounting a disk
 partition involves grafting its local directory structure into the
 overall Unix directory tree. Once this is done, the files physically
 residing on that device may be accessed via the usual Unix pathname
 syntax; Unix takes care of mapping pathnames to the correct physical
 device and data blocks.
For administrators, however, there are a few times when the disk
 partition must be accessed directly. The actual mount operation is the
 most common. Remember that disk partitions may be accessed in two
 modes, block mode and raw (or character) mode, and different special
 files are used from each mode. Character access mode does unbuffered
 I/O, generally making a data transfer to or from the device with every
 read or write system call. Block devices do buffered I/O on a block
 basis, collecting data in a buffer until the operating system can
 transfer an entire block of data at one time.
For example, the disk partition containing the root filesystem
 traditionally corresponded to the special files /dev/disk0a and /dev/rdisk0a, specifying the first
 partition on the first disk (disk 0, partition a), accessed in block
 and raw mode respectively,[16] with the r
 designating raw device access.
Warning
Most disk partition-related commands require a specific type
 of special file and won't accept the other kind.

Note that most Linux versions and newer versions of BSD do not
 distinguish between the two types of special files for IDE disks and
 provide only one special file per disk partition.
As an example of the use of special files to access disk
 partitions, consider the mount
 commands below:
mount /dev/disk0a /
mount /dev/disk1e /home
Naturally, the command to mount a disk partition needs to
 specify the physical disk partition to be mounted (mount's first argument) and the location to
 place it in the filesystem, its mount
 point (the second argument).[17] Thus, the first command makes the files in the first
 partition on drive 0 available, placing them at the root of the Unix
 filesystem. The second command accesses a partition on drive 1,
 placing it at /home in the
 overall directory tree. Thus, regular files in the top-level directory
 on this second disk partition will appear in /home, and top-level directories on the
 disk partition become subdirectories of /home. The mount command is discussed in greater detail
 in Chapter 10.
Fixed-disk special files

Currently used special file names for disk partitions are highly implementation-dependent.
 However, a common logic underlies all of the various naming schemes.
 Disk special files can encode the type of disk, the disk controller,
 the disk location on its controller, and the disk partition within
 the physical disk (as well as the access mode) within the special
 file name.
Let's take the Tru64 special files for disks as an example;
 these special files have names of the following form, where
 n is the disk number (beginning
 at 0), and x is a letter from a
 to h designating the partition on the physical disk:
	/dev/disk/dsk
 nx
	Block device

	/dev/rdisk/dsk
 nx
	Character (raw) device

The partitions have conventional uses, and not all partitions
 are used on every disk (see Chapter
 10 for more details). Traditionally, the a partition on the
 root disk contains the root filesystem. b partitions are
 conventionally used as swap partitions. On the root disk, other partitions
 might be used for various system directories: for example, e for
 /usr, h for /var, d for other filesystems, and so
 on.
The c partition often refers to the entire disk as a whole:
 every bit of space on the disk, including areas that should be
 accessed only by the kernel (such as the partition table at the
 beginning of the drive). For this reason, using the c partition for
 a filesystem was not allowed under older versions of Unix. More
 recent versions generally do not have this restriction.
System V-based systems use a similar naming philosophy,
 although the actual names differ. Special filenames for disk
 partitions are often of the form /dev/dsk/cktmdpsn,
 where k is the
 controller number, m is the
 drive number on that controller (often the SCSI target ID), and
 n is the partition (section)
 number on that drive (all numbers start at 0). p refers to the logical unit number (LUN)
 for SCSI devices and is thus usually 0. HP-UX uses this form but
 typically omits the s
 component.
In this scheme, character and block special files have the
 same names, but they are stored in two different subdirectories of
 /dev: /dev/dsk and /dev/rdsk, respectively. Thus, the
 special file /dev/dsk/c1t4d0s2
 is the block special file for the third partition on the disk with
 SCSI ID 4 on controller 1 (the second controller). The corresponding
 character device is /dev/rdsk/c1t4d0s2.
Names in this format, known as controller-drive-section identifiers
 , are specified for all disk and tape devices under
 the System V.4 standard. Actual System V-based implementations start
 with this framework and may vary it somewhat according to the
 devices actually supported. Sometimes, they also provide links to
 more mnemonically or intuitively-named special files. For example,
 on some (mostly older) Solaris systems, /dev/sd0a might be linked to /dev/dsk/c0t3d0s0, allowing the
 conventional SunOS name to be used for the 0 partition on the disk
 with SCSI ID 3 on the first controller.[18]
Table 2-8
 illustrates the similarities among disk special file names. The
 special files in the table all refer to a partition on the second
 SCSI disk drive on the first controller, using SCSI ID
 4.
Table 2-8. Interpreting disk special file names
	 	FreeBSD
	HP-UX
	Linux
	Solaris
	Tru64[19]

	 Special file

	 /dev/rda1d
	 /dev/rdsk/c0t4d0
	 /dev/sdb1

	 /dev/rdsk/c0t4d0s3

	 /dev/rdisk/dsk1c

	 Raw access

	 /dev/
 r da1d
	 /dev/
 r dsk/c0t4d0
	 /dev/sdb1

	 /dev/
 r dsk/c0t4d0s3
	 /dev/
 r disk/dsk1c

	 Device = Disk

	 /dev/r
 d a1d
	 /dev/r
 dsk /c0t4d0
	 /dev/s
 d b1
	 /dev/r
 dsk /c0t4d0s3
	 /dev/r
 disk /dsk1c

	 Type = SCSI

	 /dev/r
 da 1d
	 	 /dev/
 sd b1
	 	
	 Controller #

	 	 /dev/rdsk/
 c0 t4d0
	 	 /dev/rdsk/
 c0 t4d0s3
	
	 SCSI ID

	 	 /dev/rdsk/c0
 t4 d0
	 	 /dev/rdsk/c0
 t4 d0s3
	
	 Device #

	 /dev/rda
 1 d
	 	 /dev/sd
 b 1
	 	 /dev/rdisk/dsk
 1 c

	 Disk
 Partition
	 /dev/rda1
 d
	assumed
	 /dev/sdb
 1
	 /dev/rdsk/c0t4d0
 s3
	 /dev/rdisk/dsk1
 c

	[19] Older Tru64 systems use the now-obsolete device
 names of the form /dev/rz*, /dev/ra*, and /dev/re*.

In yet another twist, systems that use logical volume managers
 (including AIX by default) allow the system administrator to specify
 names for the special files for logical volumes—virtual disk
 partitions—when they are created. These special files often have
 names of the form /dev/name,
 where name is chosen when the
 filesystem is created. On such systems, it is logical volumes rather
 than physical partitions that hold filesystems. We'll leave the rest
 of the gory details about these topics until Chapter 10.

Special Files for Other Devices

Other device types have special files named differently, but they follow the
 same basic conventions. Some of the most common are summarized in
 Table 2-9 (they will be
 discussed in more detail as appropriate in later chapters). In some
 cases, only the more commonly used form (block versus character) of
 the file is listed. For example, tape drives are seldom, if ever,
 accessed via the block device, and on many systems, the block special
 files do not even exist.
Table 2-9. Common Unix special file names
	Device/use
	Special file forms
	Example

	Floppy disk
	/dev/[r]fdn*

 /dev/floppy
	 /dev/fd0

	Tape devices[20]
 	

 	nonrewinding

	SCSI

	default tape drive

		/dev/rmtn
	/dev/rmt/n

 /dev/nrmtn

 /dev/rstn

 /dev/tape
	 /dev/rmt1

 /dev/rmt/0

 /dev/nrmt0

 /dev/rst0

	CD-ROM devices
	/dev/cdn

 /dev/cdrom
	 /dev/cd0

	Serial lines
	/dev/ttyn

 /dev/term/n
	 /dev/tty1

 /dev/tty01

 /dev/term/01

	Slave virtual terminal (windows, network
 sessions, etc.)
	/dev/tty[p-s]n

 /dev/pts/n
	 /dev/ttyp1

 /dev/pts/2

	Master/control virtual terminal
 devices
	/dev/pty[p-s]n

	 /dev/ptyp3

	Console device
 	some System V

	AIX

	/dev/console
 /dev/syscon

 /dev/lft0
	
	Process controlling TTY (used to ensure I/O comes
 from/goes to terminal, regardless of any I/O redirection)

	/dev/tty
	
	Memory maps:
 	physical

	kernel virtual

	/dev/mem
 /dev/kmem
	
	Mouse interface
	/dev/mouse
	
	Null devices: all output is discarded; reads
 return nothing (0 characters, 0 bytes) or a zero-filled
 buffer, respectively.
	/dev/null
 /dev/zero
	
	[20] Tape devices often have suffixes that specify the
 tape density.

Commands for listing the devices on a system

Most Unix versions provide commands that make it easy to
 quickly determine what devices are present on the system, as well as
 their current status. Table
 2-10 lists the commands for the systems we are
 considering.
Table 2-10. Device listing and information commands
	Unix Version
	Command(s)
	Description

	 AIX

	 lscfg

 lscfg -v -l
 device
 lsdev -C -s scsi

 lsattr -E -H -I device

	List all devices.
 Device
 configuration detail.
 List all SCSI IDs.

 Display device attributes.

	 FreeBSD

	 pciconf -l
 -v
 camcontrol devlist
	List PCI devices.
 List SCSI
 devices.

	 HP-UX

	 ioscan -f
 -n
 ioscan
 -f -n -C disk
	Detailed device listing.
 Limit to
 device class.

	 Linux

	lsdev
 scsiinfo -l

 lspci
	List major devices.
 List SCSI
 devices.
 List PCI devices.

	 Solaris
 [21]
	 getdev

 getdev
 type=disk
 devattr -v device

 dmesg [22]
	List devices.
 Limit to device
 class.
 Device detail.
 Boot
 messages identify all devices.

	 Tru64

	 dsfmgr -s

	List devices.

	[21] Unfortunately, the getdev and devattr commands are often of
 limited use.

[22] dmesg is also
 available under FreeBSD, HP-UX, and Linux.

The AIX Object Data Manager

Under AIX, information about the devices on the system and
 other system configuration is stored in a binary database. The
 management apparatus for this database is known as the Object Data Manager (ODM), although "ODM" is also used
 colloquially to refer to the database itself, as well. Information
 is stored in the ODM as objects: items of various predefined
 types, with a collection of attributes and their associated sets or
 ranges of legal values.
Here is a textual representation of a sample entry for a disk
 drive:
name = "hdisk0"
status = 1
chgstatus = 2
ddins = "scdisk"
location = "00-00-0S-0,0"
parent = "scsi0"
connwhere = "0,0"
PdDvLn = "disk/scsi/1000mb"
This entry illustrates the general form for a device; most
 devices use the same fields, although their meaning varies somewhat
 depending on the device type. This entry describes a 1 GB SCSI disk
 drive.
The preceding entry came from the current devices database,
 stored in /etc/objrepos/CuDv.
 The attributes for this object (as well as those for the other
 objects on the system) are stored in a separate, current attributes
 database (found in /etc/objrepos/CuAt). This database may
 have several entries for any given object, one for each defined
 attribute for that class of object for which a nondefault value is
 set. For example, here are two of the attributes for the logical
 volume hd6 (one of the disk
 partitions on hdisk0):
name = "hd6"
attribute = "type"
value = "paging"
type = "R"
generic = "DU"
rep = "s"
nls_index = 639
name = "hd6"
attribute = "size"
value = "16"
type = "R"
generic = "DU"
rep = "r"
nls_index = 647
The first entry indicates that this is a paging space, and the
 second indicates that its size is 16 logical partitions (64 MB,
 assuming the default partition size).
SMIT and the AIX commands it runs retrieve information from
 the ODM, as well as adding and modifying entries as
 necessary.

The Unix Filesystem Layout

Now that we've considered the Unix approach to major system
 components, it's time to acquaint you with the structure of the Unix filesystem. This brief tour will begin with the
 root directory and its most important subdirectories.
The basic layout of traditional Unix filesystems is illustrated
 in Figure 2-4, which shows an
 idealized directory structure (actually a superset of the items found
 on any one system). Note that in practice, there are lots of
 variations with respect to this paradigm.
[image: Generic Unix directory structure]

Figure 2-4. Generic Unix directory structure

You'll find small deviations from this on most Unix systems you
 encounter, but the basic structure will be quite similar. We'll
 consider each of the major directories in turn.

The Root Directory

This is the base of the filesystem's tree structure; all other
 files and directories, regardless of their physical disk locations,
 are logically contained underneath the root directory (described in
 detail in Chapter 10).
There are a variety of important first-level directories under
 the / directory:
	/bin
	The traditional location for executable (binary) files for
 the various Unix user commands and utilities. On many current
 systems, some files within /bin are merely
 symbolic links to files in /usr/bin, and
 /bin is sometimes a link to
 /usr/bin. Other directories that hold Unix
 commands are /usr/bin and
 /usr/ucb.

	 /dev
	The device directory, containing special files as
 described previously. The /dev directory is
 divided into subdirectories in most System V-based versions of
 Unix, with each subdirectory holding special files of a given
 type. Subdirectory names indicate the type of devices it
 contains: dsk and rdsk
 for disks accessed in block and raw mode,
 mt and rmt for tape
 drives, term for terminals (serial lines),
 pts and ptc for
 pseudo-terminals, and so on.
Solaris introduces a new device directory tree, beginning
 at /devices, and many files under
 /dev are links to files in subdirectories
 of /devices.

	 /etc and
 /sbin
	System configuration files and executables. These
 directories contain many administrative files and configuration
 files. Among the most important files are the System V-style
 boot script subdirectories, named rc n.d
 and init.d , which are located under one of these two
 locations on systems using this style of booting.
/etc also traditionally contained the
 executable binaries for most administrative commands. In recent
 Unix versions, these files have moved to
 /sbin and /usr/sbin
 . Conventionally, the former is used for files
 required to boot the system, and the latter contains all other
 administrative commands.
On many systems, /etc also contains a
 subdirectory default , which holds files containing default parameter
 values for various commands.
On Linux systems, the sysconfig subdirectory holds network configuration and
 other package-specific, boot-related configuration files.
Under AIX, /etc
 contains two additional directories of note: /etc/objrepos stores the device configuration databases, and
 /etc/security stores most
 security-related configuration files.

	 /home
	This directory is a conventional location for users' home
 directories. For example, user chavez's
 home directory is often /home/chavez. The
 name is completely arbitrary, however, and is often changed by
 the local site. It may also be a separate filesystem.

	 /lib
	Location of shared libraries required for booting the
 system (i.e., before /usr
 is mounted).

	 /lost+found
	Lost files directory. Disk errors or incorrect system
 shutdown may cause files to become lost:
 lost files refer to disk locations that are marked as in use in
 the data structures on the disk, but that are not listed in any
 directory (i.e., an inode with a link count greater than zero
 that isn't listed in any directory). When the system is booting,
 it runs a program called fsck
 that, among other things, finds these files.
There is usually a lost+found
 directory on every disk partition;
 /lost+found is the one on the root disk.
 However, some Unix systems do not create the directory until it
 is needed.

	 /mnt
	Temporary mount directory: an empty directory
 conventionally designed for temporarily mounting
 filesystems.

	 /opt
	Directory tree into which optional software is often
 installed. On some systems, optional software products are
 installed instead under /var/opt. On AIX
 systems, this function is provided by the directory
 /usr/lpp.

	 /proc
	Process directory, designed to enable processes to be
 manipulated using Unix file access system calls. Files in this
 directory correspond to active processes (entries in the kernel
 process table). On Linux systems, there are also additional
 files containing various information about the system
 configuration: interrupt usage, I/O port use, DMA channel
 allocation, CPU type, and the like. The HP-UX operating system
 does not use /proc.

	 /stand
	Boot-related files, including the kernel executable.
 Solaris uses /kernel, and Linux systems use
 /boot for the same purpose.
 FreeBSD systems use /stand
 for installation and system configuration-related programs and
 use /boot for kernels and
 related files used for booting.

	 /tcb
	Directory tree for security-related database files on some
 systems offering enhanced security features, including HP-UX and
 Tru64 (the name stands for "trusted computing base").
 Configuration files related to the TCB are also stored under
 /etc/auth. /usr/tcb may also be used for this
 purpose.

	/tmp
	Temporary directory, available to all users as a scratch
 directory. The system administrator should see that all the
 files in this directory are deleted occasionally. Normally, one
 of the Unix startup scripts will clear
 /tmp.

	/usr
	This directory contains subdirectories for locally
 generated programs, executables for user and administrative
 commands, shared libraries, and other parts of the Unix
 operating system. The most important subdirectories of
 /usr are discussed in more detail in the
 next section. /usr also sometimes contains
 application programs.

	/var
	Spooling and other volatile directories
 (varying data). Important subdirectories
 are described below.

The /usr Directory

The directory /usr
 contains a number of important subdirectories:
	 /usr/bin
	Command binary files and shell scripts. This directory
 contains public executable programs that are part of the Unix
 system. Many executables for the X Window System are stored in
 /usr/bin/X11 or /usr/X11R6/bin.

	 /usr/include
	Include files. This directory contains C-language header
 files that define the C programmer's interface to standard
 system features and program libraries. For example, it contains
 the file stdio.h, which defines the user's
 interface to the C standard I/O library. The directory
 /usr/include/sys contains operating system
 include files.

	 /usr/lib
	Library directory, for public library files. Among other
 things, this directory contains the standard C libraries for
 mathematics and I/O. Library files generally have names of the
 form libx.a or libx.so, where x is
 one or more characters related to the library's contents; the
 extensions specify a regular (statically linked) and shared
 library, respectively.

	 /usr/local
	Local files. By convention, the directory
 /usr/local/bin holds executable programs
 that were developed locally or retrieved from the Internet and
 any sources other than the operating-system vendor. There may be
 other subdirectories here to hold related files: man (manual pages), lib (libraries), src (source code), doc (documentation), and so
 on.

	/usr/sbin
	Administrative commands (except ones required for booting,
 which are in /sbin).

	 /usr/share
	Shared data. On some recent systems, certain CPU
 architecture-independent static data files (such as the online
 manual pages, font directories, the dictionary files for
 spell, and the like) are
 stored in subdirectories under /usr/share.
 The name share reflects the idea that such
 files could be shared among a group of networked systems,
 eliminating the need for separate copies on every system.

	/usr/share/man
	One location for the manual pages directory tree. This directory
 contains the online version of the Unix reference manuals. It is
 divided into subdirectories for the various sections of the
 manual.
Traditionally, the subdirectory structure contains several
 mann subdirectories holding the raw source
 for the manual pages in that section and corresponding
 catn subdirectories storing the formatted
 versions. On many current systems, however, the latter are
 eliminated, and manual pages are formatted as needed. In many
 cases, the source files are stored in compressed form to save
 even more space.
The significance of the manual sections is described in
 the Table
 2-11.
Table 2-11. Manual-page sections
	Contents
	BSD style
	System V style

	User commands
	1
	1

	System calls
	2
	2

	Functions and library
 routines
	3
	3

	Special files and hardware
	4
	7

	Configuration files and file
 formats
	5
	4

	Games and demos
	6
	6 or 1

	Miscellaneous: character sets, filesystem
 types, data type definitions, etc.
	7
	5

	System administration
 commands
	8
	1m

	Maintenance commands
	8
	8

	Device drivers
	4
	7 or 9

Among the systems we are considering, the BSD-style
 organization is used by FreeBSD, Linux, and Tru64, and the
 System V-style organization is more or less followed by AIX,
 HP-UX, and Solaris.

	 /usr/src
	Source code for locally built software packages (FreeBSD
 and Linux). FreeBSD also uses the /usr/ports directory tree for retrieving and building
 additional software packages.

	 /usr/ucb
	A directory that contains standard Unix commands
 originally developed under BSD. Recent System V-based systems
 also provide BSD versions of commands so that users may use the
 form that they prefer. Some BSD-based versions have similar
 directories for System V versions of commands, conventionally
 /usr/5bin.
 /usr/opt/s5/bin and
 /usr/opt/s5/sbin perform a similar function
 under Tru64.

The /var Directory

As we noted, the /var
 directory tree holds data that changes over time. These are its most
 important subdirectories:
	 /var/adm
	Administrative directory (home directory of the special
 adm user). This directory traditionally
 contains the Unix accounting files although many Unix versions
 have moved them.

	/var/cron,
 /var/news
	/var contains
 subdirectories used by many system facilities. These examples
 are used by the cron and
 Usenet news facilities, respectively.

	 /var/log
	Location for log files maintained by many system
 facilities.

	/var/mail
	User mailbox location.

	 /var/run
	Contains files holding the current process IDs of various
 system daemons and other server and/or execution
 instance-specific data.

	 /var/spool
	Contains subdirectories for Unix subsystems that provide
 different kinds of spooling services. Some of the tools using
 /var/spool subdirectories are the print
 spooling system, the mail system, and the cron facility.

[14] This discussion will describe traditional ways of handling
 disks and filesystems. Unix versions that require or offer a
 logical volume manager do things quite differently at the lowest
 level, but this overview is still conceptually true for those
 systems (for "disk partition," read "logical volume"). See Chapter 10 for details.

[15] For this reason, each separate disk partition may also be
 referred to as a filesystem. Thus, "filesystem" is used to refer
 both to the overall system directory tree (as in "the Unix
 filesystem"), comprising every user-accessible disk partition on
 the system, and to the files and directories on individual disk
 partitions (as in "build a filesystem on the disk partition" or
 "mounting the user filesystems"). Whether the overall Unix
 directory tree or an individual disk partition is meant will be
 clear from the context. On a related note, the terms partition and
 filesystem are often used synonymously. Thus, while technically
 only filesystems can be mounted, common usage often refers to
 "mounting a disk" or "mounting a partition."

[16] The names given to the two types of special files are
 overdetermined. For example, the special file
 /dev/disk0a is referred to as a
 block special file, and
 /dev/rdisk0a is called a character
 special file. However, block special files are also
 sometimes called block devices, and character
 special files may be referred to as character
 devices or raw devices.

[17] In fact, on most Unix systems, mount is smarter than this. If you give
 it a single argument—either the physical disk partition or the
 mount point—it will look up the other argument in a table. But you
 can always supply both arguments, which means that you can
 rearrange your filesystem at will. (Why you would want to is a
 different question.)

[18] Even this isn't the full truth about Solaris special
 files. The files in /dev are usually links
 to the real device files in the /devices
 directory subtree.

Chapter 3. Essential AdministrativeTools and Techniques

The right tools make any job easier, and the lack of them can make
 some tasks almost impossible. When you need an Allen wrench, nothing but
 an Allen wrench will do. On the other hand, if you need a Phillips head
 srewdriver, you might be able to make do with a pocket knife, and
 occasionally it will even work better.
The first section of this chapter will consider ways the commands
 and utilities that Unix provides can make system administration easier.
 Sometimes that means applying common user commands to administrative
 tasks, sometimes it means putting commands together in unexpected ways,
 and sometimes it means making smarter and more efficient use of familiar
 tools. And, once in a while, what will make your life easier is creating
 tools for users to use, so that they can handle some things for
 themselves. We'll look at this last topic in Chapter 14.
The second section of this chapter will consider some essential
 administrative facilities and techniques, including the cron subsystem, the syslog facility, strategies
 for handling the many system log files, and management software packages.
 We'll close the chapter with a list of Internet software sources.
Getting the Most from Common Commands

In this section, we consider advanced and administrative uses of
 familiar Unix commands.
Getting Help

The manual page facility is the quintessentially Unix approach
 to online help: superficially minimalist, often obscure, but mostly
 complete. It's also easy to use, once you know your way around
 it.
Undoubtedly, the basics of the man command are familiar: getting help for a command,
 specifying a specific section, using -k (or apropos) to search for entries for a
 specific topic, and so on.
There are a couple of man
 features that I didn't discover until I'd been working on Unix systems
 for years (I'd obviously never bothered to run man man). The first is that you can request
 multiple manual pages within a single man command:
$ man umount fsck newfs
man presents the pages as
 separate files to the display program, and you can move among them
 using its normal method (for example, with :n in more).
On FreeBSD, Linux, and Solaris systems, man also has a -a option, which retrieves the specified
 manual page(s) from every section of the manual. For example, the
 first command below displays the introductory manual page for every
 section for which one is available, and the second command displays
 the manual pages for both the chown
 command and system call:
$ man -a intro
$ man -a chown
Manual pages are generally located in a predictable location
 within the filesystem, often /usr/share/man. You can configure the
 man command to search multiple
 man directory trees by setting
 the MANPATH environment variable to the colon-separated list of
 desired directories.
Changing the search order

The man command searches
 the various manual page sections in a predefined order: commands
 first, followed by system calls and library functions, and then the
 other sections (i.e., 1, 6, 8, 2, 3, 4, 5, and 7 for BSD-based
 schemes). The first manual page matching the one specified on the
 command line is displayed. In some cases, a different order might
 make more sense. Many operating systems allow this ordering scheme
 to be customized via the MANSECTS entry within a configuration file. For example, Solaris allows the
 search order to be customized via the MANSECTS entry in the /usr/share/man/man.cf configuration file.
 You specify a list of sections in the order in which you want them
 to be searched:
MANSECTS=8,1,2,3,4,5,6,7
This ordering brings administrative command sections to the
 beginning of the list.
Here are the available ordering customization locations for
 the versions we are considering that offer this feature:
	FreeBSD
	MANSECT environment
 variable (colon-separated)

	Linux (Red
 Hat)
	MANSECT in
 /etc/man.config
 (colon-separated)

	Linux (SuSE)
	SECTION
 in /etc/manpath.config
 (space-separated)

	Solaris
	MANSECTS in
 /usr/share/man/man.cf
 and/or the top level directory of any manual page tree
 (comma-separated)

Setting up man -k

It's probably worth mentioning how to get man -k to work if your system claims to
 support it, but nothing comes back when you use it. This command
 (and its alias apropos) uses a
 data file indexing all available manual pages. The file often must
 be initially created by the system administrator, and it may also
 need to be updated from time to time.
On most systems, the command to create the index file is
 makewhatis, and it must be run by
 root. The command does not
 require any arguments except on Solaris systems, where the top-level
 manual page subdirectory is given:
makewhatis
 Most systems
makewhat /usr/share/man
 Solaris
On AIX, HP-UX, and Tru64, the older catman -w command is used instead.

Piping into grep and awk

As you undoubtedly already know, the grep command searches its input for lines containing a given
 pattern. Users commonly use grep to
 search files. What might be new is some of the ways grep is useful in pipes with many
 administrative commands. For example, if you want to find out about
 all of a certain user's current processes, pipe the output of the
 ps command to grep and search for her username:
% ps aux | grep chavez
chavez 8684 89.5 9.627680 5280 ? R N 85:26 /home/j90/l988
root 10008 10.0 0.8 1408 352 p2 S 0:00 grep chavez
chavez 8679 0.0 1.4 2048 704 ? I N 0:00 -csh (csh)
chavez 8681 0.0 1.3 2016 672 ? I N 0:00 /usr/nqs/sc1
chavez 8683 0.0 1.3 2016 672 ? I N 0:00 csh -cb rj90
chavez 8682 0.0 2.6 1984 1376 ? I N 0:00 j90
This example uses the BSD version of ps, using the options that list every single
 process on the system,[1] and then uses grep to
 pick out the ones belonging to user chavez.If you'd like the header line from
 ps included as well, use a command
 like:
% ps -aux | egrep 'chavez|PID'
Now that's a lot to type every time, but you could define an
 alias if your shell supports them. For example, in the C shell you
 could use this one:
% alias pu "ps -aux | egrep '\!:1|PID'"
% pu chavez
USER PID %CPU %MEM SZ RSS TT STAT TIME COMMAND
chavez 8684 89.5 9.6 27680 5280 ? R N 85:26 /home/j90/l988
...
Another useful place for grep
 is with man -k. For instance, I
 once needed to figure out where the error log file was on a new
 system—the machine kept displaying annoying messages from the error
 log indicating that disk 3 had a hardware failure. Now, I already knew
 that, and it had even been fixed. I tried man
 -k error: 64 matches; man -k
 log was even worse: 122 manual pages. But man -k log | grep error produced only 9
 matches, including a nifty command to blast error log entries older
 than a given number of days.
The awk command is also a
 useful component in pipes. It can be used to selectively manipulate
 the output of other commands in a more general way than grep. A complete discussion of awk is beyond the scope of this book, but a
 few examples will show you some of its capabilities and enable you to
 investigate others on your own.
One thing awk is good for is
 picking out and possibly rearranging columns within command output.
 For example, the following command produces a list of all users
 running the quake game:
$ ps -ef | grep "[q]uake" | awk '{print $1}'
This awk command prints only
 the first field from each line of ps output passed to it by grep. The search string for grep may strike you as odd, since the
 brackets enclose only a single character. The command is constructed
 that way so that the ps line for
 the grep command itself will not be
 selected (since the string "quake" does not appear in it). It's
 basically a trick to avoid having to add grep
 -v grep to the pipe between the grep and awk commands.
Once you've generated the list of usernames, you can do what you
 need to with it. One possibility is simply to record the information
 in a file:
$ (date ; ps -ef | grep "[q]uake" | awk '{print $1 " [" $7 "]"}' \
 | sort | uniq) >> quaked.users
This command sends the list of users currently playing quake, along with the CPU time used so far
 enclosed in square brackets, to the file quaked.users, preceding the list with the
 current date and time. We'll see a couple of other ways to use such a
 list in the course of this chapter.
awk can also be used to sum
 up a column of numbers. For example, this command searches the entire
 local filesystem for files owned by user chavez and adds up all of their
 sizes:
find / -user chavez -fstype 4.2 ! -name /dev/* -ls | \
 awk '{sum+=$7}; END {print "User chavez total disk use = " sum}'
User chavez total disk use = 41987453
The awk component of this
 command accumulates a running total of the seventh column from the
 find command that holds the number of bytes in each file, and it
 prints out the final value after the last line of its input has been
 processed. awk can also compute
 averages; in this case, the average number of bytes per file would be
 given by the expression sum/NR
 placed into the command's END
 clause. The denominator NR is an
 awk internal variable. It holds the
 line number of the current input line and accordingly indicates the
 total number of lines read once all of them have been
 processed.
awk can be used in a similar
 way with the date command to
 generate a filename based upon the current date. For example, the
 following command places the output of the sys_doc script into a file named for the
 current date and host:
$ sys_doc > `date | awk '{print $3 $2 $6}'`.`hostname`.sysdoc
If this command were run on October 24, 2001, on host ophelia, the filename generated by the
 command would be 24Oct2001.ophelia.sysdoc.
Recent implementations of date allow it to generate such strings on
 its own, eliminating the need for awk. The following command illustrates these
 features. It constructs a unique filename for a scratch file by
 telling date to display the literal
 string junk_ followed by the day
 of the month, short form month name, 2-digit year, and hour, minutes
 and seconds of the current time, ending with the literal string
 .junk:
$ date +junk_%d%b%y%H%M%S.junk
junk_08Dec01204256.junk
We'll see more examples of grep and awk later in this chapter.
Is All of This Really Necessary?
If all of this fancy pipe fitting seems excessive to you, be
 assured that I'm not telling you about it for its own sake. The more
 you know the ins and outs of Unix commands—both basic and
 obscure—the better prepared you'll be for the inevitable unexpected
 events that you will face. For example, you'll be able to come up
 with an answer quickly when the division director (or department
 chair or whoever) wants to know what percentage of the aggregate
 disk space in a local area network is used by the chem group. Virtuosity and wizardry
 needn't be goals in themselves, but they will help you develop two
 of the seven cardinal virtues of system administration:
 flexibility and ingenuity. (I'll tell you
 what the others are in future chapters.)

Finding Files

Another common command of great use to a system administrator is
 find. find is one of those commands that you
 wonder how you ever lived without—once you learn it. It has one of the
 most obscure manual pages in the Unix canon, so I'll spend a bit of
 time explaining it (skip ahead if it's already familiar).
find locates files with common, specified characteristics,
 searching anywhere on the system you tell it to look. Conceptually,
 find has the following
 syntax:[2]
find
 starting-dir(s) matching-criteria-and-actions
Starting-dir(s) is the set
 of directories where find should
 start looking for files. By default, find searches all directories underneath the
 listed directories. Thus, specifying / as the starting directory would search
 the entire filesystem.
The matching-criteria tell
 find what sorts of files you want
 to look for. Some of the most useful are shown in Table 3-1.
Table 3-1. find command matching criteria options
	Option
	Meaning

	 -atime
 n
	File was last accessed exactly n days ago.

	 -mtime
 n
	File was last modified exactly n days ago.

	 -newer
 file
	File was modified more recently than file was.

	 -size
 n
	File is n
 512-byte blocks long (rounded up to next block).

	 -type
 c
	Specifies the file type: f=plain file, d=directory, etc.

	 -fstype
 typ
	Specifies filesystem type.

	 -name
 nam
	The filename is nam.

	 -perm
 p
	The file's access mode is p.

	 -user
 usr
	The file's owner is usr.

	 -group
 grp
	The file's group owner is grp.

	 -nouser

	The file's owner is not listed in the password
 file.

	 -nogroup

	The file's group owner is not listed in the group
 file.

These may not seem all that useful—why would you want a file
 accessed exactly three days ago, for instance? However, you may
 precede time periods, sizes, and other numeric quantities with a plus
 sign (meaning "more than") or a minus sign (meaning "less than") to
 get more useful criteria. Here are some examples:
-mtime +7 Last modified more than 7 days ago
-atime -2 Last accessed less than 2 days ago
-size +100 Larger than 50K
You can also include wildcards with the -name option, provided that you quote them.
 For example, the criteria -name
 '*.dat' specifies all filenames ending in .dat.
Multiple conditions are joined with AND by default. Thus, to
 look for files last accessed more than two months ago and last
 modified more than four months ago, you would use these
 options:
 -atime +60 -mtime +120
Options may also be joined with -o for OR combination, and grouping is
 allowed using escaped parentheses. For example, the matching criteria
 below specifies files last accessed more than seven days ago or last
 modified more than 30 days ago:
 \(-atime +7 -o -mtime +30 \)
An exclamation point may be used for NOT (be sure to quote it if
 you're using the C shell). For example, the matching criteria below
 specify all .dat files except
 gold.dat:
 ! -name gold.dat -name *.dat
The -perm option allows you
 to search for files with a specific access mode (numeric form). Using
 an unsigned value specifies files with exactly that permission
 setting, and preceding the value with a minus sign searches for files
 with at least the specified
 access. (In other words, the specified permission mode is XORed with
 the file's permission setting.) Here are some examples:
 -perm 755
 Permission = rwxr-xr-x
 -perm -002
 World-writeable files
 -perm -4000
 Setuid access is set
 -perm -2000
 Setgid access is set
The actions options tell
 find what to do with each file it
 locates that matches all the specified criteria. Some available
 actions are shown in Table
 3-2.
Table 3-2. find actions
	Option
	Meaning

	 -print

	Display pathname of matching file.

	 -ls [3]
	Display long directory listing for matching file.

	 -exec cmd

	Execute command on file.

	 -ok cmd

	Prompt before executing command on file.

	 -xdev

	Restrict the search to the filesystem of the
 starting directory (typically used to bypass mounted remote
 filesystems).

	 -prune

	Don't descend into directories
 encountered.

	[3] Not available under HP-UX.

The default on many newer systems is -print, although forgetting to include it on
 older systems like SunOS will result in a successful command with no
 output. Commands for -exec and
 -ok must end with an escaped
 semicolon (\ ;). The form {} may be used in commands as a placeholder
 for the pathname of each found file. For example, to delete each
 matching file as it is found, specify the following option to the
 find command:
-exec rm -f {} \;
Note that there are no spaces between the opening and closing
 curly braces. The curly braces may only appear once within the
 command.
Now let's put the parts together. The command below lists the
 pathname of all C source files under the current directory:
$ find . -name *.c -print
The starting directory is "." (the current directory), the
 matching criteria specify filenames ending in .c, and the action to be performed is to
 display the pathname of each matching file. This is a typical user use
 for find. Other common uses include
 searching for misplaced files and feeding file lists to cpio.
find has many administrative
 uses, including:
	Monitoring disk use

	Locating files that pose potential security problems

	Performing recursive file operations

For example, find may be used
 to locate large disk files. The command below displays a long
 directory listing for all files under /chem larger than 1 MB (2048 512-byte
 blocks) that haven't been modified in a month:
$ find /chem -size +2048 -mtime +30 -exec ls -l {} \;
Of course, we could also use -ls rather than the -exec clause. In fact, it is more efficient
 because the directory listing is handled by find internally (rather than having to spawn
 a subshell for every file). To search for files not modified in a
 month or not accessed in three months, use this command:
$ find /chem -size +2048 \(-mtime +30 -o -atime +120 \) -ls
Such old, large files might be candidates for tape backup and
 deletion if disk space is short.
find can also delete files
 automatically as it finds them. The following is a typical
 administrative use of find,
 designed to automatically delete old junk files on the system:
find / \(-name a.out -o -name core -o -name '*~'\
 -o -name '.*~' -o -name '#*#' \) -type f -atime +14 \
 -exec rm -f {} \; -o -fstype nfs -prune
This command searches the entire filesystem and removes various
 editor backup files, core dump files, and random executables
 (a.out) that haven't been
 accessed in two weeks and that don't reside on a remotely mounted
 filesystem. The logic is messy: the final -o option ORs all the options that preceded
 it with those that followed it, each of which is computed separately.
 Thus, the final operation finds files that match either of two
 criteria:
	The filename matches, it's a plain file, and it hasn't been
 accessed for 14 days.

	The filesystem type is nfs (meaning a remote disk).

If the first criteria set is true, the file gets removed; if the
 second set is true, a "prune" action takes place, which says "don't
 descend any lower into the directory tree." Thus, every time find comes across an NFS-mounted filesystem,
 it will move on, rather than searching its entire contents as
 well.
Matching criteria and actions may be placed in any order, and
 they are evaluated from left to right. For example, the following
 find command lists all regular
 files under the directories /home
 and /aux1 that are larger than
 500K and were last accessed over 30 days ago (done by the options
 through -print); additionally, it
 removes those named core:
find /home /aux1 -type f -atime +30 -size +1000 -print \
 -name core -exec rm {} \;
find also has security uses.
 For example, the following find
 command lists all files that have setuid or setgid access set (see
 Chapter 7).
find / -type f \(-perm -2000 -o -perm -4000 \) -print
The output from this command could be compared to a saved list
 of setuid and setgid files, in order to locate any newly created files
 requiring investigation:
find / \(-perm -2000 -o -perm -4000 \) -print | \
 diff - files.secure
find may also be used to
 perform the same operation on a selected group of files. For example,
 the command below changes the ownership of all the files under user
 chavez's home directory to user
 chavez and group physics:
find /home/chavez -exec chown chavez {} \; \
 -exec chgrp physics {} \;
The following command gathers all C source files anywhere under
 /chem into the directory
 /chem1/src:
find /chem -name '*.c' -exec mv {} /chem1/src \;
Similarly, this command runs the script prettify on every C source file under
 /chem:
find /chem -name '*.c' -exec /usr/local/bin/prettify {} \;
Note that the full pathname for the script is included in the
 -exec clause.
Finally, you can use the find
 command as a simple method for tracking changes that have been made to
 a system in the course of a certain time period or as the result of a
 certain action. Consider these commands:
touch /tmp/starting_time
perform some operation
find / -newer /tmp/starting_time
The output of the final find
 command displays all files modified or added as a result of whatever
 action was performed. It does not directly tell you about deleted
 files, but it lists modified directories (which can be an indirect
 indication).

Repeating Commands

find is one solution when you
 need to perform the same operation on a group of files. The xargs command is another way of automating
 similar commands on a group of objects; xargs is more flexible than find because it can operate on any set of
 objects, regardless of what kind they are, while find is limited to files and
 directories.
xargs is most often used as
 the final component of a pipe. It appends the items it reads from
 standard input to the Unix command given as its argument. For example, the
 following command increases the nice number of all quake processes by 10, thereby lowering each
 process's priority:
ps -ef | grep "[q]uake" | awk '{print $2}' | xargs renice +10
The pipe preceding the xargs
 command extracts the process ID from the second column of the ps output for each instance of quake, and then xargs runs renice using all of them. The renice command takes multiple process IDs as
 its arguments, so there is no problem sending all the PIDs to a single
 renice command as long as there are
 not a truly inordinate number of quake processes.
You can also tell xargs to
 send its incoming arguments to the specified command in groups by
 using its -n option, which takes
 the number of items to use at a time as its argument. If you wanted to
 run a script for each user who is currently running quake, for example, you could use this
 command:
ps -ef | grep "[q]uake" | awk '{print $1}' | xargs -n1 warn_user
The xargs command will take
 each username in turn and use it as the argument to warn_user.
So far, all of the xargs
 commands we've look at have placed the incoming items at the end of
 the specified command. However, xargs also allows you to place each incoming
 line of input at a specified position within the command to be
 executed. To do so, you include its -i option and use the form {} as placeholder for each incoming line
 within the command. For example, this command runs the System V
 chargefee utility for each user
 running quake, assessing them 10000
 units:
ps -ef | grep "[q]uake" | awk '{print $1}' | \
 xargs -i chargefee {} 10000
If curly braces are needed elsewhere within the command, you can
 specify a different pair of placeholder characters as the argument to
 -i.
Substitutions like this can get rather complicated. xargs's -t option displays each constructed command
 before executing, and the -p option
 allows you to selectively execute commands by prompting you before
 each one. Using both options together provides the safest execution
 mode and also enables you to nondestructively debug a command or
 script by answering no for every offered command.
-i and -n don't interact the way you might think
 they would. Consider this command:
$ echo a b c d e f | xargs -n3 -i echo before {} after
before a b c d e f after
$ echo a b c d e f | xargs -i -n3 echo before {} after
before {} after a b c
before {} after d e f
You might expect that these two commands would be equivalent and
 that they would both produce two lines of output:
before a b c after
before d e f after
However, neither command produces this output, and the two
 commands do not operate identically. What is happening is that
 -i and -n conflict with one another, and the one
 appearing last wins. So, in the first command, -i is what is operative, and each line of input is inserted into the echo
 command. In the second command, the -n3 option is used, three arguments are
 placed at the end of each echo
 command, and the curly braces are treated as literal
 characters.
Our first use of -i worked
 properly because the usernames are coming from separate lines in the
 ps command output, and these lines
 are retained as they flow through the pipe to xargs.
If you want xargs to execute
 commands containing pipes, I/O redirection, compound commands joined
 with semicolons, and so on, there's a bit of a trick: use the -c option to a shell to execute the desired
 command. I occasionally want to look at the final lines of a group of
 files and then view all of them a screen at a time. In other words,
 I'd like to run a command like this and have it "work":
$ tail test00* | more
On most systems, this command displays lines only from the last
 file. However, I can use xargs to
 get what I want:
$ ls -1 test00* | xargs -i /usr/bin/sh -c \
 'echo "****** {}:"; tail -15 {}; echo ""' | more
This displays the last 15 lines of each file, preceded by a
 header line containing the filename and followed by a blank line for
 readability.
You can use a similar method for lots of other kinds of
 repetitive operations. For example, this command sorts and de-dups all
 of the .dat files in the current
 directory:
$ ls *.dat | xargs -i /usr/bin/sh -c "sort -u -o {} {}"

Creating Several Directory Levels at Once

Many people are unaware of the options offered by the mkdir command. These options allow you to set the file mode
 at the same time as you create a new directory and to create multiple
 levels of subdirectories with a single command, both of which can make
 your use of mkdir much more
 efficient.
For example, each of the following two commands sets the mode on
 the new directory to rwxr-xr-x,
 using mkdir's -m option:
$ mkdir -m 755 ./people
$ mkdir -m u=rwx,go=rx ./places
You can use either a numeric mode or a symbolic mode as the
 argument to the -m option. You can
 also use a relative symbolic mode, as in this example:
$ mkdir -m g+w ./things
In this case, the mode changes are applied to the default mode
 as set with the umask
 command.
mkdir's -p option tells it to create any missing
 parents required for the subdirectories specified as its arguments.
 For example, the following command will create the subdirectories
 ./a and ./a/b if they do not already exist and then
 create ./a/b/c:
$ mkdir -p ./a/b/c
The same command without -p
 will give an error if all of the parent subdirectories are not already
 present.

Duplicating an Entire Directory Tree

It is fairly common to need to move or duplicate an
 entire directory tree, preserving not only the directory
 structure and file contents but also the ownership and mode settings
 for every file. There are several ways to accomplish this, using
 tar, cpio, and sometimes even cp. I'll focus on tar and then look briefly at the others at
 the end of this section.
Let's make this task more concrete and assume we want to copy
 the directory /chem/olddir as
 /chem1/newdir (in other words, we
 want to change the name of the olddir subdirectory as part of duplicating
 its entire contents). We can take advantage of tar's -p
 option, which restores ownership and access modes along with the files
 from an archive (it must be run as root to set
 file ownership), and use these commands to create the new directory
 tree:
cd /chem1
tar -cf - -C /chem olddir | tar -xvpf -
mv olddir newdir
The first tar command creates
 an archive consisting of /chem/olddir and all of the files and
 directories underneath it and writes it to standard output (indicated
 by the - argument to the -f option). The -C option sets the current directory for the
 first tar command to /chem. The second tar command extracts files from standard
 input (again indicated by -f
 -), retaining their previous
 ownership and protection. The second tar command gives detailed output (requested
 with the -v option). The final
 mv command changes the name of the
 newly created subdirectory of /chem1 to newdir.
If you want only a subset of the files and directories under
 olddir to be copied to newdir, you would vary the previous
 commands slightly. For example, these commands copy the src, bin, and data subdirectories and the logfile and .profile files from olddir to newdir, duplicating their ownership and
 protection:
mkdir /chem1/newdir
 set ownership and protection for newdir if necessary
cd /chem1/olddir
tar -cvf - src bin data logfile.* .profile |\
 tar -xvpf - -C /chem/newdir
The first two commands are necessary only if /chem1/newdir does not already
 exist.
This command performs a similar operation, copying only a single
 branch of the subtree under olddir:
mkdir /chem1/newdir
 set ownership and protection for newdir if necessary
cd /chem1/newdir
tar -cvf - -C /chem/olddir src/viewers/rasmol | tar -xvpf -
These commands create /chem1/newdir/src and its viewers subdirectory but place nothing in
 them but rasmol.
If you prefer cpio to
 tar, cpio can perform similar functions. For example, this
 command copies the entire olddir
 tree to /chem1 (again as
 newdir):
mkdir /chem1/newdir
 set ownership and protection for newdir if necessary
cd /chem1/olddir
find . -print | cpio -pdvm /chem1/newdir
On all of the systems we are considering, the cp command has a -p
 option as well, and these commands create newdir:
cp -pr /chem/olddir /chem1
mv /chem1/olddir /chem1/newdir
The -r option stands for
 recursive and causes cp to
 duplicate the source directory structure in the new location.
Be aware that tar works
 differently than cp does in the
 case of symbolic links. tar
 recreates links in the new location, while cp converts symbolic links to regular
 files.

Comparing Directories

Over time, the two directories we considered in the last section will
 undoubtedly both change. At some future point, you might need to
 determine the differences between them. dircmp is a special-purpose utility designed
 to perform this very operation.[4] dircmp takes the
 directories to be compared as its arguments:
$ dircmp /chem/olddir /chem1/newdir
dircmp produces voluminous
 output even when the directories you're comparing are small. There are
 two main sections to the output. The first one lists files that are
 present in only one of the two directory trees:
Mon Jan 4 1995 /chem/olddir only and /chem1/newdir only Page 1
./water.dat ./hf.dat
./src/viewers/rasmol/init.c ./h2f.dat
...
All pathnames in the report are relative to the directory
 locations specified on the command line. In this case, the files in
 the left column are present only under /chem/olddir, and those in the right column
 are present only at the new location.
The second part of the report indicates whether the files
 present in both directory trees are the same or different. Here are
 some typical lines from this section of the report:
same ./h2o.dat
different ./hcl.dat
The default output from dircmp indicates only whether the
 corresponding files are the same or not, and sometimes this is all you
 need to know. If you want to know exactly what the differences are,
 you can include the -d to dircmp, which tells it to run diff for each pair of differing files (since
 it uses diff, this works only for
 text files). On the other hand, if you want to decrease the amount of
 output by limiting the second section of the report to files that
 differ, include the -s option on
 the dircmp command.

Deleting Pesky Files

When I teach courses for new Unix users, one of the
 earlyexercises consists of figuring out how to delete the files -delete_me and delete me (with the embedded space in the
 second case).[5] Occasionally, however, a user winds up with a file that
 he just can't get rid of, no matter how creative he is in using
 rm. At that point, he will come to
 you. If there is a way to get rm to
 do the job, show it to him, but there are some files that rm just can't handle. For example, it is
 possible for some buggy application program to put a file into a
 bizarre, inconclusive state. Users can also create such files if they
 experiment with certain filesystem manipulation tools (which they
 probably shouldn't be using in the first place).
One tool that can take care of such intransigent files is the
 directory editor feature of the GNU emacs text
 editor. It is also useful to show this feature to users who just can't
 get the hang of how to quote strange filenames.
This is the procedure for deleting a file with emacs:
	Invoke emacs on the
 directory in question, either by including its path on the command
 line or by entering its name at the prompt produced by Ctrl-X
 Ctrl-F.

	Opening the directory causes emacs to automatically enter its
 directory editing mode. Move the cursor to the file in question
 using the usual emacs
 commands.

	Enter a d, which is the
 directory editing mode subcommand to mark a file for deletion. You
 can also use u to unmark a
 file, # to mark all auto-save
 files, and ~ to mark all backup
 files.

	Enter the x subcommand,
 which says to delete all marked files, and answer the confirmation
 prompt in the affirmative.

	At this point the file will be gone, and you can exit from
 emacs, continue other editing,
 or do whatever you need to do next.

emacs can also be useful for
 viewing directory contents when they include files with bizarre
 characters embedded within them. The most amusing example of this that
 I can cite is a user who complained to me that the ls command beeped at him every time he ran
 it. It turned out that this only happened in his home directory, and
 it was due to a file with a Ctrl-G in the middle of the name. The
 filename looked fine in ls listings
 because the Ctrl-G character was being interpreted, causing the beep.
 Control characters become visible when you look at the directory in
 emacs, and so the problem was
 easily diagnosed and remedied (using the r subcommand to emacs's directory editing mode that renames
 a file).

Putting a Command in a Cage

As we'll discuss in detail later, system security inevitably
 involves tradeoffs between convenience and risk. One way to mitigate
 the risks arising from certain inherently dangerous commands and
 subsystems is to isolate them from the rest of the system. This is
 accomplished with the chroot
 command.
The chroot command runs
 another command from an alternate location within the filesystem, making the
 command think that that the location is actually the root directory of
 the filesystem. chroot takes one
 argument, which is the alternate top-level directory. For example, the
 following command runs the sendmail
 daemon, using the directory /jail
 as the new root directory:
chroot /jail sendmail -bd -q10m
The sendmail process will
 treat /jail as its root
 directory. For example, when sendmail looks for the mail aliases
 database, which it expects to be located in /etc/aliases, it will actually access the
 file /jail/etc/aliases. In order
 for sendmail to work properly in
 this mode, a minimal filesystem needs to be set up under /jail containing all the files and
 directories that sendmail
 needs.
Running a daemon or subsystem as a user created specifically for
 that purpose (rather than root) is sometimes
 called sandboxing. This security technique is
 recommended wherever feasible, and it is often used in conjunction
 with chrooting for added security. See Section
 8.1 for a detailed example of this technique.
Tip
FreeBSD also has a facility called jail , which is a stronger versions of chroot that allows you to specify access
 restrictions for the isolated command.

Starting at the End

Perhaps it's appropriate that we consider the tail command near the end of this section on administrative
 uses of common commands. tail's
 principal function is to display the last 10 lines of a file (or
 standard input). tail also has a
 -f option that displays new lines
 as they are added to the end of a file; this mode can be useful for
 monitoring the progress of a command that writes periodic status
 information to a file. For example, these commands start a background
 backup with tar, saving its output
 to a file, and monitor the operation using tail -f:
$ tar -cvf /dev/rmt1 /chem /chem1 > 24oct94_tar.toc &
$ tail -f 24oct94_tar.toc
The information that tar
 displays about each file as it is written to tape is eventually
 written to the table of contents file and displayed by tail. The advantage that this method has
 over the tee command is that the
 tail command may be killed and
 restarted as many times as you like without affecting the tar command.
Some versions of tail also
 include a -r option, which will
 display the lines in a file in reverse order, which is occasionally
 useful. HP-UX does not support this option, and Linux provides this
 feature in the tac command.

Be Creative

As a final example of thecreative use of ordinary commands, consider the
 following dilemma. A user tells you his workstation won't reboot. He
 says he was changing his system's boot script but may have deleted
 some files in /etc accidentally.
 You go over to it, type ls, and get
 a message about some missing shared libraries. How do you poke around
 and find out what files are there?
The answer is to use the simplest Unix command there is,
 echo , along with the wildcard mechanism, both of which are
 built into every shell, including the statically linked one available
 in single user mode.
To see all the files in the current directory, just type:
$ echo *
This command tells the shell to display the value of "*", which
 of course expands to all files not beginning with a period in the
 current directory.
By using echo together with cd
 (also a built-in shell command), I was able to get a pretty good idea
 of what had happened. I'll tell you the rest of this story at the end
 of Chapter 4.

[1] Under HP-UX and for Solaris' /usr/bin/ps, the corresponding command
 is ps -ef.

[2] Syntactically, find does
 not distinguish between file-selection options and action-related
 options, but it is often helpful to think of them as separate
 types as you learn to use find.

[4] On FreeBSD and Linux systems, diff
 -r provides the equivalent functionality.

[5] There are lots of solutions. One of the simplest is rm delete\ me ./-delete_me.

Essential Administrative Techniques

In this section, we consider several system facilities with which
 system administrators need to be intimately familiar.
Periodic Program Execution: The cron Facility

cron is a Unix facility that
 allows you to schedule programs for periodic execution. For example,
 you can use cron to call a
 particular remote site every hour to exchange email, to clean up
 editor backup files every night, to back up and then truncate system
 log files once a month, or to perform any number of other tasks. Using
 cron, administrative functions are
 performed without any explicit action by the system administrator (or
 any other user).[6]
For administrative purposes, cron is useful for running commands and
 scripts according to a preset schedule. cron can send the resulting output to a log
 file, as a mail or terminal message, or to a different host for
 centralized logging. The cron
 command starts the crond daemon,
 which has no options. It is normally started automatically by one of
 the system initialization scripts.
Table 3-3 lists the
 components of the cron facility on
 the various Unix systems we are considering. We will cover each of
 them in the course of thissection.
Table 3-3. Variations on the cron facility
	Component
	Location and information

	crontab files
	 Usual:
 /var/spool/cron/crontabs

 FreeBSD:
 /var/cron/tabs, /etc/crontab

 Linux: /var/spool/cron (Red Hat),
 /var/spool/cron/tabs
 (SuSE), /etc/crontab
 (both)

	crontab format
	 Usual: System V
 (no username field)
 BSD: /etc/crontab (requires username as
 sixth field)

	 cron.allow
 and cron.deny
 files
	 Usual:
 /var/adm/cron

 FreeBSD: /var/cron
 Linux: /etc
 (Red Hat), /var/spool/cron (SuSE)

 Solaris: /etc/cron.d

	Related facilities
	 Usual:
 none
 FreeBSD:
 periodic utility
 Linux: /etc/cron.*(hourly,daily,weekly,monthly)

 Red Hat: anacron utility[7]

	 cron log
 file
	 Usual
 :/var/adm/cron/log

 FreeBSD:
 /var/log/cron

 Linux: /var/log/cron (Red Hat), not
 configured (SuSE)
 Solaris: /var/cron/log

	File containing PID of crond
	 Usual: not
 provided
 FreeBSD: /var/run/cron.pid

 Linux: /var/run/crond.pid (Red Hat),
 /var/run/cron.pid (SuSE)

	Boot script that starts cron
	 AIX: /etc/inittab

 FreeBSD: /etc/rc
 HP-UX: /sbin/init.d/cron

 Linux: /etc/init.d/cron

 Solaris: /etc/init.d/cron

 Tru64: /sbin/init.d/cron

	Boot script configuration file: cron -related entries
	 AIX: none
 used
 FreeBSD:
 /etc/rc.conf: cron_enable="YES" and cron_flags="args-to-cron"
 HP-UX: /etc/rc.config.d/cron: CRON=1

 Linux: none
 used (Red Hat, SuSE 8), /etc/rc.config: CRON="YES" (SuSE 7)

 Solaris:
 /etc/default/cron:
 CRONLOG=yes
 Tru64: none used

	[7] The Red Hat Linux anacron utility is very similar
 to cron, but it also runs jobs missed due to the system
 being down when it reboots.

crontab files

What to run and when to run it are specified by crontab entries, which comprise the
 system's cron schedule. The name comes from the traditional
 cron configuration file named
 crontab, for "cron table."
By default, any user may add entries to the cron schedule. Crontab entries are stored
 in separate files for each user, usually in the directory called
 /var/spool/cron/crontabs (see
 Table 3-3 for exceptions).
 Users' crontab files are named after their username: for example,
 /var/spool/cron/crontabs/root.
Tip
The preceding is the System V convention for crontab files.
 BSD systems traditionally use a single file, /etc/crontab. FreeBSD and Linux systems
 still use this file, in addition to those just mentioned.

Crontab files are not ordinarily edited directly but are
 created and modified with the crontab command (described later in this
 section).
Crontab entries direct cron
 to run commands at regular intervals. Each one-line entry in the
 crontab file has the following format:
 minutes hours day-of-month month weekday command
Whitespace separates the fields. However, the final field,
 command, can contain spaces
 within it (i.e., the command
 field consists of everything after the space following weekday); the other fields must not
 contain embedded spaces.
The first five fields specify the times at which cron should execute command. Their meanings are described in
 Table 3-4.
Table 3-4. Crontab file fields
	Field
	Meaning
	Range

	 minutes

	Minutes after the hour
	0-59

	 hours

	Hour of the day
	0-23 (0=midnight)

	 day-of-month
	Numeric day within a month
	1-31

	 month

	The month of the year
	1-12

	 weekday

	The day of the week
	0-6 (0=Sunday)

Note that hours are numbered from midnight (0), and weekdays
 are numbered beginning with Sunday (also 0).
An entry in any of these fields can be a single number, a pair
 of numbers separated by a dash (indicating a range of numbers), a
 comma-separated list of numbers and/or ranges, or an asterisk (a
 wildcard that represents all valid values for that field).
If the first character in an entry is a number sign (#),
 cron treats the entry as a
 comment and ignores it. This is also an easy way to temporarily
 disable an entry without permanently deleting it.
Here are some example crontab entries:
0,15,30,45 * * * * (echo ""; date; echo "") >/dev/console
0,10,20,30,40,50 7-18 * * * /usr/sbin/atrun
0 0 * * * find / -name "*.bak" -type f -atime +7 -exec rm {} \;
0 4 * * * /bin/sh /var/adm/mon_disk 2>&1 >/var/adm/disk.log
0 2 * * * /bin/sh /usr/local/sbin/sec_check 2>&1 | mail root
30 3 1 * * /bin/csh /usr/local/etc/monthly 2>&1 >/dev/null
#30 2 * * 0,6 /usr/local/newsbin/news.weekend
The first entry displays the date on the console terminal
 every fifteen minutes (on the quarter hour); notice that the
 multiple commands are enclosed in parentheses in order to redirect
 their output as a group. (Technically, this says to run the commands
 together in a single subshell.) The second entry runs /usr/sbin/atrun every 10 minutes from 7
 A.M. to 6 P.M. daily. The third entry runs a find command to remove all
 . bak
 files not accessed in seven days.
The fourth and fifth lines run a shell script every day, at 4
 A.M. and 2 A.M., respectively. The shell to execute the script is
 specified explicitly on the command line in both cases; the system
 default shell, usually the Bourne shell, is used if none is
 explicitly specified. Both lines' entries redirect standard output
 and standard error, sending both of them to a file in one case and
 as electronic mail to root in
 the other.
The sixth entry executes the C shell script
 /usr/local/etc/monthly at 3:30 A.M. on the
 first day of each month. Notice that the command format—specifically
 the output redirection—uses Bourne shell syntax even though the
 script itself will be run under the C shell.
Were it not disabled, the final entry would run the command
 /usr/local/newsbin/news.weekend
 at 2:30 A.M. on Saturday and Sunday mornings.
The final three active entries illustrate three
 output-handling alternatives: redirecting it to a file, piping it
 through mail, and discarding it to /dev/null. If no output redirection is
 performed, the output is sent via mail to the user who ran the
 command.
The command field can be
 any Unix command or group of commands (properly separated with
 semicolons). The entire crontab entry can be arbitrarily long, but
 it must be a single physical line in the file.
If the command contains a percent sign (%), cron will use any text following this sign
 as standard input for command.
 Additional percent signs can be used to subdivide this text into
 lines. For example, the following crontab entry:
30 11 31 12 * /usr/bin/wall%Happy New Year!%Let's make it great!
runs the wall command at
 11:30 A.M. on December 31, using the text "Happy New Year! Let's
 make it great!" as standard input.
Note that the day of the week and day of the month fields are
 effectively ORed: if both are filled in, the entry is run on that
 day of the month and on
 matching days of the week. Thus, the following entry would run on
 January 1 and every Monday:
* * 1 1 1 /usr/local/bin/test55
In most implementations, the cron daemon reads the crontab files when
 it starts up and whenever there have been changes to any of the
 crontab files. In some, generally older versions, cron reads the crontab files once every
 minute.
Note
The BSD crontab file, /etc/crontab, uses a slightly different
 entry format, inserting an additional field between the weekday and command fields: the user account that
 should be used to run the specified command. Here is a sample
 entry that runs a script at 3:00 A.M. on every weekend day:
0 3 * * 6-7 root /var/adm/weekend.sh
As this example illustratess, this entry format also encodes
 the days of the week slightly differently, running from 1=Monday
 through 7=Sunday.

FreeBSD and Linux crontab entry format enhancements

FreeBSD and Linux systems use the cron package written by Paul Vixie. It
 supports all standard cron
 features and includes enhancements to the stand ard crontab entry format, including the
 following:
	Months and days of the week may be specified as names,
 abbreviated to their first three letters: sun, mon, jan, feb, and so on.

	Sunday can be specified as either 0 or 7.

	Ranges and lists can be combined: e.g., 2,4,6-7 is a
 legal entry. HP-UX also supports this enhancement.

	Step values can be
 specified with a /n
 suffix. For example, the hours entry 8-18/2 means "every two
 hours from 8 A.M. to 6 P.M." Similarly, the minutes entry */5
 means "every five minutes."

	Environment variables can be defined within the crontab
 file, using the usual Bourne shell syntax. The environment
 variable MAILTO may be used to specify a user to receive any
 mail messages that cron
 thinks are necessary. For example, the first definition below
 sends mail to user chavez
 (regardless of which crontab the line appears in), and the
 second definition suppresses all mail from cron:
MAILTO=chavez
MAILTO=
Additional environment variables include SHELL, PATH, and HOME.

	On FreeBSD systems, special strings may be used to
 replace the scheduling fields entirely:
	@reboot
	Run at system reboots

	 @yearly
	Midnight on January 1

	 @monthly
	Midnight on the first of the
 month

	 @weekly
	Midnight each Sunday

	 @daily
	Midnight

	 @hourly
	On the hour

Adding crontab entries

The normal way to create crontab entries is with the crontab command.[8]
In its default mode, the crontab command installs the text file
 specified as its argument into the cron spool area, as the crontab file for
 the user who ran crontab. For
 example, if user chavez
 executes the following command, the file mycron will be installed as /var/spool/cron/crontabs/chavez:
$ crontab mycron
If chavez had previously
 installed crontab entries, they will be replaced by those in
 mycron; thus, any current
 entries that chavez wishes to
 keep must also be present in mycron.
The -l option to crontab lists the current crontab entries,
 and redirecting the command's output to a file will allow them to be
 captured and edited:
$ crontab -l >mycron
$ vi mycron
$ crontab mycron
The -r option removes all
 current crontab entries.
The most convenient way to edit the crontab file is to use the
 -e option, which lets you
 directly modify and reinstall your current crontab entries in a
 single step. For example, the following command creates an editor
 session on the current crontab file (using the text editor specified
 in the EDITOR environment
 variable) and automatically installs the modified file when the
 editor exits:
$ crontab -e
Most crontab commands also
 accept a username as their final argument. This allows root to list or install a crontab file
 for a different user. For example, this command edits the crontab
 file for user adm:
crontab -e adm
The FreeBSD and Linux versions of this command provide the
 same functionality with the -u
 option:
crontab -e -u adm
When you decide to place a new task under cron's control, you'll need to carefully
 consider which user should execute each command run by cron, and then add the appropriate crontab
 entry to the correct crontab file. The following list describes
 common system users and the sorts of crontab entries they
 conventionally control:
	root
	General system functions, security monitoring, and
 filesystem cleanup

	lp
	Cleanup and accounting activities related to print
 spooling

	sys
	Performance monitoring

	uucp
	Running tasks in the UUCP file exchange facility

cron log files

Almost all versions of cron
 provide some mechanism for recording its activities to a log file.
 On some systems, this occurs automatically, and on others, messages
 are routed through the syslog facility. This is usually set up at
 installation time, but occasionally you'll need to configure syslog
 yourself. For example, on SuSE Linux systems, you'll need to add an
 entry for cron to the syslog
 configuration file /etc/syslog.conf (discussed later in this chapter).
Solaris systems use a different mechanism. cron will keep a log of its activities if
 the CRONLOG entry in /etc/default/cron is set to YES.
If logging is enabled, the log file should be monitored
 closely and truncated periodically, as it grows extremely quickly
 under even moderate cron
 use.

Using cron to automate system administration

The sample crontab entries we looked at previously provide
 some simple examples of using cron toautomate various system tasks. cron provides the ideal way to run scripts
 according to a fixed schedule.
Another common way to use cron for regular administrative tasks is
 through the use of a series of scripts designed to run every night,
 once a week, and once a month; these scripts are often named
 daily, weekly, and monthly, respectively. The commands in
 daily would need to be
 performed every night (more specialized scripts could be run from
 it), and the other two would handle tasks to be performed less
 frequently.
daily might include these
 tasks:
	Remove junk files more than three days old from /tmp and other scratch directories.
 More ambitious versions could search the entire system for old
 unneeded files.

	Run accounting summary commands.

	Run calendar.

	Rotate log files that are cycled daily.

	Take snapshots of the system with df, ps, and other appropriate commands in
 order to compile baseline system performance data (what is
 normal for that system). See Chapter
 15 for more details.

	Perform daily security monitoring.

weekly might perform
 tasks like these:
	Remove very old junk files from the system (somewhat more
 aggressively than daily).

	Rotate log files that are cycled weekly.

	Run fsck -n to list any
 disk problems.

	Monitor user account security features.

monthly might do these
 jobs:
	List large disk files not accessed that month.

	Produce monthly accounting reports.

	Rotate log files that are cycled monthly.

	Use makewhatis to
 rebuild the database for use by man
 -k.

Additional or different activities might make more sense on
 your system. Such scripts are usually run late at night:
0 1 * * * /bin/sh /var/adm/daily 2>&1 | mail root
0 2 * * 1 /bin/sh /var/adm/weekly 2>&1 | mail root
0 3 1 * * /bin/sh /var/adm/monthly 2>&1 | mail root
In this example, the daily script runs every morning at 1
 A.M., weekly runs every Monday
 at 2 A.M., and monthly runs on
 the first day of every month at 3 A.M.
cron need not be used only
 for tasks to be performed periodically forever, year after year. It
 can also be used to run a command repeatedly over a limited period
 of time, after which the crontab entry would be disabled or removed.
 For example, if you were trying to track certain kinds of security
 problems, you might want to use cron to run a script repeatedly to gather
 data. As a concrete example, consider this short script to check for
 large numbers of unsuccessful login attempts under AIX (although the
 script applies only to AIX, the general principles are useful on all
 systems):
#!/bin/sh
chk_badlogin - Check unsuccessful login counts

date >> /var/adm/bl
egrep '^[^*].*:$|gin_coun' /etc/security/user | \
 awk 'BEGIN {n=0}
 {if (NF>1 && $3>3) {print s,$0; n=1}}
 {s=$0}
 END {if (n==0) {print "Everything ok."}}' \
>> /var/adm/bl
This script writes the date and time to the file /var/adm/bl and then checks /etc/security/user for any user with more
 than three unsuccessful login attempts. If you suspected someone was
 trying to break in to your system, you could run this script via
 cron every 10 minutes, in the
 hopes of isolating that accounts that were being targeted:
0,10,20,30,40,50 * * * * /bin/sh /var/adm/chk_badlogin
Similarly, if you are having a performance problem, you could
 use cron to automatically run
 various system performance monitoring commands or scripts at regular
 intervals to track performance problems over time.
The remainder of this section will consider two built-in
 facilities for accomplishing the same purpose under FreeBSD and
 Linux.
FreeBSD: The periodic command

FreeBSD provides the periodic command for the purposes we've
 just considered. This command is used in conjunction with the
 cron facility and serves as a
 method of organizing recurring administrative tasks. It is used by
 the following three entries from /etc/crontab:
1 3 * * * root periodic daily
15 4 * * 6 root periodic weekly
30 5 1 * * root periodic monthly
The command is run with the argument daily each day at 3:01 A.M., with
 weekly on Saturdays at 4:15
 A.M., and with monthly at
 5:30 A.M. on the first of each month.
The facility is controlled by the /etc/defaults/periodic.conf file, which
 specifies its default behavior. Here are the first few lines of a
 sample file:
#!/bin/sh
#
What files override these defaults ?
periodic_conf_files="/etc/periodic.conf /etc/periodic.conf.local"
This entry specifies the files that can be used to customize
 the facility's operation. Typically, changes to the default
 settings are all that appear in these files. The system
 administrator must create a local configuration file if desired,
 because none is installed by default.
The command form periodic
 name causes the command to run all of
 the scripts that it finds in the specified directory. If the
 latter is an absolute pathname, there is no doubt as to which
 directory is intended. If simply a name—such as daily—is given, the directory is
 assumed to be a subdirectory of /etc/periodic or of one of the
 alternate directories specified in the configuration file's
 local_periodic entry:
periodic script dirs
local_periodic="/usr/local/etc/periodic /usr/X11R6/etc/periodic"
/etc/periodic is always
 searched first, followed by the list in this entry.
The configuration file contains several entries for valid
 command arguments that control the location and content of the
 reports that periodic
 generates. Here are the entries related to daily:
daily general settings
daily_output="root" Email report to root.
daily_show_success="YES" Include success messages.
daily_show_info="YES" Include informational messages.
daily_show_badconfig="NO" Exclude configuration error messages.
These entries produce rather verbose output, which is sent
 via email to root. In
 contrast, the following entries produce a minimal report (just
 error messages), which is appended to the specified log
 file:
daily_output="/var/adm/day.log" Append report to a file.
daily_show_success="NO"
daily_show_info="NO"
daily_show_badconfig="NO"
The bulk of the configuration file defines variables used in
 the scripts themselves, as in these examples:
100.clean-disks
daily_clean_disks_enable="NO"# Delete files daily
daily_clean_disks_files="[#,]* .#* a.out *.core .emacs_[0-9]*"
daily_clean_disks_days=3# If older than this
daily_clean_disks_verbose="YES"# Mention files deleted
340.noid
weekly_noid_enable="YES# Find unowned files
weekly_noid_dirs="/"# Start here
The first group of settings are used by the /etc/periodic/daily/100.clean-disks
 script, which deletes junk files from the filesystem. The first
 one indicates whether the script should perform its actions or not
 (in this case, it is disabled). The next two entries specify
 specific characteristics of the files to be deleted, and the final
 entry determines whether each deletion will be logged or
 not.
The second section of entries apply to /etc/periodic/weekly/340.noid, a script
 that searches the filesystem for files owned by an unknown user or
 group. This excerpt from the script itself will illustrate how the
 configuration file entries are actually used:
case "$weekly_noid_enable" in
 [Yy][Ee][Ss]) Value is yes.
 echo "Check for files with unknown user or group:"
 rc=$(find -H ${weekly_noid_dirs:-/} -fstype local \
 \(-nogroup -o -nouser \) -print | sed 's/^/ /' |
 tee /dev/stderr | wc -l)
 [$rc -gt 1] && rc=1;;

 *) rc=0;; Any other value.
esac
exit $rc
If weekly_noid_enable
 is set to "yes," then a message is printed with
 echo, and a pipe comprised of
 find, sed, tee and wc runs (which lists the files and then
 the total number of files), producing a report like this
 one:
Check for files with unknown user or group:
 /tmp/junk
 /home/jack
 2
The script goes on to define the variable rc as the appropriate script exit value
 depending on the circumstances.
You should become familiar with the current periodic configuration and component
 scripts on your system. If you want to make additions to the
 facility, there are several options:
	Add a crontab entry running periodic /dir, where periodic's argument is a full
 pathname. Add scripts to this directory and entries to the
 configuration file as appropriate.

	Add an entry of the form periodic
 name and create a subdirectory of
 that name under /etc/periodic
 or one of the directories listed in the
 configuration file's local_periodic
 entry. Add scripts to the subdirectory and entries
 to the configuration file as appropriate.

	Use the directory specified in the daily_local setting (or weekly or monthly, as desired) in /etc/defaults/periodic.conf (by
 default, this is /etc/{daily,weekly,monthly}.local).
 Add scripts to this directory and entries to the configuration
 file as appropriate.

I think the first option is the simplest and most
 straightforward. If you do decide to use configuration file
 entries to control the functioning of a script that you create, be
 sure to read in its contents with commands like these:
if [-r /etc/defaults/periodic.conf]
then
 . /etc/defaults/periodic.conf
 source_periodic_confs
fi
You can use elements of the existing scripts as models for
 your own.

Linux: The /etc/cron.* directories

Linux systems provide a similar mechanism for organizing
 regular activities, via the /etc/cron.* subdirectories. On Red Hat
 systems, these scripts are run via these crontab entries:
01 * * * * root run-parts /etc/cron.hourly
02 4 * * * root run-parts /etc/cron.daily
22 4 * * 0 root run-parts /etc/cron.weekly
42 4 1 * * root run-parts /etc/cron.monthly
On SuSE systems, the script /usr/lib/cron/run-crons runs them; the
 script itself is executed by cron every 15 minutes. The scripts in
 the corresponding subdirectories are run slightly off the hour for
 /etc/cron.hourly and around
 midnight (SuSE) or 4 A.M. (Red Hat). Customization consists of
 adding scripts to any of these subdirectories.
Under SuSE 8, the /etc/sysconfig/cron configuration file
 contains settings that control the actions of some of these
 scripts.

cron security issues

cron's security issues are
 of two main types: making sure the system crontab files are secure
 and making sure unauthorized users don't run commands using cron. The first problem may be addressed
 by setting (if necessary) and checking the ownership and protection
 on the crontab files appropriately. (In particular, the files should
 not be world-writeable.) Naturally, they should be included in any
 filesystem security monitoring that you do.
The second problem, ensuring that unauthorized users don't run
 commands via cron, is addressed
 by the files cron.allow and
 cron.deny. These files control
 access to the crontab command.
 Both files contain lists of usernames, one per line. Access to
 crontab is controlled in the
 following way:
	If cron.allow exists,
 a username must be listed within it in order to run crontab.

	If cron.allow does
 not exist but cron.deny
 does exist, any user not listed in cron.deny may use the crontab command. cron.deny may be empty to allow
 unlimited access to cron.

	If neither file exists, only root can use crontab, except under Linux and
 FreeBSD, where the default build configuration of cron allows everyone to use it.

Warning
These files control only whether a user can use the
 crontab command or not. In
 particular, they do not affect whether any existing crontab
 entries will be executed. Existing entries will be executed until
 they are removed.

The locations of the cron
 access files on various Unix systems are listed in Table 3-3.

System Messages

The various normal system facilities all generate
 status messages in the course of their normal operations. In
 addition, error messages are generated whenever there are hardware or
 software problems. Monitoring such messages—and acting upon important
 ones—is one of the system administrator's most important ongoing
 activities.
In this section, we first consider the syslog subsystem, which
 provides a centralized system message collection facility. We go on to
 consider the hardware-error logging facilities provided by some Unix
 systems, as well as tools for managing and processing the large amount
 of system message data that can accumulate.
The syslog facility

The syslog message-logging facility provides a more general
 way to specify where and how some types of system messages are
 saved. Table 3-5 lists the
 components of the syslog facility.
Table 3-5. Variations on the syslog facility
	Component
	Location and information

	 syslogd
 option to reject nonlocal messages

	 AIX: -r
 FreeBSD: -s
 HP-UX: -N
 Linux: -r
 to allow remote messages

 Solaris:
 -t

 Tru64: List allowed hosts
 in /etc/syslog.auth (if
 if doesn't exist, all hosts are allowed)

	File containing PID of syslogd
	 Usual:
 /var/run/syslog.pid

 AIX:
 /etc/syslog.pid

	Current general message log file
	 Usual:
 /var/log/messages

 HP-UX:
 /var/adm/syslog/syslog.log

 Solaris:
 /var/adm/messages

 Tru64:
 /var/adm/syslog.dated/current/*.log

	Boot script that starts syslogd
	 AIX:
 /etc/rc.tcpip

 FreeBSD: /etc/rc
 HP-UX: /sbin/init.d/syslogd

 Linux: /etc/init.d/syslog

 Solaris: /etc/init.d/syslog

 Tru64: /sbin/init.d/syslog

	Boot script configuration file:syslog-related entries
	 Usual: none
 used
 FreeBSD:
 /etc/rc.conf: syslogd_enable="YES" and
 syslogd_flags="opts"
 SuSE Linux: /etc/rc.config (SuSE 7),
 /etc/sysconfig/syslog
 (SuSE 8);
 SYSLOGD_PARAMS="opts"
 and KERNEL_LOGLEVEL=n

Configuring syslog

Messages are written to locations you specify by syslogd, the system message logging
 daemon. syslogd collects messages
 sent by various system processes and routes them to their final
 destination based on instructions given in its configuration file
 /etc/syslog.conf . Syslog organizes system messages in two ways: by the
 part of the system that generated them and by their
 importance.
Entries in syslog.conf
 have the following format, reflecting these divisions:
 facility.level destination
where facility is the name of the subsystem sending the message,
 level is the severity level of
 the message, and destination is
 the file, device, computer or username to send the message to. On
 most systems, the two fields must be separated by tab characters
 (spaces are allowed under Linux and FreeBSD).
There are a multitude of defined facilities. The most
 important are:
	kern
	The kernel.

	user
	User processes.

	mail
	The mail subsystem.

	lpr
	The printing subsystem.

	daemon
	System server processes.

	auth
	The user authentication system (nonsensitive
 information).

	authpriv
	The user authentication system (security sensitive
 information). Some systems have only one of auth and authpriv.

	ftp
	The FTP facility.

	cron
	The cron
 facility.

	syslog
	Syslog facility internal messages.

	mark
	Timestamps produced at regular intervals (e.g., every 15
 minutes).

	local*
	Eight local message facilities (0-7). Some operating
 systems use one or more of them.

Note that an asterisk for the facility corresponds to all
 facilities except mark.
The severity levels are, in order of decreasing
 seriousness:
	emerg
	System panic.

	alert
	Serious error requiring immediate attention.

	crit
	Critical errors like hard device errors.

	err
	Other errors.

	warning
	Warnings.

	notice
	Noncritical messages.

	info
	Informative messages.

	debug
	Extra information helpful for tracking down
 problems.

	none
	Ignore messages from this facility.

	mark
	Selects timestamp messages (generated every 20 minutes
 by default). This facility is not included by the asterisk
 wildcard (and you wouldn't really want it to be).

Multiple facility-level pairs may be included on one line by
 separating them with semicolons; multiple facilities may be
 specified with the same severity level by separating them with
 commas. An asterisk may be used as a wildcard throughout an
 entry.
Here are some sample destinations:
/var/log/messages Send to a file (specify full pathname).
@scribe.ahania.com Send to syslog facility on a different host.
root Send message to a user . . .
root,chavez,ng . . . or list of users.
* Send message via wall to all logged-in users.
All of this will be much clearer once we look at a sample
 syslog.conf file:
*.err;auth.notice /dev/console
*.err;daemon,auth.notice;mail.crit /var/log/messages
lpr.debug /var/adm/lpd-errs
mail.debug /var/spool/mqueue/syslog
*.alert root
*.emerg *
auth.info;*.warning @hamlet
*.debug /dev/tty01
The first line prints all errors, as well as notices from the
 authentication system (indicating successful and unsuccessful
 su commands) on the console. The
 second line sends all errors, daemon and authentication system
 notices, and all critical errors from the mail system to the file
 /var/log/messages.
The third and fourth lines send printer and mail system debug
 messages to their respective error files. The fifth line sends all
 alert messages to user root, and the sixth line
 sends all emergency messages to all users.
The final two lines send all authentication system
 nondebugging messages and the warnings and errors from all other
 facilities to the syslogd process
 on host hamlet, and it displays all generated
 messages on tty01.
You may modify this file to suit the needs of your system. For
 example, to create a separate sulog file, add a line like the following to syslog.conf:
auth.notice /var/adm/sulog
All messages are appended to log files; thus, you'll need to
 keep an eye on their size and truncate them periodically when they
 get too big. This topic is discussed in detail in Section 3.2.4, later in this
 chapter.
Tip
On some systems, a log file must already exist when the
 syslogd process reads the
 configuration file entry referring to it in order for it to be
 recognized. In other words, on these systems, you'll need to
 create an empty log file, add a new entry to syslog.conf, and signal (kill -HUP) or restart the daemon in
 order to add a new log file.

Don't make the mistake of using commas when you want
 semicolons. For example, the following entry sends all cron messages at the level of warn and above to the indicated file (as
 well as the same levels for the printing subsystem):
cron.err,lpr.warning /var/log/warns.log
Why are warnings included for cron? Each successive severity applies in
 order, replacing previous ones, so warning replaces err for cron. Entries can include lists of
 facility-severity pairs and lists of facilities at the same severity
 level, but not lists including both multiple facilities and severity
 levels. For these reasons, the following entry will log all error
 level and higher messages for all facilities:
*.warning,cron.err /var/log/errs.log

Enhancements to syslog.conf

Several operating systems offer enhanced versions of
 the syslog configuration file, which we will discuss by
 example.
AIX

On AIX systems, there are some additional optional fields
 beyond the destination:
 facility-level
 destination rotate size s files n time t compress archive path
For example:
*.warn @scribe rotate size 2m files 4 time 7d compress
The additional parameters specify how to handle log files as
 they grow over time. When they reach a certain size and/or age,
 the current log file will be renamed to something like
 name.0, existing old files
 will have their extensions incremented and the oldest file(s) may
 be deleted.
The rotate keyword
 introduces these parameters, and the others have the following
 meanings:
	size s
	Size threshold: rotate the log when it is larger than
 this. s is followed by
 k or m for KB and MB, respectively.

	time t
	Time threshold: rotate the log when it is older than
 this. t is followed by
 h, d, w, m, or y for hours, days, weeks, months, or years,
 respectively.

	files n
	Keep at most n
 files.

	compress
	Compress old files.

	archive path
	Move older files to the specified location.

FreeBSD and Linux

Both FreeBSD and Linux systems extend the facility.severity syntax:
	.=severity
	Severity level is exactly the one specified.

	.!=severity
	Severity level is anything other than the one
 specified (Linux only).

	.<=severity
	Severity level is lower than or equal to the one
 specified (FreeBSD only). The .< and .> comparison
 operators are also provided (as well as .>= equivalent to
 the standard syntax).

Both operating systems also allow pipes to programs as
 message destinations, as in this example, which sends all
 error-severity messages to
 the specified program:
*.=err|/usr/local/sbin/save_errs
FreeBSD also adds another unusual feature to the syslog.conf file: sections of the file
 which are specific to a host or a specific program.[9]
Here is an example:
handle messages from host europa
+europa
mail.>debug/var/log/mailsrv.log

kernel messages from every host but callisto
-callisto
kern.*/var/log/kern_all.log

messages from ppp
!ppp
./var/log/ppp.log
These entries handle non-debug mail messages from europa, kernel messages from every host
 except callisto, and all
 messages from ppp from every
 host but callisto. As this
 example illustrates, host and program settings accumulate. If you
 wanted the ppp entry to apply
 only to the local system, you'd need to insert the following lines
 before its entries to restore the host context to the local
 system:
reset host to local system
+@
A program context may be similarly cleared with !*. In general, it's a good idea to
 place such sections at the end of the configuration file to avoid
 unintended interactions with existing entries.

Solaris

Solaris systems use the m4 macro preprocessing facility to process the syslog.conf file before it is used
 (this facility is discussed in Chapter
 9). Here is a sample file containing m4 macros:
Send mail.debug messages to network log host if there is one.
mail.debug ifdef(`LOGHOST', /var/log/syslog, @loghost)

On non-loghost machines, log "user" messages locally.
ifdef(`LOGHOST', ,
user.err/var/adm/messages
user.emerg*
)
Both of these entries differ depending on whether macro
 LOGHOST is defined. In the
 first case, the destination differs, and in the second section,
 entries are included in or excluded from the file based on its
 status:
 Resulting file when LOGHOST is defined (i.e., this host is the central logging host):
Send mail.debug messages to network log host if there is one.
mail.debug/var/log/syslog

Resulting file when LOGHOST is undefined:
Send mail.debug messages to network log host if there is one.
mail.debug@loghost

user.err/var/adm/messages
user.emerg*
On the central logging host, you would need to add a
 definition macro to the configuration file:
define(`LOGHOST',`localhost')

The Tru64 syslog log file hierarchy

On Tru64 systems, the syslog facility is set up to log all
 system messages to a series of log files named for the various
 syslog facilities. The syslog.conf configuration file
 specifies their location as, for example, /var/adm/syslog.dated/*/auth.log. When
 the syslogd daemon encounters
 such a destination, it automatically inserts a final subdirectory
 named for the current date into the pathname. Only a week's worth
 of log files are kept; older ones are deleted via an entry in
 roo t's
 crontab file (the entry is wrapped to fit):
40 4 * * * find /var/adm/syslog.dated/* -depth -type d
 -ctime +7 -exec rm -rf {} \;

The logger utility

The logger utility can be used to send messages to the syslog
 facility from a shell script. For example, the following command
 sends an alert-level message via the auth facility:
logger -p auth.alert -t DOT_FILE_CHK \
 "$user's $file is world-writeable"
This command would generate a syslog message like this
 one:
Feb 17 17:05:05 DOT_FILE_CHK: chavez's .cshrc is world-writable.
The logger command also
 offers a -i option, which
 includes the process ID within the syslog log message.

Hardware Error Messages

Often, error messages related to hardware problems appear within
 system log files. However, some Unix versions also provide a separate
 facility for hardware-related error messages. After considering a
 common utility (dmesg), we will
 look in detail at those used under AIX, HP-UX, and Tru64.
The dmesg command is found on
 FreeBSD, HP-UX, Linux, and Solaris systems. It is primarily used to
 examine or save messages from the most recent system boot, but some
 hardware informational and error messages also go to this facility,
 and examining its data may be a quick way to view them.
Here is an example from a Solaris system (output is
 wrapped):
$ dmesg | egrep 'down|up'
Sep 30 13:48:05 astarte eri: [ID 517527 kern.info] SUNW,eri0 :
No response from Ethernet network : Link down -- cable problem?
Sep 30 13:49:17 astarte last message repeated 3 times
Sep 30 13:49:38 astarte eri: [ID 517527 kern.info] SUNW,eri0 :
No response from Ethernet network : Link down -- cable problem?
Sep 30 13:50:40 astarte last message repeated 3 times
Sep 30 13:52:02 astarte eri: [ID 517527 kern.info] SUNW,eri0 :
100 Mbps full duplex link up
In this case, there was a brief network problem due to a
 slightly loose cable.
The AIX error log

AIX maintains a separat e error log, /var/adm/ras/errlog, supported by the
 errdemon daemon. This
 file is binary, and it must be accessed using the appropriate
 utilities: errpt to view reports
 from it and errclear to remove
 old messages.
Here is an example of errpt's output:
IDENTIFIER TIMESTAMP T C RESOURCE_NAME DESCRIPTION
C60BB505 0807122301 P S SYSPROC SOFTWARE PROGRAM ABNORMALLY TERMINATED
369D049B 0806104301 I O SYSPFS UNABLE TO ALLOCATE SPACE IN FILE SYSTEM
112FBB44 0802171901 T H ent0 ETHERNET NETWORK RECOVERY MODE
This command produces a report containing one line per error.
 You can produce more detailed information using options:
LABEL: JFS_FS_FRAGMENTED
IDENTIFIER: 5DFED6F1

Date/Time: Fri Oct 5 12:46:45
Sequence Number: 430
Machine Id: 000C2CAD4C00
Node Id: arrakis
Class: O
Type: INFO
Resource Name: SYSPFS

Description
UNABLE TO ALLOCATE SPACE IN FILE SYSTEM

Probable Causes
FILE SYSTEM FREE SPACE FRAGMENTED

 Recommended Actions
 CONSOLIDATE FREE SPACE USING DEFRAGFS UTILITY

Detail Data
MAJOR/MINOR DEVICE NUMBER
000A 0006
FILE SYSTEM DEVICE AND MOUNT POINT
/dev/hd9var, /var
This error corresponds to an instance where the operating
 system was unable to satisfy an I/O request because the /var filesystem was too fragmented. In
 this case, the recommended actions provide a solution to the
 problem.
A report containing all of the errors would be very lengthy.
 However, I use the following script to summarize the data:
#!/bin/csh

errpt | awk '{print $1}' | sort | uniq -c | \
 grep -v IDENT > /tmp/err_junk
printf "Error \t# \tDescription: Cause (Solution)\n\n"
foreach f (`cat /tmp/err_junk | awk '{print $2}'`)
 set count = `grep $f /tmp/err_junk | awk '{print $1}'`
 set desc = `grep $f /var/adm/errs.txt | awk -F: '{print $2}'`
 set cause = `grep $f /var/adm/errs.txt | awk -F: '{print $3}'`
 set solve = `grep $f /var/adm/errs.txt | awk -F: '{print $4}'`
 printf "%s\t%s\t%s: %s (%s)\n" $f $count \
 "$desc" "$cause" "$solve"
end
rm -f /tmp/err_junk
The script is a quick-and-dirty approach to the problem; a
 more elegant Perl version would be easy to write, but this script
 gets the job done. It relies on an error type summary file I've
 created from the detailed errpt
 output, /var/adm/errs.txt. Here
 are a few lines from that file (shortened):
071F4755:ENVIRONMENTAL PROBLEM:POWER OR FAN COMPONENT:RUN DIAGS.
0D1F562A:ADAPTER ERROR:ADAPTER HARDWARE:IF PROBLEM PERSISTS, ...
112FBB44:ETHERNET NETWORK RECOVERY MODE:ADAPTER:VERIFY ADAPTER ...
The advantage of using a summary file is that the script can
 produce its reports from the simpler and faster default errpt output.
Here is an example report (wrapped):
Error # Description: Cause (Solution)

071F4755 2 ENVIRONMENTAL PROBLEM: POWER OR FAN
 COMPONENT (RUN SYSTEM DIAGNOSTICS.)
0D1F562A 2 ADAPTER ERROR: ADAPTER HARDWARE (IF
 PROBLEM PERSISTS, CONTACT APPROPRIATE
 SERVICE REPRESENTATIVE)
112FBB44 2 ETHERNET NETWORK RECOVERY MODE: ADAPTER
 HARDWARE (VERIFY ADAPTER IS INSTALLED
 PROPERLY)
369D049B 1 UNABLE TO ALLOCATE SPACE IN FILE SYSTEM:
 FILE SYSTEM FULL (INCREASE THE SIZE OF THE
 ASSOCIATED FILE SYSTEM)
476B351D 2 TAPE DRIVE FAILURE: TAPE DRIVE (PERFORM
 PROBLEM DETERMINATION PROCEDURES)
499B30CC 3 ETHERNET DOWN: CABLE (CHECK CABLE AND
 ITS CONNECTIONS)
5DFED6F1 1 UNABLE TO ALLOCATE SPACE IN FILE SYSTEM:
 FREE SPACE FRAGMENTED (USE DEFRAGFS UTIL)
C60BB505 268 SOFTWARE PROGRAM ABNORMALLY TERMINATED:
 SOFTWARE PROGRAM (CORRECT THEN RETRY)
The errclear command may be
 used to remove old messages from the error log. For example, the
 following command removes all error messages over two weeks
 old:
errclear 14
The error log is a fixed-size file, used as a circular buffer.
 You can determine the size of the file with the following
 command:
/usr/lib/errdemon -l
Error Log Attributes
--
Log File /var/adm/ras/errlog
Log Size 1048576 bytes
Memory Buffer Size 8192 bytes
The daemon is started by the file /sbin/rc.boot. You can modify its startup
 line to change the size of the log file by adding the -s option. For example, the following
 addition would set the size of the log file to 1.5 MB:
/usr/lib/errdemon -i /var/adm/ras/errlog -s 1572864
The default size of 1 MB is usually sufficient for most
 systems.
Viewing errors under HP-UX

The HP-UX xstm command may be used to view errors on these systems
 (stored in the files /var/stm/logs/os/log*.raw*). It is
 illustrated in Figure
 3-1.
[image: View hardware errors under HP-UX]

Figure 3-1. View hardware errors under HP-UX

The main window appears in the upper left corner of the
 illustration. It shows a hierarchy of icons corresponding to the
 various peripheral devices present on the system. You can use
 various menu items to determine information about the devices and
 their current status.
Selecting the Tools → Utility → Run menu path and then choosing logtool from the list of tools initiates
 the error reporting utility (see the middle window of the left
 column in the illustration). Select the File → Raw menu path and then the current log
 file to view a summary report of system hardware status, given in
 the bottom window in the left column of the figure. In this
 example, we can see that there have been 417 errors recorded
 during the lifetime of the log file.
Next, we select File → Formatted Log to view the detailed
 entries in the log file (the process is illustrated in the right
 column of the figure). In the example, we are looking at an entry
 corresponding to a SCSI tape drive. This entry corresponds to a
 power-off of the device.
Command-line and menu-oriented versions of xstm can be started with cstm and mstm, respectively.

The Tru64 binary error logger

Tru64 provides the binlogd binary error logging server in addition to syslogd. It is configured via the
 /etc/binlog.conf file:
. /usr/adm/binary.errlog
dumpfile /usr/adm/crash/binlogdumpfile
The first entry sends all error messages that binlogd generates to the indicated file.
 The second entry specifies the location for a crash dump.
Messages may also be sent to another host. The /etc/binlog.auth file controls access
 to the local facility. If it exists, it lists the hosts that are
 allowed to forward messages to the local system.
You can view reports using the uerf and dia commands. I prefer the latter, although uerf is the newer command.
dia's default mode
 displays details about each error, and the -o brief option produces a short
 description of each error.
I use the following pipe to get a smaller amount of
 output:[10]
dia | egrep '^(Event seq)|(Entry typ)|(ASCII Mes.*[a-z])'
Event sequence number 10.
Entry type 300. Start-Up ASCII Message Type
Event sequence number 11.
Entry type 250. Generic ASCII Info Message Type
ASCII Message Test for EVM connection of binlogd
Event sequence number 12.
Entry type 310. Time Stamp
Event sequence number 13.
Entry type 301. Shutdown ASCII Message Type
ASCII Message System halted by root:
Event sequence number 14.
Entry type 300. Start-Up ASCII Message Type
This command displays the sequence number, type, and
 human-readable description (if present) for each message. In this
 case, we have a system startup message, an event manager status
 test of the binlogd daemon, a
 timestamp record, and finally a system shutdown followed by
 another system boot. Any messages of interest could be
 investigated by viewing their full record. For example, the
 following command displays event number 13:
dia -e s:13 e:13
Tip
You can send a message to the facility with the logger -b command.

Administering Log Files

There are two more items to consider with respect to managing the many system log
 files: limiting the amount of disk space they consume while
 simultaneously retaining sufficient data for projected future
 requirements, and monitoring the contents of these log files in order
 to identify and act upon important entries.
Managing log file disk requirements

Unchecked, log files grow without bounds and can quickly
 consume quite a lot of disk space. A common solution to this
 situation is to keep only a fraction of the historical data on disk.
 One approach involves periodically renaming the current log file and
 keeping only a few recent versions on the system. This is done by
 periodically deleting the oldest one, renaming the current one, and
 then recreating it.
For example, here is a script that keeps the last three
 versions of the su.log file in
 addition to the current one:
#!/bin/sh
cd /var/adm
if [-r su.log.1]; then
 mv -f su.log.1 su.log.2
fi
if [-r su.log.0]; then
 mv -f su.log.0 su.log.1
fi
if [-r su.log]; then
 cp su.log su.log.0 Copy the current log file.
fi
cat /dev/null > su.log Then truncate it.
There are three old su.log files at any given time: su.log.0 (the previous one), su.log.1, and su.log.2, in addition to the current
 su.log file. When this script
 is executed, the su.log.n files
 are renamed to move them back: 1 becomes 2, 0 becomes 1, and the
 current su.log file becomes
 su.log.0. Finally, a new, empty
 file for current su messages is
 created. This script could be run automatically each week via
 cron, and the last month's worth
 of su.log files will always be
 on the system (and no more).
Note
Make sure that all the log files get backed up on a regular basis so that older ones can
 be retrieved from backup media in the event that their information
 is needed.

Note that if you remove active log files, the disk space won't
 actually be released until you send a HUP signal to the associated
 daemon process holding the file open (usually syslogd). In addition, you'll then need to
 recreate the file for the facility to function properly. For these
 reasons, removing active log files is not recommended.
As we've seen, some systems provide automatic mechanisms for
 accomplishing the same thing. For example, AIX has built this
 feature into its version of syslog.
FreeBSD provides the newsyslog facility for performing this task (which is run hourly
 from cron by default). It rotates
 log files based on the directions in its configuration file,
 /etc/newsyslog.conf:
file [own:grp] mode # sz when [ZB] [/pid_file] [sig]
/var/log/cron 600 3 100 * Z
/var/log/amd.log 644 7 100 * Z
/var/log/lpd-errs 644 7 100 * Z
/var/log/maillog 644 7 * $D0 Z
The fields hold the following information:
	the pathname to the log file

	the user and group ownership it should be assigned
 (optional)

	the file mode

	the number of old files that should be retained

	the size at which the file should be rotated

	the time when the file should be rotated

	a flag field (Z says to compress the file; B specifies
 that it is a binary log file and should be treated
 accordingly)

	the path to the file holding the process ID of the daemon
 that controls the file

	the numeric signal to send to that daemon to reinitialize
 it

The last three fields are optional.
Thus, the first entry in the previous example configuration
 file processes the cron log file,
 protecting it against all non-root access,
 rotating it when it is larger than 100 KB, and keeping three
 compressed old versions on the system. The next two entries rotate
 the corresponding log file at the same point, using a
 seven-old-files cycle. The final entry rotates the mail log file
 every day at midnight, again retaining seven old files. The "when"
 field is specified via a complex set of codes (see the manual page
 for details).
If both an explicit size and time period are specified (i.e.,
 not an asterisk), rotation occurs when either condition is
 met.
Red Hat Linux systems provide a similar facility via logrotate , written by Erik Troan. It is run daily by default via
 a script in /etc/cron.daily,
 and its operations are controlled by the configuration file,
 /etc/logrotate.conf.
Here is an annotated example of the logrotate configuration file:
global settings
errors root Mail errors to root.
compress Compress old files.
create Create new empty log files after rotation.
weekly Default cycle is 7 days.

include /etc/logrotate.d Import the instructions in the files here.

/var/log/messages { Instructions for a specific file.
 rotate 5 Keep 5 files.
 weekly Rotate weekly.
 postrotate Run this command after rotating,
 /sbin/killall -HUP syslogd to activate the new log file.
 endscript
 }
This file sets some general defaults and then defines the
 method for handling the /var/log/messages file. The include directive also imports the
 contents of all files in the /etc/logrotate.d directory. Many software
 packages place in this location files containing instructions for
 how their own log files should be handled.
Tip
logrotate is open source
 and can be built on other Linux and Unix systems as well.

Monitoring log file contents

It is very easy to generate huge amounts of logging information very quickly. You'll soon find
 that you'll want some tool to help you sift through it all, finding
 the few entries of any real interest or importance. We'll look at
 two of them in this subsection.
The swatch facility, written by E. Todd Atkins, is designed to
 do just that. It runs in a variety of modes: examining new entries
 as they are added to a system log file, monitoring an output stream
 in real time, checking through a file on a one-time basis, and so
 on. When it recognizes a pattern you have specified in its input, it
 can perform a variety of actions. Its home page (at the moment) is
 http://oit.ucsb.edu/~eta/swatch/.
Swatch's configuration file
 specifies what information the facility should look for and what it
 should do when it finds that information. Here is an example:
Syntax:
event action

network events
/refused/ echo,bell,mail=root
/connect from iago/ mail=chavez
#
other syslog events
/(uk|usa).*file system full/exec="wall /etc/fs.full"
/panic|halt/exec="/usr/sbin/bigtrouble"
The first two entries search for specific syslog messages
 related to network access control. The first one matches any message
 containing the string "refused". Patterns are specified between
 forward slashes using regular expressions, as in sed. When such an entry is found, swatch copies it to standard output
 (echo), rings the terminal bell
 (bell), and sends mail to
 root
 (mail). The second entry watches for
 connections from the host iago
 and sends mail to user chavez
 whenever one occurs.
The third entry matches the error messages generated when a
 filesystem fills up on host usa
 or host uk; in this case, it
 runs the command wall
 /etc/fs.full (this form of wall displays the contents of the
 specified file to all logged-in users). The fourth entry runs the
 bigtrouble command when the
 system is in severe distress.
This file focuses on syslog events, presumably sent to a
 central logging host, but swatch
 can be used to monitor any output. For example, it could watch the
 system error log for memory parity errors.
The following swatch
 command could be used to monitor the contents of the /var/adm/messages file, using the
 configuration file specified with the -c option:
swatch -c /etc/swatch.config -t /var/adm/messages
The -t option says to
 continuously examine the tail of the file (in a manner analogous to
 tail -f). This command might be
 used to start a swatch process in
 a window that could be periodically monitored throughout the day.
 Other useful swatch options are
 -f, which scans a file once for
 matching entries (useful when running swatch via cron), and -p, which monitors the output from a
 running program.
Another great, free tool for this purpose is logcheck from Psionic Software (http://www.psionic.com/abacus/logcheck/). We'll
 consider its use in Chapter
 7.

Managing Software Packages

Most Unix versions provide utilities for managing
 software packages: bundled collections of programs that provide a
 particular feature or functionality, delivered via a single archive.
 Packaging software is designed to make adding and removing packages
 easier. Each operating system we are considering provides a different
 set of tools.[11] The various offerings are summarized in Table 3-6.
Table 3-6. Software package management commands
	Function
	Command[12]

	List installed packages
	 AIX:
 lslpp -l all
 FreeBSD: pkg_info -a -I [13]
 HP-UX: swlist
 Linux: rpm -q
 -a
 Solaris: pkginfo
 Tru64: setld
 -i

	Describe package
	 FreeBSD:
 pkg_info

 HP-UX: swlist -v
 Linux: rpm -q
 -i
 Solaris: pkginfo -l

	List package contents
	 AIX: lslpp -f
 FreeBSD: pkg_info -L
 HP-UX: swlist
 -l file
 Linux: rpm -q
 -l
 Solaris: pkgchk -l
 Tru64: setld
 -i

	List prerequisites
	 AIX: lslpp -p
 Linux: rpm -q
 - - -requires

	Show file's original package
	 AIX: lslpp -w
 Linux: rpm -q
 - - -whatprovides
 Solaris: pkgchk -l -p

	List available packages on media
	 AIX: installp -l -d
 device
 FreeBSD: sysinstall
 Configure
 → Packages

 HP-UX: swlist -s
 path [-l type
]
 Linux: ls
 / path-to-RPMs

 yast2 Install/Remove software (SuSE)

 Solaris: ls /
 path-to-packages

 Tru64: setld -i -D
 path

	Install package
	 AIX: installp -acX

 FreeBSD: pkg_add
 HP-UX: swinstall
 Linux: rpm
 -i
 Solaris: pkgadd
 Tru64: setld
 -l

	Preview installation
	 AIX: installp -p
 FreeBSD: pkg_add -n
 HP-UX: swinstall -p

 Linux: rpm -i - -test

	Verify package
	 AIX: installp -a -v

 Linux: rpm -V
 Solaris: pkgchk
 Tru64: fverify

	Remove package
	 AIX: installp -u
 FreeBSD: pkg_delete
 HP-UX: swremove
 Linux: rpm
 -e
 Solaris: pkgrm
 Tru64: setld
 -d

	Menu/GUI interface for package
 management
	 AIX: smit
 HP-UX: sam
 swlist -i swinstall
 Linux: xrpm,
 gnorpm yast2 (SuSE)
 Solaris: admintool
 Tru64: sysman

	[12] On Linux systems, add the -p pkg option to examine
 an uninstalled RPM package.

[13] Note that this option is an uppercase I ("eye"). All
 similar-looking option letters in this table are lowercase
 l's ("ells").

These utilities all work in a very similar manner, so we will
 consider only one of them in detail, focusing on the Solaris commands
 and a few HP-UX commands as examples.
We'll begin by considering the method to list currently
 installed packages. Generally, this is done by running the general
 listing command, possibly piping its output to grep to locate packages of interest. For
 example, this command searches a Solaris system for installed packages
 related to file compression:
pkginfo | grep -i compres
system SUNWbzip The bzip compression utility
system SUNWbzipx The bzip compression library (64-bit)
system SUNWgzip The GNU Zip (gzip) compression utility
system SUNWzip The Info-Zip (zip) compression utility
system SUNWzlib The Zip compression library
system SUNWzlibx The Info-Zip compression lib (64-bit)
To find out more information about a package, we add an option
 and package name to the listing command. In this case, we display
 information about the bzip
 package:
pkginfo -l SUNWbzip
PKGINST: SUNWbzip
 NAME: The bzip compression utility
 CATEGORY: system
 ARCH: sparc
 VERSION: 11.8.0,REV=2000.01.08.18.12
 BASEDIR: /
 VENDOR: Sun Microsystems, Inc.
 DESC: The bzip compression utility
 STATUS: completely installed
 FILES: 21 installed pathnames
 9 shared pathnames
 2 linked files
 9 directories
 4 executables
 382 blocks used (approx)
Other options allow you to list the files and subdirectories in
 the package. On Solaris systems, this produces a lot of output, so we
 use grep to reduce it to a simple
 list (a step that is unnecessary on most systems):
pkgchk -l SUNWbzip | grep ^Pathname: | awk '{print $2}'
/usr Subdirectories in the package are created on
/usr/bin install if they do not already exist.
/usr/bin/bunzip2
/usr/bin/bzcat
/usr/bin/bzip2
...
It is also often possible to find out the name of the package to
 which a given file belongs, as in this example:
pkgchk -l -p /etc/syslog.conf
Pathname: /etc/syslog.conf
Type: editted file
Expected mode: 0644
Expected owner: root
Expected group: sys
Referenced by the following packages:
 SUNWcsr
Current status: installed
This configuration file is part of the package containing the
 basic system utilities.
When you want to install a new package, you use a command like
 this one, which installs the GNU C compiler from the CD-ROM mounted
 under /cdrom (s8-software-companion is the Companion
 Software CD provided with Solaris 8):
pkgadd -d /cdrom/s8-software-companion/components/sparc/Packages SFWgcc
Removing an installed package is also very simple:
pkgrm SFWbzip
You can use the pkgchk
 command to verify that a software package is installed correctly and
 that none of its components has been modified since then.
Sometimes you want to list all of the available packages on a CD
 or tape. On FreeBSD, Linux, and Solaris systems, you accomplish this
 by changing to the appropriate directory and running the ls command. On others, an option to the
 normal installation or listing command performs this function. For
 example, the following command lists the available packages on the
 tape in the first drive:
swlist -s /dev/rmt/0m
HP-UX: Bundles, products, and subproducts

HP-UX organizes software packages into various units. The smallest unit is the
 fileset which contains a set of
 related file that can be managed as a unit. Subproducts contain one or more filesets,
 and products are usually made
 up of one or more subproducts (although a few contain the filesets
 themselves). For example, the fileset
 MSDOS-Utils.Manuals.DOSU-ENG-A_MAN consists of the English language
 manual pages for the Utils subproduct of the MSDOC-Utils product.
 Finally, bundles are groups of
 related filesets from one or more products, gathered together for a
 specific purpose. They can, but do not have to, be comprised of
 multiple complete products.
The swlist command can be
 used to view installed software at these various levels by
 specifying the corresponding keyword to its -l option. For example, this command lists
 all installed products:
swlist -l product
The following command lists the subproducts that make up the
 MS-DOS utilities product:
swlist -l subproduct MSDOS-Utils

MSDOS-Utils B.11.00 MSDOS-Utils
 MSDOS-Utils.Manuals Manuals
 MSDOS-Utils.ManualsByLang ManualsByLang
 MSDOS-Utils.Runtime Runtime
You could further explore the contents of this product by
 running the swlist -l fileset
 command for each subproduct to list the component filesets. The
 results would show a single fileset per subproduct and would
 indicate that the MSDOS-Utils product is made up of runtime and
 manual page filesets.

AIX: Apply versus commit

On AIX systems, software installation is a two-step
 process. First, software packages are applied: new files are installed, but the
 previous system state is also saved in case you change your mind and
 want to roll back the package. In order to make an installation
 permanent, applied software must be committed.
You can view the installation state of software packages with
 the lslpp command. For example,
 this command displays information about software compilers:
lslpp -l all | grep -i compil
 vacpp.cmp.C 5.0.2.0 COMMITTED VisualAge C++ C Compiler
 xlfcmp 7.1.0.2 COMMITTED XL Fortran Compiler
 vac.C 5.0.2.0 COMMITTED C for AIX Compiler
 ...
Alternatively, you can display applied but not yet committed
 packages with the installp -s all
 command.
The installp command has a
 number of options controlling how and to what degree software is
 installed. For example, use a command like this one to apply and
 commit software:
installp -ac -d
 device [items | all]
Other useful options to installp are listed in Table 3-7.
Table 3-7. Options to the AIX installp command
	Option
	Meaning

	 -a

	Apply software.

	 -c

	Commit applied software.

	 -r

	Reject uncommitted software.

	 -t dir

	Use alternate location for saved rollback
 files.

	 -u

	Remove software

	 -C

	Clean up after a failed
 installation.

	 -N

	Don't save files necessary for
 recovery.

	 -X

	Expand filesystems as necessary.

	 -d dev

	Specify installation source
 location.

	 -p

	Preview operation.

	 -v

	Verbose output.

	 -l

	List media contents.

	 -M arch

	Limit listing to items for the specified
 architecture type.

Note
Using apply without commit is a good tactic for cautious
 administrators and delicate production systems.

FreeBSD ports

FreeBSD includes an easy-to-use method for acquiring and
 building additional software packages. This scheme is known as the
 Ports Collection. If you choose to install it, its infrastructure is
 located at /usr/ports.
The Ports Collection provides all the information necessary
 for downloading, unpacking, and building software packages within
 its directory tree. Installing such pre-setup packages is then very
 simple. For example, the following commands are all that is needed
 to install the Tripwire security monitoring package:
cd /usr/ports/security/tripwire
make && make install
The make commands
 automatically take all steps necessary to install the package.

Building Software Packages from Source Code

There are a large number of useful open source software tools. Sometimes, thoughtful people will
 have made precompiled binaries available on the Internet, but there
 will be times when you will have to build them yourself. In this
 section, we look briefly at building three packages in order to
 illustrate some of the problems and challenges you might encounter. We
 use will HP-UX as our example system.
mtools: Using configure and accepting imperfections

We begin with mtools, a set of utilities for directly
 accessing DOS-format floppy disks on Unix systems. After downloading
 the package, the first steps are to uncompress the software archive
 and extract its files:
$ gunzip mtools-3.9.7.tar.gz
$ tar xvf mtools-3.9.7.tar
x mtools-3.9.7/INSTALL, 737 bytes, 2 tape blocks
x mtools-3.9.7/buffer.c, 8492 bytes, 17 tape blocks
x mtools-3.9.7/Release.notes, 8933 bytes, 18 tape blocks
x mtools-3.9.7/devices.c, 25161 bytes, 50 tape blocks
...
Note that we are not running these commands as root.
Next, we change to the new directory and look around:
$ cd mtools-3.9.7; ls
COPYING floppyd_io.c mmount.c
Changelog floppyd_io.h mmove.1
INSTALL force_io.c mmove.c
Makefile fs.h mpartition.1
Makefile.Be fsP.h mpartition.c
Makefile.in getopt.h mrd.1
Makefile.os2 hash.c mread.1
NEWPARAMS htable.h mren.1
README init.c msdos.h
...
We are looking for files named README, INSTALL, or something similar, which will
 tell us how to proceed.
Here is the relevant section in this example:
Compilation

To compile mtools on Unix, first type ./configure, then make.
This is a typical pattern in a well-crafted software package.
 The configure utility checks the
 system for all the items needed to build the package, often
 selecting among various alternatives, and creates a make file based
 on the specific configuration.
We follow the directions and run it:
$./configure
checking for gcc... cc
checking whether the C compiler works... yes
checking whether cc accepts -g... yes
checking how to run the C preprocessor... cc -E
checking for a BSD compatible install... /opt/imake/bin/install -c
checking for sys/wait.h that is POSIX.1 compatible... yes
checking for getopt.h... no
...
creating ./config.status
creating Makefile
creating config.h
config.h is unchanged
At this point, we could just run make, but I always like to look at the
 make file first. Here is the first part of it:
$ more Makefile
Generated automatically from Makefile.in by configure.
Makefile for Mtools

MAKEINFO = makeinfo
TEXI2DVI = texi2dvi
TEXI2HTML = texi2html

do not edit below this line
===
SHELL = /bin/sh

prefix = /usr/local
exec_prefix = ${prefix}
bindir = ${exec_prefix}/bin
mandir = ${prefix}/man
The prefix item could be
 a problem if I wanted to install the software somewhere else, but I
 am satisfied with this location, so I run make. The process is mostly fine, but
 there are a few error messages:
cc -Ae -DHAVE_CONFIG_H -DSYSCONFDIR=\"/usr/local/etc\" -DCPU_hppa1_0 -DVENDOR_hp -
DOS_hpux11_00 -DOS_hpux11 -DOS_hpux -g -I. -I. -c floppyd.c
cc: "floppyd.c", line 464: warning 604: Pointers are not assignment-compatible.

cc -z -o floppyd -lSM -lICE -lXau -lX11 -lnsl
/usr/ccs/bin/ld: (Warning) At least one PA 2.0 object file (buffer.o) was detected.
The linked output may not run on a PA 1.x system.
It is important to try to understand what the messages mean.
 In this case, we get a compiler warning, which is not an uncommon
 occurrence. We ignore it for the moment. The second warning simply
 tells us that we are building architecture-dependant executables.
 This is not important as we don't plan to use them anywhere but the
 local system.
Now, we install the package, using the usual command to do
 so:
$ su
Password:
make -n install
 Preview first!
./mkinstalldirs /usr/local/bin
/opt/imake/bin/install -c mtools /usr/local/bin/mtools
 ...
make install
 Proceed if it looks ok.
./mkinstalldirs /usr/local/bin
/opt/imake/bin/install -c mtools /usr/local/bin/mtools
 ...
/opt/imake/bin/install -c floppyd /usr/local/bin/floppyd
cp: cannot access floppyd: No such file or directory
...
Make: Don't know how to make mtools.info. Stop.
We encounter two problems here. The first is a missing
 executable: floppyd, a daemon to
 provide floppy access to remote users. The second problem is a
 make error that occurs when
 make tries to create the info
 file for mtools (a documentation format common on Linux systems).
 The latter is unimportant since the info system is not available
 under HP-UX. The first problem is more serious, and further efforts
 do not resolve what turns out to be an obscure problem. For example,
 modifying the source code to correct the compiler error message does
 not fix the problem. The failure actually occurs during the link
 phase, which simply fails without comment. I'm always disappointed
 when errors prevent a package from working, but it does happen
 occasionally.
Since I can live without this component, I ultimately decide
 to just ignore its absence. If it were an essential element, it
 would be necessary to resolve the problem to use the package. At
 that point, I would either try harder to fix the problem, check news
 groups and other Internet information sources, or just decide to
 live without the package.
Note
Don't let a recalcitrant package become a time sink. Give up
 and move on.

bzip2: Converting Linux-based make procedures

Next, we will look at the bzip2 compression utility by Julian
 Seward. The initial steps are the same. Here is the
 relevant section of the README
 file:
HOW TO BUILD -- UNIX

Type `make'. This builds the library libbz2.a and then the
programs bzip2 and bzip2recover. Six self-tests are run.
If the self-tests complete ok, carry on to installation:

To install in /usr/bin, /usr/lib, /usr/man and /usr/include, type
 make install
To install somewhere else, eg, /xxx/yyy/{bin,lib,man,include}, type
 make install PREFIX=/xxx/yyy
We also read the README.COMPILATION.PROBLEMS file, but it
 contains nothing relevant to our situation.
This package does not self-configure, but simply provides a
 make file designed to work on a variety of systems. We start the
 build process on faith:
$ make
gcc -Wall -Winline -O2 -fomit-frame-pointer -fno-strength-reduce
-D_FILE_OFFSET_BITS=64 -c blocksort.c
sh: gcc: not found.
*** Error exit code 127
The problem here is that our C compiler is cc, not gcc (this make file was probably created under Linux). We
 can edit the make file to reflect this. As we do so, we look for
 other potential problems. Ultimately, the following lines:
SHELL=/bin/sh
CC=gcc
BIGFILES=-D_FILE_OFFSET_BITS=64
CFLAGS=-Wall -Winline -O2 -fomit-frame-pointer ... $(BIGFILES)
are changed to:
SHELL=/bin/sh
CC=cc
BIGFILES=-D_FILE_OFFSET_BITS=64
CFLAGS=-Wall +w2 -O $(BIGFILES)
The CFLAGS entry
 specifies options sent to the compiler command, and the original
 value contains many gcc-specific
 ones. We replace those with their HP-UX equivalents.
The next make attempt is
 successful:
cc -Wall +w2 -O -D_FILE_OFFSET_BITS=64 -c blocksort.c
cc -Wall +w2 -O -D_FILE_OFFSET_BITS=64 -c huffman.c
cc -Wall +w2 -O -D_FILE_OFFSET_BITS=64 -c crctable.c
...

Doing 6 tests (3 compress, 3 uncompress) ...
 ./bzip2 -1 < sample1.ref > sample1.rb2
 ./bzip2 -2 < sample2.ref > sample2.rb2
 ...

If you got this far, it looks like you're in business.

To install in /usr/bin, /usr/lib, /usr/man and /usr/include,
 type: make install
To install somewhere else, eg, /xxx/yyy/{bin,lib,man,include},
 type: make install PREFIX=/xxx/yyy
We want to install into /usr/local, so we use this make install command (after previewing the
 process with -n first):
make install PREFIX=/usr/local
If the facility had not provided the capability to specify the
 install directory, we would have had to edit the make file to use
 our desired location.

jove: Configuration via make file settings

Lastly, we look at the jove
 editor by Jonathan Payne, my personal favorite
 editor. Here is the relevant section from the INSTALL file:
Installation on a UNIX System.

To make JOVE, edit Makefile to set the right directories for the binaries, on line
documentation, the man pages, and the TMP files, and select the appropriate load
command (see LDFLAGS in Makefile). (IMPORTANT! read the Makefile carefully.)
"paths.h" will be created by MAKE automatically, and it will use the directories you
specified in the Makefile. (NOTE: You should never edit paths.h directly because
your changes will be undone by the next make.)

You need to set "SYSDEFS" to the symbol that identifies your system, using the
notation for a macro-setting flag to the C compiler. If yours isn't mentioned, use
"grep System: sysdep.h" to find all currently supported system configurations.
This package is the least preconfigured of those we are
 considering. Here is the part of the make file I needed to think
 about and modify (from the original). Our changes are highlighted in
 boldface:
JOVEHOME = <userinput>/usr/local</userinput>
SHAREDIR = $(JOVEHOME)/lib/jove
BINDIR = $(JOVEHOME)/bin
...
Select the right libraries for your system.
LIBS = -ltermcap We uncommented the correct one.
#LIBS = -lcurses
...
define a symbol for your OS if it hasn't got one. See sysdep.h.
SYSDEFS = -DHPUX -Ac
 -Ac says to use the K&R Edition 1 version of C.
Once this configuration of the make file is completed, running
 make and make install built and installed the software
 successfully.

Internet software archives

I'll close this chapter with this short list of the most
 useful of the currently available general and operating
 system-specific software archives (in my opinion). Unless otherwise
 noted, all of them provide freely-available software.
	General
	 http://sourceforge.net

 http://www.gnu.org

 http://freshmeat.net

 http://www.xfree86.org

 http://rtfm.mit.edu

	AIX
	 http://freeware.bull.net

 http://aixpdslib.seas.ucla.edu/aixpdslib.html

	FreeBSD
	 http://www.freebsd.org/ports/

 http://www.freshports.org

	HP-UX
	 http://hpux.cs.utah.edu

 http://www.software.hp.com (drivers and
 commercial packages)

	 Linux
	 http://www.redhat.com

 http://www.suse.com

 http://www.ibiblio.org/Linux

 http://linux.davecentral.com

	Solaris
	 http://www.sun.com/bigadmin/downloads/

 http://www.sun.com/download/

 ftp://ftp.sunfreeware.com/pub/freeware/

 http://www.ibiblio.org/pub/packages/solaris/

	Tru64
	 http://www.unix.digital.com/tools.html

 ftp://ftp.digital.com

 http://gatekeeper.dec.com

 http://www.tru64.compaq.com (demos and
 commercial software)
 (Compaq also offers a
 low-cost freeware CD for Tru64.)

[6] Note that cron is not a
 general facility for scheduling program execution off-hours; for
 the latter, use a batch processing command (discussed in Section 15.3).

[8] Except for the BSD-style /etc/crontab file, which must be
 edited manually.

[9] Naturally, this feature will probably not work outside
 of the BSD environment.

[10] The corresponding uerf command is uerf | egrep '^SEQU|MESS'.

[11] The freely available epm
 utility can generate native format packages for
 many Unix versions including AIX, BSD and Linux. It is very useful
 for distributing locally developed packages in a heterogeneous
 environment. See http://www.easysw.com/epm/
 for more information.

End of sample

 To search for additional titles please go to

 http://search.overdrive.com.

OEBPS/httpatomoreillycomsourceoreillyimages120613.png

OEBPS/httpatomoreillycomsourceoreillyimages120607.png
e
S e B

I~ The acoount i enabled

Login name [—
Full nane. T —
goup Y

Supplementary groups [cnem

Home diectory(opy [momerchaver

Command interprete(optfoicsh /
User D(opY 500

Fooe] _cancel| oel| _passwa

Tans |

Help

OEBPS/httpatomoreillycomsourceoreillyimages120739.png
user submits printjob. user submits batch job

enq

pintqueseren | prntquevelss pintqueselpr pitquevebor

‘adaemon

cend Py
o C)

ahenet

OEBPS/httpatomoreillycomsourceoreillyimages120737.png
[~ solaris Print Manager: New Attached Printer | - _ |

Printer Name:
Printer Server:
bescriptian:
Printer Port
Printer Type:
File Contents:
Fault Notiicatio

options

User Access List

fansy

asare

[Epson Style Phato (6-color nkjet] |

evierma ~

Epson 2500

asen >

‘write 1o Superuser v

I efaunt Printer

I Avays Print Banner

matisse
rgres.
ke
gaughin

OEBPS/httpatomoreillycomsourceoreillyimages120609.png
Delting sccount edvina.

You are deleting an accourt.
“The home dreciory and he mail oo older
may b archiver, deleted o lefn place

. Archive the accounfs data

[~ Deets tha accounts aata

< Leave te accounf data n lace

OEBPS/httpatomoreillycomsourceoreillyimages120707.png

OEBPS/httpatomoreillycomsourceoreillyimages120661.png
Jeah Hlost State Statietics
et -
A o e 515%
3 _mnm.uuazn
UNREACHABLE 040h0m0s 00%
P ——
[
T —
Hesuns
]
s GRS
Bt YIS
S

Cuet S Do 042030
LotHorttlostcnsn QOB B05
R

Fust Noskicssns Exslel YES
Evetbmder bl YES

Pl Deecion Ensled VS

I s HoecFlggingd WA
PeesSueChnge WA

InSchebiet Dovsne? RO

LastUpiae e

Hos Conments:

£ 0 1 e conment

[mp—

Q2402002 233605 ronr oesded new sk dive 1 Ve

OEBPS/httpatomoreillycomsourceoreillyimages120561.png
P —|
i,
prg

il

g

ST

OEBPS/httpatomoreillycomsourceoreillyimages120647.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages120557.png
Solaris Management Consol.

OEBPS/httpatomoreillycomsourceoreillyimages120629.png
e

Bind DN [Ga=az ou-People de-aharia

Bind Password [6bt

Bind ype Simpie |

Searcn ahuts [en

Madmum ontrios [200

I Cache connecton
7 Enasle TLS

OEBPS/httpatomoreillycomsourceoreillyimages120631.png
niticl sxthentiostion
Authenticaton reqvest @)

= ——
S
. e,
N Ky sesson bey w.
iz et aan
o [y | e
;
Ko
S
—
et @
iy
.,
s
G
e o -
-
i B o o

Servies e provdesing K -

OEBPS/httpatomoreillycomsourceoreillyimages120712.png
F=2x./0.1/2-(0.1/2)

OEBPS/httpatomoreillycomsourceoreillyimages120715.png
J2/70.01 = .J20 = 4.47 = 5 days

OEBPS/httpatomoreillycomsourceoreillyimages120723.png
Admintool: Modify Serial Port.

[e—

Pt

Opns: . wtatse oy

Expet Opons: et o Gty

oK oy

Dok B v Dpert

e Ty 9525

Serviee Tag: tya
Fot ot Tag: zsmon

S g
Stvams Moo 18m Tcongst

Tt (o v

OEBPS/httpatomoreillycomsourceoreillyimages120549.png
System V3

ier=s

System V4

S

|
.@@®.‘

— T
Q -vhtiensct

OEBPS/httpatomoreillycomsourceoreillyimages120701.png
Available physical volumes are .

(s

comtined nto volume ...

fom whichogicalvoumes

contaning lesytems e ui

g
g
i
H

OEBPS/httpatomoreillycomsourceoreillyimages120581.png
i

OEBPS/httpatomoreillycomsourceoreillyimages120651.png
Mar

i
Network management
Staton (NHS)

Emviromental
‘menitar

ger jents”
S dent SN

OEBPS/httpatomoreillycomsourceoreillyimages120717.png
Computer
DTE
6 1—1
m 21—
R 3—3
RIS 4—i
as s—s
DR 6——6
6 7——7
00 8—3
DIR 20— 20

St thioogh

Modem
DCE

[
]
)

as
DSR

o0
IR

Computer. Terminal
o orE
6 1—1 £
Moy 2 D
w33 W
RS 4y 4 RS
a 575 s
OR 67 6 DS
6 14— 6
o 207 20 DR

Jimodem

OEBPS/httpatomoreillycomsourceoreillyimages120653.png
et 1)

LI | TN |
2 L |

e) i o
)
} H_—==

T | S

i)

nia)

onpa]

e (212

w057

1SRG

OEBPS/httpatomoreillycomsourceoreillyimages120635.png
Internal N -
Network E . TheWord N
—

Y-

- .

Interal -

Network @ . The World N\
ot I saion —

LY va—

i) ot I Hot The World

—

© internittentUnidecona Connection

Network

Internal _"M i OR\\ TheWorld
e

© 99% Safe from External Thveats (except viaemail...)

OEBPS/httpatomoreillycomsourceoreillyimages120721.png
B2 male

112 plug

5-pin i DIN male

OEBPS/httpatomoreillycomsourceoreillyimages120749.png
[ooty

o 7
PO WAL INIALA

ptn s | wamy | smineminm | [

OEBPS/httpatomoreillycomsourceoreillyimages120665.png
Packet Trip Tines

OEBPS/httpatomoreillycomsourceoreillyimages120599.png
Subnet

m[m[u] ogo
(=]]
ooa ooo
ooooood =
onooood
[=¥=" f—
oooo &
‘I _I u _I Chicago office LAN
e En|
oooo
w1000

OEBPS/httpatomoreillycomsourceoreillyimages246478.jpg
Tools and Techniques for
Linux and Unix Administration 3
O

Essential

System

Administration

O’REILLY® Hleen Frisch

OEBPS/httpatomoreillycomsourceoreillyimages120571.png
@ :r_;:“.':.m....:- G

OEBPS/httpatomoreillycomsourceoreillyimages120639.png
b

=

gTlos otdonain s
[—— T L
ap b an s me W oaow u‘k
i 6 oo e s
R abaracon hancertanesnec
gl s als
@@ froieieg
Vet i aharis o

[14620420 it

gt
T oty |
I
(@D s dimsts

=

Tnvkatanison dloc

ot st ahsok

OEBPS/httpatomoreillycomsourceoreillyimages120761.png
cachefree.
Sealatepagstst

OEBPS/httpatomoreillycomsourceoreillyimages120597.png
ipeale.pl 192.168.14.203,22

Droadease:
Hosein:
oz tha:
Hostesnet

ipcale.pl 192.168.14.263,27

Hostesnee:

11080000..10101000. 400011 10.11001011
Ba0B00A. 0BA0AGH. BAG0R 1111111111

11090000.10101000.000011 0808000000
i 0aa00a. 10101000 00a 1 1111111111
11 0Bo0a. 10101400 bOGR11 40 GBAGARL
§10a000. 101 01000000011 1311111110
CPrivate Internet RRC 1918

1199009..10101900. 40001 110110 01911
BANAGI. 0BA0ADG. AAARA00. 000 11111

11090000, 10101000, 00001110. 110 00000
1100010101700 POII 110110 11111
11000 10101 000 06011107110 GBS
10000 10101000 A00a1 110116 11110
CPrivate Internee RFC 19185

OEBPS/httpatomoreillycomsourceoreillyimages120657.png

OEBPS/httpatomoreillycomsourceoreillyimages253287.png

OEBPS/httpatomoreillycomsourceoreillyimages120689.png
< novice connigurator (] X
Configurator novice Controls
Save | aut o

Fetchmail Run Controts

Ponintervai: [0

Remote Mai Server Configurations.

Hew Server:
pop.essadm.ory

Edt | pelete Help

— 4 et

mail host pop.essadm. + (1 X

‘Server option for querying pop.essadm.ory
ok | aut Hoip

Protocol
aulo © POPI . APOP . KPOP.
IMAP ETRN . ODMR +

Probe for supportad protocols | Help

User entris for pop.essadm.ory
New usor:

ispuser

Eat | Doote Holp

OEBPS/httpatomoreillycomsourceoreillyimages120617.png
S e | D@

(e e s
e

e e WA B AE @

&

OEBPS/httpatomoreillycomsourceoreillyimages120719.png.jpg
o -

OEBPS/httpatomoreillycomsourceoreillyimages120619.png
“ACCOWRT Wcrafier oA maer o wa]

[

- B V| O [E_

Bl 0] B]%]a]@

S i
seit [—
R

- Rache] Chavez

e

Ofce frane

o Phone

I Hove o Directary " Lock fecomt [eoariigry

OEBPS/httpatomoreillycomsourceoreillyimages120623.png

OEBPS/httpatomoreillycomsourceoreillyimages120579.png
P01 DA e

19

DA e

Cotiwesoeeate

DA e

Op

-9

P04 Fry—

O

OEBPS/httpatomoreillycomsourceoreillyimages120685.png.jpg
RO)| eSS

[T G 320 ||
B [

i reysttay

ot [b s

D —
© iz € s

W et e o Tt
by [T e et

© Qo ftmesirmere

[|

OEBPS/httpatomoreillycomsourceoreillyimages120759.png
Proces suspension stops
vn.v_inactive. target

[—
m.y_free_target
g
Soppcc by ey
wn.v_free_nin
Pgeselngoas
Supenprcseingae ey
wn.v_free_seserve
Peslogocas
Ve ey e
m.v_pageout_free win

OEBPS/httpatomoreillycomsourceoreillyimages120713.png
).44-0.05 = 0.39 = 40%

OEBPS/httpatomoreillycomsourceoreillyimages120731.png
e B

L
T =)
=0 %
[T prer s
e st 1 =
I
S i e 0 &

OEBPS/httpatomoreillycomsourceoreillyimages120585.png

OEBPS/httpatomoreillycomsourceoreillyimages120663.png

OEBPS/httpatomoreillycomsourceoreillyimages120741.png

OEBPS/httpatomoreillycomsourceoreillyimages120757.png
Eile Bt Setings Nelp
=TT
9 Advanced 2over Hanager
B cow
[pa——
Bload
& wemors.
@ verwork
8 pasataon Gesge
Qyprocess Conbrstles
Querocess ot
@ lagtaies

Ll
62 processes | Wemory 90380 Kb used, 4104 15 fre

[Svep 75404 K5 uesd, 103108 b free

OEBPS/httpatomoreillycomsourceoreillyimages120655.png
Konqueror

ocaton Edt yiew Go Gooknarks Tooks Setings Windor

1 Metwork Mislity

Last updated: Sun Feb 10 16:3302 2002

Fe b Lo swTE
arione —

bagel m—

boueh m— —

catisto m—

s ot screen nas been genarated by e Angel Notwork Monilor
© 1595 by Marco Pagani [paganini@paganinine]

OEBPS/httpatomoreillycomsourceoreillyimages120645.png
Ciaon i she Sarvr/Secariert eab

Gk o e e e S basan S oo Sdividuaiy (il for 6T

OEBPS/httpatomoreillycomsourceoreillyimages120743.png
2

el | Log | Recovey | Dependercies|

Descrpion: [Povdes o TP Baced i o ht e .

Pathto execaste
AN Stenlpives e

Senpvee (T |

Sevis s Stated

B | NP CEw]
S

e E——

T _cwed |_aow

OEBPS/httpatomoreillycomsourceoreillyimages120563.png
- Control Center :

= YOURUSU - .
[Sp—

statopsenices
s

Sy
G sen

(] (seach)

OEBPS/httpatomoreillycomsourceoreillyimages120595.png
ol JCP/IP

‘the network and provides services to them. (generally implemented as daemons) and end

s appctions have o perfor thejobs of he

- 05 et Loy and prtf
Presentation ayer Sesintayer

Species data epresntation to aplcatons
The many protocolsincude NES, DS FT e,
SSH KT andsoon

Sesontayer
Geatemanages nd eminates T
o
network connections. Manages all -Wemmuau delivery,including
S o o v 4
Trammporth et
i ———
o mong s e . TPt 0Prtocls

Intemet

|

communications flow contrl. and reassembly
1Pand 0P potocos.
Data ink ayer Netyorkaceslayer

Ocisacctmaods e tysal e | el tomnitiog s
YAk dapesand e socared e et dog oo s e
eic s physialmedium.

thre and P protclsabough ot
5 ;;ﬂgmrwm mediunoperating | acaly part o CHIPL "

OEBPS/httpatomoreillycomsourceoreillyimages120765.png
Podify Gontlpurabl Paranater Carace)

Puramtes fanas sipostice
BEEFIRIN EERER tacervar 10 08 Ticke>

 Jadity T R
ATy i Bouice File | Caleutated alun: 10

Coeet 1

OEBPS/httpatomoreillycomsourceoreillyimages120605.png
orien tonssaes [T
orsce s [T

.

i 10 st Prart s 03 oo, [T

OEBPS/httpatomoreillycomsourceoreillyimages120708.png

OEBPS/httpatomoreillycomsourceoreillyimages120627.png
Foomer . e I |

o R = R —

=

OEBPS/httpatomoreillycomsourceoreillyimages120659.png
—
N I
ey
s
e e
[
T e i
WMILC) S WARTO GAOBRZN it 16 VARG -252 prcse i

OEBPS/httpatomoreillycomsourceoreillyimages120709.png
n (0.62+ /036 -0.2) /0.1 =(0.624 ./0.18) /0.1 = (0.

+0.42) /0.1

OEBPS/httpatomoreillycomsourceoreillyimages120587.png

OEBPS/httpatomoreillycomsourceoreillyimages120677.png
Internet)
-
sur,

Stores TP data o '

JAAA\Y

Frewalningon
WPy

i

Farwants TP data '
Nailsubmissonprogram sendail '

sur.

Tansportagent sendmall 35 ' el

Holreds
opproprate destinations

OEBPS/httpatomoreillycomsourceoreillyimages120729.png
-3 A YasT,

USB priter connection

Us8 ports
Plase select e device
for your USE printer.
Testing connection:
¥ you want o be sure
the priner isproperty
comecte e Test
biton, [T s rner eviusio?)
Fousts Use priver Udevusbios)

Comecion
‘seecthe sevice:

OEBPS/httpatomoreillycomsourceoreillyimages120559.png

OEBPS/httpatomoreillycomsourceoreillyimages120643.png
Eo R ——

1w

OEBPS/httpatomoreillycomsourceoreillyimages120591.png
i

Wireles [1011101
bridge y

10113

E

10115
england

U ;

0116 ITXRED
greece romeo
10122

0118

o

OEBPS/httpatomoreillycomsourceoreillyimages120615.png
st s o g |
B — (TS
B —

ot
ot P [
B —
tpnsen l

Do | g | [acoma | Fox | oy | [o]

OEBPS/httpatomoreillycomsourceoreillyimages120693.png
140664

Oteraccs

Gupacs

Ueracss

bothSenDand Sexi=5 tc.

Flesypenanedlpe =01, chrspec e =02 ety =0,
ks fe =0, e = 10,5y k= 1 s =14
Leading eroes are wsualy omitted

OEBPS/httpatomoreillycomsourceoreillyimages120625.png

OEBPS/httpatomoreillycomsourceoreillyimages120705.png
Tl el iy
hat oy acsp ot
3155 change ratepr .

Regtrbckpaye

B o Oy

ity sy 36y

Thedalybackpsi’s 7% f e sz

OEBPS/httpatomoreillycomsourceoreillyimages120695.png
b
]
1 2

Y ———)

OEBPS/httpatomoreillycomsourceoreillyimages120771.png
§§‘§

s

it
(and i)

Tartadn/
)

Taridnt
axt/
sall
fapmdd

OEBPS/httpatomoreillycomsourceoreillyimages120735.png

OEBPS/httpatomoreillycomsourceoreillyimages120667.png
B0ad sverage (uge3 winez e D0 processes (wperd winesz mwess)

'y f n T K " N

3

A

B0 Gueezr ez werea)

OEBPS/httpatomoreillycomsourceoreillyimages120637.png
Internal N -
Network E . TheWord N
—

Y-

- .

Interal -

Network @ . The World N\
ot I saion —

LY va—

i) ot I Hot The World

—

© internittentUnidecona Connection

Network

Internal _"M i OR\\ TheWorld
e

© 99% Safe from External Thveats exceptviasmall..)

OEBPS/httpatomoreillycomsourceoreillyimages120706.png
=L Ipn-1)

OEBPS/httpatomoreillycomsourceoreillyimages120611.png
[re——

i
O e b et o ot
g eisors P

e i g | —
T

FEPee secous
EPor scsauts st cny
it op scouns (n

iston prmisns o —

e sccomtconnsn [

e
stioon o dop ———
e

War s daps btorsscprsen [

—

T-asow & sccouipoed

Cieiage e sy

Contie suap s s
Set e cut

G pestreos s
Em::;vm‘ sences
oo _—
ity)

- —

bccomtpsstus sy [

Swmcasccsicrion o

OEBPS/httpatomoreillycomsourceoreillyimages120683.png.jpg
PELsias
oo |
P —
e —

R —

© et

I ok benseey [7 o
[——

OEBPS/httpatomoreillycomsourceoreillyimages120697.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages120679.png
T jane_smikh@shania.com

shani com WA 10gofice o om.

pofice

randa.c jane: Y
tincogrito.ananta.con | | Faneefeiton

daton

jont: fsnith

~jenith forvazds
Snesazons.org

T0:janesraas.ny

OEBPS/httpatomoreillycomsourceoreillyimages120691.png
disko.
oot flesystem
JdedscIdns0
Jrflesyten
Jdev/dskicdoss

disk1
I fiesysten
leuidsiiadi
Thomefiessten
Jdew/dsicld1s9

Ichem/iorganiclesystem
etk

OEBPS/httpatomoreillycomsourceoreillyimages120565.png
M o . .. /stand/susinstall Main Menu —————————
Helccns to the FrasBSD Lnstallstion and conflguration tool. Please
Select cre of the options belos by Usirg the aron Keus o tusirg the
first characten of the option nane u're interested in. Invoke an
opticn by pressing [ENTER] on [TAB-ENTER) 1o @it the installation.

Quick start - How 1o use this neny susten
Bogin a stenderd installation (recomnensiec)
Bogin a quick Installation (for the Lnpatient)

Bhgesa iz (s

Tnetallation instructions, REAIME, etc.
Select keuboard tupe.

View/Set various installation cptions.

Ente repair node uith CIRO flopey on stert shell
Upgracs an existing susten

Load Gefault install configwation

Glossary of funtions

=]
{ Press Fi for Installation Guide)

OEBPS/httpatomoreillycomsourceoreillyimages120753.png
X TER
iraing 127.0.0.1.

Cornected to lockihost,
Eocapo craractar 15 1)

(4] tho changed tho buset <
(2] & vt know 1 anuore charged the budet?

4] Dicn s change 1t ectercnd?
(OhtrL I

hat:

X ~ox
JGonncted to Tocalbost.
e charactar 15 1"

4] tho st e bt crasiheec?
[21 8 Lancs o ko 17 o chanced the budoet?
He changed 1t hinsel sesterday, hat a naroon!

4] Dicns e charge 1c etarday?
ORFHH vmmi

ot

Trairg 127,0.0.1
Comacted o icaifost.
Escape character 18 141",

1215 vk t koo 16 e, e e b2
TG i1 imee getordngy U » mvoon!
(4] Do gou chan 1t vesterdasi]

OEBPS/httpatomoreillycomsourceoreillyimages120755.png
prar— e 7
st e e =

rp—— £

st s ism> e
rp—]
P :

e i :

ot Bk i3

P :

P — : |

= e Rt cancel .

OEBPS/httpatomoreillycomsourceoreillyimages120593.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages120633.png
9000 = ml- R |

s Qs e

MIT PGP Public Key Server
il e Y

F by
i
e

[ROTS——

F—

I P

B

-

OEBPS/httpatomoreillycomsourceoreillyimages120575.png
ACCESS CLASS OPERATOR ACCESS TYPE

Oneor moreof Dneormoreof
u + (Add designated access) '
g F| - (Remove desionatet access) | + w
o = (Set exact acees spifed) x

a (oral3)

OEBPS/httpatomoreillycomsourceoreillyimages120589.png

OEBPS/httpatomoreillycomsourceoreillyimages120699.png
Centonics male

12 3 4 5 67 89 wu2n
000000000

Ws U ww D 2D oM
© ®e e

Minkmicro male

OEBPS/httpatomoreillycomsourceoreillyimages120567.png

OEBPS/httpatomoreillycomsourceoreillyimages120675.png
e @ @
s

Submisionagent et sioton)
——rrl '
)
owitets
fla— s |
LN
Internet ©
-—2)
T
Retietogent fechmil
potehinre v
WP Grmmmmaiene
Tansprtagent sendmail 25 '
T gy
Tansprtagent sendmail 25 '
Messagestore -
plrs g
fyopet e l = Netscape
plois oo
maliphes2s

{ser malbay) ‘ophelia (aptap)

OEBPS/httpatomoreillycomsourceoreillyimages120745.png
Select the Printe Port
Conades cormuscate vih s trovgh pts.

Seectthe o you went yous e o ue. I he pots o .o cn crete &

 Ussheolowing ot

Pt Descitin Frnier =
LPTT PP Bcasso Acxbal FOFver

P12 Finerpat

LPT3 Pmerpat

oML SealFr
M2 Sersp

Noe Most compuers use the LPT1 ot 1o comunicat wth ol et
& Creste anewpart

Tipe T

<ok [Weir[] Cone

OEBPS/httpatomoreillycomsourceoreillyimages120703.png
Disk4

Disk3

Disk2.

Disk1

Disko.

OEBPS/httpatomoreillycomsourceoreillyimages120767.png
i B bl

D {ireclicg agorens 3 the snount of Line ono pracess 13 sl <0
The valie of ‘Times Lice’ 135 ks

oified in unite of (18 milliseconds elock
EE R R

o Use, tho syzten defaulc alie Ceurrently con 10-nsec

= Disable round-vobin scheduling complotely.

pace on Susten
Theciice irposes & tine linie uhich, uhen it expires, Forcer a process

OEBPS/httpatomoreillycomsourceoreillyimages120603.png
st e o)
[————

HHH

B

OEBPS/httpatomoreillycomsourceoreillyimages120621.png

OEBPS/httpatomoreillycomsourceoreillyimages120747.png
Print Processor (21|
Sebcting a dffere: i processormay resu iy dFferntcptos beng
vaioio o fau dtatypes. yous S does o sacky 5 Sxype.
e slction bekw i bt e,

Pt pocesor Dufauk dtaype:

OEBPS/httpatomoreillycomsourceoreillyimages120769.png
LT

ol ity st | 120 s gpert. [|
[p—y ——— | som |
Lt il ot o e gt e e |

et st I it st
Pt Py st S bt

[y | 18 oo s ot 55, o 1 | s ettt
L [ep—— | ot aman soorm |
Tt severt | 8 nemee | st cntarcin ren i |
5 o | Fiessten . | sus Gttt Fie |

oot
Sl et o |
) o] el st et |
1530 2 | et |
0 [0 [i 75 it mepes o |
5[] o] tople cinorh flamsten et wparienal) s |
[o e |
S = e |
=1 = | &l
~ il o |
© o n]] 190 580 OO et spprt J=|
vl %l w0t st e 14

i | | F|

OEBPS/httpatomoreillycomsourceoreillyimages120547.png
ATG el Labs

— amdeant Pl

stonginene Versions

575

Version
157

XENX
(796mvard)

44850 ose1 Systemia
55 o) e

OEBPS/httpatomoreillycomsourceoreillyimages120573.png
oo o

HP Syst
Administi
Managef

&

OEBPS/httpatomoreillycomsourceoreillyimages120727.png
[E————
[IE——

[p—

Entorc U3 bttt (SPERMENTAL)
e e e, v .) spert.

et rver (1) gt

OHOl (campa, s, 0P, 55, . gt
[r—

38 Betooh sport (EPERIMENTAL)

50 ass tora sppor.

SenDik 50011 (d oter Sares) ipert
S8 Mot (€0 AGH) st

S aman o Devices (D)

5D oan trice Devie (1 D) gt
s WG Keyvear (s port
[y p—"

o o Gt ot spp

St magg dovies

5D sk MOC30D Dyl camers spper (BRPERIMENTAL)

OEBPS/httpatomoreillycomsourceoreillyimages120711.png
F, =2 [p-B (where F = Suiiman = FT
W2 2 T

i for fxedp

OEBPS/httpatomoreillycomsourceoreillyimages120673.png
G £t Gt T Sy s 1y,

et G e St T s e B,

2690805 LOISXAL T

En

S,

Graphs for ucd_sys

[
Bl 1] Bl

e

OEBPS/httpatomoreillycomsourceoreillyimages120714.png
M S

OEBPS/httpatomoreillycomsourceoreillyimages120583.png

OEBPS/httpatomoreillycomsourceoreillyimages120641.png
X

e e

OEBPS/oreilly_large.gif
O’REILLY

OEBPS/httpatomoreillycomsourceoreillyimages120733.png

OEBPS/httpatomoreillycomsourceoreillyimages120751.png
ove L-10[=]

Faragzashs vithont hard i bresks should £LLL sutcastically. of ich this soe

E =
st waiodon 1222

OEBPS/httpatomoreillycomsourceoreillyimages120649.png
16 D50 BEIURA S B e
b Sl [=——
= = =

e L L N —————

OEBPS/httpatomoreillycomsourceoreillyimages120553.png
- x
./ e i 1 e
e
Jo— i
i i =i [
PR —— T e

U P ——————

OEBPS/httpatomoreillycomsourceoreillyimages120601.png
=
[v n] 43
=

E—
—
[
[
—

OEBPS/httpatomoreillycomsourceoreillyimages120551.png
Howw screens appear after both users have.
et ommands
{Comecionstabished] {ComnectonEsiabised]
Notbad. LinkS01 cmpiles HiHowitgoing?
Sure Al Babas?. Great. Lunch?

Mot Link 01 compies!
Sure A Babat]_

Hitowstgoing?
Gt Lch?

oy ery— o e p—

OEBPS/httpatomoreillycomsourceoreillyimages120577.png
The file index has samedata. pointsto
bothafardand awindex index
symbaic nk

W index
s el pis

oo s
fane i oinder " ndex
Hd

—-—
[y

OEBPS/httpatomoreillycomsourceoreillyimages120671.png
b2t S8t

269D 0 DOSSRALS [}

D st 5 et i g s e e =)

RRGrapher,

= enac v e
[—

[—

ey

OEBPS/httpatomoreillycomsourceoreillyimages120710.png

OEBPS/httpatomoreillycomsourceoreillyimages120669.png
Packet Trip Tines and Loss Statistics

Dol Obusy Bereics] B rond-trip tiue (g0 1 mxeize 1)

OEBPS/httpatomoreillycomsourceoreillyimages120555.png

OEBPS/httpatomoreillycomsourceoreillyimages120725.png
USB A-type male

USBB-type male

OEBPS/httpatomoreillycomsourceoreillyimages120569.png
&) System |
Screen Savers »
(5, Apptncer
& Cloanup Icans
B FTPD Edtor
(@ Fie Menager (Super Usst Mode)
F Fontinstaller
KOE System Coriol
@ KOE System Guard.
@ Kongueror
s Legacy tneme inporter
B Menu Edior
6 Sy it Edtor
[Task Scheduier
@ Teminal
(@) Torminal (Super User Mode)
User Manager

OEBPS/httpatomoreillycomsourceoreillyimages120763.png
o pagesteatng o idke process swopping
vn_page_free hardsuap

deprocs swpiogocars

v_page_free_target-
Fgeseingcors

depces apping s

n_page_free_siap
Pagstsiogocs

n_page._free_uin

Sewtemenuysiotsge
wn_page_free_reserved
Oy the erne camalocateadeitionol memory

OEBPS/httpatomoreillycomsourceoreillyimages120681.png

OEBPS/httpatomoreillycomsourceoreillyimages120687.png
Lol mal Intemet mai

i)

Mt sbrision

matp e

o

]
-
-

Gl

ot

I IR
E E Mail delvery

)

bl

Uermabon

Internet :
~—a)

