

 [image: JavaScript: The Good Parts]

 JavaScript: The Good Parts

Douglas Crockford

Editor
Simon St. Laurent

Copyright © 2008 Yahoo! Inc.

[image:]

Yahoo Press

Dedication

For the Lads: Clement, Philbert,
 Seymore, Stern, and,
 lest we forget, C. Twildo.

SPECIAL OFFER: Upgrade this ebook with O’Reilly

Click here for more information on this offer!
Please note that upgrade offers are not available from sample content.

A Note Regarding Supplemental Files

Supplemental files and examples for this book can be found at http://examples.oreilly.com/9780596517748/. Please use a standard desktop web browser to access these files, as they may not be accessible from all ereader devices.
All code files or examples referenced in the book will be available online. For physical books that ship with an accompanying disc, whenever possible, we’ve posted all CD/DVD content. Note that while we provide as much of the media content as we are able via free download, we are sometimes limited by licensing restrictions. Please direct any questions or concerns to booktech@oreilly.com.

Preface

If we offend, it is with our good will That you should think, we come not to
 offend, But with good will. To show our simple skill, That is the true beginning of
 our end.
—William Shakespeare, A Midsummer Night's
 Dream

This is a book about the JavaScript programming language. It is intended for
 programmers who, by happenstance or curiosity, are venturing into JavaScript for the
 first time. It is also intended for programmers who have been working with JavaScript at
 a novice level and are now ready for a more sophisticated relationship with the
 language. JavaScript is a surprisingly powerful language. Its unconventionality presents
 some challenges, but being a small language, it is easily mastered.
My goal here is to help you to learn to think in JavaScript. I will show you the
 components of the language and start you on the process of discovering the ways those
 components can be put together. This is not a reference book. It is not exhaustive about
 the language and its quirks. It doesn't contain everything you'll ever need to know.
 That stuff you can easily find online. Instead, this book just contains the things that
 are really important.
This is not a book for beginners. Someday I hope to write a JavaScript: The
 First Parts book, but this is not that book. This is not a book about
 Ajax or web programming. The focus is exclusively on JavaScript, which is just one of
 the languages the web developer must master.
This is not a book for dummies. This book is small, but it is dense. There is a lot of
 material packed into it. Don't be discouraged if it takes multiple readings to get it.
 Your efforts will be rewarded.
Conventions Used in This Book

The following typographical conventions are used in this book:
	
 Italic

	Indicates new terms, URLs, filenames, and file extensions.

	
 Constant width

	Indicates computer coding in a broad sense. This includes commands,
 options, variables, attributes, keys, requests, functions, methods,
 types, classes, modules, properties, parameters, values, objects,
 events, event handlers, XML and XHTML tags, macros, and keywords.

	
 Constant width bold

	Indicates commands or other text that should be typed literally by the
 user.

Using Code Examples

This book is here to help you get your job done. In general, you may use the code
 in this book in your programs and documentation. You do not need to contact us for
 permission. For example, writing a program that uses several chunks of code from
 this book does not require permission. Selling or distributing a CD-ROM of examples
 from O'Reilly books does require permission. Answering a question by citing this
 book and quoting example code does not require permission. Incorporating a
 significant amount of example code from this book into your product's documentation
 does require permission.
We appreciate, but do not require, attribution. An attribution usually includes
 the title, author, publisher, and ISBN. For example: "JavaScript: The Good
 Parts by Douglas Crockford. Copyright 2008 Yahoo! Inc.,
 978-0-596-51774-8."
If you feel your use of code examples falls outside fair use or the permission
 given here, feel free to contact us at
 permissions@oreilly.com.

Safari® Books Online

When you see a Safari® Books Online icon on the cover of your favorite technology
 book, that means the book is available online through the O'Reilly Network Safari
 Bookshelf.
Safari offers a solution that's better than e-books. It's a virtual library that
 lets you easily search thousands of top tech books, cut and paste code samples,
 download chapters, and find quick answers when you need the most accurate, current
 information. Try it for free at http://safari.oreilly.com.

How to Contact Us

Please address comments and questions concerning this book to the
 publisher:
	O'Reilly Media, Inc.
	1005 Gravenstein Highway North
	Sebastopol, CA 95472
	800-998-9938 (in the United States or Canada)
	707-829-0515 (international or local)
	707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any
 additional information. You can access this page at:
	
 http://www.oreilly.com/catalog/9780596517748/

To comment or ask technical questions about this book, send email to:
	
 bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the
 O'Reilly Network, see our web site at:
	
 http://www.oreilly.com/

Acknowledgments

I want to thank the reviewers who pointed out my many egregious errors. There are
 few things better in life than having really smart people point out your blunders.
 It is even better when they do it before you go public. Thank you, Steve Souders,
 Bill Scott, Julien Lecomte, Stoyan Stefanov, Eric Miraglia, and Elliotte Rusty
 Harold.
I want to thank the people I worked with at Electric Communities and State
 Software who helped me discover that deep down there was goodness in this language,
 especially Chip Morningstar, Randy Farmer, John La, Mark Miller, Scott Shattuck, and
 Bill Edney.
I want to thank Yahoo! Inc. for giving me time to work on this project and for
 being such a great place to work, and thanks to all members of the Ajax Strike
 Force, past and present. I also want to thank O'Reilly Media, Inc., particularly
 Mary Treseler, Simon St.Laurent, and Sumita Mukherji for making things go so
 smoothly.
Special thanks to Professor Lisa Drake for all those things she does. And I want
 to thank the guys in ECMA TC39 who are struggling to make ECMAScript a better
 language.
Finally, thanks to Brendan Eich, the world's most misunderstood programming
 language designer, without whom this book would not have been necessary.

Chapter 1. Good Parts

...setting the attractions of my good parts aside I have no other charms.
—William Shakespeare, The Merry Wives of
 Windsor

When I was a young journeyman programmer, I would learn about every feature of the
 languages I was using, and I would attempt to use all of those features when I wrote. I
 suppose it was a way of showing off, and I suppose it worked because I was the guy you
 went to if you wanted to know how to use a particular feature.
Eventually I figured out that some of those features were more trouble than they were
 worth. Some of them were poorly specified, and so were more likely to cause portability
 problems. Some resulted in code that was difficult to read or modify. Some induced me to
 write in a manner that was too tricky and error-prone. And some of those features were
 design errors. Sometimes language designers make mistakes.
Most programming languages contain good parts and bad parts. I discovered that I could
 be a better programmer by using only the good parts and avoiding the bad parts. After
 all, how can you build something good out of bad parts?
It is rarely possible for standards committees to remove imperfections from a language
 because doing so would cause the breakage of all of the bad programs that depend on
 those bad parts. They are usually powerless to do anything except heap more features on
 top of the existing pile of imperfections. And the new features do not always interact
 harmoniously, thus producing more bad parts.
But you have the power to define your own subset. You can write
 better programs by relying exclusively on the good parts.
JavaScript is a language with more than its share of bad parts. It went from
 non-existence to global adoption in an alarmingly short period of time. It never had an
 interval in the lab when it could be tried out and polished. It went straight into
 Netscape Navigator 2 just as it was, and it was very rough. When Java™ applets failed,
 JavaScript became the "Language of the Web" by default. JavaScript's popularity is
 almost completely independent of its qualities as a programming language.
Fortunately, JavaScript has some extraordinarily good parts. In JavaScript, there is a
 beautiful, elegant, highly expressive language that is buried under a steaming pile of
 good intentions and blunders. The best nature of JavaScript is so effectively hidden
 that for many years the prevailing opinion of JavaScript was that it was an unsightly,
 incompetent toy. My intention here is to expose the goodness in JavaScript, an
 outstanding, dynamic programming language. JavaScript is a block of marble, and I chip
 away the features that are not beautiful until the language's true nature reveals
 itself. I believe that the elegant subset I carved out is vastly superior to the
 language as a whole, being more reliable, readable, and maintainable.
This book will not attempt to fully describe the language. Instead, it will focus on
 the good parts with occasional warnings to avoid the bad. The subset that will be
 described here can be used to construct reliable, readable programs small and large. By
 focusing on just the good parts, we can reduce learning time, increase robustness, and
 save some trees.
Perhaps the greatest benefit of studying the good parts is that you can avoid the need
 to unlearn the bad parts. Unlearning bad patterns is very difficult. It is a painful
 task that most of us face with extreme reluctance. Sometimes languages are subsetted to
 make them work better for students. But in this case, I am subsetting JavaScript to make
 it work better for professionals.
Why JavaScript?

JavaScript is an important language because it is the language of the web browser.
 Its association with the browser makes it one of the most popular programming
 languages in the world. At the same time, it is one of the most despised programming
 languages in the world. The API of the browser, the Document Object Model (DOM) is
 quite awful, and JavaScript is unfairly blamed. The DOM would be painful to work
 with in any language. The DOM is poorly specified and inconsistently implemented.
 This book touches only very lightly on the DOM. I think writing a Good
 Parts book about the DOM would be extremely challenging.
JavaScript is most despised because it isn't SOME OTHER LANGUAGE. If you are good
 in SOME OTHER LANGUAGE and you have to program in an environment that only supports
 JavaScript, then you are forced to use JavaScript, and that is annoying. Most people
 in that situation don't even bother to learn JavaScript first, and then they are
 surprised when JavaScript turns out to have significant differences from the SOME
 OTHER LANGUAGE they would rather be using, and that those differences matter.
The amazing thing about JavaScript is that it is possible to get work done with it
 without knowing much about the language, or even knowing much about programming. It
 is a language with enormous expressive power. It is even better when you know what
 you're doing. Programming is difficult business. It should never be undertaken in
 ignorance.

Analyzing JavaScript

JavaScript is built on some very good ideas and a few very bad ones.
The very good ideas include functions, loose typing, dynamic objects, and an
 expressive object literal notation. The bad ideas include a programming model based
 on global variables.
JavaScript's functions are first class objects with (mostly) lexical scoping.
 JavaScript is the first lambda language to go mainstream. Deep down, JavaScript has
 more in common with Lisp and Scheme than with Java. It is Lisp in C's clothing. This
 makes JavaScript a remarkably powerful language.
The fashion in most programming languages today demands strong typing. The theory
 is that strong typing allows a compiler to detect a large class of errors at compile
 time. The sooner we can detect and repair errors, the less they cost us. JavaScript
 is a loosely typed language, so JavaScript compilers are unable to detect type
 errors. This can be alarming to people who are coming to JavaScript from strongly
 typed languages. But it turns out that strong typing does not eliminate the need for
 careful testing. And I have found in my work that the sorts of errors that strong
 type checking finds are not the errors I worry about. On the other hand, I find
 loose typing to be liberating. I don't need to form complex class hierarchies. And I
 never have to cast or wrestle with the type system to get the behavior that I
 want.
JavaScript has a very powerful object literal notation. Objects can be created
 simply by listing their components. This notation was the inspiration for JSON, the
 popular data interchange format. (There will be more about JSON in Appendix E.)
A controversial feature in JavaScript is prototypal inheritance. JavaScript has a
 class-free object system in which objects inherit properties directly from other
 objects. This is really powerful, but it is unfamiliar to classically trained
 programmers. If you attempt to apply classical design patterns directly to
 JavaScript, you will be frustrated. But if you learn to work with JavaScript's
 prototypal nature, your efforts will be rewarded.
JavaScript is much maligned for its choice of key ideas. For the most part,
 though, those choices were good, if unusual. But there was one choice that was
 particularly bad: JavaScript depends on global variables for linkage. All of the
 top-level variables of all compilation units are tossed together in a common
 namespace called the global object. This is a bad thing because
 global variables are evil, and in JavaScript they are fundamental. Fortunately, as
 we will see, JavaScript also gives us the tools to mitigate this problem.
In a few cases, we can't ignore the bad parts. There are some unavoidable awful
 parts, which will be called out as they occur. They will also be summarized in Appendix A. But we will succeed in avoiding most of the bad parts
 in this book, summarizing much of what was left out in Appendix B.
 If you want to learn more about the bad parts and how to use them badly, consult any
 other JavaScript book.
The standard that defines JavaScript (aka JScript) is the third edition of
 The ECMAScript Programming Language, which is available
 from http://www.ecma-international.org/publications/files/ecma-st/ECMA-262.pdf. The language described in this book is a proper subset of ECMAScript. This book
 does not describe the whole language because it leaves out the bad parts. The
 treatment here is not exhaustive. It avoids the edge cases. You should, too. There
 is danger and misery at the edges.
Appendix C describes a programming tool called JSLint, a JavaScript
 parser that can analyze a JavaScript program and report on the bad parts that it
 contains. JSLint provides a degree of rigor that is generally lacking in JavaScript
 development. It can give you confidence that your programs contain only the good
 parts.
JavaScript is a language of many contrasts. It contains many errors and sharp
 edges, so you might wonder, "Why should I use JavaScript?" There are two answers.
 The first is that you don't have a choice. The Web has become an important platform
 for application development, and JavaScript is the only language that is found in
 all browsers. It is unfortunate that Java failed in that environment; if it hadn't,
 there could be a choice for people desiring a strongly typed classical language. But
 Java did fail and JavaScript is flourishing, so there is evidence that JavaScript
 did something right.
The other answer is that, despite its deficiencies, JavaScript is really
 good. It is lightweight and expressive. And once you get the hang of
 it, functional programming is a lot of fun.
But in order to use the language well, you must be well informed about its
 limitations. I will pound on those with some brutality. Don't let that discourage
 you. The good parts are good enough to compensate for the bad parts.

A Simple Testing Ground

If you have a web browser and any text editor, you have everything you need to run
 JavaScript programs. First, make an HTML file with a name like program.html:
<html><body><pre><script src="program.js">
</script></pre></body></html>
Then, make a file in the same directory with a name like program.js:
document.writeln('Hello, world!');
Next, open your HTML file in your browser to see the result. Throughout the book,
 a method method is used to define new methods.
 This is its definition:
Function.prototype.method = function (name, func) {
 this.prototype[name] = func;
 return this;
};
It will be explained in Chapter 4.

Chapter 2. Grammar

I know it well: I read it in the grammar long ago.
—William Shakespeare, The Tragedy of Titus
 Andronicus

This chapter introduces the grammar of the good parts of JavaScript, presenting a
 quick overview of how the language is structured. We will represent the grammar with
 railroad diagrams.
The rules for interpreting these diagrams are simple:
	You start on the left edge and follow the tracks to the right edge.

	As you go, you will encounter literals in ovals, and rules or descriptions in
 rectangles.

	Any sequence that can be made by following the tracks is legal.

	Any sequence that cannot be made by following the tracks is not legal.

	Railroad diagrams with one bar at each end allow whitespace to be inserted
 between any pair of tokens. Railroad diagrams with two bars at each end do
 not.

The grammar of the good parts presented in this chapter is significantly simpler than
 the grammar of the whole language.
Whitespace

[image: image with no caption]

Whitespace can take the form of formatting characters or comments. Whitespace is
 usually insignificant, but it is occasionally necessary to use whitespace to
 separate sequences of characters that would otherwise be combined into a single
 token. For example, in:
var that = this;
the space between var and that cannot be removed, but the other spaces can be
 removed.
JavaScript offers two forms of comments, block comments formed with /* */ and line-ending comments starting with //. Comments should be used liberally to improve the
 readability of your programs. Take care that the comments always accurately describe
 the code. Obsolete comments are worse than no comments.
The /* */ form of block comments came from a
 language called PL/I. PL/I chose those strange pairs as the symbols for comments
 because they were unlikely to occur in that language's programs, except perhaps in
 string literals. In JavaScript, those pairs can also occur in regular expression
 literals, so block comments are not safe for commenting out blocks of code. For
 example:
/*
 var rm_a = /a*/.match(s);
*/
causes a syntax error. So, it is recommended that /*
 */ comments be avoided and //
 comments be used instead. In this book, // will
 be used exclusively.

Names

A name is a letter optionally followed by one or more letters, digits, or
 underbars. A name cannot be one of these reserved words:
abstract
boolean break byte
case catch char class const continue
debugger default delete do double
else enum export extends
false final finally float for function
goto
if implements import in instanceof int interface
long
native new null
package private protected public
return
short static super switch synchronized
this throw throws transient true try typeof
var volatile void
while with
[image: image with no caption]

Most of the reserved words in this list are not used in the language. The list
 does not include some words that should have been reserved but were not, such as
 undefined, NaN, and Infinity. It is not
 permitted to name a variable or parameter with a reserved word. Worse, it is not
 permitted to use a reserved word as the name of an object property in an object
 literal or following a dot in a refinement.
Names are used for statements, variables, parameters, property names, operators,
 and labels.

Numbers

[image: image with no caption]

JavaScript has a single number type. Internally, it is represented as 64-bit
 floating point, the same as Java's double. Unlike
 most other programming languages, there is no separate integer type, so 1 and 1.0 are the
 same value. This is a significant convenience because problems of overflow in short
 integers are completely avoided, and all you need to know about a number is that it
 is a number. A large class of numeric type errors is avoided.
[image: image with no caption]

[image: image with no caption]

[image: image with no caption]

If a number literal has an exponent part, then the value of the literal is
 computed by multiplying the part before the e by
 10 raised to the power of the part after the
 e. So 100
 and 1e2 are the same number.
Negative numbers can be formed by using the -
 prefix operator.
The value NaN is a number value that is the
 result of an operation that cannot produce a normal result. NaN is not equal to any value, including itself. You can detect
 NaN with the isNaN(
 number
) function.
The value Infinity represents all values
 greater than 1.79769313486231570e+308.
Numbers have methods (see Chapter 8). JavaScript has a Math object that contains a set of methods that act on
 numbers. For example, the Math.floor(
 number
) method can be used to convert a number into an
 integer.

Strings

[image: image with no caption]

A string literal can be wrapped in single quotes or double quotes. It can contain
 zero or more characters. The \ (backslash) is the
 escape character. JavaScript was built at a time when Unicode was a 16-bit character
 set, so all characters in JavaScript are 16 bits wide.
[image: image with no caption]

JavaScript does not have a character type. To represent a character, make a string
 with just one character in it.
The escape sequences allow for inserting characters into strings that are not
 normally permitted, such as backslashes, quotes, and control characters. The
 \u convention allows for specifying character
 code points numerically.
"A" === "\u0041"
Strings have a length property. For example,
 "seven".length is 5.
Strings are immutable. Once it is made, a string can never be changed. But it is
 easy to make a new string by concatenating other strings together with the + operator. Two strings containing exactly the same
 characters in the same order are considered to be the same string. So:
'c' + 'a' + 't' === 'cat'
is true.
Strings have methods (see Chapter 8):
'cat'.toUpperCase() === 'CAT'

Statements

[image: image with no caption]

A compilation unit contains a set of executable statements. In web browsers, each
 <script> tag delivers a compilation
 unit that is compiled and immediately executed. Lacking a linker, JavaScript throws
 them all together in a common global namespace. There is more on global variables in
 Appendix A.
When used inside of a function, the var
 statement defines the function's private variables.
[image: image with no caption]

The switch, while, for, and do statements are allowed to have an optional
 label prefix that interacts with the break statement.
[image: image with no caption]

Statements tend to be executed in order from top to bottom. The sequence of
 execution can be altered by the conditional statements (if and switch), by the looping
 statements (while, for, and do), by the disruptive
 statements (break, return, and throw), and by
 function invocation.
[image: image with no caption]

A block is a set of statements wrapped in curly braces. Unlike many other
 languages, blocks in JavaScript do not create a new scope, so variables should be
 defined at the top of the function, not in blocks.
[image: image with no caption]

The if statement changes the flow of the
 program based on the value of the expression. The then block is
 executed if the expression is truthy;
 otherwise, the optional else branch is
 taken.
Here are the falsy values:
	
 false

	
 null

	
 undefined

	The empty string ''

	The number 0

	The number NaN

All other values are truthy, including true,
 the string 'false', and all objects.
[image: image with no caption]

The switch statement performs a multiway
 branch. It compares the expression for equality with all of the specified cases. The
 expression can produce a number or a string. When an exact match is found, the
 statements of the matching case clause are executed. If there is no match, the
 optional default statements are executed.
[image: image with no caption]

A case clause contains one or more case
 expressions. The case expressions need not be constants. The statement following a
 clause should be a disruptive statement to prevent fall through into the next
 case. The break statement can be used to exit from a switch.
[image: image with no caption]

The while statement performs a simple loop. If
 the expression is falsy, then the loop will break. While the expression is truthy,
 the block will be executed.
The for statement is a more complicated looping
 statement. It comes in two forms.
[image: image with no caption]

The conventional form is controlled by three optional clauses: the
 initialization, the condition, and the
 increment. First, the initialization is done, which
 typically initializes the loop variable. Then, the condition is
 evaluated. Typically, this tests the loop variable against a completion criterion.
 If the condition is omitted, then a
 condition of true is
 assumed. If the condition is falsy, the loop breaks. Otherwise,
 the block is executed, then the increment executes, and then
 the loop repeats with the condition.
The other form (called for in) enumerates the
 property names (or keys) of an object. On each iteration, another property name
 string from the object is assigned to the
 variable.
It is usually necessary to test object.hasOwnProperty(variable) to determine whether the property name is truly a
 member of the object or was found instead on the prototype chain.
for (myvar in obj) {
 if (obj.hasOwnProperty(myvar)) {
 ...
 }
}
[image: image with no caption]

The do statement is like the while statement except that the expression is tested
 after the block is executed instead of before. That means that the block will always
 be executed at least once.
[image: image with no caption]

The try statement executes a block and catches
 any exceptions that were thrown by the block. The catch clause defines a new variable that will
 receive the exception object.
[image: image with no caption]

The throw statement raises an exception. If the
 throw statement is in a try block, then control goes to the catch clause. Otherwise, the function invocation is
 abandoned, and control goes to the catch clause
 of the try in the calling function.
The expression is usually an object literal containing a name property and a message
 property. The catcher of the exception can use that information to determine what to
 do.
[image: image with no caption]

The return statement causes the early return
 from a function. It can also specify the value to be returned. If a return
 expression is not specified, then the return value will be undefined.
JavaScript does not allow a line end between the return and the expression.
[image: image with no caption]

The break statement causes the exit from a loop
 statement or a switch statement. It can
 optionally have a label that will cause an exit from the
 labeled statement.
JavaScript does not allow a line end between the break and the label.
[image: image with no caption]

An expression statement can either assign
 values to one or more variables or members, invoke a method, delete a property from
 an object. The = operator is used for assignment.
 Do not confuse it with the === equality operator.
 The += operator can add or concatenate.

End of sample

 To search for additional titles please go to

 http://search.overdrive.com.

OEBPS/httpatomoreillycomsourceoreillyimages238726.png
exponent
L

digit

{digit |

OEBPS/httpatomoreillycomsourceoreillyimages238854.png
parameters

OEBPS/httpatomoreillycomsourceoreillyimages238782.png
regexp escape

HO

carriage

: formfeed
: newline
() tetum
: tab

—o-]

4
hexadecimal
digits

—

word boundary

word character

any special character

back reference

integer

OEBPS/httpatomoreillycomsourceoreillyimages238856.png
escaped character

I i) (™ double quote {
(™_single quote
(%) backslash
(7)—Slash
®) backspace
o) formfeed
o) new line
I6) carriage return
(T)_tab
O

OEBPS/httpatomoreillycomsourceoreillyimages238750.png
statements

label

expression statement G
disruptive statement
try statement

if statement

while statement

do statement

OEBPS/httpatomoreillycomsourceoreillyimages238812.png
function body

O varstatements __}{_statemens -(D——

OEBPS/httpatomoreillycomsourceoreillyimages238716.png
regexp group

H—O g e -0

non-capturing

positive lookahead
O,

negative lookahead

OEBPS/httpatomoreillycomsourceoreillyimages238850.png
JSON string

JSON value

OEBPS/httpatomoreillycomsourceoreillyimages238802.png
disruptive statement
I

|
|

‘break statement

return statement

throw statement

OEBPS/httpatomoreillycomsourceoreillyimages238822.png
parse_url
scheme
H—{Geginstring_} {eter }
slash
host
letter or digit

(| or.or-]
port
)
path
‘any character
? except 2orit [

K

query
any character |
? except
hash

any character
? [except line end]

~—| endstring

OEBPS/httpatomoreillycomsourceoreillyimages238722.png
regexp sequence

H_F regexp factor ‘regexp quantifier

OEBPS/httpatomoreillycomsourceoreillyimages238858.png
parse_number

H—{"beginstring digit W__| endsting_|—H

B & digit

OEBPS/httpatomoreillycomsourceoreillyimages238826.png
regexp choice

regexp sequence

OEBPS/httpatomoreillycomsourceoreillyimages238720.png
invocation
O “expression 0!

OEBPS/httpatomoreillycomsourceoreillyimages238734.png
{__/*global

.'
(_/*members)

/*members

OEBPS/httpatomoreillycomsourceoreillyimages238844.png
if statement
then

expression_|—()—{_block_}

OEBPS/httpatomoreillycomsourceoreillyimages206240.jpg
R R RRRRESSSEESEESSSESSZZmm.™
Unearthing the excellence in JavaScript

JavaScript:
The Good Parts

O’REILLY® | 'YAHOO! PRESS Douglas Crockford

OEBPS/httpatomoreillycomsourceoreillyimages238736.png
if statement
then

expression_|—()—{_block_}

OEBPS/httpatomoreillycomsourceoreillyimages238798.png
infix operator

| logical or
! multiply add greater or equal Ia%v{m
divide subtract less or equal not equal
remainder

OEBPS/httpatomoreillycomsourceoreillyimages238714.png
regexp sequence

H_F regexp factor ‘regexp quantifier

OEBPS/httpatomoreillycomsourceoreillyimages238738.png
regexp literal

/

o

[

(&)

L

OEBPS/httpatomoreillycomsourceoreillyimages238848.png
function body

O varstatements __}{_statemens -(D——

OEBPS/httpatomoreillycomsourceoreillyimages238842.png
infix operator

| logical or
! multiply add greater or equal Ia%v{m
divide subtract less or equal not equal
remainder

OEBPS/httpatomoreillycomsourceoreillyimages238846.png
expression

literal

1 fiteral

M name

O)
prefix operator

expression

M| expression infix operator

[ewresion |

expression

O _ewression 1

refinement
D oprestor _—{Twaion]

\(delete)—{ enpression |

refinement | ———————/

OEBPS/httpatomoreillycomsourceoreillyimages238712.png
var statements

OEBPS/httpatomoreillycomsourceoreillyimages238692.png
case clause
. ——
expression statements

OEBPS/httpatomoreillycomsourceoreillyimages238804.png
try statement variable

() —{ ook _}—catch)»—O—{ _name }—Q)—{ block }———|

OEBPS/httpatomoreillycomsourceoreillyimages238708.png
regexp group

H—O g e -0

noncapturing

positive lookahead
O,

negative lookahead

OEBPS/httpatomoreillycomsourceoreillyimages238766.png
invocation
O “expression 0!

OEBPS/httpatomoreillycomsourceoreillyimages238760.png
while statement

—Ghile)—O— ewression Q) blok }— |

OEBPS/httpatomoreillycomsourceoreillyimages238742.png
JSON value

— [}

true)

null

OEBPS/httpatomoreillycomsourceoreillyimages238828.png
break statement J label |
—(break) name

OEBPS/httpatomoreillycomsourceoreillyimages238864.png
prefix operator

L typeof
I typeof’
tonumber
N\
~ negate

logical not

OEBPS/httpatomoreillycomsourceoreillyimages238818.png
regexp choice

regexp sequence

OEBPS/httpatomoreillycomsourceoreillyimages238780.png
parameters

OEBPS/httpatomoreillycomsourceoreillyimages238688.png
regexp dass

any Unicode character except / and \
and [and] and " and - and
control character

‘regexp class escape

OEBPS/httpatomoreillycomsourceoreillyimages30584.png
expression statement

I
I name

expression I_

mvocation

L| refinement

invocation

delete)—| expression

=

refinement }—————/

-

OEBPS/httpatomoreillycomsourceoreillyimages238808.png
number literal

H—{ Trteger }

OEBPS/httpatomoreillycomsourceoreillyimages30586.png
forstatement

initialization

expression statement

condition

expression

increment

expression statement

variable

expression

OEBPS/httpatomoreillycomsourceoreillyimages238838.png
regexp factor

any Unicode character except / and \ and

[ul
T

[and] and (and) and { andgaand ?and
+and * and | and control character

regexp group

OEBPS/httpatomoreillycomsourceoreillyimages238748.png
fraction

OEBPS/httpatomoreillycomsourceoreillyimages30606.png
number literal

H—{ Trteger }

OEBPS/httpatomoreillycomsourceoreillyimages238710.png

OEBPS/httpatomoreillycomsourceoreillyimages238740.png
JSON array

JSON value

OEBPS/httpatomoreillycomsourceoreillyimages238792.png
regexp escape

HO

carriage

: formfeed
: newline
() tetum
: tab

—o-]

4
hexadecimal
digits

—

word boundary

word character

any special character

back reference

integer

OEBPS/httpatomoreillycomsourceoreillyimages238794.png
object literal

OEBPS/httpatomoreillycomsourceoreillyimages238752.png
literal

|——| number literal

OEBPS/httpatomoreillycomsourceoreillyimages238778.png
string literal

o

any Unicode character except

" and \ and control character

any Unicode character except

" and \ and control character

OEBPS/httpatomoreillycomsourceoreillyimages238806.png
literal

|——| number literal

OEBPS/httpatomoreillycomsourceoreillyimages238686.png
string literal

o

any Unicode character except

" and \ and control character

any Unicode character except

" and \ and control character

OEBPS/httpatomoreillycomsourceoreillyimages238698.png

OEBPS/httpatomoreillycomsourceoreillyimages238868.png
function literal
—(function ‘name parameters | functionbody _|——

OEBPS/httpatomoreillycomsourceoreillyimages238796.png
exponent
L

digit

{digit |

OEBPS/httpatomoreillycomsourceoreillyimages238790.png
regexp literal

/

o

[

(&)

L

OEBPS/httpatomoreillycomsourceoreillyimages238702.png
expression statement

I
I name

expression I_

mvocation

L| refinement

invocation

delete)—| expression

=

refinement }—————/

-

OEBPS/httpatomoreillycomsourceoreillyimages238696.png
break statement J label |
—(break) name

OEBPS/httpatomoreillycomsourceoreillyimages238820.png
array literal

OEBPS/httpatomoreillycomsourceoreillyimages238810.png
throw statement

—Cthron))————————{ epression _}————————————— ()

OEBPS/httpatomoreillycomsourceoreillyimages30608.png
object literal

OEBPS/httpatomoreillycomsourceoreillyimages238836.png
try statement variable

() —{ ook _}—catch)»—O—{ _name }—Q)—{ block }———|

OEBPS/httpatomoreillycomsourceoreillyimages238768.png
block
(G statements D)

OEBPS/httpatomoreillycomsourceoreillyimages238800.png
dostatement

St (i) O e - G

OEBPS/httpatomoreillycomsourceoreillyimages238840.png
whitespace

space

tab

line 1

any character
except line end

)

end

any character
except *and / ~

®

)
\O,

OEBPS/httpatomoreillycomsourceoreillyimages238754.png
regexp factor

any Unicode character except / and \ and

[ul
T

[and] and (and) and { andgaand ?and
+and * and | and control character

regexp group

OEBPS/httpatomoreillycomsourceoreillyimages238834.png
regexp dass

any Unicode character except / and \
and [and] and " and - and
control character

‘regexp class escape

OEBPS/httpatomoreillycomsourceoreillyimages238786.png
regexp class escape
backspace
HOT®

not

: formfeed
: newline
carriage

@—tetum
: tab

1 literal
o Y
hexadecimal any special character

digits

word character

133

OEBPS/httpatomoreillycomsourceoreillyimages238724.png
array literal

OEBPS/httpatomoreillycomsourceoreillyimages238718.png
prefix operator

L typeof
I typeof’
tonumber
N\
~ negate

logical not

OEBPS/httpatomoreillycomsourceoreillyimages238764.png
refinement

O name

OEBPS/httpatomoreillycomsourceoreillyimages238776.png
regexp literal

L

OEBPS/httpatomoreillycomsourceoreillyimages238866.png
ISLint comment

|_

ISLint
option

{ name_} B (true GO

OEBPS/httpatomoreillycomsourceoreillyimages238772.png
expression

literal

1 fiteral

M name

O)
prefix operator

expression

M| expression infix operator

[ewresion |

expression

O _ewression 1

refinement
D oprestor _—{Twaion]

\(delete)—{ enpression |

refinement | ———————/

OEBPS/httpatomoreillycomsourceoreillyimages238700.png
while statement

—Ghile)—O— ewression Q) blok }— |

OEBPS/httpatomoreillycomsourceoreillyimages238852.png
‘regexp quantifier

OEBPS/httpatomoreillycomsourceoreillyimages238814.png
JSON number

|| integer
L

fraction

exponent

digit1-9

OEBPS/httpatomoreillycomsourceoreillyimages238860.png
name

letter

OEBPS/httpatomoreillycomsourceoreillyimages238862.png
‘regexp quantifier

OEBPS/httpatomoreillycomsourceoreillyimages30650.png
whitespace

space

tab

line 1

any character
except line end

)

end

any character
except *and / ~

®

)
\O,

OEBPS/httpatomoreillycomsourceoreillyimages238824.png
JSON string

any Unicode character except
""or \ or control character

\

C quotation mark

C reversesolidus

C solidus

® backspace

3 formfeed

C newline

C carriage return

3 ‘horizontal tab

O

OEBPS/oreilly_large.gif
O’REILLY

OEBPS/httpatomoreillycomsourceoreillyimages238758.png
fraction

OEBPS/httpatomoreillycomsourceoreillyimages238728.png
escaped character

I i) (™ double quote {
(™_single quote
(%) backslash
(7)—Slash
®) backspace
o) formfeed
o) new line
I6) carriage return
(T)_tab
O

OEBPS/httpatomoreillycomsourceoreillyimages238706.png

OEBPS/httpatomoreillycomsourceoreillyimages238762.png
return statement J |
|—(return expression

OEBPS/httpatomoreillycomsourceoreillyimages238832.png
refinement

O name

OEBPS/httpatomoreillycomsourceoreillyimages238694.png
return statement J |
|—(return expression

OEBPS/httpatomoreillycomsourceoreillyimages238816.png
statements

label

expression statement G
disruptive statement
try statement

if statement

while statement

do statement

OEBPS/httpatomoreillycomsourceoreillyimages238730.png
function literal
—(function ‘name parameters | functionbody _|——

OEBPS/httpatomoreillycomsourceoreillyimages238774.png
forstatement

initialization

expression statement

condition

expression

increment

expression statement

variable

expression

OEBPS/httpatomoreillycomsourceoreillyimages238770.png
block
(G statements D)

OEBPS/httpatomoreillycomsourceoreillyimages238830.png
dostatement

St (i) O e - G

OEBPS/httpatomoreillycomsourceoreillyimages238788.png
throw statement

—Cthron))————————{ epression _}————————————— ()

OEBPS/httpatomoreillycomsourceoreillyimages238690.png
name

letter

OEBPS/httpatomoreillycomsourceoreillyimages238744.png
switch statement

disruptive
statement

OEBPS/httpatomoreillycomsourceoreillyimages238784.png
var statements

OEBPS/httpatomoreillycomsourceoreillyimages238704.png
case clause
. ——
expression statements

OEBPS/httpatomoreillycomsourceoreillyimages238756.png
disruptive statement
I

|
|

‘break statement

return statement

throw statement

OEBPS/httpatomoreillycomsourceoreillyimages238746.png
regexp class escape
backspace
HOT®

not

: formfeed
: newline
carriage

@—tetum
: tab

1 literal
o Y
hexadecimal any special character

digits

word character

133

OEBPS/httpatomoreillycomsourceoreillyimages238732.png
switch statement

disruptive
statement

