

 [image: Sixth Edition]

 JavaScript: The Definitive Guide

David Flanagan

Editor
Mike Loukides

Copyright © 2011 David Flanagan

O’Reilly books may be purchased for educational, business, or sales promotional
 use. Online editions are also available for most titles (http://my.safaribooksonline.com). For more information, contact our
 corporate/institutional sales department: (800) 998-9938 or
 corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are
 registered trademarks of O’Reilly Media, Inc. JavaScript: The Definitive
 Guide, the image of a Javan rhinoceros, and related trade dress are
 trademarks of O’Reilly Media, Inc.
Many of the designations used by manufacturers and sellers to distinguish their
 products are claimed as trademarks. Where those designations appear in this book,
 and O’Reilly Media, Inc., was aware of a trademark claim, the designations have been
 printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the
 publisher and authors assume no responsibility for errors or omissions, or for
 damages resulting from the use of the information contained herein.

[image:]

O'Reilly Media

Dedication

This book is dedicated to all who teach peace and resist
 violence.

SPECIAL OFFER: Upgrade this ebook with O’Reilly

Click here for more information on this offer!
Please note that upgrade offers are not available from sample content.

A Note Regarding Supplemental Files

Supplemental files and examples for this book can be found at http://examples.oreilly.com/9780596805531/. Please use a standard desktop web browser to access these files, as they may not be accessible from all ereader devices.
All code files or examples referenced in the book will be available online. For physical books that ship with an accompanying disc, whenever possible, we’ve posted all CD/DVD content. Note that while we provide as much of the media content as we are able via free download, we are sometimes limited by licensing restrictions. Please direct any questions or concerns to booktech@oreilly.com.

Preface

This book covers the JavaScript language and the JavaScript APIs implemented by web
 browsers. I wrote it for readers with at least some prior programming experience who
 want to learn JavaScript and also for programmers who already use JavaScript but want to
 take their understanding to a new level and really master the language and the web
 platform. My goal with this book is to document the JavaScript language and platform
 comprehensively and definitively. As a result, this is a large and detailed book. My
 hope, however, is that it will reward careful study, and that the time you spend reading
 it will be easily recouped in the form of higher programming productivity.
This book is divided into four parts. Part I covers the JavaScript
 language itself. Part II covers client-side JavaScript: the JavaScript
 APIs defined by HTML5 and related standards and implemented by web browsers. Part III is the reference section for the core language, and Part IV is the reference for client-side JavaScript. Chapter 1 includes an outline of the chapters in Parts I and II (see Core JavaScript).
This sixth edition of the book covers both ECMAScript 5 (the latest version of the
 core language) and HTML5 (the latest version of the web platform). You’ll find ECMAScript 5
 material throughout Part I. The new material on HTML5 is mostly in the
 chapters at the end of Part II, but there is also some in other chapters
 as well. Completely new chapters in this edition include Chapter 11, JavaScript Subsets and Extensions;
 Chapter 12, Server-Side JavaScript
 ; Chapter 19, The jQuery Library; and Chapter 22, HTML5 APIs.
Readers of previous editions may notice that I have completely rewritten many of the
 chapters in this book for the sixth edition. The core of Part I—the
 chapters covering objects, arrays, functions, and classes—is all new and brings the book
 in line with current programming styles and best practices. Similarly, key chapters of
 Part II, such as those covering documents and events, have been
 completely rewritten to bring them up-to-date.
A Note About Piracy
If you are reading a digital version of this book that you (or your employer) did
 not pay for (or borrow from someone who did) then you probably have an illegally
 pirated copy. Writing the sixth edition of this book was a full-time job, and it
 took more than a year. The only way I get paid for that time is when readers
 actually buy the book. And the only way I can afford to work on a seventh edition is
 if I get paid for the sixth.
I do not condone piracy, but if you have a pirated copy, go ahead and read a
 couple of chapters. I think that you’ll find that this is a valuable source of
 information about JavaScript, better organized and of higher quality than what you
 can find freely (and legally) available on the Web. If you agree that this is a
 valuable source of information, then please pay for that value by purchasing a legal
 copy (either digital or print) of the book. On the other hand, if you find that this
 book is no more valuable than the free information on the web, then please discard
 your pirated copy and use those free information sources.

Conventions Used in This Book

I use the following typographical conventions in this book:
	
 Italic

	Is used for emphasis and to indicate the first use of a term.
 Italic is also used for email addresses, URLs
 and file names.

	
 Constant width

	Is used in all JavaScript code and CSS and HTML listings, and
 generally for anything that you would type literally when
 programming.

	
 Constant width italic

	Is used for the names of function parameters, and generally as a
 placeholder to indicate an item that should be replaced with an actual
 value in your program.

Example Code

The examples in this book are available online. You can find them linked from the
 book’s catalog page at the publisher’s website:
	
 http://oreilly.com/catalog/9780596805531/

This book is here to help you get your job done. In general, you may use the code
 in this book in your programs and documentation. You do not need to contact O’Reilly
 for permission unless you’re reproducing a significant portion of the code. For
 example, writing a program that uses several chunks of code from this book does not
 require permission. Selling or distributing a CD-ROM of examples from O’Reilly books
 does require permission. Answering a question by citing
 this book and quoting example code does not require permission. Incorporating a
 significant amount of example code from this book into your product’s documentation
 does require permission.
If you use the code from this book, I appreciate, but do not require, attribution.
 An attribution usually includes the title, author, publisher, and ISBN. For example:
 “JavaScript: The Definitive Guide, by David Flanagan
 (O’Reilly). Copyright 2011 David Flanagan, 978-0-596-80552-4.”
For more details on the O’Reilly code reuse policy, see http://oreilly.com/pub/a/oreilly/ask_tim/2001/codepolicy.html. If you
 feel your use of the examples falls outside of the permission given above, feel free
 to contact O’Reilly at permissions@oreilly.com.

Errata and How to Contact Us

The publisher maintains a public list of errors found in
 this book. You can view the list, and submit the errors you find, by visiting the
 book’s web page:
	
 http://oreilly.com/catalog/9780596805531

To comment or ask technical questions about this book, send
 email to:
	
 bookquestions@oreilly.com

For more information about our books, conferences, Resource
 Centers, and the O’Reilly Network, see our
 website at:
	
 http://www.oreilly.com

Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia
Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments

Many people have helped me with the creation of this book. I’d like to thank my
 editor, Mike Loukides, for trying to keep me on schedule and for his insightful
 comments. Thanks also to my technical reviewers: Zachary Kessin, who reviewed many
 of the chapters in Part I, and Raffaele Cecco, who reviewed Chapter 19
 and the <canvas> material in Chapter 21. The production team at O’Reilly has done their usual fine
 job: Dan Fauxsmith managed the production process, Teresa Elsey was the production
 editor, Rob Romano drew the figures, and Ellen Troutman Zaig created the
 index.
In this era of effortless electronic communication, it is impossible to keep track
 of all those who influence and inform us. I’d like to thank everyone who has
 answered my questions on the es5, w3c, and whatwg mailing lists, and everyone who
 has shared their insightful ideas about JavaScript programming online. I’m sorry I
 can’t list you all by name, but it is a pleasure to work within such a vibrant
 community of JavaScript programmers.
Editors, reviewers, and contributors to previous editions of this book have
 included: Andrew Schulman, Angelo Sirigos, Aristotle Pagaltzis, Brendan Eich,
 Christian Heilmann, Dan Shafer, Dave C.
 Mitchell, Deb Cameron, Douglas Crockford, Dr. Tankred Hirschmann, Dylan Schiemann,
 Frank Willison, Geoff Stearns, Herman Venter, Jay Hodges, Jeff Yates, Joseph
 Kesselman, Ken Cooper, Larry Sullivan, Lynn Rollins, Neil Berkman, Nick Thompson,
 Norris Boyd, Paula Ferguson, Peter-Paul Koch, Philippe Le Hegaret, Richard Yaker,
 Sanders Kleinfeld, Scott Furman, Scott Issacs, Shon Katzenberger, Terry Allen, Todd
 Ditchendorf, Vidur Apparao, and Waldemar Horwat.
This edition of the book is substantially rewritten and kept me away from my
 family for many late nights. My love to them and my thanks for putting up with my
 absences.
— David Flanagan (davidflanagan.com), March 2011

Chapter 1. Introduction to JavaScript

JavaScript is the programming language of the Web. The overwhelming majority of modern
 websites use JavaScript, and all modern web browsers—on desktops, game consoles,
 tablets, and smart phones—include JavaScript interpreters, making JavaScript the most
 ubiquitous programming language in history. JavaScript is part of the triad of
 technologies that all Web developers must learn: HTML to specify the content of web
 pages, CSS to specify the presentation of web pages, and JavaScript to specify the
 behavior of web pages. This book will help you master the language.
If you are already familiar with other programming languages, it may help you to know
 that JavaScript is a high-level, dynamic, untyped interpreted programming language that
 is well-suited to object-oriented and functional programming styles. JavaScript derives
 its syntax from Java, its first-class functions from Scheme, and its prototype-based
 inheritance from Self. But you do not need to know any of those languages, or be
 familiar with those terms, to use this book and learn JavaScript.
The name “JavaScript” is actually somewhat misleading. Except for a superficial
 syntactic resemblance, JavaScript is completely different from the Java programming
 language. And JavaScript has long since outgrown its scripting-language roots to become
 a robust and efficient general-purpose language. The latest version of the language (see
 the sidebar) defines new features for serious large-scale software development.
JavaScript: Names and Versions
JavaScript was created at Netscape in the early days of the Web, and technically,
 “JavaScript” is a trademark licensed from Sun Microsystems (now Oracle) used to
 describe Netscape’s (now Mozilla’s) implementation of the language. Netscape
 submitted the language for standardization to ECMA—the European Computer
 Manufacturer’s Association—and because of trademark issues, the standardized version
 of the language was stuck with the awkward name “ECMAScript.” For the same trademark
 reasons, Microsoft’s version of the language is formally known as “JScript.” In
 practice, just about everyone calls the language JavaScript. This book uses the name
 “ECMAScript” only to refer to the language standard.
For the last decade, all web browsers have implemented version 3 of the ECMAScript
 standard and there has really been no need to think about version numbers: the
 language standard was stable and browser implementations of the language were, for
 the most part, interoperable. Recently, an important new version of the language has
 been defined as ECMAScript version 5 and, at the time of this writing, browsers are
 beginning to implement it. This book covers all the new features of ECMAScript 5 as
 well as all the long-standing features of ECMAScript 3. You’ll sometimes see these
 language versions abbreviated as ES3 and ES5, just as you’ll sometimes see the name
 JavaScript abbreviated as JS.
When we’re speaking of the language itself, the only version numbers that are
 relevant are ECMAScript versions 3 or 5. (Version 4 of ECMAScript was under
 development for years, but proved to be too ambitious and was never released.)
 Sometimes, however, you’ll also see a JavaScript version number, such as JavaScript
 1.5 or JavaScript 1.8. These are Mozilla’s version numbers: version 1.5 is basically
 ECMAScript 3, and later versions include nonstandard language extensions (see Chapter 11). Finally, there are also version numbers attached to
 particular JavaScript interpreters or “engines.” Google calls its JavaScript
 interpreter V8, for example, and at the time of this writing the current version of
 the V8 engine is 3.0.

To be useful, every language must have a platform or standard library or API of
 functions for performing things like basic input and output. The core JavaScript
 language defines a minimal API for working with text, arrays, dates, and regular
 expressions but does not include any input or output functionality. Input and output (as
 well as more sophisticated features, such as networking, storage, and graphics) are the
 responsibility of the “host environment” within which JavaScript is embedded. Usually
 that host environment is a web browser (though we’ll see two uses of JavaScript without
 a web browser in Chapter 12). Part I of this book
 covers the language itself and its minimal built-in API. Part II
 explains how JavaScript is used in web browsers and covers the sprawling browser-based
 APIs loosely known as “client-side JavaScript.”
Part III is the reference section for the core API. You can read about
 the JavaScript array manipulation API by looking up “Array” in this part of the book,
 for example. Part IV is the reference section for client-side
 JavaScript. You might look up “Canvas” in this part of the book to read about the
 graphics API defined by the HTML5 <canvas> element, for example.
This book covers low-level fundamentals first, and then builds on those to more
 advanced and higher-level abstractions. The
 chapters are intended to be read more or less in order. But learning a new programming
 language is never a linear process, and describing a language is not linear either: each
 language feature is related to other features and this book is full of
 cross-references—sometimes backward and sometimes forward to material you have not yet
 read. This chapter makes a quick first pass through the core language and the
 client-side API, introducing key features that will make it easier to understand the
 in-depth treatment in the chapters that follow.
Exploring JavaScript
When learning a new programming language, it’s important to try the examples in
 the book, and then modify them and try them again to test your understanding of the
 language. To do that, you need a JavaScript interpreter. Fortunately, every web
 browser includes a JavaScript interpreter, and if you’re reading this book, you
 probably already have more than one web browser installed on your
 computer.
We’ll see later on in this chapter that you can embed JavaScript code within
 <script> tags in HTML files,
 and when the browser loads the file, it will execute the code. Fortunately, however,
 you don’t have to do that every time you want to try out simple snippets of
 JavaScript code. Spurred on by the powerful and innovative Firebug extension for
 Firefox (pictured in Figure 1-1 and available for download from
 http://getfirebug.com/), today’s web browsers all include web
 developer tools that are indispensable for debugging, experimenting, and learning.
 You can usually find these tools in the Tools menu of the browser under names like
 “Developer Tools” or “Web Console.” (Firefox 4
 includes a built-in “Web Console,” but at the time of this writing, the Firebug
 extension is better.) Often, you can call up a console with a keystroke like F12 or
 Ctrl-Shift-J. These console tools often appear as panes at the top or bottom of the
 browser window, but some allow you to open them as separate windows (as pictured in
 Figure 1-1), which is often quite convenient.
A typical “developer tools” pane or window includes multiple tabs that allow you
 to inspect things like HTML document structure, CSS styles, network requests, and so
 on. One of the tabs is a “JavaScript console” that allows you to type in lines of
 JavaScript code and try them out. This is a particularly easy way to play around
 with JavaScript, and I recommend that you use it as you read this book.
There is a simple console API that is portably implemented by modern browsers. You
 can use the function console.log() to display
 text on the console. This is often surprisingly helpful while debugging, and some of
 the examples in this book (even in the core language section) use console.log() to perform simple output. A similar but
 more intrusive way to display output or debugging messages is by passing a string of
 text to the alert() function, which displays it
 in a modal dialog box.

[image: The Firebug debugging console for Firefox]

Figure 1-1. The Firebug debugging console for Firefox

Core JavaScript

This section is a tour of the JavaScript language, and also a tour of Part I of this book. After this introductory chapter, we dive into
 JavaScript at the lowest level: Chapter 2, Lexical Structure, explains things like JavaScript comments, semicolons, and the Unicode character
 set. Chapter 3, Types, Values, and Variables, starts to get more
 interesting: it explains JavaScript variables and the values you can assign to those
 variables. Here’s some sample code to illustrate the highlights of those two
 chapters:
// Anything following double slashes is an English-language comment.
// Read the comments carefully: they explain the JavaScript code.

// variable is a symbolic name for a value.
// Variables are declared with the var keyword:
var x; // Declare a variable named x.

// Values can be assigned to variables with an = sign
x = 0; // Now the variable x has the value 0
x // => 0: A variable evaluates to its value.

// JavaScript supports several types of values
x = 1; // Numbers.
x = 0.01; // Just one Number type for integers and reals.
x = "hello world"; // Strings of text in quotation marks.
x = 'JavaScript'; // Single quote marks also delimit strings.
x = true; // Boolean values.
x = false; // The other Boolean value.
x = null; // Null is a special value that means "no value".
x = undefined; // Undefined is like null.
Two other very important types that JavaScript programs can
 manipulate are objects and arrays. These are the subject of Chapter 6, Objects, and Chapter 7, Arrays, but they are so important that you’ll see them
 many times before you reach those chapters.
// JavaScript's most important data type is the object.
// An object is a collection of name/value pairs, or a string to value map.
var book = { // Objects are enclosed in curly braces.
 topic: "JavaScript", // The property "topic" has value "JavaScript".
 fat: true // The property "fat" has value true.
}; // The curly brace marks the end of the object.

// Access the properties of an object with . or []:
book.topic // => "JavaScript"
book["fat"] // => true: another way to access property values.
book.author = "Flanagan"; // Create new properties by assignment.
book.contents = {}; // {} is an empty object with no properties.

// JavaScript also supports arrays (numerically indexed lists) of values:
var primes = [2, 3, 5, 7]; // An array of 4 values, delimited with [and].
primes[0] // => 2: the first element (index 0) of the array.
primes.length // => 4: how many elements in the array.
primes[primes.length-1] // => 7: the last element of the array.
primes[4] = 9; // Add a new element by assignment.
primes[4] = 11; // Or alter an existing element by assignment.
var empty = []; // [] is an empty array with no elements.
empty.length // => 0

// Arrays and objects can hold other arrays and objects:
var points = [// An array with 2 elements.
 {x:0, y:0}, // Each element is an object.
 {x:1, y:1}
];
var data = { // An object with 2 properties
 trial1: [[1,2], [3,4]], // The value of each property is an array.
 trial2: [[2,3], [4,5]] // The elements of the arrays are arrays.
};
The syntax illustrated above for listing array elements within square braces or
 mapping object property names to property values inside curly braces is known as an
 initializer expression, and it is just one of the topics of
 Chapter 4, Expressions and Operators. An
 expression is a phrase of JavaScript that can be
 evaluated to produce a value. The use of . and [] to refer
 to the value of an object property or array element is an expression, for example.
 You may have noticed in the code above that when an expression stands alone on a
 line, the comment that follows it begins with an arrow (=>) and the value of the expression. This is a convention that
 you’ll see throughout this book.
One of the most common ways to form expressions in JavaScript is to use
 operators like these:
// Operators act on values (the operands) to produce a new value.
// Arithmetic operators are the most common:
3 + 2 // => 5: addition
3 - 2 // => 1: subtraction
3 * 2 // => 6: multiplication
3 / 2 // => 1.5: division
points[1].x - points[0].x // => 1: more complicated operands work, too
"3" + "2" // => "32": + adds numbers, concatenates strings

// JavaScript defines some shorthand arithmetic operators
var count = 0; // Define a variable
count++; // Increment the variable
count--; // Decrement the variable
count += 2; // Add 2: same as count = count + 2;
count *= 3; // Multiply by 3: same as count = count * 3;
count // => 6: variable names are expressions, too.

// Equality and relational operators test whether two values are equal,
// unequal, less than, greater than, and so on. They evaluate to true or false.
var x = 2, y = 3; // These = signs are assignment, not equality tests
x == y // => false: equality
x != y // => true: inequality
x < y // => true: less-than
x <= y // => true: less-than or equal
x > y // => false: greater-than
x >= y // => false: greater-than or equal
"two" == "three" // => false: the two strings are different
"two" > "three" // => true: "tw" is alphabetically greater than "th"
false == (x > y) // => true: false is equal to false

// Logical operators combine or invert boolean values
(x == 2) && (y == 3) // => true: both comparisons are true. && is AND
(x > 3) || (y < 3) // => false: neither comparison is true. || is OR
!(x == y) // => true: ! inverts a boolean value
If the phrases of JavaScript are expressions, then the full sentences are
 statements, which are the topic of Chapter 5, Statements. In the code above, the lines
 that end with semicolons are statements. (In the code below, you’ll see multiline
 statements that do not end with semicolons.) There is actually a lot of overlap
 between statements and expressions. Roughly, an expression is something that
 computes a value but doesn’t do anything: it doesn’t alter the
 program state in any way. Statements, on the other hand, don’t have a value (or
 don’t have a value that we care about), but they do alter the state. You’ve seen
 variable declarations and assignment statements above. The other broad category of
 statement is control structures, such as conditionals and
 loops. Examples are below, after we cover functions.
A function is a named and parametrized block of JavaScript
 code that you define once, and can then invoke over and over again. Functions aren’t
 covered formally until Chapter 8, Functions, but
 like objects and arrays, you’ll see them many times before you get to that chapter.
 Here are some simple examples:
// Functions are parameterized blocks of JavaScript code that we can invoke.
function plus1(x) { // Define a function named "plus1" with parameter "x"
 return x+1; // Return a value one larger than the value passed in
} // Functions are enclosed in curly braces

plus1(y) // => 4: y is 3, so this invocation returns 3+1

var square = function(x) { // Functions are values and can be assigned to vars
 return x*x; // Compute the function's value
}; // Semicolon marks the end of the assignment.

square(plus1(y)) // => 16: invoke two functions in one expression
When we combine functions with objects, we get
 methods:
// When functions are assigned to the properties of an object, we call
// them "methods". All JavaScript objects have methods:
var a = []; // Create an empty array
a.push(1,2,3); // The push() method adds elements to an array
a.reverse(); // Another method: reverse the order of elements

// We can define our own methods, too. The "this" keyword refers to the object
// on which the method is defined: in this case, the points array from above.
points.dist = function() { // Define a method to compute distance between points
 var p1 = this[0]; // First element of array we're invoked on
 var p2 = this[1]; // Second element of the "this" object
 var a = p2.x-p1.x; // Difference in X coordinates
 var b = p2.y-p1.y; // Difference in Y coordinates
 return Math.sqrt(a*a + // The Pythagorean theorem
 b*b); // Math.sqrt() computes the square root
};
points.dist() // => 1.414: distance between our 2 points
Now, as promised, here are some functions whose bodies demonstrate common
 JavaScript control structure statements:
// JavaScript statements include conditionals and loops using the syntax
// of C, C++, Java, and other languages.
function abs(x) { // A function to compute the absolute value
 if (x >= 0) { // The if statement...
 return x; // executes this code if the comparison is true.
 } // This is the end of the if clause.
 else { // The optional else clause executes its code if
 return -x; // the comparison is false.
 } // Curly braces optional when 1 statement per clause.
} // Note return statements nested inside if/else.

function factorial(n) { // A function to compute factorials
 var product = 1; // Start with a product of 1
 while(n > 1) { // Repeat statements in {} while expr in () is true
 product *= n; // Shortcut for product = product * n;
 n--; // Shortcut for n = n - 1
 } // End of loop
 return product; // Return the product
}
factorial(4) // => 24: 1*4*3*2

function factorial2(n) { // Another version using a different loop
 var i, product = 1; // Start with 1
 for(i=2; i <= n; i++) // Automatically increment i from 2 up to n
 product *= i; // Do this each time. {} not needed for 1-line loops
 return product; // Return the factorial
}
factorial2(5) // => 120: 1*2*3*4*5
JavaScript is an object-oriented language, but it is quite different than most.
 Chapter 9, Classes and Modules, covers object-oriented
 programming in JavaScript in detail, with lots of examples, and is one of the
 longest chapters in the book. Here is a very simple example that demonstrates how to
 define a JavaScript class to represent 2D geometric points. Objects that are
 instances of this class have a single method named r() that computes the distance of the point from the
 origin:
// Define a constructor function to initialize a new Point object
function Point(x,y) { // By convention, constructors start with capitals
 this.x = x; // this keyword is the new object being initialized
 this.y = y; // Store function arguments as object properties
} // No return is necessary

// Use a constructor function with the keyword "new" to create instances
var p = new Point(1, 1); // The geometric point (1,1)

// Define methods for Point objects by assigning them to the prototype
// object associated with the constructor function.
Point.prototype.r = function() {
 return Math.sqrt(// Return the square root of x² + y²
 this.x * this.x + // This is the Point object on which the method...
 this.y * this.y // ...is invoked.
);
};

// Now the Point object p (and all future Point objects) inherits the method r()
p.r() // => 1.414...
Chapter 9 is really the climax of Part I, and the
 chapters that follow wrap up some loose ends and bring our exploration of the core
 language to a close. Chapter 10, Pattern Matching with Regular
 Expressions, explains
 the regular expression grammar and demonstrates how to use these “regexps” for
 textual pattern matching. Chapter 11, JavaScript Subsets and Extensions,
 covers subsets and extensions of core JavaScript. Finally, before we plunge into
 client-side JavaScript in web browsers, Chapter 12, Server-Side JavaScript, introduces two ways to use JavaScript outside of
 web browsers.

Client-Side JavaScript

Client-side JavaScript does not exhibit the nonlinear cross-reference problem
 nearly to the extent that the core language does, and it is possible to learn how to
 use JavaScript in web browsers in a fairly linear sequence. But you’re probably
 reading this book to learn client-side JavaScript, and Part II is a
 long way off, so this section is a quick sketch of basic client-side programming
 techniques, followed by an in-depth example.
Chapter 13, JavaScript in Web Browsers, is the first chapter of
 Part II and it explains in detail how to put JavaScript to work
 in web browsers. The most important thing you’ll learn in that chapter is that
 JavaScript code can be embedded within HTML files using the <script> tag:
<html>
<head>
<script src="library.js"></script> <!-- include a library of JavaScript code -->
</head>
<body>
<p>This is a paragraph of HTML</p>
<script>
// And this is some client-side JavaScript code
// literally embedded within the HTML file
</script>
<p>Here is more HTML.</p>
</body>
</html>
Chapter 14, The Window Object, explains techniques for
 scripting the web browser and covers some important global functions of client-side
 JavaScript. For example:
<script>
function moveon() {
 // Display a modal dialog to ask the user a question
 var answer = confirm("Ready to move on?");
 // If they clicked the "OK" button, make the browser load a new page
 if (answer) window.location = "http://google.com";
}
// Run the function defined above 1 minute (60,000 milliseconds) from now.
setTimeout(moveon, 60000);
</script>
Note that the client-side example code shown in this section comes in longer
 snippets than the core language examples earlier in the chapter. These examples are
 not designed to be typed into a Firebug (or similar) console window. Instead you can
 embed them in an HTML file and try them out by loading them in your web browser. The
 code above, for instance, works as a stand-alone HTML file.
Chapter 15, Scripting Documents, gets down to the real
 business of client-side JavaScript, scripting HTML document content. It shows you
 how to select particular HTML elements from within a document, how to set HTML
 attributes of those elements, how to alter the content of those elements, and how to
 add new elements to the document. This function demonstrates a number of these basic
 document searching and modification techniques:
// Display a message in a special debugging output section of the document.
// If the document does not contain such a section, create one.
function debug(msg) {
 // Find the debugging section of the document, looking at HTML id attributes
 var log = document.getElementById("debuglog");

 // If no element with the id "debuglog" exists, create one.
 if (!log) {
 log = document.createElement("div"); // Create a new <div> element
 log.id = "debuglog"; // Set the HTML id attribute on it
 log.innerHTML = "<h1>Debug Log</h1>"; // Define initial content
 document.body.appendChild(log); // Add it at end of document
 }

 // Now wrap the message in its own <pre> and append it to the log
 var pre = document.createElement("pre"); // Create a <pre> tag
 var text = document.createTextNode(msg); // Wrap msg in a text node
 pre.appendChild(text); // Add text to the <pre>
 log.appendChild(pre); // Add <pre> to the log
}
Chapter 15 shows how JavaScript can script the HTML elements that
 define web content. Chapter 16, Scripting CSS, shows how you
 can use JavaScript with the CSS styles that define the presentation of that content.
 This is often done with the style or class attribute of HTML elements:
function hide(e, reflow) { // Hide the element e by scripting its style
 if (reflow) { // If 2nd argument is true
 e.style.display = "none" // hide element and use its space
 }
 else { // Otherwise
 e.style.visibility = "hidden"; // make e invisible, but leave its space
 }
}

function highlight(e) { // Highlight e by setting a CSS class
 // Simply define or append to the HTML class attribute.
 // This assumes that a CSS stylesheet already defines the "hilite" class
 if (!e.className) e.className = "hilite";
 else e.className += " hilite";
}
JavaScript allows us to script the HTML content and CSS presentation of documents
 in web browsers, but it also allows us to define behavior for those documents with
 event handlers. An event handler is a JavaScript function
 that we register with the browser and the browser invokes when some specified type
 of event occurs. The event of interest might be a mouse click or a key press (or on
 a smart phone, it might be a two-finger gesture of some sort). Or an event handler
 might be triggered when the browser finishes loading a document, when the user
 resizes the browser window, or when the user enters data into an HTML form element.
 Chapter 17, Handling Events, explains how you can define
 and register event handlers and how the browser invokes them when events
 occur.
The simplest way to define event handlers is with HTML attributes that begin with
 “on”. The “onclick” handler is a particularly useful one when you’re writing simple
 test programs. Suppose that you had typed in the debug() and hide() functions from
 above and saved them in files named debug.js and
 hide.js. You could write a simple HTML test file using
 <button> elements with onclick event handler attributes:
<script src="debug.js"></script>
<script src="hide.js"></script>
Hello
<button onclick="hide(this,true); debug('hide button 1');">Hide1</button>
<button onclick="hide(this); debug('hide button 2');">Hide2</button>
World
Here is some more client-side JavaScript code that uses events. It registers an
 event handler for the very important “load” event, and it also demonstrates a more
 sophisticated way of registering event handler functions for “click”
 events:
// The "load" event occurs when a document is fully loaded. Usually we
// need to wait for this event before we start running our JavaScript code.
window.onload = function() { // Run this function when the document loads
 // Find all tags in the document
 var images = document.getElementsByTagName("img");

 // Loop through them, adding an event handler for "click" events to each
 // so that clicking on the image hides it.
 for(var i = 0; i < images.length; i++) {
 var image = images[i];
 if (image.addEventListener) // Another way to register a handler
 image.addEventListener("click", hide, false);
 else // For compatibility with IE8 and before
 image.attachEvent("onclick", hide);
 }

 // This is the event handler function registered above
 function hide(event) { event.target.style.visibility = "hidden"; }
};
Chapters 15, 16, and 17 explain how you can use JavaScript to script
 the content (HTML), presentation (CSS), and behavior (event handling) of web pages.
 The APIs described in those chapters are somewhat complex and, until recently,
 riddled with browser incompatibilities. For these reasons, many or most client-side
 JavaScript programmers choose to use a client-side library or framework to simplify
 their basic programming tasks. The most popular such library is jQuery, the subject
 of
 Chapter 19, The jQuery Library
 . jQuery defines a clever and easy-to-use API for scripting document
 content, presentation, and behavior. It has been thoroughly tested and works in all
 major browsers, including old ones like IE6.
jQuery code is easy to identify because it makes frequent use of a function named
 $(). Here is what the
 debug() function used previously looks like
 when rewritten to use jQuery:
function debug(msg) {
 var log = $("#debuglog"); // Find the element to display msg in.
 if (log.length == 0) { // If it doesn't exist yet, create it...
 log = $("<div id='debuglog'><h1>Debug Log</h1></div>");
 log.appendTo(document.body); // and insert it at the end of the body.
 }
 log.append($("<pre/>").text(msg)); // Wrap msg in <pre> and append to log.
}
The four chapters of Part II described so far have all really been
 about web pages. Four more chapters shift gears to focus on web
 applications. These chapters are not about using web
 browsers to display documents with scriptable content, presentation, and behavior.
 Instead, they’re about using web browsers as application platforms, and they
 describe the APIs that modern browsers provide to support sophisticated client-side
 web apps. Chapter 18, Scripted HTTP, explains how to make
 scripted HTTP requests with JavaScript—a kind of networking API. Chapter 20, Client-Side Storage, describes mechanisms for storing
 data—and even entire applications—on the client side for use in future browsing
 sessions. Chapter 21, Scripted Media and Graphics, covers a
 client-side API for drawing arbitrary graphics in an HTML <canvas> tag. And, finally, Chapter 22, HTML5 APIs, covers an assortment of new web app APIs specified
 by or affiliated with HTML5. Networking, storage, graphics: these are OS-type
 services being provided by the web browser, defining a new cross-platform
 application environment. If you are targeting browsers that support these new APIs,
 it is an exciting time to be a client-side JavaScript programmer. There are no code
 samples from these final four chapters here, but the extended example below uses
 some of these new APIs.
Example: A JavaScript Loan Calculator

This chapter ends with an extended example that puts many of these techniques
 together and shows what real-world client-side JavaScript (plus HTML and CSS)
 programs look like. Example 1-1 lists the code for the
 simple loan payment calculator application pictured in Figure 1-2.
[image: A loan calculator web application]

Figure 1-2. A loan calculator web application

It is worth reading through Example 1-1 carefully. You
 shouldn’t expect to understand everything, but the code is heavily commented and
 you should be able to at least get the big-picture view of how it works. The
 example demonstrates a number of core JavaScript language features, and also
 demonstrates important client-side JavaScript techniques:
	How to find elements in a document.

	How to get user input from form input elements.

	How to set the HTML content of document elements.

	How to store data in the browser.

	How to make scripted HTTP requests.

	How to draw graphics with the <canvas> element.

Example 1-1. A loan calculator in JavaScript
<!DOCTYPE html>
<html>
<head>
<title>JavaScript Loan Calculator</title>
<style> /* This is a CSS style sheet: it adds style to the program output */
.output { font-weight: bold; } /* Calculated values in bold */
#payment { text-decoration: underline; } /* For element with id="payment" */
#graph { border: solid black 1px; } /* Chart has a simple border */
th, td { vertical-align: top; } /* Don't center table cells */
</style>
</head>
<body>
<!--
 This is an HTML table with <input> elements that allow the user to enter data
 and elements in which the program can display its results.
 These elements have ids like "interest" and "years". These ids are used
 in the JavaScript code that follows the table. Note that some of the input
 elements define "onchange" or "onclick" event handlers. These specify strings
 of JavaScript code to be executed when the user enters data or clicks.
-->
<table>
 <tr><th>Enter Loan Data:</th>
 <td></td>
 <th>Loan Balance, Cumulative Equity, and Interest Payments</th></tr>
 <tr><td>Amount of the loan ($):</td>
 <td><input id="amount" onchange="calculate();"></td>
 <td rowspan=8>
 <canvas id="graph" width="400" height="250"></canvas></td></tr>
 <tr><td>Annual interest (%):</td>
 <td><input id="apr" onchange="calculate();"></td></tr>
 <tr><td>Repayment period (years):</td>
 <td><input id="years" onchange="calculate();"></td>
 <tr><td>Zipcode (to find lenders):</td>
 <td><input id="zipcode" onchange="calculate();"></td>
 <tr><th>Approximate Payments:</th>
 <td><button onclick="calculate();">Calculate</button></td></tr>
 <tr><td>Monthly payment:</td>
 <td>$</td></tr>
 <tr><td>Total payment:</td>
 <td>$</td></tr>
 <tr><td>Total interest:</td>
 <td>$</td></tr>
 <tr><th>Sponsors:</th><td colspan=2>
 Apply for your loan with one of these fine lenders:
 <div id="lenders"></div></td></tr>
</table>

<!-- The rest of this example is JavaScript code in the <script> tag below -->
<!-- Normally, this script would go in the document <head> above but it -->
<!-- is easier to understand here, after you've seen its HTML context. -->
<script>
"use strict"; // Use ECMAScript 5 strict mode in browsers that support it

/*
 * This script defines the calculate() function called by the event handlers
 * in HTML above. The function reads values from <input> elements, calculates
 * loan payment information, displays the results in elements. It also
 * saves the user's data, displays links to lenders, and draws a chart.
 */
function calculate() {
 // Look up the input and output elements in the document
 var amount = document.getElementById("amount");
 var apr = document.getElementById("apr");
 var years = document.getElementById("years");
 var zipcode = document.getElementById("zipcode");
 var payment = document.getElementById("payment");
 var total = document.getElementById("total");
 var totalinterest = document.getElementById("totalinterest");

 // Get the user's input from the input elements. Assume it is all valid.
 // Convert interest from a percentage to a decimal, and convert from
 // an annual rate to a monthly rate. Convert payment period in years
 // to the number of monthly payments.
 var principal = parseFloat(amount.value);
 var interest = parseFloat(apr.value) / 100 / 12;
 var payments = parseFloat(years.value) * 12;

 // Now compute the monthly payment figure.
 var x = Math.pow(1 + interest, payments); // Math.pow() computes powers
 var monthly = (principal*x*interest)/(x-1);

 // If the result is a finite number, the user's input was good and
 // we have meaningful results to display
 if (isFinite(monthly)) {
 // Fill in the output fields, rounding to 2 decimal places
 payment.innerHTML = monthly.toFixed(2);
 total.innerHTML = (monthly * payments).toFixed(2);
 totalinterest.innerHTML = ((monthly*payments)-principal).toFixed(2);

 // Save the user's input so we can restore it the next time they visit
 save(amount.value, apr.value, years.value, zipcode.value);

 // Advertise: find and display local lenders, but ignore network errors
 try { // Catch any errors that occur within these curly braces
 getLenders(amount.value, apr.value, years.value, zipcode.value);
 }
 catch(e) { /* And ignore those errors */ }

 // Finally, chart loan balance, and interest and equity payments
 chart(principal, interest, monthly, payments);
 }
 else {
 // Result was Not-a-Number or infinite, which means the input was
 // incomplete or invalid. Clear any previously displayed output.
 payment.innerHTML = ""; // Erase the content of these elements
 total.innerHTML = ""
 totalinterest.innerHTML = "";
 chart(); // With no arguments, clears the chart
 }
}

// Save the user's input as properties of the localStorage object. Those
// properties will still be there when the user visits in the future
// This storage feature will not work in some browsers (Firefox, e.g.) if you
// run the example from a local file:// URL. It does work over HTTP, however.
function save(amount, apr, years, zipcode) {
 if (window.localStorage) { // Only do this if the browser supports it
 localStorage.loan_amount = amount;
 localStorage.loan_apr = apr;
 localStorage.loan_years = years;
 localStorage.loan_zipcode = zipcode;
 }
}

// Automatically attempt to restore input fields when the document first loads.
window.onload = function() {
 // If the browser supports localStorage and we have some stored data
 if (window.localStorage && localStorage.loan_amount) {
 document.getElementById("amount").value = localStorage.loan_amount;
 document.getElementById("apr").value = localStorage.loan_apr;
 document.getElementById("years").value = localStorage.loan_years;
 document.getElementById("zipcode").value = localStorage.loan_zipcode;
 }
};

// Pass the user's input to a server-side script which can (in theory) return
// a list of links to local lenders interested in making loans. This example
// does not actually include a working implementation of such a lender-finding
// service. But if the service existed, this function would work with it.
function getLenders(amount, apr, years, zipcode) {
 // If the browser does not support the XMLHttpRequest object, do nothing
 if (!window.XMLHttpRequest) return;

 // Find the element to display the list of lenders in
 var ad = document.getElementById("lenders");
 if (!ad) return; // Quit if no spot for output

 // Encode the user's input as query parameters in a URL
 var url = "getLenders.php" + // Service url plus
 "?amt=" + encodeURIComponent(amount) + // user data in query string
 "&apr=" + encodeURIComponent(apr) +
 "&yrs=" + encodeURIComponent(years) +
 "&zip=" + encodeURIComponent(zipcode);

 // Fetch the contents of that URL using the XMLHttpRequest object
 var req = new XMLHttpRequest(); // Begin a new request
 req.open("GET", url); // An HTTP GET request for the url
 req.send(null); // Send the request with no body

 // Before returning, register an event handler function that will be called
 // at some later time when the HTTP server's response arrives. This kind of
 // asynchronous programming is very common in client-side JavaScript.
 req.onreadystatechange = function() {
 if (req.readyState == 4 && req.status == 200) {
 // If we get here, we got a complete valid HTTP response
 var response = req.responseText; // HTTP response as a string
 var lenders = JSON.parse(response); // Parse it to a JS array

 // Convert the array of lender objects to a string of HTML
 var list = "";
 for(var i = 0; i < lenders.length; i++) {
 list += "" +
 lenders[i].name + "";
 }

 // Display the HTML in the element from above.
 ad.innerHTML = "" + list + "";
 }
 }
}

// Chart monthly loan balance, interest and equity in an HTML <canvas> element.
// If called with no arguments then just erase any previously drawn chart.
function chart(principal, interest, monthly, payments) {
 var graph = document.getElementById("graph"); // Get the <canvas> tag
 graph.width = graph.width; // Magic to clear and reset the canvas element

 // If we're called with no arguments, or if this browser does not support
 // graphics in a <canvas> element, then just return now.
 if (arguments.length == 0 || !graph.getContext) return;

 // Get the "context" object for the <canvas> that defines the drawing API
 var g = graph.getContext("2d"); // All drawing is done with this object
 var width = graph.width, height = graph.height; // Get canvas size

 // These functions convert payment numbers and dollar amounts to pixels
 function paymentToX(n) { return n * width/payments; }
 function amountToY(a) { return height-(a * height/(monthly*payments*1.05));}

 // Payments are a straight line from (0,0) to (payments, monthly*payments)
 g.moveTo(paymentToX(0), amountToY(0)); // Start at lower left
 g.lineTo(paymentToX(payments), // Draw to upper right
 amountToY(monthly*payments));
 g.lineTo(paymentToX(payments), amountToY(0)); // Down to lower right
 g.closePath(); // And back to start
 g.fillStyle = "#f88"; // Light red
 g.fill(); // Fill the triangle
 g.font = "bold 12px sans-serif"; // Define a font
 g.fillText("Total Interest Payments", 20,20); // Draw text in legend

 // Cumulative equity is non-linear and trickier to chart
 var equity = 0;
 g.beginPath(); // Begin a new shape
 g.moveTo(paymentToX(0), amountToY(0)); // starting at lower-left
 for(var p = 1; p <= payments; p++) {
 // For each payment, figure out how much is interest
 var thisMonthsInterest = (principal-equity)*interest;
 equity += (monthly - thisMonthsInterest); // The rest goes to equity
 g.lineTo(paymentToX(p),amountToY(equity)); // Line to this point
 }
 g.lineTo(paymentToX(payments), amountToY(0)); // Line back to X axis
 g.closePath(); // And back to start point
 g.fillStyle = "green"; // Now use green paint
 g.fill(); // And fill area under curve
 g.fillText("Total Equity", 20,35); // Label it in green

 // Loop again, as above, but chart loan balance as a thick black line
 var bal = principal;
 g.beginPath();
 g.moveTo(paymentToX(0),amountToY(bal));
 for(var p = 1; p <= payments; p++) {
 var thisMonthsInterest = bal*interest;
 bal -= (monthly - thisMonthsInterest); // The rest goes to equity
 g.lineTo(paymentToX(p),amountToY(bal)); // Draw line to this point
 }
 g.lineWidth = 3; // Use a thick line
 g.stroke(); // Draw the balance curve
 g.fillStyle = "black"; // Switch to black text
 g.fillText("Loan Balance", 20,50); // Legend entry

 // Now make yearly tick marks and year numbers on X axis
 g.textAlign="center"; // Center text over ticks
 var y = amountToY(0); // Y coordinate of X axis
 for(var year=1; year*12 <= payments; year++) { // For each year
 var x = paymentToX(year*12); // Compute tick position
 g.fillRect(x-0.5,y-3,1,3); // Draw the tick
 if (year == 1) g.fillText("Year", x, y-5); // Label the axis
 if (year % 5 == 0 && year*12 !== payments) // Number every 5 years
 g.fillText(String(year), x, y-5);
 }

 // Mark payment amounts along the right edge
 g.textAlign = "right"; // Right-justify text
 g.textBaseline = "middle"; // Center it vertically
 var ticks = [monthly*payments, principal]; // The two points we'll mark
 var rightEdge = paymentToX(payments); // X coordinate of Y axis
 for(var i = 0; i < ticks.length; i++) { // For each of the 2 points
 var y = amountToY(ticks[i]); // Compute Y position of tick
 g.fillRect(rightEdge-3, y-0.5, 3,1); // Draw the tick mark
 g.fillText(String(ticks[i].toFixed(0)), // And label it.
 rightEdge-5, y);
 }
}
</script>
</body>
</html>

Part I. Core JavaScript

This part of the book, Chapters 2 though 12, documents the core JavaScript language and is
 meant to be a JavaScript language reference. After you read through it once to learn
 the language, you may find yourself referring back to it to refresh your memory
 about some of the trickier points of JavaScript.
	
 Chapter 2, Lexical Structure

	
 Chapter 3, Types, Values, and Variables

	
 Chapter 4, Expressions and Operators

	
 Chapter 5, Statements

	
 Chapter 6, Objects

	
 Chapter 7, Arrays

	
 Chapter 8, Functions

	
 Chapter 9, Classes and Modules

	
 Chapter 10, Pattern Matching with Regular
 Expressions

	
 Chapter 11, JavaScript Subsets and Extensions

	
 Chapter 12, Server-Side JavaScript

Chapter 2. Lexical Structure

The lexical structure of a programming language is the set of elementary rules
 that specifies how you write programs in that language. It is the lowest-level
 syntax of a language; it specifies such things as what variable names look like, the
 delimiter characters for comments, and how one program statement is separated from
 the next. This short chapter documents the lexical structure of JavaScript.
Character Set

JavaScript programs are written using the Unicode character set. Unicode is a
 superset of ASCII and Latin-1 and supports virtually every written language
 currently used on the planet. ECMAScript 3 requires JavaScript implementations
 to support Unicode version 2.1 or later, and ECMAScript 5 requires
 implementations to support Unicode 3 or
 later. See the sidebar in Text for more about Unicode and
 JavaScript.
Case Sensitivity

JavaScript is a case-sensitive language. This means that language
 keywords, variables, function names, and other
 identifiers must always be typed with a consistent
 capitalization of letters. The while
 keyword, for example, must be typed “while,” not “While” or “WHILE.”
 Similarly, online, Online, OnLine, and ONLINE are
 four distinct variable names.
Note, however, that HTML is not case-sensitive (although XHTML is).
 Because of its close association with client-side JavaScript, this
 difference can be confusing. Many client-side JavaScript objects and
 properties have the same names as the HTML tags and attributes they
 represent. While these tags and attribute names can be typed in any case in
 HTML, in JavaScript they typically must be all lowercase. For example, the
 HTML onclick event handler attribute is
 sometimes specified as onClick in HTML,
 but it must be specified as onclick in
 JavaScript code (or in XHTML documents).

Whitespace, Line Breaks, and Format Control Characters

JavaScript ignores spaces that appear between tokens in programs. For the
 most part, JavaScript also ignores line breaks (but see Optional Semicolons for an exception). Because you can use
 spaces and newlines freely in your programs, you can format and indent your
 programs in a neat and consistent way that makes the code easy to read and
 understand.
In addition to the regular space character (\u0020), JavaScript also recognizes the following characters
 as whitespace: tab (\u0009), vertical tab
 (\u000B), form feed (\u000C), nonbreaking space (\u00A0), byte order mark (\uFEFF), and any character in Unicode category
 Zs. JavaScript recognizes the following characters as line terminators: line
 feed (\u000A), carriage return (\u000D), line separator (\u2028), and paragraph separator (\u2029). A carriage return, line feed sequence
 is treated as a single line terminator.
Unicode format control characters (category Cf), such as RIGHT-TO-LEFT
 MARK (\u200F) and LEFT-TO-RIGHT MARK
 (\u200E), control the visual
 presentation of the text they occur in. They are important for the proper
 display of some non-English languages and are allowed in JavaScript
 comments, string literals, and regular expression literals, but not in the
 identifiers (e.g., variable names) of a JavaScript program. As a special
 case, ZERO WIDTH JOINER (\u200D) and ZERO
 WIDTH NON-JOINER (\u200C) are allowed in
 identifiers, but not as the first character. As noted above, the byte order
 mark format control character (\uFEFF) is
 treated as a space character.

Unicode Escape Sequences

Some computer hardware and software can not display or input the full set
 of Unicode characters. To support programmers using this older technology,
 JavaScript defines special sequences of six ASCII characters to represent
 any 16-bit Unicode codepoint. These Unicode escapes begin with the
 characters \u and are followed by exactly
 four hexadecimal digits (using uppercase or lowercase letters A–F). Unicode
 escapes may appear in JavaScript string literals, regular expression
 literals, and in identifiers (but not in language keywords). The Unicode
 escape for the character é, for example, is \u00E9, and the following two JavaScript strings are
 identical:
"café" === "caf\u00e9" // => true
Unicode escapes may also appear in comments, but since comments are
 ignored, they are treated as ASCII characters in that context and not
 interpreted as Unicode.

Normalization

Unicode allows more than one way of encoding the same character. The
 string “é”, for example, can be encoded as the single Unicode character
 \u00E9 or as a regular ASCII e
 followed by the acute accent combining mark \u0301. These two encodings may look exactly the same when
 displayed by a text editor, but they have different binary encodings and are
 considered different by the computer. The Unicode standard defines the
 preferred encoding for all characters and specifies a normalization
 procedure to convert text to a canonical form suitable for comparisons.
 JavaScript assumes that the source code it is interpreting has already been
 normalized and makes no attempt to normalize identifiers, strings, or
 regular expressions itself.

Comments

JavaScript supports two styles of comments. Any text between a // and the end of a line is treated as a comment
 and is ignored by JavaScript. Any text between the characters /* and */ is
 also treated as a comment; these comments may span multiple lines but may not be
 nested. The following lines of code are all legal JavaScript comments:
// This is a single-line comment.
/* This is also a comment */ // and here is another comment.
/*
 * This is yet another comment.
 * It has multiple lines.
 */

Literals

A literal is a data value that appears directly in a
 program. The following are all literals:
12 // The number twelve
1.2 // The number one point two
"hello world" // A string of text
'Hi' // Another string
true // A Boolean value
false // The other Boolean value
/javascript/gi // A "regular expression" literal (for pattern matching)
null // Absence of an object
Complete details on numeric and string literals appear in Chapter 3. Regular expression literals are covered in Chapter 10. More complex expressions (see Object and Array Initializers) can serve as array and object literals. For
 example:
{ x:1, y:2 } // An object initializer
[1,2,3,4,5] // An array initializer

Identifiers and Reserved Words

An identifier is simply a name. In JavaScript,
 identifiers are used to name variables and functions and to provide labels for
 certain loops in JavaScript code. A JavaScript identifier must begin with a
 letter, an underscore (_), or a dollar sign
 ($). Subsequent characters can be
 letters, digits, underscores, or dollar signs. (Digits are not allowed as the
 first character so that JavaScript can easily distinguish identifiers from
 numbers.) These are all legal identifiers:
i
my_variable_name
v13
_dummy
$str
For portability and ease of editing, it is common to use only ASCII letters
 and digits in identifiers. Note, however, that JavaScript allows identifiers to
 contain letters and digits from the entire Unicode character set. (Technically,
 the ECMAScript standard also allows Unicode characters from the obscure
 categories Mn, Mc, and Pc to appear in identifiers after the first character.)
 This allows programmers to use variable names from non-English languages and
 also to use mathematical symbols:
var sí = true;
var π = 3.14;
Like any language, JavaScript reserves certain identifiers for use by the
 language itself. These “reserved words” cannot be used as regular identifiers.
 They are listed below.
Reserved Words

JavaScript reserves a number of identifiers as the keywords of the
 language itself. You cannot use these words as identifiers in your
 programs:
break delete function return typeof
case do if switch var
catch else in this void
continue false instanceof throw while
debugger finally new true with
default for null try
JavaScript also reserves certain keywords that are not currently used by
 the language but which might be used in future versions. ECMAScript 5
 reserves the following words:
class const enum export extends import super
In addition, the following words, which are legal in ordinary JavaScript
 code, are reserved in strict mode:
implements let private public yield
interface package protected static
Strict mode also imposes restrictions on the use of the following
 identifiers. They are not fully reserved, but they are not allowed as
 variable, function, or parameter names:
arguments eval
ECMAScript 3 reserved all the keywords of the Java language, and although
 this has been relaxed in ECMAScript 5, you should still avoid all of these
 identifiers if you plan to run your code under an ECMAScript 3
 implementation of JavaScript:
abstract double goto native static
boolean enum implements package super
byte export import private synchronized
char extends int protected throws
class final interface public transient
const float long short volatile
JavaScript predefines a number of global variables and functions, and you
 should avoid using their names for your own variables and
 functions:
arguments encodeURI Infinity Number RegExp
Array encodeURIComponent isFinite Object String
Boolean Error isNaN parseFloat SyntaxError
Date eval JSON parseInt TypeError
decodeURI EvalError Math RangeError undefined
decodeURIComponent Function NaN ReferenceError URIError
Keep in mind that JavaScript implementations may define other global
 variables and functions, and each specific JavaScript embedding
 (client-side, server-side, etc.) will have its own list of global
 properties. See the Window object in Part IV for a list of
 the global variables and functions defined by client-side JavaScript.

Optional Semicolons

Like many programming languages, JavaScript uses the semicolon (;) to separate statements (see Chapter 5) from each other. This is important to make the
 meaning of your code clear: without a separator, the end of one statement might
 appear to be the beginning of the next, or vice versa. In JavaScript, you can
 usually omit the semicolon between two statements if those statements are
 written on separate lines. (You can also omit a semicolon at the end of a
 program or if the next token in the program is a closing curly brace }.) Many JavaScript programmers (and the code in
 this book) use semicolons to explicitly mark the ends of statements, even where
 they are not required. Another style is to
 omit semicolons whenever possible, using them only in the few situations that
 require them. Whichever style you choose, there are a few details you should
 understand about optional semicolons in JavaScript.
Consider the following code. Since the two statements appear on separate
 lines, the first semicolon could be omitted:
a = 3;
b = 4;
Written as follows, however, the first semicolon is required:
a = 3; b = 4;
Note that JavaScript does not treat every line break as a semicolon: it
 usually treats line breaks as semicolons only if it can’t parse the code without
 the semicolons. More formally (and with two exceptions described below),
 JavaScript treats a line break as a semicolon if the next nonspace character
 cannot be interpreted as a continuation of the current statement. Consider the
 following code:
var a
a
=
3
console.log(a)
JavaScript interprets this code like this:
var a; a = 3; console.log(a);
JavaScript does treat the first line break as a semicolon because it cannot
 parse the code var a a without a semicolon.
 The second a could stand alone as the
 statement a;, but JavaScript does not treat
 the second line break as a semicolon because it can continue parsing the longer
 statement a = 3;.
These statement termination rules lead to some surprising cases. This code
 looks like two separate statements separated with a newline:
var y = x + f
(a+b).toString()
But the parentheses on the second line of code can be interpreted as a
 function invocation of f from the first line,
 and JavaScript interprets the code like this:
var y = x + f(a+b).toString();
More likely than not, this is not the interpretation intended by the author of
 the code. In order to work as two separate statements, an explicit semicolon is
 required in this case.
In general, if a statement begins with (,
 [, /,
 +, or -, there is a chance that it could be interpreted as a
 continuation of the statement before. Statements beginning with /, +, and
 - are quite rare in practice, but
 statements beginning with (and [are not uncommon at all, at least in some styles
 of JavaScript programming. Some programmers like to put a defensive semicolon at
 the beginning of any such statement so that it will continue to work correctly
 even if the statement before it is modified and a previously terminating
 semicolon removed:
var x = 0 // Semicolon omitted here
;[x,x+1,x+2].forEach(console.log) // Defensive ; keeps this statement separate
There are two exceptions to the general rule that JavaScript interprets line
 breaks as semicolons when it cannot parse the second line as a continuation of
 the statement on the first line. The first exception involves the return, break,
 and continue statements (see Chapter 5). These statements often stand alone, but they are
 sometimes followed by an identifier or expression. If a line break appears after
 any of these words (before any other tokens), JavaScript will always interpret
 that line break as a semicolon. For example, if you write:
return
true;
JavaScript assumes you meant:
return; true;
However, you probably meant:
return true;
What this means is that you must not insert a line break between return, break
 or continue and the expression that follows
 the keyword. If you do insert a line break, your code is likely to fail in a
 nonobvious way that is difficult to debug.
The second exception involves the ++ and
 −− operators (Arithmetic Expressions). These operators can be prefix operators
 that appear before an expression or postfix operators that appear after an
 expression. If you want to use either of these operators as postfix operators,
 they must appear on the same line as the expression they apply to. Otherwise,
 the line break will be treated as a semicolon, and the ++ or -- will be parsed as a
 prefix operator applied to the code that follows. Consider this code, for
 example:
x
++
y
It is parsed as x; ++y;, not as x++; y.

Chapter 3. Types, Values, and Variables

Computer programs work by manipulating values, such as the
 number 3.14 or the text “Hello World.” The kinds of values that can be represented
 and manipulated in a programming language are known as types,
 and one of the most fundamental characteristics of a programming language is the set
 of types it supports. When a program needs to retain a value for future use, it
 assigns the value to (or “stores” the value in) a variable. A
 variable defines a symbolic name for a value and allows the value to be referred to
 by name. The way that variables work is another fundamental characteristic of any
 programming language. This chapter explains types, values, and variables in
 JavaScript. These introductory paragraphs provide an overview, and you may find it
 helpful to refer to Core JavaScript while you read them. The
 sections that follow cover these topics in depth.
JavaScript types can be divided into two categories: primitive
 types and object types. JavaScript’s
 primitive types include numbers, strings of text (known as
 strings), and Boolean truth values (known as
 booleans). A significant portion of this chapter is
 dedicated to a detailed explanation of the numeric (Numbers) and
 string (Text) types in JavaScript. Booleans are covered in Boolean Values.
The special JavaScript values null and undefined are primitive values, but they are not
 numbers, strings, or booleans. Each value is typically considered to be the sole
 member of its own special type. null and undefined has more about
 null and undefined.
Any JavaScript value that is not a number, a string, a boolean, or null or undefined
 is an object. An object (that is, a member of the type object)
 is a collection of properties where each property has a name
 and a value (either a primitive value, such as a number or string, or an object).
 One very special object, the global object, is covered in The Global Object, but more general and more detailed coverage of objects is in
 Chapter 6.
An ordinary JavaScript object is an unordered collection of named values. The
 language also defines a special kind of object, known as an
 array, that represents an ordered collection of numbered
 values. The JavaScript language includes special syntax for working with arrays, and
 arrays have some special behavior that distinguishes them from ordinary objects.
 Arrays are the subject of Chapter 7.
JavaScript defines another special kind of object, known as a
 function. A function is an object that has executable
 code associated with it. A function may be invoked to run
 that executable code and return a computed value. Like arrays, functions behave
 differently from other kinds of objects, and JavaScript defines a special language
 syntax for working with them. The most important thing about functions in JavaScript
 is that they are true values and that JavaScript programs can treat them like
 regular objects. Functions are covered in Chapter 8.
Functions that are written to be used (with the new operator) to initialize a newly created object are known as
 constructors. Each constructor defines a
 class of objects—the set of objects initialized by that
 constructor. Classes can be thought of as subtypes of the object type. In addition
 to the Array and Function classes, core JavaScript defines three other useful
 classes. The Date class defines objects that represent dates. The RegExp class
 defines objects that represent regular expressions (a powerful pattern-matching tool
 described in Chapter 10). And the Error class defines objects that
 represent syntax and runtime errors that can occur in a JavaScript program. You can
 define your own classes of objects by defining appropriate constructor functions.
 This is explained in Chapter 9.
The JavaScript interpreter performs automatic garbage
 collection for memory management. This means that a program can
 create objects as needed, and the programmer never needs to worry about destruction
 or deallocation of those objects. When an object is no longer reachable—when a
 program no longer has any way to refer to it—the interpreter knows it can never be
 used again and automatically reclaims the memory it was occupying.
JavaScript is an object-oriented language. Loosely, this means that rather than
 having globally defined functions to operate on values of various types, the types
 themselves define methods for working with values. To sort
 the elements of an array a, for example, we don’t
 pass a to a sort() function. Instead, we invoke the sort() method of a:
a.sort(); // The object-oriented version of sort(a).
Method definition is covered in Chapter 9. Technically, it is only
 JavaScript objects that have methods. But numbers, strings, and boolean values
 behave as if they had methods (Wrapper Objects explains how this works).
 In JavaScript, null and undefined are the only values that methods cannot be invoked
 on.
JavaScript’s types can be divided into primitive types and object types. And they
 can be divided into types with methods and types without. They can also be
 categorized as mutable and immutable
 types. A value of a mutable type can change. Objects and arrays are mutable: a
 JavaScript program can change the values of object properties and array elements.
 Numbers, booleans, null, and undefined are immutable—it doesn’t even make sense to
 talk about changing the value of a number, for example. Strings can be thought of as
 arrays of characters, and you might expect them to be mutable. In JavaScript,
 however, strings are immutable: you can access the text at any index of a string,
 but JavaScript provides no way to alter the text of an existing string. The
 differences between mutable and immutable values are explored further in Immutable Primitive Values and Mutable Object References.
JavaScript converts values liberally from one type to another. If a program
 expects a string, for example, and you give it a number, it will automatically
 convert the number to a string for you. If you use a nonboolean value where a
 boolean is expected, JavaScript will convert accordingly. The rules for value
 conversion are explained in Type Conversions. JavaScript’s liberal
 value conversion rules affect its definition of equality, and the == equality operator performs type conversions as
 described in Conversions and Equality.
JavaScript variables are untyped: you can assign a value of
 any type to a variable, and you can later assign a value of a different type to the
 same variable. Variables are declared with the var keyword. JavaScript uses lexical
 scoping. Variables declared outside of a function are
 global variables and are visible everywhere in a
 JavaScript program. Variables declared inside a function have function
 scope and are visible only to code that appears inside that
 function. Variable declaration and scope are covered in Variable Declaration and Variable Scope.
Numbers

Unlike many languages, JavaScript does not make a distinction between integer
 values and floating-point values. All numbers in JavaScript are represented as
 floating-point values. JavaScript represents numbers using the 64-bit
 floating-point format defined by the IEEE 754 standard,[1] which means it can represent numbers as large as ±1.7976931348623157
 × 10308 and as small as ±5 ×
 10−324.
The JavaScript number format allows you to exactly represent all integers
 between −9007199254740992 (−253) and 9007199254740992
 (253), inclusive. If you use integer values
 larger than this, you may lose precision in the trailing digits. Note, however,
 that certain operations in JavaScript (such as array indexing and the bitwise
 operators described in Chapter 4) are performed with 32-bit
 integers.
When a number appears directly in a JavaScript program, it’s called a
 numeric literal. JavaScript supports numeric literals
 in several formats, as described in the following sections. Note that any
 numeric literal can be preceded by a minus sign (-) to make the number negative.
 Technically, however, - is the unary negation operator (see Chapter 4) and is not part of the numeric literal
 syntax.
Integer Literals

In a JavaScript program, a base-10 integer is written as a sequence of
 digits. For example:
0
3
10000000
In addition to base-10 integer literals, JavaScript recognizes hexadecimal
 (base-16) values. A hexadecimal literal begins with “0x” or “0X”, followed
 by a string of hexadecimal digits. A hexadecimal digit is one of the digits
 0 through 9 or the letters a (or A) through f (or F), which represent values
 10 through 15. Here are examples of hexadecimal integer literals:
0xff // 15*16 + 15 = 255 (base 10)
0xCAFE911
Although the ECMAScript standard does not support them, some
 implementations of JavaScript allow you to specify integer literals in octal
 (base-8) format. An octal literal begins with the digit 0 and is followed by
 a sequence of digits, each between 0 and 7. For example:
0377 // 3*64 + 7*8 + 7 = 255 (base 10)
Since some implementations support octal literals and some do not, you
 should never write an integer literal with a leading zero; you cannot know
 in this case whether an implementation will interpret it as an octal or
 decimal value. In the strict mode of ECMAScript 5 (“use strict”), octal literals are explicitly forbidden.

Floating-Point Literals

Floating-point literals can have a decimal point; they use the traditional
 syntax for real numbers. A real value is represented as the integral part of
 the number, followed by a decimal point and the fractional part of the
 number.
Floating-point literals may also be represented using exponential
 notation: a real number followed by the letter e (or E), followed by an
 optional plus or minus sign, followed by an integer exponent. This notation
 represents the real number multiplied by 10 to the power of the
 exponent.
More succinctly, the syntax is:
[digits][.digits][(E|e)[(+|-)]digits]
For example:
3.14
2345.789
.333333333333333333
6.02e23 // 6.02 × 1023
1.4738223E-32 // 1.4738223 × 10−32

Arithmetic in JavaScript

JavaScript programs work with numbers using the arithmetic operators that
 the language provides. These include +
 for addition, - for subtraction, * for multiplication, / for
 division, and % for modulo (remainder
 after division). Full details on these and other operators can be found in
 Chapter 4.
In addition to these basic arithmetic operators, JavaScript supports more
 complex mathematical operations through a set of functions and constants
 defined as properties of the Math
 object:
Math.pow(2,53) // => 9007199254740992: 2 to the power 53
Math.round(.6) // => 1.0: round to the nearest integer
Math.ceil(.6) // => 1.0: round up to an integer
Math.floor(.6) // => 0.0: round down to an integer
Math.abs(-5) // => 5: absolute value
Math.max(x,y,z) // Return the largest argument
Math.min(x,y,z) // Return the smallest argument
Math.random() // Pseudo-random number x where 0 <= x < 1.0
Math.PI // π: circumference of a circle / diameter
Math.E // e: The base of the natural logarithm
Math.sqrt(3) // The square root of 3
Math.pow(3, 1/3) // The cube root of 3
Math.sin(0) // Trigonometry: also Math.cos, Math.atan, etc.
Math.log(10) // Natural logarithm of 10
Math.log(100)/Math.LN10 // Base 10 logarithm of 100
Math.log(512)/Math.LN2 // Base 2 logarithm of 512
Math.exp(3) // Math.E cubed
See the Math object in the reference section for complete details on all
 the mathematical functions supported by JavaScript.
Arithmetic in JavaScript does not raise errors in cases of overflow,
 underflow, or division by zero. When the result of a numeric operation is
 larger than the largest representable number (overflow), the result is a
 special infinity value, which JavaScript prints as Infinity. Similarly, when a negative value becomes larger
 than the largest representable negative number, the result is negative
 infinity, printed as -Infinity. The
 infinite values behave as you would expect: adding, subtracting,
 multiplying, or dividing them by anything results in an infinite value
 (possibly with the sign reversed).
Underflow occurs when the result of a numeric operation is closer to zero
 than the smallest representable number. In this case, JavaScript returns 0.
 If underflow occurs from a negative number, JavaScript returns a special
 value known as “negative zero.” This value is almost completely
 indistinguishable from regular zero and JavaScript programmers rarely need
 to detect it.
Division by zero is not an error in JavaScript: it simply returns infinity
 or negative infinity. There is one exception, however: zero divided by zero
 does not have a well-defined value, and the result of this operation is the
 special not-a-number value, printed as NaN. NaN also arises if
 you attempt to divide infinity by infinity, or take the square root of a
 negative number or use arithmetic operators with non-numeric operands that
 cannot be converted to numbers.
JavaScript predefines global variables Infinity and NaN to hold
 the positive infinity and not-a-number value. In ECMAScript 3, these are
 read/write values and can be changed. ECMAScript 5 corrects this and makes
 the values read-only. The Number object
 defines alternatives that are read-only even in ECMAScript 3. Here are some
 examples:
Infinity // A read/write variable initialized to Infinity.
Number.POSITIVE_INFINITY // Same value, read-only.
1/0 // This is also the same value.
Number.MAX_VALUE + 1 // This also evaluates to Infinity.

Number.NEGATIVE_INFINITY // These expressions are negative infinity.
-Infinity
-1/0
-Number.MAX_VALUE - 1

NaN // A read/write variable initialized to NaN.
Number.NaN // A read-only property holding the same value.
0/0 // Evaluates to NaN.

Number.MIN_VALUE/2 // Underflow: evaluates to 0
-Number.MIN_VALUE/2 // Negative zero
-1/Infinity // Also negative 0
-0
The not-a-number value has one unusual feature in JavaScript: it does not
 compare equal to any other value, including itself. This means that you
 can’t write x == NaN to determine whether
 the value of a variable x is NaN. Instead, you should write x != x. That expression will be true if, and
 only if, x is NaN. The function isNaN() is similar. It returns true if its argument is NaN, or if that argument is a non-numeric
 value such as a string or an object. The related function isFinite() returns true if its argument is a number other than NaN, Infinity, or -Infinity.
The negative zero value is also somewhat unusual. It compares equal (even
 using JavaScript’s strict equality test) to positive zero, which means that
 the two values are almost indistinguishable, except when used as a
 divisor:
var zero = 0; // Regular zero
var negz = -0; // Negative zero
zero === negz // => true: zero and negative zero are equal
1/zero === 1/negz // => false: infinity and -infinity are not equal

Binary Floating-Point and Rounding Errors

There are infinitely many real numbers, but only a finite number of them
 (18437736874454810627, to be exact) can be represented exactly by the
 JavaScript floating-point format. This means that when you’re working with
 real numbers in JavaScript, the representation of the number will often be
 an approximation of the actual number.
The IEEE-754 floating-point representation used by JavaScript (and just
 about every other modern programming language) is a binary representation,
 which can exactly represent fractions like 1/2, 1/8, and 1/1024. Unfortunately, the fractions we use
 most commonly (especially when performing financial calculations) are
 decimal fractions 1/10, 1/100, and so on. Binary floating-point
 representations cannot exactly represent numbers as simple as 0.1.
JavaScript numbers have plenty of precision and can approximate 0.1 very closely. But the fact that this
 number cannot be represented exactly can lead to problems. Consider this
 code:
var x = .3 - .2; // thirty cents minus 20 cents
var y = .2 - .1; // twenty cents minus 10 cents
x == y // => false: the two values are not the same!
x == .1 // => false: .3-.2 is not equal to .1
y == .1 // => true: .2-.1 is equal to .1
Because of rounding error, the difference between the approximations of .3
 and .2 is not exactly the same as the difference between the approximations
 of .2 and .1. It is important to understand that this problem is not
 specific to JavaScript: it affects any programming language that uses binary
 floating-point numbers. Also, note that the values x and y in the code above
 are very close to each other and to the correct value.
 The computed values are adequate for almost any purpose: the problem arises
 when we attempt to compare values for equality.
A future version of JavaScript may support a decimal numeric type that
 avoids these rounding issues. Until then you might want to perform critical
 financial calculations using scaled integers. For example, you might
 manipulate monetary values as integer cents rather than fractional
 dollars.

Dates and Times

Core JavaScript includes a Date()
 constructor for creating objects that represent dates and times. These Date
 objects have methods that provide an API for simple date computations. Date
 objects are not a fundamental type like numbers are. This section presents a
 quick tutorial on working with dates. Full details can be found in the
 reference section:
var then = new Date(2010, 0, 1); // The 1st day of the 1st month of 2010
var later = new Date(2010, 0, 1, // Same day, at 5:10:30pm, local time
 17, 10, 30);
var now = new Date(); // The current date and time
var elapsed = now - then; // Date subtraction: interval in milliseconds

later.getFullYear() // => 2010
later.getMonth() // => 0: zero-based months
later.getDate() // => 1: one-based days
later.getDay() // => 5: day of week. 0 is Sunday 5 is Friday.
later.getHours() // => 17: 5pm, local time
later.getUTCHours() // hours in UTC time; depends on timezone

later.toString() // => "Fri Jan 01 2010 17:10:30 GMT-0800 (PST)"
later.toUTCString() // => "Sat, 02 Jan 2010 01:10:30 GMT"
later.toLocaleDateString() // => "01/01/2010"
later.toLocaleTimeString() // => "05:10:30 PM"
later.toISOString() // => "2010-01-02T01:10:30.000Z"; ES5 only

[1] This format should be familiar to Java programmers as the format of
 the double type. It is also the
 double format used in almost all
 modern implementations of C and C++.

Text

A string is an immutable ordered sequence of 16-bit
 values, each of which typically represents a Unicode character—strings are
 JavaScript’s type for representing text. The length of a
 string is the number of 16-bit values it contains. JavaScript’s strings (and its
 arrays) use zero-based indexing: the first 16-bit value is at position 0, the
 second at position 1 and so on. The empty string is the
 string of length 0. JavaScript does not have a special type that represents a
 single element of a string. To represent a single 16-bit value, simply use a
 string that has a length of 1.
Characters, Codepoints, and JavaScript Strings
JavaScript uses the UTF-16 encoding of the Unicode character set, and
 JavaScript strings are sequences of unsigned 16-bit values. The most
 commonly used Unicode characters (those from the “basic multilingual plane”)
 have codepoints that fit in 16 bits
 and can be represented by a single element of a string. Unicode characters
 whose codepoints do not fit in 16 bits are encoded following the rules of
 UTF-16 as a sequence (known as a “surrogate pair”) of two 16-bit values.
 This means that a JavaScript string of length 2 (two 16-bit values) might
 represent only a single Unicode character:
var p = "π"; // π is 1 character with 16-bit codepoint 0x03c0
var e = "e"; // e is 1 character with 17-bit codepoint 0x1d452
p.length // => 1: p consists of 1 16-bit element
e.length // => 2: UTF-16 encoding of e is 2 16-bit values: "\ud835\udc52"
The various string-manipulation methods defined by JavaScript operate on
 16-bit values, not on characters. They do not treat surrogate pairs
 specially, perform no normalization of the string, and do not even ensure
 that a string is well-formed UTF-16.

String Literals

To include a string literally in a JavaScript program, simply enclose the
 characters of the string within a matched pair of single or double quotes
 (' or "). Double-quote characters may be contained within strings
 delimited by single-quote characters, and single-quote characters may be
 contained within strings delimited by double quotes. Here are examples of
 string literals:
"" // The empty string: it has zero characters
'testing'
"3.14"
'name="myform"'
"Wouldn't you prefer O'Reilly's book?"
"This string\nhas two lines"
"π is the ratio of a circle's circumference to its diameter"
In ECMAScript 3, string literals must be written on a single line. In
 ECMAScript 5, however, you can break a string literal across multiple lines
 by ending each line but the last with a backslash (\). Neither the backslash nor the line terminator that follow
 it are part of the string literal. If you need to include a newline
 character in a string literal, use the character sequence \n (documented below):
"two\nlines" // A string representing 2 lines written on one line
"one\ // A one-line string written on 3 lines. ECMAScript 5 only.
 long\
 line"
Note that when you use single quotes to delimit your strings, you must be
 careful with English contractions and possessives, such as
 can’t and O’Reilly’s. Since
 the apostrophe is the same as the single-quote character, you must use the
 backslash character (\) to “escape” any
 apostrophes that appear in single-quoted strings (escapes are explained in
 the next section).
In client-side JavaScript programming, JavaScript code may contain strings
 of HTML code, and HTML code may contain strings of JavaScript code. Like
 JavaScript, HTML uses either single or double quotes to delimit its strings.
 Thus, when combining JavaScript and HTML, it is a good idea to use one style
 of quotes for JavaScript and the other style for HTML. In the following
 example, the string “Thank you” is single-quoted within a JavaScript
 expression, which is then double-quoted within an HTML event-handler attribute:
<button onclick="alert('Thank you')">Click Me</button>

Escape Sequences in String Literals

The backslash character (\) has a
 special purpose in JavaScript strings. Combined with the character that
 follows it, it represents a character that is not otherwise representable
 within the string. For example, \n is an
 escape sequence that represents a newline character.
Another example, mentioned above, is the \' escape, which represents the single quote (or apostrophe)
 character. This escape sequence is useful when you need to include an
 apostrophe in a string literal that is contained within single quotes. You
 can see why these are called escape sequences: the backslash allows you to
 escape from the usual interpretation of the single-quote character. Instead
 of using it to mark the end of the string, you use it as an
 apostrophe:
'You\'re right, it can\'t be a quote'
Table 3-1 lists the JavaScript escape sequences
 and the characters they represent. Two escape sequences are generic and can
 be used to represent any character by specifying its Latin-1 or Unicode
 character code as a hexadecimal number. For example, the sequence \xA9 represents the copyright symbol, which
 has the Latin-1 encoding given by the hexadecimal number A9. Similarly, the
 \u escape represents an arbitrary
 Unicode character specified by four hexadecimal digits; \u03c0 represents the character π, for example.
Table 3-1. JavaScript escape sequences
	
 Sequence

 	
 Character represented

	

 \0

 	
 The NUL character (\u0000)

	

 \b

 	
 Backspace (\u0008)

	

 \t

 	
 Horizontal tab (\u0009)

	

 \n

 	
 Newline (\u000A)

	

 \v

 	
 Vertical tab (\u000B)

	

 \f

 	
 Form feed (\u000C)

	

 \r

 	
 Carriage return (\u000D)

	

 \"

 	
 Double quote (\u0022)

	

 \'

 	
 Apostrophe or single quote (\u0027)

	

 \\

 	
 Backslash (\u005C)

	

 \x
 XX

 	
 The Latin-1 character specified by the two
 hexadecimal digits XX

	

 \u
 XXXX

 	
 The Unicode character specified by the four
 hexadecimal digits
 XXXX

If the \ character precedes any
 character other than those shown in Table 3-1, the
 backslash is simply ignored (although future versions of the language may,
 of course, define new escape sequences). For example, \# is the same as #. Finally, as noted above, ECMAScript 5 allows a backslash
 before a line break to break a string literal across multiple lines.

Working with Strings

One of the built-in features of JavaScript is the ability to
 concatenate strings. If you use the + operator with numbers, it adds them. But if
 you use this operator on strings, it joins them by appending the second to
 the first. For example:
msg = "Hello, " + "world"; // Produces the string "Hello, world"
greeting = "Welcome to my blog," + " " + name;
To determine the length of a string—the number of 16-bit values it
 contains—use the length property of the
 string. Determine the length of a string s like this:
s.length
In addition to this length property,
 there are a number of methods you can invoke on strings (as always, see the
 reference section for complete details):
var s = "hello, world" // Start with some text.
s.charAt(0) // => "h": the first character.
s.charAt(s.length-1) // => "d": the last character.
s.substring(1,4) // => "ell": the 2nd, 3rd and 4th characters.
s.slice(1,4) // => "ell": same thing
s.slice(-3) // => "rld": last 3 characters
s.indexOf("l") // => 2: position of first letter l.
s.lastIndexOf("l") // => 10: position of last letter l.
s.indexOf("l", 3) // => 3: position of first "l" at or after 3
s.split(", ") // => ["hello", "world"] split into substrings
s.replace("h", "H") // => "Hello, world": replaces all instances
s.toUpperCase() // => "HELLO, WORLD"
Remember that strings are immutable in JavaScript. Methods like replace() and toUpperCase() return new strings: they do not modify the string on
 which they are invoked.
In ECMAScript 5, strings can be treated like read-only arrays, and you can
 access individual characters (16-bit values) from a string using square
 brackets instead of the charAt()
 method:
s = "hello, world";
s[0] // => "h"
s[s.length-1] // => "d"
Mozilla-based web browsers such as Firefox have allowed strings to be
 indexed in this way for a long time. Most modern browsers (with the notable
 exception of IE) followed Mozilla’s lead even before this feature was
 standardized in ECMAScript 5.

Pattern Matching

JavaScript defines a RegExp()
 constructor for creating objects that represent textual patterns. These
 patterns are described with regular expressions, and
 JavaScript adopts Perl’s syntax for regular expressions. Both strings and
 RegExp objects have methods for performing pattern matching and
 search-and-replace operations using regular expressions.
RegExps are not one of the fundamental types of JavaScript. Like Dates,
 they are simply a specialized kind of object, with a useful API. The regular
 expression grammar is complex and the API is nontrivial. They are documented
 in detail in Chapter 10. Because RegExps are powerful and
 commonly used for text processing, however, this section provides a brief
 overview.
Although RegExps are not one of the fundamental data types in the
 language, they do have a literal syntax and can be encoded directly into
 JavaScript programs. Text between a pair of slashes constitutes a regular
 expression literal. The second slash in the pair can also be followed by one
 or more letters, which modify the meaning of the pattern. For
 example:
/^HTML/ // Match the letters H T M L at the start of a string
/[1-9][0-9]*/ // Match a non-zero digit, followed by any # of digits
/\bjavascript\b/i // Match "javascript" as a word, case-insensitive
RegExp objects define a number of useful methods, and strings also have
 methods that accept RegExp arguments. For example:
var text = "testing: 1, 2, 3"; // Sample text
var pattern = /\d+/g // Matches all instances of one or more digits
pattern.test(text) // => true: a match exists
text.search(pattern) // => 9: position of first match
text.match(pattern) // => ["1", "2", "3"]: array of all matches
text.replace(pattern, "#"); // => "testing: #, #, #"
text.split(/\D+/); // => ["","1","2","3"]: split on non-digits

Boolean Values

A boolean value represents truth or falsehood, on or off, yes or no. There are
 only two possible values of this type. The reserved words true and false
 evaluate to these two values.
Boolean values are generally the result of comparisons you make in your
 JavaScript programs. For example:
a == 4
This code tests to see whether the value of the variable a is equal to the number 4. If it is, the result of this comparison is the boolean value
 true. If a is not equal to 4, the
 result of the comparison is false.
Boolean values are commonly used in JavaScript control structures. For
 example, the if/else statement in JavaScript
 performs one action if a boolean value is true and another action if the value is false. You usually combine a comparison that creates a boolean
 value directly with a statement that uses it. The result looks like this:
if (a == 4)
 b = b + 1;
else
 a = a + 1;
This code checks whether a equals 4. If so, it adds 1 to b; otherwise, it adds
 1 to a.
As we’ll discuss in Type Conversions, any JavaScript value can be
 converted to a boolean value. The following values convert to, and therefore
 work like, false:
undefined
null
0
-0
NaN
"" // the empty string
All other values, including all objects (and arrays) convert to, and work
 like, true. false, and the six values that convert to it, are sometimes
 called falsy values, and all other values are called
 truthy. Any time JavaScript expects a
 boolean value, a falsy value works like false
 and a truthy value works like true.
As an example, suppose that the variable o
 either holds an object or the value null. You
 can test explicitly to see if o is non-null
 with an if statement like this:
if (o !== null) ...
The not-equal operator !== compares
 o to null and evaluates to either true or false. But you can
 omit the comparison and instead rely on the fact that null is falsy and objects are truthy:
if (o) ...
In the first case, the body of the if will
 be executed only if o is not null. The second case is less strict: it will
 execute the body of the if only if o is not
 false or any falsy value (such as
 null or undefined). Which if statement
 is appropriate for your program really depends on what values you expect to be
 assigned to o. If you need to distinguish
 null from 0 and "", then you should use
 an explicit comparison.
Boolean values have a toString() method
 that you can use to convert them to the strings “true” or “false”, but they do
 not have any other useful methods. Despite the trivial API, there are three
 important boolean operators.
The && operator performs
 the Boolean AND operation. It evaluates to a truthy value if and only if both of
 its operands are truthy; it evaluates to a falsy value otherwise. The || operator is the Boolean OR operation: it
 evaluates to a truthy value if either one (or both) of its operands is truthy
 and evaluates to a falsy value if both operands are falsy. Finally, the unary
 ! operator performs the Boolean NOT
 operation: it evaluates to true if its
 operand is falsy and evaluates to false if
 its operand is truthy. For example:
if ((x == 0 && y == 0) || !(z == 0)) {
 // x and y are both zero or z is non-zero
}
Full details on these operators are in Logical Expressions.

null and undefined

null is a language keyword that evaluates
 to a special value that is usually used to indicate the absence of a value.
 Using the typeof operator on null returns the string “object”, indicating that
 null can be thought of as a special
 object value that indicates “no object”. In practice, however, null is typically regarded as the sole member of
 its own type, and it can be used to indicate “no value” for numbers and strings
 as well as objects. Most programming languages have an equivalent to
 JavaScript’s null: you may be familiar with
 it as null or nil.
JavaScript also has a second value that indicates absence of value. The
 undefined value represents a deeper kind of absence. It is the value of
 variables that have not been initialized and the value you get when you query
 the value of an object property or array element that does not exist. The
 undefined value is also returned by functions that have no return value, and the
 value of function parameters for which no argument is supplied. undefined is a predefined global variable (not a
 language keyword like null) that is
 initialized to the undefined value. In ECMAScript 3, undefined is a read/write variable, and it can be set to any
 value. This error is corrected in ECMAScript 5 and undefined is read-only in that version of the
 language. If you apply the typeof operator to
 the undefined value, it returns “undefined”, indicating that this value is the
 sole member of a special type.
Despite these differences, null and
 undefined both indicate an absence of
 value and can often be used interchangeably. The equality operator == considers them to be equal. (Use the strict
 equality operator === to distinguish them.)
 Both are falsy values—they behave like false
 when a boolean value is required. Neither null nor undefined have any
 properties or methods. In fact, using . or
 [] to access a property or method of
 these values causes a TypeError.
You might consider undefined to represent a
 system-level, unexpected, or error-like absence of value and null to represent program-level, normal, or
 expected absence of value. If you need to assign one of these values to a
 variable or property or pass one of these values to a function, null is almost always the right choice.

The Global Object

The sections above have explained JavaScript’s primitive types and values.
 Object types—objects, arrays, and
 functions—are covered in chapters of their own later in this book. But there is
 one very important object value that we must cover now. The global
 object is a regular JavaScript object that serves a very
 important purpose: the properties of this object are the globally defined
 symbols that are available to a JavaScript program. When the JavaScript
 interpreter starts (or whenever a web browser loads a new page), it creates a
 new global object and gives it an initial set of properties that
 define:
	global properties like undefined,
 Infinity, and NaN

	global functions like isNaN(),
 parseInt() (Explicit Conversions), and eval() (Evaluation Expressions).

	constructor functions like Date(),
 RegExp(), String(), Object(), and Array()
 (Explicit Conversions)

	global objects like Math and JSON (Serializing Objects)

The initial properties of the global object are not reserved words, but they
 deserve to be treated as if they are. Reserved Words lists each
 of these properties. This chapter has already described some of these global
 properties. Most of the others will be covered elsewhere in this book. And you
 can look them all up by name in the core JavaScript reference section, or look
 up the global object itself under the name “Global”. For client-side JavaScript, the Window object defines other
 globals that you can look up in the client-side reference section.
In top-level code—JavaScript code that is not part of a function—you can use
 the JavaScript keyword this to refer to the
 global object:
var global = this; // Define a global variable to refer to the global object
In client-side JavaScript, the Window object serves as the global object for
 all JavaScript code contained in the browser window it represents. This global
 Window object has a self-referential window
 property that can be used instead of this to
 refer to the global object. The Window object defines the core global
 properties, but it also defines quite a few other globals that are specific to
 web browsers and client-side JavaScript.
When first created, the global object defines all of JavaScript’s predefined
 global values. But this special object also holds program-defined globals as
 well. If your code declares a global variable, that variable is a property of
 the global object. Variables As Properties explains this in more
 detail.

Wrapper Objects

JavaScript objects are composite values: they are a collection of properties
 or named values. We refer to the value of a property using the . notation. When the value of a property is a
 function, we call it a method. To invoke the method
 m of an object o, we write o.m().
We’ve also seen that strings have properties and methods:
var s = "hello world!"; // A string
var word = s.substring(s.indexOf(" ")+1, s.length); // Use string properties
Strings are not objects, though, so why do they have properties? Whenever you
 try to refer to a property of a string s,
 JavaScript converts the string value to an object as if by calling new String(s). This object inherits (see Inheritance) string methods and is used to resolve the property
 reference. Once the property has been resolved, the newly created object is
 discarded. (Implementations are not required to actually create and discard this
 transient object: they must behave as if they do, however.)
Numbers and booleans have methods for the same reason that strings do: a
 temporary object is created using the Number() or Boolean()
 constructor, and the method is resolved using that temporary object. There are
 not wrapper objects for the null and undefined values: any attempt to access a property
 of one of these values causes a TypeError.
Consider the following code and think about what happens when it is
 executed:
var s = "test"; // Start with a string value.
s.len = 4; // Set a property on it.
var t = s.len; // Now query the property.
When you run this code, the value of t is
 undefined. The second line of code
 creates a temporary String object, sets its len property to 4, and then discards that object. The third line
 creates a new String object from the original (unmodified) string value and then
 tries to read the len property. This property
 does not exist, and the expression evaluates to undefined. This code demonstrates that strings, numbers, and
 boolean values behave like objects when you try to read the value of a property
 (or method) from them. But if you attempt to set the value of a property, that
 attempt is silently ignored: the change is made on a temporary object and does
 not persist.
The temporary objects created when you access a property of a string, number,
 or boolean are known as wrapper objects, and it may
 occasionally be necessary to distinguish a string value from a String object or
 a number or boolean value from a Number or Boolean object. Usually, however,
 wrapper objects can be considered an implementation detail and you don’t have to think about them. You
 just need to know that string, number, and boolean values differ from objects in
 that their properties are read-only and that you can’t define new properties on
 them.
Note that it is possible (but almost never necessary or useful) to explicitly
 create wrapper objects, by invoking the String(), Number(), or
 Boolean() constructors:
var s = "test", n = 1, b = true; // A string, number, and boolean value.
var S = new String(s); // A String object
var N = new Number(n); // A Number object
var B = new Boolean(b); // A Boolean object
JavaScript converts wrapper objects into the wrapped primitive value as
 necessary, so the objects S, N, and B above
 usually, but not always, behave just like the values s, n, and b. The ==
 equality operator treats a value and its wrapper object as equal, but you can
 distinguish them with the === strict equality
 operator. The typeof operator will also show
 you the difference between a primitive value and its wrapper object.

Immutable Primitive Values and Mutable Object References

There is a fundamental difference in JavaScript between primitive values
 (undefined, null, booleans, numbers, and strings) and objects (including
 arrays and functions). Primitives are immutable: there is no way to change (or
 “mutate”) a primitive value. This is obvious for numbers and booleans—it doesn’t
 even make sense to change the value of a number. It is not so obvious for
 strings, however. Since strings are like arrays of characters, you might expect
 to be able to alter the character at any specified index. In fact, JavaScript
 does not allow this, and all string methods that appear to return a modified
 string are, in fact, returning a new string value. For example:
var s = "hello"; // Start with some lowercase text
s.toUpperCase(); // Returns "HELLO", but doesn't alter s
s // => "hello": the original string has not changed
Primitives are also compared by value: two values are the
 same only if they have the same value. This sounds circular for numbers,
 booleans, null, and undefined: there is no other way that they could be compared.
 Again, however, it is not so obvious for strings. If two distinct string values
 are compared, JavaScript treats them as equal if, and only if, they have the
 same length and if the character at each index is the same.
Objects are different than primitives. First, they are
 mutable—their values can change:
var o = { x:1 }; // Start with an object
o.x = 2; // Mutate it by changing the value of a property
o.y = 3; // Mutate it again by adding a new property

var a = [1,2,3] // Arrays are also mutable
a[0] = 0; // Change the value of an array element
a[3] = 4; // Add a new array element
Objects are not compared by value: two objects are not equal even if they have
 the same properties and values. And two arrays are not equal even if they have
 the same elements in the same order:
var o = {x:1}, p = {x:1}; // Two objects with the same properties
o === p // => false: distinct objects are never equal
var a = [], b = []; // Two distinct, empty arrays
a === b // => false: distinct arrays are never equal
Objects are sometimes called reference types to
 distinguish them from JavaScript’s primitive types. Using this terminology,
 object values are references, and we say that objects are
 compared by reference: two object values are the same if
 and only if they refer to the same underlying
 object.
var a = []; // The variable a refers to an empty array.
var b = a; // Now b refers to the same array.
b[0] = 1; // Mutate the array referred to by variable b.
a[0] // => 1: the change is also visible through variable a.
a === b // => true: a and b refer to the same object, so they are equal.
As you can see from the code above, assigning an object (or array) to a
 variable simply assigns the reference: it does not create a new copy of the
 object. If you want to make a new copy of an object or array, you must
 explicitly copy the properties of the object or the elements of the array. This
 example demonstrates using a for loop (for):
var a = ['a','b','c']; // An array we want to copy
var b = []; // A distinct array we'll copy into
for(var i = 0; i < a.length; i++) { // For each index of a[]
 b[i] = a[i]; // Copy an element of a into b
}
Similarly, if we want to compare two distinct objects or arrays, we must
 compare their properties or elements. This code defines a function to compare
 two arrays:
function equalArrays(a,b) {
 if (a.length != b.length) return false; // Different-size arrays not equal
 for(var i = 0; i < a.length; i++) // Loop through all elements
 if (a[i] !== b[i]) return false; // If any differ, arrays not equal
 return true; // Otherwise they are equal
}

Type Conversions

JavaScript is very flexible about the types of values it requires. We’ve seen
 this for booleans: when JavaScript expects a boolean value, you may supply a
 value of any type, and JavaScript will convert it as needed. Some values
 (“truthy” values) convert to true and others
 (“falsy” values) convert to false. The same
 is true for other types: if JavaScript wants a string, it will convert whatever
 value you give it to a string. If JavaScript wants a number, it will try to
 convert the value you give it to a number (or to NaN if it cannot perform a meaningful conversion). Some
 examples:
10 + " objects" // => "10 objects". Number 10 converts to a string
"7" * "4" // => 28: both strings convert to numbers
var n = 1 - "x"; // => NaN: string "x" can't convert to a number
n + " objects" // => "NaN objects": NaN converts to string "NaN"
Table 3-2 summarizes how values convert from one type
 to another in JavaScript. Bold entries in the table highlight conversions that
 you may find surprising. Empty cells indicate that no conversion is necessary
 and none is performed.
Table 3-2. JavaScript type conversions
	
 Value

 	
 Converted to:

	

 	
 String

 	
 Number

 	
 Boolean

 	
 Object

	

 undefined

 	

 "undefined"

 	

 NaN

 	

 false

 	

 throws TypeError

	

 null

 	

 "null"

 	

 0

 	

 false

 	

 throws TypeError

	

 true

 	

 "true"

 	

 1

 	

 	

 new Boolean(true)

	

 false

 	

 "false"

 	

 0

 	

 	

 new Boolean(false)

	
 "" (empty
 string)

 	

 	

 0

 	

 false

 	

 new String("")

	
 "1.2" (nonempty,
 numeric)

 	

 	

 1.2

 	

 true

 	

 new String("1.2")

	
 "one" (nonempty,
 non-numeric)

 	

 	

 NaN

 	

 true

 	

 new String("one")

	

 0

 	

 "0"

 	

 	

 false

 	

 new Number(0)

	

 -0

 	

 "0"

 	

 	

 false

 	

 new Number(-0)

	

 NaN

 	

 "NaN"

 	

 	

 false

 	

 new Number(NaN)

	

 Infinity

 	

 "Infinity"

 	

 	

 true

 	

 new Number(Infinity)

	

 -Infinity

 	

 "-Infinity"

 	

 	

 true

 	

 new Number(-Infinity)

	
 1 (finite,
 non-zero)

 	

 "1"

 	

 	

 true

 	

 new Number(1)

	
 {} (any object)

 	

 see Object to Primitive Conversions

 	

 see Object to Primitive Conversions

 	

 true

 	

	
 [] (empty array)

 	

 ""

 	

 0

 	

 true

 	

	
 [9] (1 numeric
 elt)

 	

 "9"

 	

 9

 	

 true

 	

	
 ['a'] (any other
 array)

 	

 use join() method

 	

 NaN

 	

 true

 	

	
 function(){} (any
 function)

 	

 see Object to Primitive Conversions

 	

 NaN

 	

 true

 	

The primitive-to-primitive conversions shown in the table are relatively
 straightforward. Conversion to boolean
 was already discussed in Boolean Values. Conversion to strings is
 well-defined for all primitive values. Conversion to numbers is just a little
 trickier. Strings that can be parsed as numbers convert to those numbers.
 Leading and trailing spaces are allowed, but any leading or trailing nonspace
 characters that are not part of a numeric literal cause the string-to-number
 conversion to produce NaN. Some numeric
 conversions may seem surprising: true
 converts to 1, and false and the empty string
 "" convert to 0.
Primitive-to-object conversions are straightforward: primitive values convert
 to their wrapper object (Wrapper Objects) as if by calling the
 String(), Number(), or Boolean()
 constructor. The exceptions are null and
 undefined: any attempt to use these
 values where an object is expected raises a TypeError exception rather than
 performing a conversion.
Object-to-primitive conversion is somewhat more complicated, and it is the
 subject of Object to Primitive Conversions.
Conversions and Equality

Because JavaScript can convert values flexibly, its == equality operator is also flexible with its
 notion of equality. All of the following comparisons are true, for
 example:
null == undefined // These two values are treated as equal.
"0" == 0 // String converts to a number before comparing.
0 == false // Boolean converts to number before comparing.
"0" == false // Both operands convert to numbers before comparing.
Equality and Inequality Operators explains exactly what conversions are
 performed by the == operator in order to
 determine whether two values should be considered equal, and it also
 describes the strict equality operator === that does not perform conversions when testing for
 equality.
Keep in mind that convertibility of one value to another does not imply
 equality of those two values. If undefined is used where a boolean value is expected, for
 example, it will convert to false. But
 this does not mean that undefined ==
 false. JavaScript operators and statements expect values of
 various types, and perform conversions to those types. The if statement converts undefined to false, but
 the == operator never attempts to convert
 its operands to booleans.

Explicit Conversions

Although JavaScript performs many type conversions automatically, you may
 sometimes need to perform an explicit conversion, or you may prefer to make
 the conversions explicit to keep your code clearer.
The simplest way to perform an explicit type conversion is to use the
 Boolean(), Number(), String(), or Object() functions. We’ve already seen these functions as
 constructors for wrapper objects (in Wrapper Objects). When
 invoked without the new operator,
 however, they work as conversion functions and perform the conversions
 summarized in Table 3-2:
Number("3") // => 3
String(false) // => "false" Or use false.toString()
Boolean([]) // => true
Object(3) // => new Number(3)
Note that any value other than null or
 undefined has a toString() method and the result of this
 method is usually the same as that returned by the String() function. Also note that Table 3-2 shows a TypeError if you attempt to convert
 null or undefined to an object. The Object() function does not throw an exception in this case:
 instead it simply returns a newly created empty object.
Certain JavaScript operators perform implicit type conversions, and are
 sometimes used for the purposes of type conversion. If one operand of the
 + operator is a string, it converts
 the other one to a string. The unary +
 operator converts its operand to a number. And the unary ! operator converts its operand to a boolean
 and negates it. These facts lead to the following type conversion idioms
 that you may see in some code:
x + "" // Same as String(x)
+x // Same as Number(x). You may also see x-0
!!x // Same as Boolean(x). Note double !
Formatting and parsing numbers are common tasks in computer programs and
 JavaScript has specialized functions and methods that provide more precise
 control over number-to-string and string-to-number conversions.
The toString() method defined by the
 Number class accepts an optional argument that specifies a radix, or base,
 for the conversion. If you do not specify the argument, the conversion is
 done in base 10. However, you can also convert numbers in other bases
 (between 2 and 36). For example:
var n = 17;
binary_string = n.toString(2); // Evaluates to "10001"
octal_string = "0" + n.toString(8); // Evaluates to "021"
hex_string = "0x" + n.toString(16); // Evaluates to "0x11"
When working with financial or scientific data, you may want to convert
 numbers to strings in ways that give you control over the number of decimal
 places or the number of significant digits in the output, or you may want to
 control whether exponential notation is used. The Number class defines three
 methods for these kinds of number-to-string conversions. toFixed() converts a number to a string with a
 specified number of digits after the decimal point. It never uses
 exponential notation. toExponential()
 converts a number to a string using exponential notation, with one digit
 before the decimal point and a specified number of digits after the decimal
 point (which means that the number of significant digits is one larger than
 the value you specify). toPrecision()
 converts a number to a string with the number of significant digits you
 specify. It uses exponential notation if the number of significant digits is
 not large enough to display the entire integer portion of the number. Note
 that all three methods round the trailing digits or pad with zeros as
 appropriate. Consider the following examples:
var n = 123456.789;
n.toFixed(0); // "123457"
n.toFixed(2); // "123456.79"
n.toFixed(5); // "123456.78900"
n.toExponential(1); // "1.2e+5"
n.toExponential(3); // "1.235e+5"
n.toPrecision(4); // "1.235e+5"
n.toPrecision(7); // "123456.8"
n.toPrecision(10); // "123456.7890"
If you pass a string to the Number()
 conversion function, it attempts to parse that string as an integer or
 floating-point literal. That function only works for base-10 integers, and
 does not allow trailing characters that are not part of the literal. The
 parseInt() and parseFloat() functions (these are global
 functions, not methods of any class) are more flexible. parseInt() parses only integers, while
 parseFloat() parses both integers and
 floating-point numbers. If a string begins with “0x” or “0X”, parseInt() interprets it as a hexadecimal
 number.[2] Both parseInt() and parseFloat() skip leading whitespace, parse as
 many numeric characters as they can, and ignore anything that follows. If
 the first nonspace character is not part of a valid numeric literal, they
 return NaN:
parseInt("3 blind mice") // => 3
parseFloat(" 3.14 meters") // => 3.14
parseInt("-12.34") // => -12
parseInt("0xFF") // => 255
parseInt("0xff") // => 255
parseInt("-0XFF") // => -255
parseFloat(".1") // => 0.1
parseInt("0.1") // => 0
parseInt(".1") // => NaN: integers can't start with "."
parseFloat("$72.47"); // => NaN: numbers can't start with "$"
parseInt() accepts an optional second
 argument specifying the radix (base) of the number to be parsed. Legal
 values are between 2 and 36. For example:
parseInt("11", 2); // => 3 (1*2 + 1)
parseInt("ff", 16); // => 255 (15*16 + 15)
parseInt("zz", 36); // => 1295 (35*36 + 35)
parseInt("077", 8); // => 63 (7*8 + 7)
parseInt("077", 10); // => 77 (7*10 + 7)

Object to Primitive Conversions

Object-to-boolean conversions are trivial: all objects (including arrays
 and functions) convert to true. This is
 so even for wrapper objects: new
 Boolean(false) is an object rather than a primitive value, and
 so it converts to true.
Object-to-string and object-to-number conversions are performed by
 invoking a method of the object to be converted. This is complicated by the
 fact that JavaScript objects have two different methods that perform
 conversions, and it is also complicated by some special cases described
 below. Note that the string and number conversion rules described here apply
 only to native objects. Host objects (defined by web browsers, for example)
 can convert to numbers and strings according to their own
 algorithms.
All objects inherit two conversion methods. The first is called toString(), and its job is to return a string
 representation of the object. The default toString() method does not return a very interesting value
 (though we’ll find it useful in Example 6-4):
({x:1, y:2}).toString() // => "[object Object]"
Many classes define more specific versions of the toString() method. The toString() method of the Array class, for example, converts
 each array element to a string and joins the resulting strings together with
 commas in between. The toString() method
 of the Function class returns an implementation-defined representation of a
 function. In practice, implementations usually convert user-defined
 functions to strings of JavaScript source code. The Date class defines a
 toString() method that returns a
 human-readable (and JavaScript-parsable) date and time string. The RegExp
 class defines a toString() method that
 converts RegExp objects to a string that looks like a RegExp
 literal:
[1,2,3].toString() // => "1,2,3"
(function(x) { f(x); }).toString() // => "function(x) {\n f(x);\n}"
/\d+/g.toString() // => "/\\d+/g"
new Date(2010,0,1).toString() // => "Fri Jan 01 2010 00:00:00 GMT-0800 (PST)"
The other object conversion function is called valueOf(). The job of this method is less well-defined: it is
 supposed to convert an object to a primitive value that represents the
 object, if any such primitive value exists. Objects are compound values, and
 most objects cannot really be represented by a single primitive value, so
 the default valueOf() method simply
 returns the object itself rather than returning a primitive. Wrapper classes
 define valueOf() methods that return the
 wrapped primitive value. Arrays, functions, and regular expressions simply
 inherit the default method. Calling valueOf() for instances of these types simply
 returns the object itself. The Date class defines a valueOf() method that returns the date in its internal
 representation: the number of milliseconds since January 1, 1970:
var d = new Date(2010, 0, 1); // January 1st, 2010, (Pacific time)
d.valueOf() // => 1262332800000
With the toString() and valueOf() methods explained, we can now cover
 object-to-string and object-to-number conversions. Do note, however, that
 there are some special cases in which JavaScript performs a different
 object-to-primitive conversion. These special cases are covered at the end
 of this section.
To convert an object to a string, JavaScript takes these steps:
	If the object has a toString()
 method, JavaScript calls it. If it returns a primitive value,
 JavaScript converts that value to a string (if it is not already a
 string) and returns the result of that conversion. Note that
 primitive-to-string conversions are all well-defined in Table 3-2.

	If the object has no toString()
 method, or if that method does not return a primitive value, then
 JavaScript looks for a valueOf()
 method. If the method exists, JavaScript calls it. If the return
 value is a primitive, JavaScript converts that value to a string (if
 it is not already) and returns the converted value.

	Otherwise, JavaScript cannot obtain a primitive value from either
 toString() or valueOf(), so it throws a
 TypeError.

To convert an object to a number, JavaScript does the same thing, but it
 tries the valueOf()
 method first:
	If the object has a valueOf()
 method that returns a primitive value, JavaScript converts (if
 necessary) that primitive value to a number and returns the
 result.

	Otherwise, if the object has a toString() method that returns a primitive value,
 JavaScript converts and returns the value.

	Otherwise, JavaScript throws a TypeError.

The details of this object-to-number conversion explain why an empty array
 converts to the number 0 and why an array with a single element may also
 convert to a number. Arrays inherit the default valueOf() method that returns an object rather than a
 primitive value, so array-to-number conversion relies on the toString() method. Empty arrays convert to the
 empty string. And the empty string converts to the number 0. An array with a
 single element converts to the same string that that one element does. If an
 array contains a single number, that number is converted to a string, and
 then back to a number.
The + operator in JavaScript performs
 numeric addition and string concatenation. If either of its operands is an
 object, JavaScript converts the object using a special object-to-primitive
 conversion rather than the object-to-number conversion used by the other
 arithmetic operators. The == equality
 operator is similar. If asked to compare an object with a primitive value,
 it converts the object using the object-to-primitive conversion.
The object-to-primitive conversion used by + and == includes a
 special case for Date objects. The Date class is the only predefined core
 JavaScript type that defines meaningful conversions to both strings and
 numbers. The object-to-primitive conversion is basically an object-to-number
 conversion (valueof() first) for all
 objects that are not dates, and an object-to-string conversion (toString() first) for Date objects. The
 conversion is not exactly the same as those explained above, however: the
 primitive value returned by valueOf() or
 toString() is used directly without
 being forced to a number or string.
The < operator and the other
 relational operators perform object-to-primitive conversions like == does, but without the special case for Date
 objects: any object is converted by trying valueOf() first and then toString(). Whatever primitive value is obtained is used
 directly, without being further converted to a number or string.
+, ==, != and the relational
 operators are the only ones that perform this special kind of
 string-to-primitive conversions. Other operators convert more explicitly to
 a specified type and do not have any special case for Date objects. The
 - operator, for example, converts its
 operands to numbers. The following code demonstrates the behavior of
 +, -, ==, and > with Date objects:
var now = new Date(); // Create a Date object
typeof (now + 1) // => "string": + converts dates to strings
typeof (now - 1) // => "number": - uses object-to-number conversion
now == now.toString() // => true: implicit and explicit string conversions
now > (now -1) // => true: > converts a Date to a number

[2] In ECMAScript 3, parseInt() may
 parse a string that begins with “0” (but not “0x” or “0X”) as an
 octal number or as a decimal number. Because the behavior is
 unspecified, you should never use parseInt() to parse numbers with leading zeros,
 unless you explicitly specify the radix to be used! In ECMAScript 5, parseInt() only parses octal numbers
 if you explicitly pass 8 as the second argument.

Variable Declaration

Before you use a variable in a JavaScript program, you should
 declare it. Variables are declared with the var keyword, like this:
var i;
var sum;
You can also declare multiple variables with the same var keyword:
var i, sum;
And you can combine variable declaration with variable initialization:
var message = "hello";
var i = 0, j = 0, k = 0;
If you don’t specify an initial value for a variable with the var statement, the variable is declared, but its
 value is undefined until your code stores a
 value into it.
Note that the var statement can also appear
 as part of the for and for/in loops (introduced in Chapter 5), allowing you to succinctly declare the loop
 variable as part of the loop syntax itself. For example:
for(var i = 0; i < 10; i++) console.log(i);
for(var i = 0, j=10; i < 10; i++,j--) console.log(i*j);
for(var p in o) console.log(p);
If you’re used to statically typed languages such as C or Java, you will have
 noticed that there is no type associated with JavaScript’s variable
 declarations. A JavaScript variable can hold a value of any type. For example,
 it is perfectly legal in JavaScript to assign a number to a variable and then
 later assign a string to that variable:
var i = 10;
i = "ten";
Repeated and Omitted Declarations

It is legal and harmless to declare a variable more than once with the
 var statement. If the repeated
 declaration has an initializer, it acts as if it were simply an assignment
 statement.
If you attempt to read the value of an undeclared variable, JavaScript
 generates an error. In ECMAScript 5 strict mode (“use strict”), it is also an error to assign a value to an undeclared variable.
 Historically, however, and in non-strict mode, if you assign a value to an
 undeclared variable, JavaScript actually creates that variable as a property
 of the global object, and it works much like (but not exactly the same as,
 see Variables As Properties) a properly declared global variable. This
 means that you can get away with leaving your global variables undeclared.
 This is a bad habit and a source of bugs, however, and you should always
 declare your variables with var.

Variable Scope

The scope of a variable is the region of your program
 source code in which it is defined. A global variable has
 global scope; it is defined everywhere in your JavaScript code. On the other
 hand, variables declared within a function are defined only within the body of
 the function. They are local variables and have local
 scope. Function parameters also count as local variables and are defined only
 within the body of the function.
Within the body of a function, a local variable takes precedence over a global
 variable with the same name. If you declare a local variable or function
 parameter with the same name as a global variable, you effectively hide the
 global variable:
var scope = "global"; // Declare a global variable
function checkscope() {
 var scope = "local"; // Declare a local variable with the same name
 return scope; // Return the local value, not the global one
}
checkscope() // => "local"
Although you can get away with not using the var statement when you write code in the global scope, you must
 always use var to declare local variables.
 Consider what happens if you don’t:
scope = "global"; // Declare a global variable, even without var.
function checkscope2() {
 scope = "local"; // Oops! We just changed the global variable.
 myscope = "local"; // This implicitly declares a new global variable.
 return [scope, myscope]; // Return two values.
}
checkscope2() // => ["local", "local"]: has side effects!
scope // => "local": global variable has changed.
myscope // => "local": global namespace cluttered up.
Function definitions can be nested. Each function has its own local scope, so
 it is possible to have several nested layers of local scope. For example:
var scope = "global scope"; // A global variable
function checkscope() {
 var scope = "local scope"; // A local variable
 function nested() {
 var scope = "nested scope"; // A nested scope of local variables
 return scope; // Return the value in scope here
 }
 return nested();
}
checkscope() // => "nested scope"
Function Scope and Hoisting

In some C-like programming languages, each block of code within curly
 braces has its own scope, and variables are not visible outside of the block
 in which they are declared. This is called block scope,
 and JavaScript does not have it. Instead, JavaScript
 uses function scope: variables are visible within the
 function in which they are defined and within any functions that are nested
 within that function.
In the following code, the variables i,
 j, and k are declared in different spots, but all have the same
 scope—all three are defined throughout the body of the function:
function test(o) {
 var i = 0; // i is defined throughout function
 if (typeof o == "object") {
 var j = 0; // j is defined everywhere, not just block
 for(var k=0; k < 10; k++) { // k is defined everywhere, not just loop
 console.log(k); // print numbers 0 through 9
 }
 console.log(k); // k is still defined: prints 10
 }
 console.log(j); // j is defined, but may not be initialized
}
JavaScript’s function scope means that all variables declared within a
 function are visible throughout the body of the
 function. Curiously, this means that variables are even visible before they
 are declared. This feature of JavaScript is informally known as
 hoisting: JavaScript code behaves as if all
 variable declarations in a function (but not any associated assignments) are
 “hoisted” to the top of the function. Consider the following code:
var scope = "global";
function f() {
 console.log(scope); // Prints "undefined", not "global"
 var scope = "local"; // Variable initialized here, but defined everywhere
 console.log(scope); // Prints "local"
}
You might think that the first line of the function would print “global”,
 because the var statement declaring the
 local variable has not yet been executed. Because of the rules of function
 scope, however, this is not what happens. The local variable is defined
 throughout the body of the function, which means the global variable by the
 same name is hidden throughout the function. Although the local variable is
 defined throughout, it is not actually initialized until the var statement is executed. Thus, the function
 above is equivalent to the following, in which the variable declaration is
 “hoisted” to the top and the variable initialization is left where it
 is:
function f() {
 var scope; // Local variable is declared at the top of the function
 console.log(scope); // It exists here, but still has "undefined" value
 scope = "local"; // Now we initialize it and give it a value
 console.log(scope); // And here it has the value we expect
}
In programming languages with block scope, it is generally good
 programming practice to declare variables as close as possible to where they
 are used and with the narrowest possible scope. Since JavaScript does not
 have block scope, some programmers make a point of declaring all their
 variables at the top of the function, rather than trying to declare them
 closer to the point at which they are used. This technique makes their
 source code accurately reflect the true scope of the variables.

Variables As Properties

When you declare a global JavaScript variable, what you are actually doing
 is defining a property of the global object (The Global Object). If
 you use var to declare the variable, the
 property that is created is nonconfigurable (see Property Attributes), which means that it cannot be deleted
 with the delete operator. We’ve already
 noted that if you’re not using strict mode and you assign a value to an
 undeclared variable, JavaScript automatically creates a global variable for
 you. Variables created in this way are regular, configurable properties of
 the global object and they can be deleted:
var truevar = 1; // A properly declared global variable, nondeletable.
fakevar = 2; // Creates a deletable property of the global object.
this.fakevar2 = 3; // This does the same thing.
delete truevar // => false: variable not deleted
delete fakevar // => true: variable deleted
delete this.fakevar2 // => true: variable deleted
JavaScript global variables are properties of the global object, and this
 is mandated by the ECMAScript specification. There is no such requirement
 for local variables, but you can imagine local variables as the properties
 of an object associated with each function invocation. The ECMAScript 3
 specification referred to this object as the “call object,” and the
 ECMAScript 5 specification calls it a “declarative environment record.”
 JavaScript allows us to refer to the global object with the this keyword, but it does not give us any way
 to refer to the object in which local variables are stored. The precise
 nature of these objects that hold local variables is an implementation
 detail that need not concern us. The notion that these local variable
 objects exist, however, is an important one, and it is developed further in
 the next section.

The Scope Chain

JavaScript is a lexically scoped language: the scope
 of a variable can be thought of as the set of source code lines for which
 the variable is defined. Global variables are defined throughout the
 program. Local variables are defined throughout the function in which they
 are declared, and also within any functions nested within that
 function.
If we think of local variables as properties of some kind of
 implementation-defined object, then there is another way to think about
 variable scope. Every chunk of JavaScript code (global code or functions)
 has a scope chain associated with it. This scope chain
 is a list or chain of objects that defines the variables that are “in scope”
 for that code. When JavaScript needs to look up the value of a variable
 x (a process called
 variable resolution), it starts by looking at the
 first object in the chain. If that object has a property named x, the value of that property is used. If the
 first object does not have a property named x, JavaScript continues the search with the next object in
 the chain. If the second object does not have a property named x, the search moves on to the next object, and
 so on. If x is not a property of any of
 the objects in the scope chain, then x is
 not in scope for that code, and a ReferenceError occurs.
In top-level JavaScript code (i.e., code not contained within any function
 definitions), the scope chain consists of a single object, the global
 object. In a non-nested function, the scope chain consists of two objects.
 The first is the object that defines the function’s parameters and local
 variables, and the second is the global object. In a nested function, the
 scope chain has three or more objects. It is important to understand how
 this chain of objects is created. When a function is defined, it stores the
 scope chain then in effect. When that function is invoked, it creates a new
 object to store its local variables, and adds that new object to the stored
 scope chain to create a new, longer, chain that represents the scope for
 that function invocation. This becomes more interesting for nested functions
 because each time the outer function is called, the inner function is
 defined again. Since the scope chain differs on each invocation of the outer
 function, the inner function will be subtly different each time it is
 defined—the code of the inner function will be identical on each invocation
 of the outer function, but the scope chain associated with that code will be
 different.
This notion of a scope chain is helpful for understanding the with statement (with) and is crucial for understanding closures (Closures).

Chapter 4. Expressions and Operators

An expression is a phrase of JavaScript that a JavaScript
 interpreter can evaluate to produce a value. A constant
 embedded literally in your program is a very simple kind of expression. A variable
 name is also a simple expression that evaluates to whatever value has been assigned
 to that variable. Complex expressions are built from simpler expressions. An array
 access expression, for example, consists of one expression that evaluates to an
 array followed by an open square bracket, an expression that evaluates to an
 integer, and a close square bracket. This new, more complex expression evaluates to
 the value stored at the specified index of the specified array. Similarly, a
 function invocation expression consists of one expression that evaluates to a
 function object and zero or more additional expressions that are used as the
 arguments to the function.
The most common way to build a complex expression out of simpler expressions is
 with an operator. An operator combines the values of its
 operands (usually two of them) in some way and evaluates
 to a new value. The multiplication operator * is
 a simple example. The expression x * y evaluates
 to the product of the values of the expressions x
 and y. For simplicity, we sometimes say that an
 operator returns a value rather than “evaluates to” a
 value.
This chapter documents all of JavaScript’s operators, and it also explains
 expressions (such as array indexing and function invocation) that do not use
 operators. If you already know another programming language that uses C-style
 syntax, you’ll find that the syntax of most of JavaScript’s expressions and
 operators is already familiar to you.
Primary Expressions

The simplest expressions, known as primary expressions,
 are those that stand alone—they do not
 include any simpler expressions. Primary expressions in JavaScript are constant
 or literal values, certain language keywords, and variable
 references.
Literals are constant values that are embedded directly in your program. They
 look like these:
1.23 // A number literal
"hello" // A string literal
/pattern/ // A regular expression literal
JavaScript syntax for number literals was covered in Numbers. String literals were documented in Text. The regular
 expression literal syntax was introduced in Pattern Matching and
 will be documented in detail in Chapter 10.
Some of JavaScript’s reserved words are primary expressions:
true // Evalutes to the boolean true value
false // Evaluates to the boolean false value
null // Evaluates to the null value
this // Evaluates to the "current" object
We learned about true, false, and null
 in Boolean Values and null and undefined. Unlike the
 other keywords, this is not a constant—it
 evaluates to different values in different places in the program. The this keyword is used in object-oriented
 programming. Within the body of a method, this evaluates to the object on which the method was invoked. See
 Invocation Expressions, Chapter 8 (especially
 Method Invocation), and Chapter 9 for more
 on this.
Finally, the third type of primary expression is the bare variable
 reference:
i // Evaluates to the value of the variable i.
sum // Evaluates to the value of the variable sum.
undefined // undefined is a global variable, not a keyword like null.
When any identifier appears by itself in a program, JavaScript assumes it is a
 variable and looks up its value. If no variable with that name exists, the
 expression evaluates to the undefined value.
 In the strict mode of ECMAScript 5, however, an attempt to evaluate a
 nonexistent variable throws a ReferenceError instead.

Object and Array Initializers

Object and array initializers are expressions whose
 value is a newly created object or array. These initializer expressions are
 sometimes called “object literals” and “array literals.” Unlike true literals,
 however, they are not primary expressions, because they include a number of
 subexpressions that specify property and element values. Array initializers have
 a slightly simpler syntax, and we’ll begin with those.
An array initializer is a comma-separated list of expressions contained within
 square brackets. The value of an array initializer is a newly created array. The
 elements of this new array are initialized to the values of the comma-separated
 expressions:
[] // An empty array: no expressions inside brackets means no elements
[1+2,3+4] // A 2-element array. First element is 3, second is 7
The element expressions in an array initializer can themselves be array
 initializers, which means that these expressions can create nested
 arrays:
var matrix = [[1,2,3], [4,5,6], [7,8,9]];
The element expressions in an array initializer are evaluated each time the
 array initializer is evaluated. This means that the value of an array
 initializer expression may be different each time it is evaluated.
Undefined elements can be included in an array literal by simply omitting a
 value between commas. For example, the following array contains five elements,
 including three undefined elements:
var sparseArray = [1,,,,5];
A single trailing comma is allowed after the last expression in an array
 initializer and does not create an undefined element.
Object initializer expressions are like array initializer expressions, but the
 square brackets are replaced by curly brackets, and each subexpression is
 prefixed with a property name and a colon:
var p = { x:2.3, y:-1.2 }; // An object with 2 properties
var q = {}; // An empty object with no properties
q.x = 2.3; q.y = -1.2; // Now q has the same properties as p
Object literals can be nested. For example:
var rectangle = { upperLeft: { x: 2, y: 2 },
 lowerRight: { x: 4, y: 5 } };
The expressions in an object initializer are evaluated each time the object
 initializer is evaluated, and they need not have constant values: they can be
 arbitrary JavaScript expressions. Also, the property names in object literals
 may be strings rather than identifiers (this is useful to specify property names
 that are reserved words or are otherwise not legal identifiers):
var side = 1;
var square = { "upperLeft": { x: p.x, y: p.y },
 'lowerRight': { x: p.x + side, y: p.y + side}};
We’ll see object and array initializers again in Chapters 6 and 7.

Function Definition Expressions

A function definition expression defines a JavaScript function, and the value
 of such an expression is the newly defined function. In a sense, a function
 definition expression is a “function literal” in the same way that an object
 initializer is an “object literal.” A function definition expression typically
 consists of the keyword function followed by
 a comma-separated list of zero or more identifiers (the parameter names) in
 parentheses and a block of JavaScript code (the function body) in curly braces.
 For example:
// This function returns the square of the value passed to it.
var square = function(x) { return x * x; }
A function definition expression can also include a name for the function.
 Functions can also be defined using a function statement rather than a function
 expression. Complete details on function definition are in Chapter 8.

Property Access Expressions

A property access expression evaluates to the value of an object property or
 an array element. JavaScript defines two syntaxes for property access:
expression . identifier
expression [expression]
The first style of property access is an expression followed by a period and
 an identifier. The expression specifies the object, and the identifier specifies
 the name of the desired property. The second style of property access follows
 the first expression (the object or array) with another expression in square
 brackets. This second expression specifies the name of the desired property of
 the index of the desired array element. Here are some concrete
 examples:
var o = {x:1,y:{z:3}}; // An example object
var a = [o,4,[5,6]]; // An example array that contains the object
o.x // => 1: property x of expression o
o.y.z // => 3: property z of expression o.y
o["x"] // => 1: property x of object o
a[1] // => 4: element at index 1 of expression a
a[2]["1"] // => 6: element at index 1 of expression a[2]
a[0].x // => 1: property x of expression a[0]
With either type of property access expression, the expression before the . or
 [is first evaluated. If the value is null or
 undefined, the expression throws a
 TypeError, since these are the two JavaScript values that cannot have
 properties. If the value is not an object (or array), it is converted to one
 (see Wrapper Objects). If the object expression is followed by a dot
 and an identifier, the value of the property named by that identifier is looked
 up and becomes the overall value of the expression. If the object expression is
 followed by another expression in square brackets, that second expression is
 evaluated and converted to a string. The overall value of the expression is then
 the value of the property named by that string. In either case, if the named
 property does not exist, then the value of the property access expression is
 undefined.
The .identifier syntax is the simpler of the two
 property access options, but notice that it can only be used when the property
 you want to access has a name that is a legal identifier, and when you know then
 name when you write the program. If the property name is a reserved word or
 includes spaces or punctuation characters, or when it is a number (for arrays),
 you must use the square bracket notation. Square brackets are also used when the
 property name is not static but is itself the result of a computation (see Objects As Associative Arrays for an example).
Objects and their properties are covered in detail in Chapter 6, and arrays and their elements are covered in Chapter 7.

Invocation Expressions

An invocation expression is JavaScript’s syntax for
 calling (or executing) a function or method. It starts with a function
 expression that identifies the function to be called. The function expression is
 followed by an open parenthesis, a comma-separated list of zero or more argument
 expressions, and a close parenthesis. Some examples:
f(0) // f is the function expression; 0 is the argument expression.
Math.max(x,y,z) // Math.max is the function; x, y and z are the arguments.
a.sort() // a.sort is the function; there are no arguments.
When an invocation expression is evaluated, the function expression is
 evaluated first, and then the argument expressions are evaluated to produce a
 list of argument values. If the value of the function expression is not a
 callable object, a TypeError is thrown. (All functions are callable. Host
 objects may also be callable even if they are not functions. This distinction is
 explored in Callable Objects.) Next, the argument values are
 assigned, in order, to the parameter names specified when the function was
 defined, and then the body of the function is executed. If the function uses a
 return statement to return a value, then
 that value becomes the value of the invocation expression. Otherwise, the value
 of the invocation expression is undefined.
 Complete details on function invocation, including an explanation of what
 happens when the number of argument expressions does not match the number of
 parameters in the function definition, are in
 Chapter 8
 .
Every invocation expression includes a pair of parentheses and an expression
 before the open parenthesis. If that expression is a property access expression,
 then the invocation is known as a method invocation. In
 method invocations, the object or array that is the subject of the property
 access becomes the value of the this
 parameter while the body of the function is being executed. This enables an
 object-oriented programming paradigm in which functions (known by their OO name,
 “methods”) operate on the object of which they are part. See Chapter 9 for details.
Invocation expressions that are not method invocations normally use the global
 object as the value of the this keyword. In
 ECMAScript 5, however, functions that are defined in strict mode are invoked
 with undefined as their this value rather than the global object. See
 “use strict” for more on strict mode.

Object Creation Expressions

An object creation expression creates a new object and
 invokes a function (called a constructor) to initialize the properties of that
 object. Object creation expressions are like invocation expressions except that
 they are prefixed with the keyword new:
new Object()
new Point(2,3)
If no arguments are passed to the constructor function in an object creation
 expression, the empty pair of parentheses can be omitted:
new Object
new Date
When an object creation expression is evaluated, JavaScript first creates a
 new empty object, just like the one created by the object initializer {}. Next, it invokes the specified function with
 the specified arguments, passing the new object as the value of the this keyword. The function can then use this to initialize the properties of the newly
 created object. Functions written for use as constructors do not return a value,
 and the value of the object creation expression is the newly created and
 initialized object. If a constructor does return an object value, that value
 becomes the value of the object creation expression and the newly created object
 is discarded.
Constructors are explained in more detail in Chapter 9.

Operator Overview

Operators are used for JavaScript’s arithmetic expressions, comparison
 expressions, logical expressions, assignment expressions, and more. Table 4-1 summarizes the operators and serves as a convenient
 reference.
Note that most operators are represented by punctuation characters such as
 + and =. Some, however, are represented by keywords such as delete and instanceof. Keyword operators are regular operators, just like
 those expressed with punctuation; they simply have a less succinct
 syntax.
Table 4-1 is organized by operator precedence. The operators
 listed first have higher precedence than those listed last. Operators separated
 by a horizontal line have different precedence levels. The column labeled A
 gives the operator associativity, which can be L (left-to-right) or R
 (right-to-left), and the column N specifies the number of operands. The column
 labeled Types lists the expected types of the operands and (after the → symbol) the result type for the operator. The
 subsections that follow the table explain the concepts of precedence,
 associativity, and operand type. The operators themselves are individually
 documented following that discussion.
Table 4-1. JavaScript operators
	Operator	Operation	A	N	Types
	
 ++
 	Pre- or post-increment	R	1	lval→num
	
 --
 	Pre- or post-decrement	R	1	lval→num
	
 -
 	Negate number	R	1	num→num
	
 +
 	Convert to number	R	1	num→num
	
 ~
 	Invert bits	R	1	int→int
	
 !
 	Invert boolean value	R	1	bool→bool
	
 delete
 	Remove a property	R	1	lval→bool
	
 typeof
 	Determine type of operand	R	1	any→str
	
 void
 	Return undefined value	R	1	any→undef
	*, /, %	Multiply, divide, remainder	L	2	num,num→num
	+, -	Add, subtract	L	2	num,num→num
	
 +
 	Concatenate strings	L	2	str,str→str
	
 <<
 	Shift left	L	2	int,int→int
	
 >>
 	Shift right with sign extension	L	2	int,int→int
	
 >>>
 	Shift right with zero extension	L	2	int,int→int
	<, <=,>, >=	Compare in numeric order	L	2	num,num→bool
	<, <=,>, >=	Compare in alphabetic order	L	2	str,str→bool
	
 instanceof
 	Test object class	L	2	obj,func→bool
	
 in
 	Test whether property exists	L	2	str,obj→bool
	
 ==
 	Test for equality	L	2	any,any→bool
	
 !=
 	Test for inequality	L	2	any,any→bool
	
 ===
 	Test for strict equality	L	2	any,any→bool
	
 !==
 	Test for strict inequality	L	2	any,any→bool
	
 &
 	Compute bitwise AND	L	2	int,int→int
	
 ^
 	Compute bitwise XOR	L	2	int,int→int
	
 |
 	Compute bitwise OR	L	2	int,int→int
	
 &&
 	Compute logical AND	L	2	any,any→any
	
 ||
 	Compute logical OR	L	2	any,any→any
	
 ?:
 	Choose 2nd or 3rd operand	R	3	bool,any,any→any
	
 =
 	Assign to a variable or property	R	2	lval,any→any
	*=, /=, %=, +=,	Operate and assign	R	2	lval,any→any
	-=, &=, ^=, |=,	 	 	 	
	<<=,
 >>=,
 >>>=	 	 	 	
	
 ,
 	Discard 1st operand, return second	L	2	any,any→any

Number of Operands

Operators can be categorized based on the number of operands they expect
 (their arity). Most JavaScript operators, like the
 * multiplication operator, are
 binary operators that combine two expressions into
 a single, more complex expression. That is, they expect two operands.
 JavaScript also supports a number of unary operators,
 which convert a single expression into a single, more complex expression.
 The − operator in the expression −x is a unary operator that performs the
 operation of negation on the operand x.
 Finally, JavaScript supports one ternary operator, the
 conditional operator ?:, which combines
 three expressions into a single expression.

Operand and Result Type

Some operators work on values of any type, but most expect their operands
 to be of a specific type, and most operators return (or evaluate to) a value
 of a specific type. The Types column in Table 4-1
 specifies operand types (before the arrow) and result type (after the arrow)
 for the operators.
JavaScript operators usually convert the type (see Type Conversions) of their operands as needed. The multiplication
 operator * expects numeric operands, but
 the expression "3" * "5" is legal because
 JavaScript can convert the operands to numbers. The value of this expression
 is the number 15, not the string “15”, of course. Remember also that every
 JavaScript value is either “truthy” or “falsy,” so operators that expect
 boolean operands will work with an operand of any type.
Some operators behave differently depending on the type of the operands
 used with them. Most notably, the +
 operator adds numeric operands but concatenates string operands. Similarly,
 the comparison operators such as <
 perform comparison in numerical or alphabetical order depending on the type
 of the operands. The descriptions of individual operators explain their
 type-dependencies and specify what type conversions they perform.

Lvalues

Notice that the assignment operators and a few of the other operators
 listed in
 Table 4-1
 expect an operand of type lval.
 lvalue is a historical term that means “an
 expression that can legally appear on the left side of an assignment
 expression.” In JavaScript, variables, properties of objects, and elements
 of arrays are lvalues. The ECMAScript specification allows built-in
 functions to return lvalues but does not define any functions that behave
 that way.

Operator Side Effects

Evaluating a simple expression like 2 *
 3 never affects the state of your program, and any future
 computation your program performs will be unaffected by that evaluation.
 Some expressions, however, have side effects, and their
 evaluation may affect the result of future evaluations. The assignment
 operators are the most obvious example: if you assign a value to a variable
 or property, that changes the value of any expression that uses that
 variable or property. The ++ and -- increment and decrement operators are
 similar, since they perform an implicit assignment. The delete operator also has side effects:
 deleting a property is like (but not the same as) assigning undefined to the property.
No other JavaScript operators have side effects, but function invocation
 and object creation expressions will have side effects if any of the
 operators used in the function or constructor body have side effects.

Operator Precedence

The operators listed in Table 4-1 are arranged in order
 from high precedence to low precedence, with horizontal lines separating
 groups of operators at the same precedence level. Operator precedence
 controls the order in which operations are performed. Operators with higher
 precedence (nearer the top of the table) are performed before those with
 lower precedence (nearer to the bottom).
Consider the following expression:
w = x + y*z;
The multiplication operator * has a
 higher precedence than the addition operator +, so the multiplication is performed before the addition.
 Furthermore, the assignment operator =
 has the lowest precedence, so the assignment is performed after all the
 operations on the right side are completed.
Operator precedence can be overridden with the explicit use of
 parentheses. To force the addition in the previous example to be performed
 first, write:
w = (x + y)*z;
Note that property access and invocation expressions have higher
 precedence than any of the operators listed in Table 4-1.
 Consider this expression:
typeof my.functions[x](y)
Although typeof is one of the
 highest-priority operators, the typeof
 operation is performed on the result of the two property accesses and the
 function invocation.
In practice, if you are at all unsure about the precedence of your
 operators, the simplest thing to do is to use parentheses to make the
 evaluation order explicit. The rules that are important to know are these:
 multiplication and division are performed before addition and subtraction,
 and assignment has very low precedence and is almost always performed
 last.

Operator Associativity

In Table 4-1, the column labeled A specifies the
 associativity of the operator. A value of L
 specifies left-to-right associativity, and a value of R specifies
 right-to-left associativity. The associativity of an operator specifies the
 order in which operations of the same precedence are performed.
 Left-to-right associativity means that operations are performed from left to
 right. For example, the subtraction operator has left-to-right
 associativity, so:
w = x - y - z;
is the same as:
w = ((x - y) - z);
On the other hand, the following expressions:
x = ~-y;
w = x = y = z;
q = a?b:c?d:e?f:g;
are equivalent to:
x = ~(-y); w = (x = (y = z)); q =
a?b:(c?d:(e?f:g));
because the unary, assignment, and ternary conditional operators have
 right-to-left associativity.

Order of Evaluation

Operator precedence and associativity specify the order in which
 operations are performed in a complex
 expression, but they do not specify the order in which the subexpressions
 are evaluated. JavaScript always evaluates expressions in strictly
 left-to-right order. In the expression w=x+y*z, for example, the subexpression w is evaluated first, followed by x, y, and
 z. Then the values of y and z are
 multiplied, added to the value of x, and
 assigned to the variable or property specified by expression w. Adding parentheses to the expressions can
 change the relative order of the multiplication, addition, and assignment,
 but not the left-to-right order of evaluation.
Order of evaluation only makes a difference if any of the expressions
 being evaluated has side effects that affect the value of another
 expression. If expression x increments a
 variable that is used by expression z,
 then the fact that x is evaluated before
 z is important.

Arithmetic Expressions

This section covers the operators that perform arithmetic or other numerical
 manipulations on their operands. The multiplication, division, and subtraction
 operators are straightforward and are covered first. The addition operator gets
 a subsection of its own because it can also perform string concatenation and has
 some unusual type conversion rules. The unary operators and the bitwise
 operators are also covered in subsections of their own.
The basic arithmetic operators are *
 (multiplication), / (division), % (modulo: remainder after division), + (addition), and - (subtraction). As noted, we’ll discuss the + operator in a section of its own. The other
 basic four operators simply evaluate their operands, convert the values to
 numbers if necessary, and then compute the product, quotient, remainder, or
 difference between the values. Non-numeric operands that cannot convert to
 numbers convert to the NaN value. If either
 operand is (or converts to) NaN, the result
 of the operation is also NaN.
The / operator divides its first operand by
 its second. If you are used to programming languages that distinguish between
 integer and floating-point numbers, you might expect to get an integer result
 when you divide one integer by another. In JavaScript, however, all numbers are
 floating-point, so all division operations have floating-point results: 5/2 evaluates to 2.5, not 2. Division by zero
 yields positive or negative infinity, while 0/0 evaluates to NaN: neither
 of these cases raises an error.
The % operator computes the first operand
 modulo the second operand. In other words, it returns the remainder after
 whole-number division of the first operand by the second operand. The sign of
 the result is the same as the sign of the first operand. For example, 5 % 2 evaluates to 1 and -5 % 2 evaluates to
 -1.
While the modulo operator is typically used with integer operands, it also
 works for floating-point values. For example, 6.5 %
 2.1 evaluates to 0.2.
The + Operator

The binary + operator adds numeric
 operands or concatenates string operands:
1 + 2 // => 3
"hello" + " " + "there" // => "hello there"
"1" + "2" // => "12"
When the values of both operands are numbers, or are both strings, then it
 is obvious what the + operator does. In
 any other case, however, type conversion is necessary, and the operation to
 be performed depends on the conversion performed. The conversions rules for
 + give priority to string
 concatenation: if either of the operands is a string or an object that
 converts to a string, the other operand is converted to a string and
 concatenation is performed. Addition is performed only if neither operand is
 string-like.
Technically, the + operator behaves
 like this:
	If either of its operand values is an object, it converts it to a
 primitive using the object-to-primitive algorithm described in Object to Primitive Conversions: Date objects are converted by their
 toString() method, and all
 other objects are converted via valueOf(), if that method returns a primitive value.
 Most objects do not have a useful valueOf() method, however, so they are converted via
 toString() as well.

	After object-to-primitive conversion, if either operand is a
 string, the other is converted to a string and concatenation is
 performed.

	Otherwise, both operands are converted to numbers (or to NaN) and addition is performed.

Here are some examples:
1 + 2 // => 3: addition
"1" + "2" // => "12": concatenation
"1" + 2 // => "12": concatenation after number-to-string
1 + {} // => "1[object Object]": concatenation after object-to-string
true + true // => 2: addition after boolean-to-number
2 + null // => 2: addition after null converts to 0
2 + undefined // => NaN: addition after undefined converts to NaN
Finally, it is important to note that when the + operator is used with strings and numbers, it may not be
 associative. That is, the result may depend on the order in which operations
 are performed. For example:
1 + 2 + " blind mice"; // => "3 blind mice"
1 + (2 + " blind mice"); // => "12 blind mice"
The first line has no parentheses, and the + operator has left-to-right associativity, so the two
 numbers are added first, and their sum is concatenated with the string. In
 the second line, parentheses alter this order of operations: the number 2 is
 concatenated with the string to produce a new string. Then the number 1 is
 concatenated with the new string to produce the final result.

Unary Arithmetic Operators

Unary operators modify the value of a single operand to produce a new
 value. In JavaScript, the unary operators all have high precedence and are
 all right-associative. The arithmetic unary operators described in this
 section (+, -, ++, and --) all convert their single operand to a
 number, if necessary. Note that the punctuation characters +
 and - are used as both unary and binary
 operators.
The unary arithmetic operators are the following:
	Unary plus (+)
	The unary plus operator converts its operand to a number (or
 to NaN) and returns that
 converted value. When used with an operand that is already a
 number, it doesn’t do anything.

	Unary minus (-)
	When - is used as a unary
 operator, it converts its operand to a number, if necessary, and
 then changes the sign of the result.

	Increment (++)
	The ++ operator increments
 (i.e., adds 1 to) its single operand, which must be an lvalue (a
 variable, an element of an array, or a property of an object).
 The operator converts its operand to a number, adds 1 to that
 number, and assigns the incremented value back into the
 variable, element, or property.
The return value of the ++
 operator depends on its position relative to the operand. When
 used before the operand, where it is known as the pre-increment
 operator, it increments the operand and evaluates to the
 incremented value of that operand.
 When used after the operand, where it is known as
 the post-increment operator, it increments its operand but
 evaluates to the unincremented value of
 that operand. Consider the difference between these two lines of
 code:
var i = 1, j = ++i; // i and j are both 2
var i = 1, j = i++; // i is 2, j is 1
Note that the expression ++x is not always the same as x=x+1. The ++ operator never performs string
 concatenation: it always converts its operand to a number and
 increments it. If x is the
 string “1”, ++x is the number
 2, but x+1 is the string
 “11”.
Also note that, because of JavaScript’s automatic semicolon
 insertion, you cannot insert a line break between the
 post-increment operator and the operand that precedes it. If you
 do so, JavaScript will treat the operand as a complete statement
 by itself and insert a semicolon before it.
This operator, in both its pre- and post-increment forms, is
 most commonly used to increment a counter that controls a
 for loop (for).

	Decrement (--)
	The -- operator expects an
 lvalue operand. It converts the value of the operand to a
 number, subtracts 1, and assigns the decremented value back to
 the operand. Like the ++
 operator, the return value of -- depends on its position relative to the
 operand. When used before the operand, it decrements and returns
 the decremented value. When used after the operand, it
 decrements the operand but returns the
 undecremented value. When used after
 its operand, no line break is allowed between the operand and
 the operator.

Bitwise Operators

The bitwise operators perform low-level manipulation of the bits in the
 binary representation of numbers. Although they do not perform traditional
 arithmetic operations, they are categorized as arithmetic operators here
 because they operate on numeric operands and return a numeric value. These operators are not
 commonly used in JavaScript programming, and if you are not familiar with
 the binary representation of decimal integers, you can probably skip this
 section. Four of these operators perform Boolean algebra on the individual
 bits of the operands, behaving as if each bit in each operand were a boolean
 value (1=true, 0=false). The other three bitwise operators are used to shift
 bits left and right.
The bitwise operators expect integer operands and behave as if those
 values were represented as 32-bit integers rather than 64-bit floating-point
 values. These operators convert their operands to numbers, if necessary, and
 then coerce the numeric values to 32-bit integers by dropping any fractional
 part and any bits beyond the 32nd. The shift operators require a right-side
 operand between 0 and 31. After converting this operand to an unsigned
 32-bit integer, they drop any bits beyond the 5th, which yields a number in
 the appropriate range. Surprisingly, NaN,
 Infinity, and -Infinity all convert to 0 when used as
 operands of these bitwise operators.
	Bitwise AND (&)
	The & operator
 performs a Boolean AND operation on each bit of its integer
 arguments. A bit is set in the result only if the corresponding
 bit is set in both operands. For example, 0x1234 & 0x00FF evaluates
 to 0x0034.

	Bitwise OR (|)
	The | operator performs a
 Boolean OR operation on each bit of its integer arguments. A bit
 is set in the result if the corresponding bit is set in one or
 both of the operands. For example, 0x1234 | 0x00FF evaluates to 0x12FF.

	Bitwise XOR (^)
	The ^ operator performs a
 Boolean exclusive OR operation on each bit of its integer
 arguments. Exclusive OR means that either operand one is
 true or operand two is
 true, but not both. A bit
 is set in this operation’s result if a corresponding bit is set
 in one (but not both) of the two operands. For example, 0xFF00 ^ 0xF0F0 evaluates to
 0x0FF0.

	Bitwise NOT (~)
	The ~ operator is a unary
 operator that appears before its single integer operand. It
 operates by reversing all bits in the operand. Because of the
 way signed integers are represented in JavaScript, applying the
 ~ operator to a value is
 equivalent to changing its sign and subtracting 1. For example
 ~0x0F evaluates to
 0xFFFFFFF0, or −16.

	Shift left (<<)
	The <<
 operator moves all bits in its first operand to the left by the
 number of places specified in the second operand, which should
 be an integer between 0 and 31. For example, in the operation
 a << 1, the
 first bit (the ones bit) of a
 becomes the second bit (the twos bit), the second bit of
 a becomes the third, etc.
 A zero is used for the new first bit, and the value of the 32nd
 bit is lost. Shifting a value left by one position is equivalent
 to multiplying by 2, shifting two positions is equivalent to
 multiplying by 4, and so on. For example, 7 << 2 evaluates to
 28.

	Shift right with sign (>>)
	The >>
 operator moves all bits in its first operand to the right by the
 number of places specified in the second operand (an integer
 between 0 and 31). Bits that are shifted off the right are lost.
 The bits filled in on the left depend on the sign bit of the
 original operand, in order to preserve the sign of the result.
 If the first operand is positive, the result has zeros placed in
 the high bits; if the first operand is negative, the result has
 ones placed in the high bits. Shifting a value right one place
 is equivalent to dividing by 2 (discarding the remainder),
 shifting right two places is equivalent to integer division by
 4, and so on. For example, 7
 >> 1 evaluates to 3, and −7 >> 1 evaluates to
 −4.

	Shift right with zero fill (>>>)
	The >>> operator is just like
 the >>
 operator, except that the bits shifted in on the left are always
 zero, regardless of the sign of the first operand. For example,
 −1 >> 4
 evaluates to −1, but −1
 >>> 4 evaluates to 0x0FFFFFFF.

Relational Expressions

This section describes JavaScript’s relational operators. These operators test
 for a relationship (such as “equals,” “less than,” or “property of”) between two
 values and return true or false depending on whether that relationship
 exists. Relational expressions always evaluate to a boolean value, and that
 value is often used to control the flow of program execution in if, while, and
 for statements (see Chapter 5). The subsections that follow document the equality and inequality
 operators, the comparison operators, and JavaScript’s other two relational
 operators, in and instanceof.
Equality and Inequality Operators

The == and === operators check whether two values are the same, using
 two different definitions of sameness. Both operators accept operands of any
 type, and both return true if their
 operands are the same and false if they
 are different. The === operator is known
 as the strict equality operator (or sometimes the identity operator), and it
 checks whether its two operands are “identical” using a strict definition of
 sameness. The == operator is known as the
 equality operator; it checks whether its two operands are “equal” using a
 more relaxed definition of sameness that allows type conversions.
JavaScript supports =, ==, and ===
 operators. Be sure you understand the differences between these assignment,
 equality, and strict equality operators, and be careful to use the correct
 one when coding! Although it is tempting to read all three operators
 “equals,” it may help to reduce confusion if you read “gets or is assigned”
 for =, “is equal to” for ==, and “is strictly equal to” for ===.
The != and !== operators test for the exact opposite of the == and ===
 operators. The !=
 inequality operator returns false if two
 values are equal to each other according to == and returns true
 otherwise. The !== operator returns
 false if two values are strictly
 equal to each other and returns true
 otherwise. As you’ll see in Logical Expressions, the ! operator computes the Boolean NOT operation.
 This makes it easy to remember that !=
 and !== stand for
 “not equal to” and “not strictly equal to.”
As mentioned in Immutable Primitive Values and Mutable Object References, JavaScript objects
 are compared by reference, not by value. An object is equal to itself, but
 not to any other object. If two distinct objects have the same number of
 properties, with the same names and values, they are still not equal. Two
 arrays that have the same elements in the same order are not equal to each
 other.
The strict equality operator ===
 evaluates its operands, and then compares the two values as follows,
 performing no type conversion:
	If the two values have different types, they are not equal.

	If both values are null or both
 values are undefined, they are
 equal.

	If both values are the boolean value true or both are the boolean value false, they are equal.

	If one or both values is NaN,
 they are not equal. The NaN value
 is never equal to any other value, including itself! To check
 whether a value x is NaN, use x
 !== x. NaN is the
 only value of x for which this
 expression will be true.

	If both values are numbers and have the same value, they are
 equal. If one value is 0 and the
 other is -0, they are also
 equal.

	If both values are strings and contain exactly the same 16-bit
 values (see the sidebar in Text) in the same
 positions, they are equal. If the strings differ in length or
 content, they are not equal. Two strings may have the same meaning
 and the same visual appearance, but still be encoded using different
 sequences of 16-bit values. JavaScript performs no Unicode
 normalization, and a pair of strings like this are not considered equal to the
 === or to the == operators. See String.localeCompare() in Part III
 for another way to compare strings.

	If both values refer to the same object, array, or function, they
 are equal. If they refer to different objects they are not equal,
 even if both objects have identical properties.

The equality operator == is like the
 strict equality operator, but it is less strict. If the values of the two
 operands are not the same type, it attempts some type conversions and tries
 the comparison again:
	If the two values have the same type, test them for strict
 equality as described above. If they are strictly equal, they are
 equal. If they are not strictly equal, they are not equal.

	If the two values do not have the same type, the == operator may still consider them
 equal. Use the following rules and type conversions to check for
 equality:
	If one value is null
 and the other is undefined, they are equal.

	If one value is a number and the other is a string,
 convert the string to a number and try the comparison again,
 using the converted value.

	If either value is true, convert it to 1 and try the comparison
 again. If either value is false, convert it to 0 and try the comparison
 again.

	If one value is an object and the other is a number or
 string, convert the object to a primitive using the
 algorithm described in Object to Primitive Conversions and try
 the comparison again. An object is converted to a primitive
 value by either its toString() method or its valueOf() method. The built-in
 classes of core JavaScript attempt valueOf()
 conversion before toString() conversion, except for the Date
 class, which performs toString() conversion. Objects that are not
 part of core JavaScript may convert themselves to primitive
 values in an implementation-defined way.

	Any other combinations of values are not equal.

As an example of testing for equality, consider the comparison:
"1" == true
This expression evaluates to true,
 indicating that these very different-looking values are in fact equal. The
 boolean value true is first converted to
 the number 1, and the comparison is done again. Next, the string "1" is converted to the number 1. Since both
 values are now the same, the comparison returns true.

Comparison Operators

The comparison operators test the relative order (numerical or
 alphabetics) of their two operands:
	Less than (<)
	The < operator
 evaluates to true if its
 first operand is less than its second operand; otherwise it
 evaluates to false.

	Greater than (>)
	The > operator
 evaluates to true if its
 first operand is greater than its second operand; otherwise it
 evaluates to false.

	Less than or equal (<=)
	The <= operator
 evaluates to true if its
 first operand is less than or equal to its second operand;
 otherwise it evaluates to false.

	Greater than or equal (>=)
	The >= operator
 evaluates to true if its
 first operand is greater than or equal to its second operand;
 otherwise it evaluates to false.

The operands of these comparison operators may be of any type. Comparison
 can be performed only on numbers and strings, however, so operands that are
 not numbers or strings are converted. Comparison and conversion occur as
 follows:
	If either operand evaluates to an object, that object is converted
 to a primitive value as described at the end of Object to Primitive Conversions: if its valueOf() method returns a primitive value, that
 value is used. Otherwise, the return value of its toString() method is used.

	If, after any required object-to-primitive conversion, both
 operands are strings, the two strings are compared, using
 alphabetical order, where “alphabetical order” is defined by the
 numerical order of the 16-bit Unicode values that make up the
 strings.

	If, after object-to-primitive conversion, at least one operand is
 not a string, both operands are converted to numbers and compared
 numerically. 0 and -0 are considered equal. Infinity is larger than any number
 other than itself, and -Infinity is smaller than any number other than
 itself. If either operand is (or converts to) NaN, then the comparison operator
 always returns false.

Remember that JavaScript strings are sequences of 16-bit integer values,
 and that string comparison is just a numerical comparison of the values in
 the two strings. The numerical encoding order defined by Unicode may not
 match the traditional collation order used in any particular language or
 locale. Note in particular that string comparison is case-sensitive, and all
 capital ASCII letters are “less than” all lowercase ASCII letters. This rule
 can cause confusing results if you do not expect it. For example, according
 to the < operator, the string
 “Zoo” comes before the string “aardvark”.
For a more robust string-comparison algorithm, see the String.localeCompare() method, which also
 takes locale-specific definitions of alphabetical order into account. For
 case-insensitive comparisons, you must first convert the strings to all
 lowercase or all uppercase using String.toLowerCase() or String.toUpperCase().
Both the + operator and the comparison
 operators behave differently for numeric and string operands. + favors strings: it performs concatenation if
 either operand is a string. The comparison operators favor numbers and only
 perform string comparison if both operands are strings:
1 + 2 // Addition. Result is 3.
"1" + "2" // Concatenation. Result is "12".
"1" + 2 // Concatenation. 2 is converted to "2". Result is "12".
11 < 3 // Numeric comparison. Result is false.
"11" < "3" // String comparison. Result is true.
"11" < 3 // Numeric comparison. "11" converted to 11. Result is false.
"one" < 3 // Numeric comparison. "one" converted to NaN. Result is false.
Finally, note that the <= (less
 than or equal) and >= (greater
 than or equal) operators do not rely on the equality or strict equality
 operators for determining whether two values are “equal.” Instead, the
 less-than-or-equal operator is simply defined as “not greater than,” and the
 greater-than-or-equal operator is defined as “not less than.” The one
 exception occurs when either operand is (or converts to) NaN, in which case all four comparison
 operators return false.

The in Operator

The in operator expects a left-side
 operand that is or can be converted to a string. It expects a right-side
 operand that is an object. It evaluates to true if the left-side value is the name of a property of the
 right-side object. For example:
var point = { x:1, y:1 }; // Define an object
"x" in point // => true: object has property named "x"
"z" in point // => false: object has no "z" property.
"toString" in point // => true: object inherits toString method

var data = [7,8,9]; // An array with elements 0, 1, and 2
"0" in data // => true: array has an element "0"
1 in data // => true: numbers are converted to strings
3 in data // => false: no element 3

The instanceof Operator

The instanceof operator expects a
 left-side operand that is an object and a right-side operand that identifies
 a class of objects. The operator evaluates to true if the left-side object is an instance of the right-side
 class and evaluates to false otherwise.
 Chapter 9 explains that, in JavaScript, classes of
 objects are defined by the constructor function that initializes them. Thus, the right-side operand
 of instanceof should be a function. Here
 are examples:
var d = new Date(); // Create a new object with the Date() constructor
d instanceof Date; // Evaluates to true; d was created with Date()
d instanceof Object; // Evaluates to true; all objects are instances of Object
d instanceof Number; // Evaluates to false; d is not a Number object
var a = [1, 2, 3]; // Create an array with array literal syntax
a instanceof Array; // Evaluates to true; a is an array
a instanceof Object; // Evaluates to true; all arrays are objects
a instanceof RegExp; // Evaluates to false; arrays are not regular expressions
Note that all objects are instances of Object. instanceof
 considers the “superclasses” when deciding whether an object is an instance
 of a class. If the left-side operand of instanceof is not an object, instanceof returns false.
 If the right-hand side is not a function, it throws a TypeError.
In order to understand how the instanceof operator works, you must understand the “prototype
 chain.” This is JavaScript’s inheritance mechanism, and it is described in
 Inheritance. To evaluate the expression o instanceof f, JavaScript evaluates f.prototype, and then looks for that value in
 the prototype chain of o. If it finds it,
 then o is an instance of f (or of a superclass of f) and the operator
 returns true. If f.prototype is not one of the values in the prototype chain
 of o, then o is not an instance of f and instanceof returns false.

Logical Expressions

The logical operators &&,
 ||, and ! perform Boolean algebra and are often used in conjunction with
 the relational operators to combine two relational expressions into one more
 complex expression. These operators are described in the subsections that
 follow. In order to fully understand them, you may want to review the concept of
 “truthy” and “falsy” values introduced in Boolean Values.
Logical AND (&&)

The && operator can be
 understood at three different levels. At the simplest level, when used with
 boolean operands, &&
 performs the Boolean AND operation on the two values: it returns true if and only if both its first operand
 and its second operand are true. If one or both of these operands is false, it returns false.
&& is often used as a
 conjunction to join two relational expressions:
x == 0 && y == 0 // true if, and only if x and y are both 0
Relational expressions always evaluate to true or false, so when
 used like this, the &&
 operator itself returns true or false. Relational operators have higher
 precedence than && (and
 ||), so expressions like these can
 safely be written without parentheses.
But && does not require
 that its operands be boolean values. Recall that all JavaScript values are
 either “truthy” or “falsy.” (See Boolean Values for details. The
 falsy values are false, null, undefined, 0, -0, NaN,
 and "". All other values, including all
 objects, are truthy.) The second level at which && can be understood is as a Boolean AND
 operator for truthy and falsy values. If both operands are truthy, the
 operator returns a truthy value. Otherwise, one or both operands must be
 falsy, and the operator returns a falsy value. In JavaScript, any expression
 or statement that expects a boolean value will work with a truthy or falsy
 value, so the fact that && does not always return true or false does not cause practical problems.
Notice that the description above says that the operator returns “a truthy
 value” or “a falsy value,” but does not specify what that value is. For
 that, we need to describe && at the third and final level. This
 operator starts by evaluating its first operand, the expression on its left.
 If the value on the left is falsy, the value of the entire expression must
 also be falsy, so &&
 simply returns the value on the left and does not even evaluate the
 expression on the right.
On the other hand, if the value on the left is truthy, then the overall
 value of the expression depends on the value on the right-hand side. If the
 value on the right is truthy, then the overall value must be truthy, and if
 the value on the right is falsy, then the overall value must be falsy. So
 when the value on the left is truthy, the && operator evaluates and returns the value
 on the right:
var o = { x : 1 };
var p = null;
o && o.x // => 1: o is truthy, so return value of o.x
p && p.x // => null: p is falsy, so return it and don't evaluate p.x
It is important to understand that && may or may not evaluate its right-side
 operand. In the code above, the variable p is set to null, and the
 expression p.x would, if evaluated, cause a TypeError. But the code
 uses && in an idiomatic
 way so that p.x is evaluated only if
 p is truthy—not null or undefined.
The behavior of && is
 sometimes called “short circuiting,” and you may sometimes see code that
 purposely exploits this behavior to conditionally execute code. For example,
 the following two lines of JavaScript code have equivalent effects:
if (a == b) stop(); // Invoke stop() only if a == b
(a == b) && stop(); // This does the same thing
In general, you must be careful whenever you write an expression with side
 effects (assignments, increments, decrements, or function invocations) on
 the right-hand side of &&. Whether those side effects occur depends on
 the value of the left-hand side.
Despite the somewhat complex way that this operator actually works, it is
 most commonly used as a simple Boolean algebra operator that works on truthy
 and falsy values.

Logical OR (||)

The || operator performs the Boolean OR
 operation on its two operands. If one or both operands is truthy, it returns
 a truthy value. If both operands are falsy, it returns a falsy
 value.
Although the || operator is most often
 used simply as a Boolean OR operator, it, like the && operator, has more complex behavior. It
 starts by evaluating its first operand, the expression on its left. If the
 value of this first operand is truthy, it returns that truthy value.
 Otherwise, it evaluates its second operand, the expression on its right, and
 returns the value of that expression.
As with the &&
 operator, you should avoid right-side operands that include side effects,
 unless you purposely want to use the fact that the right-side expression may
 not be evaluated.
An idiomatic usage of this operator is to select the first truthy value in
 a set of alternatives:
// If max_width is defined, use that. Otherwise look for a value in
// the preferences object. If that is not defined use a hard-coded constant.
var max = max_width || preferences.max_width || 500;
This idiom is often used in function bodies to supply default values for
 parameters:
// Copy the properties of o to p, and return p
function copy(o, p) {
 p = p || {}; // If no object passed for p, use a newly created object.
 // function body goes here
}

Logical NOT (!)

The ! operator is a unary operator; it
 is placed before a single operand. Its purpose is to invert the boolean
 value of its operand. For example, if x
 is truthy !x evaluates to false. If x
 is falsy, then !x is true.
Unlike the && and
 || operators, the ! operator converts its operand to a boolean
 value (using the rules described in Chapter 3) before
 inverting the converted value. This means that ! always returns true or
 false, and that you can convert any
 value x to its equivalent boolean value
 by applying this operator twice: !!x (see
 Explicit Conversions).
As a unary operator, ! has high
 precedence and binds tightly. If you want to invert the value of an
 expression like p && q,
 you need to use parentheses: !(p &&
 q). It is worth noting two theorems of Boolean algebra here
 that we can express using JavaScript syntax:
// These two equalities hold for any values of p and q
!(p && q) === !p || !q
!(p || q) === !p && !q

Assignment Expressions

JavaScript uses the = operator to assign a
 value to a variable or property. For example:
i = 0 // Set the variable i to 0.
o.x = 1 // Set the property x of object o to 1.
The = operator expects its left-side
 operand to be an lvalue: a variable or object property (or array element). It
 expects its right-side operand to be an arbitrary value of any type. The value
 of an assignment expression is the value of the right-side operand. As a side
 effect, the = operator assigns the value on
 the right to the variable or property on the left so that future references to
 the variable or property evaluate to the value.
Although assignment expressions are usually quite simple, you may sometimes
 see the value of an assignment expression used as part of a larger expression.
 For example, you can assign and test a value in the same expression with code
 like this:
(a = b) == 0
If you do this, be sure you are clear on the difference between the = and ==
 operators! Note that = has very low
 precedence and parentheses are usually necessary when the value of an assignment
 is to be used in a larger expression.
The assignment operator has right-to-left associativity, which means that when
 multiple assignment operators appear
 in an expression, they are evaluated from right to left. Thus, you can write
 code like this to assign a single value to multiple variables:
i = j = k = 0; // Initialize 3 variables to 0
Assignment with Operation

Besides the normal = assignment
 operator, JavaScript supports a number of other assignment operators that
 provide shortcuts by combining assignment with some other operation. For
 example, the += operator performs
 addition and assignment. The following expression:
total += sales_tax
is equivalent to this one:
total = total + sales_tax
As you might expect, the += operator
 works for numbers or strings. For numeric operands, it performs addition and
 assignment; for string operands, it performs concatenation and
 assignment.
Similar operators include -=, *=, &=, and so on. Table 4-2
 lists them all.
Table 4-2. Assignment operators
	Operator	Example	Equivalent
	
 +=
 	
 a += b
 	
 a = a + b

	
 -=
 	
 a -= b
 	
 a = a - b

	
 *=
 	
 a *= b
 	
 a = a * b

	
 /=
 	
 a /= b
 	
 a = a / b

	
 %=
 	
 a %= b
 	
 a = a % b

	
 <<=
 	
 a <<= b
 	
 a = a << b

	
 >>=
 	
 a >>= b
 	
 a = a >> b

	
 >>>=
 	
 a >>>=
 b
 	
 a = a >>>
 b

	
 &=
 	
 a &= b
 	
 a = a & b

	
 |=
 	
 a |= b
 	
 a = a | b

	
 ^=
 	
 a ^= b
 	
 a = a ^ b

In most cases, the expression:
a op= b
where op is an operator, is equivalent to the
 expression:
a = a op b
In the first line, the expression a is
 evaluated once. In the second it is evaluated twice. The two cases will
 differ only if a includes side effects
 such as a function call or an increment operator. The following two
 assignments, for example, are not the same:
data[i++] *= 2;
data[i++] = data[i++] * 2;

Evaluation Expressions

Like many interpreted languages, JavaScript has the ability to interpret
 strings of JavaScript source code, evaluating them to produce a value.
 JavaScript does this with the global function eval():
eval("3+2") // => 5
Dynamic evaluation of strings of source code is a powerful language feature
 that is almost never necessary in practice. If you find yourself using eval(), you should think carefully about whether
 you really need to use it.
The subsections below explain the basic use of eval() and then explain two restricted versions of it that have
 less impact on the optimizer.
Is eval() a Function or an Operator?
eval() is a function, but it is
 included in this chapter on expressions because it really should have been
 an operator. The earliest versions of the language defined an eval() function, and ever since then language
 designers and interpreter writers have been placing restrictions on it that
 make it more and more operator-like. Modern JavaScript interpreters perform
 a lot of code analysis and optimization. The problem with eval() is that the code it evaluates is, in
 general, unanalyzable. Generally speaking, if a function calls eval(), the interpreter cannot optimize that
 function. The problem with defining eval() as a function is that it can be given other
 names:
var f = eval;
var g = f;
If this is allowed, then the interpreter can’t safely optimize any
 function that calls g(). This issue could
 have been avoided if eval was an operator
 (and a reserved word). We’ll learn below (in Global eval()
 and Strict eval()) about restrictions placed on eval() to make it more operator-like.

eval()

eval() expects one argument. If you
 pass any value other than a string, it simply returns that value. If you
 pass a string, it attempts to parse the string as JavaScript code, throwing
 a SyntaxError if it fails. If it successfully parses the string, then it
 evaluates the code and returns the value of the last expression or statement
 in the string or undefined if the last
 expression or statement had no value. If the string throws an exception, the
 eval() propagates that
 expression.
The key thing about eval() (when
 invoked like this) is that it uses the variable environment of the code that
 calls it. That is, it looks up the values of variables and defines new
 variables and functions in the same way that local code does. If a function
 defines a local variable x and then calls
 eval("x"), it will obtain the value
 of the local variable. If it calls eval("x=1"), it changes the value of the local variable. And
 if the function calls eval("var y = 3;"),
 it has declared a new local variable y.
 Similarly a function can declare a local function with code like
 this:
eval("function f() { return x+1; }");
If you call eval() from top-level code,
 it operates on global variables and global functions, of course.
Note that the string of code you pass to eval() must make syntactic sense on its own—you cannot use it to paste code
 fragments into a function. It makes no sense to write eval("return;"), for example, because return is only legal within functions, and the
 fact that the evaluated string uses the same variable environment as the
 calling function does not make it part of that function. If your string
 would make sense as a standalone script (even a very short one like x=0), it is legal to pass to eval(). Otherwise eval() will throw a SyntaxError.

Global eval()

It is the ability of eval() to change
 local variables that is so problematic to JavaScript optimizers. As a
 workaround, however, interpreters simply do less optimization on any
 function that calls eval(). But what
 should a JavaScript interpreter do, however, if a script defines an alias
 for eval() and then calls that function
 by another name? In order to simplify the job of JavaScript implementors,
 the ECMAScript 3 standard declared that interpreters did not have to allow
 this. If the eval() function was invoked
 by any name other than “eval”, it was allowed to throw an
 EvalError.
In practice, most implementors did something else. When invoked by any
 other name, eval() would evaluate the
 string as if it were top-level global code. The evaluated code might define
 new global variables or global functions, and it might set global variables,
 but it could not use or modify any variables local to the calling function,
 and would not, therefore, interfere with local optimizations.
ECMAScript 5 deprecates EvalError and standardizes the de facto behavior
 of eval(). A “direct eval” is a call to
 the eval() function with an expression
 that uses the exact, unqualified name “eval” (which is beginning to feel
 like a reserved word). Direct calls to eval() use the variable environment of the calling context.
 Any other call—an indirect call—uses
 the global object as its variable environment and cannot read, write, or
 define local variables or functions. The following code demonstrates:
var geval = eval; // Using another name does a global eval
var x = "global", y = "global"; // Two global variables
function f() { // This function does a local eval
 var x = "local"; // Define a local variable
 eval("x += 'changed';"); // Direct eval sets local variable
 return x; // Return changed local variable
}
function g() { // This function does a global eval
 var y = "local"; // A local variable
 geval("y += 'changed';"); // Indirect eval sets global variable
 return y; // Return unchanged local variable
}
console.log(f(), x); // Local variable changed: prints "localchanged global":
console.log(g(), y); // Global variable changed: prints "local globalchanged":
Notice that the ability to do a global eval is not just an accommodation
 to the needs of the optimizer, it is actually a tremendously useful feature:
 it allows you to execute strings of code as if they were independent,
 top-level scripts. As noted at the beginning of this section, it is rare to
 truly need to evaluate a string of code. But if you do find it necessary,
 you are more likely to want to do a global eval than a local eval.
Before IE9, IE differs from other browsers: it does not do a global eval
 when eval() is invoked by a different
 name. (It doesn’t throw an EvalError either: it simply does a local eval.)
 But IE does define a global function named execScript() that executes its string argument as if it were
 a top-level script. (Unlike eval(),
 however, execScript() always returns
 null.)

Strict eval()

ECMAScript 5 strict mode (see “use strict”) imposes
 further restrictions on the behavior of the eval() function and even on the use of the identifier “eval”.
 When eval() is called from strict mode
 code, or when the string of code to be evaluated itself begins with a “use
 strict” directive, then eval() does a
 local eval with a private variable environment. This means that in strict
 mode, evaluated code can query and set local variables, but it cannot define
 new variables or functions in the local scope.
Furthermore, strict mode makes eval()
 even more operator-like by effectively making “eval” into a reserved word.
 You are not allowed to overwrite the eval() function with a new value. And you are not allowed to
 declare a variable, function, function parameter, or catch block parameter
 with the name “eval”.

Miscellaneous Operators

JavaScript supports a number of other miscellaneous operators, described in
 the following sections.
The Conditional Operator (?:)

The conditional operator is the only ternary operator (three operands) in
 JavaScript and is sometimes actually called the ternary operator. This
 operator is sometimes written ?:,
 although it does not appear quite that way in code. Because this operator
 has three operands, the first goes before the ?, the second goes between the ? and the :, and the third
 goes after the :. It is used like
 this:
x > 0 ? x : -x // The absolute value of x
The operands of the conditional operator may be of any type. The first
 operand is evaluated and interpreted as a boolean. If the value of the first
 operand is truthy, then the second operand is evaluated, and its value is
 returned. Otherwise, if the first operand is falsy, then the third operand
 is evaluated and its value is returned. Only one of the second and third
 operands is evaluated, never both.
While you can achieve similar results using the if statement (if), the ?: operator often provides a handy shortcut.
 Here is a typical usage, which checks to be sure that a variable is defined
 (and has a meaningful, truthy value) and uses it if so or provides a default
 value if not:
greeting = "hello " + (username ? username : "there");
This is equivalent to, but more compact than, the following if statement:
greeting = "hello ";
if (username)
 greeting += username;
else
 greeting += "there";

The typeof Operator

typeof is a unary operator that is
 placed before its single operand, which can be of any type. Its value is a
 string that specifies the type of the operand. The following table specifies
 the value of the typeof operator for any
 JavaScript value:
	
 x
 	
 typeof x

	
 undefined
 	
 "undefined"

	
 null
 	
 "object"

	true or false	
 "boolean"

	any number or NaN	
 "number"

	any string	
 "string"

	any function	
 "function"

	any nonfunction native object	
 "object"

	any host object	
 An implementation-defined string, but not
 “undefined”, “boolean”, “number”, or “string”.

You might use the typeof operator in an
 expression like this:
(typeof value == "string") ? "'" + value + "'" : value
The typeof operator is also useful when
 used with the switch statement (switch). Note that you can place parentheses around the
 operand to typeof, which makes typeof look like the name of a function rather
 than an operator keyword:
typeof(i)
Note that typeof returns “object” if
 the operand value is null. If you want to
 distinguish null from objects, you’ll
 have to explicitly test for this special-case value. typeof may return a string other than “object”
 for host objects. In practice, however, most host objects in client-side
 JavaScript have a type of “object”.
Because typeof evaluates to “object”
 for all object and array values other than functions, it is useful only to
 distinguish objects from other, primitive types. In order to distinguish one
 class of object from another, you must use other techniques, such as the
 instanceof
 operator (see The instanceof Operator), the class
 attribute (see The class Attribute), or the constructor property (see The prototype Attribute and The constructor Property).
Although functions in JavaScript are a kind of object, the typeof operator considers functions to be
 sufficiently different that they have their own return value. JavaScript
 makes a subtle distinction between functions and “callable objects.” All
 functions are callable, but it is possible to have a callable object—that
 can be invoked just like a function—that is not a true function. The
 ECMAScript 3 spec says that the typeof
 operator returns “function” for all native object that are callable. The
 ECMAScript 5 specification extends this to require that typeof return “function” for all callable
 objects, whether native objects or host objects. Most browser vendors use
 native JavaScript function objects for the methods of their host objects.
 Microsoft, however, has always used non-native callable objects for their
 client-side methods, and before IE 9 the typeof operator returns “object” for them, even though they
 behave like functions. In IE9 these client-side methods are now true native
 function objects. See Callable Objects for more on the
 distinction between true functions and callable objects.

The delete Operator

delete is a unary operator that
 attempts to delete the object property or array element specified as its
 operand.[3] Like the assignment, increment, and decrement operators,
 delete is typically used for its
 property deletion side effect, and not for the value it returns. Some
 examples:
var o = { x: 1, y: 2}; // Start with an object
delete o.x; // Delete one of its properties
"x" in o // => false: the property does not exist anymore

var a = [1,2,3]; // Start with an array
delete a[2]; // Delete the last element of the array
a.length // => 2: array only has two elements now
Note that a deleted property or array element is not merely set to the
 undefined value. When a property is
 deleted, the property ceases to exist. Attempting to read a nonexistent
 property returns undefined, but you can
 test for the actual existence of a property with the in operator (The in Operator).
delete expects its operand to be an
 lvalue. If it is not an lvalue, the operator takes no action and returns
 true. Otherwise, delete attempts to delete the specified
 lvalue. delete returns true if it successfully deletes the specified
 lvalue. Not all properties can be deleted, however: some built-in core and
 client-side properties are immune from deletion, and user-defined variables
 declared with the var statement cannot be
 deleted. Functions defined with the function statement and declared function parameters cannot be
 deleted either.
In ECMAScript 5 strict mode, delete
 raises a SyntaxError if its operand is an unqualified identifier such as a
 variable, function, or function parameter: it only works when the operand is
 a property access expression (Property Access Expressions). Strict mode
 also specifies that delete raises a
 TypeError if asked to delete any nonconfigurable property (see Property Attributes). Outside of strict mode, no exception
 occurs in these cases and delete simply
 returns false to indicate that the
 operand could not be deleted.
Here are some example uses of the delete operator:
var o = {x:1, y:2}; // Define a variable; initialize it to an object
delete o.x; // Delete one of the object properties; returns true
typeof o.x; // Property does not exist; returns "undefined"
delete o.x; // Delete a nonexistent property; returns true
delete o; // Can't delete a declared variable; returns false.
 // Would raise an exception in strict mode.
delete 1; // Argument is not an lvalue: returns true
this.x = 1; // Define a property of the a global object without var
delete x; // Try to delete it: returns true in non-strict mode
 // Exception in strict mode. Use 'delete this.x' instead
x; // Runtime error: x is not defined
We’ll see the delete operator again in
 Deleting Properties.

The void Operator

void is a unary operator that appears
 before its single operand, which may be of any type. This operator is
 unusual and infrequently used: it evaluates its operand, then discards the
 value and returns undefined. Since the
 operand value is discarded, using the void operator makes sense only if the operand has side
 effects.
The most common use for this operator is in a client-side javascript: URL, where it allows you to
 evaluate an expression for its side effects without the browser displaying
 the value of the evaluated expression. For example, you might use the
 void operator in an HTML <a> tag as follows:
Open New Window
This HTML could be more cleanly written using an onclick event handler rather than a javascript: URL, of course, and the void operator would not be necessary in that case.

The Comma Operator (,)

The comma operator is a binary operator whose operands may be of any type.
 It evaluates its left operand, evaluates its right operand, and then returns
 the value of the right operand. Thus, the following line:
i=0, j=1, k=2;
evaluates to 2 and is basically equivalent to:
i = 0; j = 1; k = 2;
The left-hand expression is always evaluated, but its value is discarded,
 which means that it only makes sense to use the comma operator when the
 left-hand expression has side effects. The only situation in which the comma
 operator is commonly used is with a for
 loop (for) that has multiple loop variables:
// The first comma below is part of the syntax of the var statement
// The second comma is the comma operator: it lets us squeeze 2
// expressions (i++ and j--) into a statement (the for loop) that expects 1.
for(var i=0,j=10; i < j; i++,j--)
 console.log(i+j);

[3] If you are a C++ programmer, note that the delete keyword in JavaScript is
 nothing like the delete keyword
 in C++. In JavaScript, memory deallocation is handled automatically
 by garbage collection, and you never have to worry about explicitly
 freeing up memory. Thus, there is no need for a C++-style delete to delete entire
 objects.

Chapter 5. Statements

Chapter 4 described expressions as JavaScript phrases. By that
 analogy, statements are JavaScript sentences or commands. Just
 as English sentences are terminated and separated from each other with periods, JavaScript statements are
 terminated with semicolons (Optional Semicolons). Expressions are
 evaluated to produce a value, but statements are
 executed to make something happen.
One way to “make something happen” is to evaluate an expression that has side
 effects. Expressions with side effects, such as assignments and function
 invocations, can stand alone as statements, and when used this way they are known as
 expression statements. A similar category of statements are
 the declaration statements that declare new variables and
 define new functions.
JavaScript programs are nothing more than a sequence of statements to execute. By
 default, the JavaScript interpreter executes these statements one after another in
 the order they are written. Another way to “make something happen” is to alter this
 default order of execution, and JavaScript has a number of statements or
 control structures that do just this:
	Conditionals are statements like if and switch that make the JavaScript interpreter execute or skip
 other statements depending on the value of an expression.

	Loops are statements like while and for that execute
 other statements repetitively.

	Jumps are statements like break, return, and
 throw that cause the interpreter to
 jump to another part of the program.

The sections that follow describe the various statements in JavaScript and explain
 their syntax. Table 5-1, at the end of the chapter,
 summarizes the syntax. A JavaScript program is simply a sequence of statements,
 separated from one another with semicolons, so once you are familiar with the
 statements of JavaScript, you can begin writing JavaScript programs.
Expression Statements

The simplest kinds of statements in JavaScript are expressions that have side
 effects. (But see “use strict” for an important expression
 statement without side effects.) This sort of statement was shown in Chapter 4. Assignment statements are one major category of
 expression statements. For example:
greeting = "Hello " + name;
i *= 3;
The increment and decrement operators, ++
 and --, are related to assignment statements.
 These have the side effect of changing a variable value, just as if an
 assignment had been performed:
counter++;
The delete operator has the important side
 effect of deleting an object property. Thus, it is almost always used as a
 statement, rather than as part of a larger expression:
delete o.x;
Function calls are another major category of expression statements. For
 example:
alert(greeting);
window.close();
These client-side function calls are expressions, but they have side effects
 that affect the web browser and are used here as statements. If a function does
 not have any side effects, there is no sense in calling it, unless it is part of
 a larger expression or an assignment statement. For example, you wouldn’t just
 compute a cosine and discard the
 result:
Math.cos(x);
But you might well compute the value and assign it to a variable for future
 use:
cx = Math.cos(x);
Note that each line of code in each of these examples is terminated with a
 semicolon.

Compound and Empty Statements

Just as the comma operator (The Comma Operator (,)) combines multiple
 expressions into a single expression, a
 statement block combines multiple statements into a
 single compound statement. A statement block is simply a
 sequence of statements enclosed within curly braces. Thus, the following lines
 act as a single statement and can be used anywhere that JavaScript expects a
 single statement:
{
 x = Math.PI;
 cx = Math.cos(x);
 console.log("cos(π) = " + cx);
}
There are a few things to note about this statement block. First, it does
 not end with a semicolon. The primitive statements
 within the block end in semicolons, but the block itself does not. Second, the
 lines inside the block are indented relative to the curly braces that enclose
 them. This is optional, but it makes the code easier to read and understand.
 Finally, recall that JavaScript does not have block scope and variables declared
 within a statement block are not private to the block (see Function Scope and Hoisting for details).
Combining statements into larger statement blocks is extremely common in
 JavaScript programming. Just as expressions often contain subexpressions, many
 JavaScript statements contain substatements. Formally, JavaScript syntax usually
 allows a single substatement. For example, the while loop syntax includes a single statement that serves as the
 body of the loop. Using a statement block, you can place any number of
 statements within this single allowed substatement.
A compound statement allows you to use multiple statements where JavaScript
 syntax expects a single statement. The empty statement is
 the opposite: it allows you to include no statements where one is expected. The
 empty statement looks like this:
;
The JavaScript interpreter takes no action when it executes an empty
 statement. The empty statement is occasionally useful when you want to create a
 loop that has an empty body. Consider the following for loop (for loops will be
 covered in for):
// Initialize an array a
for(i = 0; i < a.length; a[i++] = 0) ;
In this loop, all the work is done by the expression a[i++] = 0, and no loop body is necessary. JavaScript syntax
 requires a statement as a loop body, however, so an empty statement—just a bare
 semicolon—is used.
Note that the accidental inclusion of a semicolon after the right parenthesis
 of a for loop, while loop, or if statement
 can cause frustrating bugs that are difficult to detect. For example, the
 following code probably does not do what the author intended:
if ((a == 0) || (b == 0)); // Oops! This line does nothing...
 o = null; // and this line is always executed.
When you intentionally use the empty statement, it is a good idea to comment
 your code in a way that makes it clear that you are doing it on purpose. For
 example:
for(i = 0; i < a.length; a[i++] = 0) /* empty */ ;

Declaration Statements

The var and function are declaration statements—they
 declare or define variables and functions. These statements define identifiers
 (variable and function names) that can be used elsewhere in your program and
 assign values to those identifiers. Declaration statements don’t do much
 themselves, but by creating variables and functions they, in an important sense,
 define the meaning of the other statements in your program.
The subsections that follow explain the var
 statement and the function statement, but do
 not cover variables and functions comprehensively. See Variable Declaration and Variable Scope for more
 on variables. And see Chapter 8 for complete details on
 functions.
var

The var statement declares a variable
 or variables. Here’s the syntax:
var name_1 [= value_1] [,..., name_n [= value_n]]
The var keyword is followed by a
 comma-separated list of variables to declare; each variable in the list may
 optionally have an initializer expression that specifies its initial value.
 For example:
var i; // One simple variable
var j = 0; // One var, one value
var p, q; // Two variables
var greeting = "hello" + name; // A complex initializer
var x = 2.34, y = Math.cos(0.75), r, theta; // Many variables
var x = 2, y = x*x; // Second var uses the first
var x = 2, // Multiple variables...
 f = function(x) { return x*x }, // each on its own line
 y = f(x);
If a var statement appears within the
 body of a function, it defines local variables, scoped to that function.
 When var is used in top-level code, it
 declares global variables, visible throughout the JavaScript program. As
 noted in Variables As Properties, global variables are properties of
 the global object. Unlike other global properties, however, properties
 created with var cannot be
 deleted.
If no initializer is specified for a variable with the var statement, the variable’s initial value is
 undefined. As described in Function Scope and Hoisting, variables are defined throughout the script
 or function in which they are declared—their declaration is “hoisted” up to
 the start of the script or function. Initialization, however, occurs at the
 location of the var statement, and the
 value of the variable is undefined before
 that point in the code.
Note that the var statement can also
 appear as part of the for and for/in loops. (These variables are hoisted,
 just like variables declared outside of a loop.) Here are examples repeated
 from Variable Declaration:
for(var i = 0; i < 10; i++) console.log(i);
for(var i = 0, j=10; i < 10; i++,j--) console.log(i*j);
for(var i in o) console.log(i);
Note that it is harmless to declare the same variable multiple
 times.

function

The function keyword is used to define
 functions. We saw it in function definition expressions in Function Definition Expressions. It can also be used in statement form.
 Consider the following two functions:
var f = function(x) { return x+1; } // Expression assigned to a variable
function f(x) { return x+1; } // Statement includes variable name
A function declaration statement has the following syntax:
function funcname([arg1 [, arg2 [..., argn]]]) {
 statements
}
funcname is an identifier that names the
 function being declared. The function name is followed by a comma-separated
 list of parameter names in parentheses. These identifiers can be used within
 the body of the function to refer to the argument values passed when the
 function is invoked.
The body of the function is composed of any number of JavaScript
 statements, contained within curly braces. These statements are not executed
 when the function is defined. Instead, they are associated with the new
 function object for execution when the function is invoked. Note that the
 curly braces are a required part of the function statement. Unlike statement blocks used with
 while loops and other statements, a
 function body requires curly braces, even if the body consists of only a
 single statement.
Here are some more examples of function declarations:
function hypotenuse(x, y) {
 return Math.sqrt(x*x + y*y); // return is documented in the next section
}

function factorial(n) { // A recursive function
 if (n <= 1) return 1;
 return n * factorial(n - 1);
}
Function declaration statements may appear in top-level JavaScript code,
 or they may be nested within other functions. When nested, however, function
 declarations may only appear at the top level of the function they are
 nested within. That is, function definitions may not appear within if statements, while loops, or any other statements. Because of this
 restriction on where function declarations may appear, the ECMAScript
 specification does not categorize function declarations as true statements.
 Some JavaScript implementations do allow function declarations to appear
 anywhere a statement can appear, but different implementations handle the
 details differently and placing function declarations within other
 statements is nonportable.
Function declaration statements differ from function definition
 expressions in that they include a function name. Both forms create a new
 function object, but the function declaration statement also declares the
 function name as a variable and assigns the function object to it. Like
 variables declared with var, functions
 defined with function definition statements are implicitly “hoisted” to the
 top of the containing script or function, so that they are visible
 throughout the script or function. With var, only the variable declaration is hoisted—the variable
 initialization code remains where you placed it. With function declaration
 statements, however, both the function name and the function body are
 hoisted: all functions in a script or all nested functions in a function are
 declared before any other code is run. This means that you can invoke a
 JavaScript function before you declare it.
Like the var statement, function
 declaration statements create variables that cannot be deleted. These
 variables are not read-only, however, and their value can be
 overwritten.

Conditionals

Conditional statements execute or skip other statements depending on the value
 of a specified expression. These statements are the decision points of your
 code, and they are also sometimes known as “branches.” If you imagine a
 JavaScript interpreter following a path through your code, the conditional
 statements are the places where the code branches into two or more paths and the
 interpreter must choose which path to follow.
The subsections below explain JavaScript’s basic conditional, the if/else statement, and also cover switch, a more complicated multiway branch
 statement.
if

The if statement is the fundamental
 control statement that allows JavaScript to make decisions, or, more
 precisely, to execute statements conditionally. This statement has two
 forms. The first is:
if (expression)
 statement
In this form, expression is evaluated. If the
 resulting value is truthy, statement is executed.
 If expression is falsy,
 statement is not executed. (See Boolean Values for a definition of truthy and falsy values.) For
 example:
if (username == null) // If username is null or undefined,
 username = "John Doe"; // define it
Or similarly:
// If username is null, undefined, false, 0, "", or NaN, give it a new value
if (!username) username = "John Doe";
Note that the parentheses around the expression
 are a required part of the syntax for the if statement.
JavaScript syntax requires a single statement after the if keyword and parenthesized expression, but
 you can use a statement block to combine multiple statements into one. So
 the if statement might also look like
 this:
if (!address) {
 address = "";
 message = "Please specify a mailing address.";
}
The second form of the if statement
 introduces an else clause that is
 executed when expression is false. Its syntax is:
if (expression)
 statement1
else
 statement2
This form of the statement executes statement1
 if expression is truthy and executes statement2 if
 expression is falsy. For example:
if (n == 1)
 console.log("You have 1 new message.");
else
 console.log("You have " + n + " new messages.");
When you have nested if statements with
 else clauses, some caution is
 required to ensure that the else clause
 goes with the appropriate if statement.
 Consider the following lines:
i = j = 1;
k = 2;
if (i == j)
 if (j == k)
 console.log("i equals k");
else
 console.log("i doesn't equal j"); // WRONG!!
In this example, the inner if statement
 forms the single statement allowed by the syntax of the outer if statement. Unfortunately, it is not clear
 (except from the hint given by the indentation) which if the else
 goes with. And in this example, the indentation is wrong, because a
 JavaScript interpreter actually interprets the previous example as:
if (i == j) {
 if (j == k)
 console.log("i equals k");
 else
 console.log("i doesn't equal j"); // OOPS!
}
The rule in JavaScript (as in most programming languages) is that by
 default an else clause is part of the
 nearest if statement. To make this
 example less ambiguous and easier to read, understand, maintain, and debug,
 you should use curly braces:
if (i == j) {
 if (j == k) {
 console.log("i equals k");
 }
}
else { // What a difference the location of a curly brace makes!
 console.log("i doesn't equal j");
}
Although it is not the style used in this book, many programmers make a
 habit of enclosing the bodies of if and
 else statements (as well as other
 compound statements, such as while loops)
 within curly braces, even when the body consists of only a single statement.
 Doing so consistently can prevent the sort of problem just shown.

else if

The if/else statement evaluates an
 expression and executes one of two pieces of code, depending on the outcome.
 But what about when you need to execute one of many pieces of code? One way
 to do this is with an else if statement.
 else if is not really a JavaScript
 statement, but simply a frequently used programming idiom that results when
 repeated if/else statements are
 used:
if (n == 1) {
 // Execute code block #1
}
else if (n == 2) {
 // Execute code block #2
}
else if (n == 3) {
 // Execute code block #3
}
else {
 // If all else fails, execute block #4
}
There is nothing special about this code. It is just a series of if statements, where each following if is part of the else clause of the previous statement. Using the else if idiom is preferable to, and more
 legible than, writing these statements out in their syntactically
 equivalent, fully nested form:
if (n == 1) {
 // Execute code block #1
}
else {
 if (n == 2) {
 // Execute code block #2
 }
 else {
 if (n == 3) {
 // Execute code block #3
 }
 else {
 // If all else fails, execute block #4
 }
 }
}

switch

An if statement causes a branch in the
 flow of a program’s execution, and you can use the else if idiom to perform a multiway branch. This is not the
 best solution, however, when all of the branches depend on the value of the
 same expression. In this case, it is wasteful to repeatedly evaluate that
 expression in multiple if
 statements.
The switch statement handles exactly
 this situation. The switch keyword is
 followed by an expression in parentheses and a block of code in curly
 braces:
switch(expression) {
 statements
}
However, the full syntax of a switch
 statement is more complex than this. Various locations in the block of code
 are labeled with the case keyword
 followed by an expression and a colon. case is like a labeled statement, except that instead of
 giving the labeled statement a name, it associates an expression with the
 statement. When a switch executes, it
 computes the value of expression and then looks
 for a case label whose expression
 evaluates to the same value (where sameness is determined by the === operator). If it finds one, it starts
 executing the block of code at the statement labeled by the case. If it does not find a case with a matching value, it looks for a
 statement labeled default:. If there is
 no default: label, the switch statement skips the block of code
 altogether.
switch is a confusing statement to
 explain; its operation becomes much clearer with an example. The following
 switch statement is equivalent to the
 repeated if/else statements shown in the
 previous section:
switch(n) {
 case 1: // Start here if n == 1
 // Execute code block #1.
 break;
 // Stop here
 case 2: // Start here if n == 2
 // Execute code block #2.
 break; // Stop here
 case 3: // Start here if n == 3
 // Execute code block #3.
 break; // Stop here
 default: // If all else fails...
 // Execute code block #4.
 break; // stop here
}
Note the break keyword used at the end
 of each case in the code above. The
 break statement, described later in
 this chapter, causes the interpreter to jump to the end (or “break out”) of
 the switch statement and continue with
 the statement that follows it. The case
 clauses in a switch statement specify
 only the starting point of the desired code; they do
 not specify any ending point. In the absence of break statements, a switch
 statement begins executing its block of code at the case label that matches the value of its
 expression and continues executing statements
 until it reaches the end of the block. On rare occasions, it is useful to
 write code like this that “falls through” from one case label to the next, but 99 percent of the time you should
 be careful to end every case with a
 break statement. (When using switch inside a function, however, you may use
 a return statement instead of a break statement. Both serve to terminate the
 switch statement and prevent
 execution from falling through to the next case.)
Here is a more realistic example of the switch statement; it converts a value to a string in a way
 that depends on the type of the value:
function convert(x) {
 switch(typeof x) {
 case 'number': // Convert the number to a hexadecimal integer
 return x.toString(16);
 case 'string': // Return the string enclosed in quotes
 return '"' + x + '"';
 default: // Convert any other type in the usual way
 return String(x);
 }
}
Note that in the two previous examples, the case keywords are followed by number and string literals,
 respectively. This is how the switch
 statement is most often used in practice, but note that the ECMAScript
 standard allows each case to be followed
 by an arbitrary expression.
The switch statement first evaluates
 the expression that follows the switch
 keyword and then evaluates the case
 expressions, in the order in which they appear, until it finds a value that matches.[4] The matching case is determined using the === identity operator, not the == equality operator, so the expressions must
 match without any type conversion.
Because not all of the case expressions
 are evaluated each time the switch
 statement is executed, you should avoid using case expressions that contain side effects such as function
 calls or assignments. The safest course is simply to limit your case expressions to constant
 expressions.
As explained earlier, if none of the case expressions match the switch expression, the switch statement begins executing its body at the statement
 labeled default:. If there is no default: label, the switch statement skips its body altogether. Note that in the
 examples above, the default: label
 appears at the end of the switch body,
 following all the case labels. This is a
 logical and common place for it, but it can actually appear anywhere within
 the body of the statement.

[4] The fact that the case
 expressions are evaluated at run-time makes the JavaScript switch statement much different from
 (and less efficient than) the switch statement of C, C++, and Java. In those
 languages, the case expressions
 must be compile-time constants of the same type, and switch statements can often compile
 down to highly efficient jump tables.

Loops

To understand conditional statements, we imagined the JavaScript interpreter
 following a branching path through your source code. The looping
 statements are those that bend that path back upon itself to
 repeat portions of your code. JavaScript has four looping statements: while, do/while, for, and for/in. The subsections below explain each in
 turn. One common use for loops is to iterate over the elements of an array.
 Iterating Arrays discusses this kind of loop in detail and
 covers special looping methods defined by the Array class.
while

Just as the if statement is
 JavaScript’s basic conditional, the while
 statement is JavaScript’s basic loop. It has the following syntax:
while (expression)
 statement
To execute a while statement, the
 interpreter first evaluates expression. If the
 value of the expression is falsy, then the interpreter skips over the
 statement that serves as the loop body and
 moves on to the next statement in the program. If, on the other hand, the
 expression is truthy, the interpreter
 executes the statement and repeats, jumping back
 to the top of the loop and evaluating expression
 again. Another way to say this is that the interpreter executes
 statement repeatedly
 while the expression is
 truthy. Note that you can create an infinite loop with the syntax while(true).
Usually, you do not want JavaScript to perform exactly the same operation
 over and over again. In almost every loop, one or more variables change with
 each iteration of the loop. Since the variables change,
 the actions performed by executing statement may
 differ each time through the loop. Furthermore, if the changing variable or
 variables are involved in expression, the value
 of the expression may be different each time through the loop. This is
 important; otherwise, an expression that starts off truthy would never
 change, and the loop would never end! Here is an example of a while loop that prints the numbers from 0 to
 9:
var count = 0;
while (count < 10) {
 console.log(count);
 count++;
}
As you can see, the variable count
 starts off at 0 and is incremented each time the body of the loop runs. Once
 the loop has executed 10 times, the expression becomes false (i.e., the variable count is no longer less than 10), the while statement finishes, and the interpreter
 can move on to the next statement in the program. Many loops have a counter
 variable like count. The variable names
 i, j, and k are commonly used
 as loop counters, though you should use more descriptive names if it makes
 your code easier to understand.

do/while

The do/while loop is like a while loop, except that the loop expression is
 tested at the bottom of the loop rather than at the top. This means that the
 body of the loop is always executed at least once. The syntax is:
do
 statement
 while (expression);
The do/while loop is less commonly used
 than its while cousin—in practice, it is
 somewhat uncommon to be certain that you want a loop to execute at least
 once. Here’s an example of a do/while
 loop:
function printArray(a) {
 var len = a.length, i = 0;
 if (len == 0)
 console.log("Empty Array");
 else {
 do {
 console.log(a[i]);
 } while (++i < len);
 }
}
There are a couple of syntactic differences between the do/while loop and the ordinary while loop. First, the do loop requires both the do keyword (to mark the beginning of the loop)
 and the while keyword (to mark the end
 and introduce the loop condition). Also, the do loop must always be terminated with a semicolon. The
 while loop doesn’t need a semicolon
 if the loop body is enclosed in curly braces.

for

The for statement provides a looping
 construct that is often more convenient than the while statement. The for
 statement simplifies loops that follow a common pattern. Most loops have a
 counter variable of some kind. This variable is initialized before the loop
 starts and is tested before each iteration of the loop. Finally, the counter
 variable is incremented or otherwise updated at the end of the loop body,
 just before the variable is tested again. In this kind of loop, the
 initialization, the test, and the update are the three crucial manipulations
 of a loop variable. The for statement
 encodes each of these three manipulations as an expression and makes those
 expressions an explicit part of the
 loop syntax:
for(initialize ; test ; increment)
 statement
initialize, test,
 and increment are three expressions (separated by
 semicolons) that are responsible for initializing, testing, and incrementing
 the loop variable. Putting them all in the first line of the loop makes it
 easy to understand what a for loop is
 doing and prevents mistakes such as forgetting to initialize or increment
 the loop variable.
The simplest way to explain how a for
 loop works is to show the equivalent while loop[5]:
initialize;
 while(test) {
 statement
 increment;
 }
In other words, the initialize expression is
 evaluated once, before the loop begins. To be useful, this expression must
 have side effects (usually an assignment). JavaScript also allows
 initialize to be a var variable declaration statement so that you can declare
 and initialize a loop counter at the same time. The
 test expression is evaluated before each
 iteration and controls whether the body of the loop is executed. If
 test evaluates to a truthy value, the
 statement that is the body of the loop is
 executed. Finally, the increment expression is
 evaluated. Again, this must be an expression with side effects in order to
 be useful. Generally, either it is an assignment expression, or it uses the
 ++ or -- operators.
We can print the numbers from 0 to 9 with a for loop like the following. Contrast it with the equivalent
 while loop shown in the previous
 section:
for(var count = 0; count < 10; count++)
 console.log(count);
Loops can become a lot more complex than this simple example, of course,
 and sometimes multiple variables change with each iteration of the loop.
 This situation is the only place that the comma operator is commonly used in
 JavaScript; it provides a way to combine multiple initialization and
 increment expressions into a single expression suitable for use in a
 for loop:
var i,j;
for(i = 0, j = 10 ; i < 10 ; i++, j--)
 sum += i * j;
In all our loop examples so far, the loop variable has been numeric. This
 is quite common but is not necessary. The following code uses a for loop to traverse a linked list data
 structure and return the last object in the list (i.e., the first object
 that does not have a next
 property):
function tail(o) { // Return the tail of linked list o
 for(; o.next; o = o.next) /* empty */ ; // Traverse while o.next is truthy
 return o;
}
Note that the code above has no initialize
 expression. Any of the three expressions may be omitted from a for loop, but the two semicolons are required.
 If you omit the test expression, the loop repeats
 forever, and for(;;) is another way of
 writing an infinite loop, like while(true).

for/in

The for/in statement uses the for keyword, but it is a completely different
 kind of loop than the regular for loop. A
 for/in loop looks like
 this:
for (variable in object)
 statement
variable typically names a variable, but it may
 be any expression that evaluates to an lvalue (Lvalues) or
 a var statement that declares a single
 variable—it must be something suitable as the left side of an assignment
 expression. object is an expression that
 evaluates to an object. As usual, statement is
 the statement or statement block that serves as the body of the
 loop.
It is easy to use a regular for loop to
 iterate through the elements of an array:
for(var i = 0; i < a.length; i++) // Assign array indexes to variable i
 console.log(a[i]); // Print the value of each array element
The for/in loop makes it easy to do the
 same for the properties of an object:
for(var p in o) // Assign property names of o to variable p
 console.log(o[p]); // Print the value of each property
To execute a for/in statement, the
 JavaScript interpreter first evaluates the object
 expression. If it evaluates to null or
 undefined, the interpreter skips the
 loop and moves on to the next statement.[6] If the expression evaluates to a primitive value, that value is
 converted to its equivalent wrapper object (Wrapper Objects).
 Otherwise, the expression is already an object. The interpreter now executes
 the body of the loop once for each enumerable property of the object. Before
 each iteration, however, the interpreter evaluates the
 variable expression and assigns the name of
 the property (a string value) to it.
Note that the variable in the for/in loop may be an arbitrary expression, as
 long as it evaluates to something suitable for the left side of an
 assignment. This expression is evaluated each time through the loop, which
 means that it may evaluate differently each time. For example, you can use
 code like the following to copy the names of all object properties into an
 array:
var o = {x:1, y:2, z:3};
var a = [], i = 0;
for(a[i++] in o) /* empty */;
JavaScript arrays are simply a specialized kind of object and array
 indexes are object properties that can be enumerated with a for/in loop. For example, following the code
 above with this line enumerates the array indexes 0, 1, and 2:
for(i in a) console.log(i);
The for/in loop does not actually
 enumerate all properties of an object, only the
 enumerable properties (see Property Attributes). The various built-in methods defined
 by core JavaScript are not enumerable. All objects have a toString() method, for example, but the
 for/in loop does
 not enumerate this toString property. In
 addition to built-in methods, many other properties of the built-in objects
 are nonenumerable. All properties and methods defined by your code are
 enumerable, however. (But in ECMAScript 5, you can make them nonenumerable
 using techniques explained in Property Attributes.)
 User-defined inherited properties (see Inheritance) are
 also enumerated by the for/in
 loop.
If the body of a for/in loop deletes a
 property that has not yet been enumerated, that property will not be
 enumerated. If the body of the loop defines new properties on the object,
 those properties will generally not be enumerated. (Some implementations may
 enumerate inherited properties that are added after the loop begins,
 however.)
Property enumeration order

The ECMAScript specification does not specify the order in which the
 for/in loop enumerates the
 properties of an object. In practice, however, JavaScript
 implementations from all major browser vendors enumerate the properties
 of simple objects in the order in which they were defined, with older
 properties enumerated first. If an object was created as an object
 literal, its enumeration order is the same order that the properties
 appear in the literal. There are sites and libraries on the Web that
 rely on this enumeration order, and browser vendors are unlikely to
 change it.
The paragraph above specifies an interoperable property enumeration
 order for “simple” objects.
 Enumeration order becomes implementation dependent (and
 noninteroperable) if:
	The object inherits enumerable properties;

	the object has properties that are integer array
 indexes;

	you have used delete to
 delete existing properties of the object; or

	you have used Object.defineProperty() (Property Attributes) or similar methods to alter
 property attributes of the object.

Typically (but not in all implementations), inherited properties (see
 Inheritance) are enumerated after all the
 noninherited “own” properties of an object, but are also enumerated in
 the order in which they were defined. If an object inherits properties
 from more than one “prototype” (see Prototypes)—i.e.,
 if it has more than one object in its “prototype chain”—then the properties of each
 prototype object in the chain are enumerated in creation order before
 enumerating the properties of the next object. Some (but not all)
 implementations enumerate array properties in numeric order rather than
 creation order, but they revert to creation order if the array is given
 other non-numeric properties as well or if the array is sparse (i.e., if
 some array indexes are missing).

[5] When we consider the continue
 statement in continue, we’ll see that
 this while loop is not an exact
 equivalent of the for
 loop.

[6] ECMAScript 3 implementations may instead throw a TypeError in this
 case.

Jumps

Another category of JavaScript statements are jump
 statements. As the name implies, these cause the JavaScript
 interpreter to jump to a new location in the source code. The break statement makes the interpreter jump to the
 end of a loop or other statement. continue
 makes the interpreter skip the rest of the body of a loop and jump back to the
 top of a loop to begin a new iteration. JavaScript allows statements to be
 named, or labeled, and the break and continue can
 identify the target loop or other statement label.
The return statement makes the interpreter
 jump from a function invocation back to the code that invoked it and also
 supplies the value for the invocation. The throw statement raises, or “throws,” an exception and is designed
 to work with the try/catch/finally statement,
 which establishes a block of exception handling code. This is a complicated kind
 of jump statement: when an exception is thrown, the interpreter jumps to the
 nearest enclosing exception handler, which may be in the same function or up the
 call stack in an invoking function.
Details of each of these jump statements are in the sections that
 follow.
Labeled Statements

Any statement may be labeled by preceding it with an
 identifier and a colon:
identifier: statement
By labeling a statement, you give it a name that you can use to refer to
 it elsewhere in your program. You can label any statement, although it is
 only useful to label statements that have bodies, such as loops and
 conditionals. By giving a loop a name, you can use break and continue
 statements inside the body of the loop to exit the loop or to jump directly
 to the top of the loop to begin the next iteration. break and continue are the
 only JavaScript statements that use statement labels; they are covered later
 in this chapter. Here is an example of a labeled while loop and a continue
 statement that uses the label.
mainloop: while(token != null) {
 // Code omitted...
 continue mainloop; // Jump to the next iteration of the named loop
 // More code omitted...
}
The identifier you use to label a statement can
 be any legal JavaScript identifier that is not a reserved word. The
 namespace for labels is different than the namespace for variables and
 functions, so you can use the same identifier as a statement label and as a
 variable or function name. Statement labels are defined only within the
 statement to which they apply (and within its substatements, of course). A
 statement may not have the same label as a statement that contains it, but
 two statements may have the same label as long as neither one is nested
 within the other. Labeled statements may themselves be labeled. Effectively,
 this means that any statement may have multiple labels.

break

The break statement, used alone, causes
 the innermost enclosing loop or switch
 statement to exit immediately. Its syntax is simple:
break;
Because it causes a loop or switch to
 exit, this form of the break statement is
 legal only if it appears inside one of these statements.
You’ve already seen examples of the break statement within a switch statement. In loops, it is typically used to exit
 prematurely when, for whatever reason, there is no longer any need to
 complete the loop. When a loop has complex termination conditions, it is
 often easier to implement some of these conditions with break statements rather than trying to express
 them all in a single loop expression. The following code searches the
 elements of an array for a particular value. The loop terminates in the
 normal way when it reaches the end of the array; it terminates with a
 break statement if it finds what it
 is looking for in the array:
for(var i = 0; i < a.length; i++) {
 if (a[i] == target) break;
}
JavaScript also allows the break
 keyword to be followed by a statement label (just the identifier, with no
 colon):
break labelname;
When break is used with a label, it
 jumps to the end of, or terminates, the enclosing statement that has the
 specified label. It is a syntax error to use break in this form if there is no enclosing statement with
 the specified label. With this form of the break statement, the named statement need not be a loop or
 switch: break can “break out of” any enclosing statement. This
 statement can even be a statement block grouped within curly braces for the
 sole purpose of naming the block with a label.
A newline is not allowed between the break keyword and the labelname.
 This is a result of JavaScript’s automatic insertion of omitted semicolons:
 if you put a line terminator between the break keyword and the label that follows, JavaScript assumes
 you meant to use the simple, unlabeled form of the statement and treats the
 line terminator as a semicolon. (See Optional Semicolons.)
You need the labeled form of the break
 statement when you want to break out of a statement that is not the nearest
 enclosing loop or a switch. The following code demonstrates:
var matrix = getData(); // Get a 2D array of numbers from somewhere
// Now sum all the numbers in the matrix.
var sum = 0, success = false;
// Start with a labeled statement that we can break out of if errors occur
compute_sum: if (matrix) {
 for(var x = 0; x < matrix.length; x++) {
 var row = matrix[x];
 if (!row) break compute_sum;
 for(var y = 0; y < row.length; y++) {
 var cell = row[y];
 if (isNaN(cell)) break compute_sum;
 sum += cell;
 }
 }
 success = true;
}
// The break statements jump here. If we arrive here with success == false
// then there was something wrong with the matrix we were given.
// Otherwise sum contains the sum of all cells of the matrix.
Finally, note that a break statement,
 with or without a label, can not transfer control across function
 boundaries. You cannot label a function definition statement, for example,
 and then use that label inside the function.

continue

The continue statement is similar to
 the break statement. Instead of exiting a
 loop, however, continue restarts a loop
 at the next iteration. The continue
 statement’s syntax is just as simple as the break statement’s:
continue;
The continue statement can also be used
 with a label:
continue labelname;
The continue statement, in both its
 labeled and unlabeled forms, can be used only within the body of a loop.
 Using it anywhere else causes a syntax error.
When the continue statement is
 executed, the current iteration of the enclosing loop is terminated, and the
 next iteration begins. This means different things for different types of
 loops:
	In a while loop, the specified
 expression at the beginning of the
 loop is tested again, and if it’s true, the loop body is executed starting from the
 top.

	In a do/while loop, execution
 skips to the bottom of the loop, where the loop condition is tested
 again before restarting the loop at the top.

	In a for loop, the
 increment expression is evaluated,
 and the test expression is tested again
 to determine if another iteration should be done.

	In a for/in loop, the loop
 starts over with the next property name being assigned to the
 specified variable.

Note the difference in behavior of the continue statement in the while and for loops: a
 while loop returns directly to its
 condition, but a for loop first evaluates
 its increment expression and
 then returns to its condition. Earlier we considered the behavior of the
 for loop in terms of an “equivalent”
 while loop. Because the continue statement behaves differently for
 these two loops, however, it is not actually possible to perfectly simulate
 a for loop with a while loop alone.
The following example shows an unlabeled continue statement being used to skip the rest of the current
 iteration of a loop when an error occurs:
for(i = 0; i < data.length; i++) {
 if (!data[i]) continue; // Can't proceed with undefined data
 total += data[i];
}
Like the break statement, the continue statement can be used in its labeled
 form within nested loops, when the loop to be restarted is not the
 immediately enclosing loop. Also, like the break statement, line breaks are not allowed between the
 continue statement and its
 labelname.

return

Recall that function invocations are expressions and that all expressions
 have values. A return statement within a
 function specifies the value of invocations of that function. Here’s the
 syntax of the return statement:
return expression;
A return statement may appear only
 within the body of a function. It is a syntax error for it to appear
 anywhere else. When the return statement
 is executed, the function that contains it returns the value of
 expression to its caller. For example:
function square(x) { return x*x; } // A function that has a return statement
square(2) // This invocation evaluates to 4
With no return statement, a function
 invocation simply executes each of the statements in the function body in
 turn until it reaches the end of the function, and then returns to its
 caller. In this case, the invocation expression evaluates to undefined. The return statement often appears as the last statement in a
 function, but it need not be last: a function returns to its caller when a
 return statement is executed, even if
 there are other statements remaining in the function body.
The return statement can also be used
 without an expression to make the function return
 undefined to its caller. For
 example:
function display_object(o) {
 // Return immediately if the argument is null or undefined.
 if (!o) return;
 // Rest of function goes here...
}
Because of JavaScript’s automatic semicolon insertion (Optional Semicolons), you cannot include a line break between
 the return keyword and the expression
 that follows it.

throw

An exception is a signal that indicates that some
 sort of exceptional condition or error has occurred. To
 throw an exception is to signal such an error or
 exceptional condition. To catch an exception is to
 handle it—to take whatever actions are necessary or appropriate to recover from the exception.
 In JavaScript, exceptions are thrown whenever a runtime error occurs and
 whenever the program explicitly throws one using the throw statement. Exceptions are caught with
 the try/catch/finally statement, which is
 described in the next section.
The throw statement has the following
 syntax:
throw expression;
expression may evaluate to a value of any type.
 You might throw a number that represents an error code or a string that
 contains a human-readable error message. The Error class and its subclasses
 are used when the JavaScript interpreter itself throws an error, and you can
 use them as well. An Error object has a name property that specifies the type of error and a message property that holds the string passed
 to the constructor function (see the Error class in the reference section).
 Here is an example function that throws an Error object when invoked with an
 invalid argument:
function factorial(x) {
 // If the input argument is invalid, throw an exception!
 if (x < 0) throw new Error("x must not be negative");
 // Otherwise, compute a value and return normally
 for(var f = 1; x > 1; f *= x, x--) /* empty */ ;
 return f;
}
When an exception is thrown, the JavaScript interpreter immediately stops
 normal program execution and jumps to the nearest exception handler.
 Exception handlers are written using the catch clause of the try/catch/finally statement, which is described in the next
 section. If the block of code in which the exception was thrown does not
 have an associated catch clause, the
 interpreter checks the next highest enclosing block of code to see if it has
 an exception handler associated with it. This continues until a handler is
 found. If an exception is thrown in a function that does not contain a
 try/catch/finally statement to handle
 it, the exception propagates up to the code that invoked the function. In
 this way, exceptions propagate up through the lexical structure of
 JavaScript methods and up the call stack. If no exception handler is ever
 found, the exception is treated as an error and is reported to the
 user.

try/catch/finally

The try/catch/finally statement is
 JavaScript’s exception handling mechanism. The try clause of this statement simply defines the block of code
 whose exceptions are to be handled. The try block is followed by a catch clause, which is a block of statements that are invoked
 when an exception occurs anywhere within the try block. The catch
 clause is followed by a finally block
 containing cleanup code that is guaranteed to be executed, regardless of
 what happens in the try block. Both the
 catch and finally blocks are optional, but a try block must be accompanied by at least one of these
 blocks. The try, catch, and finally blocks
 all begin and end with curly braces. These braces are a required part of the
 syntax and cannot be omitted, even if a clause contains only a single
 statement.
The following code illustrates the syntax and purpose of the try/catch/finally
 statement:
try {
 // Normally, this code runs from the top of the block to the bottom
 // without problems. But it can sometimes throw an exception,
 // either directly, with a throw statement, or indirectly, by calling
 // a method that throws an exception.
}
catch (e) {
 // The statements in this block are executed if, and only if, the try
 // block throws an exception. These statements can use the local variable
 // e to refer to the Error object or other value that was thrown.
 // This block may handle the exception somehow, may ignore the
 // exception by doing nothing, or may rethrow the exception with throw.
}
finally {
 // This block contains statements that are always executed, regardless of
 // what happens in the try block. They are executed whether the try
 // block terminates:
 // 1) normally, after reaching the bottom of the block
 // 2) because of a break, continue, or return statement
 // 3) with an exception that is handled by a catch clause above
 // 4) with an uncaught exception that is still propagating
}
Note that the catch keyword is followed
 by an identifier in parentheses. This identifier is like a function
 parameter. When an exception is caught, the value associated with the
 exception (an Error object, for example) is assigned to this parameter.
 Unlike regular variables, the identifier associated with a catch clause has block scope—it is only
 defined within the catch block.
Here is a realistic example of the try/catch statement. It uses the factorial() method defined in the previous section and the
 client-side JavaScript methods prompt()
 and alert() for input and output:
try {
 // Ask the user to enter a number
 var n = Number(prompt("Please enter a positive integer", ""));
 // Compute the factorial of the number, assuming the input is valid
 var f = factorial(n);
 // Display the result
 alert(n + "! = " + f);
}
catch (ex) { // If the user's input was not valid, we end up here
 alert(ex); // Tell the user what the error is
}
This example is a try/catch statement
 with no finally clause. Although finally is not used as often as catch, it can be useful. However, its behavior
 requires additional explanation. The finally clause is guaranteed to be executed if any portion of
 the try block is executed, regardless of
 how the code in the try block completes.
 It is generally used to clean up after the code in the try clause.
In the normal case, the JavaScript interpreter reaches the end of the
 try block and then proceeds to the
 finally block, which performs any
 necessary cleanup. If the interpreter left the try block because of a return, continue, or
 break statement, the finally block is executed before the
 interpreter jumps to its new destination.
If an exception occurs in the try block
 and there is an associated catch block to
 handle the exception, the interpreter first executes the catch block and then the finally block. If there is no local catch block to handle the exception, the
 interpreter first executes the finally
 block and then jumps to the nearest containing catch clause.
If a finally block itself causes a jump
 with a return, continue, break, or
 throw statement, or by calling a
 method that throws an exception, the interpreter abandons whatever jump was
 pending and performs the new jump. For example, if a finally clause throws an exception, that
 exception replaces any exception that was in the process of being thrown. If
 a finally clause issues a return statement, the method returns normally,
 even if an exception has been thrown and has not yet been handled.
try and finally can be used together without a catch clause. In this case, the finally block is simply cleanup code that is
 guaranteed to be executed, regardless of what happens in the try block. Recall that we can’t completely
 simulate a for loop with a while loop because the continue statement behaves differently for the
 two loops. If we add a try/finally
 statement, we can write a while loop that
 works like a for loop and that handles
 continue statements correctly:
// Simulate for(initialize ; test ; increment) body;
initialize ;
while(test) {
 try { body ; }
 finally { increment ; }
}
Note, however, that a body that contains a
 break statement behaves slightly
 differently (causing an extra increment before exiting) in the while loop than it does in the for loop, so even with the finally clause, it is not possible to
 completely simulate the for loop with
 while.

End of sample

 To search for additional titles please go to

 http://search.overdrive.com.

OEBPS/httpatomoreillycomsourceoreillyimages824619.png

OEBPS/httpatomoreillycomsourceoreillyimages824613.png.jpg
Qoooooooo

gogguuguoge

oo
oo
oo
oo
oo
oo
oo
==
oo
oo
oo

OEBPS/httpatomoreillycomsourceoreillyimages824625.png
source-over source-atop source-in source-out

DE|al

destination-over destination-atop destination-in destination-out

B e al]

lighter

[N ele

OEBPS/httpatomoreillycomsourceoreillyimages824595.png
Mozilla Firefox 4.0 Beta 12

Firefoxv | ('] file:///home/da.. les/sample.svg | 4

€

([vascripts/src/examples/sample. svg

v[e] (v Google

o

EE]x]

v Feedbackv

OEBPS/httpatomoreillycomsourceoreillyimages824599.png
Firefox | [http://localhos...ChartTest htmi | <= | v
« [o/PiechartTesthtml v [v @ @ v v reedbackv

W rorth
W south
[east

W west

OEBPS/httpatomoreillycomsourceoreillyimages824589.png
Firefox | [http://localho.. ssexample.htmi | <= | v

« 1 ocalhost:8000/cssexample htmi 7 v[c] [v 2 @ B « v Feedbackv

Cascading Style Sheets Demo

Warning

This is a warning! Notice how it grabs
your attention with its bold text and
bright colors. Also notice that the
heading is centered and in blue italics.

THIS PARAGRAPH IS CENTERED
AND APPEARS IN UPPERCASE LETTERS.
Here we explicitly use an inline style to override the uppercase letters.

OEBPS/httpatomoreillycomsourceoreillyimages824633.png
[rm thinking of a num.
E] B & [guessinggame htmi#guess3

['m thinking of a number between 50 and 75.

W I'm thinking of a number between 50 and 100 er between 50 and 62.

[m thinking of a number between 0 and 100.

Show Full History h
62 is too high. Guess again:

OEBPS/httpatomoreillycomsourceoreillyimages824609.png

OEBPS/httpatomoreillycomsourceoreillyimages824617.png
start left center right end
top Abcefg Abcefg Abcefg Abcefg Abcefg

hanging iélbcefg iélbcefg Abcefg Abcefgg Abcefgﬂ
middle wbcefg Abcefg Abeefg Abcefy Abcefy
alphabetic Abcefg .Abcefg Abcefg Abcefg, Abcefg,
ideographic Abcefg Abcefg Abcefg Abcefg Abcefg
bottom Abcefg Abcefg Abcefg Abcefg Abcefg

OEBPS/httpatomoreillycomsourceoreillyimages824581.png
http: //davidflanagan.com/multiprompt htrml

Enter 3D point coordinates

=z

sp
zk

Okay | | Cancel

OEBPS/httpatomoreillycomsourceoreillyimages824573.png
2 %)< o ™| Console~ | HTML css script Dom net
13 Clear Persist Profile | Al Erors Warnings Info Debug Info function f“;“”ﬂ"" {
var p =
o> var x = *hello vorld®
; for(var i =2; i <= n; i+4)
»
T::: - return p;
ello vor 3
5> var book = { topic: "Javascript®, fat: truek;
console.log(factorial(4));

> book. topic
“Javascript

> book| "fat"]

true

=== var prines = [2, 3, 5, 71;

console.log(factorial(5));
console.log(factorial(6));

> prines[prines.length-1]
7

>>> prines(0] + prines(1]

s

> function factorialin) { var p=1; for(v...le.loglfactorial(s));
console.log(factorial (6] ;

Run Clear Copy 5]

OEBPS/httpatomoreillycomsourceoreillyimages824577.png
Constructor Prototype Instances
Range() | newRange(1,2)
prototype ...

{ newRange(3.4)

OEBPS/httpatomoreillycomsourceoreillyimages824568.jpg
Activate Your Web Pages

The Deﬁnitiv;' Guide

O’REILLY*® David Flanagan

OEBPS/httpatomoreillycomsourceoreillyimages824601.png

OEBPS/httpatomoreillycomsourceoreillyimages824623.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages824621.png
Hello World

OEBPS/httpatomoreillycomsourceoreillyimages824629.png
source-over source-atop source-in source-out

destination-over destination-atop destination-in

destination-out

OEBPS/httpatomoreillycomsourceoreillyimages824593.png
0'Beta 12

Firefoxv | [http://localho...0/windows.htm | =

4 o [[ihtpy/ocahost:8000w v[e] [v coooe ga Mk @V

v Feedbackv

This is another windo
2-index puts it on top of
other one. CSS styles

cComuB LA WM

content area translu in
browsers that support that.

OEBPS/httpatomoreillycomsourceoreillyimages824603.png

OEBPS/httpatomoreillycomsourceoreillyimages824605.png
A1)

OEBPS/httpatomoreillycomsourceoreillyimages824627.png
source-over source-atop source-in source-out

S <l| S

destination-over destination-atop destination-in destination-out

djajafs]

lighter

Blola

OEBPS/httpatomoreillycomsourceoreillyimages824631.png

OEBPS/httpatomoreillycomsourceoreillyimages824635.png
Workers
Windows

IndexedDB API

URL aeateObjectURL()

URLs

FileReaderreadAsDataURL()

@
o

FileReaderreadAsText()

BlobBuilder.append(

Filesystem

Text

<

OEBPS/httpatomoreillycomsourceoreillyimages824585.png
Document

HTMLHeadElement
HTMLBodyElement

—' HTMLTitleElement .

HTMLElement

—{ HiLPaagraphlement)
HTMLinputElement

—| HTMLTableElement .

OEBPS/httpatomoreillycomsourceoreillyimages824591.png
border-top-width

Container Content

width 3

l«—border-right-width

padding-right

border-bottom-wit

OEBPS/httpatomoreillycomsourceoreillyimages824615.png
B phytt miter round bevel
Es=====square
@&====5round

OEBPS/httpatomoreillycomsourceoreillyimages824611.png
O ~GDO

OEBPS/httpatomoreillycomsourceoreillyimages824597.png
Mozillalirefox 4.0 Betal12)

Firefoxv | [file:///home/d...eddedsvg.xhtm | & i

4 o [[1/embeddedsvgxhtml v[c| [v oo gy fik [@v v Feedbackv

This is a red square: ® This is a blue circle: ®

OEBPS/httpatomoreillycomsourceoreillyimages824607.png
c.translate (5,5)

T
c.translate (25, 120)
c.scale (1.5, O.8)

Y

ceans\ate(h, 29)
soeaxr e, V0.9, O)

N

(00Z ‘002
G- 2C9Te (7' -T1) ‘Id y3aew’o
crfErIveTIfe (R4 §00)) Inoqys3e30a

X Y

OEBPS/httpatomoreillycomsourceoreillyimages824575.png
[} Javascript Loan Calc.

e« 2 I

Enter Loan Data: Loan Balance, Cumulative Equity, and Interest Payments

Amount ofthe loan (8). [100000 Tota Interest Payments 19325
Amualiverest 0 | Lombaane

Repaymentperiod (years): [
Zipeode (o fndlendersy: [

Approximate Payments: | Calculate

Monthily payment $536.82
Total payment: $193255.78
Totalinterest $93255.78
Sponsors: Apply for your loan with one of these fine lenders

* Bank of JavaScript
© HIML Credit Union

OEBPS/httpatomoreillycomsourceoreillyimages824579.png
RRinolURIIFetcher HEE)
| Downioaa |

I ici7-eain_]
]

ftp: //ftp. mozilla.org/pub/mozilla.org/js/rhino1_7R2 zip

http:/ /www.javanet/ download/jdk7/binaries/jdk-7- ea-bin-b119-linux-i586-21_nov_2010.bi

ftp:/ /ftp.mozilla.org/pub/ mozilla.org/js/rhino1_7R2.z

OEBPS/oreilly_large.gif
O’REILLY

OEBPS/httpatomoreillycomsourceoreillyimages824587.png
I<div id="target"IThis is the element contenti</div>

beforebegin afterbegin beforeend afterend

OEBPS/httpatomoreillycomsourceoreillyimages824583.png

