

 [image: Integrating Excel and Access]

 Integrating Excel and Access

Michael Schmalz

Editor
Simon St. Laurent

Copyright © 2009 O'Reilly Media, Inc.

[image:]

O'Reilly Media

SPECIAL OFFER: Upgrade this ebook with O’Reilly

Click here for more information on this offer!
Please note that upgrade offers are not available from sample content.

A Note Regarding Supplemental Files

Supplemental files and examples for this book can be found at http://examples.oreilly.com/9780596009731/. Please use a standard desktop web browser to access these files, as they may not be accessible from all ereader devices.
All code files or examples referenced in the book will be available online. For physical books that ship with an accompanying disc, whenever possible, we’ve posted all CD/DVD content. Note that while we provide as much of the media content as we are able via free download, we are sometimes limited by licensing restrictions. Please direct any questions or concerns to booktech@oreilly.com.

Preface

The Microsoft Office Suite is, in my opinion, the most useful set of applications in a corporate setting. Besides being easy to use and practically perfecting the "What-You-See-Is-What-You-Get" (WYSIWYG) display, the applications in Microsoft Office can work together to share information, produce reports, etc. The problem is that while there are many references available to help users develop their skills in any of the applications, there are few references available to show how to use the applications together. I did quite a bit of integration work as both a consultant and employee at various companies, and I quickly found those skills in demand in many departments—from Human Resources to Operations to Finance. As people asked me to do things that I had never done before and I figured out how to do them, I began building a base of code and knowledge that I could use to solve problems. I kept thinking, "I wish there were a book that could show me how to..." and then, when I had figured out how to do those things, I thought, "I could write that book."
Based on my experience, Microsoft Access and Microsoft Excel allow for the most benefit from integration, so this book focuses mainly on these applications. In addition to Access and Excel, I have included a chapter on SQL Server and a chapter on integrating with other Microsoft Office applications. In each topic, I show how integrating features in different applications can solve problems. Although the examples use rather generic data, you will be able to apply the same concepts to your own data.
The difficulty in writing a book like this lies in tailoring the skill level to fit a wide audience. For example, many of the Excel GUI features might seem very basic to some readers, while they are new to others. In addition, some readers might be very comfortable with Visual Basic for Applications (VBA), and others may have anywhere from no experience with VBA to experience only using the macro recorder. As much as possible, I have tried to build from the basics to the complex when covering each topic. I hope that you will be neither bored nor overwhelmed as you go through the topics.
Who Should Read This Book

 Integrating Excel and Access will be useful to people who use Microsoft Office to handle data. This book will show you how Access and Excel can work together to improve your reporting and data analysis. Along the way, it will also introduce many programming topics that will help you sharpen your skills in VBA. While you do not need to be a programming expert, this book assumes that you have basic knowledge of Excel and that you are somewhat familiar with Excel macros. Any experience with Access will be helpful; however, you do not need that experience to learn from this book. Excel power-users will find ways that Microsoft Access can be used to increase the power of their applications. Also, you may find that something that you were doing in Excel is better done in Access, or vice versa.
After reading this book, you will understand how to do the following:
	Utilize the built-in features of Access and Excel to access data

	Use VBA within Access or Excel to access data

	Build connection strings using ADO and DAO

	Access data in a corporate data warehouse, such as SQL Server

	Automate Excel reports, including formatting, functions, and page setup

	Write complex functions with VBA

	Write simple and advanced queries with the Access GUI

	Write queries with VBA

	Produce pivot tables and pivot charts with your data

	Use your data in other Office applications

After these topics have been introduced, the book ends with a project that walks you through the steps to solve a business problem. After practicing the skills this book illustrates, you will have the necessary knowledge to tackle some of your most demanding reporting issues.
The book is organized to build on topics in a logical sequence. However, if you are trying to solve a specific issue, such as writing formulas in VBA, you can skip to the appropriate section. In addition, the code examples in the book illustrate each of the topics where VBA is used. All of the screenshots are produced from MS Office 2003, so your screen may look different, depending on which operating system you use, but most of the topics can be used in Office 97, 2000, and XP as well.
If you are interested in stretching your skills in the individual applications, I suggest reading Access Hacks and Excel Hacks, also from O'Reilly. Both books give great examples of how to use the applications to tackle problems.

What's in This Book

This book consists of 12 chapters. Chapters start with the basics and move to more complex topics. Here is a summary of the chapters:
	
 Chapter 1, Introduction to Access/Excel Integration

	Introduces the general topics in the book and explains some of the thought process that goes into integrating the applications.

	
 Chapter 2, Using the Excel User Interface

	Covers the tasks that you can complete using only the Excel GUI, as well as discussing some VBA topics.

	
 Chapter 3, Data Access from Excel VBA

	Covers using ADO and DAO along with VBA to pull data into Excel.

	
 Chapter 4, Integration from the Access Interface

	Covers both using Excel data in Access and exporting Access data into Excel from features in the Access GUI.

	
 Chapter 5, Using Access VBA to Automate Excel

	Covers controlling Excel from Access and pushing data into Excel. Automation examples of many Excel formatting and formula topics are given.

	
 Chapter 6, Using Excel Charts and Pivot Tables with Access Data

	Covers building charts and pivot tables in Excel using data that originates in Access.

	
 Chapter 7, Leveraging SQL Server Data with Microsoft Office

	Covers using SQL Server Data, as well as using DTS and ActiveX scripts to automate Office applications from SQL Server.

	
 Chapter 8, Advanced Excel Reporting Techniques

	Covers using VBA from Access to automate reporting in Excel.

	
 Chapter 9, Using Access and Excel Data in Other Applications

	Covers data integration and automation from Access and/or Excel in Word, PowerPoint, and MapPoint.

	
 Chapter 10, Creating Form Functionality in Excel

	Covers how to build forms in Excel similar to those in Access.

	
 Chapter 11, Building Graphical User Interfaces

	Covers some basic topics to help you build a functional GUI in Access.

	
 Chapter 12, Tackling an Integration Project

	Covers a project, complete with source code, that requires integration of Access and Excel.

This book covers hundreds of tasks you'll need to do at one point or another with Office. If you feel something important has been left out that should be included, let us know. We'll work to get it in a future edition. For contact information, see the We'd Like Your Feedback! section later in the Preface.

Conventions in This Book

The following typographical conventions are used in this book:
	Italic
	Introduces new terms and indicates URLs, commands, file extensions, filenames, directory or folder names, and UNC pathnames.

	
 Constant width

	Indicates command-line elements, computer output, code examples, methods, variables, functions, properties, objects, events, statements, procedures, values, loops, and formulas formatted as equations.

	
 Constant width italic

	Indicates placeholders (for which you substitute an actual name) in examples and in registry keys.

	
 Constant width bold

	Indicates user input.

Tip
Indicates a tip, suggestion, or general note. For example, we'll tell you whether you need to use a particular software version or whether an operation requires certain privileges.

References in VBA

There are many places in the book where VBA uses specific objects that may not be loaded by default. These include ADO, ADOX, DAO, Excel, Word, PowerPoint, and MapPoint. When you see these objects in the VBA code, check in Tools→References while you are in the module to ensure that you have the objects referenced, keeping in mind that you may have more than one version available.

We'd Like Your Feedback!

The information in this book has been tested and verified to the best of our ability, but mistakes and oversights do occur. Please let us know about errors you may find, as well as your suggestions for future editions, by writing to:
	O'Reilly Media, Inc.
	1005 Gravenstein Highway North
	Sebastopol, CA 95472
	800-998-9938 (in the U.S. or Canada)
	707-829-0515 (international or local)
	707-829-0104 (fax)

You also can send us messages using email. To be put on our mailing list or to request a catalog, send email to:
	
 info@oreilly.com

To ask technical questions or comment on the book, send email to:
	
 bookquestions@oreilly.com

For corrections and amplifications to this book, check out O'Reilly's online catalog at:
	
 http://www.oreilly.com/catalog/integratingea/

Safari Enabled

[image: image with no caption]

When you see a Safari® Enabled icon on the cover of your favorite technology book, it means the book is available online through the O'Reilly Network Safari Bookshelf.
Safari offers a solution that's better than e-books. It's a virtual library that lets you easily search thousands of top technology books, cut and paste code samples, download chapters, and find quick answers when you need the most accurate, current information. Try it for free at http://safari.oreilly.com.

Acknowledgments

I would like to thank O'Reilly for publishing this book. And, I'd also like to give a special thanks to Simon St.Laurent for all of his help, from the book concept to signing and then through the editing process. In addition, Ken Bluttman and Geoff Andrikanich were both very helpful in their technical review of the book.
This book would not have happened without the understanding of my wife and daughter throughout the writing process.
Finally, I'd like to thank all of my prior clients and employers who gave me the projects that forced me to stretch and develop my programming skills.

Chapter 1. Introduction to Access/Excel Integration

Most business users understand Excel; its power and practically universal acceptance make it a key application to learn. While Excel is a powerful tool on its own, you can do a lot more with it when you add the power of a relational database. Whether you store your data in a simple Access database or link an Access database to your corporate data warehouse, you'll be able to do a lot of things more easily. A simple query combined with an Excel workbook can supply many of the benefits of expensive reporting packages using the tools you already have on your desktop.
Consider the following scenario. Your company stores sales information in a database, and each sales record carries an identifier that tells who sold the item. You also have a table of salespeople that tells what region they are in and who supervises them. Senior management wants to find out how each salesperson, sales manager, and region performs on a daily basis. Since they want to see the reports so frequently, it will be necessary to automate these reports as much as possible. This book will show you how to gather the information and build the reports, charts, and supporting details that are necessary to meet these business objectives.
If you consider the other uses of corporate data, you will begin to understand how useful these skills can be. Here is a short list of fairly common uses of data:
	Producing a monthly commission schedule

	Reporting sales by product, region, sales manager, or salesperson

	Doing financial reporting

	Producing invoices

	Performing analysis of data (average profit per sale, sales by month, etc.)

	Producing trend information to aid corporate planning

	Populating financial models and storing results

	Graphing financial and sales information

Building systems that can simplify and automate these tasks can make complex projects much simpler. Fortunately, you likely already have the tools you need to do this on your computer and just need to assemble the parts correctly.
Communications Between Excel and Access

There are several ways to exchange data between Access and Excel. Automation
 (formerly called OLE Automation) is a method of communication that gives you access to another application's objects

. Using Automation, you can actually take control of the other application and send and retrieve data, set properties, run methods, and perform many other tasks. This book will explore in depth how automation can be used to allow integration between Access and Excel.
Tip
One of the original ways to communicate between Windows programs was dynamic data exchange (DDE)
. While this can be useful, I do not recommend it between Office applications. It is sometimes necessary when you are communicating with a program that does not have a very useful object model. However, the object models for all of the programs in the Office suite allow you so much flexibility that I cannot imagine a situation when DDE would be preferable to Automation with VBA.

The other methods of communication treat Access or Excel simply as a data source and allow query access. This is accomplished through ActiveX Data Objects (ADO) or Data Access Objects (DAO). In addition to these programming methods, both Access and Excel offer data access methods from the standard user interface that work well for simple tasks.

Automation Objects

If you are new to programming, the mention of objects might not make sense. Objects are programming items that make your life much easier. As an example, one of the main Excel objects is the Worksheet. The Worksheet object
 is a container for many other objects, such as cells, pivot tables, and charts. By using the Excel object model, you can perform many tasks with one line of code that would have taken hours if there were not another method available. Let's assume that you want to press a button on an Excel worksheet to print it. The following code prints the worksheet when you press the CommandButton1 button:
 Private Sub CommandButton1_Click()
 Dim xlws as Worksheet
 Set xlws = ActiveSheet
 xlws.PrintOut
 Set xlws = nothing
 End Sub
In this very short procedure, you declare a variable that is an Excel Worksheet (if you were automating Excel from another application, you would declare this as Excel.Worksheet and declare another variable as Excel.Application, but while in Excel this step is not needed). Next, you set this variable equal to the active worksheet—ActiveSheet

 represents the current worksheet in the active workbook. Once there is a reference to the active worksheet, you can call any of the methods that are part of the object. In this example, you call the PrintOut method of the worksheet. There are several objects in Excel that have a PrintOut method; in each case, it simply prints the object. The final step sets the xlws variable to nothing, which tells Excel to no longer store a reference to the object. The xlws variable in this procedure still exists, even though you are no longer using it—if you were in a procedure that used several worksheets, you could set xlws to nothing and reuse that variable with any other worksheet.
Tip
This code may still look complicated, but if you did any programming in MS-DOS where you had to understand how each printer worked and how to send commands to it, you would see how simple this is by comparison.

In future chapters, you will see how to set a reference to each application and how the object model of each can be used to accomplish even the most demanding tasks. You can also get context-sensitive help while working with the VBA project, and when you are not sure how to tackle an Excel task with VBA but know how to do it with the user interface, you can always record a macro and then review the code. Please see Appendix A for a review of the most commonly used objects and their usage in Excel and Access.

ADO and DAO

As stated earlier, ADO and DAO are the two primary methods of data access. For the purposes of connecting to a data source and simply extracting data, the two may be used interchangeably. According to Microsoft, DAO was designed specifically for the Microsoft Jet database at the heart of Access, but it is still able to access other databases while taking a performance hit. There are also some differences in features when it comes to making changes to a data source (adding tables, fields, etc.) and performing more complex query functions, such as data shaping, turning the query result into XML, and using cursors. I generally use DAO when dealing with Access (Jet) databases and ADO when dealing with SQL Server or other databases.
If you have done any work in Microsoft Access, you are probably familiar with queries

. When you build a query in the design mode in Access, you are really making a graphical representation of the SQL. To see how this works, you can change the query view in Access to SQL View and see what this looks like.
When you use ADO and DAO, you can reference queries and tables and simply open them. Eventually you will need to modify queries or write them from scratch. In those cases, you can get a head start by designing the query graphically in Access, changing the view to SQL view, and copying the text to your VBA project. You can then make any changes that you need to.
While you can simply copy the text of a query and use it in your code, you can also write SQL on the fly within VBA. This is useful when you want to give users the option to bring in certain fields from the database, change the field used to sort, modify the sort order, etc. Also, there are times when you want to place criteria for a query directly in the query instead of using parameters.
In both ADO and DAO, the primary objects that you will work with are queries, recordsets, fields, and parameters. When using DAO, you also have an object called a QueryDef that performs specific tasks in the book. The QueryDef object references a query. When you assign a variable declared as a QueryDef object and refer to a query, you can perform certain tasks, such as changing the SQL of the query, setting the parameter values, and opening the recordset.
There are some specific differences between ADO and DAO regarding how you set up the connection to the data source. You will see examples of each method throughout this book. When making a decision about which one to use, I suggest deciding based on ease of use. For example, if I am working in an Access database and writing VBA code to modify data structure, I find it much easier to use the DAO object model to accomplish those tasks rather than using ActiveX Data Objects Extensions for DDL and Security (ADOX). With ActiveX data objects, there are different object models for data manipulation, data definition and security, and Remote Data Services (RDS) and multidimensional data (ADOMD). In addition, you can download software development kits (SDKs) from Microsoft that explain both object models. Visit http://www.microsoft.com and search for MDAC (the short name of Microsoft's data access software).

Tackling Projects

This is probably an appropriate time to discuss how to tackle a project that would benefit from integrating Access and Excel. If this discussion doesn't make sense at first, go through the first couple of chapters and come back to it.
The very first step that you need to take, prior to starting a project that integrates Access and Excel, is to determine whether you need the power of both applications. I wouldn't suggest using both applications if you can accomplish the same task with one application and few compromises. If you decide that you do need both applications, the following model should help you perform the initial planning.
The first step in the actual project is to determine which application will serve as the primary application for the user interface. Generally, this decision should be driven by end user needs and preferences. Although there are some exceptions to this, during your initial planning, assume that the program the users see should be the one that they are most comfortable with.
The second step is to determine what information you will need from your end user. It is important to note that in some cases a project will support multiple end users with different needs. A good example is an application that has one end user who wants to input sales data and another end user who wants to create reports based on that sales data. In this example, the two users will share the same data source but will need completely different user interfaces.
Once you have determined those items, your next step is to determine how you will communicate with the other application. Several factors influence this decision. First, the layout of the data makes some types of communication impossible or, at a minimum, silly to try. For example, an Excel spreadsheet with five data points on two worksheets in multiple rows and columns that are not contiguous would not be a candidate for using ADO or DAO, since they expect tabular structures. Likewise, if you need to pull 500 records from an Access database into an Excel sheet that mimics a database table, you probably want to let DAO or ADO do most of the work. This choice is also driven by how much control you need over the other application and the amount of processing that you need to perform on the data.
The next step is to determine whether there will be an end product and what it will look like. In a project about sales data, the end product for a salesperson might be an Access report used as an invoice for the customer. The end product for a sales analyst might be a report in Excel with a pivot table and pivot chart. In cases when there is no end "product," you would want to define what actions you want to accomplish. Examples include accumulating data, updating data, and transmitting data.
Once you reach conclusions about which application will be automating the other, what information you need, and how it will be communicated, you are ready to take the first steps in designing the user interface. This might seem premature, but it is a good idea to prepare a prototype to ensure that you capture the necessary information. This prototype will be a work in progress and may change during the writing of the code (if you are using VBA).
This user interface is probably going to be an Access form, an Excel user form, or an Excel worksheet with protection enabled to only allow data entry into specific cells. If you don't do this, you will end up writing your VBA project twice—the first time to make sure your code works, and the second time to change the references to your user interface. You can do this if it makes you more comfortable, but it will cost you some programming time. Another option is to write your procedures to accept parameters, allowing you to test the procedures and then call them with your user interface. This also makes it easier to reuse code where it makes sense to do so.
When you have thought through your user interface, your next step is to write the code. It is very helpful if you know what the results should be for a few simple data points so that you can effectively test the application. As you write the code for your first couple applications, keep an eye out for recurring items. For example, if you find yourself writing multiple lines of code to set up an Excel reference from Access, you can save that code somewhere and copy and paste it into applications as you need it. Another thing to keep in mind as you write code is to watch out for what might change in the future. For example, if you have some code that builds a 35-line report in Excel with formulas and subtotals, you might note that it is likely that this report could expand or contract in the future. You can prepare for that now by creating a table that holds the necessary data and allows you to change the report without rewriting any code.
The example steps above are simplified, but regardless of the complexity of your project, these steps will need to take place at some point if you want your integration project to be successful.

Designing Applications

If you are writing code simply to make your own projects easier, thinking of them as applications might not be especially relevant. However, if you are building Microsoft Office applications that will be used by others, it is important to think about how the applications might change and how those changes can be dealt with. If you build an application that creates a set of reports and emails them to users, you could hardcode all kinds of information into the code. If you do that, though, any time the reports or recipients change, you will need to change the code.
I try to put elements that might change into tables that can be easily changed. To manage outgoing email, you could have a table that lists the reports and email addresses of the recipients. The code would open that table and send the reports based on the information in the table. This would allow the end user to make the changes necessary to email new or existing reports to new recipients.
While this might not seem very important, if you do not consider factors like this, you will spend more time modifying and maintaining applications than developing them. The same thoughts apply to connection strings to data sources, report formats, and other items where information can change over time. I once helped change an application that was written to produce a report of general ledger accounts with transactions over $1,000. Over time, the company grew and wanted to look at accounts over $50,000. As it turned out, the $1,000 parameter was hardcoded in the application code. Instead of just changing that code, I added a table that held parameters for the general ledger accounts to be queried, the dollar amount to review, and the tables holding the information (each type of transaction had a different table). Once I did this, changes to these criteria could be made without programming.
Some developers seem to build applications that always require developer assistance to make changes. This isn't a strategy I recommend, as it is dangerous for the end user. There are countless requests on the project boards online to modify applications that say that they cannot locate the original developer, or the original developer does not have time to work on it, or other similar reasons. It is also a good idea to document what each procedure does so that if you look at something you made two years ago, you can still follow what you were thinking.
Designing a graphical user interface (GUI) is not covered until much later in the book. As you try to solve a business problem, consider what the information flow will be and the best way to get that data from the user. In addition, it is also useful to consider the best way to display information when that is the purpose of the GUI. For example, is it better to have a large input screen with scrollbars, or is it better to use a tabbed dialog (like many Windows applications)? The other question that comes up when you integrate Access and Excel is which application is best suited for each task. Sometimes the answer is very clear, and at other times there is no clear-cut best product. As you work, the GUI should be in the back of your mind.

Next Steps

In the next chapter, I will introduce you to accessing data from the Excel user interface. This will be very useful for simple tasks for which you need a table of data from a database or another spreadsheet. You can also write database queries with Microsoft Query if you need more specific information than a table or prewritten query. These tasks are all managed from Excel's External Data toolbar. At the end of the next chapter, I will introduce PivotTables as a method for summarizing the data.
To give you a feel for what is to come, you will first learn data access from the Excel user interface, followed by using Excel VBA. Once this is accomplished, you will learn the Access user interface and Access VBA. Next comes an introduction to using these concepts with SQL Server and other Office applications. The final chapters in the book will cover more advanced topics on building applications that integrate Excel and Access. Where applicable, code samples will be available for download online at O'Reilly's web site.
As you go through the book, I suggest having sample Excel and Access files that you can use to apply the concepts discussed. If you don't have your own data, use the sample files that accompany the book. You will most likely get more out of the book if you type the code yourself and get a feel for how to use the VBA interface in Excel and Access. But you can certainly also use (or reuse) the code in the sample files without retyping it. However you decide to use the book, the concepts illustrated are focused around solving common problems that come up in a business environment.

Chapter 2. Using the Excel User Interface

I first realized how powerful integrating Access and Excel could be while I worked for a company that calculated incentives. A database housed all of the data required to calculate the incentives. Before I took over the process, a report was printed from the database and rekeyed into an Excel workbook that performed all of the calculations. Eventually we moved from rekeying, to using Microsoft Query to pull data from the database, to finally having the database fill in the Excel workbook. Using an automated process not only saved time, but it also dramatically reduced errors. In the years since, I have found many more opportunities to integrate Access and Excel.
While it is tempting to jump right into using VBA to perform data functions, understanding when and how to use the Excel interface is still very useful and can provide a springboard to using VBA. When you want to use External Data
 from the Excel user interface
, use the Import External Data function under the Data menu. From here, you can open and edit saved queries or create a new query.
Using External Data

 External Data refers to any data that does not reside in Excel. Using the Import Data function
 on the Data menu, you can import entire tables or queries from Access and other databases. You can access this function by going to Data → Import External Data → Import Data. In addition to importing data from a database, you can also use this feature to import text files, XML files, web pages, etc. This is a very simple way to bring in all of the data from a table or query. The nice part about this feature is that you can refresh the data at any time by pressing the refresh button on the External Data toolbar (Figure 2-1). Also, as with any external data range, you can set it up so that any formulas done at a row level will be copied as the data range expands (described later in the chapter).
There are several other features available when working with an External Data range. These are available on the External Data Range Properties
, which can be accessed either by right-clicking in the data range and selecting Data Range Properties, or from the External Data Toolbar. Refer to Figure 2-2 to see these properties.
[image: The External Data toolbar]

Figure 2-1. The External Data toolbar

[image: The External Data Range Properties dialog box]

Figure 2-2. The External Data Range Properties dialog box

While there are many options in the properties dialog, two key ones are "Refresh control
" and "Fill down formulas in columns adjacent to data." Under the "Refresh control" section, there is a checkbox for "Refresh Data on File Open." This ensures that anytime the Excel workbook is opened, it will use the most recent data. If you are using a data source that is updated daily, this is probably enough; however, if you are using a data source that is constantly being updated, you can also select "Refresh every" for the amount of time that you want to elapse between each data refresh.
Under the "Refresh data on file open" checkbox, there is another checkbox that allows you to not save the data with the spreadsheet. This is useful if you are accessing data that is password protected and you want to ensure that no one can simply access the data in a saved Excel spreadsheet. For example, if Human Resources uses an Excel workbook to track salary or performance appraisal scores, checking this box ensures that the data does not get into the wrong hands. When you check this box, the Excel workbook opens with the data range cleared, connects to the data source, and pulls the most recent data. This prevents people who do not have access to the database—or more precisely, people who do not have access to that table or query in the database—from refreshing the data. If you do not have this checked, the data from the last refresh is visible when the Excel workbook is opened before the refresh.
The second option on the External Data Range Properties dialog box that you will find very useful is the option to fill down formulas. You will often perform calculations on the data at a row level. For example, you might pull some data from a sales table and want a formula that tells you whether the margin on each sale is acceptable. If you check the box to copy the formulas down, as the table (or query) grows, it will copy the appropriate formulas. It is important to note that the formulas must be adjacent to the data; formulas on another sheet or in non-adjacent rows need to be copied down using another method. The other thing to keep in mind is that the formulas must be to the right of the data. This point is not clear in the Excel documentation, but upon testing, you will find that formulas to the left of the data will need to be copied down.
Another advantage to using the Import External Data function is that the resulting External Data Range is defined as a named range. This allows you to use the name of your External Data Range in place of the cell reference for formulas like VLOOKUP. In addition, Excel also gives you the option of using the Column Label in your functions. For example, if you name a column Amount, and you want to create a summary on the same worksheet that sums that column, you can write the formula as =Sum(Amount).
However, by default, Excel does not allow you to use the names of your columns this way. To fix this, go to the Options dialog under the Tools menu and turn on the Manual option on the Calculation tab (Figure 2-3). To apply this feature to data that will refresh, type in the field names manually and bring in the data without them. In the External Range Properties Dialog (Figure 2-2), uncheck the "Include field names" checkbox in the "Data formatting and layout" section. By not linking the field names in Excel to the data, you can continue to use the column names in your formulas.
[image: The "Accept labels in formulas" checkbox, which enables the use of column labels from Excel Lists and External Data Ranges in formulas]

Figure 2-3. The "Accept labels in formulas" checkbox, which enables the use of column labels from Excel Lists and External Data Ranges in formulas

When you turn on this function, you also access another very powerful feature. If you are used to writing VLOOKUP statements, this will change the way that you write many of those in which the formulas reside on the same sheet as the data range. Let's assume that you have a list of Social Security numbers, employee names, and salaries, and assume that the salaries are in a column named Salary. If this was your External Data Range named EmployeeInfo, you could write a VLOOKUP function using the Social Security number (SSN) as the value, EmployeeInfo as the Table Array, column 3 (Salary) as the column index value, and False in the Range Lookup box to ensure that you only get a result for exact matches. Using this function would yield the salary of the person with the specified Social Security number. If Excel did not automatically create this named range for you, you would need to constantly update your VLOOKUP formula as the range expanded or contracted.
This works great when the first column in your data range is the range that you are looking up. When this is not the case, you either need to change your query so that the column you want to use is first, or you need to use the following function. Turn on the "Accept labels in formulas" option on the Calculation tab. Using the same example, if you wanted to look up an employee's salary but only knew his name (or did not want to use his Social Security number), you can write this formula: =Joe Smith Salary. This goes to the row where Excel finds Joe Smith and pulls his salary. You can also put Joe Smith in single quotes to be certain that Excel knows which row you want to pull. In this case, Excel is using the intersection of the row and column that you chose. I want to caution you again that you can only use labels in formulas on the same sheet. To do this on another sheet, use the named range with VLOOKUP and put the Employee Name in the first column.
The primary reason to use named ranges and column labels in your functions and lists is that it enables you to refer to the data without having to change the cell references when the data set gets larger or smaller. Some people get around this by making their formula ranges large enough to not have to update them. While this is possible, it can create performance issues, and it also means that you cannot write formulas directly below your data. Also note that when you create a named range, you cannot put spaces in the name. If you try to, Excel gives you an error message that the name is not valid. The default named range for an external data query places underscores for the spaces. To break up the names to make them more readable, use underscores or capital letters at the beginning of each word, as shown previously in the EmployeeInfo named range.
In addition to Excel creating a Named Range for your External Data Range, the result set is also a QueryTable object that can be referred to by VBA, whether it is a simple import of external data or a database query. Within VBA, you can perform many tasks on the QueryTable object, including changing the table or query, setting a refresh timer, and refreshing the data. In addition, you also gain access to the properties exposed by the QueryTable object, including connection string, source file name, command text, etc. Another way to use the QueryTable object in VBA will be discussed later in this chapter, and you will use QueryTables at other times throughout the book.
Tip
When you right-click anywhere in a data range, a menu of options appears. You can use the Edit Query option to change the table that you are accessing. You can also change the SQL there if you are not using a table.

While the Import Data function is relatively simple to execute, it is very useful when you need to use entire data sets that are already defined in the database or file.

Using Database Queries

Database Queries are valuable when you need more control over the data that is returned. Here is a quick example scenario where you can use a Database Query; this example uses the Northwind Database
 that comes with Access. Let's assume that your job is to review orders where the freight cost is over $100. There is a Query already designed in the Northwind Database called Orders Qry where the freight column is defined. You could bring in the entire table and search for records where the freight is over $100, but that would be time-consuming and error prone. It's simpler to make the computer do the work.
Choose New Database Query from the Import External Data submenu of the Data menu to get the screen shown in Figure 2-4. Since we want to use the Northwind Database, select MS Access Database from this dialog box and press OK, making sure that the box at the bottom of Figure 2-4 is checked to have the Query Wizard write the queries. The Northwind Database is in the Microsoft Office Samples Folder, as shown in Figure 2-5. After you select the Northwind Database, you get a list of all the tables and queries available in the database. For this example, you want to select the query called Orders Qry. You can expand a table or query to see all of the available fields, enabling you to select only the fields that you want. For this example, we want all of the fields, so click once on the name of the query and press the > button to place all of the fields in the query (Figure 2-6). To remove any of the fields, click on the field to remove and press the < button. In this case, since we want all of the fields, simply press the Next button.
[image: The Data Source selection box used to create a new database query]

Figure 2-4. The Data Source selection box used to create a new database query

[image: The Select Database dialog box]

Figure 2-5. The Select Database dialog box

[image: The first screen of the Query Wizard]

Figure 2-6. The first screen of the Query Wizard

The next screen in the Query Wizard is the Filter Data screen (Figure 2-7). On this screen, pick a column to filter and select the criteria. For this example, select Freight as the column, "is greater than" as the comparison operator, and enter 100 as the amount. The drop-down box to the right of the comparison operation shows the values in the database; you can override these by just typing in the box. Once you have done this, press the Next button.
The next screen (Figure 2-8) sorts the records. Select Freight as the "Sort by" field, and select Descending to sort the records from the most to the least freight cost. When you have done this, press the Next button. On the final screen, select whether to return the records to Excel, edit the query, or create an OLAP Cube. In addition to these choices, you may also choose to save the query so that you can easily access it from other Excel workbooks. For this example, select "Return Data to Microsoft Excel" and press Finish (Figure 2-9).
You are now out of Microsoft Query and back in Excel. Excel brings up a dialog box asking where to put the data (Figure 2-10). You can chose either an existing worksheet or a new worksheet. If you select an existing worksheet, you can select the cell where the import begins. The resulting records can also produce a PivotTable, which will be covered later.
This, again, is a relatively simple example; you can perform much more complex queries. However, this gives you a good example to try with the data that is already
[image: The Filter Data screen of the Query Wizard]

Figure 2-7. The Filter Data screen of the Query Wizard

[image: The Sort Order screen of the Query Wizard]

Figure 2-8. The Sort Order screen of the Query Wizard

[image: The Finish screen of the Query Wizard]

Figure 2-9. The Finish screen of the Query Wizard

[image: Directing Excel as to where to place the data pulled from Microsoft Query]

Figure 2-10. Directing Excel as to where to place the data pulled from Microsoft Query

on your computer. This method also makes it very easy to change criteria. Right-click anywhere in the result set and select the Edit Query option to bring the wizard back up and make changes to the query, such as selecting different columns, changing the criteria, adding new criteria, etc. If you change the criteria, you'll notice that any field that has criteria selected is in boldface. In addition to using the wizard, you can also change the query through VBA. The object created by a New Database Query is also both a QueryTable object and a named range. If you do not like the default name, you can change it in the Data Range Properties dialog box, which is accessed by right-clicking in the data range and selecting Data Range Properties.

End of sample

 To search for additional titles please go to

 http://search.overdrive.com.

OEBPS/httpatomoreillycomsourceoreillyimages127125.png

OEBPS/httpatomoreillycomsourceoreillyimages127073.png.jpg
(Fopen &2 Design Tew | X | 2,

Objects

& Queries
B Forms
@ Reports
93 Pages
2 Maaos
@ Modues
Groups
(3 Favorites

O Tables

@ EoemEmoeve
Bl Create table by using wizard
Z] create table by entering data

OEBPS/httpatomoreillycomsourceoreillyimages127105.png
Combo Box Wizard

Which table or query shouid provide the values for your combo
box?

Qerys Query

Wl—;[Query: Query tparameter

View

Olabkes @ Queries | OBoth

OEBPS/httpatomoreillycomsourceoreillyimages127103.png
Combo Box Wizard

This wizard reates a combo box, which displays a st of values you
an choose from. How do you want your combo box to getits
values?

(@i want the combo box t look up the vales n 3 table or query. |

O Lwil type in the values that T want.

OEBPS/httpatomoreillycomsourceoreillyimages127065.png.jpg
Payment Type

K< »)\ LoanInformation { Amortization |<

OEBPS/httpatomoreillycomsourceoreillyimages127141.png
s P S S P S s e
e IS i 1 " —"T 7
e = - o £5 £S -

e ™ o were e e " ssoust o)
——— L Amm—— " — T — —)

A5 5 AN) SN 0 S8 5 M) S

st (10025057 e]

OEBPS/httpatomoreillycomsourceoreillyimages127161.png

OEBPS/httpatomoreillycomsourceoreillyimages127107.png
Combo Box Wizard

Avalable Fields:

Which fields contain the vakues you want induded in your combo
box? The fiekds you select become columns in your combo bos

Selected Filds:

OEBPS/httpatomoreillycomsourceoreillyimages127069.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages127077.png.jpg
M

Lookin: | 2 Chapterd ¥ © @1@ X i £~ Toos-
2] chapter aworkbook

v e|

My

€ je
i
§

[mpot |

[concs)

i

Fies of type: [crosoft Excel

OEBPS/httpatomoreillycomsourceoreillyimages127131.png
W\ osa v 550

o—

ol

OEBPS/httpatomoreillycomsourceoreillyimages127087.png
=3l Import Spreadsheet Wizard

Microsoft Access recommends that you define a primary key for
= ‘your new table. A primary key i used to uniquely identfy each
record in your tabl. It allows you t retrieve data more quicly-

O Lt Access add primary key.

O Ghooeemy own pimary ey pament 0
O Naprinarykey.

[Paymenc [Principal [Interest [Cumulative Principal [Rd
512016 Fale.67 F120.16 5] !
k120,66 ka16.17 k240.81 ksl
k121,16 ka15.66 [361.97 ksl
k121,66 ka15.16 f483.63 ksl
k122,17 ka14.65 f605.80 ksl
k122,62 ka1a.14 f728.42 ksl

= T e

OEBPS/httpatomoreillycomsourceoreillyimages127081.png
=3 Import Spreadsheet Wizard

Mirosoft Access can use your column headings as field names for your table. Does the frst

fow specifed contain column headings?

st Row Contains Column Headngs

Payment [principal [faverest [cammiative Prizipai]
3 Eizo.16 Fats.e7 Fi20.is o«
z kizoles fatel17 frsolsi kel |
s k216 faisies foeilsy ko
o kioiles faisiie fassies ko
5 k122117 fatsles Feos.so ko
ok kisoles fataiis fros.as ol
cancn] [C<oac |t] (o

OEBPS/httpatomoreillycomsourceoreillyimages127027.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages127153.png
Create Territories Wizard - Method

Choose how you want to create your territories.
Click o create your teritries ether from an establshed set of data or manualy,

Oz o g o o 3o

Use your own data when your tertores and the geagraphic areas assigned
tothose terrtories are aheady defined in il ormat that s compatible with
MapPoin, such as an Excel spreadshest

O cCreate manualy

Manuslly create your territories one by one, and then, directly on the map,
select the geographic areas that you wart to 3ssign o those tertoris.

OEBPS/httpatomoreillycomsourceoreillyimages127057.png
Be B o et e (g B D Kol 1 Tpreassni +. 8

OEBPS/httpatomoreillycomsourceoreillyimages127089.png
=3l Import Spreadsheet Wizard
That's a theinformation the wizard needs to iport your data.

Import to Table:
bl_Amortzation

[1 would like a wizard to analyze my table after importing the
data.

[Display Hielp after the wizards finished.

fur—— m—res e

OEBPS/httpatomoreillycomsourceoreillyimages245663.jpg
O’REILLY® Michael Schmalz

OEBPS/httpatomoreillycomsourceoreillyimages127033.png
Choose Data Source

Daabees | Queies | OLAP Ces

<HNew Data Saurce>
ActualBudgel”
BAE Fiks®

Evcel Fes”

Local SOL*
LocalServer

M5 Access Database”
NorthwindS 0L~
FrojectDB

B Usethe Buey Wi to reate/ed queies

OEBPS/httpatomoreillycomsourceoreillyimages127053.png
e ——— |

How parameter value i obtained:

O Brompt for value using the following string:

ant

O Use the following value:

® Get the value from the folowing cel:
heetilsst [

[Refresh automaticaly when cell value changes.

OEBPS/httpatomoreillycomsourceoreillyimages127149.png.jpg
s

OEBPS/httpatomoreillycomsourceoreillyimages127127.png
‘Advanced Filter

Action
OFiter the st in-place
® Copy to another location
Listrange;

Criteiarange:

Copy to ry_BaseQuery!sCs

Unigue records only

OEBPS/httpatomoreillycomsourceoreillyimages127093.png
Query Parameters

Parameter __[Data Ty
BeginDate___ Date/Tme

OEBPS/httpatomoreillycomsourceoreillyimages127135.png
) » g [PEENRwE.VY |

o e St 7 0 Bt e
A
T T
GEmssmen olnt
ARiames E B
=
£ G
EE o tua
: e
i Syl b e 8 B
it e S IR DR B o e
= e
B R P
= i
= S i
= Saime
= o= ok
O e
SohEbmER m 2B
Eptaas e e

e — e e e e

OEBPS/httpatomoreillycomsourceoreillyimages127157.png
Link Territories Wizard

For each colun of dats, select heading from the Data type st One o the couns
selected must contain tertory names, To create territories on the map, at east one
aditianal calumn must contain geographic location data such as ZIP Code, state, or
cauntry.

Country/Region First tow contains column headings

Source fle: thl_Terrtores, C:|BoakInformation’ Chapters|ChapterSDEMapPaint

Column headng: [Tertory Zpcode a
Datatype: [Terrtory < [z code
Somple records: | Terrtory A 19019
Tertory & 19059
Tertary & 19052
Tertary & 19083
Tertary & 19099
Tertory & 19101
<

<Back. et > Erish

OEBPS/httpatomoreillycomsourceoreillyimages127165.png

OEBPS/httpatomoreillycomsourceoreillyimages127145.png
SACRTE

SR
A

OEBPS/httpatomoreillycomsourceoreillyimages127059.png
Security

Security Level || Trusted publshers

O Very High. Only macros installed in trusted locations wil be alowed
o run. Allother signed and unsigned macros are disabled.

O High. Only signed macros from trusted sources wil be allowed to
un. Unsigned macros ere automaticaly dsabled

® Medium, You can choose whether or not to run potentially unsafe.

O Low (not recommended). You are not protected from potentially
Unsafe macros, Use this seting oy I ou have vrs scanning
software nstalied, or you have checked the safety of el documents
Youcpen.

Virus scanmer(s) nstalld,

==

OEBPS/httpatomoreillycomsourceoreillyimages127047.png
PivotTable and PivotChart Wizard - Step 3 of 3

Vhere do you want to put the PivotTable report?
O New workshest
© Existing worksheet
i
Clck Finsh to create your PivotTable report.

OEBPS/httpatomoreillycomsourceoreillyimages127055.png.jpg
7 Microsoft Visual Basic - AccessExcelExamplexls

Be Edt Yen fuet Fomet Debug Rn ook

5 & atpvboenis (ATPVBAENXLA)

& funcres (FUNCRESXLA)
& Internet_Assistant (HTHLYLA)

& vBAProject (AccessExcelbxample.xls)

) et Goeet)

Sheet2 (Sheet2)
Sheet3 (sheets)
Thistorkoook

OEBPS/httpatomoreillycomsourceoreillyimages127129.png
e e

st ™ n
B

o

OEBPS/httpatomoreillycomsourceoreillyimages127111.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages127095.png

OEBPS/httpatomoreillycomsourceoreillyimages127117.png
Toe tn e e om T e o v+

OEBPS/httpatomoreillycomsourceoreillyimages127113.png.jpg
= qry_QuantityCrosstab : Crosstab Query ; E E

qry_BaseQuery

OEBPS/httpatomoreillycomsourceoreillyimages127049.png
PivotTable and PivotChart Wizard - Layout 1<)

= & Canstruct your PvotTable report by
< = LTy
et

PAGE com

R [i

Row oata

OEBPS/httpatomoreillycomsourceoreillyimages127031.png
T ——— 1}

Coor__|_international | _Save | _ErrorCheding | _speling_|_seaurity
vew_| Caedatir] _eat_ | ceneral | Transton | Customiats | chat
Caaeton

© auomate Oanual
© ot scep s Recaatebefore s

O teraton

Maximum terations: [100

Maximum change: 0.001

Wiorkbook options

lpdste gemote references

[precision as displayed
[1904 date system

Save external nk values

Accept labels in formuas

==

OEBPS/httpatomoreillycomsourceoreillyimages127137.png
it
el
il
&
8
il

[s]sis|slels]s<]s]sls]a

OEBPS/httpatomoreillycomsourceoreillyimages127041.png
Query Wizard - Sort Order &

Speciy how you want your data sored.
1fyou dorit want o sot the data, cick Next

oty e 1
P it
Tty Ot
£ Descending
Ty

€ Ascending
€ Descerdng

OEBPS/httpatomoreillycomsourceoreillyimages127139.png

OEBPS/httpatomoreillycomsourceoreillyimages127133.png
Dee o ot e T B o o

OEBPS/httpatomoreillycomsourceoreillyimages127159.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages127075.png.jpg
View
Arrange Icons

Line Up Icons

OEBPS/httpatomoreillycomsourceoreillyimages127151.png
- [SERREE T |
e R R e ==

g

i

|

:

=== —————

OEBPS/httpatomoreillycomsourceoreillyimages127067.png
B c E F
u xlPrincpal Interest. Cumulaive_Principal Remaining_Balance E

$120.15 541667 §120.15 | § 99,879.85
2 $120.66 | $416.17 524081 S 99,759.19
3 §121.16 541566 $361.97 | S 99,638.03
4 $12166 $415.16 548363 S 99.616.37
5 $122.17 $414.65 $605.80 | S 99,394.20
6 $12268 $414.14 572848 S 99.271.52
7/ $123.19 541363 $85167 S 99,148.33
8 $12370 $413.12 $975.38 | § 99.024.62
9| $124.22$412.60 5109959 'S 98,90041
10 $124.74 $412.09 5122433 ' 98,775.67
11512526 $411.57 5134959 'S 98,65041
12 $125.78 $411.04 $147537 S 98,524.63
13512630 $410.52 5160167 | S 98,398.33
14, $126.83 $409.99 5172850 S 98,271.50
15 $127.36 $409.46 5185585 | S 98,144.15
16 $127.89 $408.93 5198374 S 98,016.26
17_$128.42 $408.40 8211216 S 97,887.84

OEBPS/httpatomoreillycomsourceoreillyimages127171.png
Tab Order

Secton Custom Order:

Form Header StateConbo
Sl LocationCombo
Oetad Frames

OForm Eooter searchlist
Command 15

Clck to select a row, or
cidk and drag to select
multple rows, Drag
selected ron(s) to move
them to desied tab
order,

OEBPS/httpatomoreillycomsourceoreillyimages127051.png
EWcrosolt Query L TTT—— o

T £ e Formay T il e indon 50

EIETE [[FF F) FE) Ex

a1 TCotoaaid] Debss | Toqmembs |5
5] T — TETOR 1500000 TS 0000 TS (513000007 3
- IS IZ0000 159701010000 19120900000 2 |
T — - 16017000000 158051500000 1990427100000 2 &
T — ISTILH000 19710000 1951102000000 2 &
S — - IS UDOI0 1EDDO0 1S E16000 3 A
T - 1600300000 10N D000 160D 3 n
T — 1990001700000 1990515000000 199042300000 3 &
- EISNW0 1RGN 19902 W00 2 @ |
St Fls Retan Da 1o Micros Olfice Excel o ehan ot o cer spleaion [] o o e o

OEBPS/httpatomoreillycomsourceoreillyimages127121.png

OEBPS/httpatomoreillycomsourceoreillyimages127109.png
Combo Box Wizard

What label would you ke for your combo box?
Data Selection

Those are al the answers the wizard needs to reate your combo
box,

[]iDisplay Help on ustomizing the combo box.

fur—— m—res —

OEBPS/httpatomoreillycomsourceoreillyimages127071.png.jpg
S o

Seve as type: | crosoft Offce Access Database.

OEBPS/httpatomoreillycomsourceoreillyimages127083.png
=3l Import Spreadsheet Wizard

You can store your data in a new table or in an existng tabl.

Where wouid you ke to store your data?
@ fin'a New Table’
© Tn'an Existing Tabe:

[Payment [Principal [Interest [Cumulative Principal [Rd
ik 120,16 fa16.67 f120.16 EB|
2 5120, 66 416,17 [s240.81 sl
s 12116 ffa15.66 [5361.97 ksl
af 121,66 a15.16 [s483.63 ksl
s fs122.17 ffa14.65 [5605.80 ksl
ok fs122. 68 fa14.14 572848 kel -

= T e

OEBPS/httpatomoreillycomsourceoreillyimages127099.png
e [emd o
e ancel
e

" Euncton
 property

-Scope.

& public
 private

T~ Al Local variables as Statics

OEBPS/httpatomoreillycomsourceoreillyimages127115.png
T

DT E T F T 6]

ottt Gt amng- oo P Fend Gut Frod Ve Fod Pl

iy St S) sar s

Country St b a0 BE) [} ETL 1

sk Sae 5 s850 st 3 %15 9%

£ £) 2 W a9

OEBPS/httpatomoreillycomsourceoreillyimages127029.png
External Data Range Properties

Nome: [ampleExtermaDataRange

Query definion

Save query definiton
[save password

Refresh control

Enable background refresh

[Refresh every

[JRefresh data on fle open

Data formatting and layout

include figd names
[tndude row numbers
‘Adiust column width

Preserve column sort/fter layout
Preserve cel formating

1f the number of ows i the data range changes upon refresh:
@ Insert cells for new data, delete unused cells
O Insert entie rows for new data, dear unused cells
O Qverwrite existing cels with new data, dear unused cells

] il down formulas in columns adjacent to data

OEBPS/httpatomoreillycomsourceoreillyimages127061.png
Style

Style name:

MySpecalFormat

Style includes:
Number

Algnment

Eont

Border

patterns

Protecton

Blel#, 220) Red](=,#20)
Geners,Bottom Algned

arl 13, old

NoBarders

No shadng

Locked

OEBPS/httpatomoreillycomsourceoreillyimages127079.png
==l Import Spreadsheet Wizard

Your spreadsheet fe contains mre than one worksheet o range. Wihich worksheet o range
would youlike?

© show Worksheets
O Show Named Ranges

Loaninformation

Sheets

‘Sample data for worksheet ‘Amorization

T payment Principai facerest Famiiecive Princioet el 4|
S ote Bae.er Biso.is 5
5 Kizoise atotr Fosols: ﬂ;
. k1226 Faisiss Fselor ﬂ;
sk Furles el Bassies ﬂ;
. Ci22017 Fasales Feosiso =
= o] [

OEBPS/oreilly_large.gif
O’REILLY

OEBPS/httpatomoreillycomsourceoreillyimages127085.png
=3l Import Spreadsheet Wizard

You an spedfy information about each of the felds you are importing. Select felds n the
area below. You can then mody fied information in the Field Options' area,

reldOptons
FeldNans
Indexed: [No][] Do notimport fied (kin)

[Paymenc [Principal [Interest [Cumulative Principal [Rd
512016 Fale.67 F120.16 5] !
k120,66 ka16.17 k240.81 ksl
k121,16 ka15.66 [361.97 ksl
k121,66 ka15.16 f483.63 ksl
k122,17 ka14.65 [605.80 ksl
k122,62 ka1a.14 f728.42 ksl

e] [C<ioac |t] (o

OEBPS/httpatomoreillycomsourceoreillyimages127143.png
als3lslaz]

o]

e

o

OEBPS/httpatomoreillycomsourceoreillyimages127163.png

OEBPS/httpatomoreillycomsourceoreillyimages127035.png
Select Database]
Database Name Drectoris oK
Nortwind mdb G\ offce T1\samples [|

Cancel
Wwind 7 =L
(= Program Files.
& Mousoh Ofce 1|
& OFFCET = r——
ol I Blusive
List s o Type: Dres:
[Access Databases (mv] | = <] Network

OEBPS/httpatomoreillycomsourceoreillyimages127037.png
Query Wizard - Choose Columns

What coluins of data do you want to include in your query?

Available tables and columns: Columns in your query:

5 Dider Detals > | [oeem]| =

Order Details Extended CustomerD %l

% Dider Sublotas —— [EmsloyeelD =
OideiDate

5 Oides [0 <] [pequieddate

« gy ShopedDale

5 Produel Sals for 1997 Shovia

™ Pevbers) Freant

Prview o data inslected columr

@| Pevien o | Optons. <ok [Ned> Cancel

OEBPS/httpatomoreillycomsourceoreillyimages127119.png
. = 5 o
TR
7 socadissasanol
5% S Tokost
ry BT T ETF e T3

Ficrey g
g .]s.v..,. ot [GariTaa]

Satlt Locatons EE] i Y
StorehontLoctions | E) o] swoso)
(Gand Taa 28 30

OEBPS/httpatomoreillycomsourceoreillyimages127123.png
{3{efe] i)

EESEERRNRnEEa:

o

OEBPS/httpatomoreillycomsourceoreillyimages127173.png

OEBPS/httpatomoreillycomsourceoreillyimages127025.png
Satari

OEBPS/httpatomoreillycomsourceoreillyimages127155.png
Greate Territories Wizard - Import or, Link

Import or link to your source file of territory data.
Chaase whether ta mpart or Ik ta your saurce fle o territory data,

O Import your source file

Import when you wank to manags territries in MapPoin, rather than in your
source ile. When you mport, you will ot be able o automatically update
‘vour mapped terttaries With changes n yaur source fe.

oy

Link when you wank to manage your terrories in your source fil, rather than
in MapPoint. When you ink, you wil be able o automaticall update your
mapped terriories with changes in your source fie.

Nate Your source fle must include:

« One column or ield that contains the names of your teritries, and

« One column or ield that sts the geographic areas that make up your
terrtaries

For more information about setting up data n your source fil or o visw sample
Files of correctly formatted dat, clck Help.

OEBPS/httpatomoreillycomsourceoreillyimages127169.png
Command Button Wizard

Vihat acton do you want to happen hen the button s
pressed?

Different actions are avalable for each category,

Categaries: Actons:

Record Operstons
Form Operations
Report Operatons
Appication
Miscelancous

Find Record

Go To First Record

Go To Last Record

Go To Next Record

Go To Previous Record

OEBPS/httpatomoreillycomsourceoreillyimages127091.png
Tables

|Queries [Both |

OEBPS/httpatomoreillycomsourceoreillyimages127097.png
References - Chapter5Database

Avalable References: ok

[Miarosoft Disk Quota 1.0

[Microsoft DT DDS Typelb 2

[Miarosoft DTC Fremenork

[Microsoft DTS Custom Tasks Object Library Bronse.

[Microsoft DTSDataPump Scipting Object Lbrary S

[Miarosoft DTSPackage Object Library =
Microsoft Excel 11,0 Object Lirary.

[Microsoft Exchange Event Service Config 10 Typeli Prioity

[Microsoft Fax Service Extended COM Type Library

[Microsoft FrontPage 6.0 Page ObjectReference Lbre 4

[Microsoft FrontPage 6.0 Web Object Reference Lbre

[Microsoft Graph 1.0 Object Library

[Microsoft H323 Service Provider 1.0 Type Library

[Microsoft 5T Ohiect brary

2 N——— B}

“Mirosoft Excel 110 Object Lirary

Location: ~ C:\Program Files\Microsoft Office\OFFICE 11\EXCEL.EXE
Language: Standerd

Cancel

b

OEBPS/httpatomoreillycomsourceoreillyimages127101.png
I —— 3

Coor_|_intematonsl | _save | _ror Chedang_|_Speling | _seaty
veew__|, caciton_|_Edt_] Genersl | Transtion | Custom si_|_ chert
Settings

[CRiCt reference style [erompt for workbook properties

[tgnore other applications [Provide feedback with sound

0] zoom on ol i ntelvouse
et

Wieb Options... | Service Options.

Shestsnnewworkbook: 3 (3]
Standard font:

el v] sz [v

Default fie location: C:\Documents and Settings Vichael Schmalz My [

Atstartup, open al fles

User pame: Michael Schmalz

Ce) L=

OEBPS/httpatomoreillycomsourceoreillyimages127167.png
Startup B[]

‘Applcation Tite: Display Fgrm/Page:

I (oone)
ropcaton il Btabase Wi

isplay Status Bar

E|

Use

Eorm and Report on
MenuBar: Shortcut Menu Bar:

(default) (Gefault)

Alow Ful Menus low Buitn Toobars

Aoy Default Shorteut Menus llow Tooba/Menu Changes

Use Access Special Keys

(show Database Window, Show Inmediate:
Vindow, Show VB Window, and Pause Execution)

OEBPS/httpatomoreillycomsourceoreillyimages127147.png
T e e e T B B e o - @ %

1 o0 [PETAERL Y |

CaT o B e
Sales Report for Storefiont Locatons.

e sy S5
+ Product Report

2Bevrages
 ToulBoverages

7 Foos

1 Total Sales

o\t S 52/ e —aill

i
il
i

OEBPS/httpatomoreillycomsourceoreillyimages127063.png
—— =
e
— m
i B
o
EE
===
- = s
=B i
R ——
= om it
R Rl
= oamE i
e aa
= agi
e S
S o
i o i
i =

]
E

e}

i

OEBPS/httpatomoreillycomsourceoreillyimages127045.png
Import Data

Vihere do you want to put the data?
© Existing worksheet:

s1

O New worksheet

(i3] create a ivotTable report.

.. | (Edtgumy

OEBPS/httpatomoreillycomsourceoreillyimages127039.png
Query Wizard - Filter Data

Filts the deta o specily which s 1o include in your query.
1fyou dorit want o fiter the data, cck Net.
Column o fiter: Orlyinchude rows where:

st Freigt
Coime s goserthan <] i =
[Gand Con
Recieibate - :
ShopedDae f]

shioia T oo
Freight] g
Shotlane
ShipAddress
Shec

Clind Clon

<Back Ned > Cancel

OEBPS/httpatomoreillycomsourceoreillyimages127043.png
Query Wizard - Finish

What would you ke to do nex?
& Retun Data to Mictosoft Dfice Excel
" View deta or edt query in Mictosolt Duery

" Create an DLAP Cube from tis quety

<Back

Fiish

Cancel

