

 [image: Second Edition]

 Linux Pocket Guide

Daniel J. Barrett

Published by O’Reilly Media

[image:]
Beijing ⋅ Cambridge ⋅ Farnham ⋅ Köln ⋅ Sebastopol ⋅ Tokyo

SPECIAL OFFER: Upgrade this ebook with O’Reilly

Click here for more information on this offer!
Please note that upgrade offers are not available from sample content.

Chapter 1. Linux Pocket Guide

Welcome to Linux! If you’re a new user, this book can serve as a
 quick introduction, as well as a guide to common and practical commands.
 If you have Linux experience, feel free to skip the introductory
 material.

What’s in This Book?

This book is a short guide, not a comprehensive
 reference. We cover important, useful aspects of Linux so you
 can work productively. We do not, however, present every single command
 and every last option (our apologies if your favorite was omitted), nor
 delve into detail about operating system internals. Short, sweet, and
 essential, that’s our motto.
We focus on commands, those pesky little
 words you type on a command line to tell a Linux system what to do.
 Here’s an example command that counts lines of text in a file, myfile:
wc -l myfile
We’ll cover the most important Linux commands for the average
 user, such as ls (list files),
 grep (search for text in a file),
 amarok (play audio files), and
 df (measure free disk space). We
 touch only briefly on graphical windowing environments like GNOME and
 KDE, each of which could fill a Pocket Guide by itself.
We’ve organized the material by function to provide a concise
 learning path. For example, to help you view the contents of a file, we
 introduce all file-viewing commands together: cat for short text files, less for longer ones, od for binary files, acroread for PDF files, and so on. Then we
 explain each command in turn, briefly presenting its common uses and
 options.
We assume you have an account on a Linux system and know how to
 log in with your username and password. If not, speak with your system
 administrator, or if the system is your own, use the account created
 when you installed Linux.

What’s Linux?

Linux is a popular, open source operating system that competes
 with Microsoft Windows and the Apple Macintosh. There are two ways to
 work with a Linux system:
	A graphical user interface with windows, icons, and mouse
 control.

	A command-line interface, called the
 shell, for typing and running commands like
 the preceding wc.

Windows and Mac OS computers can be operated by command line as
 well (Windows with its cmd and
 PowerShell command tools, and OS X with its Terminal application), but
 most of their users can survive without typing commands. On Linux,
 however, the shell is critical. If you use Linux without the shell,
 you are missing out.

What’s a Distro?

Linux is extremely configurable and includes thousands of
 programs. As a result, different varieties of Linux have arisen to
 serve different needs and tastes. They all share certain core
 components but may look different and include different programs and
 files. Each variety is called a distro (short
 for “distribution”). Popular distros include Ubuntu Linux, Red Hat
 Enterprise Linux, Slackware, Mint, and more. This book covers core
 material that should apply to every distro.

What’s a Command?

A Linux command typically consists of a program
 name followed by options and
 arguments, typed within a shell, like
 this:
$ wc -l myfile
The program name (wc, the
 “word count” program) refers to a program somewhere on disk that the
 shell will locate and run. Options, which usually begin with a dash,
 affect the behavior of the program. In the preceding command, the
 -l option tells wc to count lines rather than words. The
 argument myfile specifies the file
 that wc should read and process.
 The leading dollar sign ($) is a
 prompt from the shell, indicating that it is
 waiting for your command.
Commands can have multiple options and arguments. Options may be
 given individually:
$ wc -l -w myfile Two individual options
or combined behind a single dash:
$ wc -lw myfile Same as -l -w
though some programs are quirky and do not recognize combined
 options. Multiple arguments are also OK:
$ wc -l myfile1 myfile2 Count lines in two files
Options are not standardized. The same option letter (say,
 -l) may have different meanings to
 different programs: in wc -l it means “lines of text,” but
 in ls -l it means “longer output.”
 In the other direction, two programs might use different options to
 mean the same thing, such as -q for
 “run quietly” versus -s for “run
 silently.”
Likewise, arguments are not standardized, unfortunately. They
 usually represent filenames for input or output, but they can be other
 things too, like directory names or regular expressions.
Commands can be more complex and interesting than a single
 program with options:
	Commands can run more than one program at a time, either in
 sequence (one program after another) or in a “pipeline” with the
 output of one command becoming the input of the next. Linux
 experts use pipelines all the time.

	The Linux command-line user interface—the
 shell—has a programming language built in.
 So instead of a command saying “run this program,” it might say,
 “if today is Tuesday, run this program; otherwise, run another
 command six times for each file whose name ends in .txt.”

Reading This Book

We’ll describe many Linux commands in this book. Each
 description begins with a standard heading about the command; Figure 1-1 shows one for the ls (list files) command. This heading
 demonstrates the general usage in a simple format:
ls [options] [files]
which means you’d type “ls” followed, if you choose, by options
 and then filenames. You wouldn’t type the square brackets “[” and “]”:
 they just indicate their contents are optional; and words in italics
 mean you have to fill in your own specific values, like names of
 actual files. If you see a vertical bar between options or arguments,
 perhaps grouped by parentheses:
(file | directory)
This indicates choice: you may supply either a filename or
 directory name as an argument.
The special heading also includes six properties of the command
 printed in black (supported) or gray (unsupported):
[image: Standard command heading]

Figure 1-1. Standard command heading

	
 stdin

	The command reads from standard input, i.e., your
 keyboard, by default. See Input and Output.

	
 stdout

	The command writes to standard output, i.e., your screen,
 by default. See Input and Output.

	- file
	When given a dash (-) argument in place of an input
 filename, the command reads from standard input; and likewise,
 if the dash is supplied as an output filename, the command
 writes to standard output. For example, the following wc command line reads the files
 file1 and file2, then standard input, then
 file3:
$ wc file1 file2 - file3

	-- opt
	If you supply the command-line option “--” it means “end
 of options”: anything appearing later on the command line is not
 an option. This is sometimes necessary to operate on a file
 whose name begins with a dash, which otherwise would be
 (mistakenly) treated as an option. For example, if you have a
 file named -foo, the
 command wc -foo will fail
 because -foo will be treated
 as an (invalid) option. wc --
 -foo works. If a command does not support “--”, you
 can prepend the current directory path “./” to the filename so
 the dash is no longer the first character:
$ wc ./-foo

	--help
	The option --help makes
 the command print a help message explaining proper usage, then
 exit.

	--version
	The option --version
 makes the command print its version information and exit.

Shell prompts

Some commands in this book can be run successfully only by the
 superuser, a special user with permission to
 do anything on the system. In this case, we use a hash mark (#) as
 the shell prompt:
superuser command goes here
Otherwise, we will use the dollar sign prompt, indicating an
 ordinary user:
$ ordinary command goes here

Keystrokes

Throughout the book, we use certain symbols to indicate
 keystrokes. Like many other Linux documents, we use the ^ symbol to
 mean “press and hold the Control (Ctrl) key,” so for example,
 ^D (pronounced “control D”) means
 “press and hold the Control key and type D.” We also write ESC to
 mean “press the Escape key.” Keys like Enter and the space bar
 should be self-explanatory.

Your friend, the echo command

In many of our examples, we’ll print information to the screen
 with the echo command, which
 we’ll formally describe in Screen Output.
 echo is one of the simplest
 commands: it merely prints its arguments on standard output, once
 those arguments have been processed by the shell.
$ echo My dog has fleas
My dog has fleas
$ echo My name is $USER Shell variable USER
My name is smith

Getting Help

If you need more information than this book provides, there are
 several things you can do.
	
 Run the man
 command

	The man command displays
 an online manual page, or manpage, for a
 given program. For example, to learn about listing files with
 ls, run:
$ man ls
To search for manpages by keyword for a particular topic,
 use the -k option followed by
 the keyword:
$ man -k database

	
 Run the info
 command

	The info command is an
 extended, hypertext help system covering many Linux
 programs.
$ info ls
While info is running,
 some useful keystrokes are:
	To get help, type h

	To quit, type q

	To page forward and backward, use the space bar and
 Backspace keys

	To jump between hyperlinks, press TAB

	To follow a hyperlink, press Enter

If info has no
 documentation on a given program, it displays the program’s
 manpage. For a listing of available documentation, type info by itself. To learn how to navigate
 the info system, type info
 info.

	
 Use the --help option (if
 any)

	Many Linux commands respond to the option --help by printing a short help message.
 Try:
$ ls --help
If the output is longer than the screen, pipe it into the
 less program to display it in
 pages (press q to quit):
$ ls --help | less

	
 Examine the directory
 /usr/share/doc

	This directory contains supporting documents for many
 programs, usually organized by program name and version. For
 example, files for the text editor emacs, version 23, are likely
 found (depending on distro) in /usr/share/doc/emacs23.

	
 GNOME and KDE Help

	For help with GNOME or KDE, visit http://www.gnome.org or http://www.kde.org.

	
 Distro-specific websites

	Most Linux distros have an official site that includes
 documentation, discussion forums for questions and answers, and
 other resources. Simply enter the distro name (e.g., “Ubuntu”)
 into any popular search engine to find its web site. You can also
 visit the web site for this book: http://shop.oreilly.com/product/0636920023029.do.

	
 Linux help sites

	Many web sites answer Linux questions, such as http://www.linuxquestions.org, http://unix.stackexchange.com, http://www.linuxhelp.net, and http://www.linuxforums.org.

	
 Web search

	To decipher a specific Linux error message, enter the
 message into a web search engine, word for word, and you will
 likely find helpful results.

Linux: A First View

Linux has four major parts:
	
 The kernel

	The low-level operating system, handling files, disks,
 networking, and other necessities we take for granted. Most users
 rarely notice the kernel.

	
 Supplied programs

	Thousands of programs for file manipulation, text editing,
 mathematics, web browsing, audio, video, computer programming, typesetting,
 encryption, DVD burning…you name it.

	
 The shell

	A user interface for typing commands, executing them, and
 displaying the results. Linux has various shells: the Bourne
 shell, Korn shell, C shell, and others. This book focuses on bash,
 the Bourne-Again Shell, which is often the default for user
 accounts. However, all these shells have similar basic
 functions.

	
 X

	A graphical system that provides windows, menus, icons,
 mouse support, and other familiar GUI elements. More complex
 graphical environments are built on X; the most popular are KDE
 and GNOME. We’ll discuss a few programs that open X windows to
 run.

This book focuses on the second and third parts: supplied programs
 and the shell.

The Graphical Desktop

When you log into a Linux system, you’re likely to be greeted by
 a graphical desktop[1] like Figure 1-2, which
 contains:
	A main menu or taskbar. Depending on your distro and system
 settings, this might be at the top, bottom, or side of the
 screen.

	Desktop icons representing the computer, a folder
 representing your home directory for personal files, a trash can,
 and more.

	Icons to run applications, such as the Firefox web browser
 and the Thunderbird email program.

	Controls for opening and closing windows and running
 multiple desktops at once.

	A clock and other small, informational icons.

[image: Graphical desktops (CentOS Linux with GNOME, Ubuntu with KDE). Desktops can look wildly different, depending on your distro and system settings.]

Figure 1-2. Graphical desktops (CentOS Linux with GNOME, Ubuntu with
 KDE). Desktops can look wildly different, depending on your distro
 and system settings.

Linux systems have several graphical interfaces, the most common
 being GNOME and KDE. Identify yours by clicking your system’s
 equivalent of a main menu or start menu and looking for the words
 GNOME, KDE, Kubuntu (KDE on Ubuntu Linux), or similar.

[1] Unless you’re logging in remotely over the network, in which
 case you’ll see just a command prompt, waiting for you to type a
 command.

Running a Shell

The icons and menus in GNOME and KDE are, for some users, the
 primary way to work with Linux. This is fine for simple tasks like
 reading email and browsing the Web. Nevertheless, the true power of
 Linux lies beneath this graphical interface, in the shell.
To get the most out of Linux, take the time to become proficient
 with the shell. (That’s what this book is all about.) It might
 initially be more difficult than icons and menus, but once you’re used
 to it, the shell is quite easy to use and very
 powerful.
To run a shell within GNOME, KDE, or any other graphical
 interface for Linux, you need to open a shell
 window: a window with a shell running in it. Figure 1-2 shows two shell windows with “$” shell
 prompts, awaiting your commands. Look through your system menus for an
 application to do this. Typical menu items are
 Terminal, xterm,
 gnome-terminal, konsole, and
 uxterm.
Don’t confuse the window program (like konsole) with the shell running inside it.
 The window is just a container—possibly with fancy features of its
 own—but the shell is what prompts you for commands and runs
 them.
If you’re not running a graphical interface—say, you’re logging
 in remotely over the network, or directly over an attached terminal—a shell will run immediately
 when you log in. No shell window is required.
This was just a quick introduction. We’ll discuss more details
 in The Shell, and cover more powerful constructs in
 Programming with Shell Scripts.

Input and Output

Most Linux commands accept input and produce output. Input can
 come from files or from standard input, which
 is usually your keyboard. Likewise, output is written to files or to
 standard output, which is usually your shell
 window or screen. Error messages are treated specially and displayed
 on standard error, which also is usually your
 screen but kept separate from standard output.[2] Later we’ll see how to redirect
 standard input, output, and error to and from files or pipes. But
 let’s get our vocabulary straight. When we say a command “reads,” we
 mean from standard input unless we say otherwise. And when a command
 “writes” or “prints,” we mean on standard output, unless we’re talking
 about computer printers.

[2] For example, you can capture standard output in a file and
 still have standard error messages appear on screen.

Users and Superusers

Linux is a multiuser operating system: multiple people can use a
 single Linux computer at the same time. On a given computer, each user
 is identified by a unique username, like
 “smith” or “funkyguy,” and owns a (reasonably) private part of the
 system for doing work. There is also a special user named
 root—the superuser—who
 has the privileges to do anything at all on the system. Ordinary users
 are restricted: though they can run most programs, in general they can
 modify only the files they own. The superuser, on the other hand, can
 create, modify, or delete any file and run any program.
To become the superuser, you needn’t log out and log back in;
 just run the su command (see Becoming the Superuser) and provide the superuser
 password:
$ su -l
Password: *******
#
The superuser prompt (#)
 indicates that you’re ready to run superuser commands. Alternatively,
 run the sudo command (if your
 system is configured to use it), which executes a single command as
 the superuser, then returns control to the original user:
$ sudo ls /private/secrets View a protected directory
Password: *******
secretfile1 secretfile2 It worked!
$

The Filesystem

To make use of any Linux system, you need to be comfortable with
 Linux files and directories (a.k.a. folders). In
 a “windows and icons” system, the files and directories are obvious on
 screen. With a command-line system like the Linux shell, the same files
 and directories are still present but are not constantly visible, so at
 times you must remember which directory you are “in” and how it relates
 to other directories. You’ll use shell commands like cd and pwd
 to “move” between directories and keep track of where you are.
Let’s cover some terminology. As we’ve said, Linux files are
 collected into directories. The directories form a hierarchy, or
 tree, as in Figure 1-3:
 one directory may contain other directories, called
 subdirectories, which may themselves contain
 other files and subdirectories, and so on, into infinity. The topmost
 directory is called the root directory and is
 denoted by a slash (/).[3]
[image: A Linux filesystem (partial). The root folder is at the top. The “dan” folder’s full path is /home/dan.]

Figure 1-3. A Linux filesystem (partial). The root folder is at the top.
 The “dan” folder’s full path is /home/dan.

We refer to files and directories using a “names and slashes”
 syntax called a path. For instance, this
 path:
/one/two/three/four
refers to the root directory /, which contains a directory called
 one, which contains a directory
 two, which contains a directory
 three, which contains a final file
 or directory, four. If a path
 begins with the root directory, it’s called an
 absolute path, and if not, it’s a
 relative path. More on this in a
 moment.
Whenever you are running a shell, that shell is working “in” some
 directory (in an abstract sense). More technically, your shell has a
 current working directory, and when you run
 commands in that shell, they operate relative (there’s that word again)
 to the directory. More specifically, if you refer to a relative file
 path in that shell, it is relative to your current working directory.
 For example, if your shell is “in” the directory /one/two/three, and you run a command that
 refers to a file myfile, then the
 file is really /one/two/three/myfile. Likewise, a relative
 path a/b/c would imply the true
 path /one/two/three/a/b/c.
Two special directories are denoted . (a single period) and ..
 (two periods in a row). The former means your current directory, and the
 latter means your parent directory, one level
 above. So if your current directory is /one/two/three, then . refers to this
 directory and .. refers to /one/two.
You “move” your shell from one directory to another using the
 cd command:
$ cd /one/two/three
More technically, this command changes your shell’s current
 working directory to be /one/two/three. This is an absolute change
 (since the directory begins with “/”); of course you can make relative
 moves as well:
$ cd d Enter subdirectory d
$ cd ../mydir Go up to my parent, then into directory mydir
File and directory names may contain most characters you expect:
 capital and lowercase letters,[4] numbers, periods, dashes, underscores, and most symbols
 (but not “/”, which is reserved for separating directories). For
 practical use, however, avoid spaces, asterisks, parentheses, and other
 characters that have special meaning to the shell. Otherwise, you’ll
 need to quote or escape these characters all the time. (See Quoting.)

[3] In Linux, all files and directories
 descend from the root. This is unlike Windows or DOS, in which
 different devices are accessed by drive letters.

[4] Linux filenames are case-sensitive, so capital and lowercase
 letters are not equivalent.

Home Directories

Users’ personal files are often found in /home (for ordinary users) or /root (for the superuser). Your home
 directory is typically
 /home/your-username:
 /home/smith, /home/jones,
 etc. There are several ways to locate or refer to your home
 directory.
	

 cd

	With no arguments, the cd command returns you (i.e., sets the
 shell’s working directory) to your home directory.

	
 HOME variable

	The environment variable HOME (see Shell variables) contains the name of your home
 directory.
$ echo $HOME The echo command prints its arguments
/home/smith

	
 ˜

	When used in place of a directory, a lone tilde is
 expanded by the shell to the name of your home
 directory.
$ echo ˜
/home/smith
When followed by a username (as in ~fred), the shell expands this string
 to be the user’s home directory:
$ cd ˜fred
$ pwd The “print working directory” command
/home/fred

System Directories

A typical Linux system has tens of thousands of system directories. These directories contain
 operating system files, applications, documentation, and just about
 everything except personal user files (which
 typically live in /home).
Unless you’re a system administrator, you’ll rarely visit most
 system directories—but with a little knowledge you can understand or
 guess their purposes. Their names often contain three parts, which
 we’ll call the scope, category, and application. (These are not
 standard terms, but they’ll help you understand things.) For example,
 the directory /usr/local/share/emacs, which contains
 local data for the emacs text editor, has scope /usr/local (locally installed system
 files), category share
 (program-specific data and documentation), and application emacs (a text editor), shown in Figure 1-4. We’ll explain
 these three parts, slightly out of order.
[image: Directory scope, category, and application]

Figure 1-4. Directory scope, category, and application

Directory path part 1: category

A category tells you the types of files
 found in a directory. For example, if the category is bin, you can be reasonably assured that
 the directory contains programs. Common categories are:
	

 Categories for
 programs

	

 bin

 	
 Programs (usually
 binary files)

	

 sbin

 	
 Programs (usually
 binary files) intended to be run by the
 superuser

	

 lib

 	
 Libraries of code
 used by programs

	

 libexec

 	
 Programs invoked by
 other programs, not usually by users; think “library of
 executable programs”

	

 Categories for
 documentation

	

 doc

 	
 Documentation

	

 info

 	
 Documentation files
 for emacs’s built-in help system

	

 man

 	
 Documentation files
 (manual pages) displayed by the man program; the files are often
 compressed, or sprinkled with typesetting commands for
 man to
 interpret

	

 share

 	
 Program-specific
 files, such as examples and installation
 instructions

	

 Categories for
 configuration

	

 etc

 	
 Configuration files
 for the system (and other miscellaneous
 stuff)

	

 init.d

 	
 Configuration files
 for booting Linux

	

 rc.d

 	
 Configuration files
 for booting Linux; also rc1.d, rc2.d, ...

	

 Categories for
 programming

	

 include

 	
 Header files for
 programming

	

 src

 	
 Source code for
 programs

	

 Categories for
 web files

	

 cgi-bin

 	
 Scripts/programs that
 run on web pages

	

 html

 	
 Web
 pages

	

 public_html

 	
 Web pages, typically
 in users’ home directories

	

 www

 	
 Web
 pages

	

 Categories for
 display

	

 fonts

 	
 Fonts
 (surprise!)

	

 X11

 	
 X window system
 files

	

 Categories for
 hardware

	

 dev

 	
 Device files for
 interfacing with disks and other hardware

	

 media

 	
 Mount points:
 directories that provide access to disks

	

 mnt

 	
 Mount points:
 directories that provide access to disks

	

 misc

 	
 Mount points:
 directories that provide access to disks

	

 Categories for
 runtime files

	

 var

 	
 Files specific to
 this computer, created and updated as the computer
 runs

	

 lock

 	
 Lock files, created
 by programs to say, “I am running”; the existence of a lock
 file may prevent another program, or another instance of the
 same program, from running or performing an
 action

	

 log

 	
 Log files that track
 important system events, containing error, warning, and
 informational messages

	

 mail

 	
 Mailboxes for
 incoming mail

	

 run

 	
 PID files, which
 contain the IDs of running processes; these files are often
 consulted to track or kill particular
 processes

	

 spool

 	
 Files queued or in
 transit, such as outgoing email, print jobs, and scheduled
 jobs

	

 tmp

 	
 Temporary storage for
 programs and/or people to use

	

 proc

 	
 Operating system
 state: see Operating System Directories

Directory path part 2: scope

The scope of a directory path
 describes, at a high level, the purpose of an entire directory
 hierarchy. Some common ones are:
	

 /

 	
 System files supplied
 with Linux (pronounced “root”)

	

 /usr

 	
 More system files
 supplied with Linux (pronounced “user”)

	

 /usr/games

 	
 Games
 (surprise!)

	

 /usr/local

 	
 System files
 developed “locally,” either for your organization or your
 individual
 computer

	

 /usr/X11R6

 	
 Files pertaining to
 the X window system

So for a category like lib (libraries), your Linux system might
 have directories /lib, /usr/lib,
 /usr/local/lib, /usr/games/lib, and /usr/X11R6/lib.
There isn’t a clear distinction between / and /usr in practice, but there is a sense
 that / is “lower-level” and
 closer to the operating system. So /bin contains fundamental programs like
 ls and cat, /usr/bin contains a wide variety of
 applications supplied with your Linux distribution, and /usr/local/bin contains programs your
 system administrator chose to install. These are not hard-and-fast
 rules but typical cases.

Directory path part 3: application

The application part of a directory path, if present, is
 usually the name of a program. After the scope and category (say,
 /usr/local/doc), a program may
 have its own subdirectory (say, /usr/local/doc/myprogram) containing
 files it needs.

Operating System Directories

Some directories support the Linux kernel, the lowest-level part
 of the Linux operating system.
	
 /boot

	Files for booting the system. This is where the kernel
 lives, typically named /boot/vmlinuz.

	
 /lost+found

	Damaged files that were rescued by a disk recovery
 tool.

	
 /proc

	Describes currently running processes; for advanced
 users.

The files in /proc provide
 views into the running kernel and have special properties. They always
 appear to be zero sized, read-only, and dated now:
$ ls -l /proc/version
-r--r--r-- 1 root root 0 Oct 3 22:55 /proc/version
However, their contents magically contain information about the
 Linux kernel:
$ cat /proc/version
Linux version 2.6.32-71.el6.i686 ...
Files in /proc are used
 mostly by programs, but feel free to explore them. Here are some
 examples:
	

 /proc/ioports

 	
 A list of your
 computer’s input/output hardware.

	

 /proc/version

 	
 The operating system
 version. The uname command
 prints the same information.

	

 /proc/uptime

 	
 System uptime, i.e.,
 seconds elapsed since the system was last booted. Run the
 uptime command for a more
 human-readable result.

	

 /proc/nnn

 	
 Where
 nnn is a positive integer,
 information about the Linux process with process ID
 nnn.

	

 /proc/self

 	
 Information about the
 current process you’re running; a symbolic link to a /proc/nnn
 file, automatically updated. Try ls
 -l /proc/self several times in a row: you’ll see
 /proc/self changing where
 it points.

File Protections

A Linux system may have many users with login accounts. To
 maintain privacy and security, most users can access only
 some files on the system, not all. This access
 control is embodied in two questions:
	
 Who has permission?

	Every file and directory has an
 owner who has permission to do anything
 with it. Typically the user who created a file is its owner, but
 relationships can be more complex.
Additionally, a predefined group of
 users may have permission to access a file. Groups are defined
 by the system administrator and are covered in Group Management.
Finally, a file or directory can be opened to
 all users with login accounts on the
 system. You’ll also see this set of users called the
 world or simply other.

	
 What kind of permission is
 granted?

	File owners, groups, and the world may each have
 permission to read,
 write (modify), and
 execute (run) particular files. Permissions
 also extend to directories, which users may read (access files
 within the directory), write (create and delete files within the
 directory), and execute (enter the directory with cd).

To see the ownership and permissions of a file, run:
$ ls -l myfile
-rw-r--r-- 1 smith smith 7384 Jan 04 22:40 myfile
To see the ownership and permissions of a directory, run:
$ ls -ld dirname
drwxr-x--- 3 smith smith 4096 Jan 08 15:02 dirname
In the output, the file permissions are the 10 leftmost
 characters, a string of r (read),
 w (write), x (execute), other letters, and dashes. For
 example:
-rwxr-x---
Here’s what these letters and symbols mean.
	
 Position

 	
 Meaning

	
 1

 	
 File type: - = file, d = directory, l = symbolic link, p = named pipe, c = character device, b = block device

	
 2–4

 	
 Read, write, and
 execute permissions for the file’s owner

	
 5–7

 	
 Read, write, and
 execute permissions for the file’s group

	
 8–10

 	
 Read, write, and
 execute permissions for all other users

So our example -rwxr-x---
 means a file that can be read, written, and executed by the owner,
 read and executed by the group, and not accessed at all by the rest of
 the world. We describe ls in more
 detail in Basic File Operations. To change the
 owner, group ownership, or permissions of a file, use the chown, chgrp, and chmod commands, respectively, as described
 in File Properties.

The Shell

In order to run commands on a Linux system, you’ll need somewhere
 to type them. That “somewhere” is called the
 shell, which is Linux’s command-line user
 interface: you type a command and press Enter, and the shell runs
 whatever program (or programs) you’ve requested. (See Running a Shell to learn how to open a shell
 window.)
For example, to see who’s logged in, you could execute this
 command in a shell:
$ who
silver :0 Sep 23 20:44
byrnes pts/0 Sep 15 13:51
barrett pts/1 Sep 22 21:15
silver pts/2 Sep 22 21:18
(The dollar sign is the shell prompt, which means the shell is
 ready to run a command.) A single command can also invoke several
 programs at the same time, and even connect programs together so they
 interact. Here’s a command that redirects the output of the who program to become the input of the
 wc program, which counts lines of
 text in a file; the result is the number of lines in the output of
 who:
$ who | wc -l
4
telling you how many users are logged in.[5] The vertical bar, called a pipe,
 makes the connection between who and
 wc.
A shell is actually a program itself, and Linux has several. We
 focus on bash (the Bourne-Again Shell), located in /bin/bash, which is usually the default in
 Linux distros.

[5] Actually, how many interactive shells those users are running.
 If a user has two shells running, like the user silver in our
 example, he’ll have two lines of output from who.

The Shell Versus Programs

When you run a command, it might invoke a Linux program (like
 who), or instead it might be a
 built-in command, a feature of the shell
 itself. You can tell the difference with the type command:
$ type who
who is /usr/bin/who
$ type cd
cd is a shell builtin
It is helpful to know what the shell provides versus what Linux
 does. The next few sections describe features of the shell.

Selected Features of the bash Shell

A shell does much more than simply run commands. It also has
 powerful features to make this task easier: wildcards for matching
 filenames, a “command history” to recall previous commands quickly,
 pipes for making the output of one command become the input of
 another, variables for storing values for use by the shell, and more.
 Take the time to learn these features, and you will become faster and
 more productive with Linux. Let’s skim the surface and introduce you
 to these useful tools. (For full documentation, run info bash.)
Wildcards

Wildcards are a shorthand for sets of files with similar
 names. For example, a* means all
 files whose names begin with lowercase “a”. Wildcards are “expanded”
 by the shell into the actual set of filenames they match. So if you
 type:
$ ls a*
the shell first expands a*
 into the filenames that begin with “a” in your current directory, as
 if you had typed:
$ ls aardvark adamantium apple
ls never knows you used a
 wildcard: it sees only the final list of filenames after the shell
 expands the wildcard. Importantly, this means
 every Linux command, regardless of its origin,
 works with wildcards and other shell features.
Wildcards never match two characters: a leading period, and
 the directory slash (/). These
 must be given literally, as in .pro* to match .profile, or /etc/*conf to match all filenames ending
 in conf in the /etc directory.
Dot Files
Filenames with a leading period, called dot
 files, are special in Linux. When you name a file
 beginning with a period, it will not be displayed by some
 programs:
	ls will omit the file
 from directory listings, unless you provide the -a option

	Shell wildcards do not match a leading period

Effectively, dot files are hidden unless you explicitly ask
 to see them. As a result, sometimes they are called “hidden
 files.”

	
 Wildcard

 	
 Meaning

	
 *

 	
 Zero or more
 consecutive characters

	
 ?

 	
 Any single
 character

	
 [set]

 	
 Any single character
 in the given set, most commonly a
 sequence of characters, like [aeiouAEIOU] for all vowels, or a
 range with a dash, like [A-Z] for all capital
 letters

	
 [^set]

 	
 Any single character
 not in the given
 set (as in the earlier
 example)

	
 [!set]

 	
 Same as ^

When using character sets, if you want to include a literal
 dash in the set, put it first or last. To include a literal closing
 square bracket in the set, put it first. To include a ^ or !
 symbol literally, don’t put it first.

Brace expansion

Similar to wildcards, expressions with curly braces also
 expand to become multiple arguments to a command. The
 comma-separated expression:
{X,YY,ZZZ}
expands first to X, then YY, and finally ZZZ within a command
 line, like this:
$ echo sand{X,YY,ZZZ}wich
sandXwich sandYYwich sandZZZwich
Braces work with any strings, unlike wildcards, which are
 limited to filenames. The preceding example works regardless of
 which files are in the current directory.

Shell variables

You can define variables and their values by assigning
 them:
$ MYVAR=3
To refer to a value, simply place a dollar sign in front of
 the variable name:
$ echo $MYVAR
3
Some variables are standard and commonly defined by your shell
 upon login.
	
 Variable

 	
 Meaning

	

 DISPLAY

 	
 The name of your X
 window display

	

 HOME

 	
 Your home directory,
 such as /home/smith

	

 LOGNAME

 	
 Your login name, such
 as smith

	

 MAIL

 	
 Your incoming
 mailbox, such as /var/spool/mail/smith

	

 OLDPWD

 	
 Your shell’s previous
 directory, prior to the last cd command

	

 PATH

 	
 Your shell search
 path: directories separated by colons

	

 PWD

 	
 Your shell’s current
 directory

	

 SHELL

 	
 The path to your
 shell, e.g., /bin/bash

	

 TERM

 	
 The type of your
 terminal, e.g., xterm or vt100

	

 USER

 	
 Your login
 name

To see a shell’s variables, run:
$ printenv
The scope of the variable (i.e., which programs know about it)
 is, by default, the shell in which it’s defined. To make a variable
 and its value available to other programs your shell invokes (i.e.,
 subshells), use the export
 command:
$ export MYVAR
or the shorthand:
$ export MYVAR=3
Your variable is now called an environment
 variable, since it’s available to other programs in your
 shell’s “environment.” So in the preceding example, the exported
 variable MYVAR is available to
 all programs run by that same shell (including shell scripts: see
 Variables).
To make a variable value available to a specific program just
 once, prepend variable=value to the
 command line:
$ printenv HOME
/home/smith
$ HOME=/home/sally printenv HOME
/home/sally
$ printenv HOME
/home/smith The original value is unaffected

Search path

Programs are scattered all over the Linux filesystem, in
 directories like /bin and
 /usr/bin. When you run a
 program via a shell command, how does the shell find it? The
 critical variable PATH tells the
 shell where to look. When you type any command:
$ who
the shell has to find the who program by searching through Linux
 directories. The shell consults the value of PATH, which is a sequence of directories
 separated by colons:
$ echo $PATH
/usr/local/bin:/bin:/usr/bin:/home/smith/bin
and looks for the who
 command in each of these directories. If it finds who (say, /usr/bin/who), it runs the command.
 Otherwise, it reports:
bash: who: command not found
To add directories to your shell’s search path temporarily,
 modify its PATH variable. For
 example, to append /usr/sbin to
 your shell’s search path:
$ PATH=$PATH:/usr/sbin
$ echo $PATH
/usr/local/bin:/bin:/usr/bin:/home/smith/bin:/usr/sbin
This change affects only the current shell. To make it
 permanent, modify the PATH
 variable in your startup file ~/.bash_profile, as explained in
 Tailoring Shell Behavior. Then log out and log
 back in.

Aliases

The built-in command alias
 defines a convenient shorthand for a longer command, to save typing.
 For example:
$ alias ll='ls -l'
defines a new command ll
 that runs ls -l:
$ ll
total 436
-rw-r--r-- 1 smith 3584 Oct 11 14:59 file1
-rwxr-xr-x 1 smith 72 Aug 6 23:04 file2
...
Define aliases in your ~/.bashrc file (see Tailoring Shell Behavior) to be available whenever you
 log in.[6] To list all your aliases, type alias. If aliases don’t seem powerful
 enough for you (since they have no parameters or branching), see
 Programming with Shell Scripts, run info
 bash, and read up on “shell functions.”

Input/output redirection

The shell can redirect standard input, standard output, and
 standard error to and from files. In other words, any command that
 reads from standard input can have its input come from a file
 instead with the shell’s < operator:
$ mycommand < infile
Likewise, any command that writes to standard output can write
 to a file instead:
$ mycommand > outfile Create/overwrite outfile
$ mycommand >> outfile Append to outfile
A command that writes to standard error can have its output
 redirected to a file as well, while standard output still goes to
 the screen:
$ mycommand 2> errorfile
To redirect both standard output and standard error to
 files:
$ mycommand > outfile 2> errorfile Separate files
$ mycommand >& outfile Single file

Pipes

You can redirect the standard output of one command to be the
 standard input of another, using the shell’s pipe (|) operator. For
 example:
$ who | sort
sends the output of who
 into the sort program, printing
 an alphabetically sorted list of logged-in users. Multiple pipes
 work too. Here we sort the output of who again, extract the first column of
 information (using awk), and
 display the results one page at a time (using less):
$ who | sort | awk '{print $1}' | less

Combining commands

To invoke several commands in sequence on a single command
 line, separate them with semicolons:
$ command1 ; command2 ; command3
To run a sequence of commands as before, but stop execution if
 any of them fails, separate them with && (“and”) symbols:
$ command1 && command2 && command3
To run a sequence of commands, stopping execution as soon as
 one succeeds, separate them with || (“or”) symbols:
$ command1 || command2 || command3

Quoting

Normally, the shell treats whitespace simply as separating the
 words on the command line. If you want a word to
 contain whitespace (e.g., a filename with a
 space in it), surround it with single or double quotes to make the
 shell treat it as a unit. Single quotes treat their contents
 literally, while double quotes let shell constructs be evaluated,
 such as variables:
$ echo 'The variable HOME has value $HOME'
The variable HOME has value $HOME
$ echo "The variable HOME has value $HOME"
The variable HOME has value /home/smith
Backquotes (“backticks”) cause their contents to be evaluated
 as a shell command. The contents are then replaced by the standard
 output of the command:
$ whoami Program that prints your username
smith
$ echo My name is `whoami`
My name is smith

Escaping

If a character has special meaning to the shell but you want
 it used literally (e.g., * as a
 literal asterisk rather than a wildcard), precede the character with
 the backward slash “\” character. This is called
 escaping the special character:
$ echo a* As a wildcard, matching “a” filenames
aardvark agnostic apple
$ echo a* As a literal asterisk
a*
$ echo "I live in $HOME" Dollar sign means a variable value
I live in /home/smith
$ echo "I live in \$HOME" A literal dollar sign
I live in $HOME
You can also escape control characters (tabs, newlines, ^D,
 and so forth) to have them used literally on the command line, if
 you precede them with ^V. This is
 particularly useful for tab (^I)
 characters, which the shell would otherwise use for filename
 completion (see Filename completion).
$ echo "There is a tab between here^V^I and here"
There is a tab between here and here

Command-line editing

Bash lets you edit the command line you’re working on, using
 keystrokes inspired by the text editors emacs and vi (see File Creation and Editing). To enable command-line
 editing with emacs keys, run this command (and place it in your
 ~/.bash_profile to make it
 permanent):
$ set -o emacs
For vi keys:
$ set -o vi
	
 emacs
 keystroke

 	
 vi keystroke
 (after ESC)

 	
 Meaning

	
 ^P or up
 arrow

 	
 k

 	
 Go to previous
 command

	
 ^N or down
 arrow

 	
 j

 	
 Go to next
 command

	
 ^F or right
 arrow

 	
 l

 	
 Go forward one
 character

	
 ^B or left
 arrow

 	
 h

 	
 Go backward one
 character

	
 ^A

 	
 0

 	
 Go to beginning of
 line

	
 ^E

 	
 $

 	
 Go to end of
 line

	
 ^D

 	
 x

 	
 Delete next
 character

	
 ^U

 	
 ^U

 	
 Erase entire
 line

Command history

You can recall previous commands you’ve run—that is, the
 shell’s history—and re-execute them. Some
 useful history-related
 commands are listed below.
	
 Command

 	
 Meaning

	

 history

 	
 Print your
 history

	
 history
 N

 	
 Print the most recent
 N commands in your
 history

	

 history -c

 	
 Clear (delete) your
 history

	

 !!

 	
 Re-run previous
 command

	

 !N

 	
 Re-run command number
 N in your history

	

 !-N

 	
 Re-run the command
 you typed N commands
 ago

	

 !$

 	Represents the last
 parameter from the previous command; great for checking that
 files are present before removing them:

 $ ls a*
acorn.txt affidavit
$ rm !$

	

 !*

 	Represents all
 parameters from the previous command:
 $ ls a b c
a b c
$ wc !*
 103 252 2904 a
 12 25 384 b
 25473 65510 988215 c
 25588 65787 991503 total

Filename completion

Press the TAB key while you are in the middle of typing a
 filename, and the shell will automatically complete (finish typing)
 the filename for you. If several filenames match what you’ve typed
 so far, the shell will beep, indicating the match is ambiguous.
 Immediately press TAB again and the shell will present the
 alternatives. Try this:
$ cd /usr/bin
$ ls un<TAB><TAB>
The shell will display all files in /usr/bin that begin with un, such as uniq, units, and unzip. Type a few more characters to
 disambiguate your choice and press TAB again.

[6] Some setups use a separate file, ~/.bash_aliases, for this
 purpose.

End of sample

 To search for additional titles please go to

 http://search.overdrive.com.

OEBPS/httpatomoreillycomsourceoreillyimages1072536.png
Make a file:
$ touch name_A

name_/
(ordinary)

Hard link:
$ 1n name_A name_B
name_A--

nane_B -
(Hard link)

Symboliclink:

$ 1n -s name_A name_B

name_B
(Symbolic link)

Location
of file
on disk

Location
of file
on disk

Location
of file
on disk

OEBPS/httpatomoreillycomsourceoreillyimages1072528.png
Is stdin ~ stdout -file --opt --help --version

1s [options] [files]

OEBPS/httpatomoreillycomsourceoreillyimages1072538.png
0aa: O 6 4 0

w000 110 100 000
symbolic SST IWX ~IWX IWX

edal Tser Goup Other
a!xtaribum (W (@) (o)
Al

(@)

OEBPS/httpatomoreillycomsourceoreillyimages1072530.png.jpg

OEBPS/oreilly_large.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages1072534.png
/usr/local/share/emacs

‘
Saope Category Tpplication

OEBPS/orm_front_cover.jpg

OEBPS/httpatomoreillycomsourceoreillyimages1072532.png

