

 [image: Learning Ruby]

 Learning Ruby

Michael Fitzgerald

Editor
Simon St. Laurent

Copyright © 2008 Michael Fitzgerald

[image:]

O'Reilly Media

Dedication

Robert Wayne Darrah
1950-2006
Till we meet again

SPECIAL OFFER: Upgrade this ebook with O’Reilly

Click here for more information on this offer!
Please note that upgrade offers are not available from sample content.

A Note Regarding Supplemental Files

Supplemental files and examples for this book can be found at http://examples.oreilly.com/9780596529864/. Please use a standard desktop web browser to access these files, as they may not be accessible from all ereader devices.
All code files or examples referenced in the book will be available online. For physical books that ship with an accompanying disc, whenever possible, we’ve posted all CD/DVD content. Note that while we provide as much of the media content as we are able via free download, we are sometimes limited by licensing restrictions. Please direct any questions or concerns to booktech@oreilly.com.

Preface

Ruby has gotten a lot of attention since the appearance of Ruby on Rails, the web
 application framework written in Ruby. The attention is way past due. Ruby has been around as
 long as Java but enjoyed only limited attention outside of Japan until around 2000. In the
 last few years, Ruby's popularity has steadily grown, and with good reason.
Who Should Read This Book?

Generally, I figure two kinds of readers will buy this book: experienced programmers who
 want to learn Ruby, and new programmers who want to learn to program. I have the interesting
 job of catering to both while trying not to tick off either. It's a balancing act, and this
 is how I'll handle it: I am going to address you as if you are already a competent
 programmer, but I'll also provide plenty of help for beginners, mostly in the form of notes
 or sidebars. I'll let you know when you can skip a section if you are already a heavy
 hitter.
If you're a fairly experienced programmer, you might just want to read the code examples
 first, from the beginning of the book to the end, skimming the explanations surrounding the
 examples as needed. You should be able to see what's going on fairly quickly just by keeping
 your eyes on the code. The code is laid out in a more or less logical fashion (to me at
 least), so you should be able to figure out Ruby in fairly short order. If you are new to
 programming, I have attempted to make your job a little easier by explaining things as I go
 along.

How This Book Works

Do you have to know everything about a car before you start driving? Did you have to
 know anything about fuel injection, combustion, or timing belts to drive? Of course
 not.
It's the same with programming in a new language. I am going to show you lots of Ruby
 programs, many of them just one-liners, and then tell you how and why they work—just enough
 to get you rolling down the road. I take this approach because I believe we do most of our
 learning by observing, imitating, and playing. I plan to do a lot of that in this
 book.
You should know up front that this is a just-get-in-and-drive book. In other words, you
 can drive a car even if you don't know whether its got six or eight cylinders.
David Heinemeier Hansson, inventor of Ruby on Rails, said something I like: "People
 learn by changing a little thing, reloading, and seeing the change." He's right on. That's
 my experience: over the years I have learned more by hacking code than by reading about
 it.
I also move as quickly as possible, not getting bogged down in the quicksand of details.
 The details will come in time, as they are needed; the main thing I want to give you now is
 forward movement and momentum.
If you just follow along with what I'm doing, running the programs and altering them to
 your taste, you'll learn quickly. The more you run these programs, the more fluency you'll
 develop, and before long, you'll start thinking and even dreaming in Ruby. Then you'll just
 take off on your own.
The latest stable version at the time I am writing this is 1.8.6. That's the version
 I'll be using. You can probably get along using an older version, but unless you have 1.8.6
 or later installed, I can't guarantee that all the programs in this book will work as
 advertised, though they most likely will.

About the Examples

I think we learn best by observing what others do, then imitating what we observe.
 That's how we learn as children, anyway. And that's why you'll find code examples—to observe
 and imitate—on nearly every page of this book.
Many of the examples are available for download from http://www.oreilly.com/catalog/9780596529864. The idea is that you will have
 enough examples in your hands to start most of the basic programming tasks.

How This Book Is Organized

Learning Ruby is organized into 11 chapters. A brief synopsis of
 each follows:
	Chapter 1
	Introduces many Ruby basics, such as where to get Ruby, how to install it, and how
 to run a large cross-section of programs to enable you to start using Ruby
 immediately.

	Chapter 2
	Gallops over the Ruby terrain at a brisk pace, covering briefly the most important
 features of Ruby.

	Chapter 3
	Explains and demonstrates how to use conditionals (like if and while) in Ruby, including
 looping mechanisms.

	Chapter 4
	Introduces how to manipulate strings in Ruby (includes a section on regular
 expressions).

	Chapter 5
	Shows you how to use operators, basic math functions, functions from the Math module, rational numbers, etc.

	Chapter 6
	Talks you through Ruby arrays.

	Chapter 7
	Demonstrates hashes in detail.

	Chapter 8
	Reveals how to process files with Ruby, including reading and writing files, and
 so on.

	Chapter 9
	Discusses Ruby classes in detail, including a tiny introduction to object-oriented
 programming (OOP), instance variables, instance methods, class variables, class
 methods, modules, and mixins.

	Chapter 10
	Introduces a variety of topics of interest, including RubyGems, reflection,
 metaprogramming, exception handling, and more.

	Chapter 11
	Gets you acquainted with some of the essentials of Rails and includes a short
 tutorial. (You have to give credit to Ruby on Rails for improving the visibility of
 Ruby.)

	Appendix A
	Presents all the reference material from the book in one location.

	Appendix B
	Provides answers to the review questions found at the end of the chapters (more
 than 100 questions and answers).

	Glossary
	Provides a list of terms related to Ruby programming and their definitions.

Conventions Used in This Book

The following font conventions are used in this book:
Italic is used for:
	Pathnames and filenames (such as program names)

	Internet addresses, such as domain names and URLs

	New terms where they are defined, or for emphasis

Constant width is used for:
	Command lines and options that should be typed verbatim in a file or in
 irb

	Names and keywords in Ruby programs, including method names, variable names, and
 class names

Constant width italic is used for:
	User-supplied values

Constant width bold is used to:
	Draw attention to parts of programs

Tip
This icon indicates a tip, suggestion, or general note.

Warning
This icon indicates a warning or caution.

Comments and Questions

Please address comments and questions concerning this book to the publisher:
	O'Reilly Media, Inc.
	1005 Gravenstein Highway North
	Sebastopol, CA 95472
	800-998-9938 (in the United States or Canada)
	707-829-0515 (international or local)
	707-829-0104 (Fax)

There is a web page for this book, which lists errata, examples, or any additional
 information. You can access this page at:
http://www.oreilly.com/catalog/9780596529864
To comment or ask technical questions about this book send email to:
	bookquestions@oreilly.com

For more information about books, conferences, Resource Centers, and the O'Reilly
 Network, see the O'Reilly web site at:
	http://www.oreilly.com

Safari® Enabled

When you see a Safari® Enabled icon on the cover of your favorite technology book, that
 means the book is available online through the O'Reilly Network Safari Bookshelf.
Safari offers a solution that's better than e-books. It's a virtual library that lets
 you easily search thousands of top tech books, cut and paste code samples, download
 chapters, and find quick answers when you need the most accurate, current information. Try
 it for free at http://safari.oreilly.com.

Acknowledgments

Once again, I want to thank my editor Simon St.Laurent for giving me the chance to write
 this book. Simon's encouragement has kept me afloat through four book projects!
I also appreciate the comments from the technical reviewers Ryan Waldron and Joey
 Franklin. They hauled me back on deck when I was floundering in heavy seas. Thanks,
 guys.
Finally, and most importantly, I want to thank my wife, Cristi, and daughters, Melissa,
 Amy, and Aubrey, for supporting me and believing in me. You make it all worthwhile.

Chapter 1. Ruby Basics

Perhaps like you, I've learned to program in a number of languages over the years—BASIC,
 FORTRAN, C, C++, C#, Java, and JavaScript among others—but so far Ruby is my favorite. It has
 been the most fun to learn and use. Why? Because of its syntax. If you have a background in a
 variety of other languages, Ruby is easy to figure out. And it's flexible: Ruby lets you do
 things in a variety of ways, not just one way, so you can decide how to do things
 your way.
Ruby is an interpreted rather than a compiled language. You can call it a scripting
 language, an object-oriented language, a refreshing language. It's not a perfect language. It
 doesn't have to be. It's still my favorite. It has that certain je ne sais
 quoi. If it didn't, why would I spend hundreds of hours writing a book about it?
 Certainly not for money and fame.
To me, one of the best aspects of Ruby is its composability.
 Composability is the degree to which you can express logic by combining
 and recombining parts of a language (see James Clark's "The Design of RELAX NG" at http://www.thaiopensource.com/relaxng/design.html#section:5). Ruby's got that, big
 time.
Also, Ruby isn't under committee or corporate control. It's open source. It was written by
 Matz, with some help from his friends. (It was written in C, by the way, and can take C
 extensions.)
"Matz" is short for Yukihiro Matsumoto (from Japan). He started working on Ruby in 1993,
 and first released it to the world in 1995, the same year Java came out. It took a while for
 Ruby to emerge in the West, but once it did, around the year 2000, it started to take off.
 With the help of people like Dave Thomas, Andy Hunt, Hal Fulton, and others, Ruby got a
 foothold. Now it has a fan base.
And Ruby has a killer app. It's called Ruby on Rails (http://www.rubyonrails.org). Heard of it? It's a web application framework for
 producing web sites with databases quickly and easily. A lot of people really like Rails. Not
 everyone, but a lot of people. And those people are discovering that one of the main reasons
 they like Rails is because it was written in Ruby.
Hello, Matz

I know many readers are expecting a "Hello, World" example right about now. In spite of
 a moral and ethical obligation to provide a "Hello, World" example, I have decided to change
 the first example to "Hello, Matz." Given all that Matz has done for the
 programming world, don't you think he deserves some acknowledgment?
Before you go any further, find out if you already have Ruby installed on your computer.
 If you are on Mac OS X or a Linux distribution of some sort, it might already be there,
 though it's probably an older version; Tiger (Mac OS X 10.4 or later) ships with version
 1.8.2, for example.
To discover if Ruby is lurking inside your box, just go to a shell prompt on a
 Unix/Linux system (this won't work on a standard Windows system) and type:
$ which ruby
See if you get a reply like this one (good news if you do):
/usr/local/bin/ruby
Or just type a command to check the version of Ruby (this works on Unix/Linux and
 Windows):
$ ruby -v
or:
$ ruby --version
If Ruby is installed, you should get an answer that looks like this:
ruby 1.8.6 (2007-03-13 patchlevel 0) [powerpc-darwin8.9.0]
Tip
If Ruby is not installed on your box, and you're a little nervous about figuring out
 how to install it on your own, go to the section "Installing Ruby,"
 later in this chapter. Follow the instructions there to install Ruby on your platform.
 Then come right back!

A Very Short Ruby Program

Now that you have Ruby up and running, type the following line in a plain-text editor
 such as TextPad or vim:
puts "Hello, Matz!"
This line of code is a programming statement, an instruction that
 you want the program to carry out. The instruction will print the string Hello, Matz! on your screen, followed by a newline
 character.
You can end a statement with a semicolon (;) if you
 want, just like in C or Java, but you sure don't have to: a newline will do fine. (Most
 Ruby programmers don't use ; except when writing
 multiple statements on one line.)
Save the little program in a file as plain text and name it matz.rb. (The .rb file extension is the
 conventional extension for Ruby programs.)
Tip
It's a good idea to save the file in a directory or folder where you plan to do your
 Ruby work so that all your Ruby files will be readily accessible in one location.

You run the program by running the Ruby interpreter. To do this, type the following at
 a shell or command prompt:
$ ruby matz.rb
The output from the program is displayed by default on the screen:
Hello, Matz!
Placing a # at the beginning of a line tells the
 interpreter to ignore that line:
a nice greeting for Matz
puts "Hello, Matz!"
Add the # and some text following it to your
 program matz.rb. This is called a
 comment. Whatever follows the #
 is hidden from the Ruby interpreter. You'll learn more about comments in Chapter 2.

Shebang!

If you run a Ruby program on Windows, you generally have to use the ruby command before the Ruby filename (unless you associate
 the file extension .rb with a file type; to learn how
 to do this, see "Associating File Types on Windows," later in this
 chapter). You can avoid typing ruby each time on
 Unix/Linux systems by adding something called a shebang line (#!) at the top of your Ruby file. Add a shebang line to the top of matz.rb:
#!/usr/local/bin/ruby
a nice greeting for Matz
puts "Hello, Matz!"
The shebang lets the system know where to find the Ruby interpreter, that is, in
 /usr/local/bin, which is a conventional place to
 install Ruby executables (see "Installing Ruby on Mac OS X Tiger," later
 in this chapter). A more general alternative is #!/usr/bin/env
 ruby. Choose what works for you. I use the latter.
Tip
As mentioned earlier, Tiger comes installed with an older version of Ruby, version
 1.8.2, which is stored in /usr/bin. We won't bother
 using that version.

Go to a prompt on your Mac or Unix/Linux system and enter the filename by
 itself:
$ matz.rb
You'll get the same answer as before:
Hello, Matz!
Tip
If you get a permission denied message when
 running matz.rb, and you aren't sure what to do
 about it, I'd like to offer you a hand. Go to the section "Permission Denied" near the end of this chapter to find out what to
 do.

I'll now show you more ways you can output the text Hello,
 Matz!, which will give you a glimpse of the power of Ruby. At this point, I
 won't get very deep into detail about what's going on. Just follow along, typing in and
 testing as much code as you want. To test the code, follow these steps.
	Delete the previous code in matz.rb.

	Enter the new code.

	Run the program with the Ruby interpreter from the prompt to see the
 output.

You'll be deleting the old code in matz.rb and
 inserting new code, unless another Ruby file with a different name is presented in the
 text. You can either recreate these other files with the given names, or you can download
 all the files that come with this book from http://www.oreilly.com/catalog/9780596529864. After downloading the ZIP archive,
 extract the files into the directory or folder of your choice. That's where you'll do your
 work. Navigate to the directory in a shell or command window using the cd command.

Issue a System Command

You can run an operating system command with system:
system "echo 'Hello, Matz!'"
Try this with and without single quotes ('), where
 shown.
You can also submit each part of a command separately, as an argument to system:
system "echo", "Hello,", "Matz!"
The exec command is similar to system, but it replaces the current process and, after the
 command is finished, exits—not always what you want to do.

Appending a String

Append one string to another with the +
 method:
puts "Hello, " + "Matz!"
You can also append a string with the <<
 method:
puts "Hello, " << "Matz!"

Multiply

What if you want to print out a line of text three times? How about:
puts "Hello, Matz! " * 3
This would give you:
Hello, Matz! Hello, Matz! Hello, Matz!
Or you could use the times method:
5.times { print "Hello, Matz! " }
It will show your enthusiasm:
Hello, Matz! Hello, Matz! Hello, Matz! Hello, Matz! Hello, Matz!
You could just print one word three times, then add or append more text with +:
puts "Hello, " * 3 + "Matz!"
Then you'd get:
Hello, Hello, Hello, Matz!

Inserting a Shell Command

Let's insert some output from a shell command:
puts "Hey Matz, I'm running " + `ruby --version`
When you run this, the output from the shell command inside the grave accents or
 backticks (`ruby --version`) is inserted into the
 output:
Hey Matz, I'm running ruby 1.8.6 (2006-08-25) [powerpc-darwin8.8.0]

Using a Variable

You can give a value a name by assigning it to a variable:
hi = "Hello, Matz!"
puts hi # => Hello, Matz!
hi is an example of a local
 variable. You can tell because its name starts with a lowercase letter.
 You'll learn more about local and other kinds of variables in Chapter 2 in the section
 "Variables."
Tip
In code examples, => will always follow a
 comment character (#). Whatever follows => is the output you can expect from the line or block of
 code, or from the whole program.

Put two or more variables together with the +
 method:
hi = "Hello, "
person = "Matz!"
puts hi + person # => Hello, Matz!

Expression Substitution

Another way of inserting the value of a variable in a string is with
 expression substitution—very handy feature of Ruby:
person = "Matz!"
puts "Hello, #{person}" # => Hello, Matz!
The #{...} is replaced with the result of the
 expression inside it. For example, #{2+2} would yield
 the result 4.
Using expression substitution, you can grab an argument off the command line and add
 it to the output.
#!/usr/bin/env ruby

puts "Hello, #{ARGV[0]}!"
Ruby stores command-line arguments in a predefined Ruby variable called ARGV. ARGV[0] refers to the
 first item on the command line, the 0th element in ARGV. Run the matz.rb
 program you just edited with an argument to see the results:
$ matz.rb Matz
Hello, Matz!

Formatting a String

You can change the output on the fly with the %s
 format flag and %:
hi = "Hello, %s"

puts hi % "Matz!" # => "Hello, Matz!"

puts hi % "people!" # => "Hello, people!"

puts hi % "universe!" # => "Hello, universe!"
You can also use % like this:
"%s, %s!" % ["Hello", "Matz"]
% is a method from the String class that formats a string. It is like using sprintf:
sprintf("Hello, %s", "Matz!") # => "Hello, Matz!"
Use printf to print the output to your display (the
 default standard output device).
printf("Hello, %s", "Matz!") # => Hello, Matz!
You will learn about formatting strings with sprintf in Chapter 10 in the section "Formatting Output with sprintf."

The eval Method and -e Option

The eval method evaluates a string enclosed in
 quotes as a Ruby statement or expression and returns the result. It's handy for
 testing.
eval "puts 'Hello, Matz!'" # => Hello, Matz!
Similarly, there is a way you can print Hello,
 Matz! without using a separate file at all—with the -e (execute/evaluate) option:
ruby -e "puts 'Hello, Matz!'"
Notice that you use single quotes inside of double quotes when using the -e option. You can also use multiple -e options:
ruby -e "print 'Hello, '" -e "puts 'Matz!'"
Using both of these will give you the same output as before (or what looks like the
 same output):
Hello, Matz!
I used print in the first -e option because it doesn't add an end-of-line or newline character at the
 end of the line like puts does. If I used puts with both -e options,
 the result would be:
Hello,
Matz!
You can use multiple statements, separated by semicolons, inside a single -e if you want:
ruby -e "three = 3; puts 'Matz! ' * three"
This will give you:
Matz! Matz! Matz!

Getting Input from the Keyboard

You can use the gets method to read from standard
 input (text from your keyboard, by default).
#!/usr/bin/env ruby

print "Who do you want to say hello to? "
hello = gets
puts "Hello, " + hello
The program prints the message Who do you want to say hello
 to? The gets method reads what you type and
 assigns it to the hello variable. puts prints Hello, plus whatever is held in hello, to the standard output (your computer display, by default). Run the
 program, then type your answer to the question.
$ matz.rb
Who do you want to say hello to? Matz!
Hello, Matz!

Methods

You've had a chance to use a few methods like system and eval; now you'll define your
 own method with def/end:
def hello
 puts "Hello, Matz!"
end

hello # => Hello, Matz!
The method called hello contains a single statement
 that prints Hello, Matz!. To see it in action, call the
 method by invoking its name, hello.

The block

Redefine hello so that it contains only a yield statement, then call the new version of hello with a block (the code in
 braces).
def hello
 yield
end

hello { puts "Hello, Matz!" } # => Hello, Matz!
The yield statement executes the block of code in
 braces (that is, { puts "Hello, Matz!" }) associated
 with the method call to hello. You'll learn more about
 blocks in the section "Blocks" in Chapter 2.

The each Method

Let's go a step further. Let's print all the elements in an array using the each method followed by a block:
["Hello, ", "Matz!"].each { |e| print e }
An array is an ordered list of elements. The method each uses a block—again, the code enclosed in braces—to iterate over, or
 repeatedly process, all the elements in the array. The |e| represents the elements fed from the array; the print e statement prints each element in the array. You'll learn much more
 about arrays in Chapter 6.

The proc

You can convert a block into an object. This object is called a
 proc (procedure). The nice thing about procs is that they preserve
 their execution environment and pack it along with them. The lambda method is one way to create a proc object. I'll use it here to create
 a now familiar greeting.
prc = lambda { |name| puts "Hello, " + name }
The proc is stored in prc as the result of a call
 to lambda, which stores the block as an object. You can
 now call the proc with an argument; call executes the
 proc with an argument, yielding a string.
prc.call "Matz!" # => Hello, Matz!
You'll learn more about procs in the section "Procs" in Chapter
 2.

XML

For XML processing, REXML is built into Ruby. Use it to greet the revered founder of
 our feast, as shown in Example 1-1 and Example 1-2.
Example 1-1. matz.xml
<hello>Matz!</hello>

Example 1-2. matz_xml.rb
#!/usr/bin/env ruby

require "rexml/document"

file = File.new("matz.xml")
doc = REXML::Document.new file
puts doc.to_s

When you run it, the program grabs the XML file matz.xml and displays it.

The Class

Use the class Hello to greet Matz, as shown in
 Example 1-3.
Example 1-3. hello.rb
class Hello

 def initialize(name)
 @name = name
 end

 def hello_matz
 puts "Hello, " + @name + "!"
 end

end

hi = Hello.new("Matz")
hi.hello_matz # => Hello, Matz!

You'll learn a bit about classes in Chapter 2. Chapter 9 is dedicated to bringing you fully up to speed on Ruby
 classes.

The Tk Toolkit

Create a graphical version of "Hello, Matz!" with the Tk toolkit (see http://www.tcl.tk/), as shown in Example 1-4.
Example 1-4. matz_tk.rb
#!/usr/bin/env ruby

require 'tk'
hello = TkRoot.new
TkLabel.new(hello) do
 text "\n Hello, Matz! \n"
 pack
end
Tk.mainloop

The require method loads the Tk library. The next line creates a new TkRoot object called hello.
 TkLabel.new adds a label to that object with the text
 Hello, Matz!. Tk.mainloop makes the graphical event happen, displaying the graphic shown in
 Figure 1-1. You can run the program by
 typing the following at a shell prompt:
matz_tk.rb &
The & puts the process in the background on a
 Unix/Linux system. You'll learn more about the Tk
 library and other graphical user interfaces in the section "Using Tk" in
 Chapter 10.
[image: Tk version of Hello, Matz! on Mac OS X]

Figure 1-1. Tk version of Hello, Matz! on Mac OS X

Editing and Running Ruby in TextMate

If you own a Mac, you will get more joy out of life if you get yourself a copy of
 TextMate. (Download a free trial or pay for a copy at http://www.macromates.com.)
TextMate has language bundles that make editing in a given language—such as HTML, C,
 Java, Python, Ruby, and Rails—a snap. Other IDEs have similar features, for sure, and I
 don't spend any energy knocking them, in public or private. The difference to me is that
 TextMate is elegant; it doesn't overwhelm you with complex features. It's there to help
 without getting in your way.
Figure 1-2 shows a version of matz.rb open for editing in TextMate. To run this program in
 TextMate, I simply type Command-R, and the results appear in a separate window (RubyMate),
 shown in Figure 1-3.
[image: Editing a Ruby program in TextMate]

Figure 1-2. Editing a Ruby program in TextMate

[image: Results of running a Ruby program in TextMate]

Figure 1-3. Results of running a Ruby program in TextMate

Here are a few of the Ruby shortcuts in TextMate:
	Insert Ruby templates to make file creation quicker.

	Insert Ruby keywords, such as begin or if, followed by a tab, and TextMate completes the typing
 for you.

	Execute a single line as Ruby with Control-Shift-E. This inserts the result right
 into the file. You can do this in other files, too (HTML files, for example).

	Validate syntax, without running the program, with Control-Shift-V.

	Place the cursor on a Ruby keyword or method name, then enter Control-H to get
 documentation on that term.

Interactive Ruby

Interactive Ruby, or irb, is an interactive command-line
 environment for Ruby, allowing you to see results (or errors) after you enter each
 statement. When you install Ruby, you get irb along with it.
Start out by typing this at a prompt:
 $ irb -v
In return, you should get irb's version number:
irb 0.9.5(05/04/13)
If irb is present, you are ready to go; if it isn't, go to the
 section "Installing Ruby," later in this chapter, and follow the
 instructions.
When you enter irb at a shell prompt, you will get the
 irb prompt. Type a Ruby statement at the prompt, and then press the
 Return or Enter key:
irb(main):001:0> puts "Hello, Matz! "
Hello, Matz!
=> nil
Tip
nil, set off by => in the output of irb, is a value returned by the
 method puts. nil has
 a special meaning in Ruby. It denotes empty and always means false.

puts prints out the string Hello, Matz!, followed by a newline character.
Tip
The newline character varies, depending on your platform. On Mac OS X and Unix/Linux
 systems, it is an LF (linefeed) character; on Microsoft
 Windows, it's CR+LF
 (a carriage return character followed by a linefeed).

As mentioned earlier, you can assign a string, or just about any other value, to a name
 (variable), and then reuse it. In the following command, Hello,
 Matz! is assigned to the name hi and printed
 by puts:
irb(main):002:0> hi = "Hello, Matz!"
=> "Hello, Matz! "
irb(main):003:0> puts hi
Hello, Matz!
=> nil
Print out hi three times:
irb(main):004:0> puts hi * 3
Hello, Matz! Hello, Matz! Hello, Matz!
=> nil
You can do some simple math:
irb(main):006:0> 10 + 10
=> 20
irb(main):007:0> 4 * 5
=> 20
irb(main):008:0> 100 / 5
=> 20
irb(main):009:0> 50 - 30
=> 20
irb(main):010:0> 80 % 60
=> 20
We could go on and on. irb is a great environment for playing
 around with Ruby and learning how it works because you always get immediate feedback with
 every step you take.
You'll have opportunities to fire up irb later in the book. In
 fact, you can use irb to run any Ruby program that you find
 here.

Resources

You can find a lot about Ruby at the official Ruby site, http://www.ruby-lang.org. There you can find news, downloads, tutorials, as well
 as documentation, mailing lists, and other good stuff. Ruby Central, Inc. (http://www.rubycentral.org) runs the annual International Ruby Conference (http://www.rubycentral.org/conference). It usually gets sold out way early, so
 plan accordingly.
Aside from the documentation page on ruby-lang.org (http://www.ruby-lang.org/en/documentation), http://www.ruby-doc.org is a great place to hunt down information on all things
 Ruby. RDoc is a tool that generates documentation from Ruby source code. You can find the
 Ruby core documentation produced by RDoc at http://www.ruby-doc.org/core. On
 the Mac (Tiger or later), a good tool for looking things up quickly is the RDoc widget for
 Dashboard (see Figure 1-4), thanks to Precision Information
 Services (http://www.precisionis.com.au). You can download the widget from
 http://www.apple.com/downloads/dashboard/developer/rubyrdocwidget.html.
[image: RDoc widget on Dashboard]

Figure 1-4. RDoc widget on Dashboard

Ruby-Talk is the most popular general Ruby mail list. To sign up (easily), go to http://www.ruby-lang.org/en/community/mailing-lists. You'll also see several other
 lists at this site. For a more complete list of mail groups, including lists in languages
 besides English, see http://www.ruby-forum.com.
RubyForge (http://rubyforge.org) is the host of a growing number of open
 source Ruby projects. Some of the more popular projects include Mongrel, a fast HTTP server
 (http://rubyforge.org/projects/mongrel), RubyGems (http://rubyforge.org/projects/rubygems), a dead-simple tool for installing Ruby
 packages, and Instant Rails (http://rubyforge.org/projects/instantrails), a
 single-step Windows installer that includes Ruby, Rails, Apache, and MySQL. The Ruby
 Application Archive (RAA) at http://raa.ruby-lang.org predates RubyForge and
 is still a popular site for hosting Ruby projects—more than 1,500 and counting.
For future reading, check out Dave Thomas's Programming Ruby,
 Second Edition, published by Pragmatic (see http://www.pragmaticprogrammer.com/titles/ruby/index.html or http://www.oreilly.com/catalog/0974514055/index.html). This book, often referred
 to as the pickaxe book (for the pickaxe on its cover), is well-written and as complete it
 could possibly be. You won't be disappointed. You can also find a free, online version of
 the first edition at http://www.rubycentral.com/book.
Hal Fulton's The Ruby Way (Addison-Wesley) is also now in its
 second edition (http://www.samspublishing.com/bookstore/product.asp?isbn=0672328844&rl=1). It
 has also been well-received and is a worthwhile investment. Other books exist, and many more
 are on the way—too many to list (see http://www.ruby-lang.org/en/documentation/book-list)—but I note Dave and Hal's
 books because they were in the game early, and are still in it.
Oh, and before I forget, you can't be a complete Ruby programmer until you've read
 why's (poignant) guide to Ruby, by why the lucky
 stiff. That's his moniker. (I don't know his real name. Frankly, I don't want
 to know his "real" name. It would spoil the fun.) why's guide is the funniest technical book
 I've ever read, and I highly recommend it. You'll find it at http://poignantguide.net/ruby.

Installing Ruby

Ruby is available on the major platforms. The following sections show you how to install
 Ruby on Mac OS X, Windows, and Linux. Ruby's general download page is at http://www.ruby-lang.org/en/downloads. Most of you could likely figure out how to
 install Ruby just by following the links there, but the material here provides a little
 extra guidance.
Installation procedures are a moving target, and print media can't keep up with
 electronic media. That means that some of this material may get out of sync with what's
 happening out there on the Web, so I'll be as generally specific as I can.
Installing Ruby on Mac OS X Tiger

As shipped, Tiger comes with an older version of Ruby. Which version depends on what
 release of Tiger you're dealing with. The release of Tiger on my system at the moment is
 10.4.8, which comes with version 1.8.2. You'll want an updated version, as I
 did.
The simple way to install Ruby (and a boatload of other software) is with Locomotive
 (http://locomotive.raaum.org). For information on what comes with the
 Locomotive download (a dmg file), which includes Ruby
 on Rails, see http://locomotive.raaum.org/bundles.html. It might be more
 than you want to deal with. You can find a mirror at http://prdownloads.sourceforge.net/locomotive/Locomotive_2.0.8.dmg?download.
 Select a mirror and then follow the steps just like you would when installing any other
 dmg.
The purest form of installation, at least in my mind, is to download and compile the
 source files. In other words, you download the file distribution for a given release, pull
 the files out of the release archive, compile the files (those that need compilation), and
 then copy those files to their proper directories. Those are the basic steps, but there
 are a few tools to make this job easier, like configure
 and make. We'll take advantage of them here as we
 install a new version of Ruby on Tiger (these steps could apply to a Linux installation as
 well).
These steps may appear daunting at first, but they really are not. Just follow along
 and things will come together in the end.
You can find excellent instructions on installing Ruby on Tiger in Dan Benjamin's
 "Building Ruby, Rails, LightTPD, and MySQL on Tiger" (http://hivelogic.com/articles/2005/12/01/ruby_rails_lighttpd_mysql_tiger). He
 covers installing more software than you need to install now; I'll only use his steps for
 installing Ruby, and I'll update those steps to include the latest versions of
 software.
You need to have XCode installed on your Mac for this install procedure to work. XCode
 is a set of programming tools from Apple. You can learn about it at http://www.apple.com/macosx/features/xcode and download it from http://developer.apple.com/tools/download. The download instructions are easy to
 follow.
As shipped, Tiger has some issues with Ruby (see http://wiki.rubyonrails.com/rails/pages/HowtoInstallOnOSXTiger). One way to
 resolve some of the problems is by downloading and installing readline (http://tiswww.tis.case.edu/~chet/readline/readline.html), which lets you do
 command-line editing (irb uses readline). Here are the steps for downloading and installing
 readline:
	Go to ftp://ftp.gnu.org/gnu/readline to find the latest version
 (5.2 at this writing) and download it. (I put source archives in the directory
 /usr/local/src on my Mac so I can keep track of
 them.) You can avoid using the browser or FTP. Just use curl (http://curl.haxx.se). The -O option takes the last part of the URL to create a desination
 filename.
$ curl -O ftp://ftp.gnu.org/gnu/readline/readline-5.2.tar.gz

	Extract the archive with tar (x means extract, z
 means gunzip, v means verbose, f means use file
 archive):
$ tar xzvf readline-5.2.tar.gz

	Change directories:
$ cd readline-5.2

	Run configure (generated from Autoconf, a tool that produces shell scripts for
 configuring software packages), replacing {$prefix}
 with /usr/local:
$./configure --prefix=/usr/local

	Run make, a tool for building applications.
 This compiles the source files, and gets things ready to install. You can test the
 results, too:
$ make
$ make test

	Finally, install:
$ make install
If you have not logged in as root, you can assume superuser powers by prefixing
 this command with the sudo utility (http://www.sudo.ws), which will require a
 password:
$ sudo make install

The steps to install Ruby are very similar:
	While in /usr/local/src, grab the archive for
 the latest version of Ruby (1.8.6 at this writing):
$ curl -O ftp://ftp.ruby-lang.org/pub/ruby/ruby-1.8.6.tar.gz

	Extract the archive:
$ tar xzvf ruby-1.8.6.tar.gz

	Change directories:
$ cd ruby-1.8.6

	Run configure (enabling POSIX threads, with
 readline):
$./configure --prefix=/usr/local --enable-pthread --with-readline-dir=/usr/local

	Run make and then test it:
$ make
$ make test

	Install the software:
$ make install
You may need the sudo utility (http://www.sudo.ws/), which will require a password):
$ sudo make install

	Then install the documentation:
$ make install-doc
or:
$ sudo make install-doc

	Place /usr/local/bin in the path if it is not
 already. If you don't know how to do this, see the sidebar "Setting Up the Path Environment," later in this chapter.

	Now test to make sure Ruby is in place:
$ ruby -v

	You should get this happy reply:
$ ruby 1.8.6 (2007-03-13 patchlevel 0) [powerpc-darwin8.9.0]

Alrighty then. You are ready to roll with Ruby on Mac OS X.

Installing Ruby on Windows with the One-Click Installer

It's easy to install Ruby on Windows with the One-Click Installer, available on
 RubyForge at http://rubyforge.org/projects/rubyinstaller. Here are the
 steps:
	Go to the Ruby download site and click on the link labeled "1.8.6 One-Click
 Installer (or later)," or go to the One-Click Installer site and click the Download
 link. Click on the latest executable, which is ruby186-25.exe at this writing.

	Open the executable. An install wizard will appear (see Figure 1-5). You'll have a chance to include other
 goodies in the download, such as the SciTE editor (http://www.scintilla.org/SciTE.html). Also, be sure to enable RubyGems when
 asked, as it is installed by default, and you'll no doubt want use it later.

	Select a destination folder (such as C:\Ruby
 or C:\"Program Files"\Ruby). If you try to
 install over an older version of Ruby, you'll be asked to uninstall the old version
 first.

	Add the new Ruby bin directory to your path;
 for example, if your Ruby directory is C:\Ruby,
 add C:\Ruby\bin to your path (see the sidebar
 "Setting Up the Path Environment," later in this chapter, if you
 don't know how to do this; it's OK to set up the path after the
 installation).

	After you install Ruby, open a DOS window and type this line:
$ ruby -v
You should get something like the following response:
$ ruby 1.8.6 (2007-03-13 patchlevel 0) [i386-mswin32]

	Check your system path variable and make sure it contains the path to the Ruby
 binaries in the bin directory. The One-click
 installer should take care of all this for you, however.

[image: Windows One-Click Installer]

Figure 1-5. Windows One-Click Installer

Installing Ruby on Windows with Binaries

Installing Ruby using binaries (precompiled executables) is just as easy as using the
 One-Click Installer. I think it is, anyway. Here are the steps I
 suggest:
	Decide where you want to install the Ruby files—for example, C:\Ruby or C:\"Program Files"\Ruby.

	Download the stable binary ZIP archive for the latest release of Ruby (1.8.6 at
 this writing). Go to the Ruby download page at http://www.ruby-lang.org/en/downloads, and find the "Ruby on Windows"
 section, then click the link Ruby 1.8.6 Binary. Or you can just point to ftp://ftp.ruby-lang.org/pub/ruby/binaries/mswin32/ruby-1.8.5-i386-mswin32.zip (or latest version) in a browser. This will download the file archive.

	Open the archive (ruby-1.8.6-i386-mswin32.zip
 or later) with Windows Explorer, and then extract it to the directory you set up in
 step 1 (see Figure 1-6).

	Place the new Ruby bin directory in your
 path; for example, if your Ruby directory is C:\Ruby, add C:\Ruby\bin to your
 path (see the sidebar "Setting Up the Path Environment," later in
 this chapter, if you don't know how to do this).

	After you install Ruby, open a DOS window and type:
$ ruby -v

	If you don't get something like the following answer, check your system path
 variable and make sure it contains the path to the Ruby binaries in the bin directory:
$ ruby 1.8.6 (2006-08-25) [i386-mswin32]
[image: C:\Ruby\bin in Windows Explorer]

Figure 1-6. C:\Ruby\bin in Windows Explorer

Setting Up the Path Environment
If you are on a Mac OS X Darwin or Linux system (bash), enter this line in your .bash_login file:
export PATH="/usr/local/bin:...:$PATH"
This places the Ruby bin directory /usr/local/bin at the beginning of the path. The ellipses (
 . . .) represents other directories you want to add to your path, whatever they are.
 $PATH is the current path variable. This line will
 add your additions to the path while preserving the current path. Paths are separated by
 colons (:).
If you are on Windows and you used the One-Click Windows Installer, the path
 environment should be set up for you automatically. (I note this just in case things
 don't seem to be working right.)
To set up the path on Windows, click Control Panel → System, click the Advanced tab,
 then click the Environment Variables button. Under System Variables, select the Path
 variable and click the Edit button. Add the full name of the path of the bin directory to the variable—something like C:\Ruby\bin—followed by a semicolon. Click OK on the Edit
 System Variable dialog, then click OK on the Environment Variables dialog. You will have
 to reopen a DOS window for the system to recognize the new path.

Installing Ruby on Linux

The installation steps I discussed for installing Ruby on Mac OS X from source will
 also work for Linux, but I will just mention a few other options here. If you know Linux,
 you'll know what I am talking about.
	If you're running Red Hat (http://www.redhat.com), you can find the
 latest version of Ruby at RPM Find (http://rpmfind.net/linux/rpm2html/search.php?query=Ruby) and then use
 rpm to install it.

	On Debian (http://www.debian.org), you can use apt-get (http://www.debian.org/doc/manuals/apt-howto).

	On Gentoo (http://www.gentoo.org), use emerge (http://www.gentoo.org/doc/en/handbook/handbook-x86.xml?part=2&chap=1).

Permission Denied

If you are new to using the shell on Mac OS X or Linux, what do you do when you get a
 message like this?
-bash: ./matz.rb: Permission denied
This reply most likely means that the file is not set up as an executable. To fix this,
 change the access control on the file using the chmod
 command by typing:
chmod 755 matz.rb
755 makes the control list read rwxr-xr-x (where r means
 read, w write, and x
 execute). This means that the file is readable and executable by everyone (owner, group, and
 others, in that order), but writable only by the owner. To find out more about chmod, type man chmod at a
 shell prompt.

Associating File Types on Windows

This section is for those who use Windows and have never associated a file type before.
 If this is a familiar topic to you or you are on a different platform, you can skip
 it.
On its own, Windows doesn't know or care about shebang (#!), which allows the program to execute by merely invoking its name in a shell
 on Unix/Linux systems. However, you can achieve a similar effect to shebang by creating a
 file type association with the assoc and ftype commands on Windows.
Tip
If you used the One-Click Ruby Installer for installing Ruby on Windows, the following
 was performed automatically for you, behind the scenes.

First, find out if an association exists for .rb
 with the assoc command:
C:\Ruby Code>assoc .rb
File association not found for extension .rb
It's not found, so associate the .rb extension with
 a file type:
C:\Ruby Code>assoc .rb=rbFile
Test to see if the association exists now:
C:\Ruby Code>assoc .rb
.rb=rbFile
Test to see if the file type exists:
C:\Ruby Code>ftype rbfile
File type 'rbfile' not found or no open command associated with it.
It's not found, so create it:
C:\Ruby Code>ftype rbfile="C:\Program Files\Ruby\bin\ruby.exe" "%1" %*
Be sure to put the correct path to the executable for the Ruby interpreter, followed by
 the substitution variables. %1 is a substitution variable
 for the file you want to run, and %* accepts all other
 parameters that may appear on the command line. Test it:
C:\Ruby Code>ftype rbfile
rbfile="C:\Program Files\Ruby\bin\ruby.exe" "%1" %*
Finally, add .rb to the PATHEXT environment variable. Is it there already?
C:\Ruby Code>set PATHEXT
PATHEXT=.COM;.EXE;.BAT;.CMD;.VBS;.VBE;.JS;.JSE;.WSF;.WSH;.tcl
No. What we want isn't there, so let's add it:
C:\Ruby Code>set PATHEXT=.rb;%PATHEXT%
And then test it:
C:\Ruby Code>set PATHEXT
PATHEXT=.rb;.COM;.EXE;.BAT;.CMD;.VBS;.VBE;.JS;.JSE;.WSF;.WSH;.tcl
Very good. Now run a Ruby program by entering the program's filename at the command
 prompt, without the file extension:
C:\Ruby Code> matz
Hello, Matz!
To preserve these settings, you can add these commands to your autoexec.bat file or set the environment variables by selecting Start →
 Control Panel → System, clicking on the Advanced tab, and then clicking the Environment
 Variables button.

Review Questions

	What is the nickname of the inventor of Ruby?

	Ruby came out in 1995. What other programming language was released to the public
 that year?

	Is everyone who writes a programming book morally or otherwise obligated to write a
 "Hello, World!" program?

	What does the abbreviation irb stand for?

	What is Ruby's killer app?

	What is the name of the funny book on Ruby?

	Who wrote the pickaxe book?

	What's one of the author's favorite programming environments on the Mac?

Chapter 2. A Quick Tour of Ruby

Without going into all the details, this chapter introduces you to the fundamentals of
 Ruby: classes and modules, including the Object class and
 the Kernel module, reserved words (keywords), comments,
 variables, methods, and so forth. Most topics will be dealt with elsewhere in the book in more
 detail. Some topics merit entire chapters, others only sections (found in Chapter 10). I'll always tell you where else to look for more
 information on a topic. This book's most detailed discussions on methods and blocks are found
 in this chapter.
Ruby Is Object-Oriented

Matz, the creator of Ruby, had wanted to create his own programming language since he
 was in high school. He wanted to create a scripting language, but he also wanted it to be
 object-oriented.
Ruby goes beyond mere scripting, though its programs may look like shell scripts. It is
 not just a procedural language, but it can be used like one.
Ruby has classes. Classes hold data—in the form of variables and
 constants—and methods, which are compact collections of code that help you perform
 operations on data. Classes can inherit information from each other, but only one at a time.
 This allows you to reuse code—which means you'll spend less time fixing or debugging
 code—and intermix the code through inheritance.
A class is like a blueprint; with a new method, this
 blueprint can be assigned to a variable or become instantiated, and thereby become an
 object. In Ruby, almost everything is an object; in fact, everything
 that Ruby can bind to a variable name is an object.
There's lots more to learn about classes, and you'll find a lot more information on
 classes in Chapter 9. For right now, you can get by with the basics. Example 2-1 shows a Ruby program, friendly.rb, that has two classes, Hello
 and Goodbye. You'll find this program in the archive of
 Ruby programs that comes with this book (download it from http://www.oreilly.com/catalog/learningruby). Run this program at a shell or
 command prompt, in the directory where the archive was installed. If a code example is not
 in a file, you can type that code in irb to see for yourself what it
 does. I encourage you to run as much code as you dare.
Example 2-1. friendly.rb
class Hello
 def howdy
 greeting = "Hello, Matz!"
 puts greeting
 end
end

class Goodbye < Hello
 def solong
 farewell = "Goodbye, Matz."
 puts farewell
 end
end

friendly = Goodbye.new
friendly.howdy
friendly.solong

If you run the program in Example 2-1, you'll get these messages
 back:
$ friendly.rb
Hello, Matz!
Goodbye, Matz.
Experienced programmers can likely tell what's happening in Example 2-1
 without any tutoring. If you're not one of these, read on; otherwise, you can skip ahead to
 the next heading (or jump to Chapter 9 if you are eager to get the whole
 story on Ruby classes).
The Hello class defines the howdy method. This method prints the contents of the string associated with the
 greeting variable, Hello,
 Matz!. The Goodbye class likewise contains
 the definition of a method, solong, which prints a string
 assigned to the farewell variable, Goodbye, Matz!. The Goodbye
 class also inherits what's in the Hello class; that's
 what the < symbol is for. This means that the Goodbye class didn't have to redefine the howdy method. It just inherited it.
friendly is an object, an instance of the Goodbye class. The new method
 called on Goodbye comes from the Object class and creates the new instance friendly (more on the Object class in the
 next section). You can use the friendly object to call
 both the howdy and solong methods, because it inherently knows about them. It knows about the
 solong method because it is defined inside the Goodbye class, and it knows about the howdy method because Goodbye inherited it
 from Hello.
That's about as much as I am going to tell you for now. There will be information on
 classes spread throughout the chapters that follow. Chapter 9 spells out
 classes in more detail.
The Bucket Analogy
If you don't know what an object-oriented programming language (OOP) is, try this
 simple analogy. Think of a class, the centerpiece of OOP, as a bucket. Imagine that it
 holds water, and that it has a ladle or two sticking up out of it. The water is like the
 properties (data or information) that a class holds, and the ladles are like the tools
 (methods) that can manipulate the water (data). The main tool you use with a class is a
 method, a collection of code that can be given a name and reused. The method is like a
 ladle that you dip into the bucket and use to pull things out or pour things in. You can
 reuse the bucket, pour out the old water, put fresh water in, and even put the bucket
 inside another bucket. Those are the basics of OOP, without the jargon. You'll get a full
 dose of jargon in Chapter 9.

The Object Class and the Kernel Module

The Object class is the Ruby base class, the parent
 of all other classes in Ruby, and it is always magically present whenever you run a Ruby
 program. You don't have to do anything fancy to get access to its functionality in other
 classes. It's just there for you.
With Object comes a lot of functionality in the
 form of methods and constants. This functionality is inherited by all other Ruby programs
 automatically. In this section, I'll introduce you to some of this functionality.
Object gives you methods like == and eql?, class, inspect, object_id, and to_s. You
 will learn more about these methods in upcoming chapters. You can read about all of
 Object's methods at http://www.ruby-doc.org/core/classes/Object.html.
Kernel is a Ruby module. A
 module is like a class, but you can't instantiate it as an object as you can with a class.
 However, when you include or mix in a module in a class, you get access to all its methods
 within that class. You can use methods from an included module without having to implement
 those methods.
Object includes the Kernel module. This means that because you always get access to Object in a Ruby program, you also get all the Kernel methods, too. You have already seen some of these
 methods in action, such as print and puts. A sampling of commonly used Kernel methods includes eval, exit, gets, loop, require, sleep, and sprintf. You
 will get to use most of these methods in later chapters of this book.
You don't have to prefix the Kernel methods with an
 object or receiver name. Just call the methods anywhere in any program, and they work.
 Read about Kernel at http://www.ruby-doc.org/core/classes/Kernel.html.

Ruby's Reserved Words

Every programming language has its own list of reserved words (aka
 keywords), which are reserved for its own purposes so that it can do its job. They are the
 words that make statements in programs, and without statements, or instructions, how could a
 program tell a computer what to do?
Table 2-1 lists Ruby's reserved words and briefly
 describes the purpose of each.
Table 2-1. Ruby's reserved words
	
 Reserved word

 	
 Description

	
 BEGIN

 	
 Code, enclosed in { and }, to run before the program runs.

	
 END

 	
 Code, enclosed in { and }, to run when the program ends.

	
 alias

 	
 Creates an alias for an existing method, operator, or global variable.

	
 and

 	
 Logical operator; same as && except
 and has lower precedence. (Compare with
 or.)

	
 begin

 	
 Begins a code block or group of statements; closes with end.

	
 break

 	
 Terminates a while or until loop or a method inside a block.

	
 \case

 	
 Compares an expression with a matching when
 clause; closes with end. (See when.)

	
 class

 	
 Defines a class; closes with end.

	
 def

 	
 Defines a method; closes with end.

	
 defined?

 	
 A special operator that determines if a variable, method, super method, or
 block exists.

	
 do

 	
 Begins a block and executes code in that block; closes with end.

	
 else

 	
 Executes following code if previous conditional, in if, elsif, unless, or when, is
 not true.

	
 elsif

 	
 Executes following code if previous conditional, in if or elsif, is not true.

	
 end

 	
 Ends a code block (group of statements) starting with begin, def, do, if, etc.

	
 ensure

 	
 Always executes at block termination; use after last rescue.

	
 false

 	
 Logical or Boolean false, instance of FalseClass. (See true.)

	
 for

 	
 Begins a for loop; used with in.

	
 if

 	
 Executes code block if conditional statement is true. Closes with end. (Compare with unless, until.)

	
 in

 	
 Used with for loop. (See for.)

	
 module

 	
 Defines a module; closes with end.

	
 next

 	
 Jumps before a loop's conditional. (Compare with redo.)

	
 nil

 	
 Empty, uninitialized variable, or invalid, but not the same as zero; object of
 NilClass.

	
 not

 	
 Logical operator; same as !.

	
 or

 	
 Logical operator; same as || except
 or has lower precedence. (Compare with
 and.)

	
 redo

 	
 Jumps after a loop's conditional. (Compare with next.)

	
 rescue

 	
 Evaluates an expression after an exception is raised; used before ensure.

	
 retry

 	
 Repeats a method call outside of rescue;
 jumps to top of block (begin) if inside
 rescue.

	
 return

 	
 Returns a value from a method or block. May be omitted.

	
 self

 	
 Current object (invoked by a method).

	
 super

 	
 Calls method of the same name in the superclass. The
 superclass is the parent of this class.

	
 then

 	
 A continuation for if, unless, and when.
 May be omitted.

	
 true

 	
 Logical or Boolean true, instance of TrueClass. (See false.)

	
 undef

 	
 Makes a method in current class undefined.

	
 unless

 	
 Executes code block if conditional statement is false. (Compare with if, until.)

	
 until

 	
 Executes code block while conditional statement is false. (Compare with
 if, unless.)

	
 when

 	
 Starts a clause (one or more) under case.

	
 while

 	
 Executes code while the conditional statement is true.

	
 yield

 	
 Executes the block passed to the method.

	
 _ _FILE_ _

 	
 Name of current source file.

	
 _ _LINE_ _

 	
 Number of current line in the current source file.

End of sample

 To search for additional titles please go to

 http://search.overdrive.com.

OEBPS/httpatomoreillycomsourceoreillyimages11058.png
806 Address: index

@r o @ 0 f & 0 [@hpy/0.0.0.03000/address

+ Google

Listing addresses

Name Address Citystate Postcode Country

New address

OEBPS/httpatomoreillycomsourceoreillyimages11046.png.jpg
8066 Sunrise

Sunrise at sunset!

(quit)

OEBPS/httpatomoreillycomsourceoreillyimages11060.png
606 Address: new

3000/address/new

@ 0 @0 o

+ Google

=

New address

Name
[Gemma Rubymeister

Address

123 Ruby Way

Citystate

[Paradise, Hawaii

Postcode

[96000-0000

Country
jusa

Create

Back

OEBPS/httpatomoreillycomsourceoreillyimages11054.png.jpg
Blinksale | The easiest way to send invoices online

@ & [0 Conpminksatecomimome v]O @
M
- IE Home |
|
1
The easiest way to send invoices online. ;
— PayPal Developer Network }
|
Invoice 10001 |
e 1
Due 21 May 2006 (NET 30) (Import client from Basecamp " I |

= My Client Select a client from Basecamp

© Grestoanow Binksdolentrecord ;
a oy Do Fstzonn et Binksals et }
Send elegantly formatted invoices to Use our professionally-designed invoice Import your client records from L

anyone with an emall address. templates or design your own with CSS.

Basecamp for paini

Namo Son
Purchases

SEO ana Advertsi sa¢

Web Hosting 4 ael

ess invoicing.

Recurring Templates

Filter: & ANl Unpaid

From: (01 78) Janvary 1|

Wob Design Ftainr 500

Ta. i

Invoices received from other Blinksale

Use recurring templates 1o send
automated repeating involces.

Tag invoices and purchases to organize,
track, and export your invoice data.

subscribers are added to your records.

Start sending invoices in about 5 minutes!

Oonk

Find:

Q

Blinksale Buzz

Of all the applications | use for business, Blinksale is the
most important and easiest to use.

Greg Storey, Airbag Indlustries

Oh and by the way—for the first time in 16 years | love

Who should use Blinksale?

Blinksale is perfect for anyone who needs to invoice
clients for services or products sold. Blinksale is an
excellent choice for attorneys, accountants, designers,
IT professionals, software developers, journalists,
contractors, engineers, architects, videographers, and

CIMatch case

OEBPS/httpatomoreillycomsourceoreillyimages11044.png.jpg
[-XeXs) Ruby is fun!

Ruby ia fun, in care you didn't notice!

OEBPS/httpatomoreillycomsourceoreillyimages11056.png
806

Ruby on Rails: Welcome aboard

-

& [@ hetp://0.0.0.0:3000/

=

-

Welcome aboard

You're riding the Rails!

About your appl

Getting started
Here’s how to get rolling:

. Create your databases and edit

config/database.yml

Rails needs to know your login and password.

. Use script/generate to create your

models and controllers

To see all available options, run it without parameters.

. Set up a default route and remove or rename

this file

Routes are setup in config/ routes.rb.

Search_| the Rails site

Join the community

Ruby on Rails
Official weblog
Mailing lists
IRC channel
Wiki

Bug tracker

Browse the
documentation

Rails API
Ruby standard library
Ruby core

OEBPS/httpatomoreillycomsourceoreillyimages11032.png.jpg
@ TextMate File Edit View Text Navigation Bundles Window Help
©606 [5) matz_shebang.rb

1 [#1/usr/local /bin/ruby

2 |puts "Hello, Matz!"

3
o~ r—r . ST~ SoftTabs: 4 5| — 0

OEBPS/oreilly_large.gif
O’REILLY

OEBPS/httpatomoreillycomsourceoreillyimages11040.png
Favorites Tools tielp

F | P seach 5 Folders

e Edt Vew

Qbsck + ©

& o X 9| @

Address £ C: Ruby i

aEy
(Slvo et
fem—
(Slrcocsat
[S1rst
[l xe
(Srbymese
(e st

8 objects

e | @ vy compue

OEBPS/httpatomoreillycomsourceoreillyimages11038.png
© Ruby-185-21 Setup C)oX

Welcome to the Ruby-185-21 Setup
Wizard

This wizard wil quide you through the instaltion of
Ruby-185-21.

Itis recommended that you dose al other appications
before starting Setup. Tris il make it possbl o update
relevant system fles without having to reboot your
computer.

Clck Next to contine.

OEBPS/httpatomoreillycomsourceoreillyimages11030.png
8006..

Hello, Matz!
V

OEBPS/httpatomoreillycomsourceoreillyimages11048.png.jpg
6606 Ratios ="

e 2} (=) (9 O fle//RubyRatios/doc/index bl) $
Files | classes | Methods
ratios. b Ratios der (Ratios)

Itdr (Ratios)

new (Ratios)

tdr (Ratios)

Class

Ratios
In: ratios.rb
Parent: Object

This class provides a few methods for calculating financial ratios. So far, three ratios are available:

1. debt-equity ratio (der)
2. long-term debt ratio (/tdr)
3. total debt ratio (tdr)

Author: Mike Fitzgerald (mike@example.com)
Copyright: Wy'east Communications

Methods
der Itdr new tdr

Public Class methods

new(debt, equity)

The new class method initializes the class.

Parameters

o debt = long-term debt
» equity = equity

Example

ratios = Ratios.new(2456, 9876)

o 7

OEBPS/httpatomoreillycomsourceoreillyimages11052.png
806 43 Things

2} 2 6 5 nup:s iwww.a3things.comy
Zeitgeist Lootn RS €O

What do you want to do with your life?

I want to do tt

711,361 people in 10,231 cities are doing 760,139 things including...

Goona road trip run photos of people I know through forensic age-proaression

software arow out my hair Make more "real" friends buy a new home learn the

thriller dance become a rockstar | | pteacher wants to read magazines jump
into water fully clothed publish 2 photoaraph Be a better friend get gorgeous gain

weight 1 want to qo to college be ful and happy learn how to araffit

exerdse mote e 2 e Lose 30 pounds e e [P Pnk reathers
ants to have my very own playroom Get toned Qi Smoking J7E¥ wan1980

wants to lear PHP save a life Conquer my fear of heights play drums Berlusconi

fuori dai colioni travel around the world for a couple of vears with my love €&

the northern lights touch snow sty focused and qet thinas done find myselt

create & zen garden create the soundtrack to my life Buy an investment property

[s vt o e sty o 280 pes o my Gt reader suna

barnes and noble install my new bathroom faucet Build 2 bar in my basement stop

smoking watch nip/tuck online - watch free friends episodes visit Poland Learn Irish

Stop buying things | dont need. get contacts Escape America visit california own

2buq drink more water and less diet coke learn to crochet write better sonas play.

0 bons [mtaiz wants to have breakcast ot itany's 10S€
weight o i centues wens mectmety G0 ons cuisein

the Caribbean find afob build a house scan all my old photoaraphs go to

Antarctica listen to trapped in the closet parts 1-5 Start my own business get

43 Things

Discover what's important,
make it happen, share your
progress. Find your 43
things. Learn more.

Top Cities.

New York City 2
+ seattle
+ London
- Chicago 14
Los Angeles 1260

Today's Tags
« fun 6765

+ travel 6471
« life 6250
+ heaith 54
« love 4729
+ personal 41
- mustc 55
o famiy 967

+ misspelled goal 2645

+ exercise 2460

OEBPS/httpatomoreillycomsourceoreillyimages11062.png
806 Address: list (=)
@ o @ 6 L 20 [@mmp:/0.0.0.0:3000/address/list V] Google Q

e

Address was successfully created.

Listing addresses

Name Address Citystate Postcode Country
Gemma Rubymeister 123 Ruby Way Paradise, Hawail 96000-0000 USA Show Edit Destroy.

New address

OEBPS/httpatomoreillycomsourceoreillyimages11050.png
8066 Project collaboration, management, and task software: Basecamp o
& & @ & (0 Mnwmasecampha.comi v10(G .
2006 customer survey results 7signals 1+
&/ Basecamp"
Join over 500,000 people like you who've discovered Basecamp - the smarter,
easier, more elegant way to get your internal and client projects done
1t's so simple you can't do anything wrong. Addictively easy to use.
Robert D Hof, BusinessWeck Sitcon Valley Bureau Chie (more buzz.)
Take a tour or Sign up for a free Basecamp account
Sign-up Just takes a minute. No contracts or sign-up fees. Cancel at any time. If you have an account, log in.
What is Basecamp?
Basecamp is a unique project collaboration tol.
Projects do't fail from a lack of charts, graphs, or
reports, they fail from a lack of communication and
collaboration. Basecamp makes t simple to
communicate and collaborate on projects.
simple, safe, and hassle-free
Basecamp is elegant, dead simple, and
web-based (and it even looks great on paper)
You donit need to download, insall, or configure
anything (no T staff required). Allyou need is a
e web browser and an internet connection. And
el Comec! don't worry, your data is safe with us.
B How can Basecamp help us?
= = Basecamp makes i easy to centralize group
= fe— communication with co-workers and clients.
- © Assign to-dos and tasks
© Post messages and gather feedback
© Simple scheduling and permissions
© Share files internally or with clients
© Track people’s time
=) i Who uses Basecamp?
Over 500,000 people and small businesses.
Basecamp is all about getting projects done. Freecers, designers, owers, ublhers,
Take a tour, read our manifesto, browse the 1eachers, Shkderi, fion-profks, And mors,
forums, get pricing or sign-up for a free trial.

© Find (Q Find Ne Find Previous || Highlightall _CJMatch case
Dons

OEBPS/httpatomoreillycomsourceoreillyimages11028.jpg
The Language that Powers Rails

Learning

O’REILLY*® Michael Fitzgerald

OEBPS/httpatomoreillycomsourceoreillyimages11034.png
e 06 RubyMate — matz_shebang.rb

RubyMate

RubyMate r4913 running Ruby v1.8.5 (/usr/local/bin/ruby)
55> matz_shebang.rb

Hello, Matz!

Program exited.

OEBPS/httpatomoreillycomsourceoreillyimages11042.png
Object

,\ Marix

Numeric

Integer

Rational
Fixnum Bignum

Complex
Math precision
module module

OEBPS/httpatomoreillycomsourceoreillyimages11036.png
Classes

HimIExtension
QueryExtension
Session
Session::FileStore |

aesenongior”

Class Array

array.c
lib/abbrev.rb

Parent: Object

Arrays are ordered, integer-indexed collections of any object.
[Array indexing starts at 0, as in C or Java. A negative index is
assumed to be relative 1o the end of the aay—that is, an index of
-t indicates the last element of the artay, -2 is the next 1o last
element in the artay, and so on.

Methods

& ¢+ << < U 0 0= abbrev assoc at
clear collect collecti compact compact! concat _delete
delete_at_delete_if each ecach_index empty? eql fetch

—_— 3 i

