

 [image: Second Edition]

 Programming Android

Zigurd Mednieks

Laird Dornin

G. Blake Meike

Masumi Nakamura

Published by O’Reilly Media

[image:]
Beijing ⋅ Cambridge ⋅ Farnham ⋅ Köln ⋅ Sebastopol ⋅ Tokyo

SPECIAL OFFER: Upgrade this ebook with O’Reilly

Click here for more information on this offer!
Please note that upgrade offers are not available from sample content.

Preface

The purpose of this book is to enable you to
 create well-engineered Android applications that go beyond the scope of
 small example applications.
This book is for people coming to Android programming from a variety
 of backgrounds. If you have been programming iPhone or Mac OS applications
 in Objective-C, you will find coverage of Android tools and Java language
 features relevant to Android programming that will help you bring your
 knowledge of mobile application development to Android. If you are an
 experienced Java coder, you will find coverage of Android application
 architecture that will enable you to use your Java expertise in this newly
 vibrant world of client Java application development. In short, this is a
 book for people with some relevant experience in object-oriented languages,
 mobile applications, REST applications, and similar disciplines who want to
 go further than an introductory book or online tutorials will take
 them.
How This Book Is Organized

We want to get you off to a fast start. The
 chapters in the first part of this book will step you through using the
 SDK tools so that you can access example code in this book and in the SDK,
 even as you expand your knowledge of SDK tools, Java, and database design.
 The tools and basics covered in the first part might be familiar enough to
 you that you would want to skip to Part II where we
 build foundational knowledge for developing larger Android
 applications.
The central part of this book is an example of
 an application that uses web services to deliver information to the
 user—something many applications have at their core. We present an
 application architecture, and a novel approach to using Android’s
 framework classes that enables you to do this particularly efficiently.
 You will be able to use this application as a framework for creating your
 own applications, and as a tool for learning about Android
 programming.
In the final part of this book, we explore
 Android APIs in specific application areas: multimedia, location, sensors,
 and communication, among others, in order to equip you to program
 applications in your specific area of interest.
By the time you reach the end of this book, we
 want you to have gained knowledge beyond reference material and a
 walk-through of examples. We want you to have a point of view on how to
 make great Android applications.

Conventions Used in This Book

The following typographical conventions are used
 in this book:
	Italic
	Indicates new terms, URLs, email addresses,
 filenames, and file extensions

	Constant width
	Used for program listings, as well as
 within paragraphs to refer to program elements such as variable or
 function names, databases, data types, environment variables,
 statements, and keywords

	Constant width
 bold
	Shows commands or other text that should be
 typed literally by the user

	Constant width italic
	Shows text that should be replaced with
 user-supplied values or by values determined by context

Tip
This icon signifies a tip, suggestion, or
 general note.

Caution
This icon indicates a warning or
 caution.

Using Code Examples

This book is here to help you get your job done.
 In general, you may use the code in this book in your programs and
 documentation. You do not need to contact us for permission unless you’re
 reproducing a significant portion of the code. For example, writing a
 program that uses several chunks of code from this book does not require
 permission. Selling or distributing a CD-ROM of examples from O’Reilly
 books does require permission. Answering a question by citing this book
 and quoting example code does not require permission. Incorporating a
 significant amount of example code from this book into your product’s
 documentation does require permission.
We appreciate, but do not require, attribution.
 An attribution usually includes the title,
 author, publisher, and ISBN. For example: “Programming
 Android, Second Edition by Zigurd Mednieks, Laird Dornin, G. Blake Meike, and
 Masumi Nakamura. Copyright 2012 O’Reilly Media, Inc.,
 978-1-449-31664-8.”
If you feel your use of code examples falls
 outside fair use or the permission given here, feel free to contact us at
 permissions@oreilly.com.

Safari® Books Online

Note
Safari Books Online (www.safaribooksonline.com)
 is an on-demand digital library that delivers expert content in both
 book and video form from the world’s leading authors in technology and
 business.

Technology professionals, software developers, web designers, and
 business and creative professionals use Safari Books Online as their
 primary resource for research, problem solving, learning, and
 certification training.
Safari Books Online offers a range of product mixes
 and pricing programs for organizations,
 government
 agencies, and individuals.
 Subscribers have access to thousands of books, training videos, and
 prepublication manuscripts in one fully searchable database from
 publishers like O’Reilly Media, Prentice Hall Professional, Addison-Wesley
 Professional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press,
 Cisco Press, John Wiley & Sons, Syngress, Morgan Kaufmann, IBM
 Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New Riders,
 McGraw-Hill, Jones & Bartlett, Course Technology, and dozens more. For more
 information about Safari Books Online, please visit us online.

How to Contact Us

Please address comments and questions concerning this book to the
 publisher:
	O’Reilly Media, Inc.
	1005 Gravenstein Highway North
	Sebastopol, CA 95472
	800-998-9938 (in the United States or Canada)
	707-829-0515 (international or local)
	707-829-0104 (fax)

We have a web page for this book, where we list errata, examples,
 and any additional information. You can access this page at http://oreil.ly/prog_android_2e.
To comment or ask technical questions about this book, send email to
 bookquestions@oreilly.com.
For more information about our books, courses, conferences, and
 news, see our website at http://www.oreilly.com.
Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia
Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments

The authors have adapted portions of this
 book from their previously released title, Android
 Application Development (O’Reilly).
Drafts of this book were released on the
 O’Reilly Open Feedback Publishing System (OFPS) in order to get your
 feedback on whether and how we are meeting the goals for this book. We are
 very grateful for the readers who participated in OFPS, and we owe them
 much in correcting our errors and improving our writing. Open review of
 drafts will be part of future editions, and we welcome your views on every
 aspect of this book.
Zigurd Mednieks
I am eternally grateful to Terry, my wife, and Maija and Charles, my
 children, who gave me the time to do this. This book exists because our
 agent, Carole Jelen, at Waterside Productions, whipped our proposal
 material into shape, and because Mike Hendrickson kicked off the project
 within O’Reilly. Brian Jepson and Andy Oram, our editors, kept this large
 troupe of authors unified in purpose and result. Thanks to Johan van der
 Hoeven, who provided review comments that contributed much to accuracy and
 clarity. Thanks to all the reviewers who used the Open Feedback Publishing
 System to help make this a better book.
Laird Dornin
Thanks to my wonderful Norah for encouraging me to take part in this
 project, even though you had no idea of the amount of effort involved in
 writing a book. Cheers to trips to Acadia, trips to New Hampshire, and
 late nights writing. I’m glad this book did not stall our truly important
 project, the arrival of our beautiful daughter Claire. Thanks to Andy our
 editor, and my coauthors for giving me this opportunity. Thanks to Larry
 for reviewing and enabling me to work on this project. I’m glad that ideas
 I developed at SavaJe could find a voice in this book. Finally, thanks to
 our main reviewers Vijay and Johan, you both found solid ways to improve
 the content.
G. Blake Meike
My thanks to our agent, Carole Jelen, Waterside Productions, without
 whom this book would never have been more than a good idea. Thanks, also,
 to editors Brian Jepson and Andy Oram, masters of the “gentle way.”
 Everyone who reads this book benefits from the efforts of Johan van der
 Hoeven and Vijay Yellapragada, technical reviewers; Sumita Mukherji, Adam
 Zaremba, and the rest of the O’Reilly production team; and all those who
 used O’Reilly’s OFPS to wade through early and nearly incomprehensible
 drafts, to produce salient comments and catch egregious errors. Thanks
 guys! Speaking of “thanks guys,” it was quite an honor and certainly a
 pleasure to collaborate with my coauthors, Zigurd, Laird, and Masumi. Of
 course, last, best, and as ever, thanks and love to my wife Catherine, who
 challenges me in the good times and provides support when it’s dark. Yeah,
 I know, the bookcase still isn’t done.
Masumi Nakamura
I would like to thank my friends and family for bearing with me as I
 worked on this and other projects. An especially big thank you to Jessamyn
 for dealing with me all these years. I also would like to thank Brian and
 Andy for getting us through the fine points of writing and publishing, as
 well as my coauthors for bringing me in to work on this piece. Also, a
 quick shout out to all the people at WHERE, Inc. who have been very
 supportive in my technological wanderings. Finally, a thank you to you,
 the readers, and all you developers working tirelessly to make Android a
 great platform to work on and enjoy using.

Part I. Tools and Basics

Part I shows you how to
 install and use your tools, what you need to know about Java to write
 good Android code, and how to design and use SQL databases, which are
 central to the Android application model, persistence system, and
 implementation of key design patterns in Android programs.

Chapter 1. Installing the Android SDK and
 Prerequisites

This chapter shows you how to install the Android
 software development kit (SDK) and all the related software you’re likely to
 need. By the end, you’ll be able to run a simple “Hello World” program on an
 emulator. Windows, Mac OS X, and Linux systems can all be used for Android
 application development. We will load the software, introduce you to the
 tools in the SDK, and point you to sources of example code.
Throughout this book, and especially in this
 chapter, we refer to instructions available on various websites for
 installing and updating the tools you will use for creating Android
 programs. The most important place to find information and links to tools is
 the Android Developers site:
	http://developer.android.com

Our focus is on guiding you through installation,
 with explanations that will help you understand how the parts of Android and
 its developer tools fit together, even as the details of each part
 change.
Installing the Android SDK and Prerequisites

Successfully installing the Android SDK requires
 two other software systems that are not part of the Android SDK: the Java
 Development Kit (JDK) and the Eclipse integrated development environment
 (IDE). These two systems are not delivered as part of the Android SDK
 because you may be using them for purposes outside of Android software
 development, or because they may already be installed on your system, and
 redundant installations of these systems can cause version
 clashes.
The Android SDK is compatible with a range of
 recent releases of the JDK and the Eclipse IDE. Installing the current
 release of each of these tools will usually be the right choice. The exact
 requirements are specified on the “System requirements” page of the
 Android Developers site: http://developer.android.com/sdk/requirements.html.
One can use IDEs other than Eclipse in Android
 software development, and information on using other IDEs is provided in
 the Android documentation at http://developer.android.com/guide/developing/other-ide.html.
 We chose Eclipse as the IDE covered in this book because Eclipse supports
 the greatest number of Android SDK tools and other plug-ins, and Eclipse
 is the most widely used Java IDE, but IntelliJ IDEA is an alternative many
 Java coders prefer.
The Java Development Kit (JDK)

If your system has an up-to-date JDK installed,
 you won’t need to install it again. The JDK provides tools, such as the
 Java compiler, used by IDEs and SDKs for developing Java programs. The
 JDK also contains a Java Runtime Environment (JRE), which enables Java
 programs, such as Eclipse, to run on your system.
If you are using a Macintosh running a version
 of Mac OS X supported by the Android SDK, the JDK is already
 installed.
If you are a Linux or Windows user, or you need
 to install the JDK from Oracle’s site for some other reason, you can
 find the JDK at http://www.oracle.com/technetwork/java/javase/downloads/index.html.
The Windows installer you download is an
 executable file. Run the executable installer file to install the
 JDK.
Linux users will need to extract the JDK folder they downloaded
 into their home directory, and perform the following steps to install
 the JDK. These steps assume you want to use the current Oracle JDK as
 your default Java runtime:
Download the archive or package corresponding to your system. (If
 it is a package, use the package manager to complete the installation;
 otherwise, follow these steps.)
tar -xvf archive-name.tar.gz
The JDK archive will be extracted into the ./jdk-name directory. Now move the JDK directory
 to /usr/lib:
sudo mv ./jdk-name /usr/lib/jvm/jdk-name
Moving the JDK to that location makes it a configurable
 alternative in your Linux environment, which is useful if you have
 projects or programs that require other versions of the JRE or JDK. Now
 run:
sudo update-alternatives --install "/usr/bin/java" "java" \
 "/usr/lib/jvm/jdk-name/bin/java" 1
sudo update-alternatives --install "/usr/bin/javac" "javac" \
 "/usr/lib/jvm/jdk-name.0/bin/javac" 1
sudo update-alternatives --install "/usr/bin/javaws" "javaws" \
 "/usr/lib/jvm/jdk-name/bin/javaws" 1
sudo update-alternatives --config java
You will see output similar to that
 shown here:
 There are 3 choices for the alternative java (providing /usr/bin/java).

 Selection Path Priority Status
 --
 * 0 /usr/lib/jvm/java-6-openjdk/jre/bin/java 63 auto mode
 1 /usr/lib/jvm/java-6-openjdk/jre/bin/java 63 manual mode
 2 /usr/lib/jvm/java-6-sun/jre/bin/java 63 manual mode
 3 /usr/lib/jvm/jdk1.7.0/jre/bin/java 1 manual mode

 Press enter to keep the current choice[*], or type selection number:
When you select the JDK you are installing, you will see output
 like this:
update-alternatives: using /usr/lib/jvm/jdk1.7.0/jre/bin/java to provide
 /usr/bin/java (java) in manual mode.
Repeat the preceding selection process for
 javac:
sudo update-alternatives --config javac
And for javaws:
sudo update-alternatives --config javaws
Depending on the different kinds of Java
 implementations installed on your system, and the current version of the
 JDK available when you read this, version numbers may differ from what
 you see in examples of command output here.
For every OS, you can now check the version of Java installed with
 this command:
java -version
The version reported should correspond to the version you
 installed. If not, repeat the installation steps, and make sure that no
 errors are reported during installation.

The Eclipse Integrated Development Environment (IDE)

Eclipse is a general-purpose technology
 platform. It has been applied to a variety of uses in creating IDEs for
 multiple languages and in creating customized IDEs for many specialized
 SDKs, as well as to uses outside of software development tools, such as
 providing a Rich Client Platform (RCP) for Lotus Notes and a few other
 applications.
Eclipse is usually used as an IDE for writing,
 testing, and debugging software, especially Java software. There are
 also several derivative IDEs and SDKs for various kinds of Java software
 development based on Eclipse. In this case, you will take a widely used
 Eclipse package and add a plug-in to it to make it usable for Android
 software development. Let’s get that Eclipse package and install
 it.
Eclipse can be downloaded from http://www.eclipse.org/downloads.
You will see a selection of the most commonly
 used Eclipse packages on this page. An Eclipse “package” is a ready-made
 collection of Eclipse modules that make Eclipse better suited for
 certain kinds of software development. Usually, Eclipse users start with
 one of the Eclipse packages available for download on this page and
 customize it with plug-ins, which is what you will do when you add the
 Android Developer Tools (ADT) plug-in to your Eclipse installation. The
 System Requirements article on the Android Developers site lists three
 choices of Eclipse packages as a basis for an Eclipse installation for
 Android software development:
	Eclipse Classic (for Eclipse 3.5 or
 later)

	Eclipse IDE for Java Developers

	Eclipse for RCP/Plug-in Developers

Any of these will work, though unless you are
 also developing Eclipse plug-ins, choosing either Classic or the Java
 Developers package (EE or Standard) makes the most sense. The authors of
 this book started with the Java EE Developers package (“EE” stands for
 Enterprise Edition), and screenshots of Eclipse used in this book
 reflect that choice.
The Eclipse download site will automatically
 determine the available system-specific downloads for your system,
 though you may have to choose between 32 and 64 bits to match your
 operating system. The file you download is an archive. To install
 Eclipse, open the archive and copy the eclipse folder to your home folder. The
 executable file for launching Eclipse on your system will be found in
 the folder you just extracted from the archive.
Caution
We really mean it about installing Eclipse in
 your home folder (or another folder you own), especially if you have
 multiple user accounts on your system. Do not use your system’s
 package manager. Your Eclipse installation is one of a wide range of
 possible groupings of Eclipse plug-ins. In addition, you will probably
 further customize your installation of Eclipse. Eclipse plug-ins and
 updates are managed separately from other software in your
 system.

If you are using Ubuntu or another Linux
 distribution, you should not install Eclipse from your distribution’s
 repositories, and if it is currently installed this way, you must remove
 it and install Eclipse as described here. The presence of an “eclipse”
 package in the Ubuntu repositories is an inheritance from the Debian
 repositories on which Ubuntu is based. It is not a widely used approach
 to installing and using Eclipse, because most of the time, your
 distribution’s repositories will have older versions of
 Eclipse.
To confirm that Eclipse is correctly installed
 and that you have a JRE that supports Eclipse, launch the executable
 file in the Eclipse folder. You may want to make a shortcut to this
 executable file to launch Eclipse more conveniently. You should see the
 Welcome screen shown in Figure 1-1.
Eclipse is implemented in Java and requires a
 JRE. The JDK you previously installed provides a JRE. If Eclipse does
 not run, you should check that the JDK is correctly installed.
[image: Welcome screen that you see the first time you run Eclipse]

Figure 1-1. Welcome screen that you see the first time you run
 Eclipse

The Android SDK

With the JDK and Eclipse installed, you have
 the prerequisites for the Android SDK, and are ready to install the SDK.
 The Android SDK is a collection of files: libraries, executables,
 scripts, documentation, and tools. Installing the SDK means downloading
 the correct version of the SDK for your platform and putting the SDK
 files into a folder in your home directory. There is no installation
 script. Later, you will configure an Eclipse plug-in so it can find
 where you put the SDK. The appearance, requirements, and functionality
 of the Android toolkit are changing very rapidly. The following outlined
 process is a guideline that may not exactly reflect your experience. The
 most recent documentation can always be found at http://developer.android.com/tools/index.html.
To install the SDK, download the SDK package
 that corresponds to your system from http://developer.android.com/sdk/index.html.
The download is an archive. Open the archive
 and extract the folder at the top level of the archive to your home
 folder.
The SDK contains one or two folders for tools:
 one named tools and, starting in
 version 8 of the SDK, another called platform-tools. These folders need to be on
 your path, which is a list of folders your system searches for
 executable files when you invoke an executable from the command line. On
 Macintosh and Linux systems, setting the PATH environment variable is done in the
 .profile (Ubuntu) or .bash_profile (Mac OS X) file in your home
 directory. Add a line to that file that sets the PATH environment variable to include the
 tools directory in the SDK
 (individual entries in the list are separated by colons). For example,
 you could use the following line (but replace both instances of ~/android-sdk-ARCH
 with the full path to your Android SDK install):
export PATH=$PATH:~/android-sdk-ARCH/tools:~/android-sdk-ARCH/platform-tools
Warning
If you are using a 64-bit version of Linux,
 you may need to install the ia32-libs package.
To check whether you need this package, try
 running the adb command:
~/android-sdk-linux_*/platform-tools/adb
If your system reports that the Android Debug Bridge (adb)
 cannot be found (despite being right there in the platform-tools directory) it likely means
 that the current version of adb, and possibly other tools, will not
 run without the ia32-libs package
 installed. The command to install the ia32-libs package is:
sudo apt-get install ia32-libs

On Windows systems, click Start→right-click Computer, and choose Properties.
 Then click Advanced System Settings, and click the Environment Variables
 button. Double-click the path system variable, and add the path to the
 folders by going to the end of this variable’s value (do not change
 anything that’s already there!) and adding the two paths to the end,
 separated by semicolons with no space before them. For example:
;C:\android-sdk-windows\tools;C:\android-sdk-windows\platform-tools
After you’ve edited your path on
 Windows, Mac, or Linux, close and reopen any Command Prompts or
 Terminals to pick up the new PATH
 setting (on Ubuntu, you may need to log out and log in unless your
 Terminal program is configured as a login shell).

Adding Build Targets to the SDK

Before you can build an Android application, or
 even create a project that would try to build an Android application,
 you must install one or more build targets. To do this, you will use the
 SDK and AVD Manager. This tool enables you to install packages in the
 SDK that will support multiple versions of the Android OS and multiple
 API levels.
Once the ADT plug-in is installed in Eclipse,
 which we describe in the next section, the SDK and AVD Manager can be
 invoked from within Eclipse. It can also be invoked from the command
 line, which is how we will do it here. To invoke the SDK and AVD Manager
 from the command line, issue this command:
android
The screenshot in Figure 1-2 shows
 the SDK and AVD Manager, with all the available SDK versions selected
 for installation.
[image: The SDK and AVD Manager, which enables installation of Android API levels]

Figure 1-2. The SDK and AVD Manager, which enables installation of Android
 API levels

The packages labeled “SDK Platform” support
 building applications compatible with different Android API levels. You
 should install, at a minimum, the most recent (highest-numbered)
 version, but installing all the available API levels, and all the Google
 API add-on packages, is a good choice if you might someday want to build
 applications that run on older Android versions. You should also
 install, at a minimum, the most recent versions of the example
 applications package. You must also install the Android SDK
 Platform-Tools package.

The Android Developer Tools (ADT) Plug-in for Eclipse

Now that you have the SDK files installed,
 along with Eclipse and the JDK, there is one more critical part to
 install: the Android Developer Tools (ADT) plug-in. The ADT plug-in adds
 Android-specific functionality to Eclipse.
Software in the plug-in enables Eclipse to
 build Android applications, launch the Android emulator, connect to
 debugging services on the emulator, edit Android XML files, edit and
 compile Android Interface Definition Language (AIDL) files, create
 Android application packages (.apk
 files), and perform other Android-specific tasks.
Using the Install New Software Wizard to download and install
 the ADT plug-in

You start the Install New Software Wizard by
 selecting Help→Install New Software
 (Figure 1-3). To
 install the ADT plug-in, type this URL into the “Work with” field and
 press Return or Enter: https://dl-ssl.google.com/android/eclipse/
 (see Figure 1-4).
[image: The Eclipse Add Site dialog]

Figure 1-3. The Eclipse Add Site dialog

Note
More information on installing the ADT
 plug-in using the Install New Software Wizard can be found on the
 Android Developers site, at http://developer.android.com/sdk/eclipse-adt.html#downloading.
Eclipse documentation on this wizard can be
 found on the Eclipse documentation site, at http://help.eclipse.org/galileo/index.jsp?topic=/org.eclipse.platform.doc.user/tasks/tasks-124.htm.

Once you have added the URL to the list of
 sites for acquiring new plug-ins, you will see an entry called
 Developer Tools listed in the Available Software list.
[image: The Eclipse Install dialog with the Android Hierarchy Viewer plug-in shown as available]

Figure 1-4. The Eclipse Install dialog with the Android Hierarchy Viewer
 plug-in shown as available

Select the Developer Tools item by clicking
 on the checkbox next to it, and click on the Next button. The next
 screen will ask you to accept the license for this software. After you
 accept and click Finish, the ADT will be installed. You will have to
 restart Eclipse to complete the installation.

Configuring the ADT plug-in

One more step, and you are done installing.
 Once you have installed the ADT plug-in, you will need to configure
 it. Installing the plug-in means that various parts of Eclipse now
 contain Android software development-specific dialogs, menu commands,
 and other tools, including the dialog you will now use to configure
 the ADT plug-in. Start the Preferences dialog using the Window→Preferences (Linux and Windows) or
 Eclipse→Preferences (Mac) menu option.
 Click the item labeled Android in the left pane of the Preferences
 dialog.
Note
The first time you visit this
 section of the preferences, you’ll see a dialog asking if you want
 to send some usage statistics to Google. Make your choice and click
 Proceed.

A dialog with the Android settings is
 displayed next. In this dialog, a text entry field labeled SDK
 Location appears near the top. You must enter the path to where you
 put the SDK, or you can use the file browser to select the directory,
 as shown in Figure 1-5.
 Click Apply. Note that the build targets you installed, as described
 in Adding Build Targets to the SDK, are listed here as well.
Your Android SDK installation is now
 complete.
[image: Configuring the SDK location into the Eclipse ADT plug-in using the Android Preferences dialog]

Figure 1-5. Configuring the SDK location into the Eclipse ADT plug-in
 using the Android Preferences dialog

Test Drive: Confirm That Your Installation Works

If you have followed the steps in this chapter,
 and the online instructions referred to here, your installation of the
 Android SDK is now complete. To confirm that everything you installed so
 far works, let’s create a simple Android application.
Making an Android Project

The first step in creating a simple Android
 application is to create an Android project. Eclipse organizes your work
 into “projects,” and by designating your project as an Android project,
 you tell Eclipse that the ADT plug-in and other Android tools are going
 to be used in conjunction with this project.
Note
Reference information and detailed
 online instructions for creating an Android project can be found at
 http://developer.android.com/guide/developing/eclipse-adt.html.

Start your new project with the File→New→Android
 Project menu command. Locate the Android Project option in the New
 Android Project dialog (it should be under a section named Android).
 Click Next, and the New Project dialog appears as shown in Figure 1-6.
[image: The New Android Project dialog]

Figure 1-6. The New Android Project dialog

To create your Android project, you will
 provide the following information:
	Project name
	This is the name of the project (not the
 application) that appears in Eclipse. Type TestProject, as shown in Figure 1-6.

	Workspace
	A workspace is a folder containing a set
 of Eclipse projects. In creating a new project, you have the
 choice of creating the project in your current workspace, or
 specifying a different location in the filesystem for your
 project. Unless you need to put this project in a specific
 location, use the defaults (“Create new project in workspace” and
 “Use default location”).

	Target name
	The Android system images you installed
 in the SDK are shown in the build target list. You can pick one of
 these system images, and the corresponding vendor, platform
 (Android OS version number), and API level as the target for which
 your application is built. The platform and API level are the most
 important parameters here: they govern the Android platform
 library that your application will be compiled with, and the API
 level supported—APIs with a higher API level than the one you
 select will not be available to your program. For now, pick the
 most recent Android OS version and API level you have
 installed.

	Application name
	This is the application name the user
 will see. Type Test
 Application.

	Package name
	The package name creates a Java package
 namespace that uniquely identifies packages in your application,
 and must also uniquely identify your whole Android application
 among all other installed applications. It consists of a unique
 domain name—the application publisher’s domain name—plus a name
 specific to the application. Not all package namespaces are unique
 in Java, but the conventions used for Android applications make
 namespace conflicts less likely. In our example we used
 com.oreilly.testapp, but you can put something appropriate for
 your domain here (you can also use com.example.testapp, since
 example.com is a domain name reserved for examples such as this
 one).

	Activity
	An activity is a
 unit of interactive user interface in an Android application,
 usually corresponding to a group of user interface objects
 occupying the entire screen. Optionally, when you create a project
 you can have a skeleton activity created for you. If you are
 creating a visual application (in contrast with a service, which
 can be “headless”—without a visual UI), this is a convenient way
 to create the activity the application will start with. In this
 example, you should create an activity called
 TestActivity.

	Minimum SDK version
	The field labeled Min SDK Version should
 contain an integer corresponding to the minimum SDK version
 required by your application, and is used to initialize the
 uses-sdk attribute in the
 application’s manifest, which is a file that stores application
 attributes. See The Android Manifest Editor. In most cases,
 this should be the same as the API level of the build target you
 selected, which is displayed in the rightmost column of the list
 of build targets, as shown in Figure 1-6.

Click Finish (not Next) to create your Android
 project, and you will see it listed in the left pane of the Eclipse IDE
 as shown in Figure 1-7.
If you expand the view of the project hierarchy
 by clicking the “+” (Windows) or triangle (Mac and Linux) next to the
 project name, you will see the various parts of an Android project.
 Expand the src folder and you will
 see a Java package with the name you entered in the wizard. Expand that
 package and you will see the Activity
 class created for you by the wizard. Double-click that, and you will see
 the Java code of your first Android program:
package com.oreilly.demo.pa.ch01.testapp;

import android.app.Activity;
import android.os.Bundle;
import com.oreilly.demo.pa.ch01.R;

public class TestActivity extends Activity {
 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 }
}
[image: The Package Explorer view, showing the files, and their components, that are part of the project]

Figure 1-7. The Package Explorer view, showing the files, and their
 components, that are part of the project

If you’ve been following along and see the same
 thing on your computer, your SDK installation is probably working
 correctly. But let’s make sure, and explore the SDK just a bit further,
 by running your first program in an emulator and on an Android device if
 you have one handy.

Making an Android Virtual Device (AVD)

The Android SDK provides an emulator, which
 emulates a device with an ARM CPU running an Android operating system
 (OS), for running Android programs on your PC. An Android Virtual Device
 (AVD) is a set of parameters for this emulator that configures it to use
 a particular system image—that is, a particular version of the Android
 operating system—and to set other parameters that govern screen size,
 memory size, and other emulated
 hardware characteristics. Detailed documentation on
 AVDs is available at http://developer.android.com/guide/developing/tools/avd.html,
 and detailed documentation on the
 emulator is found here: http://developer.android.com/guide/developing/tools/emulator.html.
Because we are just validating that your SDK
 installation works, we won’t go into depth on AVDs, much less details of
 the emulator, just yet. Here, we will use the Android SDK and AVD
 Manager (see Figure 1-8) to set up an AVD
 for the purpose of running the program we just created with the New
 Android Project Wizard.
[image: The SDK and AVD Manager]

Figure 1-8. The SDK and AVD Manager

You will need to create an AVD with a system
 image that is no less recent than the target specified for the project
 you created. Click the New button. You will now see the “Create new
 Android Virtual Device (AVD)” dialog, shown in Figure 1-9, where you specify the
 parameters of your new AVD.
[image: Creating a new AVD]

Figure 1-9. Creating a new AVD

This screen enables you to set the parameters
 of your new AVD:
	Name
	This is the name of the AVD. You can use
 any name for an AVD, but a name that indicates which system image
 it uses is helpful.

	Target
	The Target parameter sets which system
 image will be used in this AVD. It should be the same as, or more
 recent than, the target you selected as the build target for your
 first Android project.

	SD Card
	Some applications require an SD card that
 extends storage beyond the flash memory built into an Android
 device. Unless you plan to put a lot of data in SD card storage
 (media files, for example) for applications you are developing,
 you can create a small virtual SD card of, say, 100 MB in size,
 even though most phones are equipped with SD cards holding several
 gigabytes.

	Skin
	The “skin” of an AVD mainly sets the screen size. You won’t
 need to change the default for the purpose of verifying that your
 SDK installation works, but a variety of emulators with different
 screen sizes is useful to check that your layouts work across
 different devices.

	Hardware
	The Hardware field of an AVD configuration enables you to
 set parameters indicating which optional hardware is present. You
 won’t need to change the defaults for this project.

Fill in the Name, Target, and SD Card fields,
 and create a new AVD by clicking the Create AVD button. If you have not
 created an AVD with a system image that matches or is more recent than
 the target you specified for an Android project, you won’t be able to
 run your program.

Running a Program on an AVD

Now that you have a project that builds an
 application, and an AVD with a system image compatible with the
 application’s build target and API level requirements, you can run your
 application and confirm that the SDK produced and is able to run an
 Android application.
To run your application, right-click on the
 project you created and, in the context menu that pops up, select Run
 As→Android Application.
If the AVD you created is compatible with the
 application you created, the AVD will start, the Android OS will boot on
 the AVD, and your application will start. You should see your
 application running in the AVD, similarly to what is shown in Figure 1-10.
[image: The application you just created, running in an AVD]

Figure 1-10. The application you just created, running in an AVD

If you have more than one compatible AVD
 configured, the Android Device Chooser dialog will appear and ask you to
 select among the AVDs that are already running, or among the Android
 devices attached to your system, if any, or to pick an AVD to start.
 Figure 1-11 shows the
 Android Device Chooser displaying one AVD that is running, and one that
 can be launched.
[image: The Android Device Chooser]

Figure 1-11. The Android Device Chooser

Running a Program on an Android Device

You can also run the program you just created
 on most Android devices.
You will need to connect your device to your PC
 with a USB cable, and, if needed, install a driver, or set permissions
 to access the device when connected via USB.
System-specific instructions for Windows, along
 with the needed driver, are available at http://developer.android.com/sdk/win-usb.html.
If you are running Linux, you will need to
 create a “rules” file for your Android device.
If you are running Mac OS X, no configuration
 is required.
Detailed reference information on USB debugging
 is available at http://developer.android.com/guide/developing/device.html.
You will also need to turn on USB debugging in
 your Android device. In most cases, you will start the Settings
 application, select Applications and then Development, and then see an
 option to turn USB debugging on or off.
If an AVD is configured or is running, the
 Android Device Chooser will appear, displaying both the Android device
 you have connected and the AVD.
Select the device, and the Android application
 will be loaded and run on the device.

Troubleshooting SDK Problems: No Build Targets

If you are unable to make a new project or import an example
 project from the SDK, you may have missed installing build targets into
 your SDK. Reread the instructions in Adding Build Targets to the SDK
 and make sure the Android pane in the Preferences dialog lists build
 targets as installed in your SDK, as shown in Figure 1-5.

Components of the SDK

The Android SDK is made of mostly off-the-shelf
 components, plus some purpose-built components. In many cases,
 configurations, plug-ins, and extensions adapt these components to
 Android. The Android SDK is a study in the efficient development of a
 modern and complete SDK. Google took this approach to bring Android to
 market quickly. You will see this for yourself as you explore the
 components of the Android SDK. Eclipse, the Java language, QEMU, and other
 preexisting platforms, tools, and technologies comprise some of the most
 important parts of the Android SDK.
In creating the simple program that confirms that
 your SDK installation is correct, you have already used many of the
 components of the SDK. Here we will identify and describe the components
 of the SDK involved in creating your program, and other parts you have yet
 to use.
The Android Debug Bridge (adb)

The Android Debug Bridge (adb) is a program
 that enables you to control both emulators and devices, and to run a
 shell to execute commands in the environment of an emulator or device.
 Adb is especially handy for installing and removing programs from an
 emulator or device. Documentation on adb can be found at http://developer.android.com/guide/developing/tools/adb.html.

The Dalvik Debug Monitor Server (DDMS)

The Dalvik Debug Monitor Server (DDMS) is a
 traffic director between the single port that Eclipse (and other Java
 debuggers) looks for to connect to a Java Virtual Machine (JVM) and the
 several ports that exist for each Android device or virtual device; DDMS
 is also a traffic controller for each instance of the Dalvik virtual
 machine (VM) on each device. The DDMS also provides a collection of
 functionality that is accessible through a standalone user interface or
 through an interface embedded in Eclipse via the ADT plug-in.
When you invoke the DDMS from the command line,
 you will see something similar to the window shown in Figure 1-12.
[image: The Dalvik Debug Monitor running standalone]

Figure 1-12. The Dalvik Debug Monitor running standalone

The DDMS’s user interface provides access to
 the following:
	A list of devices and virtual devices, and the VMs running on
 those devices
	In the upper-left pane of the DDMS
 window, you will see listed the Android devices you have connected
 to your PC, plus any AVDs you have running. Listed under each
 device or virtual device are the tasks running in Dalvik
 VMs.

	VM information
	Selecting one of the Dalvik VMs running
 on a device or virtual device causes information about that VM to
 be displayed in the upper-right pane.

	Thread information
	Information for threads within each
 process is accessed through the Threads tab in the upper-right
 pane of the DDMS window.

	Filesystem explorer
	You can explore the filesystem on a
 device or virtual device using the DDMS filesystem explorer,
 accessible through the “File explorer” menu item in the Devices
 menu. It displays the file hierarchy in a window similar to the
 one shown in Figure 1-13.

	Simulating phone calls
	The Emulator Control tab in the
 upper-right pane of the DDMS window enables you to “fake” a phone
 call or text message in an emulator.

	Screen capture
	The “Screen capture” command in the
 Device menu fetches an image of the current screen from the
 selected Android device or virtual device.

	Logging
	The bottom pane of the DDMS window
 displays log output from processes on the selected device or
 virtual device. You can filter the log output by selecting a
 filter from among the buttons on the toolbar above the logging
 pane.

	Dumping state for devices, apps, and the mobile radio
	A set of commands in the Device menu
 enables you to command the device or virtual device to dump state
 for the whole device, an app, or the mobile radio.

Detailed documentation on the DDMS is available
 at http://developer.android.com/guide/developing/tools/ddms.html.
[image: The DDMS filesystem explorer]

Figure 1-13. The DDMS filesystem explorer

Components of the ADT Eclipse Plug-in

Eclipse enables you to create specific project
 types, including several kinds of Java projects. The ADT plug-in adds
 the ability to make and use Android projects. When you make a new
 Android project, the ADT plug-in creates the project file hierarchy and
 all the required files for the minimal Android project to be correctly
 built. For Android projects, the ADT plug-in enables Eclipse to apply
 components of the ADT plug-in to editing, building, running, and
 debugging that project.
In some cases, components of the SDK can be
 used with Eclipse or in a standalone mode. But in most of the Android
 application development cases covered in this book, the way these
 components are used in or with Eclipse will be the most relevant.
The ADT plug-in has numerous separate
 components, and, despite the connotations of a “plug-in” as a modest
 enhancement, it’s a substantial amount of software. Here we will
 describe each significant part of the ADT plug-in that you will
 encounter in using Eclipse for developing Android software.
The Android Layout Editor

Layouts for user interfaces in Android
 applications can be specified in XML. The ADT plug-in adds a visual
 editor that helps you to compose and preview Android layouts. When you
 open a layout file, the ADT plug-in automatically starts this editor
 to view and edit the file. Tabs along the bottom of the editing pane
 enable you to switch between the visual editor and an XML
 editor.
In earlier versions of the Android
 SDK, the Android Layout Editor was too limited to be of much use. Now,
 though, you should consider using visual editing of Android layouts as
 a preferred way of creating layouts. Automating the specification of
 layouts makes it more likely that your layouts will work on the widest
 range of Android devices.

The Android Manifest Editor

In Android projects, a manifest file is
 included with the project’s software and resources when the project is
 built. This file tells the Android system how to install and use the
 software in the archive that contains the built project. The manifest
 file is in XML, and the ADT plug-in provides a specialized XML editor
 to edit the manifest.
Other components of the ADT Eclipse
 plug-in, such as the application builders, can also modify the
 manifest.

XML editors for other Android XML files

Other Android XML files that hold information
 such as specifications for menus or resources such as strings, or that
 organize graphical assets of an application, have specialized editors
 that are opened when you open these files.

Building Android apps

Eclipse projects are usually built
 automatically. That means you will normally not encounter a separate
 step for turning the source code and resources for a project into a
 deployable result. Android requires Android-specific steps to build a
 file you can deploy to an Android emulator or device, and the ADT
 plug-in provides the software that executes these steps. For Android
 projects, the result of building the project is an .apk file. You can find this file for the
 test project created earlier in this chapter in the bin subfolder of the project’s file
 hierarchy in your Eclipse workspace.
The Android-specific builders provided in the
 ADT plug-in enable you to use Java as the language for creating
 Android software, while running that software on a Dalvik VM that
 processes its own bytecodes. That is, among other things these
 builders do, they turn the Java bytecode output of the Java compiler
 into Dalvik bytecodes. They also create .apk
 files, which have a different structure and content than
 .jar files.

Running and debugging Android apps

When you run or debug an Android project from
 within Eclipse, the .apk file for
 that project is deployed and started on an AVD or Android device,
 using the adb and DDMS to communicate with the AVD or device and the
 Dalvik runtime environment that runs the project’s code. The ADT
 plug-in adds the components that enable Eclipse to do this.

The DDMS

In The Dalvik Debug Monitor Server (DDMS) we
 described the Dalvik Debug Monitor and how to invoke the DDMS user
 interface from the command line. The DDMS user interface is also
 available from within Eclipse. You can access it by using the
 Window→Open Perspective→DDMS command in the Eclipse menu. You can
 also access each view that makes up the DDMS perspective separately by
 using the Window→Show View menu and
 selecting, for example, the LogCat view.

Android Virtual Devices

AVDs are made up of QEMU-based emulators that
 emulate the hardware of an Android device, plus Android system images,
 which consist of Android software built to run on the emulated hardware.
 AVDs are configured by the SDK and AVD Manager, which sets parameters
 such as the size of emulated storage devices and screen dimensions, and
 which enables you to specify which Android system image will be used
 with which emulated device.
AVDs enable you to test your software on a
 broader range of system characteristics than you are likely to be able
 to acquire and test on physical devices. Because QEMU-based hardware
 emulators, system images, and the parameters of AVDs are all
 interchangeable parts, you can even test devices and system images
 before hardware is available to run them.
QEMU

QEMU is the basis of AVDs. But QEMU is a very
 general tool that is used in a wide range of emulation systems outside
 the Android SDK. While you will configure QEMU indirectly, through the
 SDK and AVD Manager, you may someday need to tweak emulation in ways
 unsupported by the SDK tools, or you may be curious about the
 capabilities and limitations of QEMU. Luckily, QEMU has a large and
 vibrant developer and user community, which you can find at http://www.qemu.org.

The SDK and AVD Manager

QEMU is a general-purpose emulator system.
 The Android SDK provides controls over the configuration of QEMU that
 make sense for creating emulators that run Android system images. The
 SDK and AVD Manager provides a user interface for you to control
 QEMU-based AVDs.

Other SDK Tools

In addition to the major tools you are likely
 to use in the normal course of most development projects, there are
 several other tools in the SDK, and those that are used or invoked
 directly by developers are described here. Still more components of the
 SDK are listed in the Tools overview article in the Android
 documentation found at http://developer.android.com/guide/developing/tools/index.html.
Hierarchy Viewer

The Hierarchy Viewer displays and enables
 analysis of the view hierarchy of the current activity of a selected
 Android device. This enables you to see and diagnose problems with
 your view hierarchies as your application is running, or to examine
 the view hierarchies of other applications to see how they are
 designed. It also lets you examine a magnified view of the screen with
 alignment guides that help identify problems with layouts.

Layoutopt

Layoutopt is a static analyzer that operates
 on XML layout files and can diagnose some problems with Android
 layouts. Detailed information on layoutopt is available at http://developer.android.com/guide/developing/tools/layoutopt.html.

Monkey

Monkey is a test automation tool that runs in
 your emulator or device. You invoke this tool using another tool in
 the SDK: adb. Adb enables you to start a shell on an emulator or
 device, and Monkey is invoked from a shell, like this:
adb shell monkey --wait-dbg -p your.package.name 500
This invocation of Monkey sends 500
 random events to the specified application (specified by the package
 name) after waiting for a debugger to be attached. Detailed
 information on Monkey can be found at http://developer.android.com/guide/developing/tools/monkey.html.

sqlite3

Android uses SQLite as the database system
 for many system databases and provides APIs for applications to make
 use of SQLite, which is convenient for data storage and presentation.
 SQLite also has a command-line interface, and the sqlite3 command enables developers to dump
 database schemas and perform other operations on Android databases.
These databases are, of course, in an Android
 device, or they are contained in an AVD, and therefore the sqlite3 command is available in the adb
 shell. Detailed directions for how to access the sqlite3 command line from inside the adb
 shell are available at http://developer.android.com/guide/developing/tools/adb.html#shellcommands.
 We introduce sqlite3 in Example Database Manipulation Using sqlite3.

keytool

keytool
 generates encryption keys, and is used by the ADT plug-in to create
 temporary debug keys with which it signs code for the purpose of
 debugging. In most cases, you will use this tool to create a signing
 certificate for releasing your applications, as described in Creating a self-signed certificate.

Zipalign

Zipalign enables optimized access to data for
 production releases of Android applications. This optimization must be
 performed after an application is signed for release, because the
 signature affects byte alignment. Detailed information on zipalign is
 available at http://developer.android.com/guide/developing/tools/zipalign.html.

Draw 9-patch

A 9-patch is a special
 kind of Android resource, composed of nine images, and useful when you
 want, for example, buttons that can grow larger without changing the
 radius of their corners. Draw 9-patch is a specialized drawing program
 for creating and previewing
 these types of resources. Details on Draw 9-patch are available at
 http://developer.android.com/guide/developing/tools/draw9patch.html.

android

The command named android can be used to invoke the SDK and
 AVD Manager from the command line, as we described in the SDK
 installation instructions in The Android SDK. It
 can also be used to create an Android project from the command line.
 Used in this way, it causes all the project folders, the manifest, the
 build properties, and the ant script for building the project to be
 generated. Details on this use of the android command can be found at http://developer.android.com/guide/developing/other-ide.html#CreatingAProject.

Keeping Up-to-Date

The JDK, Eclipse, and the Android SDK each come
 from separate suppliers. The tools you use to develop Android software can
 change at a rapid pace. That is why, in this book, and especially in this
 chapter, we refer you to the Android Developers site for information on
 the latest compatible versions of your tools. Keeping your tools
 up-to-date and compatible is a task you are likely to have to perform even
 as you learn how to develop Android software.
Windows, Mac OS X, and Linux all have system
 update mechanisms that keep your software up-to-date. But one consequence
 of the way the Android SDK is put together is that you will need to keep
 separate software systems up-to-date through separate mechanisms.
Keeping the Android SDK Up-to-Date

The Android SDK isn’t part of your desktop OS,
 nor is it part of the Eclipse plug-in, and therefore the contents of the
 SDK folder are not updated by the OS or Eclipse. The SDK has its own
 update mechanism, which has a user interface in the SDK and AVD Manager.
 As shown in Figure 1-14, select
 Installed Packages in the left pane to show a list of SDK components
 installed on your system. Click the Update All button to start the
 update process, which will show you a list of available
 updates.
[image: Updating the SDK with the SDK and AVD Manager]

Figure 1-14. Updating the SDK with the SDK and AVD Manager

Usually, you will want to install all available
 updates.

Keeping Eclipse and the ADT Plug-in Up-to-Date

While the SDK has to be updated outside of both
 your operating system and Eclipse, the ADT plug-in, and all other
 components of Eclipse, are updated using Eclipse’s own update management
 system. To update all the components you have in your Eclipse
 environment, including the ADT plug-in, use the Check for Updates
 command in the Help menu. This will cause the available updates to be
 displayed, as shown in Figure 1-15.
[image: Updating Eclipse components and the ADT plug-in]

Figure 1-15. Updating Eclipse components and the ADT plug-in

Normally, you will want to use the Select All
 button to install all available updates. The updates you see listed on
 your system depend on what Eclipse modules you have installed and
 whether your Eclipse has been updated recently.

Keeping the JDK Up-to-Date

You won’t be updating Java as much as the SDK,
 ADT plug-in, and other Eclipse plug-ins. Before choosing to update the
 JDK, first check the “System requirements” page of the Android
 Developers site at http://developer.android.com/sdk/requirements.html.
If an update is needed and you are using a Mac
 or Linux system, check the available updates for your system to see if a
 new version of the JDK is included. If the JDK was installed on your
 system by the vendor, or if you installed it from your Linux
 distribution’s repositories, updates will be available through the
 updates mechanism on your system.

Example Code

Having installed the Android SDK and tested that
 it works, you are ready to explore. Even if you are unfamiliar with the
 Android Framework classes and are new to Java, exploring some example code
 now will give you further confidence in your SDK installation, before you
 move on to other parts of this book.
SDK Example Code

The most convenient sample code comes with the
 SDK. You can create a new project based on the SDK samples, as shown in
 Figure 1-16. The sample
 you select appears in the left pane of the Eclipse window, where you can
 browse the files comprising the sample and run it to see what it does.
 If you are familiar with using IDEs to debug code, you may want to set
 some breakpoints in the sample code to see when methods get
 executed.
Each sample application that comes with the SDK
 corresponds to an article on the Android Developers site. More
 information about each sample can be found there. All of the samples are
 listed on the documentation page at http://developer.android.com/resources/samples/index.html.
There are more than a dozen applications, one
 of which—the API demos application—is a sprawling exploration of
 most of the Android APIs. Creating a few projects based on these code
 samples will give you familiarity with how these programs work, and will
 help you understand what you will read in the upcoming chapters of this
 book, even if you don’t fully understand what you are looking at
 yet.

Example Code from This Book

Example code from this book can be downloaded
 from the book’s website at http://oreil.ly/prog_android_2e.
[image: Creating a new project using example code from the SDK]

Figure 1-16. Creating a new project using example code from the SDK

Caution
In the dialog pictured in Figure 1-16, you must pick a
 build target before you pick a sample. Samples are organized by API
 level, and if you have not picked a build target, the drop-down list
 will be empty.

On Reading Code

Good coders read a lot of code. The example code
 provided by the authors of this book is intended to be both an example of
 good Java coding and an example of how to use capabilities of the Android
 platform.
Some examples you will read fall short of what
 you will need for creating the best possible extensible and maintainable
 commercial software. Many example applications make choices that make
 sense if the coder’s goal is to create an example in a single Java class.
 In many cases, Android applications are overgrown versions of example
 code, and they end up unreadable and unmaintainable. But that does not
 mean you should avoid reading examples that are more expedient than a
 large application should be.
The next chapter will explore the Java language,
 with the goal of giving you the ability to evaluate example code with good
 engineering and design practices in mind. We want you to be able to take
 examples and make them better, and to apply the ideas in examples to code
 you engineer to create high-quality products.

Chapter 2. Java for Android

We don’t teach you Java in this book, but in this
 chapter we’ll help you understand the special use of Java within Android.
 Many people can benefit from this chapter: students who have learned some
 Java but haven’t yet stumbled over the real-life programming dilemmas it
 presents, programmers from other mobile environments who have used other
 versions of Java but need to relearn some aspects of the language in the
 context of Android programming, and Java programmers in general who are new
 to Android’s particular conventions and requirements.
If you find this chapter too fast-paced, pick up an
 introductory book on Java. If you follow along all right but a particular
 concept described in this chapter remains unclear to you, you might refer to
 the Java tutorial at http://download.oracle.com/docs/cd/E17409_01/javase/tutorial/index.html.
Android Is Reshaping Client-Side Java

Android is already the most widely used way of
 creating interactive clients using the Java language. Although there have
 been several other user interface class libraries for Java (AWT, SWT,
 Swing, J2ME Canvas, and so on), none of them has been as widely accepted
 as Android. For any Java programmer, the Android UI is worth learning just
 to understand what the future of Java UIs might look like.
The Android toolkit doesn’t gratuitously
 bend Java in unfamiliar directions. The mobile environment is simply
 different. There is a much wider variety of display sizes and shapes;
 there is no mouse (though there might be a touch screen); text input might
 be triple-tap; and so on. There are also likely to be many more peripheral
 devices: motion sensors, GPS units, cameras, multiple radios, and more.
 Finally, there is the ever-present concern about power. While Moore’s law
 affects processors and memory (doubling their power approximately every
 two years), no such law affects battery life. When processors were slow,
 developers used to be concerned about CPU speed and efficiency. Mobile
 developers, on the other hand, need to be concerned about energy
 efficiency. This chapter provides a refresher for generic Java;
 Android-specific libraries are discussed in detail in Chapter 3.

The Java Type System

There are two distinct, fundamental types in the
 Java language: objects and primitives. Java provides type safety by
 enforcing static typing, which requires that every variable must be
 declared with its type before it is used. For example, a variable named
 i declared as type int (a primitive 32-bit
 integer) looks like this:
int i;
This mechanism stands in contrast to nonstatically typed languages
 where variables are only optionally declared. Though explicit type
 declarations are more verbose, they enable the compiler to prevent a wide
 range of programming errors—accidental variable creation resulting from
 misspelled variable names, calls to nonexistent methods, and so on—from
 ever making it into running code. Details of the Java Type System can be
 found in the Java
 Language Specification.
Primitive Types

Java primitive types are not objects and do not
 support the operations associated with objects described later in this
 chapter. You can modify a primitive type only with a limited number of
 predefined operators: “+”, “-”, “&”, “|”, “=”, and so on. The Java
 primitive types are:
	boolean
	The value true or
 false

	byte
	An 8-bit 2’s-complement
 integer

	short
	A 16-bit 2’s-complement
 integer

	int
	A 32-bit 2’s-complement
 integer

	long
	A 64-bit 2’s-complement
 integer

	char
	A 16-bit unsigned integer
 representing a UTF-16 code unit

	float
	A 32-bit IEEE 754 floating-point
 number

	double
	A 64-bit IEEE 754 floating-point
 number

Objects and Classes

Java is an object-oriented language and focuses
 not on its primitives but on objects—combinations of data, and
 procedures for operating on that data. A class defines the fields (data) and methods
 (procedures) that comprise an object. In Java, this
 definition—the template from which objects are
 constructed—is, itself, a particular kind of object, a Class. In Java, classes form the basis of a
 type system that allows developers to describe arbitrarily complex
 objects with complex, specialized state and behavior.
In Java, as in most object-oriented
 languages, types may inherit from other types. A class that inherits
 from another is said to subtype or to
 be a subclass of its parent. The
 parent class, in turn, may be called the supertype or superclass. A class that has several different
 subclasses may be called the base
 type for those subclasses.
Both methods and fields have global scope
 within the class and may be visible from outside the object through a
 reference to an instance of the class.
Here is the definition of a very, very simple
 class with one field, ctr, and one
 method, incr:
public class Trivial {
 /** a field: its scope is the entire class */
 private long ctr;

 /** Modify the field. */
 public void incr() { ctr++; }
}

Object Creation

A new object, an instance of some class, is
 created by using the new
 keyword:
Trivial trivial = new Trivial();
On the left side of the assignment operator
 “=”, this statement defines a variable, named trivial. The variable has a type, Trivial, so only objects of type Trivial can be assigned to it. The right side
 of the assignment allocates memory for a new instance of the Trivial class and initializes the instance.
 The assignment operator assigns a reference to the newly created object
 to the variable.
It may surprise you to know that the definition
 of ctr, in Trivial, is perfectly safe despite the fact
 that it is not explicitly initialized. Java guarantees that it will be
 initialized to have the value 0. Java guarantees that all fields are
 automatically initialized at object creation: boolean is initialized to false, numeric primitive types to 0, and all object types (including String) to null.
Warning
This applies only to object fields.
 Local variables must be initialized before they are referenced!

You can take greater control over the
 initialization of an object by adding a constructor to its class definition. A
 constructor definition looks like a method except that it doesn’t
 specify a return type. Its name must be exactly the name of the class
 that it constructs:
public class LessTrivial {
 /** a field: its scope is the entire class */
 private long ctr;

 /** Constructor: initialize the fields */
 public LessTrivial(long initCtr) { ctr = initCtr; }

 /** Modify the field. */
 public void incr() { ctr++; }
}
In fact, every class in Java has a constructor.
 The Java compiler automatically creates a constructor with no arguments,
 if no other constructor is specified. Further, if a constructor does not
 explicitly call some superclass constructor, the Java compiler will
 automatically add an implicit call to the superclass no-arg constructor
 as the very first statement. The definition of Trivial given earlier (which specifies no
 explicit constructor) actually has a constructor that looks like
 this:
public Trivial() { super(); }
Since the LessTrivial class explicitly defines a
 constructor, Java does not
 implicitly add a default. That means that trying to create a LessTrivial object, with no arguments, will
 cause an error:
LessTrivial fail = new LessTrivial(); // ERROR!!
LessTrivial ok = new LessTrivial(18); // ... works
There are two concepts that it is important to
 keep separate: no-arg constructor and
 default constructor. A default
 constructor is the constructor that Java adds to your class, implicitly,
 if you don’t define any other constructors. It happens to be a no-arg
 constructor. A no-arg constructor, on the other hand, is simply a
 constructor with no parameters. There is no requirement that a class
 have a no-arg constructor. There is no obligation to define one, unless
 you have a specific need for it.
Caution
One particular case in which no-arg
 constructors are necessary deserves special attention. Some libraries
 need the ability to create new objects, generically, on your behalf.
 The JUnit framework, for instance, needs to be able to create new test
 cases, regardless of what they test. Libraries that marshal and
 unmarshal code to a persistent store or a network connection also need
 this capability. Since it would be pretty hard for these libraries to
 figure out, at runtime, the exact calling protocol for your particular
 object, they typically require a no-arg constructor.

If a class has more than one constructor, it is
 wise to cascade them, to make sure only a single copy of the code
 actually initializes the instance and that all other constructors call
 it. For instance, as a convenience, we might add a no-arg constructor to
 the LessTrivial
 class, to accommodate a common case:
public class LessTrivial {
 /** a field: its scope is the entire class */
 private long ctr;

 /** Constructor: init counter to 0 */
 public LessTrivial() { this(0); }

 /** Constructor: initialize the fields */
 public LessTrivial(long initCtr) { ctr = initCtr; }

 /** Modify the field. */
 public void incr() { ctr++; }
}
Cascading methods is the standard Java idiom
 for defaulting the values of some arguments. All the code that actually
 initializes an object is in a single, complete method or constructor and all other methods or
 constructors simply call it. It is a particularly good idea to use this idiom with
 constructors that must make explicit calls to a superconstructor.
Constructors should be simple and should do no
 more work than is necessary to put an object into a consistent initial
 state. One can imagine, for instance, a design for an object that
 represents a database or network connection. It might create the
 connection, initialize it, and verify connectivity, all in the
 constructor. Although this might seem entirely reasonable, in practice
 it creates code that is insufficiently modular and difficult to debug
 and modify. In a better design, the constructor simply initializes the
 connection state as closed and leaves it to an explicit open method to set up the network.

The Object Class and Its Methods

The Java class Object—java.lang.Object—is the root ancestor of every
 class. Every Java object is an Object. If the definition of a class does not
 explicitly specify a superclass, it is a direct subclass of Object. The Object class defines the default
 implementations for several key behaviors that are common to every
 object. Unless they are overridden by the subclass, the behaviors are
 inherited directly from Object.
The methods wait, notify, and notifyAll in the Object class are part of Java’s concurrency
 support. They are discussed in Thread Control with wait() and notify() Methods.
The toString
 method is the way an object creates a string representation of itself.
 One interesting use of toString is
 string concatenation: any object can be concatenated to a string. This
 example demonstrates two ways to print the same message: they both
 execute identically. In both, a new instance of the Foo class is created, its toString method is invoked, and the result is
 concatenated with a literal string.
The result is then printed:
System.out.println(
 "This is a new foo: " + new Foo());
System.out.println(
 "This is a new foo: ".concat((new Foo()).toString()));
The Object
 implementation of toString returns a
 not very useful string that is based on the location of the object in
 the heap. Overriding toString in your
 code is a good first step toward making it easier to debug.
The clone
 and finalize methods are historical
 leftovers. The Java runtime will call the finalize method only if it is overridden in a
 subclass. If a class explicitly defines finalize, though, it is called for an
 object of the class just before that object is garbage-collected. Not
 only does Java not guarantee when this might happen, it actually can’t
 guarantee that it will happen at all. In addition, a call to finalize can resurrect an object! This is
 tricky: objects are garbage-collected when there are no live references
 to them. An implementation of finalize, however, could easily
 create a new live reference, for instance, by
 adding the object being finalized to some kind of list! Because of this,
 the existence of a finalize method
 precludes the defining class from many kinds of optimization. There is
 little to gain and lots to lose in attempting to use finalize.
The clone
 method creates objects, bypassing their constructors. Although clone is defined on Object, calling it on an object will cause an
 exception unless the object implements the Cloneable interface. The clone method is an optimization that can be
 useful when object creation has a significant cost. While clever uses of
 clone may be necessary in specific
 cases, a copy constructor—one that takes an existing instance as its
 only argument—is much more straightforward and, in most cases, has
 negligible cost.
The last two Object methods, hashCode and equals, are the methods by which a caller can
 tell whether one object is “the same as” another.
The definition of the equals method in the API documentation for the
 Object class stipulates the contract
 to which every implementation of equals must adhere. A correct implementation
 of the equals method has the
 following attributes, and the associated statements must always be
 true:
	reflexive
	x.equals(x)

	symmetric
	x.equals(y) ==
 y.equals(x)

	transitive
	(x.equals(y) &&
 y.equals(z)) == x.equals(z)

	consistent
	If x.equals(y) is
 true at any point in the life of a program, it is always true,
 provided x and y do not change.

Getting this right is subtle and can be surprisingly difficult. A
 common error—one that violates reflexivity—is defining a new class that
 is sometimes equal to an existing class. Suppose your program uses an
 existing library that defines the class EnglishWeekdays. Suppose, now, that you define
 a class FrenchWeekdays. There is an
 obvious temptation to define an equals method for FrenchWeekdays that returns true when it compares one of the EnglishWeekdays to its French equivalent.
 Don’t do it! The existing English class has no awareness of your new
 class and so will never recognize instances of your class as being
 equal. You’ve broken reflexivity!
hashCode and
 equals should be considered a pair:
 if you override either, you should override both. Many library routines
 treat hashCode as an optimized rough
 guess as to whether two objects are equal or not. These libraries first compare
 the hash codes of the two objects. If the two codes are different, they
 assume there is no need to do any more expensive comparisons because the
 objects are definitely different. The point of hash code computation,
 then, is to compute something very quickly that is a good proxy for the
 equals method. Visiting every cell in
 a large array, in order to compute a hash code, is probably no faster
 than doing the actual comparison. At the other extreme, it would be very
 fast to return 0, always, from a hash
 code computation. It just wouldn’t be very helpful.

Objects, Inheritance, and Polymorphism

Java supports polymorphism, one of the key concepts in
 object-oriented programming. A language is said to be polymorphic if
 objects of a single type can have different behavior. This happens when
 subtypes of a given class can be assigned to a variable of the base
 class type. An example will make this much clearer.
Subtypes in Java are declared through
 use of the extends keyword. Here is an example of
 inheritance in Java:
public class Car {
 public void drive() {
 System.out.println("Going down the road!");
 }
}

public class Ragtop extends Car {
 // override the parent's definition.
 public void drive() {
 System.out.println("Top down!");

 // optionally use a superclass method
 super.drive();

 System.out.println("Got the radio on!");
 }
}
Ragtop is a
 subtype of Car. We noted previously
 that Car is, in turn, a subclass of
 Object. Ragtop changes the definition of Car’s drive
 method. It is said to override
 drive. Car and Ragtop are both of type Car (they are not both of type Ragtop!) and have different behaviors for the
 method drive.
We can now demonstrate polymorphic
 behavior:
Car auto = new Car();
auto.drive();
auto = new Ragtop();
auto.drive();
This code fragment will compile without error
 (despite the assignment of a Ragtop
 to a variable whose type is Car). It
 will also run without error and will produce the following
 output:
Going down the road!
Top down!
Going down the road!
Got the radio on!
The variable auto holds, at different times in its life,
 references to two different objects of type Car. One of those objects, in addition to
 being of type Car, is also of subtype
 Ragtop. The exact behavior of the
 statement auto.drive() depends on whether the variable
 currently contains a reference to the former or the latter. This is
 polymorphic behavior.
Like many other object-oriented
 languages, Java supports type casting to allow coercion of the declared
 type of a variable to be any of the types with which the variable is
 polymorphic:
Ragtop funCar;

Car auto = new Car();
funCar = (Ragtop) auto; //ERROR! auto is a Car, not a Ragtop!
auto.drive();

auto = new Ragtop();
Ragtop funCar = (Ragtop) auto; //Works! auto is a Ragtop
auto.drive();
While occasionally necessary, excessive use of
 casting is an indication that the code is missing the point. Obviously,
 by the rules of polymorphism, all variables could be declared to be of
 type Object, and then cast as
 necessary. To do that, however, is to abandon the value of static
 typing.
Java limits a method’s arguments (its actual
 parameters) to objects of types that are polymorphic with its formal
 parameters. Similarly, methods return values that are polymorphic with the declared return type.
 For instance, continuing our automotive example, the following code
 fragment will compile and run without error:
public class JoyRide {
 private Car myCar;

 public void park(Car auto) {
 myCar = auto;
 }

 public Car whatsInTheGarage() {
 return myCar;
 }

 public void letsGo() {
 park(new Ragtop());
 whatsInTheGarage().drive();
 }
}
The method park is declared to take an object of type
 Car as its only parameter. In the
 method letsGo, however, it is called
 with an object of type Ragtop, a
 subtype of type Car. Similarly, the
 variable myCar is assigned a value of
 type Ragtop, and the method whatsInTheGarage returns it. The object is a
 Ragtop: if you call its drive method, it will tell you about its top
 and its radio. On the other hand, because it is also a Car, it can be used anywhere that one would
 use a Car. This subtype replacement
 capability is a key example of the power of polymorphism and how it
 works with type safety. Even at compile time, it is clear whether an
 object is compatible with its use or not. Type safety enables the
 compiler to find errors, early, that might be much more difficult to
 find were they permitted to occur at runtime.

Final and Static Declarations

There are 11 modifier keywords that can be
 applied to a declaration in Java. These modifiers change the behavior of
 the declared object, sometimes in important ways. The earlier examples
 used a couple of them, public and
 private, without explanation: they
 are among the several modifiers that control scope and visibility. We’ll
 revisit them in a minute. In this section, we consider two other
 modifiers that are essential to a complete understanding of the Java
 type system: final and static.
A final
 declaration is one that cannot be changed. Classes, methods, fields,
 parameters, and local variables can all be final.
When applied to a class, final means that any attempt to define a
 subclass will cause an error. The class String, for instance, is final because strings must be immutable (i.e.,
 you can’t change the content of one after you create it). If you think
 about it for a while, you will see that this can be
 guaranteed only if String cannot be subtyped. If it were possible
 to subtype the String class, a
 devious library could create a subclass of String, DeadlyString, pass an instance to your code,
 and change its value from fred to ; DROP
 TABLE contacts; (an attempt to inject rogue SQL into your
 system that might wipe out parts of your database) immediately after
 your code had validated its contents!
When applied to a method, final means that the method cannot be
 overridden in a subclass. Developers use final methods to design for inheritance, when
 the supertype needs to make a highly implementation-dependent behavior
 available to a subclass and cannot allow that behavior to be changed. A
 framework that implemented a generic cache might define a base class
 CacheableObject, for instance, which
 the programmer using the framework subtypes for each new cacheable
 object type. To maintain the integrity of the framework, however,
 CacheableObject might need to compute
 a cache key that was consistent across all object types. In this case,
 it might declare its computeCacheKey
 method final.
When applied to a variable—a field, a
 parameter, or a local variable—final
 means that the value of the variable, once assigned, may not change.
 This restriction is enforced by the compiler: it is not enough that the
 value does not change, the compiler
 must be able to prove that it cannot
 change. For a field, this means that the value must be assigned either
 as part of the declaration or in every constructor. Failure to
 initialize a final field at its
 declaration or in the constructor—or an attempt to assign to it anywhere
 else—will cause an error.
For parameters, final means that, within the method, the
 parameter value always has the value passed in the call. An attempt to
 assign to a final parameter will
 cause an error. Of course, as the parameter value is most likely to be a
 reference to some kind of object, it is possible that the object might
 change. The application of the keyword final to a parameter simply means that the
 parameter cannot be assigned.
Note
In Java, parameters are passed by
 value: the method arguments are new copies of the values that were
 passed at the call. On the other hand, most things in Java are
 references to objects and Java only copies the reference, not the
 whole object! References are passed by value!

A final
 variable may be assigned no more than once. Because using a variable
 without initializing it is also an error, in Java a final variable must be assigned exactly once.
 The assignment may take place anywhere in the enclosing block, prior to
 use.
A static
 declaration belongs to the class in which it is described, not to an
 instance of that class. The opposite of static is dynamic. Any
 entity that is not declared static is implicitly dynamic. This example
 illustrates:
public class QuietStatic {
 public static int classMember;
 public int instanceMember;
}

public class StaticClient {
 public void test() {
 QuietStatic.classMember++;
 QuietStatic.instanceMember++; // ERROR!!

 QuietStatic ex = new QuietStatic();
 ex.classMember++; // WARNING!
 ex.instanceMember++;
 }
}
In this example, QuietStatic is the name of a class, and
 ex is a reference to an instance of
 that class. The static member classMember is an attribute of the class; you
 can refer to it simply by qualifying it with the class name. On the
 other hand, instanceMember is a
 member of an instance of the class. An attempt to
 refer to it through the class reference causes an error. That makes
 sense. There are many different variables called instanceMember, one belonging to each instance
 of QuietStatic. If you don’t
 explicitly specify which one you are talking about, there’s no way for
 Java to figure it out.
As the second pair of statements
 demonstrates, Java does actually allow references to class (static)
 variables through instance references. It is misleading, though, and
 considered a bad practice. Most compilers and IDEs will generate
 warnings if you do it.
The implications of static versus dynamic
 declarations can be subtle. It is easiest to understand the distinction
 for fields. Again, while there is exactly one copy of a static
 definition, there is one copy per instance of a dynamic definition.
 Static class members allow you to maintain information that is held in
 common by all members of a class. Here’s some example code:
public class LoudStatic {
 private static int classMember;
 private int instanceMember;

 public void incr() {
 classMember++;
 instanceMember++;
 }

 @Override public String toString() {
 return "classMember: " + classMember
 + ", instanceMember: " + instanceMember;
 }

 public static void main(String[] args) {
 LoudStatic ex1 = new LoudStatic();
 LoudStatic ex2 = new LoudStatic();
 ex1.incr();
 ex2.incr();
 System.out.println(ex1);
 System.out.println(ex2);
 }
}
and its output:
classMember: 2, instanceMember: 1
classMember: 2, instanceMember: 1
The initial value of the variable classMember in the preceding example is
 0. It is incremented by each of the two different
 instances. Both instances now see a new value, 2. The
 value of the variable instanceMember
 also starts at 0, in each instance. Each instance
 increments its own copy and sees the value of its own variable,
 1.
Static class and method definitions are
 similar in that, in both cases, a static object is visible using its
 qualified name, whereas a dynamic object is visible only through an
 instance reference. Beyond that, however, the differences are
 trickier.
One significant difference in behavior between
 statically and dynamically declared methods is that statically declared
 methods cannot be overridden in a subclass. The following, for instance,
 fails to compile:
public class Star {
 public static void twinkle() { }
}

public class Arcturus extends Star {
 public void twinkle() { } // ERROR!!
}

public class Rigel {
 // this one works
 public void twinkle() { Star.twinkle(); }
}
There is very little reason to use
 static methods in Java. In early implementations of Java, dynamic method
 dispatch was significantly slower than static dispatch. Developers used
 to prefer static methods to “optimize” their code. In Android’s
 just-in-time-compiled Dalvik environment, there is no need for this kind
 of optimization anymore. Excessive use of static methods is usually an
 indicator of bad architecture.
The difference between statically and
 dynamically declared classes is the subtlest. Most of the classes that
 comprise an application are static. A typical class is declared and
 defined at the top level—outside any
 enclosing block. Implicitly, all such declarations are static. Most
 other declarations, on the other hand, take place within the enclosing
 block of some class and are, by default, dynamic. Whereas most fields
 are dynamic by default and require a modifier to be static, most classes
 are static.
Note
A block is the code between two curly braces: {
 and }. Anything—variables, types, methods, and so on—defined within
 the block is visible within the block and within lexically nested
 blocks. Except within the special block defining a class, things
 defined within a block are not visible outside the block.

This is, actually, entirely consistent.
 According to our description of static—something that belongs to the
 class, not to an instance of that class—top-level declarations should be
 static (they belong to no class). When declared within an enclosing
 block, however—for example, inside
 the definition of a top-level class—a class definition is also dynamic
 by default. To create a dynamically declared class, just define it
 inside another class.
This brings us to the difference between
 a static and a dynamic class. A dynamic class has access to instance
 members of the enclosing class (because it belongs to the instance). A
 static class does not. Here’s some code to demonstrate:
public class Outer {
 public int x;

 public class InnerOne {
 public int fn() { return x; }
 }

 public static class InnerTube {
 public int fn() {
 return x; // ERROR!!!
 }
 }
}

public class OuterTest {
 public void test() {
 new Outer.InnerOne(); // ERROR!!!
 new Outer.InnerTube();
 }
}
A moment’s reflection will clarify what is
 happening here. The field x is a
 member of an instance of the class Outer. In other words, there are lots of
 variables named x, one for each runtime instance of
 Outer. The class InnerTube is a part of the class Outer, but not of any
 instances of Outer. It has no way of identifying an
 x. The class InnerOne, on the other hand, because it is
 dynamic, belongs to an instance of Outer. You might think of a separate class
 InnerOne for each instance of
 Outer (though this is not, actually,
 how it is implemented). Consequently, InnerOne has access to the members of the
 instance of Outer to which it
 belongs.
OuterTest
 demonstrates that, as with fields, we can use the static inner
 definition (in this case, create an instance of the class) simply by
 using its qualified name. The dynamic definition is useful, however,
 only in the context of an instance.

Abstract Classes

Java permits a class declaration to entirely
 omit the implementation of one or more methods by declaring the class
 and unimplemented methods to be abstract:
public abstract class TemplatedService {

 public final void service() {
 // subclasses prepare in their own ways
 prepareService();
 // ... but they all run the same service
 runService();
 }

 public abstract void prepareService();

 private final void runService() {
 // implementation of the service ...
 }
}

public class ConcreteService extends TemplatedService {
 void prepareService() {
 // set up for the service
 }
}
An abstract class cannot be instantiated.
 Subtypes of an abstract class either must provide definitions for all
 the abstract methods in the superclass or must, themselves, be declared
 abstract.
As hinted in the example, abstract classes are
 useful in implementing the common template pattern, which provides a
 reusable piece of code that allows customization at specific points
 during its execution. The reusable pieces are implemented as an abstract
 class. Subtypes customize the template by implementing the abstract
 methods.
For more information on abstract classes, see
 the Java tutorial at http://download.oracle.com/javase/tutorial/java/IandI/abstract.html.

Interfaces

Other languages (e.g., C++, Python, and Perl)
 permit a capability known as multiple implementation inheritance,
 whereby an object can inherit implementations of methods from more than
 one parent class. Such inheritance hierarchies can get pretty
 complicated and behave in unexpected ways (such as inheriting two field
 variables with the same name from two different superclasses). Java’s
 developers chose to trade the power of multiple inheritance for
 simplicity. Unlike the mentioned languages, in Java a class may extend
 only a single superclass.
Instead of multiple implementation inheritance,
 however, Java provides the ability for a class to inherit from several
 types, using the concept of an interface. Interfaces provide a way to define a
 type without defining its implementation. You can think of interfaces as
 abstract classes with all abstract methods. There is no limit on the
 number of interfaces that a class may implement.
Here’s an example of a Java interface and a
 class that implements it:
public interface Growable {
 // declare the signature but not the implementation
 void grow(Fertilizer food, Water water);
}

public interface Eatable {
 // another signature with no implementation
 void munch();
}

/**
 * An implementing class must implement all interface methods
 */
public class Beans implements Growable, Eatable {

 @Override
 public void grow(Fertilizer food, Water water) {
 // ...
 }

 @Override
 public void munch() {
 // ...
 }
}
Again, interfaces provide a way to define a
 type distinct from the implementation of that type. This kind of
 separation is common even in everyday life. If you and a colleague are
 trying to mix mojitos, you might well divide tasks so that she goes to
 get the mint. When you start muddling things in the bottom of the glass,
 it is irrelevant whether she drove to the store to buy the mint or went
 out to the backyard and picked it from a shrub. What’s important is that
 you have mint.
As another example of the power of interfaces,
 consider a program that needs to display a list of contacts, sorted by
 email address. As you would certainly expect, the Android runtime
 libraries contain generic routines to sort objects. Because they are
 generic, however, these routines have no intrinsic idea of what ordering
 means for the instances of any particular class. To use the library
 sorting routines, a class needs a way to define its own ordering.
 Classes do this in Java using the interface
 Comparable.
Objects of type Comparable implement the method
 compareTo. One object accepts another, similar object as an argument and
 returns an integer that indicates whether the argument object is greater
 than, equal to, or less than the target. The library routines can sort
 anything that is Comparable. A
 program’s Contact type need only be
 Comparable and implement compareTo to allow contacts to be
 sorted:
public class Contact implements Comparable<Contact> {
 // ... other fields
 private String email;

 public Contact(
 // other params...
 String emailAddress)
 {
 // ... init other fields from corresponding params
 email = emailAddress;
 }

 public int compareTo(Contact c) {
 return email.compareTo(c.email);
 }
}

public class ContactView {
 // ...

 private List<Contact> getContactsSortedByEmail(
 List<Contact> contacts)
 {
 // getting the sorted list of contacts
 // is completely trivial
 return Collections.sort(contacts);
 }

 // ...
}
Internally, the Collections.sort routine knows only that
 contacts is a list of things of type
 Comparable. It invokes the class’s
 compareTo method to decide how to
 order them.
As this example demonstrates, interfaces enable
 the developer to reuse generic routines that can sort any list of
 objects that implement Comparable. Beyond this simple
 example, Java interfaces enable a diverse set of programming patterns
 that are well described in other sources. We frequently and highly
 recommend the excellent Effective Java by Joshua
 Bloch (Prentice Hall).

Exceptions

The Java language uses exceptions as a convenient way to handle
 unusual conditions. Frequently these conditions are errors.
Code trying to parse a web page, for
 instance, cannot continue if it cannot read the page from the network.
 Certainly, it is possible to check the results of the attempt to read
 and proceed only if that attempt succeeds, as shown in this
 example:
public void getPage(URL url) {
 String smallPage = readPageFromNet(url);
 if (null != smallPage) {
 Document dom = parsePage(smallPage);
 if (null != dom) {
 NodeList actions = getActions(dom);
 if (null != action) {
 // process the action here...
 }
 }
 }
}
Exceptions make this more elegant and
 robust:
public void getPage(URL url)
 throws NetworkException, ParseException, ActionNotFoundException
{
 String smallPage = readPageFromNet(url);
 Document dom = parsePage(smallPage);
 NodeList actions = getActions(dom);
 // process the action here...
}

public String readPageFromNet(URL url) throws NetworkException {
// ...
public Document parsePage(String xml) throws ParseException {
// ...
public NodeList getActions(Document doc) throws ActionNotFoundException {
// ...
In this version of the code, each method
 called from getPage uses an exception
 to immediately short-circuit all further processing if something goes
 wrong. The methods are said to throw
 exceptions. For instance, the getActions method might look something like
 this:
public NodeList getActions(Document dom)
 throws ActionNotFoundException
{
 Object actions = xPathFactory.newXPath().compile("//node/@action")
 .evaluate(dom, XPathConstants.NODESET);
 if (null == actions) {
 throw new ActionNotFoundException("Action not found");
 }
 return (NodeList) actions;
}
When the throw statement is executed, processing is
 immediately interrupted and resumes at the nearest
 catch block. Here’s an example of a
 try-catch block:
for (int i = 0; i < MAX_RETRIES; i++) {
 try {
 getPage(theUrl);
 break;
 }
 catch (NetworkException e) {
 Log.d("ActionDecoder", "network error: " + e);
 }
}
This code retries network failures. Note
 that it is not even in the same method, readPageFromNet, that threw the NetworkException. When we say that processing
 resumes at the “nearest” try-catch
 block, we’re talking about an interesting way that Java delegates
 responsibility for exceptions.
If there is no
 try-catch block surrounding the
 throw statement within the method, a
 thrown exception makes it seem as though the method returns immediately.
 No further statements are executed and no value is returned. In the
 previous example, for instance, none of the code following the attempt
 to get the page from the network needs to concern itself with the
 possibility that the precondition—a page was read—was not met. The method is said to have been
 terminated abruptly and, in the example, control
 returns to getActions. Because getActions does not contain a
 try-catch block either, it is
 terminated abruptly, too. Control is passed back (up the stack) to the
 caller.
In the example, when a NetworkException is thrown, control returns to
 the first statement inside the example catch block, the call to log the network
 error. The exception is said to have been caught at the first catch statement with an argument type that is
 the same type, or a supertype, of the thrown exception. Processing
 resumes at the first statement in the catch block and continues normally
 afterward.
In the example, a network error while
 attempting to read a page from the network will cause both ReadPageFromNet and getPage to terminate abruptly. After the
 catch block logs the failure, the
 for loop will retry getting the page,
 up to MAX_RETRIES times.
It is useful to have a clear
 understanding of the root of the Java exception class tree, shown in
 Figure 2-1.
[image: Exception base classes]

Figure 2-1. Exception base classes

All exceptions are subclasses of
 Throwable. There is almost never any
 reason to make reference to Throwable
 in your code. Think of it as just an abstract base class with two
 subclasses: Error and Exception. Error and its subclasses are reserved for
 problems with the Dalvik runtime environment itself. Although you can
 write code that appears to catch an Error (or a Throwable), you cannot, in fact, catch them.
 An obvious example of this, for instance, is the dreaded OOME, the
 OutOfMemoryException error. When the
 Dalvik system is out of memory, it may not be able to complete execution
 of even a single opcode! Writing tricky code that attempts to catch an
 OOME and then to release some block of preallocated memory might work—or
 it might not. Code that tries to catch Throwable or Error is absolutely whistling in the
 wind.
Java requires the signature of a method
 to include the exceptions that it throws. In the previous example,
 getPage declares that it throws three
 exceptions, because it uses three methods, each of which throws one.
 Methods that call getPage must, in
 turn, declare all three of the exceptions that getPage throws, along with any others thrown
 by any other methods that it calls.
As you can imagine, this can become
 onerous for methods far up the call tree. A top-level method might have
 to declare tens of different kinds of exceptions, just because it calls
 methods that throw them. This problem can be mitigated by creating an
 exception tree that is congruent to the application tree. Remember that
 a method needs only to declare supertypes for all the exceptions it
 throws. If you create a base class named MyApplicationException and then subclass it to
 create MyNetworkException and
 MyUIException for the networking and
 UI subsystems, respectively, your top-layer code need only handle
 MyApplicationException.
Really, though, this is only a partial
 solution. Suppose networking code somewhere way down in the bowels of
 your application fails, for instance, to open a network connection. As
 the exception bubbles up through retries and alternatives, at some point
 it loses any significance except to indicate that “something went
 wrong.” A specific database exception, for instance, means nothing to
 code that is trying to prepopulate a phone number. Adding the exception
 to a method signature, at that point, is really just a nuisance: you
 might as well simply declare that all your methods throw Exception.
RuntimeException is a special subclass of
 Exception. Subclasses of RuntimeException are called unchecked exceptions and do not have to be
 declared. This code, for instance, will compile without error:
public void ThrowsRuntimeException() {
 throw new RuntimeException();
}
There is considerable debate in the Java
 community about when to use and when not to use unchecked exceptions.
 Obviously, you could use only unchecked exceptions in your application
 and never declare any exception in any of your method signatures. Some
 schools of Java programming even recommend this. Using checked
 exceptions, however, gives you the chance to use the compiler to verify
 your code and is very much in the spirit of static typing. Experience
 and taste will be your guide.

The Java Collections Framework

The Java Collections Framework is one of Java’s
 most powerful and convenient tools. It provides objects that represent
 collections of objects: lists, sets, and maps. The interfaces and
 implementations that comprise the library are all to be found in the
 java.util package.
There are a few legacy classes in
 java.util that are historic relics
 and are not truly part of the framework. It’s best to remember and avoid
 them. They are Vector, Hashtable, Enumeration, and Dictionary.
Collection interface types

Each of the five main types of object
 in the Collections Library is represented by an interface:
	Collection
	This is the root type for all of
 the objects in the Collections Library. A Collection is a group of objects, not
 necessarily ordered, not necessarily addressable, possibly
 containing duplicates. You can add and remove things from it,
 get its size, and iterate over it (more on iteration in a
 moment).

	List
	A List is an ordered collection. There
 is a mapping between the integers 0 and length –1 and the
 objects in the list. A List
 may contain duplicates. You can do anything to a List that you can do to a Collection. In addition, though, you
 can map an element to its index and an index to an element with
 the get and indexOf methods. You can also change
 the element at a specific index with the add(index, e) method. The iterator for
 a List returns the elements
 in order.

	Set
	A Set is an unordered collection that
 does not contain duplicates. You can do anything to a Set that you can do to a Collection. Attempting to add an
 element to a Set that already
 contains it, though, does not change the size of the Set.

	Map
	A Map is like a list except that instead
 of mapping integers to objects it maps a set of key objects to a
 collection of value objects. You can add and remove key−value
 pairs from the Map, get its
 size, and iterate over it, just like any other collection.
 Examples of maps might include mapping words to their
 definitions, dates to events, or URLs to cached
 content.

	Iterator
	An Iterator returns the elements of the
 collection from which it is derived, each exactly once, in
 response to calls to its next
 method. It is the preferred means for processing all the
 elements of a collection. Instead of:
for (int i = 0; i < list.size(); i++) {
 String s = list.get(i)
 // ...
}
the following is
 preferred:
for (Iterator<String> i = list.iterator(); i.hasNext();) {
 String s = i.next();
 // ...
}
In fact, the latter may be
 abbreviated, simply, as:
for (String s: list) {
 // ...
}

Collection implementation types

These interface types have multiple
 implementations, each appropriate to its own use case. Among the most
 common of these are the following:
	ArrayList
	An ArrayList is a list that is backed by
 an array. It is quick to index but slow to change
 size.

	LinkedList
	A LinkedList is a list that can change
 size quickly but is slower to index.

	HashSet
	A HashSet is a set that is implemented
 as a hash. add, remove, contains, and size all execute in constant time,
 assuming a well-behaved hash. A HashSet may contain (no more than one)
 null.

	HashMap
	A HashMap is an implementation of the
 Map interface that uses a
 hash table as its index. add,
 remove, contains, and size all execute in constant time,
 assuming a well-behaved hash. It may contain a (single) null key, but any number of values may
 be null.

	TreeMap
	A TreeMap is an ordered Map: objects in the map are sorted
 according to their natural order if they implement the Comparable interface, or according to
 a Comparator passed to the
 TreeMap constructor if they
 do not.

Idiomatic users of Java prefer to use
 declarations of interface types instead of declarations of
 implementation types, whenever possible. This is a general rule, but
 it is easiest to understand here in the context of the collection
 framework.
Consider a method that returns a new
 list of strings that is just like the list of strings passed as its
 second parameter, but in which each element is prefixed with the
 string passed as the first parameter. It might look like this:
public ArrayList<String> prefixList(
 String prefix,
 ArrayList<String> strs)
{
 ArrayList<String> ret
 = new ArrayList<String>(strs.size());
 for (String s: strs) { ret.add(prefix + s); }
 return ret;
}
There’s a problem with this
 implementation, though: it won’t work on just any list! It will only
 work on an ArrayList. If, at some
 point, the code that calls this method needs to be changed from using
 an ArrayList to a LinkedList, it can no longer use the method.
 There’s no good reason for that, at all.
A better implementation might look
 like this:
public List<String> prefix(
 String prefix,
 List<String> strs)
{
 List<String> ret = new ArrayList<String>(strs.size());
 for (String s: strs) { ret.add(prefix + s); }
 return ret;
}
This version is more adaptable because
 it doesn’t bind the method to a particular implementation of the list. The method
 depends only on the fact that the parameter implements a certain
 interface. It doesn’t care how. By using the interface type as a
 parameter it requires exactly what it needs to do its job—no more, no
 less.
In fact, this could probably be
 further improved if its parameter and return type were Collection.

Java generics

Generics in Java are a large and
 fairly complex topic. Entire books have been written on the subject.
 This section introduces them in their most common setting, the
 Collections Library, but will not attempt to discuss them in
 detail.
Before the introduction of generics in
 Java, it wasn’t possible to statically type the contents of a
 container. One frequently saw code that looked like this:
public List makeList() {
 // ...
}

public void useList(List l) {
 Thing t = (Thing) l.get(0);
 // ...
}

// ...
useList(makeList());
The problem is obvious: useList has no guarantee that makeList created a list of Thing. The compiler cannot verify that the
 cast in useList will work, and the
 code might explode at runtime.
Generics
 solve this problem—at the cost of some significant complexity. The
 syntax for a generic declaration was introduced, without comment,
 previously. Here’s a version of the example, with the generics
 added:
public List<Thing> makeList() {
 // ...
}

public void useList(List<Thing> l) {
 Thing t = l.get(0);
 // ...
}

// ...
useList(makeList());
The type of the objects in a container
 is specified in the angle brackets (<>) that
 are part of the container type. Notice that the cast is no longer
 necessary in useList because the
 compiler can now tell that the parameter l is a list of Thing.
Generic type descriptions can get
 pretty verbose. Declarations like this are not uncommon:
Map<UUID, Map<String, Thing>> cache
 = new HashMap<UUID, Map<String, Thing>>();

Garbage Collection

Java is a garbage-collected language. That
 means your code does not manage memory. Instead, your code creates new
 objects, allocating memory, and then simply stops using those objects
 when it no longer needs them. The Dalvik runtime will delete them and
 compress memory, as appropriate.
In the not-so-distant past, developers
 had to worry about long and unpredictable periods of unresponsiveness in
 their applications when the garbage collector suspended all application
 processing to recover memory. Many developers, both those that used Java
 in its early days and those that used J2ME more recently, will remember
 the tricks, hacks, and unwritten rules necessary to avoid the long
 pauses and memory fragmentation caused by early garbage collectors.
 Garbage collection technology has come a long way since those days.
 Dalvik emphatically does not have these problems. Creating new objects
 has essentially no overhead. Only the most demandingly responsive of
 UIs—perhaps some games—will ever
 need to worry about garbage collection pauses.

Scope

Scope determines where variables, methods,
 and other symbols are visible in a program. Outside of a symbol’s scope,
 the symbol is not visible at all and cannot be used. We’ll go over the
 major aspects of scope in this section, starting with the highest
 level.
Java Packages

Java packages provide a mechanism for grouping
 related types together in a universally unique namespace. Such grouping
 prevents identifiers within the package namespace from colliding with
 those created and used by other developers in other
 namespaces.
A typical Java program is made up of code from
 a forest of packages. The standard Java Runtime Environment supplies
 packages like java.lang and java.util. In addition, the program may depend
 on other common libraries like those in the org.apache tree. By convention, application
 code—code you create—goes into a package with a name that is created by
 reversing your domain name and appending the name of the program. Thus,
 if your domain name is androidhero.com, the root of your
 package tree will be com.androidhero and you will put your
 code into packages like com.androidhero.awesomeprogram and
 com.androidhero.geohottness.service. A typical package
 layout for an Android application might have a package for persistence,
 a package for the UI, and a package for application logic or controller
 code.
In addition to providing a unique namespace,
 packages have implications on member (field and method) visibility for
 objects in the same package. Classes in the same package may be able to
 see one another’s internals in ways that are not available to classes
 outside the package. We’ll return to this topic in a moment.
To declare a class as part of a package, use
 the package keyword at the top of the file containing your
 class definition:
package your.qualifieddomainname.functionalgrouping
Don’t be tempted to shortcut your package name!
 As surely as a quick, temporary implementation lasts for years, so the
 choice of a package name that is not guaranteed unique will come back to
 haunt you.
Some larger projects use completely different
 top-level domains to separate public API packages from the packages that
 implement those APIs. For example, the Android API uses the top-level
 package android, and implementation classes generally
 reside in the package com.android. Sun’s Java source code
 follows a similar scheme. Public APIs reside in the java
 package, but the implementation code resides in the package
 sun. In either case, an application that imports an
 implementation package is clearly doing something fast and loose,
 depending on something that is not part of the public API.
Although it is possible to add code to
 existing packages, it is usually considered bad form to do so. In
 general, in addition to being a namespace, a package is usually a single
 source tree, at least up as far as the reversed domain name. It is only
 convention, but Java developers usually expect that when they look at
 the source for the package com.brashandroid.coolapp.ui, they will see all
 the source for the UI for CoolApp. Most will be surprised if they have
 to find another source tree somewhere with, for instance, page two of
 the UI.
Note
The Android application framework also
 has the concept of a Package. It is
 different, and we’ll consider it in Chapter 3. Don’t confuse it with Java package
 names.

For more information on Java packages, see the
 Java tutorial at http://download.oracle.com/javase/tutorial/java/package/packages.html.

Access Modifiers and Encapsulation

We hinted earlier that members of a class have
 special visibility rules. Definitions in most Java blocks are lexically
 scoped: they are visible only within the block and its nested blocks.
 The definitions in a class, however, may be visible outside the block.
 Java supports publishing top-level members of a class—its methods and
 fields—to code in other classes, through the use of access modifiers. Access modifiers are keywords
 that modify the visibility of the declarations to which they are
 applied.
There are three access-modifying keywords in the Java language:
 public, protected, and private. Together they support four levels of
 access. While access modifiers affect the visibility of a declaration
 from outside the class containing it, within the class normal block
 scoping rules apply, regardless of access modification.
The private access modifier is the
 most restrictive. A declaration with private access is not visible outside the
 block that contains it. This is the safest kind of declaration because
 it guarantees that there are no references to the declaration, except
 within the containing class. The more private declarations there are in a class, the
 safer the class is.
The next most restrictive level of access is
 default or package access. Declarations that are not modified by any of
 the three access modifiers have default access and are visible only from
 other classes in the same package. Default access can be a very handy
 way to create state shared among objects, similar to the use of the
 friend declaration in C++.
The protected access modifier permits all the
 access rights that were permitted by default access but, in addition,
 allows access from within any subtype. Any class that extends a class
 with protected declarations has
 access to those declarations.
Finally, public access, the weakest of the modifiers,
 allows access from anywhere.
Here’s an example that will make this more
 concrete. There are four classes in two
 different packages here, all of which refer to fields declared
 in one of the classes, Accessible:
package over.here;

public class Accessible {
 private String localAccess;
 String packageAccess;
 protected String subtypeAccess;
 public String allAccess;

 public void test() {
 // all of the assignments below work:
 // the fields are declared in an enclosing
 // block and are therefore visible.
 localAccess = "success!!";
 packageAccess = "success!!";
 subtypeAccess = "success!!";
 allAccess = "success!!";
 }
}

package over.here;
import over.here.Accessible;

// this class is in the same package as Accessible
public class AccessibleFriend {

 public void test() {
 Accessible target = new Accessible();

 // private members are not visible
 // outside the declaring class
 target.localAccess = "fail!!"; // ERROR!!

 // default access visible within package
 target.packageAccess = "success!!";

 // protected access is superset of default
 target.subtypeAccess = "success!!";

 // visible everywhere
 target.allAccess = "success!!";
 }
}

package over.there;
import over.here.Accessible;

// a subtype of Accessible
// in a different package
public class AccessibleChild extends Accessible {

 // the visible fields from Accessible appear
 // as if declared in a surrounding block
 public void test() {
 localAccess = "fail!!"; // ERROR!!
 packageAccess = "fail!!"; // ERROR!!

 // protected declarations are
 // visible from subtypes
 subtypeAccess = "success!!";

 // visible everywhere
 allAccess = "success!!";
 }
}

package over.there;
import over.here.Accessible;

// a class completely unrelated to Accessible
public class AccessibleStranger {

 public void test() {
 Accessible target = new Accessible();
 target.localAccess = "fail!!"; // ERROR!!
 target.packageAccess = "fail!!"; // ERROR!!
 target.subtypeAccess = "success!!"; // ERROR!!

 // visible everywhere
 target.allAccess = "success!!";
 }
}

Idioms of Java Programming

Somewhere between getting the specifics of a
 programming language syntax right and good pattern-oriented design (which
 is language-agnostic), is idiomatic use of a language. An idiomatic
 programmer uses consistent code to express similar ideas and, by doing so,
 produces programs that are easy to understand, make optimal use of the
 runtime environment, and avoid the “gotchas” that exist in any language
 syntax.
Type Safety in Java

A primary design goal for the Java language was
 programming safety. Much of the frequently maligned verbosity and
 inflexibility of Java, which is not present in languages such as Ruby,
 Python, and Objective-C, is there to make sure a compiler can guarantee
 that entire classes of errors will never occur at runtime.
Java’s static typing has proven to be valuable
 well beyond its own compiler. The ability for a machine to parse and
 recognize the semantics of Java code was a major force in the
 development of powerful tools like FindBugs and IDE refactoring
 tools.
Many developers argue that, especially with
 modern coding tools, these constraints are a small price to pay for
 being able to find problems immediately that might otherwise manifest
 themselves only when the code is actually deployed. Of course, there is
 also a huge community of developers who argue that they save so much
 time coding in a dynamic language that they can write extensive unit and
 integration tests and still come out ahead.
Whatever your position in this discussion, it
 makes a lot of sense to make the best possible use of your tools. Java’s
 static binding absolutely is a constraint. On the other hand, Java is a
 pretty good statically bound language. It is a lousy dynamic language.
 It is actually possible to do fairly dynamic things with Java by using
 its reflection and introspection APIs and doing a lot of type casting.
 Doing so, except in very limited circumstances, is using the language
 and its runtime environment at cross-purposes. Your program is likely to
 run very slowly, and the Android tool chain won’t be able to make heads
 or tails of it. Perhaps most important, if there are bugs in this
 seldom-used part of the platform, you’ll be the first to find them. We
 suggest embracing Java’s static nature—at least until there is a good,
 dynamic alternative—and taking every possible advantage of it.
Encapsulation

Developers limit the visibility of object
 members to create encapsulation.
 Encapsulation is the idea that an object should never reveal details
 about itself that it does not intend to support. To return to the
 mojito-making example, recall that, when it comes time to make the
 cocktail, you don’t care at all how your colleague got the necessary
 mint. Suppose, though, that you had said to her, “Can you get the
 mint? And, oh, by the way, while you are out there, could you water
 the rosebush?” It is no longer true that you don’t care how your
 colleague produces mint. You now depend on the exact way that she does
 it.
In the same way, the interface (sometimes
 abbreviated as API) of an object consists of the methods and types
 that are accessible from calling code. By careful encapsulation, a
 developer keeps implementation details of an object hidden from code
 that uses it. Such control and protection produce programs that are
 more flexible and allow the developer of an object to change object
 implementation over time without causing ripple-effect changes in
 calling code.

Getters and setters

A simple, but common, form of encapsulation
 in Java involves the use of getter and setter methods. Consider a
 naive definition of a Contact class:
public class Contact {
 public String name;
 public int age;
 public String email;
}
This definition makes it necessary for
 external objects to access the fields of the class directly. For
 example:
Contact c = new Contact();
c.name = "Alice";
c.age = 13;
c.email = "alice@mymail.com";
It will take only a tiny amount of use in the
 real world to discover that contacts actually have several email
 addresses. Unfortunately, adding a multiple-address feature to the
 naive implementation requires updating every single reference to
 Contact.email, in the entire program.
In contrast, consider the following
 class:
class Contact {
 private int age;
 private String name;
 private String email;

 Contact(int age, String name, String email) {
 this.age = age;
 this.name = name;
 this.email = email;
 }

 public int getAge() {
 return age;
 }

 public String getName() {
 return name;
 }

 public String getEmail() {
 return address;
 }
}
Use of the private access
 modifier prevents direct access to the fields of this version of the
 Contact class. Use of public getter methods
 provides the developer with the opportunity to change how the
 Contact object returns the name, age, or email address of
 the Contact. For example, the email address could be
 stored by itself, as in the preceding code, or concatenated from a
 username and a hostname if that happened to be more convenient for a
 given application. Internally, the age could be held as an
 int or as an Integer. The class can be
 extended to support multiple email addresses without any change to any
 client.
Java does allow direct reference to fields
 and does not, like some languages, automatically wrap references to
 the fields in getters and setters. To preserve encapsulation, you must
 define each and every access method yourself. Most IDEs provide code
 generation features that will do this quickly and
 accurately.
Wrapper getter and setter methods provide
 future flexibility, whereas direct field access means that all code
 that uses a field will have to change if the type of that field
 changes, or if it goes away. Getter and setter methods represent a
 simple form of object encapsulation. An excellent rule of thumb
 recommends that all fields be either private or final. Well-written Java programs use this
 and other, more sophisticated forms of encapsulation to preserve
 adaptability in more complex programs.

Using Anonymous Classes

Developers who have experience working with UI
 development will be familiar with the concept of a callback: your code
 needs to be notified when something in the UI changes. Perhaps a button
 is pushed and your model needs to make a corresponding change in state.
 Perhaps new data has arrived from the network and it needs to be
 displayed. You need a way to add a block of code to a framework, for
 later execution on your behalf.
Although the Java language does provide an
 idiom for passing blocks of code, it is slightly awkward because neither
 code blocks nor methods are first-class objects in the language. There
 is no way, in the language, to obtain a reference to either.
You can have a reference to an instance
 of a class. In Java, instead of passing blocks or functions, you pass an
 entire class that defines the code you need as one of its methods. A
 service that provides a callback API will define its protocol using an
 interface. The service client defines an implementation of this
 interface and passes it to the framework.
Consider, for instance, the Android mechanism
 for implementing the response to a user keypress. The Android View class defines an interface, OnKeyListener, which, in turn, defines an
 onKey method. If your code passes an
 implementation of OnKeyListener to a View, its onKey method will be called each time the
 View processes a new key
 event.
The code might look something like this:
public class MyDataModel {
 // Callback class
 private class KeyHandler implements View.OnKeyListener {
 public boolean onKey(View v, int keyCode, KeyEvent event) {
 handleKey(v, keyCode, event)
 }
 }

 /** @param view the view we model */
 public MyDataModel(View view) { view.setOnKeyListener(new KeyHandler()) }

 /** Handle a key event */
 void handleKey(View v, int keyCode, KeyEvent event) {
 // key handling code goes here...
 }
}
When a new MyDataModel is created, it is informed about
 the view to which it is attached by an argument to the constructor. The
 constructor creates a new instance of the trivial callback class,
 KeyHandler, and installs it in the
 view. Any subsequent key events will be relayed to the model instance’s
 handleKey method.
Although this certainly gets the job done, it
 can get pretty ugly, especially if your model class needs to handle
 multiple kinds of events from multiple views! After a while, all those
 type definitions clutter up the top of your program. The definitions can
 be a long way from their use and, if you think about it, they really
 serve no purpose at all.
Java provides a way to simplify this somewhat,
 using an anonymous class. Here is a code fragment
 similar to the one shown earlier, except that it is implemented using an
 anonymous class:
public class MyDataModel {
 /** @param view the view we model */
 public MyDataModel(View view) {
 view.setOnKeyListener(
 // this is an anonymous class!!
 new View.OnKeyListener() {
 public boolean onKey(View v, int keyCode, KeyEvent event) {
 handleKey(v, keyCode, event)
 } });
 }

 /** Handle a key event */
 void handleKey(View v, int keyCode, KeyEvent event) {
 // key handling code goes here...
 }
}
Although it might take a minute to parse, this
 code is almost identical to the previous example. It passes a newly
 created instance of a subtype of View.OnKeyListener as an argument in the call
 to view.setOnKeyListener. In this
 example, though, the argument to the call to view.setOnKeyListener is special syntax that
 defines a new subclass of the interface View.OnKeyListener and instantiates it in a
 single statement. The new instance is an instance of a class that has no
 name: it is anonymous. Its definition exists only in the statement that
 instantiates it.
Anonymous classes are a very handy tool and are
 the Java idiom for expressing many kinds of code blocks. Objects created
 using an anonymous class are first-class objects of the language and can
 be used anywhere any other object of the same type would be legal. For
 instance, they can be assigned:
public class MyDataModel {
 /** @param view the view we model */
 public MyDataModel(View view1, View view2) {
 // get a reference to the anonymous class
 View.OnKeyListener keyHdlr = new View.OnKeyListener() {
 public boolean onKey(View v, int keyCode, KeyEvent event) {
 handleKey(v, keyCode, event)
 } };

 // use the class to relay for two views
 view1.setOnKeyListener(keyHdlr);
 view2.setOnKeyListener(keyHdlr);
 }

 /** Handle a key event */
 void handleKey(View v, int keyCode, KeyEvent event) {
 // key handling code goes here...
 }
}
You might wonder why the anonymous class in
 this example delegates its actual implementation (the handleKey method) to the containing class.
 There’s certainly no rule that constrains the content of the anonymous
 class: it absolutely could contain the complete implementation. On the
 other hand, good, idiomatic taste suggests putting the code that changes
 an object’s state into the object class. If the implementation is in the
 containing class, it can be used from other methods and callbacks. The
 anonymous class is simply a relay and that is all it should do.
Java does have some fairly strong constraints
 concerning the use of the variables that are in scope—anything defined
 in any surrounding block—within an anonymous class. In particular, an
 anonymous class can only refer to a variable inherited from the
 surrounding scope if that variable is declared final. For example, the
 following code fragment will not compile:
/** Create a key handler that matches the passed key */
public View.OnKeyListener curry(int keyToMatch) {
 return new View.OnKeyListener() {
 public boolean onKey(View v, int keyCode, KeyEvent event) {
 if (keyToMatch == keyCode) { foundMatch(); } // ERROR!!
 } };
}
The remedy is to make the argument to curry final. Making it final, of course, means
 that it cannot be changed in the anonymous class. But there is an easy,
 idiomatic way around that:
/** Create a key handler that increments and matches the passed key */
public View.OnKeyListener curry(final int keyToMatch) {
 return new View.OnKeyListener() {
 private int matchTarget = keyToMatch;
 public boolean onKey(View v, int keyCode, KeyEvent event) {
 matchTarget++;
 if (matchTarget == keyCode) { foundMatch(); }
 } };
}

Modular Programming in Java

Although class extension in Java offers
 developers significant flexibility in being able to redefine aspects of
 objects as they are used in different contexts, it actually takes a
 reasonable amount of experience to make judicious use of classes and
 interfaces. Ideally, developers aim to create sections of code that are
 tolerant of change over time and that can be reused in as many different
 contexts as possible, in multiple applications or perhaps even as
 libraries. Programming in this way can reduce bugs and the application’s time to market. Modular
 programming, encapsulation, and separation of concerns are all key strategies for
 maximizing code reuse and stability.
A fundamental design consideration in
 object-oriented development concerns the decision to delegate or inherit
 as a means of reusing preexisting code. The following series of examples
 contains different object hierarchies for representing automotive
 vehicles that might be used in a car gaming application. Each example
 presents a different approach to modularity.
A developer starts by creating a vehicle class
 that contains all vehicle logic and all logic for each different type of
 engine, as follows:
// Naive code!
public class MonolithicVehicle {
 private int vehicleType;

 // fields for an electric engine
 // fields for a gas engine
 // fields for a hybrid engine
 // fields for a steam engine

 public MonolithicVehicle(int vehicleType) {
 vehicleType = vehicleType;
 }

 // other methods for implementing vehicles and engine types.

 void start() {
 // code for an electric engine
 // code for a gas engine
 // code for a hybrid engine
 // code for a steam engine
 }
}
This is naive code. Although it may be
 functional, it mixes together unrelated bits of implementation (e.g.,
 all types of vehicle engines) and will be hard to extend. For instance,
 consider modifying the implementation to accommodate a new engine type
 (nuclear). The code for each kind of car engine has unrestricted access
 to the code for every other engine. A bug in one engine implementation
 might end up causing a bug in another, unrelated engine. A change in one
 might result in an unexpected change to another. And, of course, a car
 that has an electric engine must drag along representations of all
 existing engine types. Future developers working on the monolithic
 vehicle must understand all the
 complex interactions to modify the code. This just doesn’t scale.
How might we improve on this implementation? An
 obvious idea is to use subclassing. We might use the class hierarchy
 shown in the following code to implement different types of automotive
 vehicles, each tightly bound to its engine type:
public abstract class TightlyBoundVehicle {
 // has no engine field

 // each subclass must override this method to
 // implement its own way of starting the vehicle
 protected abstract void startEngine();

 public final void start() { startEngine(); }
}

public class ElectricVehicle extends TightlyBoundVehicle {
 protected void startEngine() {
 // implementation for engine start electric
 }

public class GasVehicle extends TightlyBoundVehicle {
 protected void startEngine() {
 // implementation for engine start gas
 }
}

public void anInstantiatingMethod() {
 TightlyBoundVehicle vehicle = new ElectricVehicle();
 TightlyBoundVehicle vehicle = new GasVehicle();
 TightlyBoundVehicle vehicle = new HybridVehicle();
 TightlyBoundVehicle vehicle = new SteamVehicle();
}
This is clearly an improvement. The code for
 each engine type is now encapsulated within its own class and cannot
 interfere with any others. You can extend individual types of vehicles
 without affecting any other type. In many circumstances, this is an
 ideal implementation.
On the other hand, what happens when you
 want to convert your tightly bound gas vehicle to biodiesel? In this
 implementation, cars and engines are the same object. They cannot be
 separated. If the real-world situation that you are modeling requires
 you to consider the objects separately, your architecture will have to
 be more loosely coupled:
interface Engine {
 void start();
}

class GasEngine implements Engine {
 void start() {
 // spark plugs ignite gas
 }
}

class ElectricEngine implements Engine {
 void start() {
 // run power to battery
 }
}

class DelegatingVehicle {
 // has an engine field
 private Engine mEngine;

 public DelegatingVehicle(Engine engine) {
 mEngine = engine;
 }

 public void start() {
 // delegating vehicle can use a gas or electric engine
 mEngine.start();
 }
}

void anInstantiatingMethod() {
 // new vehicle types are easily created by just
 // plugging in different kinds of engines.
 DelegatingVehicle electricVehicle =
 new DelegatingVehicle(new ElectricEngine());
 DelegatingVehicle gasVehicle = new DelegatingVehicle(new GasEngine());
 //DelegatingVehicle hybridVehicle = new DelegatingVehicle(new HybridEngine());
 //DelegatingVehicle steamVehicle = new DelegatingVehicle(new SteamEngine());
}
In this architecture, the vehicle class
 delegates all engine-related behaviors to an engine object that it owns.
 This is sometimes called has-a, as
 opposed to the previous, subclassed example, called is-a. It can be even more flexible because it
 separates the knowledge of how an engine actually works from the car
 that contains it. Each vehicle delegates to a loosely coupled engine
 type and has no idea how that engine implements its behavior. The
 earlier example makes use of a reusable DelegatingVehicle
 class that does not change at all when it is given a new kind of engine.
 A vehicle can use any implementation of the Engine
 interface. In addition, it’s possible to create different types of
 vehicle—SUV, compact, or luxury, for instance—that each make use of any
 of the different types of Engine.
Using delegation minimizes the
 interdependence between the two objects and maximizes the flexibility to
 change them later. By preferring delegation over inheritance, a
 developer makes it easier to extend and improve the code. By using
 interfaces to define the contract between an object and its delegates, a
 developer guarantees that the delegates will have the expected
 behavior.

Basic Multithreaded Concurrent Programming in Java

The Java language supports concurrent threads
 of execution. Statements in different threads are executed in program
 order, but there is no ordering relationship between the statements in
 different threads. The basic unit of concurrent execution in Java is
 encapsulated in the class java.lang.Thread. The recommended
 method of spawning a thread uses an implementation of the interface
 java.lang.Runnable, as demonstrated in the following
 example:
// program that interleaves messages from two threads
public class ConcurrentTask implements Runnable {
 public void run() {
 while (true) {
 System.out.println("Message from spawned thread");
 }
 }
}

public void spawnThread() {
 (new Thread(new ConcurrentTask())).start();

 while (true) {
 System.out.println("Message from main thread");
 }
}
In the preceding example, the method
 spawnThread creates a new thread, passing a new instance of
 ConcurrentTask to the thread’s constructor. The method then
 calls start on the new thread. When the start method of the thread is called, the
 underlying virtual machine (VM) will create a new concurrent thread of
 execution, which will, in turn, call the run method of the passed Runnable, executing it in parallel with the
 spawning thread. At this point, the VM is running two independent
 processes: order of execution and timing in one thread are unrelated to
 order and timing in the other.
The class Thread is not final. It is possible to define
 a new, concurrent task by sub-classing Thread and
 overriding its run method. There is
 no advantage to that approach, however. In fact, using a Runnable is more adaptable. Because
 Runnable is an interface, the Runnable that you pass in to the Thread constructor may extend some other,
 useful class.

Synchronization and Thread Safety

When two or more running threads have access to
 the same set of variables, it’s possible for the threads to modify those
 variables in a way that can produce data corruption and break the logic
 in one or more of those threads. These kinds of unintended concurrent
 access bugs are called thread safety
 violations. They are difficult to reproduce, difficult to
 find, and difficult to test.
Java does not explicitly enforce
 restrictions on access to variables by multiple threads. Instead, the
 primary mechanism Java provides to support thread safety is the synchronized keyword. This keyword
 serializes access to the block it controls and, more important,
 synchronizes visible state between two threads. It is very easy to
 forget, when trying to reason about concurrency in Java, that
 synchronization controls both access and visibility. Consider the
 following program:
// This code is seriously broken!!!
public class BrokenVisibility {
 public static boolean shouldStop;

 public static void main(String[] args) {
 new Thread(
 new Runnable() {
 @Override public void run() {
 // this code runs in the spawned thread
 final long stopTime
 = System.currentTimeMillis() + 1000;
 for (;;) {
 shouldStop
 = System.currentTimeMillis() > stopTime;
 }
 }
 }
).start();

 // this runs in the main thread
 for (;;) {
 if (shouldStop) { System.exit(0); }
 }
 }
}
One might think, “Well, there’s no need to
 synchronize the variable shouldStop.
 Sure, the main thread and the spawned thread might collide when
 accessing it. So what? The spawned thread will, after one second, always
 set it to true. Boolean writes are atomic. If the
 main thread doesn’t see it as true this time, surely it will see it as
 true the next time.” This reasoning is dangerously flawed. It does not
 take into account optimizing compilers and caching processors! In fact,
 this program may well never terminate. The two threads might very easily
 each use their own copy of shouldStop, existing only in some local
 processor hardware cache. Because there is no synchronization between
 the two threads, the cache copy might never be published so that the
 spawned thread’s value is visible from the main thread.
There is a simple rule for avoiding
 thread safety violations in Java: when two different threads access the
 same mutable state (variable) all access to that
 state must be performed holding a single lock.
Some developers may violate this rule, after reasoning about the
 behavior of shared state in their program, in an attempt to optimize
 code. Because many of the devices on which the Android platform is
 currently implemented cannot actually provide concurrent execution (instead, a single
 processor is shared, serially, across the threads), it is possible that
 these programs will appear to run correctly. However, when, inevitably,
 mobile devices have processors with multiple cores and large,
 multilayered processor caches,
 incorrect programs are likely to fail with bugs that are serious,
 intermittent, and extremely hard to find.
When implementing concurrent processes in Java,
 the best approach is to turn to the powerful java.util.concurrent libraries. Here you will
 find nearly any concurrent structure you might require, optimally
 implemented and well tested. In Java, there is seldom more reason for a
 developer to use the low-level concurrency constructs than there is for
 him to implement his own version of a doubly linked list.
The synchronized keyword can be used in three
 contexts: to create a block, on a dynamic method, or on a static method.
 When used to define a block, the keyword takes as an argument a
 reference to an object to be used as a semaphore. Primitive types cannot
 be used as semaphores, but any object can.
When used as a modifier on a dynamic
 method, the keyword behaves as though the contents of the method were
 wrapped in a synchronized block that used the instance itself as the
 lock. The following example demonstrates this:
class SynchronizationExample {

 public synchronized void aSynchronizedMethod() {
 // a thread executing this method holds
 // the lock on "this". Any other thread attempting
 // to use this or any other method synchronized on
 // "this" will be queued until this thread
 // releases the lock
 }

 public void equivalentSynchronization() {
 synchronized (this) {
 // this is exactly equivalent to using the
 // synchronized keyword in the method def.
 }
 }

 private Object lock = new Object();

 public void containsSynchronizedBlock() {
 synchronized (lock) {
 // A thread executing this method holds
 // the lock on "lock", not "this".
 // Threads attempting to seize "this"
 // may succeed. Only those attempting to
 // seize "lock" will be blocked
 }
 }
This is very convenient but must be used
 with caution. A complex class that has multiple high-use methods and
 synchronizes them in this way may be setting itself up for lock
 contention. If several external threads are attempting to access
 unrelated pieces of data simultaneously, it is best to protect those
 pieces of data with separate locks.
If the synchronized keyword is used on a static
 method, it is as though the contents of the method were wrapped in a
 block synchronized on the object’s class. All static synchronized
 methods for all instances of a given class will contend for the single
 lock on the class object itself.
Finally, it is worth noting that object
 locks in Java are reentrant. The following code is perfectly safe and
 does not cause a deadlock:
class SafeSeizure {
 private Object lock = new Object();

 public void method1() {
 synchronized (lock) {
 // do stuff
 method2();
 }
 }

 public void method2() {
 synchronized (lock) {
 // do stuff
 }
 }
}

Thread Control with wait() and notify() Methods

The class java.lang.Object defines
 the methods wait() and notify() as part of the
 lock protocol that is part of every object. Because all classes in Java
 extend Object, all object instances support these methods
 for controlling the lock associated with the instance.
A complete discussion of Java’s
 low-level concurrency tools is well beyond the scope of this book.
 Interested developers should turn to Brian Goetz’s excellent
 Java Concurrency in Practice (Addison-Wesley
 Professional). This example, however, illustrates the essential element
 necessary to allow two threads to cooperate. One thread pauses while the
 other completes a task that it requires:
/**
 * Task that slowly fills a list and notifies the
 * lock on "this" when finished. Filling the
 * list is thread safe.
 */
public class FillListTask implements Runnable {
 private final int size;
 private List<String> strings;

 public FillListTask(int size) {
 this.size = size;
 }

 public synchronized boolean isFinished() {
 return null != strings;
 }

 public synchronized List<String> getList() {
 return strings;
 }

 @Override
 public void run() {
 List<String> strs = new ArrayList<String>(size);
 try {
 for (int i = 0; i < size; i++) {
 Thread.sleep(2000);
 strs.add("element " + String.valueOf(i));
 }

 synchronized (this) {
 strings = strs;
 this.notifyAll();
 }
 }
 catch (InterruptedException e) {
 // catch interrupted exception outside loop,
 // since interrupted exception is a sign that
 // the thread should quit.
 }
 }

 /**
 * Waits for the fill list task to complete
 */
 public static void main(String[] args)
 throws InterruptedException
 {
 FillListTask task = new FillListTask(7);

 new Thread(task).start();

 // The call to wait() releases the lock
 // on task and suspends the thread until
 // it receives a notification
 synchronized (task) {
 while (!task.isFinished()) {
 task.wait();
 }
 }

 System.out.println("Array full: " + task.getList());
 }
}
In fact, most developers will never use
 low-level tools like wait and notify, turning
 instead to the java.util.concurrent
 package for higher-level tools.

Synchronization and Data Structures

Android supports the feature-rich Java
 Collections Library from Standard Edition Java. If you peruse the
 library, you’ll find that there are two versions of most kinds of
 collections: List and Vector, HashMap and Hashtable, and so on. Java introduced an
 entirely new collections framework in version 1.3. The new framework
 completely replaces the old collections. To maintain backward
 compatibility, however, the old versions were not deprecated.
The new collections should be preferred
 over their legacy counterparts. They have a more uniform API, there are
 better tools to support them, and so on. Perhaps most important,
 however, the legacy collections are all synchronized. That might sound
 like a great idea, but as the following example shows, it is not
 necessarily sufficient:
public class SharedListTask implements Runnable {
 private final Vector<String> list;

 public SharedListTask(Vector<String> l) {
 this.list = l;
 }

 @Override
 public void run() {
 // the size of the list is obtained early
 int s = list.size();

 while (true) {
 for (int i = 0; i < s; i++) {
 // throws IndexOutOfBoundsException!!
 // when the list is size 3, and s is 4.
 System.out.println(list.get(i));
 }
 }
 }

 public static void main(String[] args) {
 Vector<String> list = new Vector<String>();
 list.add("one");
 list.add("two");
 list.add("three");
 list.add("four");

 new Thread(new SharedListTask(list)).start();

 try { Thread.sleep(2000); }
 catch (InterruptedException e) { /* ignore */ }

 // the data structure is fully synchronized,
 // but that only protects the individual methods!
 list.remove("three");
 }
}
Even though every use of the Vector is fully synchronized and each call to
 one of its methods is guaranteed to be atomic, this program breaks. The
 complete synchronization of the Vector is not sufficient, of course, because
 the code makes a copy of its size and uses it even while another thread
 changes that size.
Because simply synchronizing the methods
 of a collection object itself is so often insufficient, the collections
 in the new framework are not synchronized at all. If the code handling
 the collection is going to have to synchronize anyway, synchronizing the
 collection itself is redundant and wasteful.

End of sample

 To search for additional titles please go to

 http://search.overdrive.com.

OEBPS/httpatomoreillycomsourceoreillyimages1335393.png
s
= 3

OEBPS/httpatomoreillycomsourceoreillyimages1335307.png
A sorry!

Activity AsyncTaskDemo (In

application AsyncTaskDemo)
Is not responding.

OEBPS/httpatomoreillycomsourceoreillyimages1335433.png.jpg
S —

B The Conversation: Therapy Dogs g0 to C.

§E2 wo Dogs Spazing Out Over Their First.

WLl Pedigree Dogs ad shot 1000 FPS using ...
S e worta's most unny dog video

77 DOG vs. BALLOONS.

B AMAZING DOG BIRTH
R Potar bears and dogs playing

— T———

OEBPS/httpatomoreillycomsourceoreillyimages1335337.png

OEBPS/httpatomoreillycomsourceoreillyimages1335325.png
‘Llose Unrelated Frojects pretf.putinttHErs 1IE NUPEER, miessag
pref _comnit () ;
Validate refresh(];

‘Show in Remote Systems view i

line:

iy 1P on Server SHLEARSXR oplen

B T a—C)

‘con Profile As » 3 Android JUnit Test Lo
imp Team > 4Java Applet Shift+Alt+XA |
TP\ compare With » 5 Java Application Shift+Alt+X] Jet hoc
¢Fy tputs
G| estore from Local History.. 6 JUnit Test Shift+AIEXT tputs

OEBPS/httpatomoreillycomsourceoreillyimages1335355.png
° Selection does not contain an applet

OEBPS/httpatomoreillycomsourceoreillyimages1335331.png
8|lsie|sorar oo | |02

= (B

Blwsk | =08

\An outline is not available.

®

[Markers %2 Eﬁwnm&‘ﬂs&mm[.m:mnwm‘ [Snippets

OEBPS/httpatomoreillycomsourceoreillyimages1335375.png.jpg
5554:honeycomb

The Time: 1 Apr 2011 27:21:20

OEBPS/httpatomoreillycomsourceoreillyimages1335347.png
® Software Updates

effect. You may try to apply the changes without restarting, but this.
may cause errors.

o You will need to restart Eclipse for the installation changes to take

| MNotNow | Applychangesiow | FRestartNow |

OEBPS/httpatomoreillycomsourceoreillyimages1335269.png.jpg
New Android Project
Creates a new Android Project resource.

Project name: [TestPraject

Contents

@ Create new project in workspace
O Create project from existing source
@ Use defaut location

Location: (IhomeragurdiworkspacelTestProject) (Emme)

O Create project from existing sample

Samples: | 1MapsDemo

Buld Target
ergetiams VNSO Plttom, pe1LS,
Android 1.5 Android Open Source Project 3
Google APls. Google Inc. 3
Android 1.6 Android Open Source Project 4
Google APls. Google Inc. 4
Android 2.0 Android Open Source Project s
Android 20,1 Android Open Source Project 6
Google APls. Google Inc. X 6
Android 21-update Android Open Source Project | 2.1-updat(7
Google APIs Google Inc. 2.1-updat(7
Android 2.2 Android Open Source Project 8

¥ GoogleAPls |Googlelnc. . 228

Android + Google APIs

Properties

Application name:

[Test Application

Package name: [com.oreilytestapp

)
]
@ Create Actity. [Testactivty)
]

Min sokVersion: [

® e (e ()

OEBPS/httpatomoreillycomsourceoreillyimages1335261.png
000 Android SDK and AVD Manager
Virtual devices

SOK Location: Volumes/Home/ Library/Android/andros
Installed packages
Avalabe packages installed packages
§ Android SDK Tools, revision 11
i Android SDK Patform-tools, revision 5
Documentation for Android SOK, AP 12, revision 1
1 SOK Platform Android 3.1, API 12, revision 2
1§ SOK Platform Android 3.0, API 11, revision 1
' SDK Platform Android Honeycomb Preview, revision 1
1§ SOK Platform Android 2.3.3, AP 10, revision 1
1§ SOK Platform Android 2.3.1, AP 9, reision 2
1§ SOK Platform Android 2.2, API 8, revision 2
' SDK Platform Android 2.1-updatel, APl 7, revision 2
1§ SOK Platform Android 2.0.1, AP, reision 1
1§ SOK Platform Android 1.6, AP1 4, revision 3
5 SOK Platform Android L5, API 3, revision 4
& samples for SDK AP 12, revsion 1
& samples for SOK AP 1, revsion 1
& Sampes for SOK AP Honeycomb Preview, reision 1
& samples for SDK AP 10, revsion 1

sdk-mac_86/

e

Description

Do

OEBPS/httpatomoreillycomsourceoreillyimages1335379.png.jpg

OEBPS/orm_front_cover.jpg
Java Programming for the New
Generation of Mobile Devices

3

Android

. n Zigurd Mednieks, Laird Dornin,
O'REILLY G. Blake Meike & Masumi Nakamura

OEBPS/oreilly_large.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages1335311.png
Select A

Select an export destination:
I a)

P @ General A
v & Android

b e+
> &EB

> @& Java

b & Java EE

P & Plugin Development

P G Remote Systems

P & Run/Debug

b @& Tasks

> @& Team v

OEBPS/httpatomoreillycomsourceoreillyimages1335361.png
LinearLayout

(vertical

Linearlayout
(horizontal)

Linearlayout
(horizontal)

! v

Text

Text

D =9

OEBPS/httpatomoreillycomsourceoreillyimages1335389.png.jpg
fellp
ndroi

idenity
Asloi

scale1 21.2)

{ranslate}1 40,-20) rotate90)

OEBPS/httpatomoreillycomsourceoreillyimages1335413.png
|waeels 226 | s orar|wer

JQv(}v%evm

Fre————

i Android Manifest Application

~ Application Toggle

i§ The application tag fon-level

@ Define an <applications tag in the AndroidManifest.xmi

~ Application Attributes
Defines the attributes specific to the application.

[— e —
@smgepp.nome | orowse. v safemode
ey
e |
(— C—— =
s e P e Py
e o e
. — T N B—
T T e
T LT T —

Application Nodes IPEAE® O A

+ @ Finchwelcome (Activity) add.

OEBPS/httpatomoreillycomsourceoreillyimages1335411.png
QOOOE|+¢ -8 ¥

activity-ifecycle

| |pia |tag | essage 2
71 472 | Finenlitseyels | oncreate
071 472 Pincmlitecyels | onstart
o7
o7
g

472 | FinchLifscycle | onPostCraate
472 | FinchLifscycle | onResume

b
T

/472 | Finchlifecycle | onPostResume
1/472 | Finchlifecycle | onPause

I 472 |Finchlifecycle | onSaveInstanceState
1| 472 | FinchLifecycle | onStop

T 472 |Finchlifecycle | onRetainNonConfigurationInstance
1| 472 | Finchlifecycle | onestroy 80
b
T
b
T
b
T

472 | FinchLifecycle |onCreate, can restors state fortytwo
472 | Finchlifecycle | onStart

472 | FinchLifecycle | onRestorsInstanceState, can restore state fortytw
472 | FinchLifecycle | onPostCreate, can restors state fortytwo

472 | Finchlifecycle | onResume

Ggisiigigiisgsy

472 | FinchLifscycle | onPostResume

OEBPS/httpatomoreillycomsourceoreillyimages1335371.png

OEBPS/httpatomoreillycomsourceoreillyimages1335403.png
Fiter Name: [activty-ffecycle

bylogTag: | FinchLifecycle|
by pid:

by g
[oq

OEBPS/httpatomoreillycomsourceoreillyimages1335423.png
Java - FinchFrameworkPhasel/res/layout-large/main.xml - Eclipse.

Pre Window
(w4 BAE |0 [6| &6 & |§Java >
@ stringsxml B chttxml (B chosxml [(cmainaml 30 B ListAndContentActivi | B chozxml |z ==
Editing config: Large Screen Anylocale : | (Android4.03 3| |Create..|| %=
51 WVGA 2 | Landscap 2 |(Normal : | Daytime 2 |(Theme :
3 Palette - QAaQ Qa j

Form Widgets
Text Fields

Images & Media

Time & Date
Transitions
Advanced

Custom & Library Views

) Graphical Layout | @ main.xml

e R B O®

OEBPS/httpatomoreillycomsourceoreillyimages1335349.png
ian ; _
Open Tpe Hierarchy 4

Show In ShRARSW > o Gy | @ v | P 4 0
Ccopy ctrl+c
Copy Qualified Name
Paste Ctri+v
= 0| B Task List 2 =0
Delete Delete
Remove from Context Shift+Ctrl#AltrDown (272 1he et iopeni sourcs projectl]] 4 -
Build Path » b.android.notepad; G
vEY X B ¢ 49
souree SHItEATSS * ondroid.notepad. NotePad. Notes; A ——
Refactor Shift+Alt+T » nd___ 4] » Al b Activate...
fnpoet ty for editing a note in a database. @ Uncategorized
Bxport.. ¢ view a note {@link Intent#ACTION_VI
CTION_EDIT}, or create a new note {@!
References >
Declarations + itor extends Activity {
- - "Notes";
Refresh 5| Clear Bug Markers
| rec oo e rrrderesting colums import declarations £
Assign Working Sets... O ® Notekditor
Run As , final Stringl] PROJECTION = new Stri | 57186 string .
Debug As »l D) . < I) B
Gt > oc|[8 Declaration ® v =8
Validate }
- T e mn e
Compare With i
Replace With > {) .
Restore from Local History.. =
‘Web Services >

OEBPS/httpatomoreillycomsourceoreillyimages1335299.png
lllll

OEBPS/httpatomoreillycomsourceoreillyimages1335395.png
lllllllll

OEBPS/httpatomoreillycomsourceoreillyimages1335437.png.jpg
O sexagesimal

Longitude [0

Latitude

OEBPS/httpatomoreillycomsourceoreillyimages1335421.png
Activity B

List ragment

Content Fragment or
Detai Fragment

((ControlFragment optional))

OEBPS/httpatomoreillycomsourceoreillyimages1335407.png
QOOOE|+¢ -8 ¥

| tag | essage
FinchLifecycle onCreate
Finchli fecycle onStart
FinchLifecycle onPostCreate
Finchli fecycle onResune
FinchLifecycle onPostResune

OEBPS/httpatomoreillycomsourceoreillyimages1335315.png
rt Android Application

Keystore selection

® Use existing keystore
© Create new keystore

Location: | /home/zigurd/example-release-keykeystore | [Browse...

Password: | @@

Confirm:

@ e] (s [concl] [

OEBPS/httpatomoreillycomsourceoreillyimages1335305.png
AsyncTaskDemo

Jtock response: 5

OEBPS/httpatomoreillycomsourceoreillyimages1335405.png
. FinchLifecycle

Hello World, FinchLifecycle!
Hello World, FinchLifecycle!

a & = 10:04.58

OEBPS/httpatomoreillycomsourceoreillyimages1335363.png
E3 G @ 8:00 AM

TouchMe

163 77

OEBPS/httpatomoreillycomsourceoreillyimages1335419.png
Content Fragment or

Defail ragment

Control Fragment (optional)

OEBPS/httpatomoreillycomsourceoreillyimages1335435.png
View Controller Model Network

® @ westa

‘web services

©

Layout XML Appliation logic ® SQLite table

Step 1:View - user input. Step 5:YouTube responds and the parserinserts resuts in
ntollr lstens for events. the content provider SQL cache.
: Controlerinvokes a managed queryon Step 6: The provider noifies the View and Controller
the content provider (aka themodel). Step 7: The View updates.
Step 4:The content provider invokes a RESTul
YouTube request and prepares to receive
results,

OEBPS/httpatomoreillycomsourceoreillyimages1335303.png
Activity

Service

ContentProvider

BroadcastReceiver

[¢— Intent
—— Result

|«——> Remote method (AIDL)

| &—— Queries/cursor

|&—— Broadaastintent

OEBPS/httpatomoreillycomsourceoreillyimages1335441.png

OEBPS/httpatomoreillycomsourceoreillyimages1335309.png
Creation Thread Daemon Thread

execute(args...) l

doInBackground(args result

doPostExecute(result)

OEBPS/httpatomoreillycomsourceoreillyimages1335397.png
Database Edit Controller

=g

Cursor, adapter dasses

Name: Fred
D:6 ¢

OEBPS/httpatomoreillycomsourceoreillyimages1335339.png
Available Software
Check the items that you wish to install.

=

Work with: [Findbugs - http://findbugs.cs.umd.edu/eclipse/)| Adde |

Find more software by working with the *Available Software Sites" preferences.

(type fiter text

4]

TR p—
Details.

This is the Eclipse category for FindBugs features.

@ Show only the latest versions of available software [Hide items that are already installed

@ Group items by category

@ contact all update sites during install to find required software

More.

What is already installed?

seacc | S [o

OEBPS/httpatomoreillycomsourceoreillyimages1335377.png.jpg
The Time: 5 Apr 2011 12:49:32

The Time: 5 Apr 2011 12:49:32

OEBPS/callouts/15.png

OEBPS/httpatomoreillycomsourceoreillyimages1335329.png
| e & &9 @ | s orar T
Jﬁ@v e | iy | o

o |8 comandroidide. adt =e

i# | & Extensions 25 wamings detected oO% T O
All Extensions Extension Details

1%
Define extensions for this plugin in the following section. Set the properties of the
selected extension.
(type fiter text 4] fields are denoted by **".
+ o= org.eclipse.core.resources.builders 4 | Add.. D [AndroidNature
+ o= org.eclipse.core.resources.builders omoe Neme: Androidature
+ <= org.eclipse.core.resources.builders
=
+ o= org.eclipse.ui.newWizards - & show extension point descrip
+ <= org.eclipse.debug.core.launchCo 4 open extension point schemz
+ o= org.eclipse.debug.ui.launchCo eyl % Find declaring extension poir
+ o= org.eclipse.debug.uilaunchConfigura
+ o= org.eclipse.debug.uilaunchshortcuts
+ o= org.eclipse.ui.popupMenus
+ o= org.eclipse.ui preferencepages
B .
Overview |Dependencies |[Runtime | Extensions | Extension Points | MANIFEST.MF [plugin.xmi|

0

HSEHZ@QEQIEEI

OEBPS/callouts/14.png

OEBPS/httpatomoreillycomsourceoreillyimages1335273.png
List of existing Android Virtual Devices located at /home/zigurd.android/avd

ADNETE,

Target Name

Blatfor)

£l Level

No AVD available

~ Avalid Android Virtual Device. [A repairable Android Virtual Device.
X An Android Virtual Device that failed to load. Click ‘Details' to see the error.

OEBPS/callouts/13.png

OEBPS/callouts/12.png

OEBPS/httpatomoreillycomsourceoreillyimages1335367.png
11:27 PM
TouchMe

23.808105 67.97985

Red

OEBPS/httpatomoreillycomsourceoreillyimages1335383.png

OEBPS/httpatomoreillycomsourceoreillyimages1335313.png
rt Android Application

Project Checks
Performs a set of checks to make sure the application can be

exported

Select the project to export:

Project: [TestActivity

No errors found. Click Next.

@

OEBPS/httpatomoreillycomsourceoreillyimages1335399.png
Storsine
Anmphibeate
et

P vns g ausoIoUS N

eate Pry, phiheste Py,

List Jobs

OEBPS/httpatomoreillycomsourceoreillyimages1335271.png
I+ = Google APIs [Android 2.2]
(+) @ gen [Generated Java Files]
& assets

OEBPS/callouts/11.png

OEBPS/httpatomoreillycomsourceoreillyimages1335321.png
& 1 have read and agree with the terms and conditions (printable version)

My certiicate’s MDS fingerprint: |

OEBPS/httpatomoreillycomsourceoreillyimages1335327.png
%> ch.qos.logback.classic (0.9.19.v20100519-1505)
%> ch.qos.logback.core (0.9.19.v20100419-1216)

%> ch.qos.logback.sif4j (0.9.19.v20100519-1910)

%> com.android.ide. eclipse.ddms (0.9.7.v201005071157-36220)
%> com.ess.regexutil (1.2.4)

%= com.ibm.icu (4.2.1.v20100412)

%> com.jcraft.jsch (0.1.41.v200903070017)

%> com.oxygenxml.author (11.2.0.v2010062215)
%= java_cup.runtime (0.10.0.v201005080400)
%= javax.activation (1.1.0.v201005080500)

% javax.jws (2.0.0.v201005080400)

%= javax.mail (1.4.0.v201005080615)

¥ javax.serviet (2.5.0.v200910301333)

%= javax.serviet jsp (2.0.0.v200806031607)

% javax.wsdl (1.5.1.v201005080630)

% javax.wsdl (1.6.2.v201005080631)

% javaxoml (1.3.4.v201005080400)

% javaxoml.bind (2.1.9.v201005080401)

+ ¥ javaxaml.rpc (1.1.0.v201005080400)

+

OEBPS/callouts/10.png

OEBPS/httpatomoreillycomsourceoreillyimages1335287.png
Available Updates
Check the updates that you wish to install.

& § Eclipse XML Editors and Tools. 3.2.0.v201005241 org.eclipse.wst.xml_ui.feature.f
& @ Native JavaHL 1.6 Implementation (Optional) 2.2.2.120100617-1 org.polarion.eclipse.team. svn.«
& § oXygen XML Author 11.2.0.v20100621 com.oxygenxml.author.feature.
& @ Subversive SVN Connectors 2.2.2.120100617-1 org.polarion.eclipse.team. svn.
& @ SVNKit 1.3.3 Implementation (Optional) 2.2.2.120100617-1 org.polarion.eclipse.team. svn.«

<C m =

Details

@ <sack(Luneta | (cancelll [Fnsn

OEBPS/httpatomoreillycomsourceoreillyimages1335369.png
TouchMe

OEBPS/httpatomoreillycomsourceoreillyimages1335297.png
Smrrﬂ‘_{ A H A, }—H; A A,

OEBPS/httpatomoreillycomsourceoreillyimages1335317.png
Key alias selec

® Use existing key

Alias: [example_alias_name iv]

Password: |

O Create newkey

@ e] (s [concl] [

OEBPS/httpatomoreillycomsourceoreillyimages1335391.png
[——
Android

; — I ————
Android Android

S — | —
Android Android

OEBPS/httpatomoreillycomsourceoreillyimages1335281.png
system_process
Dalvik v1.1.0
53

com.android.inputmethod.latin | 100 1%, 8601 | | | supports Profiing Control: Yes (Application must be able to write on the SD Card)
com.android.phone |102 % 8602 |-|| Supports HPROF Control: Yes (Application must be able to write on the SD Card)
com.android.settings 13 % e603
‘android.process.acore |16 % | ss0a
com.android.alarmelock 143 % 8605
‘android.process.media 161 % | 8605
com.android.email 71 % es07

+¥ - QO00O®® B R

D 161 MediaScar scan time: 39ms
. D 161 | MediaScar postscan time: Oms.
. D 161 MediaScar total time: 621ms
. D 161 | Mediascar done scanning volume internal
061210:04:52, D 161 | MediaScar start scanning volume external
061210:04:53. V 161 | Mediascar pruneDeadThumbnailFiles... android.database.sqlite. SQLiteCursor@43bbaods.
061210:04:53. V 161 | Mediascar /pruneDeadThumbnailfiles... android. database.sqlite. SQLiteCursor@43bba0ds
061210:04:53, D 161 | MediaScar prescan time: 250ms.
061210:04:53, D 161 | MediaScar ~ scan time: 8ms
. D 161 | Mediascar postscan time: 27ms
. D 161 MediaScar total time: 285ms
. D 161 | Mediascar done scanning volume external v

OEBPS/httpatomoreillycomsourceoreillyimages1335285.png
% Android SDK Tools, revision 6

[Documentation for Android SDK, API 8, revision 1

SDK Platform Android 2.2, API 8, revision 1

& samples for SDK AP! 8, revision 1

Google APIs by Google Inc., Android API 8, revision 1

SDK Platform Android 2.1-updatel, AP 7, revision 2

& samples for SDK AP! 7, revision 1

Google APIs by Google Inc., Android AP 7, revision 1

|t SDK Patform Android 20,1, APIG.revion L .~
<C) ™

OEBPS/httpatomoreillycomsourceoreillyimages1335351.png
J?\' By = v ov

% Bug Explorer 32

2 R$ P

2 e

1) Finchwelcome java 22

= §3> FinchFramework (12) 274818 [https://pro(
+) 4 Class names should start with an upper |
+ 4 Dead store to local variable (1)
+ 4 Method invokes inefficient Number const;
= # Nullcheck of value previously dereferency

4 Nullcheck of savedstate at line 110 of #

S eoverride
- public Object onRetainNonConfigurationInstance() {
Log.1(TAG, "onRetainNanConfigurationInstance") o)

77 Tt's not_what
return new Integer(getTaskId());
¥

S eoverride

. protected void onRestorelnstancestate(Bundle savedstate) {

Super. onRestorenstanceState(savedstate) :
7/ Restore state; we know savedState is not null
String answer = savedState. getString("ansver"] ;| =
7/ This 1s a grotustious test, remove it
Object oldTaskObject = getLastNonConfigurationTnstance() ;
iF (1= eldTaskongect)

int o = ((Integer) oldTaskObject) .intValue();

i CurrentTosk ~ actTodk B

77 Task should not change across a configuration change

assert oldtask == currentTask;

i : - m . Y >

S——
>

= Properties 32 [thlemsw

Bug: Nullcheck of savedState at I...

Bug: Nullcheck of savedState at line 110 of value previously
dereferenced

Pattern id:

RCN_REDUNDANT NULLCHECK WOULD_HAVE BEEN A |
type: RCN, category: CORRECTNESS

of value previously dereferenced

A value is checked here to see whether it is null, but this

OEBPS/httpatomoreillycomsourceoreillyimages1335341.png
Install Details
Review the items to be installed.

i

@ FindBugs Feature 1.3.9.20090821 edu.umd.cs.findbugs.plugin.eclipse.
T m DRKS
Size: Unknown
Details
<]
® (s) (sl | o

OEBPS/httpatomoreillycomsourceoreillyimages1335301.png
on SaveInstanceState()

SEES

<« SaveHierarchystate()
Dispatch SaveInstantceState()

OEBPS/httpatomoreillycomsourceoreillyimages1335359.png
£3 Gl

TouchMe

OEBPS/httpatomoreillycomsourceoreillyimages1335427.png
Cient acesses content —p | Content Provider

URI using provider.

Provider uses _data to
access file.

File System
Il

Database

OEBPS/httpatomoreillycomsourceoreillyimages1335333.png
|ease | svorar|@er

oc |?H- BT

12 Package Explorer 3
B% v 7

- &5 example
= @src
& com.example.android.note|
s * 7L N CHLOL 12V |
+ [NotePad.java
+ [3) NotePadProvider.java
+ [NotesList.java
+ [@) NotesLiveFolder.java
+ [0 TitleEditor.java
+ g com.google.provider
+ mAAndroid 2.2
+/ @ gen [Generated Java Files]

+ Gtests
3 AndroidManifest.xml
default.properties

* {@link Intent#ACTION_EDIT}, or create a new note {@li*

public class NoteEditor extends Activity {

private static final String TAG = "Notes’;

o
* Standard projection for the interesting colums
*

private static final String[] PROJECTION = new Stri:

Notes._1D, // O
Notes.NOTE, // 1

¥
/##+ The index of the note colum %/

private static final int COLUMV INDEX_NOTE =

// This is our state data that is stored when freez:

Bl Task List 8

gvey X 8 @ 9
F) » 41> actaten,

@ Uncategorized

E-:nmzz: =a

CEB R W e W T

com.example.android.note; +
+ “z import declarations 3

private static final String ORIGINAL_CONTENT = *ori - ® NoteEdtor
TG :
// Tdentifiers for our menu items. ":"‘5'5‘"“9 -
[E Problems 2 Gjm‘ﬂnuhmmn‘ ® Y =0
0 items

Writable

Smart nsert 2:1

I Android SDK Content Loader

OEBPS/callouts/4.png

OEBPS/callouts/3.png

OEBPS/callouts/6.png

OEBPS/httpatomoreillycomsourceoreillyimages1335259.png.jpg
Q
4

Eclipse Java EE IDE for Web Developers

Overview m Tutorials
Get an overview of the features. R Go through tutorials
Samples What's New

Try out the samples Find out what is new

OEBPS/callouts/5.png

OEBPS/callouts/2.png

OEBPS/callouts/1.png

OEBPS/callouts/8.png

OEBPS/httpatomoreillycomsourceoreillyimages1335291.png
‘ e | ‘ g |

Runtime exception

Ermors (Checked exceptions Unchedked exceptions

OEBPS/httpatomoreillycomsourceoreillyimages1335439.png.jpg
Location Controls

[Mana [Grx_| K|

Longitude
122523928
12,8064
-122.791108
122778163
-122.767855
-122.752762
-122.736%3
122715343

Latitude
38.402731
.407868
35.415008
3422142
38,4285
35.430001
35.433165
35.431500

Eeva.. A

00
00
00
00
00
00
00

OEBPS/callouts/7.png

OEBPS/callouts/9.png

OEBPS/httpatomoreillycomsourceoreillyimages1335409.png
QOOOE|+¢ -8 ¥

IR << ore

Tine | lpia |tag [iessage

0102 511432 | TestEragnent Tonttach

04-02 10:6:55 1 432 | TestFragnent oncreate

04-02 10:46:55 1 432 | TestFragnent onCreatavien

04-02 10:6:55 1 432 | TestEragnent omactivityCreated
01-02 1432 | Testrragnent onstart

0s-02 55T 432 Testiragnent onkesune

04-02 11:24:25 1 432 | TestFragnent onPause

0s-02 T 432 TestPragnent onSaveinstancestate
01-02 1432 | Testrragnent onstop

0s-02 T 432 TestPragnent onstart

01-02 1432 | Testrragnent onResune

04-02 11:33:35 1 432 | TestFragnent onpause

08-02 11:33:37 1 432 | TestFragnent onSaveinstancestate
0s-02 371 432 Testiragnent onstop

04-02 11:35:58 1 548 | TestFragnent onattach

0s-02 T 585 | TestPragnent oncreate

04-02 11:35:55 1 548 | TestFragnent onCreatavien

0s-02 551 548 | Testiragnent omactivityCreated
01-02 1548 | Testrragnent onstart

0s-02 T 585 | TestPragnent onkesune

01-02 1548 | Testrragnent onPause

0s-02 T 585 | TestPragnent onSaveinstancestate
01-02 1) 548 | Testrragnent onstop

T — >

Fiter: [

OEBPS/httpatomoreillycomsourceoreillyimages1335373.png.jpg
fanNn Hierarchy Viewer

H sweamo Capuure Layers 1 ew Fierarchy Dispiay v © invaidate Lavout Reavest L3 T Dump Displayiist

o T Losd Al views

OEBPS/httpatomoreillycomsourceoreillyimages1335293.png

OEBPS/httpatomoreillycomsourceoreillyimages1335385.png
Android
vs\drOio,
And r0j d

OEBPS/httpatomoreillycomsourceoreillyimages1335381.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages1335415.png
B oo o

An empty content fragment

[SHSYST]

OEBPS/httpatomoreillycomsourceoreillyimages1335353.png
FinchFramework (12) 274818 [https://prod.oreillycom/exteral/authors/books/97814493896
Class names should start with an upper case letter (9)

Dead store to local variable (1)

Method invokes inefficient Number constructor: use static valueof instead (1)

Nullcheck of value previously dereferenced (1)

SRl

OEBPS/httpatomoreillycomsourceoreillyimages1335401.png

OEBPS/httpatomoreillycomsourceoreillyimages1335335.png.jpg
| 8iv %y = Gy v

ere@a |6 |84 |50

Java - TestProject/srcicom/oreilly/test app/TestActivity.java - Eclipse

vay g6y |[@e v [eEvE @

8 Packageex =\ =0

a%le ~
b @ esteroject

DDMs
[2011-02-15 23:42:50

o

final
*_%em fvalangrefiect
Problems | @ javadoc @, Dee\aratlonla Cons @ Field - java text.DateFormat

ddms]Could not d

[wrtable

() TestProject Manifest |

) main.xmi |

package com.oreilly. testapp;
@import android.app.Activity;[]

public class TestActivity extends Activity {

/% Called when the activity is first created. */

Goverride

public void oncreate(Bundle savedInstancestate) {
super.onCreate (savedInstancestate) ;
setContentview(R. Layout.main) ;

e @] > Al » Acvaten

€ Uncategorzed

=l < =

© finalize() : void - Object
© findViewByid(int id) : View - Activity
© finish) : void - Actvt
© finishActivity(int requestCode) : void - Activty
o finishActivityFromChild(Activty child, int requestCode)
© finishFromChild(Activity child) : void - Activty

Press Ctri+Space' to show Template Proposal

public Stringl fileList ()

Since: APL Level 1

Returns an array of strings naming the private files
associated with this Context's application package.

Returns
‘» Array of strings naming the private files.

Press Tab' from proposal table or click for focu

| smart insert | 12:11

OEBPS/httpatomoreillycomsourceoreillyimages1335265.png
Available Software
Check the items that you wish to install.

Work with: [Android - htps:/di-ssLgoogle.com/android/ecipse/ B g)

Find more software by working with the *Available Software Sites" preferences.

(type filter text
TName ersion T
& v 000 Developer Tools
@ G Android Hierarchy Viewer 11.0.04201105251008-128485
@ @ Android Traceview 11.0.04201105251008- 128485

—

Detals
& Show only the latest versions of available software Hide tems that are aready nstaled
& Group tems by category Whatis alresdy installed?

& Contact all updatesites during install o fid requird sofoware

@ Cemd) @ (Cancel) (—Finsh)

OEBPS/httpatomoreillycomsourceoreillyimages1335295.png
JavaVM

OEBPS/httpatomoreillycomsourceoreillyimages1335283.png
as7152
15015
637843
87744
960251
54666
1187270
154747
22741

2010-05-13.
19691231
200912418
200912418
200912418
200912418
200912418
200912418
200912418
200912418
200912418
200912418
200912418
20001218

20:20.

20:20.

20:20.

2017

‘com.android.providers. subscribedfeeds

OEBPS/httpatomoreillycomsourceoreillyimages1335289.png
New Android Project

Creates a new Android Project resource.

@ Use default location

Location: [fhomerzigurdiworkspace

@ Create project from existing sample

Android Open Source Project
Google Inc.
Android Open Source Project
Google Inc.
Android Open Source Project
Android Open Source Project
Google Inc.

Google Inc.

15
15
16
16
20
201
201 6

o s ww

21updat 7

22 8

OEBPS/httpatomoreillycomsourceoreillyimages1335319.png
Destination APK file: | /home/zigurd/TestActivityapk | [Browse...

Certificate expires on Wed Jan 17 00:39:06 EST 2148,

® s] ()

OEBPS/httpatomoreillycomsourceoreillyimages1335323.png
Thank you for signing up for an Android Maps API key!

Your key is:
090tqjF XUZ0OVFd_6327ZzW5wt639keASXLSVA

“This key is good for all apps signed with your certificate whose fingerprin is:

95:

:04:F4:51:08:

:14:74:58:15:D3:

CE

Here is an example xm layout to get you started on your way to mapping glory:

<con.google. android. maps . MapView
android: layout width="fill parent”
android: layout_height="fill parent"
android:apikey="0890tqjF_xUZo8VFd 632ZZzWSwt639keASXLSVA"
7>

Check out the API documentation for more information.

OEBPS/httpatomoreillycomsourceoreillyimages1335277.png
5554:droid22

0000

o(@e

@269

P 7 P

OEBPS/httpatomoreillycomsourceoreillyimages1335429.png
Controller

Cursor bound to content provder
URlthrough ContentObserver

OEBPS/httpatomoreillycomsourceoreillyimages1335263.png
000 Preferences

000 Add Site

ype filter text) | Avail

e
e
.
Vinstall/Update
e

e

i
o

Name: [Android Local...

iR

7

i
H

)
)
=]
)
=]
¥ Plug-in Development & <lai hitp:/, t egit/ Reload
»Run/Debug & ¥ Helios http:/, i releases/helio
:i:‘; & 4l Mylyn for Eclipse Helios hep:/, i tools/mylyn/u Enable
) Tasks o dsaia it/ [ww:scala-1ang.org/scala-eclpse-pl
e bata Collector & Hsubcipse g/ subclipse.tiris. oo /update_L6.
Valigation o Asww ke tepeclipse.svnkit.com/13.x/
» XML O ¥ Test and Performance Tools Platform Pro http:/ /eclipse.org) BT
& < The Eclipse Project Updates hiep:/, i eclipse/update PorL
EE | http:/ /dev.eclipse.org/svaroot/dsdp/org.ec
EE | it/ download.eclpse.org/birt/update-si
EE | htp:/ /download.eclipse.org/birt/update-s
F(l_d hito: . it i
3 RN

9 Show only the latestversions of available software S Hide tems that are aready nstaled
& Group tems by category What i already installed?

9 Contact all updatesites during install o find requird sofoware

oo 2550 5

I

@ Cma) Cooes) et

Finish

OEBPS/httpatomoreillycomsourceoreillyimages1335387.png
Alliid

Alliid

transate30,10)

identity

o

#

%

2.
s

tranlatet 10,20y otate®S)

otate30)

Aittroid

Hithod
A\e\\
{31\ T
R, Old

OEBPS/httpatomoreillycomsourceoreillyimages1335431.png
Model Content Provider

Query
o NG o
response respanse

Provider database

OEBPS/httpatomoreillycomsourceoreillyimages1335357.png
Model

Keypresses, aps etc

“ Update

OEBPS/httpatomoreillycomsourceoreillyimages1335267.png
[type filter text d

SDK Location: [/homefzigurd/android-sdk-inux 86 _

Note: The list of SDK Targets below is only reloaded once you hit ‘Apply’ or ‘OK..

Android 1.5 Android Open Source Project | 1.5 3
Google APIs. Google Inc. 15 3
Android 1.6 Android Open Source Project | 1.6 a
Google APIs. Google Inc. 16 a
Android 2.0 Android Open Source Project | 2.0 B
Android 2.0.1 Android Open Source Project | 201 |6
Google APIs. Google Inc. 201 |6
Android 2.1-updatel | Android Open Source Project | 2.1-updat(7
Google APIs. Google Inc. 2.1-updat(7
Android 2.2 Android Open Source Project | 2.2 8
Google APIs. Google Inc. 22 8

OEBPS/httpatomoreillycomsourceoreillyimages1335279.png
Select a device compatible with target Google APIs (Google Inc.).
O Choose a running Android device

Seralumber AVDName Target Debug | state
B emulator5554 droid22 % Android 2.2 Yes online
®
droid22goog Google APIs (Google Inc.) 22

OEBPS/httpatomoreillycomsourceoreillyimages1335343.png
Review Licenses.
Licenses must be reviewed and accepted before the software can be installed.

License text (for FindBugs Feature 1.3.9.20090821):
FindBugs is free software distributed under the terms of the Lesser GNU Public License. .
itp:/www. gnu. org/licenses/igpl.html A

@
© 1do not accept the terms of the license agreement

® — ==

OEBPS/httpatomoreillycomsourceoreillyimages1335345.png

OEBPS/httpatomoreillycomsourceoreillyimages1335365.png
TouchMe

91.33818

OEBPS/httpatomoreillycomsourceoreillyimages1335417.png
4 | 6:59

OEBPS/httpatomoreillycomsourceoreillyimages1335425.png.jpg
Title

Fam

Descrption

Family Video

Family Winter Video

OEBPS/httpatomoreillycomsourceoreillyimages1335445.png
/P

Gallcontal
s OBEX (AT commands)
| | |
|
Seial port emulation (RECOMM) Senvicedisovery (SDP)
| |
[
Togial link control and
adaption (L2CAP)

Link management (LMP)

OEBPS/httpatomoreillycomsourceoreillyimages1335275.png
@ Override the existing AVD with the same name

Al

OEBPS/httpatomoreillycomsourceoreillyimages1335443.png
NFCtag s discovered

Tag objectis passed in
Intentas EXTRA_TAG

Foreground Actity with
enableForegroundDispatch?

Passintent/tag to
foreground Activity

Any Activitysegistered for
ACTION_NDEF_DISCOVERED with

Passintent/tag as
ACTION_NDEF_DISCOVERED

matching URl or MIME type? to Activity
Any Activitys registered for Passintent/tag as

ACTION_TECH_DISCOVERED with the ACTION_TECH_DISCOVERED
matching technologies of the tag? to Activity

Pass intent/tag as
ACTION_TAG_DISCOVERED

