

 [image: First Edition]

 Hadoop: The Definitive Guide

Tom White

Editor
Mike Loukides

Copyright © 2009 Tom White

This book uses RepKover™, a durable and flexible lay-flat
 binding.

O’Reilly books may be purchased for educational, business, or
 sales promotional use. Online editions are also available for most
 titles (http://my.safaribooksonline.com).
 For more information, contact our corporate/institutional sales
 department: (800) 998-9938 or
 corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly
 logo are registered trademarks of O’Reilly Media, Inc. Hadoop:
 The Definitive Guide, the image of an African elephant, and
 related trade dress are trademarks of O’Reilly Media, Inc.
Many of the designations used by manufacturers and sellers to
 distinguish their products are claimed as trademarks. Where those
 designations appear in this book, and O’Reilly Media, Inc. was aware of
 a trademark claim, the designations have been printed in caps or initial
 caps.

While every precaution has been taken in the preparation of this
 book, the publisher and author assume no responsibility for errors or
 omissions, or for damages resulting from the use of the information
 contained herein.

[image:]

O'Reilly Media

Dedication

For Eliane, Emilia, and Lottie

SPECIAL OFFER: Upgrade this ebook with O’Reilly

Click here for more information on this offer!
Please note that upgrade offers are not available from sample content.

A Note Regarding Supplemental Files

Supplemental files and examples for this book can be found at http://examples.oreilly.com/9780596521981/. Please use a standard desktop web browser to access these files, as they may not be accessible from all ereader devices.
All code files or examples referenced in the book will be available online. For physical books that ship with an accompanying disc, whenever possible, we’ve posted all CD/DVD content. Note that while we provide as much of the media content as we are able via free download, we are sometimes limited by licensing restrictions. Please direct any questions or concerns to booktech@oreilly.com.

Foreword

Doug Shed in the Yard, California Cutting
Shed in the Yard, California

Hadoop got its start in Nutch. A few of us were attempting to build
 an open source web search engine and having trouble managing computations
 running on even a handful of computers. Once Google published its GFS and
 MapReduce papers, the route became clear. They’d devised systems to solve
 precisely the problems we were having with Nutch. So we started, two of
 us, half-time, to try to recreate these systems as a part of Nutch.
We managed to get Nutch limping along on 20 machines, but it soon
 became clear that to handle the Web’s massive scale, we’d need to run it
 on thousands of machines and, moreover, that the job was bigger than two
 half-time developers could handle.
Around that time, Yahoo! got interested, and quickly put together a
 team that I joined. We split off the distributed computing part of Nutch,
 naming it Hadoop. With the help of Yahoo!, Hadoop soon grew into a
 technology that could truly scale to the Web.
In 2006, Tom White started contributing to Hadoop. I already knew
 Tom through an excellent article he’d written about Nutch, so I knew he
 could present complex ideas in clear prose. I soon learned that he could
 also develop software that was as pleasant to read as his prose.
From the beginning, Tom’s contributions to Hadoop showed his concern
 for users and for the project. Unlike most open source contributors, Tom
 is not primarily interested in tweaking the system to better meet his own
 needs, but rather in making it easier for anyone to use.
Initially, Tom specialized in making Hadoop run well on Amazon’s EC2
 and S3 services. Then he moved on to tackle a wide variety of problems,
 including improving the MapReduce APIs, enhancing the website, and
 devising an object serialization framework. In all cases, Tom presented
 his ideas precisely. In short order, Tom earned the role of Hadoop
 committer and soon thereafter became a member of the Hadoop Project
 Management Committee.
Tom is now a respected senior member of the Hadoop developer
 community. Though he’s an expert in many technical corners of the project,
 his specialty is making Hadoop easier to use and understand.
Given this, I was very pleased when I learned that Tom intended to
 write a book about Hadoop. Who could be better qualified? Now you have the
 opportunity to learn about Hadoop from a master—not only of the
 technology, but also of common sense and plain talk.

Preface

Martin Gardner, the mathematics and science writer, once said in an
 interview:
Beyond calculus, I am lost. That was the secret of my column’s
 success. It took me so long to understand what I was writing about that
 I knew how to write in a way most readers would understand.[1]

In many ways, this is how I feel about Hadoop. Its inner workings
 are complex, resting as they do on a mixture of distributed systems
 theory, practical engineering, and common sense. And to the uninitiated,
 Hadoop can appear alien.
But it doesn’t need to be like this. Stripped to its core, the tools
 that Hadoop provides for building distributed systems—for data storage,
 data analysis, and coordination—are simple. If there’s a common theme, it
 is about raising the level of abstraction—to create building blocks for
 programmers who just happen to have lots of data to store, or lots of data
 to analyze, or lots of machines to coordinate, and who don’t have the
 time, the skill, or the inclination to become distributed systems experts
 to build the infrastructure to handle it.
With such a simple and generally applicable feature set, it seemed
 obvious to me when I started using it that Hadoop deserved to be widely
 used. However, at the time (in early 2006), setting up, configuring, and
 writing programs to use Hadoop was an art. Things have certainly improved
 since then: there is more documentation, there are more examples, and
 there are thriving mailing lists to go to when you have questions. And yet
 the biggest hurdle for newcomers is understanding what this technology is
 capable of, where it excels, and how to use it. That is why I wrote this
 book.
The Apache Hadoop community has come a long way. Over the course of
 three years, the Hadoop project has blossomed and spun off half a dozen
 subprojects. In this time, the software has made great leaps in
 performance, reliability, scalability, and manageability. To gain even
 wider adoption, however, I believe we need to make Hadoop even easier to
 use. This will involve writing more tools; integrating with more systems;
 and writing new, improved APIs. I’m looking forward to being a part of
 this, and I hope this book will encourage and enable others to do so,
 too.
Administrative Notes

During discussion of a particular Java class in the text, I often
 omit its package name, to reduce clutter. If you need to know which
 package a class is in, you can easily look it up in Hadoop’s Java API
 documentation for the relevant subproject, linked to from the Apache
 Hadoop home page at http://hadoop.apache.org/. Or
 if you’re using an IDE, it can help using its auto-complete
 mechanism.
Similarly, although it deviates from usual style guidelines,
 program listings that import multiple classes from the same package may
 use the asterisk wildcard character to save space (for example: import org.apache.hadoop.io.*).
The sample programs in this book are available for download from
 the website that accompanies this book: http://www.hadoopbook.com/. You will also find
 instructions there for obtaining the datasets that are used in examples
 throughout the book, as well as further notes for running the programs
 in the book, and links to updates, additional resources, and my
 blog.

[1] “The science of fun,” Alex Bellos, The
 Guardian, May 31, 2008, http://www.guardian.co.uk/science/2008/may/31/maths.science.

What’s in This Book?

The rest of this book is organized as follows. Chapter 2 provides an introduction to MapReduce. Chapter 3 looks at Hadoop filesystems, and in particular HDFS,
 in depth. Chapter 4 covers the fundamentals of I/O in
 Hadoop: data integrity, compression, serialization, and file-based data
 structures.
The next four chapters cover MapReduce in depth. Chapter 5 goes through the practical steps needed to develop a
 MapReduce application. Chapter 6 looks at how MapReduce is
 implemented in Hadoop, from the point of view of a user. Chapter 7 is about the MapReduce programming model, and the
 various data formats that MapReduce can work with. Chapter 8 is on advanced MapReduce topics, including sorting and
 joining data.
Chapters 9
 and 10 are for
 Hadoop administrators, and describe how to set up and maintain a Hadoop
 cluster running HDFS and MapReduce.
Chapters 11,
 12, and 13 present Pig, HBase,
 and ZooKeeper, respectively.
Finally, Chapter 14 is a collection of case studies
 contributed by members of the Apache Hadoop community.

Conventions Used in This Book

The following typographical conventions are used in this
 book:
	Italic
	Indicates new terms, URLs, email addresses, filenames, and
 file extensions.

	Constant width
	Used for program listings, as well as within paragraphs to
 refer to program elements such as variable or function names,
 databases, data types, environment variables, statements, and
 keywords.

	Constant width
 bold
	Shows commands or other text that should be typed literally
 by the user.

	Constant width italic
	Shows text that should be replaced with user-supplied values
 or by values determined by context.

Tip
This icon signifies a tip, suggestion, or general note.

Caution
This icon indicates a warning or caution.

Using Code Examples

This book is here to help you get your job done. In general, you
 may use the code in this book in your programs and documentation. You do
 not need to contact us for permission unless you’re reproducing a
 significant portion of the code. For example, writing a program that
 uses several chunks of code from this book does not require permission.
 Selling or distributing a CD-ROM of examples from O’Reilly books does
 require permission. Answering a question by citing this book and quoting
 example code does not require permission. Incorporating a significant
 amount of example code from this book into your product’s documentation
 does require permission.
We appreciate, but do not require, attribution. An attribution
 usually includes the title, author, publisher, and ISBN. For example:
 “Hadoop: The Definitive Guide, by Tom White.
 Copyright 2009 Tom White, 978-0-596-52197-4.”
If you feel your use of code examples falls outside fair use or
 the permission given above, feel free to contact us at
 permissions@oreilly.com.

Safari® Books Online

Note
When you see a Safari® Books Online icon on the cover of your
 favorite technology book, that means the book is available online
 through the O’Reilly Network Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s a
 virtual library that lets you easily search thousands of top tech books,
 cut and paste code samples, download chapters, and find quick answers
 when you need the most accurate, current information. Try it for free at
 http://my.safaribooksonline.com.

How to Contact Us

Please address comments and questions concerning this book to the
 publisher:
	O’Reilly Media, Inc.
	1005 Gravenstein Highway North
	Sebastopol, CA 95472
	800-998-9938 (in the United States or Canada)
	707-829-0515 (international or local)
	707-829-0104 (fax)

We have a web page for this book, where we list errata, examples,
 and any additional information. You can access this page at:
	http://www.oreilly.com/catalog/9780596521974

The author also has a site for this book at:
	http://www.hadoopbook.com/

To comment or ask technical questions about this book, send email
 to:
	bookquestions@oreilly.com

For more information about our books, conferences, Resource
 Centers, and the O’Reilly Network,
 see our website at:
	http://www.oreilly.com

Acknowledgments

I have relied on many people, both directly and indirectly, in
 writing this book. I would like to thank the Hadoop community, from whom
 I have learned, and continue to learn, a great deal.
In particular, I would like to thank Michael Stack and Jonathan
 Gray for writing the chapter on HBase. Also thanks go to Adrian
 Woodhead, Marc de Palol, Joydeep Sen Sarma, Ashish Thusoo, Andrzej
 Białecki, Stu Hood, Chris K Wensel, and Owen O’Malley for contributing case studies for
 Chapter 14. Matt Massie and Todd Lipcon wrote Appendix B, for which I am very grateful.
I would like to thank the following reviewers who contributed many
 helpful suggestions and improvements to my drafts: Raghu Angadi, Matt
 Biddulph, Christophe Bisciglia, Ryan Cox, Devaraj Das, Alex Dorman,
 Chris Douglas, Alan Gates, Lars George, Patrick Hunt, Aaron Kimball,
 Peter Krey, Hairong Kuang, Simon Maxen, Olga Natkovich, Benjamin Reed,
 Konstantin Shvachko, Allen Wittenauer, Matei Zaharia, and Philip
 Zeyliger. Ajay Anand kept the review process flowing smoothly. Philip
 (“flip”) Kromer kindly helped me with the NCDC weather dataset featured
 in the examples in this book. Special thanks to Owen O’Malley and Arun C Murthy for explaining
 the intricacies of the MapReduce shuffle to me. Any errors that remain
 are, of course, to be laid at my door.
I am particularly grateful to Doug Cutting for his encouragement,
 support, and friendship, and for contributing the foreword.
Thanks also go to the many others with whom I have had
 conversations or email discussions
 over the course of writing the book.
Halfway through writing this book, I joined Cloudera, and I want
 to thank my colleagues for being
 incredibly supportive in allowing me the time to write, and to get it
 finished promptly.
I am grateful to my editor, Mike Loukides, and his colleagues at
 O’Reilly for their help in the preparation of this book. Mike has been
 there throughout to answer my questions, to read my first drafts, and to
 keep me on schedule.
Finally, the writing of this book has been a great deal of work,
 and I couldn’t have done it without the constant support of my family.
 My wife, Eliane, not only kept the home going, but also stepped in to
 help review, edit, and chase case studies. My daughters, Emilia and
 Lottie, have been very understanding, and I’m looking forward to
 spending lots more time with all of them.

Chapter 1. Meet Hadoop

	 	In pioneer days they used oxen for heavy pulling, and when one ox
 couldn’t budge a log, they didn’t try to grow a larger ox. We shouldn’t
 be trying for bigger computers, but for more systems of
 computers.
	
	 	--Grace Hopper

Data!

We live in the data age. It’s not easy to measure the total volume
 of data stored electronically, but an IDC estimate put the size of the
 “digital universe” at 0.18 zettabytes in 2006, and is forecasting a
 tenfold growth by 2011 to 1.8 zettabytes.[2] A zettabyte is 1021 bytes, or
 equivalently one thousand exabytes, one million petabytes, or one
 billion terabytes. That’s roughly the same order of magnitude as one
 disk drive for every person in the world.
This flood of data is coming from many sources. Consider the
 following:[3]
	The New York Stock Exchange generates about one terabyte of
 new trade data per day.

	Facebook hosts approximately 10 billion photos, taking up one
 petabyte of storage.

	Ancestry.com, the genealogy site, stores around 2.5 petabytes
 of data.

	The Internet Archive stores around 2 petabytes of data, and is
 growing at a rate of 20 terabytes per month.

	The Large Hadron Collider near Geneva, Switzerland, will
 produce about 15 petabytes of
 data per year.

So there’s a lot of data out there. But you are probably wondering
 how it affects you. Most of the data is locked up in the largest web
 properties (like search engines), or scientific or financial
 institutions, isn’t it? Does the advent of “Big Data,” as it is being
 called, affect smaller organizations or individuals?
I argue that it does. Take photos, for example. My wife’s
 grandfather was an avid photographer, and took photographs throughout
 his adult life. His entire corpus of medium format, slide, and 35mm
 film, when scanned in at high-resolution, occupies around 10 gigabytes.
 Compare this to the digital photos that my family took last year, which
 take up about 5 gigabytes of space. My family is producing photographic
 data at 35 times the rate my wife’s grandfather’s did, and the rate is
 increasing every year as it becomes easier to take more and more
 photos.
More generally, the digital streams that individuals are producing
 are growing apace. Microsoft
 Research’s MyLifeBits project gives a glimpse of archiving of
 personal information that may become commonplace in the near future.
 MyLifeBits was an experiment where an individual’s interactions—phone
 calls, emails, documents—were captured electronically and stored for
 later access. The data gathered included a photo taken every minute,
 which resulted in an overall data volume of one gigabyte a
 month.
 When storage costs come down enough to make it feasible to store
 continuous audio and video, the data volume for a future MyLifeBits
 service will be many times that.
The trend is for every individual’s data footprint to grow, but
 perhaps more importantly the amount of data generated by machines will
 be even greater than that generated by people. Machine logs, RFID
 readers, sensor networks, vehicle GPS traces, retail transactions—all of these contribute to
 the growing mountain of data.
The volume of data being made publicly available increases every
 year too. Organizations no longer have to merely manage their own data:
 success in the future will be dictated to a large extent by their
 ability to extract value from other organizations’ data.
Initiatives such as Public Data Sets on Amazon Web Services,
 Infochimps.org, and theinfo.org exist to foster the
 “information commons,” where data can be freely (or in the case of AWS,
 for a modest price) shared for anyone to download and analyze. Mashups
 between different information sources make for unexpected and hitherto
 unimaginable applications.
Take, for example, the Astrometry.net project, which
 watches the Astrometry group on Flickr for new photos of the night sky.
 It analyzes each image, and identifies which part of the sky it is from,
 and any interesting celestial bodies, such as stars or galaxies.
 Although it’s still a new and experimental service, it shows the kind of
 things that are possible when data (in this case, tagged photographic
 images) is made available and used for something (image analysis) that
 was not anticipated by the creator.
It has been said that “More data usually beats better algorithms,”
 which is to say that for some problems (such as recommending movies or
 music based on past preferences), however fiendish your algorithms are,
 they can often be beaten simply by having more data (and a less
 sophisticated algorithm).[4]
The good news is that Big Data is here. The bad news is that we
 are struggling to store and analyze it.

[2] From Gantz et al., “The Diverse and Exploding Digital
 Universe,” March 2008 (http://www.emc.com/collateral/analyst-reports/diverse-exploding-digital-universe.pdf).

[3] http://www.intelligententerprise.com/showArticle.jhtml?articleID=207800705,
 http://mashable.com/2008/10/15/facebook-10-billion-photos/,
 http://blog.familytreemagazine.com/insider/Inside+Ancestrycoms+TopSecret+Data+Center.aspx,
 and http://www.archive.org/about/faqs.php,
 http://www.interactions.org/cms/?pid=1027032.

[4] The quote is from Anand Rajaraman writing about the Netflix
 Challenge (http://anand.typepad.com/datawocky/2008/03/more-data-usual.html).

Data Storage and Analysis

The problem is simple: while the storage capacities of hard drives
 have increased massively over the years, access speeds—the rate at which
 data can be read from drives—have not kept up. One typical drive from
 1990 could store 1370 MB of data and had a transfer speed of 4.4
 MB/s,[5] so you could read all the data from a full drive in around
 five minutes. Almost 20 years later one terabyte drives are the norm,
 but the transfer speed is around 100 MB/s,
 so it takes more than two and a half hours to read all the data off the
 disk.
This is a long time to read all data on a single drive—and writing
 is even slower. The obvious way to reduce the time is to read from
 multiple disks at once. Imagine if we had 100 drives, each holding one
 hundredth of the data. Working in parallel, we could read the data in
 under two minutes.
Only using one hundredth of a disk may seem wasteful. But we can
 store one hundred datasets, each of which is one terabyte, and provide
 shared access to them. We can imagine that the users of such a system
 would be happy to share access in return for shorter analysis times,
 and, statistically, that their analysis jobs would be likely to be
 spread over time, so they wouldn’t interfere with each other too
 much.
There’s more to being able to read and write data in parallel to
 or from multiple disks, though.
The first problem to solve is hardware failure: as soon as you
 start using many pieces of hardware, the chance that one will fail is
 fairly high. A common way of avoiding data loss is through replication:
 redundant copies of the data are kept by the system so that in the event
 of failure, there is another copy available. This is how RAID works, for
 instance, although Hadoop’s filesystem, the Hadoop Distributed
 Filesystem (HDFS), takes a slightly different approach, as you shall see
 later.
The second problem is that most analysis tasks need to be able to
 combine the data in some way; data read from one disk may need to be
 combined with the data from any of the other 99 disks. Various
 distributed systems allow data to be combined from multiple sources, but
 doing this correctly is notoriously challenging. MapReduce provides a
 programming model that abstracts the problem from disk reads and writes,
 transforming it into a computation over sets of keys and values. We will
 look at the details of this model in later chapters, but the important
 point for the present discussion is that there are two parts to the
 computation, the map and the reduce, and it’s the interface between the
 two where the “mixing” occurs. Like HDFS, MapReduce has reliability
 built-in.
This, in a nutshell, is what Hadoop provides: a reliable shared
 storage and analysis system. The storage is provided by HDFS, and
 analysis by MapReduce. There are other parts to Hadoop, but these
 capabilities are its kernel.

[5] These specifications are for the Seagate ST-41600n.

Comparison with Other Systems

The approach taken by MapReduce may seem like a brute-force
 approach. The premise is that the entire dataset—or at least a good
 portion of it—is processed for each query. But this is its power.
 MapReduce is a batch query processor, and the
 ability to run an ad hoc query against your whole dataset and get the
 results in a reasonable time is transformative. It changes the way you
 think about data, and unlocks data that was previously archived on tape
 or disk. It gives people the opportunity to innovate with data.
 Questions that took too long to get answered before can now be answered,
 which in turn leads to new questions and new insights.
For example, Mailtrust, Rackspace’s mail division, used Hadoop for
 processing email logs. One ad hoc query they wrote was to find the
 geographic distribution of their users. In their words:
This data was so useful that we’ve scheduled the MapReduce job
 to run monthly and we will be using this data to help us decide which
 Rackspace data centers to place new mail servers in as we
 grow.[6]

By bringing several hundred gigabytes of data together and having
 the tools to analyze it, the Rackspace engineers were able to gain an
 understanding of the data that they otherwise would never have had, and,
 furthermore, they were able to use what they had learned to improve the
 service for their customers. You can read more about how Rackspace uses
 Hadoop in Chapter 14.
RDBMS

Why can’t we use databases with lots of disks to do large-scale
 batch analysis? Why is MapReduce needed?
The answer to these questions comes from another trend in disk
 drives: seek time is improving more slowly than transfer rate. Seeking
 is the process of moving the disk’s head to a particular place on the
 disk to read or write data. It characterizes the latency of a disk
 operation, whereas the transfer rate corresponds to a disk’s
 bandwidth.
If the data access pattern is dominated by seeks, it will take
 longer to read or write large portions of the dataset than streaming
 through it, which operates at the transfer rate. On the other hand,
 for updating a small proportion of records in a database, a
 traditional B-Tree (the data structure used in relational databases,
 which is limited by the rate it can perform seeks) works well. For
 updating the majority of a database, a B-Tree is less efficient than
 MapReduce, which uses Sort/Merge to rebuild the database.
In many ways, MapReduce can be seen as a complement to an RDBMS.
 (The differences between the two systems are shown in Table 1-1.) MapReduce is a good fit for problems that
 need to analyze the whole dataset, in a batch fashion, particularly
 for ad hoc analysis. An RDBMS is good for point queries or updates,
 where the dataset has been indexed to deliver low-latency retrieval
 and update times of a relatively small amount of data. MapReduce suits
 applications where the data is written once, and read many times,
 whereas a relational database is good for datasets that are
 continually updated.
Table 1-1. RDBMS compared to MapReduce
	 	Traditional RDBMS	MapReduce
	Data size	Gigabytes	Petabytes
	Access	Interactive and batch	Batch
	Updates	Read and write many times	Write once, read many times
	Structure	Static schema	Dynamic schema
	Integrity	High	Low
	Scaling	Nonlinear	Linear

Another difference between MapReduce and an RDBMS is the amount
 of structure in the datasets that they operate on.
 Structured data is data that is organized into
 entities that have a defined format, such as XML documents or database
 tables that conform to a particular predefined schema. This is the
 realm of the RDBMS. Semi-structured data, on
 the other hand, is looser, and though there may be a schema, it is
 often ignored, so it may be used only as a guide to the structure of
 the data: for example, a spreadsheet, in which the structure is the
 grid of cells, although the cells themselves may hold any form of
 data. Unstructured data does not have any
 particular internal structure: for example, plain text or image data.
 MapReduce works well on unstructured or semi-structured data, since it
 is designed to interpret the data at processing time. In other words,
 the input keys and values for MapReduce are not an intrinsic property
 of the data, but they are chosen by the person analyzing the
 data.
Relational data is often normalized to
 retain its integrity, and remove redundancy. Normalization poses
 problems for MapReduce, since it makes reading a record a nonlocal
 operation, and one of the central assumptions that MapReduce makes is
 that it is possible to perform (high-speed) streaming reads and
 writes.
A web server log is a good example of a set of records that is
 not normalized (for example, the
 client hostnames are specified in full each time, even though the same
 client may appear many times), and this is one reason that logfiles of
 all kinds are particularly well-suited to analysis with
 MapReduce.
MapReduce is a linearly scalable programming model.
 The programmer writes two functions—a map function and a reduce
 function—each of which defines a mapping from one set of key-value
 pairs to another. These functions are oblivious to the size of the
 data or the cluster that they are operating on, so they can be used
 unchanged for a small dataset and for a massive one. More importantly,
 if you double the size of the input data, a job will run twice as
 slow. But if you also double the size of the cluster, a job will run
 as fast as the original one. This is not generally true of SQL
 queries.
Over time, however, the differences between relational databases
 and MapReduce systems are likely to blur. Both as relational databases
 start incorporating some of the ideas from MapReduce (such as Aster
 Data’s and Greenplum’s databases), and, from the other direction, as
 higher-level query languages built on MapReduce (such as Pig and Hive)
 make MapReduce systems more approachable to traditional database
 programmers.[7]

Grid Computing

The High Performance Computing (HPC) and Grid Computing
 communities have been doing large-scale data processing for years,
 using such APIs as Message Passing Interface (MPI). Broadly, the
 approach in HPC is to distribute the work across a cluster of
 machines, which access a shared filesystem, hosted by a SAN. This
 works well for predominantly compute-intensive jobs, but becomes a
 problem when nodes need to access larger data volumes (hundreds of
 gigabytes, the point at which MapReduce really starts to shine), since
 the network bandwidth is the bottleneck, and compute nodes become
 idle.
MapReduce tries to colocate the data with the compute node, so
 data access is fast since it is local.[8] This feature, known as data
 locality, is at the heart of MapReduce and is the reason
 for its good performance. Recognizing that network bandwidth is the
 most precious resource in a data center environment (it is easy to
 saturate network links by copying data around), MapReduce
 implementations go to great lengths to preserve it by explicitly
 modelling network topology. Notice that this arrangement does not
 preclude high-CPU analyses in MapReduce.
MPI gives great control to the programmer, but requires that he
 or she explicitly handle the mechanics of the data flow, exposed via
 low-level C routines and constructs, such as sockets, as well as the
 higher-level algorithm for the analysis. MapReduce operates only at
 the higher level: the programmer thinks in terms of functions of key
 and value pairs, and the data flow is implicit.
Coordinating the processes in a large-scale distributed
 computation is a challenge. The hardest aspect is gracefully handling
 partial failure—when you don’t know if a remote process has failed or
 not—and still making progress with the overall computation. MapReduce
 spares the programmer from having to think about failure, since the
 implementation detects failed
 map or reduce tasks and reschedules replacements on machines that are
 healthy. MapReduce is able to do this since it is a
 shared-nothing architecture, meaning that tasks
 have no dependence on one other. (This is a slight oversimplification,
 since the output from mappers is fed to the reducers, but this is
 under the control of the MapReduce system; in this case, it needs to
 take more care rerunning a failed reducer than rerunning a failed map,
 since it has to make sure it can retrieve the necessary map outputs,
 and if not, regenerate them by running the relevant maps again.) So
 from the programmer’s point of view, the order in which the tasks run
 doesn’t matter. By contrast, MPI programs have to explicitly manage
 their own checkpointing and recovery, which gives more control to the
 programmer, but makes them more difficult to write.
MapReduce might sound like quite a restrictive programming
 model, and in a sense it is: you are limited to key and value types
 that are related in specified ways, and mappers and reducers run with
 very limited coordination between one another (the mappers pass keys
 and values to reducers). A natural question to ask is: can you do
 anything useful or nontrivial with it?
The answer is yes. MapReduce was invented by engineers at Google
 as a system for building production search indexes because they found
 themselves solving the same problem over and over again (and MapReduce
 was inspired by older ideas from the functional programming,
 distributed computing, and database communities), but it has since
 been used for many other applications in many other industries. It is
 pleasantly surprising to see the range of algorithms that can be
 expressed in MapReduce, from image analysis, to graph-based problems, to machine learning
 algorithms.[9] It can’t solve every problem, of course, but it is a
 general data-processing tool.
You can see a sample of some of the applications that Hadoop has
 been used for in Chapter 14.

Volunteer Computing

When people first hear about Hadoop and MapReduce, they often
 ask, “How is it different from SETI@home?” SETI, the Search for
 Extra-Terrestrial Intelligence, runs a project called SETI@home in which
 volunteers donate CPU time from their otherwise idle computers to
 analyze radio telescope data for signs of intelligent life outside
 earth. SETI@home is the most well-known of many volunteer
 computing projects; others include the Great Internet
 Mersenne Prime Search (to search for large prime numbers) and
 Folding@home (to understand protein folding, and how it relates to
 disease).
Volunteer computing projects work by breaking the problem they
 are trying to solve into chunks called work
 units, which are sent to computers around the world to be
 analyzed. For example, a SETI@home work unit is about 0.35 MB of radio
 telescope data, and takes hours or days to analyze on a typical home
 computer. When the analysis is completed, the results are sent back to
 the server, and the client gets another work unit. As a precaution to
 combat cheating, each work unit is sent to three different machines,
 and needs at least two results to agree to be accepted.
Although SETI@home may be superficially similar to MapReduce
 (breaking a problem into independent pieces to be worked on in
 parallel), there are some significant differences. The SETI@home
 problem is very CPU-intensive, which makes it suitable for running on
 hundreds of thousands of computers across the world,[10] since the time to transfer the work unit is dwarfed by
 the time to run the computation on it. Volunteers are donating CPU
 cycles, not bandwidth.
MapReduce is designed to run jobs that last minutes or hours on
 trusted, dedicated hardware running in a single data center with very
 high aggregate bandwidth interconnects. By contrast, SETI@home runs a
 perpetual computation on untrusted machines on the Internet with
 highly variable connection speeds and no data locality.

[6] http://blog.racklabs.com/?p=66

[7] In January 2007, David J. DeWitt and Michael Stonebraker
 caused a stir by publishing “MapReduce: A major step backwards”
 (http://www.databasecolumn.com/2008/01/mapreduce-a-major-step-back.html),
 in which they criticized MapReduce for being a poor substitute for
 relational databases. Many commentators argued that it was a false
 comparison (see, for example, Mark C. Chu-Carroll’s “Databases are
 hammers; MapReduce is a screwdriver,” http://scienceblogs.com/goodmath/2008/01/databases_are_hammers_mapreduc.php),
 and DeWitt and Stonebraker followed up with “MapReduce II” (http://www.databasecolumn.com/2008/01/mapreduce-continued.html),
 where they addressed the main topics brought up by others.

[8] Jim Gray was an early advocate of putting the computation
 near the data. See “Distributed Computing Economics,” March 2003,
 http://research.microsoft.com/apps/pubs/default.aspx?id=70001.

[9] Apache Mahout (http://lucene.apache.org/mahout/) is a project to
 build machine learning libraries (such as classification and
 clustering algorithms) that run on Hadoop.

[10] In January 2008, SETI@home was reported at http://www.planetary.org/programs/projects/setiathome/setiathome_20080115.html
 to be processing 300 gigabytes a day, using 320,000 computers
 (most of which are not dedicated to SETI@home; they are used for
 other things, too).

A Brief History of Hadoop

Hadoop was created by Doug Cutting, the creator of Apache Lucene,
 the widely used text search library. Hadoop has its origins in Apache
 Nutch, an open source web search engine, itself a part of the Lucene
 project.
The Origin of the Name “Hadoop”
The name Hadoop is not an acronym; it’s a made-up name. The
 project’s creator, Doug Cutting, explains how the name came
 about:
The name my kid gave a stuffed yellow elephant. Short,
 relatively easy to spell and pronounce, meaningless, and not used
 elsewhere: those are my naming criteria. Kids are good at generating
 such. Googol is a kid’s term.

Subprojects and “contrib” modules in Hadoop also tend to have
 names that are unrelated to their function, often with an elephant or
 other animal theme (“Pig,” for example). Smaller components are given
 more descriptive (and therefore more mundane) names. This is a good
 principle, as it means you can generally work out what something does
 from its name. For example, the jobtracker[11] keeps track of MapReduce jobs.

Building a web search engine from scratch was an ambitious goal,
 for not only is the software required to crawl and index websites
 complex to write, but it is also a challenge to run without a dedicated
 operations team, since there are so many moving parts. It’s expensive
 too: Mike Cafarella and Doug Cutting estimated a system supporting a
 1-billion-page index would cost around half a million dollars in
 hardware, with a monthly running cost of $30,000.[12] Nevertheless, they believed it was a worthy goal, as it
 would open up and ultimately democratize search engine
 algorithms.
Nutch was started in 2002, and a working crawler and search system
 quickly emerged. However, they realized that their architecture wouldn’t
 scale to the billions of pages on the Web. Help was at hand with the
 publication of a paper in 2003 that described the architecture of
 Google’s distributed filesystem, called GFS, which was being used in
 production at Google.[13] GFS, or something like it, would solve their storage needs
 for the very large files generated as a part of the web crawl and
 indexing process. In particular, GFS would free up time being spent on
 administrative tasks such as managing storage nodes. In 2004, they set
 about writing an open source implementation, the Nutch Distributed
 Filesystem (NDFS).
In 2004, Google published the paper that introduced MapReduce to
 the world.[14] Early in 2005, the Nutch developers had a working
 MapReduce implementation in Nutch, and by the middle of that year all
 the major Nutch algorithms had been ported to run using MapReduce and
 NDFS.
NDFS and the MapReduce implementation in Nutch were applicable
 beyond the realm of search, and in February 2006 they moved out of Nutch
 to form an independent subproject of Lucene called Hadoop.
 At around the same time, Doug Cutting joined Yahoo!, which provided a
 dedicated team and the resources to turn Hadoop into a system that ran
 at web scale (see sidebar). This was demonstrated in February 2008 when
 Yahoo! announced that its production search index was being generated by
 a 10,000-core Hadoop cluster.[15]
In January 2008, Hadoop was made its own top-level project at
 Apache, confirming its success and its diverse, active community. By
 this timem Hadoop was being used by many other companies besides Yahoo!,
 such as Last.fm, Facebook, and the New York Times
 (some applications are covered in the case studies in Chapter 14 and on the Hadoop
 wiki.
In one well-publicized feat, the New York
 Times used Amazon’s EC2 compute cloud to crunch through four
 terabytes of scanned archives from the paper converting them to PDFs for
 the Web.[16] The processing took less than 24 hours to run using 100
 machines, and the project probably wouldn’t have been embarked on
 without the combination of Amazon’s pay-by-the-hour model (which allowed
 the NYT to access a large number of machines for a short period), and
 Hadoop’s easy-to-use parallel programming model.
In April 2008, Hadoop broke a world record to become the fastest
 system to sort a terabyte of data. Running on a 910-node cluster, Hadoop
 sorted one terabyte in 209 seconds (just under 3½ minutes), beating the
 previous year’s winner of 297 seconds (described in detail in TeraByte Sort on Apache Hadoop). In November of the same year, Google
 reported that its MapReduce implementation sorted one terabyte in 68
 seconds.[17] As this book was going to press (May 2009), it was
 announced that a team at Yahoo! used Hadoop to sort one terabyte in 62
 seconds.
Hadoop at Yahoo!
Building Internet-scale search engines requires huge amounts of
 data and therefore large numbers of machines to process it. Yahoo!
 Search consists of four primary components: the
 Crawler, which downloads pages from web
 servers; the WebMap, which builds a graph of
 the known Web; the Indexer, which builds a
 reverse index to the best pages; and the
 Runtime, which answers users’ queries. The
 WebMap is a graph that consists of roughly 1 trillion
 (1012) edges each representing a web link
 and 100 billion (1011) nodes each
 representing distinct URLs. Creating and analyzing such a large graph
 requires a large number of computers running for many days. In early
 2005, the infrastructure for the WebMap, named
 Dreadnaught, needed to be redesigned to scale
 up to more nodes. Dreadnaught had successfully scaled from 20 to 600
 nodes, but required a complete redesign to scale up further.
 Dreadnaught is similar to MapReduce in many ways, but provides more
 flexibility and less structure. In particular, each fragment in a
 Dreadnaught job can send output to each of the fragments in the next
 stage of the job, but the sort was all done in library code. In
 practice, most of the WebMap phases were pairs that corresponded to
 MapReduce. Therefore, the WebMap applications would not require
 extensive refactoring to fit into MapReduce.
Eric Baldeschwieler (Eric14) created a small team and we
 starting designing and prototyping a new framework written in
 C++ modeled after GFS and MapReduce to replace Dreadnaught. Although
 the immediate need was for a new framework for WebMap, it was clear
 that standardization of the batch platform across Yahoo! Search was
 critical and by making the framework general enough to support other
 users, we could better leverage investment in the new
 platform.
At the same time, we were watching Hadoop, which was part of
 Nutch, and its progress. In January 2006, Yahoo! hired Doug Cutting,
 and a month later we decided to abandon our prototype and adopt
 Hadoop. The advantage of Hadoop over our prototype and design was that
 it was already working with a real application (Nutch) on 20 nodes.
 That allowed us to bring up a research cluster two months later and
 start helping real customers use the new framework much sooner than we
 could have otherwise. Another advantage, of course, was that since
 Hadoop was already open source, it was easier (although far from
 easy!) to get permission from Yahoo!’s legal department to work in
 open source. So we set up a 200-node cluster for the researchers in
 early 2006 and put the WebMap conversion plans on hold while we
 supported and improved Hadoop for the research users.
Here’s a quick timeline of how things have progressed:
	2004—Initial versions of what is now Hadoop Distributed
 Filesystem and MapReduce implemented by Doug Cutting and Mike
 Cafarella.

	December 2005—Nutch ported to the new framework. Hadoop runs
 reliably on 20 nodes.

	January 2006—Doug Cutting joins Yahoo!.

	February 2006—Apache Hadoop project officially started to
 support the standalone development of MapReduce and HDFS.

	February 2006—Adoption of Hadoop by Yahoo! Grid team.

	April 2006—Sort benchmark (10 GB/node) run on 188 nodes in
 47.9 hours.

	May 2006—Yahoo! set up a Hadoop research cluster—300
 nodes.

	May 2006—Sort benchmark run on 500 nodes in 42 hours (better
 hardware than April benchmark).

	October 2006—Research cluster reaches 600 nodes.

	December 2006—Sort benchmark run on 20 nodes in 1.8 hours,
 100 nodes in 3.3 hours, 500 nodes in 5.2 hours, 900 nodes in 7.8
 hours.

	January 2007—Research cluster reaches 900 nodes.

	April 2007—Research clusters—2 clusters of 1000
 nodes.

	April 2008—Won the 1 terabyte sort benchmark in 209 seconds
 on 900 nodes.

	October 2008—Loading 10 terabytes of data per a day on to
 research clusters.

	March 2009—17 clusters with a total of 24,000 nodes.

	April 2009—Won the minute sort by sorting 500 GB in 59
 seconds (on 1400 nodes) and the 100 terabyte sort in 173 minutes
 (on 3400 nodes).

[11] In this book, we use the lowercase form, “jobtracker,” to
 denote the entity when it’s being referred to generally, and the
 CamelCase form JobTracker to denote the
 Java class that implements it.

[12] Mike Cafarella and Doug Cutting, “Building Nutch: Open Source
 Search,” ACM Queue, April 2004, http://queue.acm.org/detail.cfm?id=988408.

[13] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung, “The
 Google File System,” October 2003, http://labs.google.com/papers/gfs.html.

[14] Jeffrey Dean and Sanjay Ghemawat, “MapReduce: Simplified Data
 Processing on Large Clusters ,” December 2004, http://labs.google.com/papers/mapreduce.html.

[15] “Yahoo! Launches World’s Largest Hadoop Production
 Application,” 19 February 2008, http://developer.yahoo.net/blogs/hadoop/2008/02/yahoo-worlds-largest-production-hadoop.html.

[16] Derek Gottfrid, “Self-service, Prorated Super Computing Fun!,”
 1 November 2007, http://open.blogs.nytimes.com/2007/11/01/self-service-prorated-super-computing-fun/.

[17] “Sorting 1PB with MapReduce,” 21 November 2008, http://googleblog.blogspot.com/2008/11/sorting-1pb-with-mapreduce.html.

The Apache Hadoop Project

Today, Hadoop is a collection of related subprojects that fall
 under the umbrella of infrastructure for distributed computing. These
 projects are hosted by the Apache
 Software Foundation, which provides support for a community of open source software
 projects. Although Hadoop is best known for MapReduce and its distributed filesystem
 (HDFS, renamed from NDFS), the other subprojects provide complementary
 services, or build on the core to add higher-level abstractions. The
 subprojects, and where they sit in the technology stack, are shown in
 Figure 1-1 and described briefly
 here:
	Core
	A set of components and interfaces for distributed
 filesystems and general I/O (serialization, Java RPC, persistent
 data structures).

	Avro
	A data serialization system for efficient, cross-language
 RPC, and persistent data storage. (At the time of this writing,
 Avro had been created only as a new subproject, and no other
 Hadoop subprojects were using it yet.)

	MapReduce
	A distributed data processing model and execution
 environment that runs on large clusters of commodity
 machines.

	HDFS
	A distributed filesystem that runs on large clusters of
 commodity machines.

	Pig
	A data flow language and execution environment for exploring
 very large datasets. Pig runs on HDFS and MapReduce
 clusters.

	HBase
	A distributed, column-oriented database. HBase uses HDFS for
 its underlying storage, and supports both batch-style computations
 using MapReduce and point queries (random reads).

	ZooKeeper
	A distributed, highly available coordination service.
 ZooKeeper provides primitives such as distributed locks that can
 be used for building distributed applications.

	Hive
	A distributed data warehouse. Hive manages data stored in
 HDFS and provides a query language based on SQL (and which is
 translated by the runtime engine to MapReduce jobs) for querying
 the data.

	Chukwa
	A distributed data collection and analysis system. Chukwa
 runs collectors that store data in HDFS, and it uses MapReduce to
 produce reports. (At the time of this writing, Chukwa had only
 recently graduated from a “contrib” module in Core to its own
 subproject.)

[image: Hadoop subprojects]

Figure 1-1. Hadoop subprojects

Chapter 2. MapReduce

MapReduce is a programming model for data processing. The model is
 simple, yet not too simple to express useful programs in. Hadoop can run
 MapReduce programs written in various languages; in this chapter, we shall
 look at the same program expressed in Java, Ruby, Python, and C++. Most
 importantly, MapReduce programs are inherently parallel, thus putting very
 large-scale data analysis into the hands of anyone with enough machines at
 their disposal. MapReduce comes into its own for large datasets, so let’s
 start by looking at one.
A Weather Dataset

For our example, we will write a program that mines weather data.
 Weather sensors collecting data every hour at many locations across the
 globe gather a large volume of log data, which is a good candidate for
 analysis with MapReduce, since it is semi-structured and
 record-oriented.
Data Format

The data we will use is from the National Climatic Data Center
 (NCDC, http://www.ncdc.noaa.gov/). The data is
 stored using a line-oriented ASCII format, in which each line is a
 record. The format supports a rich set of meteorological elements,
 many of which are optional or with variable data lengths. For
 simplicity, we shall focus on the basic elements, such as temperature,
 which are always present and are of fixed width.
Example 2-1 shows a sample line with some of
 the salient fields highlighted. The line has been split into multiple
 lines to show each field: in the real file, fields are packed into one
 line with no delimiters.
Example 2-1. Format of a National Climate Data Center record
0057
332130 # USAF weather station identifier
99999 # WBAN weather station identifier
19500101 # observation date
0300 # observation time
4
+51317 # latitude (degrees x 1000)
+028783 # longitude (degrees x 1000)
FM-12
+0171 # elevation (meters)
99999
V020
320 # wind direction (degrees)
1 # quality code
N
0072
1
00450 # sky ceiling height (meters)
1 # quality code
C
N
010000 # visibility distance (meters)
1 # quality code
N
9
-0128 # air temperature (degrees Celsius x 10)
1 # quality code
-0139 # dew point temperature (degrees Celsius x 10)
1 # quality code
10268 # atmospheric pressure (hectopascals x 10)
1 # quality code

Data files are organized by date and weather station. There is a
 directory for each year from 1901 to 2001, each containing a gzipped
 file for each weather station with its readings for that year. For
 example, here are the first entries for 1990:
% ls raw/1990 | head
010010-99999-1990.gz
010014-99999-1990.gz
010015-99999-1990.gz
010016-99999-1990.gz
010017-99999-1990.gz
010030-99999-1990.gz
010040-99999-1990.gz
010080-99999-1990.gz
010100-99999-1990.gz
010150-99999-1990.gz
Since there are tens of thousands of weather stations, the whole
 dataset is made up of a large number of relatively small files. It’s
 generally easier and more efficient to process a smaller number of
 relatively large files, so the data was preprocessed so that each
 year’s readings were concatenated into a single file. (The means by
 which this was carried out is described in Appendix C.)

Analyzing the Data with Unix Tools

What’s the highest recorded global temperature for each year in
 the dataset? We will answer this first without using Hadoop, as this
 information will provide a performance baseline, as well as a useful
 means to check our results.
The classic tool for processing line-oriented data is awk. Example 2-2 is a
 small script to calculate the maximum temperature for each
 year.
Example 2-2. A program for finding the maximum recorded temperature by year
 from NCDC weather records
#!/usr/bin/env bash
for year in all/*
do
 echo -ne `basename $year .gz`"\t"
 gunzip -c $year | \
 awk '{ temp = substr($0, 88, 5) + 0;
 q = substr($0, 93, 1);
 if (temp !=9999 && q ~ /[01459]/ && temp > max) max = temp }
 END { print max }'
done

The script loops through the compressed year files, first printing
 the year, and then processing each file using awk. The awk script extracts two fields from the data:
 the air temperature and the quality code. The air temperature value is
 turned into an integer by adding 0. Next, a test is applied to see if
 the temperature is valid (the value 9999 signifies a missing value in
 the NCDC dataset), and if the quality code indicates that the reading is
 not suspect or erroneous. If the reading is OK, the value is compared
 with the maximum value seen so far, which is updated if a new maximum is
 found. The END block is executed
 after all the lines in the file have been processed, and prints the
 maximum value.
Here is the beginning of a run:
% ./max_temperature.sh
1901	317
1902	244
1903	289
1904	256
1905	283
...

The temperature values in the source file are scaled by a factor
 of 10, so this works out as a maximum temperature of 31.7°C for 1901
 (there were very few readings at the beginning of the century, so this
 is plausible). The complete run for the century took 42 minutes in one
 run on a single EC2 High-CPU Extra Large Instance.
To speed up the processing, we need to run parts of the program in
 parallel. In theory, this is straightforward: we could process different
 years in different processes, using all the available hardware threads
 on a machine. There are a few problems with this, however.
First, dividing the work into equal-size pieces isn’t always easy
 or obvious. In this case, the file size for different years varies
 widely, so some processes will finish much earlier than others. Even if
 they pick up further work, the whole run is dominated by the longest
 file. An alternative approach is to split the input into fixed-size
 chunks and assign each chunk to a process.
Second, combining the results from independent processes can need
 further processing. In this case, the result for each year is
 independent of other years and may be combined by concatenating all the
 results, and sorting by year. If using the fixed-size chunk approach,
 the combination is more delicate. For this example, data for a
 particular year will typically be split into several chunks, each
 processed independently. We’ll end up with the maximum temperature for
 each chunk, so the final step is to look for the highest of these
 maximums, for each year.
Third, you are still limited by the processing capacity of a
 single machine. If the best time you can achieve is 20 minutes with the
 number of processors you have, then that’s it. You can’t make it go
 faster. Also, some datasets grow beyond the capacity of a single
 machine. When we start using multiple machines, a whole host of other
 factors come into play, mainly falling in the category of coordination
 and reliability. Who runs the overall job? How do we deal with failed
 processes?
So, though it’s feasible to parallelize the processing, in
 practice it’s messy. Using a framework like Hadoop to take care of these
 issues is a great help.

Analyzing the Data with Hadoop

To take advantage of the parallel processing that Hadoop provides,
 we need to express our query as a MapReduce job. After some local,
 small-scale testing, we will be able to run it on a cluster of
 machines.
Map and Reduce

MapReduce works by breaking the processing into two phases: the
 map phase and the reduce phase. Each phase has key-value pairs as
 input and output, the types of which may be chosen by the programmer.
 The programmer also specifies two functions: the map function and the
 reduce function.
The input to our map phase is the raw NCDC data. We choose a
 text input format that gives us each line in the dataset as a text
 value. The key is the offset of the beginning of the line from the
 beginning of the file, but as we have no need for this, we ignore
 it.
Our map function is simple. We pull out the year and the air
 temperature, since these are the only fields we are interested in. In
 this case, the map function is just a data preparation phase, setting
 up the data in such a way that the reducer function can do its work on
 it: finding the maximum temperature for each year. The map function is
 also a good place to drop bad records: here we filter out temperatures
 that are missing, suspect, or erroneous.
To visualize the way the map works, consider the following
 sample lines of input data (some unused columns have been dropped to
 fit the page, indicated by ellipses):
0067011990999991950051507004...9999999N9+00001+99999999999...
0043011990999991950051512004...9999999N9+00221+99999999999...
0043011990999991950051518004...9999999N9-00111+99999999999...
0043012650999991949032412004...0500001N9+01111+99999999999...
0043012650999991949032418004...0500001N9+00781+99999999999...
These lines are presented to the map function as the key-value
 pairs:
(0, 0067011990999991950051507004...9999999N9+00001+99999999999...)
(106, 0043011990999991950051512004...9999999N9+00221+99999999999...)
(212, 0043011990999991950051518004...9999999N9-00111+99999999999...)
(318, 0043012650999991949032412004...0500001N9+01111+99999999999...)
(424, 0043012650999991949032418004...0500001N9+00781+99999999999...)
The keys are the line offsets within the file, which we ignore
 in our map function. The map function merely extracts the year and the
 air temperature (indicated in bold text), and emits them as its
 output. (The temperature values have been interpreted as integers.)
(1950, 0)
(1950, 22)
(1950, −11)
(1949, 111)
(1949, 78)
The output from the map function is processed by the MapReduce
 framework before being sent to the reduce function. This processing
 sorts and groups the key-value pairs by key. So, continuing the
 example, our reduce function sees the following input:
(1949, [111, 78])
(1950, [0, 22, −11])
Each year appears with a list of all its air temperature
 readings. All the reduce function has to do now is iterate through the
 list and pick up the maximum reading:
(1949, 111)
(1950, 22)
This is the final output: the maximum global temperature
 recorded in each year.
The whole data flow is illustrated in Figure 2-1. At the bottom of the diagram is a Unix
 pipeline, which mimics the whole MapReduce flow, and which we will see
 again later in the chapter when we look at Hadoop Streaming.
[image: MapReduce logical data flow]

Figure 2-1. MapReduce logical data flow

Java MapReduce

Having run through how the MapReduce program works, the next
 step is to express it in code. We need three things: a map function, a
 reduce function, and some code to run the job. The map function is
 represented by an implementation of the Mapper interface, which declares a map() method. Example 2-3 shows the implementation of our map
 function.
Example 2-3. Mapper for maximum temperature example
import java.io.IOException;

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapred.MapReduceBase;
import org.apache.hadoop.mapred.Mapper;
import org.apache.hadoop.mapred.OutputCollector;
import org.apache.hadoop.mapred.Reporter;

public class MaxTemperatureMapper extends MapReduceBase
 implements Mapper<LongWritable, Text, Text, IntWritable> {

 private static final int MISSING = 9999;

 public void map(LongWritable key, Text value,
 OutputCollector<Text, IntWritable> output, Reporter reporter)
 throws IOException {

 String line = value.toString();
 String year = line.substring(15, 19);
 int airTemperature;
 if (line.charAt(87) == '+') { // parseInt doesn't like leading plus signs
 airTemperature = Integer.parseInt(line.substring(88, 92));
 } else {
 airTemperature = Integer.parseInt(line.substring(87, 92));
 }
 String quality = line.substring(92, 93);
 if (airTemperature != MISSING && quality.matches("[01459]")) {
 output.collect(new Text(year), new IntWritable(airTemperature));
 }
 }
}

The Mapper interface is a
 generic type, with four formal type parameters that specify the input
 key, input value, output key, and output value types of the map
 function. For the present example, the input key is a long integer
 offset, the input value is a line of text, the output key is a year,
 and the output value is an air temperature (an integer). Rather than
 use built-in Java types, Hadoop provides its own set of basic types
 that are optimized for network serialization. These are found in the
 org.apache.hadoop.io package. Here
 we use LongWritable, which
 corresponds to a Java Long,
 Text (like Java String), and IntWritable (like Java Integer).
The map() method is passed a
 key and a value. We convert the Text value containing the line of input into
 a Java String, then use its
 substring() method to extract the
 columns we are interested in.
The map() method also
 provides an instance of OutputCollector to write the output to. In
 this case, we write the year as a Text object (since we are just using it as a
 key), and the temperature wrapped in an IntWritable. We write an output record only
 if the temperature is present and the quality code indicates the
 temperature reading is OK.
The reduce function is similarly defined using a Reducer, as illustrated in Example 2-4.
Example 2-4. Reducer for maximum temperature example
import java.io.IOException;
import java.util.Iterator;

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapred.MapReduceBase;
import org.apache.hadoop.mapred.OutputCollector;
import org.apache.hadoop.mapred.Reducer;
import org.apache.hadoop.mapred.Reporter;

public class MaxTemperatureReducer extends MapReduceBase
 implements Reducer<Text, IntWritable, Text, IntWritable> {

 public void reduce(Text key, Iterator<IntWritable> values,
 OutputCollector<Text, IntWritable> output, Reporter reporter)
 throws IOException {

 int maxValue = Integer.MIN_VALUE;
 while (values.hasNext()) {
 maxValue = Math.max(maxValue, values.next().get());
 }
 output.collect(key, new IntWritable(maxValue));
 }
}

Again, four formal type parameters are used to specify the input
 and output types, this time for the reduce function. The input types
 of the reduce function must match the output type of the map function:
 Text and IntWritable. And in this case, the output
 types of the reduce function are Text and IntWritable, for a year and its maximum
 temperature, which we find by iterating through the temperatures and
 comparing each with a record of the highest found so far.
The third piece of code runs the MapReduce job (see Example 2-5).
Example 2-5. Application to find the maximum temperature in the weather
 dataset
import java.io.IOException;

import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapred.FileInputFormat;
import org.apache.hadoop.mapred.FileOutputFormat;
import org.apache.hadoop.mapred.JobClient;
import org.apache.hadoop.mapred.JobConf;

public class MaxTemperature {

 public static void main(String[] args) throws IOException {
 if (args.length != 2) {
 System.err.println("Usage: MaxTemperature <input path> <output path>");
 System.exit(-1);
 }

 JobConf conf = new JobConf(MaxTemperature.class);
 conf.setJobName("Max temperature");

 FileInputFormat.addInputPath(conf, new Path(args[0]));
 FileOutputFormat.setOutputPath(conf, new Path(args[1]));

 conf.setMapperClass(MaxTemperatureMapper.class);
 conf.setReducerClass(MaxTemperatureReducer.class);

 conf.setOutputKeyClass(Text.class);
 conf.setOutputValueClass(IntWritable.class);

 JobClient.runJob(conf);
 }
}

A JobConf object forms the
 specification of the job. It gives you control over how the job is
 run. When we run this job on a Hadoop cluster, we will package the
 code into a JAR file (which Hadoop will distribute round the cluster).
 Rather than explicitly specify the name of the JAR file, we can pass a
 class in the JobConf constructor,
 which Hadoop will use to locate the relevant JAR file by looking for
 the JAR file containing this class.
Having constructed a JobConf
 object, we specify the input and output paths. An input path is
 specified by calling the static addInputPath() method on FileInputFormat, and it can be a single
 file, a directory (in which case, the input forms all the files in
 that directory), or a file pattern. As the name suggests, addInputPath() can be called more than once
 to use input from multiple paths.
The output path (of which there is only one) is specified by the
 static setOutputPath() method on
 FileOutputFormat. It specifies a
 directory where the output files from the reducer functions are
 written. The directory shouldn’t exist before running the job, as
 Hadoop will complain and not run the job. This precaution is to
 prevent data loss (it can be very annoying to accidentally overwrite
 the output of a long job with another).
Next, we specify the map and reduce types to use via the
 setMapperClass() and setReducerClass() methods.
The setOutputKeyClass() and
 setOutputValueClass() methods
 control the output types for the map and the reduce functions, which
 are often the same, as they are in our case. If they are different,
 then the map output types can be set using the methods setMapOutputKeyClass()
 and setMapOutputValueClass().
The input types are controlled via the input format, which we
 have not explicitly set since we are using the default TextInputFormat.
After setting the classes that define the map and reduce
 functions, we are ready to run the job. The static runJob() method on JobClient submits the job and waits for it
 to finish, writing information about its progress to the
 console.
A test run

After writing a MapReduce job, it’s normal to try it out on a
 small dataset to flush out any immediate problems with the code.
 First install Hadoop in standalone mode—there are instructions for
 how to do this in Appendix A. This is the mode in which
 Hadoop runs using the local filesystem with a local job runner.
 Let’s test it on the five-line sample discussed earlier (the output
 has been slightly reformatted to fit the page):
% export HADOOP_CLASSPATH=build/classes
% hadoop MaxTemperature input/ncdc/sample.txt output
09/04/07 12:34:35 INFO jvm.JvmMetrics: Initializing JVM Metrics with processName=Job
Tracker, sessionId=
09/04/07 12:34:35 WARN mapred.JobClient: Use GenericOptionsParser for parsing the
arguments. Applications should implement Tool for the same.
09/04/07 12:34:35 WARN mapred.JobClient: No job jar file set. User classes may not
be found. See JobConf(Class) or JobConf#setJar(String).
09/04/07 12:34:35 INFO mapred.FileInputFormat: Total input paths to process : 1
09/04/07 12:34:35 INFO mapred.JobClient: Running job: job_local_0001
09/04/07 12:34:35 INFO mapred.FileInputFormat: Total input paths to process : 1
09/04/07 12:34:35 INFO mapred.MapTask: numReduceTasks: 1
09/04/07 12:34:35 INFO mapred.MapTask: io.sort.mb = 100
09/04/07 12:34:35 INFO mapred.MapTask: data buffer = 79691776/99614720
09/04/07 12:34:35 INFO mapred.MapTask: record buffer = 262144/327680
09/04/07 12:34:35 INFO mapred.MapTask: Starting flush of map output
09/04/07 12:34:36 INFO mapred.MapTask: Finished spill 0
09/04/07 12:34:36 INFO mapred.TaskRunner: Task:attempt_local_0001_m_000000_0 is
done. And is in the process of commiting
09/04/07 12:34:36 INFO mapred.LocalJobRunner: file:/Users/tom/workspace/htdg/input/n
cdc/sample.txt:0+529
09/04/07 12:34:36 INFO mapred.TaskRunner: Task 'attempt_local_0001_m_000000_0' done.
09/04/07 12:34:36 INFO mapred.LocalJobRunner:
09/04/07 12:34:36 INFO mapred.Merger: Merging 1 sorted segments
09/04/07 12:34:36 INFO mapred.Merger: Down to the last merge-pass, with 1 segments
left of total size: 57 bytes
09/04/07 12:34:36 INFO mapred.LocalJobRunner:
09/04/07 12:34:36 INFO mapred.TaskRunner: Task:attempt_local_0001_r_000000_0 is done
. And is in the process of commiting
09/04/07 12:34:36 INFO mapred.LocalJobRunner:
09/04/07 12:34:36 INFO mapred.TaskRunner: Task attempt_local_0001_r_000000_0 is
allowed to commit now
09/04/07 12:34:36 INFO mapred.FileOutputCommitter: Saved output of task
'attempt_local_0001_r_000000_0' to file:/Users/tom/workspace/htdg/output
09/04/07 12:34:36 INFO mapred.LocalJobRunner: reduce > reduce
09/04/07 12:34:36 INFO mapred.TaskRunner: Task 'attempt_local_0001_r_000000_0' done.
09/04/07 12:34:36 INFO mapred.JobClient: map 100% reduce 100%
09/04/07 12:34:36 INFO mapred.JobClient: Job complete: job_local_0001
09/04/07 12:34:36 INFO mapred.JobClient: Counters: 13
09/04/07 12:34:36 INFO mapred.JobClient: FileSystemCounters
09/04/07 12:34:36 INFO mapred.JobClient: FILE_BYTES_READ=27571
09/04/07 12:34:36 INFO mapred.JobClient: FILE_BYTES_WRITTEN=53907
09/04/07 12:34:36 INFO mapred.JobClient: Map-Reduce Framework
09/04/07 12:34:36 INFO mapred.JobClient: Reduce input groups=2
09/04/07 12:34:36 INFO mapred.JobClient: Combine output records=0
09/04/07 12:34:36 INFO mapred.JobClient: Map input records=5
09/04/07 12:34:36 INFO mapred.JobClient: Reduce shuffle bytes=0
09/04/07 12:34:36 INFO mapred.JobClient: Reduce output records=2
09/04/07 12:34:36 INFO mapred.JobClient: Spilled Records=10
09/04/07 12:34:36 INFO mapred.JobClient: Map output bytes=45
09/04/07 12:34:36 INFO mapred.JobClient: Map input bytes=529
09/04/07 12:34:36 INFO mapred.JobClient: Combine input records=0
09/04/07 12:34:36 INFO mapred.JobClient: Map output records=5
09/04/07 12:34:36 INFO mapred.JobClient: Reduce input records=5
When the hadoop command is invoked with a
 classname as the first argument, it launches a JVM to run the class.
 It is more convenient to use hadoop than straight
 java since the former adds the Hadoop libraries
 (and their dependencies) to the classpath, and picks up the Hadoop
 configuration too. To add the application classes to the classpath,
 we’ve defined an environment variable called HADOOP_CLASSPATH, which the
 hadoop script picks up.
Note
When running in local (standalone) mode, the programs in
 this book all assume that you have set the HADOOP_CLASSPATH in this way. The
 commands should be run from the directory that the example code is
 installed in.

The output from running the job provides some useful
 information. (The warning about the job JAR file not being found is
 expected, since we are running in local mode without a JAR. We won’t
 see this warning when we run on a cluster.) For example, we can see
 that the job was given an ID of job_local_0001, and it ran one map task
 and one reduce task (with the IDs attempt_local_0001_m_000000_0 and attempt_local_0001_r_000000_0). Knowing
 the job and task IDs can be very useful when debugging MapReduce
 jobs.
The last section of the output, entitled “Counters,” shows the
 statistics that Hadoop generates for each job it runs. These are
 very useful for checking whether the amount of data processed is
 what you expected. For example, we can follow the number of records
 that went through the system: five map inputs produced five map
 outputs, then five reduce inputs in two groups produced two reduce
 outputs.
The output was written to the output directory, which contains one
 output file per reducer. The job had a single reducer, so we find a
 single file, named part-00000:
% cat output/part-00000
1949	111
1950	22
This result is the same as when we went through it by hand
 earlier. We interpret this as saying that the maximum temperature
 recorded in 1949 was 11.1°C, and in 1950 it was 2.2°C.

The new Java MapReduce API

Release 0.20.0 of Hadoop included a new Java MapReduce API,
 sometimes referred to as “Context Objects,” designed to make the API
 easier to evolve in the future. The new API is type-incompatible
 with the old, however, so applications need to be rewritten to take
 advantage of it.[18]
There are several notable differences between the two
 APIs:
	The new API favors abstract classes over interfaces, since
 these are easier to evolve. For example, you can add a method
 (with a default implementation) to an abstract class without
 breaking old implementations of the class. In the new API, the
 Mapper
 and Reducer interfaces are
 now abstract classes.

	The new API is in the org.apache.hadoop.mapreduce package
 (and subpackages). The old API is found in org.apache.hadoop.mapred.

	The new API makes extensive use of context objects that
 allow the user code to communicate with the MapReduce system.
 The MapContext, for example,
 essentially unifies the role of the JobConf, the OutputCollector, and the Reporter.

	The new API supports both a “push” and a “pull” style of
 iteration. In both APIs, key-value record pairs are pushed to
 the mapper, but in addition, the new API allows a mapper to pull
 records from within the map() method.
 The same goes for the reducer. An example of how the “pull”
 style can be useful is processing records in batches, rather
 than one by one.

	Configuration has been unified. The old API has a special
 JobConf object for job
 configuration, which is an extension of Hadoop’s vanilla
 Configuration object (used
 for configuring daemons; see The Configuration API). In the new API, this
 distinction is dropped, so job configuration is done through a
 Configuration.

	Job control is performed through the Job class, rather than JobClient, which no longer exists in
 the new API.

Example 2-6 shows the MaxTemperature application rewritten to
 use the new API. The differences are highlighted in bold.
Example 2-6. Application to find the maximum temperature in the weather
 dataset using the new context objects MapReduce API
public class NewMaxTemperature {

 static class NewMaxTemperatureMapper
 extends Mapper<LongWritable, Text, Text, IntWritable> {

 private static final int MISSING = 9999;

 public void map(LongWritable key, Text value, Context context)
 throws IOException, InterruptedException {

 String line = value.toString();
 String year = line.substring(15, 19);
 int airTemperature;
 if (line.charAt(87) == '+') { // parseInt doesn't like leading plus signs
 airTemperature = Integer.parseInt(line.substring(88, 92));
 } else {
 airTemperature = Integer.parseInt(line.substring(87, 92));
 }
 String quality = line.substring(92, 93);
 if (airTemperature != MISSING && quality.matches("[01459]")) {
 context.write(new Text(year), new IntWritable(airTemperature));
 }
 }
 }

 static class NewMaxTemperatureReducer
 extends Reducer<Text, IntWritable, Text, IntWritable> {

 public void reduce(Text key, Iterable<IntWritable> values,
 Context context)
 throws IOException, InterruptedException {

 int maxValue = Integer.MIN_VALUE;
 for (IntWritable value : values) {
 maxValue = Math.max(maxValue, value.get());
 }
 context.write(key, new IntWritable(maxValue));
 }
 }

 public static void main(String[] args) throws Exception {
 if (args.length != 2) {
 System.err.println("Usage: NewMaxTemperature <input path> <output path>");
 System.exit(-1);
 }

 Job job = new Job();
 job.setJarByClass(NewMaxTemperature.class);

 FileInputFormat.addInputPath(job, new Path(args[0]));
 FileOutputFormat.setOutputPath(job, new Path(args[1]));

 job.setMapperClass(NewMaxTemperatureMapper.class);
 job.setReducerClass(NewMaxTemperatureReducer.class);

 job.setOutputKeyClass(Text.class);
 job.setOutputValueClass(IntWritable.class);

 System.exit(job.waitForCompletion(true) ? 0 : 1);
 }
}

[18] At the time of this writing, not all of the MapReduce
 libraries in Hadoop have been ported to work with the new API.
 This book uses the old API for this reason. However, a copy of
 all of the examples in this book, rewritten to use the new API,
 will be made available on the book’s website.

Scaling Out

You’ve seen how MapReduce works for small inputs; now it’s time to
 take a bird’s-eye view of the system and look at the data flow for large
 inputs. For simplicity, the examples so far have used files on the local
 filesystem. However, to scale out, we need to store the data in a
 distributed filesystem, typically HDFS (which you’ll learn about in the
 next chapter), to allow Hadoop to move the MapReduce computation to each
 machine hosting a part of the data. Let’s see how this works.
Data Flow

First, some terminology. A MapReduce job
 is a unit of work that the client wants to be performed: it consists
 of the input data, the MapReduce program, and configuration
 information. Hadoop runs the job by dividing it into
 tasks, of which there are two types:
 map tasks and reduce
 tasks.
There are two types of nodes that control the job execution
 process: a jobtracker and a number of
 tasktrackers. The jobtracker coordinates all
 the jobs run on the system by scheduling tasks to run on tasktrackers.
 Tasktrackers run tasks and send progress reports to the jobtracker,
 which keeps a record of the overall progress of each job. If a tasks
 fails, the jobtracker can reschedule it on a different
 tasktracker.
Hadoop divides the input to a MapReduce job into fixed-size
 pieces called input splits, or just
 splits. Hadoop creates one map task for each
 split, which runs the user-defined map function for each
 record in the split.
Having many splits means the time taken to process each split is
 small compared to the time to process the whole input. So if we are
 processing the splits in parallel, the processing is better
 load-balanced if the splits are small, since a faster machine will be
 able to process proportionally more splits over the course of the job
 than a slower machine. Even if the machines are identical, failed
 processes or other jobs running concurrently make load balancing
 desirable, and the quality of the load balancing increases as the
 splits become more fine-grained.
On the other hand, if splits are too small, then the overhead of
 managing the splits and of map task creation begins to dominate the
 total job execution time. For most jobs, a good split size tends to be
 the size of a HDFS block, 64 MB by default, although this can be
 changed for the cluster (for all newly created files), or specified
 when each file is created.
Hadoop does its best to run the map task on a node where the
 input data resides in HDFS. This is called the data
 locality optimization. It should now be clear why the
 optimal split size is the same as the block size: it is the largest
 size of input that can be guaranteed to be stored on a single node. If
 the split spanned two blocks, it would be unlikely that any HDFS node
 stored both blocks, so some of the split would have to be transferred
 across the network to the node running the map task, which is clearly
 less efficient than running the whole map task using local
 data.
Map tasks write their output to local disk, not to HDFS. Why is
 this? Map output is intermediate output: it’s processed by reduce
 tasks to produce the final output, and once the job is complete the
 map output can be thrown away. So storing it in HDFS, with
 replication, would be overkill. If the node running the map task fails
 before the map output has been consumed by the reduce task, then
 Hadoop will automatically rerun the map task on another node to
 recreate the map output.
Reduce tasks don’t have the advantage of data locality—the input
 to a single reduce task is normally the output from all mappers. In
 the present example, we have a single reduce task that is fed by all
 of the map tasks. Therefore the sorted map outputs have to be
 transferred across the network to the node where the reduce task is
 running, where they are merged and then passed to the user-defined
 reduce function. The output of the reduce is normally stored in HDFS
 for reliability. As explained in Chapter 3, for each
 HDFS block of the reduce output, the first replica is stored on the
 local node, with other replicas being stored on off-rack nodes. Thus,
 writing the reduce output does consume network bandwidth, but only as
 much as a normal HDFS write pipeline consumes.
The whole data flow with a single reduce task is illustrated in
 Figure 2-2. The dotted boxes
 indicate nodes, the light arrows show data transfers on a node, and
 the heavy arrows show data transfers between nodes.
[image: MapReduce data flow with a single reduce task]

Figure 2-2. MapReduce data flow with a single reduce task

The number of reduce tasks is not governed by the size of the
 input, but is specified independently. In The Default MapReduce Job, you will see how to choose the
 number of reduce tasks for a given job.
When there are multiple reducers, the map tasks
 partition their output, each creating one
 partition for each reduce task. There can be many keys (and their
 associated values) in each partition, but the records for every key
 are all in a single partition. The partitioning can be controlled by a
 user-defined partitioning function, but normally the default
 partitioner—which buckets keys using a hash function—works very
 well.
The data flow for the general case of multiple reduce tasks is
 illustrated in Figure 2-3. This
 diagram makes it clear why the data flow between map and reduce tasks
 is colloquially known as “the shuffle,” as each reduce task is fed by
 many map tasks. The shuffle is more complicated than this diagram
 suggests, and tuning it can have a big impact on job execution time,
 as you will see in Shuffle and Sort.
[image: MapReduce data flow with multiple reduce tasks]

Figure 2-3. MapReduce data flow with multiple reduce tasks

Finally, it’s also possible to have zero reduce tasks. This can
 be appropriate when you don’t need the shuffle since the processing
 can be carried out entirely in parallel (a few examples are discussed
 in NLineInputFormat). In this case, the only
 off-node data transfer is when the map tasks write to HDFS (see Figure 2-4).
[image: MapReduce data flow with no reduce tasks]

Figure 2-4. MapReduce data flow with no reduce tasks

Combiner Functions

Many MapReduce jobs are limited by the bandwidth available on
 the cluster, so it pays to minimize the data transferred between map
 and reduce tasks. Hadoop allows the user to specify a
 combiner function to be run on the map
 output—the combiner function’s output forms the input to the reduce
 function. Since the combiner function is an optimization, Hadoop does
 not provide a guarantee of how many times it will call it for a
 particular map output record, if at all. In other words, calling the
 combiner function zero, one, or many times should produce the same
 output from the reducer.
The contract for the combiner function constrains the type of
 function that may be used. This is best illustrated with an example.
 Suppose that for the maximum temperature example,
 readings for the year 1950 were processed by two maps (because they
 were in different splits). Imagine the first map produced the
 output:
(1950, 0)
(1950, 20)
(1950, 10)
And the second produced:
(1950, 25)
(1950, 15)
The reduce function would be called with a list of all the
 values:
(1950, [0, 20, 10, 25, 15])
with output:
(1950, 25)
since 25 is the maximum value in the list. We could use a
 combiner function that, just like the reduce function, finds the
 maximum temperature for each map output. The reduce would then be
 called with:
(1950, [20, 25])
and the reduce would produce the same output as before. More
 succinctly, we may express the function calls on the temperature
 values in this case as follows:
max(0, 20, 10, 25, 15) = max(max(0, 20, 10), max(25, 15)) = max(20, 25) = 25
Not all functions possess this property.[19] For example, if we were calculating mean temperatures,
 then we couldn’t use the mean as our combiner function, since:
mean(0, 20, 10, 25, 15) = 14
but:
mean(mean(0, 20, 10), mean(25, 15)) = mean(10, 20) = 15
The combiner function doesn’t replace the reduce function. (How
 could it? The reduce function is still needed to process records with
 the same key from different maps.) But it can help cut down the amount
 of data shuffled between the maps and the reduces, and for this reason
 alone it is always worth considering whether you can use a combiner
 function in your MapReduce job.
Specifying a combiner function

Going back to the Java MapReduce program, the combiner
 function is defined using the Reducer interface, and for this
 application, it is the same implementation as the reducer function
 in MaxTemperatureReducer. The
 only change we need to make is to set the combiner class on the
 JobConf (see Example 2-7).
Example 2-7. Application to find the maximum temperature, using a
 combiner function for efficiency
public class MaxTemperatureWithCombiner {

 public static void main(String[] args) throws IOException {
 if (args.length != 2) {
 System.err.println("Usage: MaxTemperatureWithCombiner <input path> " +
 		"<output path>");
 System.exit(-1);
 }

 JobConf conf = new JobConf(MaxTemperatureWithCombiner.class);
 conf.setJobName("Max temperature");

 FileInputFormat.addInputPath(conf, new Path(args[0]));
 FileOutputFormat.setOutputPath(conf, new Path(args[1]));

 conf.setMapperClass(MaxTemperatureMapper.class);
 conf.setCombinerClass(MaxTemperatureReducer.class);
 conf.setReducerClass(MaxTemperatureReducer.class);

 conf.setOutputKeyClass(Text.class);
 conf.setOutputValueClass(IntWritable.class);

 JobClient.runJob(conf);
 }
}

Running a Distributed MapReduce Job

The same program will run, without alteration, on a full
 dataset. This is the point of MapReduce: it scales to the size of your
 data and the size of your hardware. Here’s one data point: on a
 10-node EC2 cluster running High-CPU Extra Large Instances, the
 program took six minutes to run.[20]
We’ll go through the mechanics of running programs on a cluster
 in Chapter 5.

[19] Functions with this property are called
 distributive in the paper “Data Cube: A
 Relational Aggregation Operator Generalizing Group-By, Cross-Tab,
 and Sub-Totals,” Gray et al. (1995).

[20] This is a factor of seven faster than the serial run on one
 machine using awk. The main
 reason it wasn’t proportionately faster is because the input data
 wasn’t evenly partitioned. For convenience, the input files were
 gzipped by year, resulting in large files for the later years in
 dataset, when the number of weather records was much
 higher.

Hadoop Streaming

Hadoop provides an API to MapReduce that allows you to write your
 map and reduce functions in languages other than Java. Hadoop
 Streaming uses Unix standard streams as the interface
 between Hadoop and your program, so you can use any language that can
 read standard input and write to standard output to write your MapReduce
 program.
Streaming is naturally suited for text processing (although as of
 version 0.21.0 it can handle binary streams, too), and when used in text
 mode, it has a line-oriented view of data. Map input data is passed over
 standard input to your map function, which processes it line by line and
 writes lines to standard output. A map output key-value pair is written
 as a single tab-delimited line. Input to the reduce function is in the
 same format—a tab-separated key-value pair—passed over standard input.
 The reduce function reads lines from standard input, which the framework
 guarantees are sorted by key, and writes its results to standard
 output.
Let’s illustrate this by rewriting our MapReduce program for
 finding maximum temperatures by year in Streaming.
Ruby

The map function can be expressed in Ruby as shown in Example 2-8.
Example 2-8. Map function for maximum temperature in Ruby
#!/usr/bin/env ruby

STDIN.each_line do |line|
 val = line
 year, temp, q = val[15,4], val[87,5], val[92,1]
 puts "#{year}\t#{temp}" if (temp != "+9999" && q =~ /[01459]/)
end

The program iterates over lines from standard input by executing
 a block for each line from STDIN (a
 global constant of type IO). The
 block pulls out the relevant fields from each input line, and, if the
 temperature is valid, writes the year and the temperature separated by
 a tab character \t to standard
 output (using puts).
Note
It’s worth drawing out a design difference between Streaming
 and the Java MapReduce API. The Java API is geared toward processing
 your map function one record at a time. The framework calls the
 map() method
 on your Mapper for each record in
 the input, whereas with Streaming the map program can decide how to
 process the input—for example, it could easily read and process
 multiple lines at a time since it’s in control of the reading. The
 user’s Java map implementation is “pushed” records, but it’s still
 possible to consider multiple lines at a time by accumulating
 previous lines in an instance variable in the Mapper.[21] In this case, you need to implement the
 close() method so that you know when the
 last record has been read, so you can finish processing the last
 group of lines.

Since the script just operates on standard input and output,
 it’s trivial to test the script without using Hadoop, simply using
 Unix pipes:
% cat input/ncdc/sample.txt | src/main/ch02/ruby/max_temperature_map.rb
1950 +0000
1950 +0022
1950 -0011
1949 +0111
1949 +0078
The reduce function shown in Example 2-9 is a little more
 complex.
Example 2-9. Reduce function for maximum temperature in Ruby
#!/usr/bin/env ruby

last_key, max_val = nil, 0
STDIN.each_line do |line|
 key, val = line.split("\t")
 if last_key && last_key != key
 puts "#{last_key}\t#{max_val}"
 last_key, max_val = key, val.to_i
 else
 last_key, max_val = key, [max_val, val.to_i].max
 end
end
puts "#{last_key}\t#{max_val}" if last_key

Again, the program iterates over lines from standard input, but
 this time we have to store some state as we process each key group. In
 this case, the keys are weather station identifiers, and we store the
 last key seen and the maximum temperature seen so far for that key.
 The MapReduce framework ensures that the keys are ordered, so we know
 that if a key is different from the previous one, we have moved into a
 new key group. In contrast to the Java API, where you are provided an
 iterator over each key group, in Streaming you have to find key group
 boundaries in your program.
For each line we pull out the key and value, then if we’ve just
 finished a group (last_key &&
 last_key != key), we write the key and the maximum
 temperature for that group, separated by a tab character, before
 resetting the maximum temperature for the new key. If we haven’t just
 finished a group, we just update the maximum temperature for the
 current key.
The last line of the program ensures that a line is written for
 the last key group in the input.
We can now simulate the whole MapReduce pipeline with a Unix
 pipeline (which is equivalent to the Unix pipeline shown in Figure 2-1):
% cat input/ncdc/sample.txt | src/main/ch02/ruby/max_temperature_map.rb | \
 sort | src/main/ch02/ruby/max_temperature_reduce.rb
1949	111
1950	22
The output is the same as the Java program, so the next step is
 to run it using Hadoop itself.
The hadoop command doesn’t
 support a Streaming option; instead, you specify the Streaming JAR
 file along with the jar option.
 Options to the Streaming program specify the input and output paths,
 and the map and reduce scripts. This is what it looks like:
% hadoop jar $HADOOP_INSTALL/contrib/streaming/hadoop-*-streaming.jar \
 -input input/ncdc/sample.txt \
 -output output \
 -mapper src/main/ch02/ruby/max_temperature_map.rb \
 -reducer src/main/ch02/ruby/max_temperature_reduce.rb
When running on a large dataset on a cluster, we should set the
 combiner, using the -combiner option.
From release 0.21.0, the combiner can be any Streaming command.
 For earlier releases, the combiner had to be written in Java, so as a
 workaround it was common to do manual combining in the mapper, without
 having to resort to Java. In this case, we could change the mapper to
 be a pipeline:
% hadoop jar $HADOOP_INSTALL/contrib/streaming/hadoop-*-streaming.jar \
 -input input/ncdc/all \
 -output output \
 -mapper "ch02/ruby/max_temperature_map.rb | sort | ch02/ruby/max_temperature_reduce.rb" \
 -reducer src/main/ch02/ruby/max_temperature_reduce.rb \
 -file src/main/ch02/ruby/max_temperature_map.rb \
 -file src/main/ch02/ruby/max_temperature_reduce.rb
Note also the use of -file,
 which we use when running Streaming programs on the cluster to ship
 the scripts to the cluster.

Python

Streaming supports any programming language that can read from
 standard input, and write to standard output, so for readers more
 familiar with Python, here’s the same example again.[22] The map script is in Example 2-10, and the reduce script is in Example 2-11.
Example 2-10. Map function for maximum temperature in Python
#!/usr/bin/env python

import re
import sys

for line in sys.stdin:
 val = line.strip()
 (year, temp, q) = (val[15:19], val[87:92], val[92:93])
 if (temp != "+9999" and re.match("[01459]", q)):
 print "%s\t%s" % (year, temp)

Example 2-11. Reduce function for maximum temperature in Python
#!/usr/bin/env python

import sys

(last_key, max_val) = (None, 0)
for line in sys.stdin:
 (key, val) = line.strip().split("\t")
 if last_key and last_key != key:
 print "%s\t%s" % (last_key, max_val)
 (last_key, max_val) = (key, int(val))
 else:
 (last_key, max_val) = (key, max(max_val, int(val)))

if last_key:
 print "%s\t%s" % (last_key, max_val)

We can test the programs and run the job in the same way we did
 in Ruby. For example, to run a test:
% cat input/ncdc/sample.txt | src/main/ch02/python/max_temperature_map.py | \
 sort | src/main/ch02/python/max_temperature_reduce.py
1949 111
1950 22

[21] Alternatively, you could use “pull” style processing in
 the new MapReduce API—see The new Java MapReduce API.

[22] As an alternative to Streaming, Python programmers should
 consider Dumbo (http://www.last.fm/dumbo),
 which makes the Streaming MapReduce interface more Pythonic, and
 easier to use.

Hadoop Pipes

Hadoop Pipes is the name of the C++ interface to Hadoop MapReduce.
 Unlike Streaming, which uses standard input and output to communicate
 with the map and reduce code, Pipes uses sockets as the channel over
 which the tasktracker communicates with the process running the C++ map
 or reduce function. JNI is not used.
We’ll rewrite the example running through the chapter in C++, and
 then we’ll see how to run it using Pipes. Example 2-12 shows the source code for the map and
 reduce functions in C++.
Example 2-12. Maximum temperature in C++
#include <algorithm>
#include <limits>
#include <string>

#include "hadoop/Pipes.hh"
#include "hadoop/TemplateFactory.hh"
#include "hadoop/StringUtils.hh"

class MaxTemperatureMapper : public HadoopPipes::Mapper {
public:
 MaxTemperatureMapper(HadoopPipes::TaskContext& context) {
 }
 void map(HadoopPipes::MapContext& context) {
 std::string line = context.getInputValue();
 std::string year = line.substr(15, 4);
 std::string airTemperature = line.substr(87, 5);
 std::string q = line.substr(92, 1);
 if (airTemperature != "+9999" &&
 (q == "0" || q == "1" || q == "4" || q == "5" || q == "9")) {
 context.emit(year, airTemperature);
 }
 }
};

class MapTemperatureReducer : public HadoopPipes::Reducer {
public:
 MapTemperatureReducer(HadoopPipes::TaskContext& context) {
 }
 void reduce(HadoopPipes::ReduceContext& context) {
 int maxValue = INT_MIN;
 while (context.nextValue()) {
 maxValue = std::max(maxValue, HadoopUtils::toInt(context.getInputValue()));
 }
 context.emit(context.getInputKey(), HadoopUtils::toString(maxValue));
 }
};

int main(int argc, char *argv[]) {
 return HadoopPipes::runTask(HadoopPipes::TemplateFactory<MaxTemperatureMapper,
 MapTemperatureReducer>());
}

The application links against the Hadoop C++ library, which is a
 thin wrapper for communicating with the tasktracker child process. The
 map and reduce functions are defined by extending the Mapper and Reducer classes defined in the HadoopPipes namespace and providing
 implementations of the map() and
 reduce() methods in each case. These
 methods take a context object (of type MapContext or ReduceContext), which provides the means for
 reading input and writing output, as well as accessing job configuration
 information via the JobConf class.
 The processing in this example is very similar to the Java
 equivalent.
Unlike the Java interface, keys and values in the C++ interface
 are byte buffers, represented as Standard Template Library (STL)
 strings. This makes the interface simpler, although it does put a
 slightly greater burden on the application developer, who has to convert
 to and from richer domain-level types. This is evident in MapTemperatureReducer where we have to convert
 the input value into an integer (using a convenience method in HadoopUtils) and then the maximum value back
 into a string before it’s written out. In some cases, we can save on
 doing the conversion, such as in MaxTemperatureMapper where the airTemperature value is never converted to an
 integer since it is never processed as a number in the
 map() method.
The main() method is the
 application entry point. It calls HadoopPipes::runTask, which connects to the
 Java parent process and marshals data to and from the Mapper or Reducer. The runTask() method is passed a Factory so that it can create instances of the
 Mapper or Reducer. Which one it creates is controlled by
 the Java parent over the socket connection. There are overloaded
 template factory methods for setting a combiner, partitioner, record
 reader, or record writer.
Compiling and Running

Now we can compile and link our program using the Makefile in
 Example 2-13.
Example 2-13. Makefile for C++ MapReduce program
CC = g++
CPPFLAGS = -m32 -I$(HADOOP_INSTALL)/c++/$(PLATFORM)/include

max_temperature: max_temperature.cpp
	$(CC) $(CPPFLAGS) $< -Wall -L$(HADOOP_INSTALL)/c++/$(PLATFORM)/lib -lhadooppipes \
	-lhadooputils -lpthread -g -O2 -o $@

The Makefile expects a couple of environment variables to be
 set. Apart from HADOOP_INSTALL
 (which you should already have set if you followed the installation
 instructions in Appendix A), you need to define PLATFORM, which specifies the operating
 system, architecture, and data model (e.g., 32- or 64-bit). I ran it
 on a 32-bit Linux system with the following:
% export PLATFORM=Linux-i386-32
% make
On successful completion, you’ll find the max_temperature executable in the current
 directory.
To run a Pipes job, we need to run Hadoop in
 pseudo-distributed mode (where all the daemons
 run on the local machine), for which there are setup instructions in
 Appendix A. Pipes doesn’t run in standalone (local) mode,
 since it relies on Hadoop’s distributed cache mechanism, which works
 only when HDFS is running.
With the Hadoop daemons now running, the first step is to copy
 the executable to HDFS so that it can be picked up by tasktrackers
 when they launch map and reduce tasks:
% hadoop fs -put max_temperature bin/max_temperature
The sample data also needs to be copied from the local
 filesystem into HDFS:
% hadoop fs -put input/ncdc/sample.txt sample.txt
Now we can run the job. For this, we use the Hadoop pipes command, passing the URI of the
 executable in HDFS using the -program argument:
% hadoop pipes \
 -D hadoop.pipes.java.recordreader=true \
 -D hadoop.pipes.java.recordwriter=true \
 -input sample.txt \
 -output output \
 -program bin/max_temperature
We specify two properties using the -D option: hadoop.pipes.java.recordreader and hadoop.pipes.java.recordwriter, setting both
 to true to say that we have not
 specified a C++ record reader or writer, but that we want to use the
 default Java ones (which are for text input and output). Pipes also
 allows you to set a Java mapper, reducer, combiner, or partitioner. In
 fact, you can have a mixture of Java or C++ classes within any one
 job.
The result is the same as the other versions of the same program
 that we ran.

Chapter 3. The Hadoop Distributed Filesystem

When a dataset outgrows the storage capacity of a single physical
 machine, it becomes necessary to partition it across a number of separate
 machines. Filesystems that manage the storage across a network of machines
 are called distributed filesystems. Since they are
 network-based, all the complications of network programming kick in, thus
 making distributed filesystems more complex than regular disk filesystems.
 For example, one of the biggest challenges is making the filesystem
 tolerate node failure without suffering data loss.
Hadoop comes with a distributed filesystem called HDFS, which stands
 for Hadoop Distributed Filesystem. (You may
 sometimes see references to “DFS”—informally or in older documentation or
 configuration—which is the same thing.) HDFS is Hadoop’s flagship
 filesystem and is the focus of this chapter, but Hadoop actually has a
 general-purpose filesystem abstraction, so we’ll see along the way how
 Hadoop integrates with other storage systems (such as the local filesystem
 and Amazon S3).
The Design of HDFS

HDFS is a filesystem designed for storing very large files with
 streaming data access patterns, running on clusters on commodity
 hardware. Let’s examine this statement in more detail:
	Very large files
	“Very large” in this context means files that are hundreds
 of megabytes, gigabytes, or terabytes in size. There are Hadoop
 clusters running today that store petabytes of data.[23]

	Streaming data access
	HDFS is built around the idea that the most efficient data
 processing pattern is a write-once, read-many-times pattern. A
 dataset is typically generated or copied from source, then various
 analyses are performed on that dataset over time. Each analysis
 will involve a large proportion, if not all, of the dataset, so
 the time to read the whole dataset is more important than the
 latency in reading the first record.

	Commodity hardware
	Hadoop doesn’t require expensive, highly reliable hardware
 to run on. It’s designed to run on clusters of commodity hardware
 (commonly available hardware available from multiple
 vendors[24]) for which the chance of node failure across the
 cluster is high, at least for large clusters. HDFS is designed to
 carry on working without a noticeable interruption to the user in
 the face of such failure.

It is also worth examining the applications for which using HDFS
 does not work so well. While this may change in the future, these are
 areas where HDFS is not a good fit today:
	Low-latency data access
	Applications that require low-latency access to data, in the
 tens of milliseconds range, will not work well with HDFS. Remember
 HDFS is optimized for delivering a high throughput of data, and
 this may be at the expense of latency. HBase (Chapter 12) is currently a better choice for low-latency
 access.

	Lots of small files
	Since the namenode holds filesystem metadata in memory, the
 limit to the number of files in a filesystem is governed by the
 amount of memory on the namenode. As a rule of thumb, each file,
 directory, and block takes about 150 bytes. So, for example, if
 you had one million files, each taking one block, you would need
 at least 300 MB of memory. While storing millions of files is
 feasible, billions is beyond the capability of current
 hardware.

	Multiple writers, arbitrary file modifications
	Files in HDFS may be written to by a single writer. Writes
 are always made at the end of the file. There is no support for
 multiple writers, or for modifications at arbitrary offsets in the
 file. (These might be supported in the future, but they are likely
 to be relatively inefficient.)

[23] “Scaling Hadoop to 4000 nodes at Yahoo!,” http://developer.yahoo.net/blogs/hadoop/2008/09/scaling_hadoop_to_4000_nodes_a.html.

[24] See Chapter 9 for a typical machine
 specification.

HDFS Concepts

Blocks

A disk has a block size, which is the minimum amount of data
 that it can read or write. Filesystems for a single disk build on this
 by dealing with data in blocks, which are an integral multiple of the
 disk block size. Filesystem blocks are typically a few kilobytes in
 size, while disk blocks are normally 512 bytes. This is generally
 transparent to the filesystem user who is simply reading or writing a
 file—of whatever length. However, there are tools to do with
 filesystem maintenance, such as df
 and fsck, that operate on the
 filesystem block level.
HDFS too has the concept of a block, but it is a much larger
 unit—64 MB by default. Like in a filesystem for a single disk, files
 in HDFS are broken into block-sized chunks, which are stored as
 independent units. Unlike a filesystem for a single disk, a file in
 HDFS that is smaller than a single block does not occupy a full
 block’s worth of underlying storage. When unqualified, the term
 “block” in this book refers to a block in HDFS.
Why Is a Block in HDFS So Large?
HDFS blocks are large compared to disk blocks, and the reason
 is to minimize the cost of seeks. By making a block large enough,
 the time to transfer the data from the disk can be made to be
 significantly larger than the time to seek to the start of the
 block. Thus the time to transfer a large file made of multiple
 blocks operates at the disk transfer rate.
A quick calculation shows that if the seek time is around
 10ms, and the transfer rate is 100 MB/s, then to make the seek time
 1% of the transfer time, we need to make the block size around 100
 MB. The default is actually 64 MB, although many HDFS installations
 use 128 MB blocks. This figure will continue to be revised upward as
 transfer speeds grow with new generations of disk drives.
This argument shouldn’t be taken too far, however. Map tasks
 in MapReduce normally operate on one block at a time, so if you have
 too few tasks (fewer than nodes in the cluster), your jobs will run
 slower than they could otherwise.

Having a block abstraction for a distributed filesystem brings
 several benefits. The first benefit is the most obvious: a file can be
 larger than any single disk in the network. There’s nothing that
 requires the blocks from a file to be stored on the same disk, so they
 can take advantage of any of the disks in the cluster. In fact, it
 would be possible, if unusual, to store a single file on an HDFS
 cluster whose blocks filled all the disks in the cluster.
Second, making the unit of abstraction a block rather than a
 file simplifies the storage subsystem. Simplicity is something to
 strive for all in all systems, but is important for a distributed
 system in which the failure modes are so varied. The storage subsystem
 deals with blocks, simplifying storage management (since blocks are a
 fixed size, it is easy to calculate how many can be stored on a given
 disk), and eliminating metadata concerns (blocks are just a chunk of
 data to be stored—file metadata such as permissions information does
 not need to be stored with the blocks, so another system can handle
 metadata
 orthogonally).
Furthermore, blocks fit well with replication for providing
 fault tolerance and availability. To insure against corrupted blocks
 and disk and machine failure, each block is replicated to a small
 number of physically separate machines (typically three). If a block
 becomes unavailable, a copy can be read from another location in a way
 that is transparent to the client. A block that is no longer available
 due to corruption or machine failure can be replicated from their
 alternative locations to other live machines to bring the replication
 factor back to the normal level. (See Data Integrity
 for more on guarding against corrupt data.) Similarly, some
 applications may choose to set a high replication factor for the
 blocks in a popular file to spread the read load on the
 cluster.
Like its disk filesystem cousin, HDFS’s fsck command understands blocks. For
 example, running:
% hadoop fsck -files -blocks
will list the blocks that make up each file in the filesystem.
 (See also Filesystem check (fsck).)

Namenodes and Datanodes

A HDFS cluster has two types of node operating in a
 master-worker pattern: a namenode (the master)
 and a number of datanodes (workers). The
 namenode manages the filesystem namespace. It maintains the filesystem
 tree and the metadata for all the files and directories in the tree.
 This information is stored persistently on the local disk in the form
 of two files: the namespace image and the edit log. The namenode also
 knows the datanodes on which all the blocks for a given file are
 located, however, it does not store block locations persistently,
 since this information is reconstructed from datanodes when the system
 starts.
A client accesses the filesystem on
 behalf of the user by communicating with the namenode and datanodes.
 The client presents a POSIX-like filesystem interface, so the user
 code does not need to know about the namenode and datanode to
 function.
Datanodes are the work horses of the filesystem. They store and
 retrieve blocks when they are told to (by clients or the namenode),
 and they report back to the namenode periodically with lists of blocks
 that they are storing.
Without the namenode, the filesystem cannot be used. In fact, if
 the machine running the namenode were obliterated, all the files on
 the filesystem would be lost since there would be no way of knowing
 how to reconstruct the files from the blocks on the datanodes. For this reason, it is
 important to make the namenode resilient to failure, and Hadoop
 provides two mechanisms for this.
The first way is to back up the files that make up the
 persistent state of the filesystem metadata. Hadoop can be configured
 so that the namenode writes its persistent state to multiple
 filesystems. These writes are synchronous and atomic. The usual
 configuration choice is to write to local disk as well as a remote NFS
 mount.
It is also possible to run a secondary
 namenode, which despite its name does not act as a
 namenode. Its main role is to periodically merge the namespace image
 with the edit log to prevent the edit log from becoming too large. The
 secondary namenode usually runs on a separate physical machine, since
 it requires plenty of CPU and as much memory as the namenode to
 perform the merge. It keeps a copy of the merged namespace image,
 which can be used in the event of the namenode failing. However, the
 state of the secondary namenode lags that of the primary, so in the
 event of total failure of the primary data, loss is almost guaranteed.
 The usual course of action in this case is to copy the namenode’s
 metadata files that are on NFS to the secondary and run it as the new
 primary.
See The filesystem image and edit log for more
 details.

The Command-Line Interface

We’re going to have a look at HDFS by interacting with it from the
 command line. There are many other interfaces to HDFS, but the command
 line is one of the simplest, and to many developers the most
 familiar.
We are going to run HDFS on one machine, so first follow the
 instructions for setting up Hadoop in pseudo-distributed mode in Appendix A. Later you’ll see how to run on a cluster of machines
 to give us scalability and fault tolerance.
There are two properties that we set in the pseudo-distributed
 configuration that deserve further explanation. The first is fs.default.name, set to
 hdfs://localhost/, which is used to set a default filesystem
 for Hadoop. Filesystems are specified by a URI, and here we have used a
 hdfs URI to configure Hadoop to use
 HDFS by default. The HDFS daemons will use this property to determine
 the host and port for the HDFS namenode. We’ll be running it on localhost, on the default HDFS port, 8020. And
 HDFS clients will use this property to work out where the namenode is
 running so they can connect to it.
We set the second property, dfs.replication, to one so that HDFS doesn’t
 replicate filesystem blocks by the usual default of three. When running
 with a single datanode, HDFS can’t replicate blocks to three datanodes,
 so it would perpetually warn about blocks being under-replicated. This
 setting solves that problem.
Basic Filesystem Operations

The filesystem is ready to be used, and we can do all of the
 usual filesystem operations such as reading files, creating
 directories, moving files, deleting data, and listing directories. You
 can type hadoop fs -help to get
 detailed help on every command.
Start by copying a file from the local filesystem to
 HDFS:
% hadoop fs -copyFromLocal input/docs/quangle.txt hdfs://localhost/user/tom/quangle.txt
This command invokes Hadoop’s filesystem shell command fs, which supports a number of
 subcommands—in this case, we are running -copyFromLocal. The local file quangle.txt is copied to the file /user/tom/quangle.txt on the HDFS instance
 running on localhost. In fact, we could have omitted the scheme and
 host of the URI and picked up the default, hdfs://localhost, as specified in core-site.xml.
% hadoop fs -copyFromLocal input/docs/quangle.txt /user/tom/quangle.txt
We could also have used a relative path, and copied the file to
 our home directory in HDFS, which in this case is /user/tom:
% hadoop fs -copyFromLocal input/docs/quangle.txt quangle.txt
Let’s copy the file back to the local filesystem and check
 whether it’s the same:
% hadoop fs -copyToLocal quangle.txt quangle.copy.txt
% md5 input/docs/quangle.txt quangle.copy.txt
MD5 (input/docs/quangle.txt) = a16f231da6b05e2ba7a339320e7dacd9
MD5 (quangle.copy.txt) = a16f231da6b05e2ba7a339320e7dacd9
The MD5 digests are the same, showing that the file survived its
 trip to HDFS and is back intact.
Finally, let’s look at an HDFS file listing. We create a
 directory first just to see how it is displayed in the
 listing:
% hadoop fs -mkdir books
% hadoop fs -ls .
Found 2 items
drwxr-xr-x - tom supergroup 0 2009-04-02 22:41 /user/tom/books
-rw-r--r-- 1 tom supergroup 118 2009-04-02 22:29 /user/tom/quangle.txt
The information returned is very similar to the Unix command
 ls -l, with a few minor
 differences. The first column shows the file mode. The second column
 is the replication factor of the file (something a traditional Unix
 filesystems does not have). Remember we set the default replication
 factor in the site-wide configuration to be 1, which is why we see the
 same value here. The entry in this column is empty for directories
 since the concept of replication does not apply to them—directories
 are treated as metadata and stored by the namenode, not the datanodes.
 The third and fourth columns show the file owner and group. The fifth
 column is the size of the file in bytes, or zero for directories. The
 six and seventh columns are the last modified date and time. Finally,
 the eighth column is the absolute name of the file or
 directory.
File Permissions in HDFS
HDFS has a permissions model for files and directories that is
 much like POSIX.
There are three types of permission: the read permission
 (r), the write permission (w)
 and the execute permission (x). The read
 permission is required to read files or list the contents of a
 directory. The write permission is required to write a file, or for
 a directory, to create or delete files or directories in it. The
 execute permission is ignored for a file since you can’t execute a
 file on HDFS (unlike POSIX), and for a directory it is required to
 access its children.
Each file and directory has an owner, a
 group, and a mode. The
 mode is made up of the permissions for the user who is the owner,
 the permissions for the users who are members of the group, and the
 permissions for users who are neither the owner nor members of the
 group.
A client’s identity is determined by the username and groups
 of the process it is running in. Because clients are remote, this
 makes it possible to become an arbitrary user, simply by creating an
 account of that name on the remote system. Thus, permissions should
 be used only in a cooperative community of users, as a mechanism for
 sharing filesystem resources and for avoiding accidental data loss,
 and not for securing resources in a hostile environment. However,
 despite these drawbacks, it is worthwhile having permissions enabled
 (as it is by default; see the dfs.permissions property), to avoid
 accidental modification or deletion of substantial parts of the
 filesystem, either by users or by automated tools or
 programs.
When permissions checking is enabled, the owner permissions
 are checked if the client’s username matches the owner, and the
 group permissions are checked if the client is a member of the
 group; otherwise, the other permissions are checked.
There is a concept of a super-user, which is the identity of
 the namenode process. Permissions checks are not performed for the
 super-user.

End of sample

 To search for additional titles please go to

 http://search.overdrive.com.

OEBPS/httpatomoreillycomsourceoreillyimages300073.png
i replication

>t | wors
i replication

OEBPS/httpatomoreillycomsourceoreillyimages300176.png
Parser Rules

OEBPS/callouts/15.png

OEBPS/httpatomoreillycomsourceoreillyimages300081.png
CIMAIS

NI

data center

OEBPS/callouts/14.png

OEBPS/httpatomoreillycomsourceoreillyimages300130.png
Master

Regionserver Regionserver Regionserver

OEBPS/callouts/13.png

OEBPS/callouts/12.png

OEBPS/httpatomoreillycomsourceoreillyimages300162.png
i
YY YT

OEBPS/httpatomoreillycomsourceoreillyimages300182.png
8 C Your Cluster | Cl Cloud

<[>

+ |@ https://my.cloudera.com/ ¢ Q- Google +

Step 5 of 6: Configure Your Slave Nodes
Slave Nodes

Slave nodes store data and do work in your cluster and are managed by the
NameNode and JobTracker. Each slave in your cluster usually plays two roles,
referred to as DataNode and TaskTracker. These are run in separate processes.
Together, they provide the integrated storage and processing which makes

Hadoop so powerful for processing Big Data.

Cores RAM (GB) Diskspace

a® 1 [oor e

TaskTracker Settings

‘The TaskTracker is the slave service for MapReduce. It runs the tasks assigned by the
JobTracker and sorts the intermediate map data prior to reducing.

For each disk, you should specify a directory to store intermediate data. Using all of your disks
improves performance.

TaskTracker Intermediate Data Path(s)

/mnt/disk1/hadoop/mapredlocal]

DataNode Settings

The DataNode is the slave service for HDFS. It stores individual data blocks and serves them to
clients.

For each disk, you should specify a directory to store data blocks. Using all of your disks
improves performance and capacity.

HDFS Data Path(s)

/mnt/disk1/hadoop/hdfs/data]

feedback

OEBPS/httpatomoreillycomsourceoreillyimages300089.png
Quick Links

ip-10-250-110-47 Hadoop Map/Reduce Administration

State: RUNNING

Started: Sat Apr 11 08:11:53 EDT 2009

Version: 0.20.0, 763504

Compiled: Thu Apr 9 05:18:40 UTC 2009 by ndaley
Identifier: 200904110811

Cluster Summary (Heap Size is 53.75 MB/888.94 MB)

Maps [Reduces | Total Submissions [Nodes | Map Task Capacity | Reduce Task Capacity | Avg. Tasks/Node | Blacklisted Nodes
53 |30 2 1 es 88 16.00 [

Scheduling Information

ueue Name | Scheduling Information

NIA

Filter (Jobid, Priority, User, Name)
Example: user:smith 3200"wil it by 'smith oy in the user fied and 3200 n al ields

Running Jobs

Job
. . Map% |Map |Maps Reduce % |Reduce |Reduces i
Jobid Priority | User |Name Complete |Total |Completed |Complete |Total | Completed ﬁ";::"‘“;"',:%
Max 47.52% 15.25%
job_200904110811_0002 | NORMAL | root “empemme 101 |48 30 0 NA
Completed Jobs
] Map% |Map |Maps Reduce% |Reduce |Reduces | Job Scheduling
Jobid Priority |User |Name | Gompiete | Total |Completed |Complete |Total | Completed |information
word [100.00% 100.00%
4110811 1 | NORMAL | gonzo count 14 14 30 30 NA
Failed Jobs
none
Local Logs

Log directory, Job Tracker History
Hadoop, 2009.

OEBPS/httpatomoreillycomsourceoreillyimages300170.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages300178.png
500000000
. . q "
. [
800000000 —~ —
N
3
700000000
£ 600000000 |
E
500000000
400000000
. "
300000000
120 130 140 150 160 170 180 190 200

+ shuffle finish
reduce finish

OEBPS/httpatomoreillycomsourceoreillyimages300085.png
Header

No Record
compression [

Record Record
compression length

Record

Key
length

Key
length

Sync

Key

Record Record

Value

Compressed
value

Record

Sync

Record

OEBPS/httpatomoreillycomsourceoreillyimages300087.png
Block

Block

Header

Sync Sync Sync Block | Sync

Block Numberof | Compressed | Compressed |~ Compressed | Compre
compression || {0113 Key fengths Keys value lengths values

1-5

OEBPS/httpatomoreillycomsourceoreillyimages300060.jpg
MapReduce for the Cloud

The Definitive Guide

O’REILLY® | 'YAHOO!. PRESS Tom White

OEBPS/httpatomoreillycomsourceoreillyimages300099.png
Streaming

TaskTracker

launch §
v

M

wn

Maplask

or
ReduceTask

output
keylvalues

launch

tasktracker node

Pipes

TaskTracker

launch §
v

child VM

Child

wn

Maplask

or
ReduceTask

output
Keylvalues

input
Keylvalu

¥ “sodet

G+ ‘wrapper
library

launch

tasktracker node

OEBPS/httpatomoreillycomsourceoreillyimages300117.png
Partition Group
1900 35°C

1900 34°C
1900 34°C

1901 36°C
1901 35°C

OEBPS/httpatomoreillycomsourceoreillyimages300160.png
@[i

[flf,...

@[2

tuples with field names

OEBPS/callouts/11.png

OEBPS/callouts/10.png

OEBPS/httpatomoreillycomsourceoreillyimages300166.png.jpg
Operation

Y Y Y

OEBPS/httpatomoreillycomsourceoreillyimages300071.png
output
HDFS.

50

replication

HDFS
plication

OEBPS/httpatomoreillycomsourceoreillyimages300180.png
4000

o0

Runing Tasks Over Time

113 25 37 49 61 73 85 97 109 121 133 145 157 169 181 193 205
Seconds

WReduce
~ Merge
mshuffle
" Maps

OEBPS/httpatomoreillycomsourceoreillyimages300109.png
split split split

ﬁ\! :
ines [1 [2 |3|4|5|6|7|3| [0]

©

block block block block
boundary boundary boundary boundary

OEBPS/httpatomoreillycomsourceoreillyimages300144.png
Filers

OEBPS/httpatomoreillycomsourceoreillyimages300083.png
Others

Primitives

OEBPS/httpatomoreillycomsourceoreillyimages300101.png
getiobStatus

dientJVM

dient node

Lg Jobracker

jobtras

Shared
FileSystem
(e.g. HDFS)

[progress or counter updated]|
statusUpdate

tasktracker node

OEBPS/httpatomoreillycomsourceoreillyimages300126.png
mapred. jobtracker.waiting_tasks

60
4.0
2.0 i i

0.0l
620 1640 700
B ip-10-250-59-159.ec2 . internal last hour (now 0.00)

OEBPS/httpatomoreillycomsourceoreillyimages300065.png
Pig | Chukwa | Hive | HBase
MapReduce HOFS Kezgge,
Core Ao

OEBPS/httpatomoreillycomsourceoreillyimages300095.png
Job job 200904110811 0003

All Task Attempts
Task Attempts Machine Status Progress | Start Time | Finish Time | Erors | 25K | Counters |Actons
11-Apr-2009 el
attempt_200904110811_0003_m_000044_0 SUCCEEDED ol it Last 11
19sec) e

Input Split Locations

Idefault-rack/10.250.202.127
/default-rack/10.250.123.223
Idefault-rack/10.250.115.79.

Go back to the job
Go back to JobTracker

Hadoop, 2009.

OEBPS/httpatomoreillycomsourceoreillyimages300079.png
dlient VM

b

Distributed 8
Filesystem |
. FSData
l Outpustream

dlient node

4 write packet

Pipeline of
datanodes

5:ack packet

datanode

datanode

NameNode

namenode

DataNode

datanode

OEBPS/httpatomoreillycomsourceoreillyimages300119.png
Stations Records
Station ID Station Name Station ID Timestamp Temperature
011990-99999 STHCCAJAVRT 012650-99999 | 194903241200 | 111
012650-99999 | TYNSET-HANSMOEN 012650-99999 | 194903241800 |78
011990-99999 | 195005150700 |0
011990-99999 [195005151200 |22
011990-99999 195005151800 | -11
Join
Station ID Station Name Timestamp Temperature
011990-99999 | STHCCAJAVRT 195005150700 |0
011990-99999 | STHCCAJAVRT 195005151200 | 22
011990-99999 [STHCCAJAVRT 195005151800 | -11
012650-99999 | TYNSET-HANSMOEN | 194903241200 | 111
012650-99999 | TYNSET-HANSMOEN 194903241800 | 78

OEBPS/httpatomoreillycomsourceoreillyimages300146.png
| ——
Segment N)
Generator
CrawlDb 1 crawl_generate —f—|_Fetcher
crawl_fetch 3
4 content $————— [Parse segment
CrawiDb 2 crawl_parse
update parse_data
l 5 parse_text
i LinkDb
LinkDb 14 nvertlinks
6
Indexer Lucene
index

OEBPS/httpatomoreillycomsourceoreillyimages300136.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages300174.png
Amazon Web Services

S Asterbata

OEBPS/httpatomoreillycomsourceoreillyimages300097.png
dlient JVM
client node

resources
v
&

FlIeSn tem
(eg. DFS)

retrieve job
resources

>
Lg JobTracker
<

jobtracker node

7: heartbea
(returns sl

& TaskTracker

9 Iam\(h i

dllld M

Child

tasktracker node

OEBPS/httpatomoreillycomsourceoreillyimages300154.png
Reduce

Map
Message ID—
Message ID—» HopWritable
HopWtable SolrID—» Array

Phase

Not complete ™
” sacomplete path?

Map Reduce
stage stage.

Complete ;

A Wap Reduce
A\ _stage stage.

Not complete

Postixlags

Not complete
Indexed logs

Phase :
sa complete hop?

Map Reduce

Line # — Line Oue\!_e_lD:b L!!_E o
. QuevelD —>ATRy | Wessage Doy
- HopWitable ..

OEBPS/oreilly_large.gif
O’REILLY

OEBPS/httpatomoreillycomsourceoreillyimages300134.png
ZooKeeper se;vice
follower leader

Client (Client (Client Client Client Client

OEBPS/httpatomoreillycomsourceoreillyimages300150.png
CrawlDb <Text, CrawIDatum> fetchlist <Text, CrawlDatum>

v,
U,
Fl)
Uy
Step1: Step 2:
Select, sort by score, Partition by host,

limit by URLs/host sort randomly

OEBPS/httpatomoreillycomsourceoreillyimages300168.png.jpg
PipeAssembly

OEBPS/httpatomoreillycomsourceoreillyimages300142.png
los! Music Videos Radio Events Charts
Overview
ACIDG » Tracks

Biography You Shook Me All Night Long (3:30)
Photos 243,407 stener

1277878 plays
Videos In your ibrary (16 pys)
Albums [=2 share [SENEENS)

Tracks. We don't have a description for this track yet, care (o help?

OEBPS/httpatomoreillycomsourceoreillyimages300148.png
Pages with outlinks

s s,
>
Pages with inlinks

S=source
t=target

OEBPS/httpatomoreillycomsourceoreillyimages300132.png.jpg
/z00/duck /z00/cow

OEBPS/httpatomoreillycomsourceoreillyimages300067.png
input. map | shuffle | reduce > output

T o, oooromms0)) (w950,)
(206, o0a3011990.)| | (x950, 22)

» (212, 00s3011990.) -] (1950, -12) -] E:Z:Z' o E“'I‘H;) 8;:3' ‘;3 -
(318, oossonzeso)| | (1049, 112) > 102, 8
(24, ooazon2650.)) | (1949, 78)

cat* | mapab | sort | reduce.rb > output

OEBPS/httpatomoreillycomsourceoreillyimages300091.png
Hadoop job_200904110811_0002 on ip-10-250-110-47

Fondig

Kind % omplte | Tasks[pencing | uming | compite s | EISEI,

0000%

o W o o wm| o om

reduce Lm%\ so‘ n‘ 13 1| o 00

[I Counter [Map [Reduca| Toul
Launchad roduce asks o o B3
Rackioci map ass o o w

o5 Couners
Launched map tass o o 2
Dataocai map asks o o =
FILE_VIES_READ Teeesen | se| 1266edss
VOFS BYTES READ | sadesenars| 0| 594ess412rs

FiesystomCauntors
FILE_BVTES WAITTEN senoni | 564 EX)
VOFS. BYTES WRITEN of w0 %
Foduco put groups o w| w
Combine o rocords | o sam
ap nput records a0 | 0| 1200901509
Rcduco shuff byos o ez 8097
Feduco ouutrocords o w ©

ap Recuco Framewor [Spled Recads O a0
| Map output bytes. 10.262,306.995 0 [10.282:306,995
o put by arsso0s5s8 | o [z7a00205558
| Map output records 1142,478555 0 1142478555
Combine it rocords | 114248290 | 0| 11dzdezenn
[Fducanp rocords o e w

ap Compltion Graph - closs

0

Redtuce Complelon Graph
100
%0
5
i

-cosa

Go back to JobTracker

Hadoop, 2009,

OEBPS/httpatomoreillycomsourceoreillyimages300077.png
[Cnode]

rack

=

n

2]

)

data center

a2

a1

OEBPS/httpatomoreillycomsourceoreillyimages300128.png
000

Java Monitoring & Management Console

ConnectionWindow _Help

! Overview Memory

Threads

Classes

VM Summary ~ MBeans] &=

» [Mimplementation
» (3 com.sun.management
v (il hadoop
v {8 NameNode
v @ FsNamesystemstate

» Operations
» @ NameNodeActivity
» @ RpcActivityForPort8020
» { javalang
» (i java.utilogging

Attribute values

Name

BlocksTotal
CapacityRemaining
CapacityTotal
CapacityUsed
Fsstate

FilesTotal
PendingReplicationBlocks 0
scheduledReplicationBlocks 0
Totalload
UnderReplicatedBlocks

[Value
72
182882041856
249715376128
72282112
Operational
86

1
0

OEBPS/httpatomoreillycomsourceoreillyimages300152.png
Data center

OEBPS/httpatomoreillycomsourceoreillyimages300138.png.jpg
Top Tracks

© Coldplay - viv

1

© The Killers — Human

© Kings of Leon - Sex on Fire

© MGMT ~ Time to Pretend

© mwT -Kids

CEEHTH

OEBPS/httpatomoreillycomsourceoreillyimages300172.png
Map Reduce Map Reduce

.—»M aggr aggr func

OEBPS/httpatomoreillycomsourceoreillyimages300158.png
Map MD‘ Reduce I | Map Mp‘ Reduce]

th) [km [kv] [kv]

[k, v] = key and value pair
[k, [v]] = key and associated values collection

OEBPS/httpatomoreillycomsourceoreillyimages300115.png
Partition Group
1900 35°C | I

1900 34°C |
1900 34°C
1901 36°C |
1901 35°C

OEBPS/httpatomoreillycomsourceoreillyimages300093.png
Hadoop map task list for job 200904110811 0003 on
ip-10-250-110-47

Completed Tasks

\ Task Complete | Status Start Time | Finish Time ‘Errors ‘Counlers
hdfs//p- 11-Apr-2009
100.00% | 10-250-110-47 ec2.internal | 11-Apr-2009 | 09:01:25
task 200904110811 0003 m 000043 Juser/rootinputincdc/all 09:00:06 | (1mins, 10
/1949.97:0+220338475 18sec)
11-Apr-2009
100.00% | Detected possibly corrupt | 11-Apr-2009 | 09:01:28
task 200904110811 0003 m 000044 prashelioniy 060608 | fmine 1
21sec)
hdfs//p-
100.00% | 10-250-110-47.ec2.internal | 11-Apr-2009
task 200904110811 0003 m 000045 Juserlroot/inputincdc/all | 09:00:06 1
11970.92:0+208374610 21sec)

OEBPS/httpatomoreillycomsourceoreillyimages300156.png.jpg
Message ID: <20081210202343.300C01B4B8%@relay6.relay.sat.misrvr.com>
Sender: <compass-errorsamailrust om>

S Egort 1o Excel

e st com

rechian2@matrat o

el @maarat o

eciri@marratcom
et o

- recpenis@matnstcon

- reciant7@maitrat con

- rechiarts@maitriat con

- rechiario@maitrs con

el togmairatcom

- ecpirt 1 @i com

el zgmaanstcom

rechiert13@matrstcom

" cpertz@maiis con

- recperts@maitra con

- rocnt stboicnanperackssaoscom

et o

esen0@eserange ecspace com
recien @orchanse ackspace com
. ecpienz2@maistcom
rechierea@masnstcom
reclei7@matnstcom

From @0 ey s i comrnn)

o 52620 s ie2 181105

St e 250 26 2008121020343 00CO1EAB89 @l e sl com Dt o ey 6081210 182343

OEBPS/httpatomoreillycomsourceoreillyimages300107.png

OEBPS/httpatomoreillycomsourceoreillyimages300069.png

OEBPS/httpatomoreillycomsourceoreillyimages300105.png
input---

stream.map. input
.field.separator

trean.nap. output strean. reduce. inpu
field.separator _field.separator

trean. reduce . output
field.separator

OEBPS/callouts/4.png

OEBPS/callouts/3.png

OEBPS/callouts/6.png

OEBPS/callouts/5.png

OEBPS/callouts/2.png

OEBPS/httpatomoreillycomsourceoreillyimages300121.png
~
Switch 1

Rack 1

v v
Node 1 Node2 Node 3 Node 4 Node 5 Node 6
Disks Disks Disks Disks | Disks | Disks

OEBPS/callouts/1.png

OEBPS/httpatomoreillycomsourceoreillyimages300140.png
Listening data

OEBPS/callouts/8.png

OEBPS/httpatomoreillycomsourceoreillyimages300075.png
?:fglémg“: | |1 2 getblocklocations Namellode
- > FSData namenode
g InputStream —
dlient JVM

v

dient node

DataNode DataNode

datanode datanode datanode

OEBPS/callouts/7.png

OEBPS/callouts/9.png

OEBPS/httpatomoreillycomsourceoreillyimages300103.png
Copy “Sort” Reduce
phase phase phase

map task (L reduce task

!
spil otk :
e
L reduce =
Y
s ouput

buterin ¢~}
N e M
input v

erge
k
i on s

partitons

Othermaps

OEBPS/httpatomoreillycomsourceoreillyimages300111.png

OEBPS/httpatomoreillycomsourceoreillyimages300123.png
Primary Namenode Secondary Namenode

1. Roll edits|
v 2. Retrieve fsimage and edits from primary.
AN
edits.new
4. Transfer checkpaint to primary
fiimage.ckpt

5. Roll

Timage.ckpt

and edits.new

AN
fiimage

OEBPS/httpatomoreillycomsourceoreillyimages300164.png.jpg
PipeAssembly

pBy o | Every Each

OEBPS/httpatomoreillycomsourceoreillyimages300113.png
lo+oy

T T T
Lovee Lovez Lo+e

SBUIPES] JO JAQUINN

40

20

20

Temperature

