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Hadoop got its start in Nutch. A few of us were attempting to build
    an open source web search engine and having trouble managing computations
    running on even a handful of computers. Once Google published its GFS and
    MapReduce papers, the route became clear. They’d devised systems to solve
    precisely the problems we were having with Nutch. So we started, two of
    us, half-time, to try to recreate these systems as a part of Nutch.
We managed to get Nutch limping along on 20 machines, but it soon
    became clear that to handle the Web’s massive scale, we’d need to run it
    on thousands of machines and, moreover, that the job was bigger than two
    half-time developers could handle.
Around that time, Yahoo! got interested, and quickly put together a
    team that I joined. We split off the distributed computing part of Nutch,
    naming it Hadoop. With the help of Yahoo!, Hadoop soon grew into a
    technology that could truly scale to the Web.
In 2006, Tom White started contributing to Hadoop. I already knew
    Tom through an excellent article he’d written about Nutch, so I knew he
    could present complex ideas in clear prose. I soon learned that he could
    also develop software that was as pleasant to read as his prose.
From the beginning, Tom’s contributions to Hadoop showed his concern
    for users and for the project. Unlike most open source contributors, Tom
    is not primarily interested in tweaking the system to better meet his own
    needs, but rather in making it easier for anyone to use.
Initially, Tom specialized in making Hadoop run well on Amazon’s EC2
    and S3 services. Then he moved on to tackle a wide variety of problems,
    including improving the MapReduce APIs, enhancing the website, and
    devising an object serialization framework. In all cases, Tom presented
    his ideas precisely. In short order, Tom earned the role of Hadoop
    committer and soon thereafter became a member of the Hadoop Project
    Management Committee.
Tom is now a respected senior member of the Hadoop developer
    community. Though he’s an expert in many technical corners of the project,
    his specialty is making Hadoop easier to use and understand.
Given this, I was very pleased when I learned that Tom intended to
    write a book about Hadoop. Who could be better qualified? Now you have the
    opportunity to learn about Hadoop from a master—not only of the
    technology, but also of common sense and plain talk.

Preface



Martin Gardner, the mathematics and science writer, once said in an
    interview:
Beyond calculus, I am lost. That was the secret of my column’s
      success. It took me so long to understand what I was writing about that
      I knew how to write in a way most readers would understand.[1]


In many ways, this is how I feel about Hadoop. Its inner workings
    are complex, resting as they do on a mixture of distributed systems
    theory, practical engineering, and common sense. And to the uninitiated,
    Hadoop can appear alien.
But it doesn’t need to be like this. Stripped to its core, the tools
    that Hadoop provides for building distributed systems—for data storage,
    data analysis, and coordination—are simple. If there’s a common theme, it
    is about raising the level of abstraction—to create building blocks for
    programmers who just happen to have lots of data to store, or lots of data
    to analyze, or lots of machines to coordinate, and who don’t have the
    time, the skill, or the inclination to become distributed systems experts
    to build the infrastructure to handle it.
With such a simple and generally applicable feature set, it seemed
    obvious to me when I started using it that Hadoop deserved to be widely
    used. However, at the time (in early 2006), setting up, configuring, and
    writing programs to use Hadoop was an art. Things have certainly improved
    since then: there is more documentation, there are more examples, and
    there are thriving mailing lists to go to when you have questions. And yet
    the biggest hurdle for newcomers is understanding what this technology is
    capable of, where it excels, and how to use it. That is why I wrote this
    book.
The Apache Hadoop community has come a long way. Over the course of
    three years, the Hadoop project has blossomed and spun off half a dozen
    subprojects. In this time, the software has made great leaps in
    performance, reliability, scalability, and manageability. To gain even
    wider adoption, however, I believe we need to make Hadoop even easier to
    use. This will involve writing more tools; integrating with more systems;
    and writing new, improved APIs. I’m looking forward to being a part of
    this, and I hope this book will encourage and enable others to do so,
    too.
Administrative Notes



During discussion of a particular Java class in the text, I often
      omit its package name, to reduce clutter. If you need to know which
      package a class is in, you can easily look it up in Hadoop’s Java API
      documentation for the relevant subproject, linked to from the Apache
      Hadoop home page at http://hadoop.apache.org/. Or
      if you’re using an IDE, it can help using its auto-complete
      mechanism.
Similarly, although it deviates from usual style guidelines,
      program listings that import multiple classes from the same package may
      use the asterisk wildcard character to save space (for example: import org.apache.hadoop.io.*).
The sample programs in this book are available for download from
      the website that accompanies this book: http://www.hadoopbook.com/. You will also find
      instructions there for obtaining the datasets that are used in examples
      throughout the book, as well as further notes for running the programs
      in the book, and links to updates, additional resources, and my
      blog.



[1] “The science of fun,” Alex Bellos, The
          Guardian, May 31, 2008, http://www.guardian.co.uk/science/2008/may/31/maths.science.



What’s in This Book?



The rest of this book is organized as follows. Chapter 2 provides an introduction to MapReduce. Chapter 3 looks at Hadoop filesystems, and in particular HDFS,
      in depth. Chapter 4 covers the fundamentals of I/O in
      Hadoop: data integrity, compression, serialization, and file-based data
      structures.
The next four chapters cover MapReduce in depth. Chapter 5 goes through the practical steps needed to develop a
      MapReduce application. Chapter 6 looks at how MapReduce is
      implemented in Hadoop, from the point of view of a user. Chapter 7 is about the MapReduce programming model, and the
      various data formats that MapReduce can work with. Chapter 8 is on advanced MapReduce topics, including sorting and
      joining data.
Chapters 9
      and 10 are for
      Hadoop administrators, and describe how to set up and maintain a Hadoop
      cluster running HDFS and MapReduce.
Chapters 11,
      12, and 13 present Pig, HBase,
      and ZooKeeper, respectively.
Finally, Chapter 14 is a collection of case studies
      contributed by members of the Apache Hadoop community.

Conventions Used in This Book



The following typographical conventions are used in this
      book:
	Italic
	Indicates new terms, URLs, email addresses, filenames, and
            file extensions.

	Constant width
	Used for program listings, as well as within paragraphs to
            refer to program elements such as variable or function names,
            databases, data types, environment variables, statements, and
            keywords.

	Constant width
          bold
	Shows commands or other text that should be typed literally
            by the user.

	Constant width italic
	Shows text that should be replaced with user-supplied values
            or by values determined by context.



Tip
This icon signifies a tip, suggestion, or general note.

Caution
This icon indicates a warning or caution.


Using Code Examples



This book is here to help you get your job done. In general, you
      may use the code in this book in your programs and documentation. You do
      not need to contact us for permission unless you’re reproducing a
      significant portion of the code. For example, writing a program that
      uses several chunks of code from this book does not require permission.
      Selling or distributing a CD-ROM of examples from O’Reilly books does
      require permission. Answering a question by citing this book and quoting
      example code does not require permission. Incorporating a significant
      amount of example code from this book into your product’s documentation
      does require permission.
We appreciate, but do not require, attribution. An attribution
      usually includes the title, author, publisher, and ISBN. For example:
      “Hadoop: The Definitive Guide, by Tom White.
      Copyright 2009 Tom White, 978-0-596-52197-4.”
If you feel your use of code examples falls outside fair use or
      the permission given above, feel free to contact us at
      permissions@oreilly.com.

Safari® Books Online



Note
When you see a Safari® Books Online icon on the cover of your
        favorite technology book, that means the book is available online
        through the O’Reilly Network Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s a
      virtual library that lets you easily search thousands of top tech books,
      cut and paste code samples, download chapters, and find quick answers
      when you need the most accurate, current information. Try it for free at
      http://my.safaribooksonline.com.

How to Contact Us



Please address comments and questions concerning this book to the
      publisher:
	O’Reilly Media, Inc.
	1005 Gravenstein Highway North
	Sebastopol, CA 95472
	800-998-9938 (in the United States or Canada)
	707-829-0515 (international or local)
	707-829-0104 (fax)

We have a web page for this book, where we list errata, examples,
      and any additional information. You can access this page at:
	http://www.oreilly.com/catalog/9780596521974

The author also has a site for this book at:
	http://www.hadoopbook.com/

To comment or ask technical questions about this book, send email
      to:
	bookquestions@oreilly.com

For more information about our books, conferences, Resource
      Centers, and the O’Reilly Network,
      see our website at:
	http://www.oreilly.com
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Chapter 1. Meet Hadoop



	 	In pioneer days they used oxen for heavy pulling, and when one ox
      couldn’t budge a log, they didn’t try to grow a larger ox. We shouldn’t
      be trying for bigger computers, but for more systems of
      computers.
	 
	 	--Grace Hopper


Data!



We live in the data age. It’s not easy to measure the total volume
      of data stored electronically, but an IDC estimate put the size of the
      “digital universe” at 0.18 zettabytes in 2006, and is forecasting a
      tenfold growth by 2011 to 1.8 zettabytes.[2] A zettabyte is 1021 bytes, or
      equivalently one thousand exabytes, one million petabytes, or one
      billion terabytes. That’s roughly the same order of magnitude as one
      disk drive for every person in the world.
This flood of data is coming from many sources. Consider the
      following:[3]
	The New York Stock Exchange generates about one terabyte of
          new trade data per day.

	Facebook hosts approximately 10 billion photos, taking up one
          petabyte of storage.

	Ancestry.com, the genealogy site, stores around 2.5 petabytes
          of data.

	The Internet Archive stores around 2 petabytes of data, and is
          growing at a rate of 20 terabytes per month.

	The Large Hadron Collider near Geneva, Switzerland, will
          produce about 15 petabytes of
          data per year.



So there’s a lot of data out there. But you are probably wondering
      how it affects you. Most of the data is locked up in the largest web
      properties (like search engines), or scientific or financial
      institutions, isn’t it? Does the advent of “Big Data,” as it is being
      called, affect smaller organizations or individuals?
I argue that it does. Take photos, for example. My wife’s
      grandfather was an avid photographer, and took photographs throughout
      his adult life. His entire corpus of medium format, slide, and 35mm
      film, when scanned in at high-resolution, occupies around 10 gigabytes.
      Compare this to the digital photos that my family took last year, which
      take up about 5 gigabytes of space. My family is producing photographic
      data at 35 times the rate my wife’s grandfather’s did, and the rate is
      increasing every year as it becomes easier to take more and more
      photos.
More generally, the digital streams that individuals are producing
      are growing apace. Microsoft
      Research’s MyLifeBits project gives a glimpse of archiving of
      personal information that may become commonplace in the near future.
      MyLifeBits was an experiment where an individual’s interactions—phone
      calls, emails, documents—were captured electronically and stored for
      later access. The data gathered included a photo taken every minute,
      which resulted in an overall data volume of one gigabyte a
      month.
      When storage costs come down enough to make it feasible to store
      continuous audio and video, the data volume for a future MyLifeBits
      service will be many times that.
The trend is for every individual’s data footprint to grow, but
      perhaps more importantly the amount of data generated by machines will
      be even greater than that generated by people. Machine logs, RFID
      readers, sensor networks, vehicle GPS traces, retail transactions—all of these contribute to
      the growing mountain of data.
The volume of data being made publicly available increases every
      year too. Organizations no longer have to merely manage their own data:
      success in the future will be dictated to a large extent by their
      ability to extract value from other organizations’ data.
Initiatives such as Public Data Sets on Amazon Web Services,
      Infochimps.org, and theinfo.org exist to foster the
      “information commons,” where data can be freely (or in the case of AWS,
      for a modest price) shared for anyone to download and analyze. Mashups
      between different information sources make for unexpected and hitherto
      unimaginable applications.
Take, for example, the Astrometry.net project, which
      watches the Astrometry group on Flickr for new photos of the night sky.
      It analyzes each image, and identifies which part of the sky it is from,
      and any interesting celestial bodies, such as stars or galaxies.
      Although it’s still a new and experimental service, it shows the kind of
      things that are possible when data (in this case, tagged photographic
      images) is made available and used for something (image analysis) that
      was not anticipated by the creator.
It has been said that “More data usually beats better algorithms,”
      which is to say that for some problems (such as recommending movies or
      music based on past preferences), however fiendish your algorithms are,
      they can often be beaten simply by having more data (and a less
      sophisticated algorithm).[4]
The good news is that Big Data is here. The bad news is that we
      are struggling to store and analyze it.



[2] From Gantz et al., “The Diverse and Exploding Digital
          Universe,” March 2008 (http://www.emc.com/collateral/analyst-reports/diverse-exploding-digital-universe.pdf).

[3] http://www.intelligententerprise.com/showArticle.jhtml?articleID=207800705,
          http://mashable.com/2008/10/15/facebook-10-billion-photos/,
          http://blog.familytreemagazine.com/insider/Inside+Ancestrycoms+TopSecret+Data+Center.aspx,
          and http://www.archive.org/about/faqs.php,
          http://www.interactions.org/cms/?pid=1027032.

[4] The quote is from Anand Rajaraman writing about the Netflix
          Challenge (http://anand.typepad.com/datawocky/2008/03/more-data-usual.html).



Data Storage and Analysis



The problem is simple: while the storage capacities of hard drives
      have increased massively over the years, access speeds—the rate at which
      data can be read from drives—have not kept up. One typical drive from
      1990 could store 1370 MB of data and had a transfer speed of 4.4
      MB/s,[5] so you could read all the data from a full drive in around
      five minutes. Almost 20 years later one terabyte drives are the norm,
      but the transfer speed is around 100 MB/s,
      so it takes more than two and a half hours to read all the data off the
      disk.
This is a long time to read all data on a single drive—and writing
      is even slower. The obvious way to reduce the time is to read from
      multiple disks at once. Imagine if we had 100 drives, each holding one
      hundredth of the data. Working in parallel, we could read the data in
      under two minutes.
Only using one hundredth of a disk may seem wasteful. But we can
      store one hundred datasets, each of which is one terabyte, and provide
      shared access to them. We can imagine that the users of such a system
      would be happy to share access in return for shorter analysis times,
      and, statistically, that their analysis jobs would be likely to be
      spread over time, so they wouldn’t interfere with each other too
      much.
There’s more to being able to read and write data in parallel to
      or from multiple disks, though.
The first problem to solve is hardware failure: as soon as you
      start using many pieces of hardware, the chance that one will fail is
      fairly high. A common way of avoiding data loss is through replication:
      redundant copies of the data are kept by the system so that in the event
      of failure, there is another copy available. This is how RAID works, for
      instance, although Hadoop’s filesystem, the Hadoop Distributed
      Filesystem (HDFS), takes a slightly different approach, as you shall see
      later.
The second problem is that most analysis tasks need to be able to
      combine the data in some way; data read from one disk may need to be
      combined with the data from any of the other 99 disks. Various
      distributed systems allow data to be combined from multiple sources, but
      doing this correctly is notoriously challenging. MapReduce provides a
      programming model that abstracts the problem from disk reads and writes,
      transforming it into a computation over sets of keys and values. We will
      look at the details of this model in later chapters, but the important
      point for the present discussion is that there are two parts to the
      computation, the map and the reduce, and it’s the interface between the
      two where the “mixing” occurs. Like HDFS, MapReduce has reliability
      built-in.
This, in a nutshell, is what Hadoop provides: a reliable shared
      storage and analysis system. The storage is provided by HDFS, and
      analysis by MapReduce. There are other parts to Hadoop, but these
      capabilities are its kernel.


[5] These specifications are for the Seagate ST-41600n.



Comparison with Other Systems



The approach taken by MapReduce may seem like a brute-force
      approach. The premise is that the entire dataset—or at least a good
      portion of it—is processed for each query. But this is its power.
      MapReduce is a batch query processor, and the
      ability to run an ad hoc query against your whole dataset and get the
      results in a reasonable time is transformative. It changes the way you
      think about data, and unlocks data that was previously archived on tape
      or disk. It gives people the opportunity to innovate with data.
      Questions that took too long to get answered before can now be answered,
      which in turn leads to new questions and new insights.
For example, Mailtrust, Rackspace’s mail division, used Hadoop for
      processing email logs. One ad hoc query they wrote was to find the
      geographic distribution of their users. In their words:
This data was so useful that we’ve scheduled the MapReduce job
        to run monthly and we will be using this data to help us decide which
        Rackspace data centers to place new mail servers in as we
        grow.[6]


By bringing several hundred gigabytes of data together and having
      the tools to analyze it, the Rackspace engineers were able to gain an
      understanding of the data that they otherwise would never have had, and,
      furthermore, they were able to use what they had learned to improve the
      service for their customers. You can read more about how Rackspace uses
      Hadoop in Chapter 14.
RDBMS



Why can’t we use databases with lots of disks to do large-scale
        batch analysis? Why is MapReduce needed?
The answer to these questions comes from another trend in disk
        drives: seek time is improving more slowly than transfer rate. Seeking
        is the process of moving the disk’s head to a particular place on the
        disk to read or write data. It characterizes the latency of a disk
        operation, whereas the transfer rate corresponds to a disk’s
        bandwidth.
If the data access pattern is dominated by seeks, it will take
        longer to read or write large portions of the dataset than streaming
        through it, which operates at the transfer rate. On the other hand,
        for updating a small proportion of records in a database, a
        traditional B-Tree (the data structure used in relational databases,
        which is limited by the rate it can perform seeks) works well. For
        updating the majority of a database, a B-Tree is less efficient than
        MapReduce, which uses Sort/Merge to rebuild the database.
In many ways, MapReduce can be seen as a complement to an RDBMS.
        (The differences between the two systems are shown in Table 1-1.) MapReduce is a good fit for problems that
        need to analyze the whole dataset, in a batch fashion, particularly
        for ad hoc analysis. An RDBMS is good for point queries or updates,
        where the dataset has been indexed to deliver low-latency retrieval
        and update times of a relatively small amount of data. MapReduce suits
        applications where the data is written once, and read many times,
        whereas a relational database is good for datasets that are
        continually updated.
Table 1-1. RDBMS compared to MapReduce
	 	Traditional RDBMS	MapReduce
	Data size	Gigabytes	Petabytes
	Access	Interactive and batch	Batch
	Updates	Read and write many times	Write once, read many times
	Structure	Static schema	Dynamic schema
	Integrity	High	Low
	Scaling	Nonlinear	Linear



Another difference between MapReduce and an RDBMS is the amount
        of structure in the datasets that they operate on.
        Structured data is data that is organized into
        entities that have a defined format, such as XML documents or database
        tables that conform to a particular predefined schema. This is the
        realm of the RDBMS. Semi-structured data, on
        the other hand, is looser, and though there may be a schema, it is
        often ignored, so it may be used only as a guide to the structure of
        the data: for example, a spreadsheet, in which the structure is the
        grid of cells, although the cells themselves may hold any form of
        data. Unstructured data does not have any
        particular internal structure: for example, plain text or image data.
        MapReduce works well on unstructured or semi-structured data, since it
        is designed to interpret the data at processing time. In other words,
        the input keys and values for MapReduce are not an intrinsic property
        of the data, but they are chosen by the person analyzing the
        data.
Relational data is often normalized to
        retain its integrity, and remove redundancy. Normalization poses
        problems for MapReduce, since it makes reading a record a nonlocal
        operation, and one of the central assumptions that MapReduce makes is
        that it is possible to perform (high-speed) streaming reads and
        writes.
A web server log is a good example of a set of records that is
        not normalized (for example, the
        client hostnames are specified in full each time, even though the same
        client may appear many times), and this is one reason that logfiles of
        all kinds are particularly well-suited to analysis with
        MapReduce.
MapReduce is a linearly scalable programming model.
        The programmer writes two functions—a map function and a reduce
        function—each of which defines a mapping from one set of key-value
        pairs to another. These functions are oblivious to the size of the
        data or the cluster that they are operating on, so they can be used
        unchanged for a small dataset and for a massive one. More importantly,
        if you double the size of the input data, a job will run twice as
        slow. But if you also double the size of the cluster, a job will run
        as fast as the original one. This is not generally true of SQL
        queries.
Over time, however, the differences between relational databases
        and MapReduce systems are likely to blur. Both as relational databases
        start incorporating some of the ideas from MapReduce (such as Aster
        Data’s and Greenplum’s databases), and, from the other direction, as
        higher-level query languages built on MapReduce (such as Pig and Hive)
        make MapReduce systems more approachable to traditional database
        programmers.[7]

Grid Computing



The High Performance Computing (HPC) and Grid Computing
        communities have been doing large-scale data processing for years,
        using such APIs as Message Passing Interface (MPI). Broadly, the
        approach in HPC is to distribute the work across a cluster of
        machines, which access a shared filesystem, hosted by a SAN. This
        works well for predominantly compute-intensive jobs, but becomes a
        problem when nodes need to access larger data volumes (hundreds of
        gigabytes, the point at which MapReduce really starts to shine), since
        the network bandwidth is the bottleneck, and compute nodes become
        idle.
MapReduce tries to colocate the data with the compute node, so
        data access is fast since it is local.[8] This feature, known as data
        locality, is at the heart of MapReduce and is the reason
        for its good performance. Recognizing that network bandwidth is the
        most precious resource in a data center environment (it is easy to
        saturate network links by copying data around), MapReduce
        implementations go to great lengths to preserve it by explicitly
        modelling network topology. Notice that this arrangement does not
        preclude high-CPU analyses in MapReduce.
MPI gives great control to the programmer, but requires that he
        or she explicitly handle the mechanics of the data flow, exposed via
        low-level C routines and constructs, such as sockets, as well as the
        higher-level algorithm for the analysis. MapReduce operates only at
        the higher level: the programmer thinks in terms of functions of key
        and value pairs, and the data flow is implicit.
Coordinating the processes in a large-scale distributed
        computation is a challenge. The hardest aspect is gracefully handling
        partial failure—when you don’t know if a remote process has failed or
        not—and still making progress with the overall computation. MapReduce
        spares the programmer from having to think about failure, since the
        implementation detects failed
        map or reduce tasks and reschedules replacements on machines that are
        healthy. MapReduce is able to do this since it is a
        shared-nothing architecture, meaning that tasks
        have no dependence on one other. (This is a slight oversimplification,
        since the output from mappers is fed to the reducers, but this is
        under the control of the MapReduce system; in this case, it needs to
        take more care rerunning a failed reducer than rerunning a failed map,
        since it has to make sure it can retrieve the necessary map outputs,
        and if not, regenerate them by running the relevant maps again.) So
        from the programmer’s point of view, the order in which the tasks run
        doesn’t matter. By contrast, MPI programs have to explicitly manage
        their own checkpointing and recovery, which gives more control to the
        programmer, but makes them more difficult to write.
MapReduce might sound like quite a restrictive programming
        model, and in a sense it is: you are limited to key and value types
        that are related in specified ways, and mappers and reducers run with
        very limited coordination between one another (the mappers pass keys
        and values to reducers). A natural question to ask is: can you do
        anything useful or nontrivial with it?
The answer is yes. MapReduce was invented by engineers at Google
        as a system for building production search indexes because they found
        themselves solving the same problem over and over again (and MapReduce
        was inspired by older ideas from the functional programming,
        distributed computing, and database communities), but it has since
        been used for many other applications in many other industries. It is
        pleasantly surprising to see the range of algorithms that can be
        expressed in MapReduce, from image analysis, to graph-based problems, to machine learning
        algorithms.[9] It can’t solve every problem, of course, but it is a
        general data-processing tool.
You can see a sample of some of the applications that Hadoop has
        been used for in Chapter 14.

Volunteer Computing



When people first hear about Hadoop and MapReduce, they often
        ask, “How is it different from SETI@home?” SETI, the Search for
        Extra-Terrestrial Intelligence, runs a project called SETI@home in which
        volunteers donate CPU time from their otherwise idle computers to
        analyze radio telescope data for signs of intelligent life outside
        earth. SETI@home is the most well-known of many volunteer
        computing projects; others include the Great Internet
        Mersenne Prime Search (to search for large prime numbers) and
        Folding@home (to understand protein folding, and how it relates to
        disease).
Volunteer computing projects work by breaking the problem they
        are trying to solve into chunks called work
        units, which are sent to computers around the world to be
        analyzed. For example, a SETI@home work unit is about 0.35 MB of radio
        telescope data, and takes hours or days to analyze on a typical home
        computer. When the analysis is completed, the results are sent back to
        the server, and the client gets another work unit. As a precaution to
        combat cheating, each work unit is sent to three different machines,
        and needs at least two results to agree to be accepted.
Although SETI@home may be superficially similar to MapReduce
        (breaking a problem into independent pieces to be worked on in
        parallel), there are some significant differences. The SETI@home
        problem is very CPU-intensive, which makes it suitable for running on
        hundreds of thousands of computers across the world,[10] since the time to transfer the work unit is dwarfed by
        the time to run the computation on it. Volunteers are donating CPU
        cycles, not bandwidth.
MapReduce is designed to run jobs that last minutes or hours on
        trusted, dedicated hardware running in a single data center with very
        high aggregate bandwidth interconnects. By contrast, SETI@home runs a
        perpetual computation on untrusted machines on the Internet with
        highly variable connection speeds and no data locality.



[6] http://blog.racklabs.com/?p=66

[7] In January 2007, David J. DeWitt and Michael Stonebraker
            caused a stir by publishing “MapReduce: A major step backwards”
            (http://www.databasecolumn.com/2008/01/mapreduce-a-major-step-back.html),
            in which they criticized MapReduce for being a poor substitute for
            relational databases. Many commentators argued that it was a false
            comparison (see, for example, Mark C. Chu-Carroll’s “Databases are
            hammers; MapReduce is a screwdriver,” http://scienceblogs.com/goodmath/2008/01/databases_are_hammers_mapreduc.php),
            and DeWitt and Stonebraker followed up with “MapReduce II” (http://www.databasecolumn.com/2008/01/mapreduce-continued.html),
            where they addressed the main topics brought up by others.

[8] Jim Gray was an early advocate of putting the computation
            near the data. See “Distributed Computing Economics,” March 2003,
            http://research.microsoft.com/apps/pubs/default.aspx?id=70001.

[9] Apache Mahout (http://lucene.apache.org/mahout/) is a project to
            build machine learning libraries (such as classification and
            clustering algorithms) that run on Hadoop.

[10] In January 2008, SETI@home was reported at http://www.planetary.org/programs/projects/setiathome/setiathome_20080115.html
            to be processing 300 gigabytes a day, using 320,000 computers
            (most of which are not dedicated to SETI@home; they are used for
            other things, too).



A Brief History of Hadoop



Hadoop was created by Doug Cutting, the creator of Apache Lucene,
      the widely used text search library. Hadoop has its origins in Apache
      Nutch, an open source web search engine, itself a part of the Lucene
      project.
The Origin of the Name “Hadoop”
The name Hadoop is not an acronym; it’s a made-up name. The
        project’s creator, Doug Cutting, explains how the name came
        about:
The name my kid gave a stuffed yellow elephant. Short,
          relatively easy to spell and pronounce, meaningless, and not used
          elsewhere: those are my naming criteria. Kids are good at generating
          such. Googol is a kid’s term.


Subprojects and “contrib” modules in Hadoop also tend to have
        names that are unrelated to their function, often with an elephant or
        other animal theme (“Pig,” for example). Smaller components are given
        more descriptive (and therefore more mundane) names. This is a good
        principle, as it means you can generally work out what something does
        from its name. For example, the jobtracker[11] keeps track of MapReduce jobs.

Building a web search engine from scratch was an ambitious goal,
      for not only is the software required to crawl and index websites
      complex to write, but it is also a challenge to run without a dedicated
      operations team, since there are so many moving parts. It’s expensive
      too: Mike Cafarella and Doug Cutting estimated a system supporting a
      1-billion-page index would cost around half a million dollars in
      hardware, with a monthly running cost of $30,000.[12] Nevertheless, they believed it was a worthy goal, as it
      would open up and ultimately democratize search engine
      algorithms.
Nutch was started in 2002, and a working crawler and search system
      quickly emerged. However, they realized that their architecture wouldn’t
      scale to the billions of pages on the Web. Help was at hand with the
      publication of a paper in 2003 that described the architecture of
      Google’s distributed filesystem, called GFS, which was being used in
      production at Google.[13] GFS, or something like it, would solve their storage needs
      for the very large files generated as a part of the web crawl and
      indexing process. In particular, GFS would free up time being spent on
      administrative tasks such as managing storage nodes. In 2004, they set
      about writing an open source implementation, the Nutch Distributed
      Filesystem (NDFS).
In 2004, Google published the paper that introduced MapReduce to
      the world.[14] Early in 2005, the Nutch developers had a working
      MapReduce implementation in Nutch, and by the middle of that year all
      the major Nutch algorithms had been ported to run using MapReduce and
      NDFS.
NDFS and the MapReduce implementation in Nutch were applicable
      beyond the realm of search, and in February 2006 they moved out of Nutch
      to form an independent subproject of Lucene called Hadoop.
      At around the same time, Doug Cutting joined Yahoo!, which provided a
      dedicated team and the resources to turn Hadoop into a system that ran
      at web scale (see sidebar). This was demonstrated in February 2008 when
      Yahoo! announced that its production search index was being generated by
      a 10,000-core Hadoop cluster.[15]
In January 2008, Hadoop was made its own top-level project at
      Apache, confirming its success and its diverse, active community. By
      this timem Hadoop was being used by many other companies besides Yahoo!,
      such as Last.fm, Facebook, and the New York Times
      (some applications are covered in the case studies in Chapter 14 and on the Hadoop
      wiki.
In one well-publicized feat, the New York
      Times used Amazon’s EC2 compute cloud to crunch through four
      terabytes of scanned archives from the paper converting them to PDFs for
      the Web.[16] The processing took less than 24 hours to run using 100
      machines, and the project probably wouldn’t have been embarked on
      without the combination of Amazon’s pay-by-the-hour model (which allowed
      the NYT to access a large number of machines for a short period), and
      Hadoop’s easy-to-use parallel programming model.
In April 2008, Hadoop broke a world record to become the fastest
      system to sort a terabyte of data. Running on a 910-node cluster, Hadoop
      sorted one terabyte in 209 seconds (just under 3½ minutes), beating the
      previous year’s winner of 297 seconds (described in detail in TeraByte Sort on Apache Hadoop). In November of the same year, Google
      reported that its MapReduce implementation sorted one terabyte in 68
      seconds.[17] As this book was going to press (May 2009), it was
      announced that a team at Yahoo! used Hadoop to sort one terabyte in 62
      seconds.
Hadoop at Yahoo!
Building Internet-scale search engines requires huge amounts of
        data and therefore large numbers of machines to process it. Yahoo!
        Search consists of four primary components: the
        Crawler, which downloads pages from web
        servers; the WebMap, which builds a graph of
        the known Web; the Indexer, which builds a
        reverse index to the best pages; and the
        Runtime, which answers users’ queries. The
        WebMap is a graph that consists of roughly 1 trillion
        (1012) edges each representing a web link
        and 100 billion (1011) nodes each
        representing distinct URLs. Creating and analyzing such a large graph
        requires a large number of computers running for many days. In early
        2005, the infrastructure for the WebMap, named
        Dreadnaught, needed to be redesigned to scale
        up to more nodes. Dreadnaught had successfully scaled from 20 to 600
        nodes, but required a complete redesign to scale up further.
        Dreadnaught is similar to MapReduce in many ways, but provides more
        flexibility and less structure. In particular, each fragment in a
        Dreadnaught job can send output to each of the fragments in the next
        stage of the job, but the sort was all done in library code. In
        practice, most of the WebMap phases were pairs that corresponded to
        MapReduce. Therefore, the WebMap applications would not require
        extensive refactoring to fit into MapReduce.
Eric Baldeschwieler (Eric14) created a small team and we
        starting designing and prototyping a new framework written in
        C++ modeled after GFS and MapReduce to replace Dreadnaught. Although
        the immediate need was for a new framework for WebMap, it was clear
        that standardization of the batch platform across Yahoo! Search was
        critical and by making the framework general enough to support other
        users, we could better leverage investment in the new
        platform.
At the same time, we were watching Hadoop, which was part of
        Nutch, and its progress. In January 2006, Yahoo! hired Doug Cutting,
        and a month later we decided to abandon our prototype and adopt
        Hadoop. The advantage of Hadoop over our prototype and design was that
        it was already working with a real application (Nutch) on 20 nodes.
        That allowed us to bring up a research cluster two months later and
        start helping real customers use the new framework much sooner than we
        could have otherwise. Another advantage, of course, was that since
        Hadoop was already open source, it was easier (although far from
        easy!) to get permission from Yahoo!’s legal department to work in
        open source. So we set up a 200-node cluster for the researchers in
        early 2006 and put the WebMap conversion plans on hold while we
        supported and improved Hadoop for the research users.
Here’s a quick timeline of how things have progressed:
	2004—Initial versions of what is now Hadoop Distributed
            Filesystem and MapReduce implemented by Doug Cutting and Mike
            Cafarella.

	December 2005—Nutch ported to the new framework. Hadoop runs
            reliably on 20 nodes.

	January 2006—Doug Cutting joins Yahoo!.

	February 2006—Apache Hadoop project officially started to
            support the standalone development of MapReduce and HDFS.

	February 2006—Adoption of Hadoop by Yahoo! Grid team.

	April 2006—Sort benchmark (10 GB/node) run on 188 nodes in
            47.9 hours.

	May 2006—Yahoo! set up a Hadoop research cluster—300
            nodes.

	May 2006—Sort benchmark run on 500 nodes in 42 hours (better
            hardware than April benchmark).

	October 2006—Research cluster reaches 600 nodes.

	December 2006—Sort benchmark run on 20 nodes in 1.8 hours,
            100 nodes in 3.3 hours, 500 nodes in 5.2 hours, 900 nodes in 7.8
            hours.

	January 2007—Research cluster reaches 900 nodes.

	April 2007—Research clusters—2 clusters of 1000
            nodes.

	April 2008—Won the 1 terabyte sort benchmark in 209 seconds
            on 900 nodes.

	October 2008—Loading 10 terabytes of data per a day on to
            research clusters.

	March 2009—17 clusters with a total of 24,000 nodes.

	April 2009—Won the minute sort by sorting 500 GB in 59
            seconds (on 1400 nodes) and the 100 terabyte sort in 173 minutes
            (on 3400 nodes).






[11] In this book, we use the lowercase form, “jobtracker,” to
            denote the entity when it’s being referred to generally, and the
            CamelCase form JobTracker to denote the
            Java class that implements it.

[12] Mike Cafarella and Doug Cutting, “Building Nutch: Open Source
          Search,” ACM Queue, April 2004, http://queue.acm.org/detail.cfm?id=988408.

[13] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung, “The
          Google File System,” October 2003, http://labs.google.com/papers/gfs.html.

[14] Jeffrey Dean and Sanjay Ghemawat, “MapReduce: Simplified Data
          Processing on Large Clusters ,” December 2004, http://labs.google.com/papers/mapreduce.html.

[15] “Yahoo! Launches World’s Largest Hadoop Production
          Application,” 19 February 2008, http://developer.yahoo.net/blogs/hadoop/2008/02/yahoo-worlds-largest-production-hadoop.html.

[16] Derek Gottfrid, “Self-service, Prorated Super Computing Fun!,”
          1 November 2007, http://open.blogs.nytimes.com/2007/11/01/self-service-prorated-super-computing-fun/.

[17] “Sorting 1PB with MapReduce,” 21 November 2008, http://googleblog.blogspot.com/2008/11/sorting-1pb-with-mapreduce.html.



The Apache Hadoop Project



Today, Hadoop is a collection of related subprojects that fall
      under the umbrella of infrastructure for distributed computing. These
      projects are hosted by the Apache
      Software Foundation, which provides support for a community of open source software
      projects. Although Hadoop is best known for MapReduce and its distributed filesystem
      (HDFS, renamed from NDFS), the other subprojects provide complementary
      services, or build on the core to add higher-level abstractions. The
      subprojects, and where they sit in the technology stack, are shown in
      Figure 1-1 and described briefly
      here:
	Core
	A set of components and interfaces for distributed
            filesystems and general I/O (serialization, Java RPC, persistent
            data structures).

	Avro
	A data serialization system for efficient, cross-language
            RPC, and persistent data storage. (At the time of this writing,
            Avro had been created only as a new subproject, and no other
            Hadoop subprojects were using it yet.)

	MapReduce
	A distributed data processing model and execution
            environment that runs on large clusters of commodity
            machines.

	HDFS
	A distributed filesystem that runs on large clusters of
            commodity machines.

	Pig
	A data flow language and execution environment for exploring
            very large datasets. Pig runs on HDFS and MapReduce
            clusters.

	HBase
	A distributed, column-oriented database. HBase uses HDFS for
            its underlying storage, and supports both batch-style computations
            using MapReduce and point queries (random reads).

	ZooKeeper
	A distributed, highly available coordination service.
            ZooKeeper provides primitives such as distributed locks that can
            be used for building distributed applications.

	Hive
	A distributed data warehouse. Hive manages data stored in
            HDFS and provides a query language based on SQL (and which is
            translated by the runtime engine to MapReduce jobs) for querying
            the data.

	Chukwa
	A distributed data collection and analysis system. Chukwa
            runs collectors that store data in HDFS, and it uses MapReduce to
            produce reports. (At the time of this writing, Chukwa had only
            recently graduated from a “contrib” module in Core to its own
            subproject.)



[image: Hadoop subprojects]

Figure 1-1. Hadoop subprojects



Chapter 2. MapReduce



MapReduce is a programming model for data processing. The model is
    simple, yet not too simple to express useful programs in. Hadoop can run
    MapReduce programs written in various languages; in this chapter, we shall
    look at the same program expressed in Java, Ruby, Python, and C++. Most
    importantly, MapReduce programs are inherently parallel, thus putting very
    large-scale data analysis into the hands of anyone with enough machines at
    their disposal. MapReduce comes into its own for large datasets, so let’s
    start by looking at one.
A Weather Dataset



For our example, we will write a program that mines weather data.
      Weather sensors collecting data every hour at many locations across the
      globe gather a large volume of log data, which is a good candidate for
      analysis with MapReduce, since it is semi-structured and
      record-oriented.
Data Format



The data we will use is from the National Climatic Data Center
        (NCDC, http://www.ncdc.noaa.gov/). The data is
        stored using a line-oriented ASCII format, in which each line is a
        record. The format supports a rich set of meteorological elements,
        many of which are optional or with variable data lengths. For
        simplicity, we shall focus on the basic elements, such as temperature,
        which are always present and are of fixed width.
Example 2-1 shows a sample line with some of
        the salient fields highlighted. The line has been split into multiple
        lines to show each field: in the real file, fields are packed into one
        line with no delimiters.
Example 2-1. Format of a National Climate Data Center record
0057
332130   # USAF weather station identifier
99999    # WBAN weather station identifier
19500101 # observation date
0300     # observation time
4
+51317   # latitude (degrees x 1000)
+028783  # longitude (degrees x 1000)
FM-12
+0171    # elevation (meters)
99999
V020
320      # wind direction (degrees)
1        # quality code
N
0072
1
00450    # sky ceiling height (meters)
1        # quality code
C
N
010000   # visibility distance (meters)
1        # quality code
N
9
-0128    # air temperature (degrees Celsius x 10)
1        # quality code
-0139    # dew point temperature (degrees Celsius x 10)
1        # quality code
10268    # atmospheric pressure (hectopascals x 10)
1        # quality code


Data files are organized by date and weather station. There is a
        directory for each year from 1901 to 2001, each containing a gzipped
        file for each weather station with its readings for that year. For
        example, here are the first entries for 1990:
% ls raw/1990 | head
010010-99999-1990.gz
010014-99999-1990.gz
010015-99999-1990.gz
010016-99999-1990.gz
010017-99999-1990.gz
010030-99999-1990.gz
010040-99999-1990.gz
010080-99999-1990.gz
010100-99999-1990.gz
010150-99999-1990.gz
Since there are tens of thousands of weather stations, the whole
        dataset is made up of a large number of relatively small files. It’s
        generally easier and more efficient to process a smaller number of
        relatively large files, so the data was preprocessed so that each
        year’s readings were concatenated into a single file. (The means by
        which this was carried out is described in Appendix C.)



Analyzing the Data with Unix Tools



What’s the highest recorded global temperature for each year in
      the dataset? We will answer this first without using Hadoop, as this
      information will provide a performance baseline, as well as a useful
      means to check our results.
The classic tool for processing line-oriented data is awk. Example 2-2 is a
      small script to calculate the maximum temperature for each
      year.
Example 2-2. A program for finding the maximum recorded temperature by year
        from NCDC weather records
#!/usr/bin/env bash
for year in all/*
do
  echo -ne `basename $year .gz`"\t"
  gunzip -c $year | \
    awk '{ temp = substr($0, 88, 5) + 0;
           q = substr($0, 93, 1);
           if (temp !=9999 && q ~ /[01459]/ && temp > max) max = temp }
         END { print max }'
done


The script loops through the compressed year files, first printing
      the year, and then processing each file using awk. The awk script extracts two fields from the data:
      the air temperature and the quality code. The air temperature value is
      turned into an integer by adding 0. Next, a test is applied to see if
      the temperature is valid (the value 9999 signifies a missing value in
      the NCDC dataset), and if the quality code indicates that the reading is
      not suspect or erroneous. If the reading is OK, the value is compared
      with the maximum value seen so far, which is updated if a new maximum is
      found. The END block is executed
      after all the lines in the file have been processed, and prints the
      maximum value.
Here is the beginning of a run:
% ./max_temperature.sh
1901	317
1902	244
1903	289
1904	256
1905	283
...

The temperature values in the source file are scaled by a factor
      of 10, so this works out as a maximum temperature of 31.7°C for 1901
      (there were very few readings at the beginning of the century, so this
      is plausible). The complete run for the century took 42 minutes in one
      run on a single EC2 High-CPU Extra Large Instance.
To speed up the processing, we need to run parts of the program in
      parallel. In theory, this is straightforward: we could process different
      years in different processes, using all the available hardware threads
      on a machine. There are a few problems with this, however.
First, dividing the work into equal-size pieces isn’t always easy
      or obvious. In this case, the file size for different years varies
      widely, so some processes will finish much earlier than others. Even if
      they pick up further work, the whole run is dominated by the longest
      file. An alternative approach is to split the input into fixed-size
      chunks and assign each chunk to a process.
Second, combining the results from independent processes can need
      further processing. In this case, the result for each year is
      independent of other years and may be combined by concatenating all the
      results, and sorting by year. If using the fixed-size chunk approach,
      the combination is more delicate. For this example, data for a
      particular year will typically be split into several chunks, each
      processed independently. We’ll end up with the maximum temperature for
      each chunk, so the final step is to look for the highest of these
      maximums, for each year.
Third, you are still limited by the processing capacity of a
      single machine. If the best time you can achieve is 20 minutes with the
      number of processors you have, then that’s it. You can’t make it go
      faster. Also, some datasets grow beyond the capacity of a single
      machine. When we start using multiple machines, a whole host of other
      factors come into play, mainly falling in the category of coordination
      and reliability. Who runs the overall job? How do we deal with failed
      processes?
So, though it’s feasible to parallelize the processing, in
      practice it’s messy. Using a framework like Hadoop to take care of these
      issues is a great help.

Analyzing the Data with Hadoop



To take advantage of the parallel processing that Hadoop provides,
      we need to express our query as a MapReduce job. After some local,
      small-scale testing, we will be able to run it on a cluster of
      machines.
Map and Reduce



MapReduce works by breaking the processing into two phases: the
        map phase and the reduce phase. Each phase has key-value pairs as
        input and output, the types of which may be chosen by the programmer.
        The programmer also specifies two functions: the map function and the
        reduce function.
The input to our map phase is the raw NCDC data. We choose a
        text input format that gives us each line in the dataset as a text
        value. The key is the offset of the beginning of the line from the
        beginning of the file, but as we have no need for this, we ignore
        it.
Our map function is simple. We pull out the year and the air
        temperature, since these are the only fields we are interested in. In
        this case, the map function is just a data preparation phase, setting
        up the data in such a way that the reducer function can do its work on
        it: finding the maximum temperature for each year. The map function is
        also a good place to drop bad records: here we filter out temperatures
        that are missing, suspect, or erroneous.
To visualize the way the map works, consider the following
        sample lines of input data (some unused columns have been dropped to
        fit the page, indicated by ellipses):
0067011990999991950051507004...9999999N9+00001+99999999999...
0043011990999991950051512004...9999999N9+00221+99999999999...
0043011990999991950051518004...9999999N9-00111+99999999999...
0043012650999991949032412004...0500001N9+01111+99999999999...
0043012650999991949032418004...0500001N9+00781+99999999999...
These lines are presented to the map function as the key-value
        pairs:
(0, 0067011990999991950051507004...9999999N9+00001+99999999999...)
(106, 0043011990999991950051512004...9999999N9+00221+99999999999...)
(212, 0043011990999991950051518004...9999999N9-00111+99999999999...)
(318, 0043012650999991949032412004...0500001N9+01111+99999999999...)
(424, 0043012650999991949032418004...0500001N9+00781+99999999999...)
The keys are the line offsets within the file, which we ignore
        in our map function. The map function merely extracts the year and the
        air temperature (indicated in bold text), and emits them as its
        output. (The temperature values have been interpreted as integers.)
(1950, 0)
(1950, 22)
(1950, −11)
(1949, 111)
(1949, 78)
The output from the map function is processed by the MapReduce
        framework before being sent to the reduce function. This processing
        sorts and groups the key-value pairs by key. So, continuing the
        example, our reduce function sees the following input:
(1949, [111, 78])
(1950, [0, 22, −11])
Each year appears with a list of all its air temperature
        readings. All the reduce function has to do now is iterate through the
        list and pick up the maximum reading:
(1949, 111)
(1950, 22)
This is the final output: the maximum global temperature
        recorded in each year.
The whole data flow is illustrated in Figure 2-1. At the bottom of the diagram is a Unix
        pipeline, which mimics the whole MapReduce flow, and which we will see
        again later in the chapter when we look at Hadoop Streaming.
[image: MapReduce logical data flow]

Figure 2-1. MapReduce logical data flow


Java MapReduce



Having run through how the MapReduce program works, the next
        step is to express it in code. We need three things: a map function, a
        reduce function, and some code to run the job. The map function is
        represented by an implementation of the Mapper interface, which declares a map() method. Example 2-3 shows the implementation of our map
        function.
Example 2-3. Mapper for maximum temperature example
import java.io.IOException;

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapred.MapReduceBase;
import org.apache.hadoop.mapred.Mapper;
import org.apache.hadoop.mapred.OutputCollector;
import org.apache.hadoop.mapred.Reporter;

public class MaxTemperatureMapper extends MapReduceBase
  implements Mapper<LongWritable, Text, Text, IntWritable> {

  private static final int MISSING = 9999;
  
  public void map(LongWritable key, Text value,
      OutputCollector<Text, IntWritable> output, Reporter reporter)
      throws IOException {
    
    String line = value.toString();
    String year = line.substring(15, 19);
    int airTemperature;
    if (line.charAt(87) == '+') { // parseInt doesn't like leading plus signs
      airTemperature = Integer.parseInt(line.substring(88, 92));
    } else {
      airTemperature = Integer.parseInt(line.substring(87, 92));
    }
    String quality = line.substring(92, 93);
    if (airTemperature != MISSING && quality.matches("[01459]")) {
      output.collect(new Text(year), new IntWritable(airTemperature));
    }
  }
}



The Mapper interface is a
        generic type, with four formal type parameters that specify the input
        key, input value, output key, and output value types of the map
        function. For the present example, the input key is a long integer
        offset, the input value is a line of text, the output key is a year,
        and the output value is an air temperature (an integer). Rather than
        use built-in Java types, Hadoop provides its own set of basic types
        that are optimized for network serialization. These are found in the
        org.apache.hadoop.io package. Here
        we use LongWritable, which
        corresponds to a Java Long,
        Text (like Java String), and IntWritable (like Java Integer).
The map() method is passed a
        key and a value. We convert the Text value containing the line of input into
        a Java String, then use its
        substring() method to extract the
        columns we are interested in.
The map() method also
        provides an instance of OutputCollector to write the output to. In
        this case, we write the year as a Text object (since we are just using it as a
        key), and the temperature wrapped in an IntWritable. We write an output record only
        if the temperature is present and the quality code indicates the
        temperature reading is OK.
The reduce function is similarly defined using a Reducer, as illustrated in Example 2-4.
Example 2-4. Reducer for maximum temperature example
import java.io.IOException;
import java.util.Iterator;

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapred.MapReduceBase;
import org.apache.hadoop.mapred.OutputCollector;
import org.apache.hadoop.mapred.Reducer;
import org.apache.hadoop.mapred.Reporter;

public class MaxTemperatureReducer extends MapReduceBase
  implements Reducer<Text, IntWritable, Text, IntWritable> {

  public void reduce(Text key, Iterator<IntWritable> values,
      OutputCollector<Text, IntWritable> output, Reporter reporter)
      throws IOException {
    
    int maxValue = Integer.MIN_VALUE;
    while (values.hasNext()) {
      maxValue = Math.max(maxValue, values.next().get());
    }
    output.collect(key, new IntWritable(maxValue));
  }
}



Again, four formal type parameters are used to specify the input
        and output types, this time for the reduce function. The input types
        of the reduce function must match the output type of the map function:
        Text and IntWritable. And in this case, the output
        types of the reduce function are Text and IntWritable, for a year and its maximum
        temperature, which we find by iterating through the temperatures and
        comparing each with a record of the highest found so far.
The third piece of code runs the MapReduce job (see Example 2-5).
Example 2-5. Application to find the maximum temperature in the weather
          dataset
import java.io.IOException;

import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapred.FileInputFormat;
import org.apache.hadoop.mapred.FileOutputFormat;
import org.apache.hadoop.mapred.JobClient;
import org.apache.hadoop.mapred.JobConf;

public class MaxTemperature {

  public static void main(String[] args) throws IOException {
    if (args.length != 2) {
      System.err.println("Usage: MaxTemperature <input path> <output path>");
      System.exit(-1);
    }
    
    JobConf conf = new JobConf(MaxTemperature.class);
    conf.setJobName("Max temperature");

    FileInputFormat.addInputPath(conf, new Path(args[0]));
    FileOutputFormat.setOutputPath(conf, new Path(args[1]));
    
    conf.setMapperClass(MaxTemperatureMapper.class);
    conf.setReducerClass(MaxTemperatureReducer.class);

    conf.setOutputKeyClass(Text.class);
    conf.setOutputValueClass(IntWritable.class);

    JobClient.runJob(conf);
  }
}



A JobConf object forms the
        specification of the job. It gives you control over how the job is
        run. When we run this job on a Hadoop cluster, we will package the
        code into a JAR file (which Hadoop will distribute round the cluster).
        Rather than explicitly specify the name of the JAR file, we can pass a
        class in the JobConf constructor,
        which Hadoop will use to locate the relevant JAR file by looking for
        the JAR file containing this class.
Having constructed a JobConf
        object, we specify the input and output paths. An input path is
        specified by calling the static addInputPath() method on FileInputFormat, and it can be a single
        file, a directory (in which case, the input forms all the files in
        that directory), or a file pattern. As the name suggests, addInputPath() can be called more than once
        to use input from multiple paths.
The output path (of which there is only one) is specified by the
        static setOutputPath() method on
        FileOutputFormat. It specifies a
        directory where the output files from the reducer functions are
        written. The directory shouldn’t exist before running the job, as
        Hadoop will complain and not run the job. This precaution is to
        prevent data loss (it can be very annoying to accidentally overwrite
        the output of a long job with another).
Next, we specify the map and reduce types to use via the
        setMapperClass() and setReducerClass() methods.
The setOutputKeyClass() and
        setOutputValueClass() methods
        control the output types for the map and the reduce functions, which
        are often the same, as they are in our case. If they are different,
        then the map output types can be set using the methods setMapOutputKeyClass()
        and setMapOutputValueClass().
The input types are controlled via the input format, which we
        have not explicitly set since we are using the default TextInputFormat.
After setting the classes that define the map and reduce
        functions, we are ready to run the job. The static runJob() method on JobClient submits the job and waits for it
        to finish, writing information about its progress to the
        console.
A test run



After writing a MapReduce job, it’s normal to try it out on a
          small dataset to flush out any immediate problems with the code.
          First install Hadoop in standalone mode—there are instructions for
          how to do this in Appendix A. This is the mode in which
          Hadoop runs using the local filesystem with a local job runner.
          Let’s test it on the five-line sample discussed earlier (the output
          has been slightly reformatted to fit the page):
% export HADOOP_CLASSPATH=build/classes
% hadoop MaxTemperature input/ncdc/sample.txt output
09/04/07 12:34:35 INFO jvm.JvmMetrics: Initializing JVM Metrics with processName=Job
Tracker, sessionId=
09/04/07 12:34:35 WARN mapred.JobClient: Use GenericOptionsParser for parsing the 
arguments. Applications should implement Tool for the same.
09/04/07 12:34:35 WARN mapred.JobClient: No job jar file set.  User classes may not 
be found. See JobConf(Class) or JobConf#setJar(String).
09/04/07 12:34:35 INFO mapred.FileInputFormat: Total input paths to process : 1
09/04/07 12:34:35 INFO mapred.JobClient: Running job: job_local_0001
09/04/07 12:34:35 INFO mapred.FileInputFormat: Total input paths to process : 1
09/04/07 12:34:35 INFO mapred.MapTask: numReduceTasks: 1
09/04/07 12:34:35 INFO mapred.MapTask: io.sort.mb = 100
09/04/07 12:34:35 INFO mapred.MapTask: data buffer = 79691776/99614720
09/04/07 12:34:35 INFO mapred.MapTask: record buffer = 262144/327680
09/04/07 12:34:35 INFO mapred.MapTask: Starting flush of map output
09/04/07 12:34:36 INFO mapred.MapTask: Finished spill 0
09/04/07 12:34:36 INFO mapred.TaskRunner: Task:attempt_local_0001_m_000000_0 is 
done. And is in the process of commiting
09/04/07 12:34:36 INFO mapred.LocalJobRunner: file:/Users/tom/workspace/htdg/input/n
cdc/sample.txt:0+529
09/04/07 12:34:36 INFO mapred.TaskRunner: Task 'attempt_local_0001_m_000000_0' done.
09/04/07 12:34:36 INFO mapred.LocalJobRunner: 
09/04/07 12:34:36 INFO mapred.Merger: Merging 1 sorted segments
09/04/07 12:34:36 INFO mapred.Merger: Down to the last merge-pass, with 1 segments 
left of total size: 57 bytes
09/04/07 12:34:36 INFO mapred.LocalJobRunner: 
09/04/07 12:34:36 INFO mapred.TaskRunner: Task:attempt_local_0001_r_000000_0 is done
. And is in the process of commiting
09/04/07 12:34:36 INFO mapred.LocalJobRunner: 
09/04/07 12:34:36 INFO mapred.TaskRunner: Task attempt_local_0001_r_000000_0 is 
allowed to commit now
09/04/07 12:34:36 INFO mapred.FileOutputCommitter: Saved output of task 
'attempt_local_0001_r_000000_0' to file:/Users/tom/workspace/htdg/output
09/04/07 12:34:36 INFO mapred.LocalJobRunner: reduce > reduce
09/04/07 12:34:36 INFO mapred.TaskRunner: Task 'attempt_local_0001_r_000000_0' done.
09/04/07 12:34:36 INFO mapred.JobClient:  map 100% reduce 100%
09/04/07 12:34:36 INFO mapred.JobClient: Job complete: job_local_0001
09/04/07 12:34:36 INFO mapred.JobClient: Counters: 13
09/04/07 12:34:36 INFO mapred.JobClient:   FileSystemCounters
09/04/07 12:34:36 INFO mapred.JobClient:     FILE_BYTES_READ=27571
09/04/07 12:34:36 INFO mapred.JobClient:     FILE_BYTES_WRITTEN=53907
09/04/07 12:34:36 INFO mapred.JobClient:   Map-Reduce Framework
09/04/07 12:34:36 INFO mapred.JobClient:     Reduce input groups=2
09/04/07 12:34:36 INFO mapred.JobClient:     Combine output records=0
09/04/07 12:34:36 INFO mapred.JobClient:     Map input records=5
09/04/07 12:34:36 INFO mapred.JobClient:     Reduce shuffle bytes=0
09/04/07 12:34:36 INFO mapred.JobClient:     Reduce output records=2
09/04/07 12:34:36 INFO mapred.JobClient:     Spilled Records=10
09/04/07 12:34:36 INFO mapred.JobClient:     Map output bytes=45
09/04/07 12:34:36 INFO mapred.JobClient:     Map input bytes=529
09/04/07 12:34:36 INFO mapred.JobClient:     Combine input records=0
09/04/07 12:34:36 INFO mapred.JobClient:     Map output records=5
09/04/07 12:34:36 INFO mapred.JobClient:     Reduce input records=5
When the hadoop command is invoked with a
          classname as the first argument, it launches a JVM to run the class.
          It is more convenient to use hadoop than straight
          java since the former adds the Hadoop libraries
          (and their dependencies) to the classpath, and picks up the Hadoop
          configuration too. To add the application classes to the classpath,
          we’ve defined an environment variable called HADOOP_CLASSPATH, which the
          hadoop script picks up.
Note
When running in local (standalone) mode, the programs in
            this book all assume that you have set the HADOOP_CLASSPATH in this way. The
            commands should be run from the directory that the example code is
            installed in.

The output from running the job provides some useful
          information. (The warning about the job JAR file not being found is
          expected, since we are running in local mode without a JAR. We won’t
          see this warning when we run on a cluster.) For example, we can see
          that the job was given an ID of job_local_0001, and it ran one map task
          and one reduce task (with the IDs attempt_local_0001_m_000000_0 and attempt_local_0001_r_000000_0). Knowing
          the job and task IDs can be very useful when debugging MapReduce
          jobs.
The last section of the output, entitled “Counters,” shows the
          statistics that Hadoop generates for each job it runs. These are
          very useful for checking whether the amount of data processed is
          what you expected. For example, we can follow the number of records
          that went through the system: five map inputs produced five map
          outputs, then five reduce inputs in two groups produced two reduce
          outputs.
The output was written to the output directory, which contains one
          output file per reducer. The job had a single reducer, so we find a
          single file, named part-00000:
% cat output/part-00000
1949	111
1950	22
This result is the same as when we went through it by hand
          earlier. We interpret this as saying that the maximum temperature
          recorded in 1949 was 11.1°C, and in 1950 it was 2.2°C.

The new Java MapReduce API



Release 0.20.0 of Hadoop included a new Java MapReduce API,
          sometimes referred to as “Context Objects,” designed to make the API
          easier to evolve in the future. The new API is type-incompatible
          with the old, however, so applications need to be rewritten to take
          advantage of it.[18]
There are several notable differences between the two
          APIs:
	The new API favors abstract classes over interfaces, since
              these are easier to evolve. For example, you can add a method
              (with a default implementation) to an abstract class without
              breaking old implementations of the class. In the new API, the
              Mapper
              and Reducer interfaces are
              now abstract classes.

	The new API is in the org.apache.hadoop.mapreduce package
              (and subpackages). The old API is found in org.apache.hadoop.mapred.

	The new API makes extensive use of context objects that
              allow the user code to communicate with the MapReduce system.
              The MapContext, for example,
              essentially unifies the role of the JobConf, the OutputCollector, and the Reporter.

	The new API supports both a “push” and a “pull” style of
              iteration. In both APIs, key-value record pairs are pushed to
              the mapper, but in addition, the new API allows a mapper to pull
              records from within the map() method.
              The same goes for the reducer. An example of how the “pull”
              style can be useful is processing records in batches, rather
              than one by one.

	Configuration has been unified. The old API has a special
              JobConf object for job
              configuration, which is an extension of Hadoop’s vanilla
              Configuration object (used
              for configuring daemons; see The Configuration API). In the new API, this
              distinction is dropped, so job configuration is done through a
              Configuration.

	Job control is performed through the Job class, rather than JobClient, which no longer exists in
              the new API.



Example 2-6 shows the MaxTemperature application rewritten to
          use the new API. The differences are highlighted in bold.
Example 2-6. Application to find the maximum temperature in the weather
            dataset using the new context objects MapReduce API
public class NewMaxTemperature {
  
  static class NewMaxTemperatureMapper
    extends Mapper<LongWritable, Text, Text, IntWritable> {

    private static final int MISSING = 9999;
    
    public void map(LongWritable key, Text value, Context context)
        throws IOException, InterruptedException {
      
      String line = value.toString();
      String year = line.substring(15, 19);
      int airTemperature;
      if (line.charAt(87) == '+') { // parseInt doesn't like leading plus signs
        airTemperature = Integer.parseInt(line.substring(88, 92));
      } else {
        airTemperature = Integer.parseInt(line.substring(87, 92));
      }
      String quality = line.substring(92, 93);
      if (airTemperature != MISSING && quality.matches("[01459]")) {
        context.write(new Text(year), new IntWritable(airTemperature));
      }
    }
  }
  
  static class NewMaxTemperatureReducer
    extends Reducer<Text, IntWritable, Text, IntWritable> {
  
    public void reduce(Text key, Iterable<IntWritable> values,
        Context context)
        throws IOException, InterruptedException {
      
      int maxValue = Integer.MIN_VALUE;
      for (IntWritable value : values) {
        maxValue = Math.max(maxValue, value.get());
      }
      context.write(key, new IntWritable(maxValue));
    }
  }

  public static void main(String[] args) throws Exception {
    if (args.length != 2) {
      System.err.println("Usage: NewMaxTemperature <input path> <output path>");
      System.exit(-1);
    }
    
    Job job = new Job();
    job.setJarByClass(NewMaxTemperature.class);

    FileInputFormat.addInputPath(job, new Path(args[0]));
    FileOutputFormat.setOutputPath(job, new Path(args[1]));
    
    job.setMapperClass(NewMaxTemperatureMapper.class);
    job.setReducerClass(NewMaxTemperatureReducer.class);

    job.setOutputKeyClass(Text.class);
    job.setOutputValueClass(IntWritable.class);
    
    System.exit(job.waitForCompletion(true) ? 0 : 1);
  }
}







[18] At the time of this writing, not all of the MapReduce
              libraries in Hadoop have been ported to work with the new API.
              This book uses the old API for this reason. However, a copy of
              all of the examples in this book, rewritten to use the new API,
              will be made available on the book’s website.



Scaling Out



You’ve seen how MapReduce works for small inputs; now it’s time to
      take a bird’s-eye view of the system and look at the data flow for large
      inputs. For simplicity, the examples so far have used files on the local
      filesystem. However, to scale out, we need to store the data in a
      distributed filesystem, typically HDFS (which you’ll learn about in the
      next chapter), to allow Hadoop to move the MapReduce computation to each
      machine hosting a part of the data. Let’s see how this works.
Data Flow



First, some terminology. A MapReduce job
        is a unit of work that the client wants to be performed: it consists
        of the input data, the MapReduce program, and configuration
        information. Hadoop runs the job by dividing it into
        tasks, of which there are two types:
        map tasks and reduce
        tasks.
There are two types of nodes that control the job execution
        process: a jobtracker and a number of
        tasktrackers. The jobtracker coordinates all
        the jobs run on the system by scheduling tasks to run on tasktrackers.
        Tasktrackers run tasks and send progress reports to the jobtracker,
        which keeps a record of the overall progress of each job. If a tasks
        fails, the jobtracker can reschedule it on a different
        tasktracker.
Hadoop divides the input to a MapReduce job into fixed-size
        pieces called input splits, or just
        splits. Hadoop creates one map task for each
        split, which runs the user-defined map function for each
        record in the split.
Having many splits means the time taken to process each split is
        small compared to the time to process the whole input. So if we are
        processing the splits in parallel, the processing is better
        load-balanced if the splits are small, since a faster machine will be
        able to process proportionally more splits over the course of the job
        than a slower machine. Even if the machines are identical, failed
        processes or other jobs running concurrently make load balancing
        desirable, and the quality of the load balancing increases as the
        splits become more fine-grained.
On the other hand, if splits are too small, then the overhead of
        managing the splits and of map task creation begins to dominate the
        total job execution time. For most jobs, a good split size tends to be
        the size of a HDFS block, 64 MB by default, although this can be
        changed for the cluster (for all newly created files), or specified
        when each file is created.
Hadoop does its best to run the map task on a node where the
        input data resides in HDFS. This is called the data
        locality optimization. It should now be clear why the
        optimal split size is the same as the block size: it is the largest
        size of input that can be guaranteed to be stored on a single node. If
        the split spanned two blocks, it would be unlikely that any HDFS node
        stored both blocks, so some of the split would have to be transferred
        across the network to the node running the map task, which is clearly
        less efficient than running the whole map task using local
        data.
Map tasks write their output to local disk, not to HDFS. Why is
        this? Map output is intermediate output: it’s processed by reduce
        tasks to produce the final output, and once the job is complete the
        map output can be thrown away. So storing it in HDFS, with
        replication, would be overkill. If the node running the map task fails
        before the map output has been consumed by the reduce task, then
        Hadoop will automatically rerun the map task on another node to
        recreate the map output.
Reduce tasks don’t have the advantage of data locality—the input
        to a single reduce task is normally the output from all mappers. In
        the present example, we have a single reduce task that is fed by all
        of the map tasks. Therefore the sorted map outputs have to be
        transferred across the network to the node where the reduce task is
        running, where they are merged and then passed to the user-defined
        reduce function. The output of the reduce is normally stored in HDFS
        for reliability. As explained in Chapter 3, for each
        HDFS block of the reduce output, the first replica is stored on the
        local node, with other replicas being stored on off-rack nodes. Thus,
        writing the reduce output does consume network bandwidth, but only as
        much as a normal HDFS write pipeline consumes.
The whole data flow with a single reduce task is illustrated in
        Figure 2-2. The dotted boxes
        indicate nodes, the light arrows show data transfers on a node, and
        the heavy arrows show data transfers between nodes.
[image: MapReduce data flow with a single reduce task]

Figure 2-2. MapReduce data flow with a single reduce task

The number of reduce tasks is not governed by the size of the
        input, but is specified independently. In The Default MapReduce Job, you will see how to choose the
        number of reduce tasks for a given job.
When there are multiple reducers, the map tasks
        partition their output, each creating one
        partition for each reduce task. There can be many keys (and their
        associated values) in each partition, but the records for every key
        are all in a single partition. The partitioning can be controlled by a
        user-defined partitioning function, but normally the default
        partitioner—which buckets keys using a hash function—works very
        well.
The data flow for the general case of multiple reduce tasks is
        illustrated in Figure 2-3. This
        diagram makes it clear why the data flow between map and reduce tasks
        is colloquially known as “the shuffle,” as each reduce task is fed by
        many map tasks. The shuffle is more complicated than this diagram
        suggests, and tuning it can have a big impact on job execution time,
        as you will see in Shuffle and Sort.
[image: MapReduce data flow with multiple reduce tasks]

Figure 2-3. MapReduce data flow with multiple reduce tasks

Finally, it’s also possible to have zero reduce tasks. This can
        be appropriate when you don’t need the shuffle since the processing
        can be carried out entirely in parallel (a few examples are discussed
        in NLineInputFormat). In this case, the only
        off-node data transfer is when the map tasks write to HDFS (see Figure 2-4).
[image: MapReduce data flow with no reduce tasks]

Figure 2-4. MapReduce data flow with no reduce tasks


Combiner Functions



Many MapReduce jobs are limited by the bandwidth available on
        the cluster, so it pays to minimize the data transferred between map
        and reduce tasks. Hadoop allows the user to specify a
        combiner function to be run on the map
        output—the combiner function’s output forms the input to the reduce
        function. Since the combiner function is an optimization, Hadoop does
        not provide a guarantee of how many times it will call it for a
        particular map output record, if at all. In other words, calling the
        combiner function zero, one, or many times should produce the same
        output from the reducer.
The contract for the combiner function constrains the type of
        function that may be used. This is best illustrated with an example.
        Suppose that for the maximum temperature example,
        readings for the year 1950 were processed by two maps (because they
        were in different splits). Imagine the first map produced the
        output:
(1950, 0)
(1950, 20)
(1950, 10)
And the second produced:
(1950, 25)
(1950, 15)
The reduce function would be called with a list of all the
        values:
(1950, [0, 20, 10, 25, 15])
with output:
(1950, 25)
since 25 is the maximum value in the list. We could use a
        combiner function that, just like the reduce function, finds the
        maximum temperature for each map output. The reduce would then be
        called with:
(1950, [20, 25])
and the reduce would produce the same output as before. More
        succinctly, we may express the function calls on the temperature
        values in this case as follows:
max(0, 20, 10, 25, 15) = max(max(0, 20, 10), max(25, 15)) = max(20, 25) = 25
Not all functions possess this property.[19] For example, if we were calculating mean temperatures,
        then we couldn’t use the mean as our combiner function, since:
mean(0, 20, 10, 25, 15) = 14
but:
mean(mean(0, 20, 10), mean(25, 15)) = mean(10, 20) = 15
The combiner function doesn’t replace the reduce function. (How
        could it? The reduce function is still needed to process records with
        the same key from different maps.) But it can help cut down the amount
        of data shuffled between the maps and the reduces, and for this reason
        alone it is always worth considering whether you can use a combiner
        function in your MapReduce job.
Specifying a combiner function



Going back to the Java MapReduce program, the combiner
          function is defined using the Reducer interface, and for this
          application, it is the same implementation as the reducer function
          in MaxTemperatureReducer. The
          only change we need to make is to set the combiner class on the
          JobConf (see Example 2-7).
Example 2-7. Application to find the maximum temperature, using a
            combiner function for efficiency
public class MaxTemperatureWithCombiner {

  public static void main(String[] args) throws IOException {
    if (args.length != 2) {
      System.err.println("Usage: MaxTemperatureWithCombiner <input path> " +
      		"<output path>");
      System.exit(-1);
    }
    
    JobConf conf = new JobConf(MaxTemperatureWithCombiner.class);
    conf.setJobName("Max temperature");

    FileInputFormat.addInputPath(conf, new Path(args[0]));
    FileOutputFormat.setOutputPath(conf, new Path(args[1]));
    
    conf.setMapperClass(MaxTemperatureMapper.class);
    conf.setCombinerClass(MaxTemperatureReducer.class);
    conf.setReducerClass(MaxTemperatureReducer.class);

    conf.setOutputKeyClass(Text.class);
    conf.setOutputValueClass(IntWritable.class);

    JobClient.runJob(conf);
  }
}





Running a Distributed MapReduce Job



The same program will run, without alteration, on a full
        dataset. This is the point of MapReduce: it scales to the size of your
        data and the size of your hardware. Here’s one data point: on a
        10-node EC2 cluster running High-CPU Extra Large Instances, the
        program took six minutes to run.[20]
We’ll go through the mechanics of running programs on a cluster
        in Chapter 5.



[19] Functions with this property are called
            distributive in the paper “Data Cube: A
            Relational Aggregation Operator Generalizing Group-By, Cross-Tab,
            and Sub-Totals,” Gray et al. (1995).

[20] This is a factor of seven faster than the serial run on one
            machine using awk. The main
            reason it wasn’t proportionately faster is because the input data
            wasn’t evenly partitioned. For convenience, the input files were
            gzipped by year, resulting in large files for the later years in
            dataset, when the number of weather records was much
            higher.



Hadoop Streaming



Hadoop provides an API to MapReduce that allows you to write your
      map and reduce functions in languages other than Java. Hadoop
      Streaming uses Unix standard streams as the interface
      between Hadoop and your program, so you can use any language that can
      read standard input and write to standard output to write your MapReduce
      program.
Streaming is naturally suited for text processing (although as of
      version 0.21.0 it can handle binary streams, too), and when used in text
      mode, it has a line-oriented view of data. Map input data is passed over
      standard input to your map function, which processes it line by line and
      writes lines to standard output. A map output key-value pair is written
      as a single tab-delimited line. Input to the reduce function is in the
      same format—a tab-separated key-value pair—passed over standard input.
      The reduce function reads lines from standard input, which the framework
      guarantees are sorted by key, and writes its results to standard
      output.
Let’s illustrate this by rewriting our MapReduce program for
      finding maximum temperatures by year in Streaming.
Ruby



The map function can be expressed in Ruby as shown in Example 2-8.
Example 2-8. Map function for maximum temperature in Ruby
#!/usr/bin/env ruby

STDIN.each_line do |line|
  val = line
  year, temp, q = val[15,4], val[87,5], val[92,1]
  puts "#{year}\t#{temp}" if (temp != "+9999" && q =~ /[01459]/)
end


The program iterates over lines from standard input by executing
        a block for each line from STDIN (a
        global constant of type IO). The
        block pulls out the relevant fields from each input line, and, if the
        temperature is valid, writes the year and the temperature separated by
        a tab character \t to standard
        output (using puts).
Note
It’s worth drawing out a design difference between Streaming
          and the Java MapReduce API. The Java API is geared toward processing
          your map function one record at a time. The framework calls the
          map() method
          on your Mapper for each record in
          the input, whereas with Streaming the map program can decide how to
          process the input—for example, it could easily read and process
          multiple lines at a time since it’s in control of the reading. The
          user’s Java map implementation is “pushed” records, but it’s still
          possible to consider multiple lines at a time by accumulating
          previous lines in an instance variable in the Mapper.[21] In this case, you need to implement the
          close() method so that you know when the
          last record has been read, so you can finish processing the last
          group of lines.

Since the script just operates on standard input and output,
        it’s trivial to test the script without using Hadoop, simply using
        Unix pipes:
% cat input/ncdc/sample.txt | src/main/ch02/ruby/max_temperature_map.rb
1950    +0000
1950    +0022
1950    -0011
1949    +0111
1949    +0078
The reduce function shown in Example 2-9 is a little more
        complex.
Example 2-9. Reduce function for maximum temperature in Ruby
#!/usr/bin/env ruby

last_key, max_val = nil, 0
STDIN.each_line do |line|
  key, val = line.split("\t")
  if last_key && last_key != key
    puts "#{last_key}\t#{max_val}"
    last_key, max_val = key, val.to_i
  else
    last_key, max_val = key, [max_val, val.to_i].max
  end
end
puts "#{last_key}\t#{max_val}" if last_key


Again, the program iterates over lines from standard input, but
        this time we have to store some state as we process each key group. In
        this case, the keys are weather station identifiers, and we store the
        last key seen and the maximum temperature seen so far for that key.
        The MapReduce framework ensures that the keys are ordered, so we know
        that if a key is different from the previous one, we have moved into a
        new key group. In contrast to the Java API, where you are provided an
        iterator over each key group, in Streaming you have to find key group
        boundaries in your program.
For each line we pull out the key and value, then if we’ve just
        finished a group (last_key &&
        last_key != key), we write the key and the maximum
        temperature for that group, separated by a tab character, before
        resetting the maximum temperature for the new key. If we haven’t just
        finished a group, we just update the maximum temperature for the
        current key.
The last line of the program ensures that a line is written for
        the last key group in the input.
We can now simulate the whole MapReduce pipeline with a Unix
        pipeline (which is equivalent to the Unix pipeline shown in Figure 2-1):
% cat input/ncdc/sample.txt | src/main/ch02/ruby/max_temperature_map.rb | \
  sort | src/main/ch02/ruby/max_temperature_reduce.rb
1949	111
1950	22
The output is the same as the Java program, so the next step is
        to run it using Hadoop itself.
The hadoop command doesn’t
        support a Streaming option; instead, you specify the Streaming JAR
        file along with the jar option.
        Options to the Streaming program specify the input and output paths,
        and the map and reduce scripts. This is what it looks like:
% hadoop jar $HADOOP_INSTALL/contrib/streaming/hadoop-*-streaming.jar \
  -input input/ncdc/sample.txt \
  -output output \
  -mapper src/main/ch02/ruby/max_temperature_map.rb \
  -reducer src/main/ch02/ruby/max_temperature_reduce.rb
When running on a large dataset on a cluster, we should set the
        combiner, using the -combiner option.
From release 0.21.0, the combiner can be any Streaming command.
        For earlier releases, the combiner had to be written in Java, so as a
        workaround it was common to do manual combining in the mapper, without
        having to resort to Java. In this case, we could change the mapper to
        be a pipeline:
% hadoop jar $HADOOP_INSTALL/contrib/streaming/hadoop-*-streaming.jar \
  -input input/ncdc/all \
  -output output \
  -mapper "ch02/ruby/max_temperature_map.rb | sort | ch02/ruby/max_temperature_reduce.rb" \
  -reducer src/main/ch02/ruby/max_temperature_reduce.rb \
  -file src/main/ch02/ruby/max_temperature_map.rb \
  -file src/main/ch02/ruby/max_temperature_reduce.rb
Note also the use of -file,
        which we use when running Streaming programs on the cluster to ship
        the scripts to the cluster.

Python



Streaming supports any programming language that can read from
        standard input, and write to standard output, so for readers more
        familiar with Python, here’s the same example again.[22] The map script is in Example 2-10, and the reduce script is in Example 2-11.
Example 2-10. Map function for maximum temperature in Python
#!/usr/bin/env python

import re
import sys

for line in sys.stdin:
  val = line.strip()
  (year, temp, q) = (val[15:19], val[87:92], val[92:93])
  if (temp != "+9999" and re.match("[01459]", q)):
    print "%s\t%s" % (year, temp)



Example 2-11. Reduce function for maximum temperature in Python
#!/usr/bin/env python

import sys

(last_key, max_val) = (None, 0)
for line in sys.stdin:
  (key, val) = line.strip().split("\t")
  if last_key and last_key != key:
    print "%s\t%s" % (last_key, max_val)
    (last_key, max_val) = (key, int(val))
  else:
    (last_key, max_val) = (key, max(max_val, int(val)))

if last_key:
  print "%s\t%s" % (last_key, max_val)


We can test the programs and run the job in the same way we did
        in Ruby. For example, to run a test:
% cat input/ncdc/sample.txt | src/main/ch02/python/max_temperature_map.py | \
  sort | src/main/ch02/python/max_temperature_reduce.py
1949    111
1950    22



[21] Alternatively, you could use “pull” style processing in
              the new MapReduce API—see The new Java MapReduce API.

[22] As an alternative to Streaming, Python programmers should
            consider Dumbo (http://www.last.fm/dumbo),
            which makes the Streaming MapReduce interface more Pythonic, and
            easier to use.



Hadoop Pipes



Hadoop Pipes is the name of the C++ interface to Hadoop MapReduce.
      Unlike Streaming, which uses standard input and output to communicate
      with the map and reduce code, Pipes uses sockets as the channel over
      which the tasktracker communicates with the process running the C++ map
      or reduce function. JNI is not used.
We’ll rewrite the example running through the chapter in C++, and
      then we’ll see how to run it using Pipes. Example 2-12 shows the source code for the map and
      reduce functions in C++.
Example 2-12. Maximum temperature in C++
#include <algorithm>
#include <limits>
#include <string>

#include "hadoop/Pipes.hh"
#include "hadoop/TemplateFactory.hh"
#include "hadoop/StringUtils.hh"

class MaxTemperatureMapper : public HadoopPipes::Mapper {
public:
  MaxTemperatureMapper(HadoopPipes::TaskContext& context) {
  }
  void map(HadoopPipes::MapContext& context) {
    std::string line = context.getInputValue();
    std::string year = line.substr(15, 4);
    std::string airTemperature = line.substr(87, 5);
    std::string q = line.substr(92, 1);
    if (airTemperature != "+9999" &&
        (q == "0" || q == "1" || q == "4" || q == "5" || q == "9")) {
      context.emit(year, airTemperature);
    }
  }
};

class MapTemperatureReducer : public HadoopPipes::Reducer {
public:
  MapTemperatureReducer(HadoopPipes::TaskContext& context) {
  }
  void reduce(HadoopPipes::ReduceContext& context) {
    int maxValue = INT_MIN;
    while (context.nextValue()) {
      maxValue = std::max(maxValue, HadoopUtils::toInt(context.getInputValue()));
    }
    context.emit(context.getInputKey(), HadoopUtils::toString(maxValue));
  }
};

int main(int argc, char *argv[]) {
  return HadoopPipes::runTask(HadoopPipes::TemplateFactory<MaxTemperatureMapper, 
                              MapTemperatureReducer>());
}


The application links against the Hadoop C++ library, which is a
      thin wrapper for communicating with the tasktracker child process. The
      map and reduce functions are defined by extending the Mapper and Reducer classes defined in the HadoopPipes namespace and providing
      implementations of the map() and
      reduce() methods in each case. These
      methods take a context object (of type MapContext or ReduceContext), which provides the means for
      reading input and writing output, as well as accessing job configuration
      information via the JobConf class.
      The processing in this example is very similar to the Java
      equivalent.
Unlike the Java interface, keys and values in the C++ interface
      are byte buffers, represented as Standard Template Library (STL)
      strings. This makes the interface simpler, although it does put a
      slightly greater burden on the application developer, who has to convert
      to and from richer domain-level types. This is evident in MapTemperatureReducer where we have to convert
      the input value into an integer (using a convenience method in HadoopUtils) and then the maximum value back
      into a string before it’s written out. In some cases, we can save on
      doing the conversion, such as in MaxTemperatureMapper where the airTemperature value is never converted to an
      integer since it is never processed as a number in the
      map() method.
The main() method is the
      application entry point. It calls HadoopPipes::runTask, which connects to the
      Java parent process and marshals data to and from the Mapper or Reducer. The runTask() method is passed a Factory so that it can create instances of the
      Mapper or Reducer. Which one it creates is controlled by
      the Java parent over the socket connection. There are overloaded
      template factory methods for setting a combiner, partitioner, record
      reader, or record writer.
Compiling and Running



Now we can compile and link our program using the Makefile in
        Example 2-13.
Example 2-13. Makefile for C++ MapReduce program
CC = g++
CPPFLAGS = -m32 -I$(HADOOP_INSTALL)/c++/$(PLATFORM)/include

max_temperature: max_temperature.cpp 
	$(CC) $(CPPFLAGS) $< -Wall -L$(HADOOP_INSTALL)/c++/$(PLATFORM)/lib -lhadooppipes \
	-lhadooputils -lpthread -g -O2 -o $@



The Makefile expects a couple of environment variables to be
        set. Apart from HADOOP_INSTALL
        (which you should already have set if you followed the installation
        instructions in Appendix A), you need to define PLATFORM, which specifies the operating
        system, architecture, and data model (e.g., 32- or 64-bit). I ran it
        on a 32-bit Linux system with the following:
% export PLATFORM=Linux-i386-32
% make
On successful completion, you’ll find the max_temperature executable in the current
        directory.
To run a Pipes job, we need to run Hadoop in
        pseudo-distributed mode (where all the daemons
        run on the local machine), for which there are setup instructions in
        Appendix A. Pipes doesn’t run in standalone (local) mode,
        since it relies on Hadoop’s distributed cache mechanism, which works
        only when HDFS is running.
With the Hadoop daemons now running, the first step is to copy
        the executable to HDFS so that it can be picked up by tasktrackers
        when they launch map and reduce tasks:
% hadoop fs -put max_temperature bin/max_temperature
The sample data also needs to be copied from the local
        filesystem into HDFS:
% hadoop fs -put input/ncdc/sample.txt sample.txt
Now we can run the job. For this, we use the Hadoop pipes command, passing the URI of the
        executable in HDFS using the -program argument:
% hadoop pipes \
  -D hadoop.pipes.java.recordreader=true \
  -D hadoop.pipes.java.recordwriter=true \
  -input sample.txt \
  -output output \
  -program bin/max_temperature
We specify two properties using the -D option: hadoop.pipes.java.recordreader and hadoop.pipes.java.recordwriter, setting both
        to true to say that we have not
        specified a C++ record reader or writer, but that we want to use the
        default Java ones (which are for text input and output). Pipes also
        allows you to set a Java mapper, reducer, combiner, or partitioner. In
        fact, you can have a mixture of Java or C++ classes within any one
        job.
The result is the same as the other versions of the same program
        that we ran.


Chapter 3. The Hadoop Distributed Filesystem



When a dataset outgrows the storage capacity of a single physical
    machine, it becomes necessary to partition it across a number of separate
    machines. Filesystems that manage the storage across a network of machines
    are called distributed filesystems. Since they are
    network-based, all the complications of network programming kick in, thus
    making distributed filesystems more complex than regular disk filesystems.
    For example, one of the biggest challenges is making the filesystem
    tolerate node failure without suffering data loss.
Hadoop comes with a distributed filesystem called HDFS, which stands
    for Hadoop Distributed Filesystem. (You may
    sometimes see references to “DFS”—informally or in older documentation or
    configuration—which is the same thing.) HDFS is Hadoop’s flagship
    filesystem and is the focus of this chapter, but Hadoop actually has a
    general-purpose filesystem abstraction, so we’ll see along the way how
    Hadoop integrates with other storage systems (such as the local filesystem
    and Amazon S3).
The Design of HDFS



HDFS is a filesystem designed for storing very large files with
      streaming data access patterns, running on clusters on commodity
      hardware. Let’s examine this statement in more detail:
	Very large files
	“Very large” in this context means files that are hundreds
            of megabytes, gigabytes, or terabytes in size. There are Hadoop
            clusters running today that store petabytes of data.[23]

	Streaming data access
	HDFS is built around the idea that the most efficient data
            processing pattern is a write-once, read-many-times pattern. A
            dataset is typically generated or copied from source, then various
            analyses are performed on that dataset over time. Each analysis
            will involve a large proportion, if not all, of the dataset, so
            the time to read the whole dataset is more important than the
            latency in reading the first record.

	Commodity hardware
	Hadoop doesn’t require expensive, highly reliable hardware
            to run on. It’s designed to run on clusters of commodity hardware
            (commonly available hardware available from multiple
            vendors[24]) for which the chance of node failure across the
            cluster is high, at least for large clusters. HDFS is designed to
            carry on working without a noticeable interruption to the user in
            the face of such failure.



It is also worth examining the applications for which using HDFS
      does not work so well. While this may change in the future, these are
      areas where HDFS is not a good fit today:
	Low-latency data access
	Applications that require low-latency access to data, in the
            tens of milliseconds range, will not work well with HDFS. Remember
            HDFS is optimized for delivering a high throughput of data, and
            this may be at the expense of latency. HBase (Chapter 12) is currently a better choice for low-latency
            access.



	Lots of small files
	Since the namenode holds filesystem metadata in memory, the
            limit to the number of files in a filesystem is governed by the
            amount of memory on the namenode. As a rule of thumb, each file,
            directory, and block takes about 150 bytes. So, for example, if
            you had one million files, each taking one block, you would need
            at least 300 MB of memory. While storing millions of files is
            feasible, billions is beyond the capability of current
            hardware.



	Multiple writers, arbitrary file modifications
	Files in HDFS may be written to by a single writer. Writes
            are always made at the end of the file. There is no support for
            multiple writers, or for modifications at arbitrary offsets in the
            file. (These might be supported in the future, but they are likely
            to be relatively inefficient.)






[23] “Scaling Hadoop to 4000 nodes at Yahoo!,” http://developer.yahoo.net/blogs/hadoop/2008/09/scaling_hadoop_to_4000_nodes_a.html.

[24] See Chapter 9 for a typical machine
                specification.



HDFS Concepts



Blocks



A disk has a block size, which is the minimum amount of data
        that it can read or write. Filesystems for a single disk build on this
        by dealing with data in blocks, which are an integral multiple of the
        disk block size. Filesystem blocks are typically a few kilobytes in
        size, while disk blocks are normally 512 bytes. This is generally
        transparent to the filesystem user who is simply reading or writing a
        file—of whatever length. However, there are tools to do with
        filesystem maintenance, such as df
        and fsck, that operate on the
        filesystem block level.
HDFS too has the concept of a block, but it is a much larger
        unit—64 MB by default. Like in a filesystem for a single disk, files
        in HDFS are broken into block-sized chunks, which are stored as
        independent units. Unlike a filesystem for a single disk, a file in
        HDFS that is smaller than a single block does not occupy a full
        block’s worth of underlying storage. When unqualified, the term
        “block” in this book refers to a block in HDFS.
Why Is a Block in HDFS So Large?
HDFS blocks are large compared to disk blocks, and the reason
          is to minimize the cost of seeks. By making a block large enough,
          the time to transfer the data from the disk can be made to be
          significantly larger than the time to seek to the start of the
          block. Thus the time to transfer a large file made of multiple
          blocks operates at the disk transfer rate.
A quick calculation shows that if the seek time is around
          10ms, and the transfer rate is 100 MB/s, then to make the seek time
          1% of the transfer time, we need to make the block size around 100
          MB. The default is actually 64 MB, although many HDFS installations
          use 128 MB blocks. This figure will continue to be revised upward as
          transfer speeds grow with new generations of disk drives.
This argument shouldn’t be taken too far, however. Map tasks
          in MapReduce normally operate on one block at a time, so if you have
          too few tasks (fewer than nodes in the cluster), your jobs will run
          slower than they could otherwise.

Having a block abstraction for a distributed filesystem brings
        several benefits. The first benefit is the most obvious: a file can be
        larger than any single disk in the network. There’s nothing that
        requires the blocks from a file to be stored on the same disk, so they
        can take advantage of any of the disks in the cluster. In fact, it
        would be possible, if unusual, to store a single file on an HDFS
        cluster whose blocks filled all the disks in the cluster.
Second, making the unit of abstraction a block rather than a
        file simplifies the storage subsystem. Simplicity is something to
        strive for all in all systems, but is important for a distributed
        system in which the failure modes are so varied. The storage subsystem
        deals with blocks, simplifying storage management (since blocks are a
        fixed size, it is easy to calculate how many can be stored on a given
        disk), and eliminating metadata concerns (blocks are just a chunk of
        data to be stored—file metadata such as permissions information does
        not need to be stored with the blocks, so another system can handle
        metadata
        orthogonally).
Furthermore, blocks fit well with replication for providing
        fault tolerance and availability. To insure against corrupted blocks
        and disk and machine failure, each block is replicated to a small
        number of physically separate machines (typically three). If a block
        becomes unavailable, a copy can be read from another location in a way
        that is transparent to the client. A block that is no longer available
        due to corruption or machine failure can be replicated from their
        alternative locations to other live machines to bring the replication
        factor back to the normal level. (See Data Integrity
        for more on guarding against corrupt data.) Similarly, some
        applications may choose to set a high replication factor for the
        blocks in a popular file to spread the read load on the
        cluster.
Like its disk filesystem cousin, HDFS’s fsck command understands blocks. For
        example, running:
% hadoop fsck -files -blocks
will list the blocks that make up each file in the filesystem.
        (See also Filesystem check (fsck).)

Namenodes and Datanodes



A HDFS cluster has two types of node operating in a
        master-worker pattern: a namenode (the master)
        and a number of datanodes (workers). The
        namenode manages the filesystem namespace. It maintains the filesystem
        tree and the metadata for all the files and directories in the tree.
        This information is stored persistently on the local disk in the form
        of two files: the namespace image and the edit log. The namenode also
        knows the datanodes on which all the blocks for a given file are
        located, however, it does not store block locations persistently,
        since this information is reconstructed from datanodes when the system
        starts.
A client accesses the filesystem on
        behalf of the user by communicating with the namenode and datanodes.
        The client presents a POSIX-like filesystem interface, so the user
        code does not need to know about the namenode and datanode to
        function.
Datanodes are the work horses of the filesystem. They store and
        retrieve blocks when they are told to (by clients or the namenode),
        and they report back to the namenode periodically with lists of blocks
        that they are storing.
Without the namenode, the filesystem cannot be used. In fact, if
        the machine running the namenode were obliterated, all the files on
        the filesystem would be lost since there would be no way of knowing
        how to reconstruct the files from the blocks on the datanodes. For this reason, it is
        important to make the namenode resilient to failure, and Hadoop
        provides two mechanisms for this.
The first way is to back up the files that make up the
        persistent state of the filesystem metadata. Hadoop can be configured
        so that the namenode writes its persistent state to multiple
        filesystems. These writes are synchronous and atomic. The usual
        configuration choice is to write to local disk as well as a remote NFS
        mount.
It is also possible to run a secondary
        namenode, which despite its name does not act as a
        namenode. Its main role is to periodically merge the namespace image
        with the edit log to prevent the edit log from becoming too large. The
        secondary namenode usually runs on a separate physical machine, since
        it requires plenty of CPU and as much memory as the namenode to
        perform the merge. It keeps a copy of the merged namespace image,
        which can be used in the event of the namenode failing. However, the
        state of the secondary namenode lags that of the primary, so in the
        event of total failure of the primary data, loss is almost guaranteed.
        The usual course of action in this case is to copy the namenode’s
        metadata files that are on NFS to the secondary and run it as the new
        primary.
See The filesystem image and edit log for more
        details.


The Command-Line Interface



We’re going to have a look at HDFS by interacting with it from the
      command line. There are many other interfaces to HDFS, but the command
      line is one of the simplest, and to many developers the most
      familiar.
We are going to run HDFS on one machine, so first follow the
      instructions for setting up Hadoop in pseudo-distributed mode in Appendix A. Later you’ll see how to run on a cluster of machines
      to give us scalability and fault tolerance.
There are two properties that we set in the pseudo-distributed
      configuration that deserve further explanation. The first is fs.default.name, set to
      hdfs://localhost/, which is used to set a default filesystem
      for Hadoop. Filesystems are specified by a URI, and here we have used a
      hdfs URI to configure Hadoop to use
      HDFS by default. The HDFS daemons will use this property to determine
      the host and port for the HDFS namenode. We’ll be running it on localhost, on the default HDFS port, 8020. And
      HDFS clients will use this property to work out where the namenode is
      running so they can connect to it.
We set the second property, dfs.replication, to one so that HDFS doesn’t
      replicate filesystem blocks by the usual default of three. When running
      with a single datanode, HDFS can’t replicate blocks to three datanodes,
      so it would perpetually warn about blocks being under-replicated. This
      setting solves that problem.
Basic Filesystem Operations



The filesystem is ready to be used, and we can do all of the
        usual filesystem operations such as reading files, creating
        directories, moving files, deleting data, and listing directories. You
        can type hadoop fs -help to get
        detailed help on every command.
Start by copying a file from the local filesystem to
        HDFS:
% hadoop fs -copyFromLocal input/docs/quangle.txt hdfs://localhost/user/tom/quangle.txt
This command invokes Hadoop’s filesystem shell command fs, which supports a number of
        subcommands—in this case, we are running -copyFromLocal. The local file quangle.txt is copied to the file /user/tom/quangle.txt on the HDFS instance
        running on localhost. In fact, we could have omitted the scheme and
        host of the URI and picked up the default, hdfs://localhost, as specified in core-site.xml.
% hadoop fs -copyFromLocal input/docs/quangle.txt /user/tom/quangle.txt
We could also have used a relative path, and copied the file to
        our home directory in HDFS, which in this case is /user/tom:
% hadoop fs -copyFromLocal input/docs/quangle.txt quangle.txt
Let’s copy the file back to the local filesystem and check
        whether it’s the same:
% hadoop fs -copyToLocal quangle.txt quangle.copy.txt
% md5 input/docs/quangle.txt quangle.copy.txt
MD5 (input/docs/quangle.txt) = a16f231da6b05e2ba7a339320e7dacd9
MD5 (quangle.copy.txt) = a16f231da6b05e2ba7a339320e7dacd9
The MD5 digests are the same, showing that the file survived its
        trip to HDFS and is back intact.
Finally, let’s look at an HDFS file listing. We create a
        directory first just to see how it is displayed in the
        listing:
% hadoop fs -mkdir books
% hadoop fs -ls .
Found 2 items
drwxr-xr-x   - tom supergroup          0 2009-04-02 22:41 /user/tom/books
-rw-r--r--   1 tom supergroup        118 2009-04-02 22:29 /user/tom/quangle.txt
The information returned is very similar to the Unix command
        ls -l, with a few minor
        differences. The first column shows the file mode. The second column
        is the replication factor of the file (something a traditional Unix
        filesystems does not have). Remember we set the default replication
        factor in the site-wide configuration to be 1, which is why we see the
        same value here. The entry in this column is empty for directories
        since the concept of replication does not apply to them—directories
        are treated as metadata and stored by the namenode, not the datanodes.
        The third and fourth columns show the file owner and group. The fifth
        column is the size of the file in bytes, or zero for directories. The
        six and seventh columns are the last modified date and time. Finally,
        the eighth column is the absolute name of the file or
        directory.
File Permissions in HDFS
HDFS has a permissions model for files and directories that is
          much like POSIX.
There are three types of permission: the read permission
          (r), the write permission (w)
          and the execute permission (x). The read
          permission is required to read files or list the contents of a
          directory. The write permission is required to write a file, or for
          a directory, to create or delete files or directories in it. The
          execute permission is ignored for a file since you can’t execute a
          file on HDFS (unlike POSIX), and for a directory it is required to
          access its children.
Each file and directory has an owner, a
          group, and a mode. The
          mode is made up of the permissions for the user who is the owner,
          the permissions for the users who are members of the group, and the
          permissions for users who are neither the owner nor members of the
          group.
A client’s identity is determined by the username and groups
          of the process it is running in. Because clients are remote, this
          makes it possible to become an arbitrary user, simply by creating an
          account of that name on the remote system. Thus, permissions should
          be used only in a cooperative community of users, as a mechanism for
          sharing filesystem resources and for avoiding accidental data loss,
          and not for securing resources in a hostile environment. However,
          despite these drawbacks, it is worthwhile having permissions enabled
          (as it is by default; see the dfs.permissions property), to avoid
          accidental modification or deletion of substantial parts of the
          filesystem, either by users or by automated tools or
          programs.
When permissions checking is enabled, the owner permissions
          are checked if the client’s username matches the owner, and the
          group permissions are checked if the client is a member of the
          group; otherwise, the other permissions are checked.
There is a concept of a super-user, which is the identity of
          the namenode process. Permissions checks are not performed for the
          super-user.






End of sample
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Step 5 of 6: Configure Your Slave Nodes
Slave Nodes

Slave nodes store data and do work in your cluster and are managed by the
NameNode and JobTracker. Each slave in your cluster usually plays two roles,
referred to as DataNode and TaskTracker. These are run in separate processes.
Together, they provide the integrated storage and processing which makes

Hadoop so powerful for processing Big Data.
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TaskTracker Settings

‘The TaskTracker is the slave service for MapReduce. It runs the tasks assigned by the
JobTracker and sorts the intermediate map data prior to reducing.

For each disk, you should specify a directory to store intermediate data. Using all of your disks
improves performance.

TaskTracker Intermediate Data Path(s)

/mnt/disk1/hadoop/mapredlocal ]

DataNode Settings

The DataNode is the slave service for HDFS. It stores individual data blocks and serves them to
clients.

For each disk, you should specify a directory to store data blocks. Using all of your disks
improves performance and capacity.

HDFS Data Path(s)

/mnt/disk1/hadoop/hdfs/data ]

feedback
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