

 [image: First Edition]

 Think Python

Allen B. Downey

Published by O’Reilly Media

[image:]
Beijing ⋅ Cambridge ⋅ Farnham ⋅ Köln ⋅ Sebastopol ⋅ Tokyo

SPECIAL OFFER: Upgrade this ebook with O’Reilly

Click here for more information on this offer!
Please note that upgrade offers are not available from sample content.

Preface

The Strange History of This Book

In January 1999 I was preparing to teach an introductory
 programming class in Java. I had taught it three times and I was getting
 frustrated. The failure rate in the class was too high and, even for
 students who succeeded, the overall level of achievement was too
 low.
One of the problems I saw was the books. They were too big, with
 too much unnecessary detail about Java, and not enough high-level
 guidance about how to program. And they all suffered from the trap door
 effect: they would start out easy, proceed gradually, and then somewhere
 around Chapter 5 the bottom would fall out. The students would get too
 much new material, too fast, and I would spend the rest of the semester
 picking up the pieces.
Two weeks before the first day of classes, I decided to write my
 own book. My goals were:
	Keep it short. It is better for students to read 10 pages than
 not read 50 pages.

	Be careful with vocabulary. I tried to minimize the jargon and
 define each term at first use.

	Build gradually. To avoid trap doors, I took the most
 difficult topics and split them into a series of small steps.

	Focus on programming, not the programming language. I included
 the minimum useful subset of Java and left out the rest.

I needed a title, so on a whim I chose How to Think Like
 a Computer Scientist.
My first version was rough, but it worked. Students did the
 reading, and they understood enough that I could spend class time on the
 hard topics, the interesting topics and (most important) letting the
 students practice.
I released the book under the GNU Free Documentation License,
 which allows users to copy, modify, and distribute the book.
What happened next is the cool part. Jeff Elkner, a high school
 teacher in Virginia, adopted my book and translated it into Python. He
 sent me a copy of his translation, and I had the unusual experience of
 learning Python by reading my own book. As Green Tea Press, I published
 the first Python version in 2001.
In 2003 I started teaching at Olin College and I got to teach
 Python for the first time. The contrast with Java was striking. Students
 struggled less, learned more, worked on more interesting projects, and
 generally had a lot more fun.
Over the last nine years I continued to develop the book,
 correcting errors, improving some of the examples and adding material,
 especially exercises.
The result is this book, now with the less grandiose title
 Think Python. Some of the changes are:
	I added a section about debugging at the end of each chapter.
 These sections present general techniques for finding and avoiding
 bugs, and warnings about Python pitfalls.

	I added more exercises, ranging from short tests of
 understanding to a few substantial projects. And I wrote solutions
 for most of them.

	I added a series of case studies—longer examples with
 exercises, solutions, and discussion. Some are based on Swampy, a
 suite of Python programs I wrote for use in my classes. Swampy, code
 examples, and some solutions are available from http://thinkpython.com.

	I expanded the discussion of program development plans and
 basic design patterns.

	I added appendices about debugging, analysis of algorithms,
 and UML diagrams with Lumpy.

I hope you enjoy working with this book, and that it helps you
 learn to program and think, at least a little bit, like a computer
 scientist.
—Allen B. Downey
Needham, MA

Acknowledgments

Many thanks to Jeff Elkner, who translated my Java book into
 Python, which got this project started and introduced me to what has
 turned out to be my favorite language.
Thanks also to Chris Meyers, who contributed several sections to
 How to Think Like a Computer Scientist.
Thanks to the Free Software Foundation for developing the GNU Free
 Documentation License, which helped make my collaboration with Jeff and
 Chris possible, and Creative Commons for the license I am using
 now.
Thanks to the editors at Lulu who worked on How to Think
 Like a Computer Scientist.
Thanks to all the students who worked with earlier versions of
 this book and all the contributors (listed below) who sent in
 corrections and suggestions.

Contributor List

More than 100 sharp-eyed and thoughtful readers have sent
 in suggestions and corrections over the past few years. Their
 contributions, and enthusiasm for this project, have been a huge help.
 If you have a suggestion or correction, please send email to feedback@thinkpython.com. If I make a change
 based on your feedback, I will add you to the contributor list (unless
 you ask to be omitted).
If you include at least part of the sentence the error appears in,
 that makes it easy for me to search. Page and section numbers are fine,
 too, but not quite as easy to work with. Thanks!
	Lloyd Hugh Allen sent in a
 correction to Section 8.4.

	Yvon Boulianne sent in a correction of
 a semantic error in Chapter 5.

	Fred Bremmer submitted a correction in
 Section 2.1.

	Jonah Cohen wrote the Perl scripts to
 convert the LaTeX source for this book into beautiful
 HTML.

	Michael Conlon sent in a grammar
 correction in Chapter 2 and an improvement in style in Chapter 1,
 and he initiated discussion on the technical aspects of
 interpreters.

	Benoit Girard sent in a correction to a
 humorous mistake in Section 5.6.

	Courtney Gleason and Katherine Smith
 wrote horsebet.py, which was used as a case study in an earlier version
 of the book. Their program can now be found on the
 website.

	Lee Harr submitted more corrections
 than we have room to list here, and indeed he should be listed as
 one of the principal editors of the text.

	James Kaylin is a student using the
 text. He has submitted numerous corrections.

	David Kershaw fixed the broken catTwice function in Section
 3.10.

	Eddie Lam has sent in numerous
 corrections to Chapters 1, 2, and 3. He also fixed the Makefile so
 that it creates an index the first time it is run and helped us set
 up a versioning scheme.

	Man-Yong Lee sent in a correction to
 the example code in Section 2.4.

	David Mayo pointed out that the word
 “unconsciously” in Chapter 1 needed to be changed to
 “subconsciously.”

	Chris McAloon sent in several
 corrections to Sections 3.9 and 3.10.

	Matthew J. Moelter has been a long-time
 contributor who sent in numerous corrections and suggestions to the
 book.

	Simon Dicon Montford reported a missing
 function definition and several typos in Chapter 3. He also found
 errors in the increment function
 in Chapter 13.

	John Ouzts corrected the definition of
 “return value” in Chapter 3.

	Kevin Parks sent in valuable comments
 and suggestions as to how to improve the distribution of the
 book.

	David Pool sent in a typo in the
 glossary of Chapter 1, as well as kind words of
 encouragement.

	Michael Schmitt sent in a correction to
 the chapter on files and exceptions.

	Robin Shaw pointed out an error in
 Section 13.1, where the printTime function was used in an example
 without being defined.

	Paul Sleigh found an error in Chapter 7
 and a bug in Jonah Cohen’s Perl script that generates HTML from
 LaTeX.

	Craig T. Snydal is testing the text in
 a course at Drew University. He has contributed several valuable
 suggestions and corrections.

	Ian Thomas and his students are using
 the text in a programming course. They are the first ones to test
 the chapters in the latter half of the book, and they have made
 numerous corrections and suggestions.

	Keith Verheyden sent in a correction in
 Chapter 3.

	Peter Winstanley let us know about a
 longstanding error in our Latin in Chapter 3.

	Chris Wrobel made corrections to the
 code in the chapter on file I/O and exceptions.

	Moshe Zadka has made invaluable
 contributions to this project. In addition to writing the first
 draft of the chapter on Dictionaries, he provided continual guidance
 in the early stages of the book.

	Christoph Zwerschke sent several
 corrections and pedagogic suggestions, and explained the difference
 between gleich and
 selbe.

	James Mayer sent us a whole slew of
 spelling and typographical errors, including two in the contributor
 list.

	Hayden McAfee caught a potentially
 confusing inconsistency between two examples.

	Angel Arnal is part of an international
 team of translators working on the Spanish version of the text. He
 has also found several errors in the English
 version.

	Tauhidul Hoque and Lex Berezhny created
 the illustrations in Chapter 1 and improved many of the other
 illustrations.

	Dr. Michele Alzetta caught an error in
 Chapter 8 and sent some interesting pedagogic comments and
 suggestions about Fibonacci and Old Maid.

	Andy Mitchell caught a typo in Chapter
 1 and a broken example in Chapter 2.

	Kalin Harvey suggested a clarification
 in Chapter 7 and caught some typos.

	Christopher P. Smith caught several
 typos and helped us update the book for Python 2.2.

	David Hutchins caught a typo in the
 Foreword.

	Gregor Lingl is teaching Python at a
 high school in Vienna, Austria. He is working on a German
 translation of the book, and he caught a couple of bad errors in
 Chapter 5.

	Julie Peters caught a typo in the
 Preface.

	Florin Oprina sent in an improvement in
 makeTime, a correction in
 printTime, and a nice
 typo.

	D. J. Webre
 suggested a clarification in Chapter 3.

	Ken found a fistful of errors in
 Chapters 8, 9 and 11.

	Ivo Wever caught a typo in Chapter 5
 and suggested a clarification in Chapter 3.

	Curtis Yanko suggested a clarification
 in Chapter 2.

	Ben Logan sent in a number of typos and
 problems with translating the book into HTML.

	Jason Armstrong saw the missing word in
 Chapter 2.

	Louis Cordier noticed a spot in Chapter
 16 where the code didn’t match the text.

	Brian Cain suggested several
 clarifications in Chapters 2 and 3.

	Rob Black sent in a passel of
 corrections, including some changes for Python 2.2.

	Jean-Philippe Rey at Ecole Centrale
 Paris sent a number of patches, including some updates for Python
 2.2 and other thoughtful improvements.

	Jason Mader at George Washington
 University made a number of useful suggestions and
 corrections.

	Jan Gundtofte-Bruun reminded us that “a
 error” is an error.

	Abel David and Alexis Dinno reminded us
 that the plural of “matrix” is “matrices”, not “matrixes.” This
 error was in the book for years, but two readers with the same
 initials reported it on the same day. Weird.

	Charles Thayer encouraged us to get rid
 of the semi-colons we had put at the ends of some statements and to
 clean up our use of “argument” and “parameter.”

	Roger Sperberg pointed out a twisted
 piece of logic in Chapter 3.

	Sam Bull pointed out a confusing
 paragraph in Chapter 2.

	Andrew Cheung pointed out two instances
 of “use before def.”

	C. Corey Capel spotted the missing word
 in the Third Theorem of Debugging and a typo in Chapter 4.

	Alessandra helped clear up some Turtle
 confusion.

	Wim Champagne found a brain-o in a
 dictionary example.

	Douglas Wright pointed out a problem
 with floor division in arc.

	Jared Spindor found some jetsam at the
 end of a sentence.

	Lin Peiheng sent a number of very
 helpful suggestions.

	Ray Hagtvedt sent in two errors and a
 not-quite-error.

	Torsten Hübsch pointed out an
 inconsistency in Swampy.

	Inga Petuhhov corrected an example in
 Chapter 14.

	Arne Babenhauserheide sent several
 helpful corrections.

	Mark E. Casida is is good at spotting
 repeated words.

	Scott Tyler filled in a that was
 missing. And then sent in a heap of corrections.

	Gordon Shephard sent in several
 corrections, all in separate emails.

	Andrew Turner spotted an error in Chapter
 8.

	Adam Hobart fixed a problem with floor
 division in arc.

	Daryl Hammond and Sarah Zimmerman
 pointed out that I served up math.pi too early. And Zim spotted a
 typo.

	George Sass found a bug in a Debugging
 section.

	Brian Bingham suggested Exercise 11-10.

	Leah Engelbert-Fenton pointed out that
 I used tuple as a variable name,
 contrary to my own advice. And then found a bunch of typos and a
 “use before def.”

	Joe Funke spotted a
 typo.

	Chao-chao Chen found an inconsistency
 in the Fibonacci example.

	Jeff Paine knows the difference between
 space and spam.

	Lubos Pintes sent in a
 typo.

	Gregg Lind and Abigail Heithoff
 suggested Exercise 14-4.

	Max Hailperin has sent in a number of
 corrections and suggestions. Max is one of the authors of the
 extraordinary Concrete Abstractions, which you
 might want to read when you are done with this book.

	Chotipat Pornavalai found an error in
 an error message.

	Stanislaw Antol sent a list of very
 helpful suggestions.

	Eric Pashman sent a number of
 corrections for Chapters 4–11.

	Miguel Azevedo found some
 typos.

	Jianhua Liu sent in a long list of
 corrections.

	Nick King found a missing
 word.

	Martin Zuther sent a long list of
 suggestions.

	Adam Zimmerman found an inconsistency
 in my instance of an “instance” and several other
 errors.

	Ratnakar Tiwari suggested a footnote
 explaining degenerate triangles.

	Anurag Goel suggested another solution
 for is_abecedarian
 and sent some additional corrections. And he knows how to spell Jane
 Austen.

	Kelli Kratzer spotted one of the
 typos.

	Mark Griffiths pointed out a confusing
 example in Chapter 3.

	Roydan Ongie found an error in my
 Newton’s method.

	Patryk Wolowiec helped me with a
 problem in the HTML version.

	Mark Chonofsky told me about a new
 keyword in Python 3.

	Russell Coleman helped me with my
 geometry.

	Wei Huang spotted several typographical
 errors.

	Karen Barber spotted the the oldest
 typo in the book.

	Nam Nguyen found a typo and pointed out
 that I used the Decorator pattern but didn’t mention it by
 name.

	Stéphane Morin sent in several
 corrections and suggestions.

	Paul Stoop corrected a typo in uses_only.

	Eric Bronner pointed out a confusion in
 the discussion of the order of operations.

	Alexandros Gezerlis set a new standard
 for the number and quality of suggestions he submitted. We are
 deeply grateful!

	Gray Thomas knows his right from his
 left.

	Giovanni Escobar Sosa sent a long list
 of corrections and suggestions.

	Alix Etienne fixed one of the
 URLs.

	Kuang He found a typo.

	Daniel Neilson corrected an error about
 the order of operations.

	Will McGinnis pointed out that polyline was defined differently in two
 places.

	Swarup Sahoo spotted a missing
 semi-colon.

	Frank Hecker pointed out an exercise
 that was under-specified, and some broken links.

	Animesh B helped me clean up a
 confusing example.

	Martin Caspersen found two round-off
 errors.

	Gregor Ulm sent several corrections and
 suggestions.

Chapter 1. The Way of the Program

The goal of this book is to teach you to think like a computer
 scientist. This way of thinking combines some of the best features of
 mathematics, engineering, and natural science. Like mathematicians,
 computer scientists use formal languages to denote ideas (specifically
 computations). Like engineers, they design things, assembling components
 into systems and evaluating tradeoffs among alternatives. Like scientists,
 they observe the behavior of complex systems, form hypotheses, and test
 predictions.
The single most important skill for a computer scientist is
 problem solving. Problem solving means
 the ability to formulate problems, think creatively about solutions, and
 express a solution clearly and accurately. As it turns out, the process of
 learning to program is an excellent opportunity to practice
 problem-solving skills. That’s why this chapter is called, “The way of the
 program.”
On one level, you will be learning to program, a useful skill by
 itself. On another level, you will use programming as a means to an end.
 As we go along, that end will become clearer.
The Python Programming Language

The programming language you will learn is Python. Python
 is an example of a high-level language;
 other high-level languages you might have heard of are C, C++, Perl, and
 Java.
There are also low-level
 languages, sometimes referred to as “machine languages” or
 “assembly languages.” Loosely speaking, computers can only run programs
 written in low-level languages. So programs written in a high-level
 language have to be processed before they can run. This extra processing
 takes some time, which is a small disadvantage of high-level
 languages.
The advantages are enormous. First, it is much easier to program
 in a high-level language. Programs written in a high-level language take
 less time to write, they are shorter and easier to read, and they are
 more likely to be correct. Second, high-level languages are portable, meaning that they can run on different
 kinds of computers with few or no modifications. Low-level programs can
 run on only one kind of computer and have to be rewritten to run on
 another.
Due to these advantages, almost all programs are written in
 high-level languages. Low-level languages are used only for a few
 specialized applications.
Two kinds of programs process high-level languages into low-level
 languages: interpreters and compilers. An interpreter reads a high-level
 program and executes it, meaning that it does what the program says. It
 processes the program a little at a time, alternately reading lines and
 performing computations. Figure 1-1 shows the
 structure of an interpreter.
[image: An interpreter processes the program a little at a time, alternately reading lines and performing computations.]

Figure 1-1. An interpreter processes the program a little at a time,
 alternately reading lines and performing computations.

A compiler reads the program and translates it completely before
 the program starts running. In this context, the high-level program is
 called the source code, and the
 translated program is called the object
 code or the executable. Once
 a program is compiled, you can execute it repeatedly without further
 translation. Figure 1-2 shows the structure of a
 compiler.
[image: A compiler translates source code into object code, which is run by a hardware executor.]

Figure 1-2. A compiler translates source code into object code, which is
 run by a hardware executor.

Python is considered an interpreted language because Python
 programs are executed by an interpreter. There are two ways to use the
 interpreter: interactive mode and
 script mode. In interactive mode, you
 type Python programs and the interpreter displays the result:
>>> 1 + 1
2
The chevron, >>>, is
 the prompt the interpreter uses to
 indicate that it is ready. If you type 1 +
 1, the interpreter replies 2.
Alternatively, you can store code in a file and use the
 interpreter to execute the contents of the file, which is called a
 script. By convention, Python scripts
 have names that end with .py.
To execute the script, you have to tell the interpreter the name
 of the file. If you have a script named dinsdale.py and you are working in a UNIX
 command window, you type python
 dinsdale.py. In other development environments, the details of
 executing scripts are different. You can find instructions for your
 environment at the Python website http://python.org.
Working in interactive mode is convenient for testing small pieces
 of code because you can type and execute them immediately. But for
 anything more than a few lines, you should save your code as a script so
 you can modify and execute it in the future.

What Is a Program?

A program is a sequence of
 instructions that specifies how to perform a computation. The
 computation might be something mathematical, such as solving a system of
 equations or finding the roots of a polynomial, but it can also be a
 symbolic computation, such as searching and replacing text in a document
 or (strangely enough) compiling a program.
The details look different in different languages, but a few basic
 instructions appear in just about every language:
	input:
	Get data from the keyboard, a file, or some other
 device.

	output:
	Display data on the screen or send data to a file or other
 device.

	math:
	Perform basic mathematical operations like addition and
 multiplication.

	conditional execution:
	Check for certain conditions and execute the appropriate
 code.

	repetition:
	Perform some action repeatedly, usually with some
 variation.

Believe it or not, that’s pretty much all there is to it. Every
 program you’ve ever used, no matter how complicated, is made up of
 instructions that look pretty much like these. So you can think of
 programming as the process of breaking a large, complex task into
 smaller and smaller subtasks until the subtasks are simple enough to be
 performed with one of these basic instructions.
That may be a little vague, but we will come back to this topic
 when we talk about algorithms.

What Is Debugging?

Programming is error-prone. For whimsical reasons,
 programming errors are called bugs and
 the process of tracking them down is called debugging.
Three kinds of errors can occur in a program: syntax errors,
 runtime errors, and semantic errors. It is useful to distinguish between
 them in order to track them down more quickly.

Syntax Errors

Python can only execute a program if the syntax is
 correct; otherwise, the interpreter displays an error message. Syntax refers to the structure of a program and
 the rules about that structure.For example, parentheses have to come in matching pairs,
 so (1 + 2) is
 legal, but 8) is a syntax error.
In English readers can tolerate most syntax errors, which is why
 we can read the poetry of e. e. cummings without spewing error messages.
 Python is not so forgiving. If there is a single syntax error anywhere
 in your program, Python will display an error message and quit, and you
 will not be able to run your program. During the first few weeks of your
 programming career, you will probably spend a lot of time tracking down
 syntax errors. As you gain experience, you will make fewer errors and
 find them faster.

Runtime Errors

The second type of error is a runtime error, so called because the
 error does not appear until after the program has started running. These
 errors are also called exceptions
 because they usually indicate that something exceptional (and bad) has
 happened.
Runtime errors are rare in the simple programs you will see in the
 first few chapters, so it might be a while before you encounter
 one.

Semantic Errors

The third type of error is the semantic error. If there is a semantic error in
 your program, it will run successfully in the sense that the computer
 will not generate any error messages, but it will not do the right
 thing. It will do something else. Specifically, it will do what you told
 it to do.
The problem is that the program you wrote is not the program you
 wanted to write. The meaning of the program (its semantics) is wrong.
 Identifying semantic errors can be tricky because it requires you to
 work backward by looking at the output of the program and trying to
 figure out what it is doing.

Experimental Debugging

One of the most important skills you will acquire is debugging.
 Although it can be frustrating, debugging is one of the most
 intellectually rich, challenging, and interesting parts of
 programming.
In some ways, debugging is like detective work. You are confronted
 with clues, and you have to infer the processes and events that led to
 the results you see.
Debugging is also like an experimental science. Once you have an
 idea about what is going wrong, you modify your program and try again.
 If your hypothesis was correct, then you can predict the result of the
 modification, and you take a step closer to a working program. If your
 hypothesis was wrong, you have to come up with a new one. As Sherlock
 Holmes pointed out, “When you have eliminated the impossible, whatever
 remains, however improbable, must be the truth.” (A. Conan Doyle,
 The Sign of Four)
For some people, programming and debugging are the same thing.
 That is, programming is the process of gradually debugging a program
 until it does what you want. The idea is that you should start with a
 program that does something and make small
 modifications, debugging them as you go, so that you always have a
 working program.
For example, Linux is an operating system that contains thousands
 of lines of code, but it started out as a simple program Linus Torvalds
 used to explore the Intel 80386 chip. According to Larry Greenfield,
 “One of Linus’s earlier projects was a program that would switch between
 printing AAAA and BBBB. This later evolved to Linux.” (The
 Linux Users’ Guide Beta Version 1).
Later chapters will make more suggestions about debugging and
 other programming practices.

Formal and Natural Languages

Natural languages are the
 languages people speak, such as English, Spanish, and French. They were
 not designed by people (although people try to impose some order on
 them); they evolved naturally.
Formal languages are languages
 that are designed by people for specific applications. For example, the
 notation that mathematicians use is a formal language that is
 particularly good at denoting relationships among numbers and symbols.
 Chemists use a formal language to represent the chemical structure of
 molecules. And most importantly:
Programming languages are formal languages
 that have been designed to express computations.

Formal languages tend to have strict rules about syntax. For
 example, [image:] is a syntactically correct mathematical statement,
 but [image:] is not. [image:] is a syntactically correct chemical formula, but
 [image:] is not.
Syntax rules come in two flavors, pertaining to tokens and structure. Tokens are the basic
 elements of the language, such as words, numbers, and chemical elements.
 One of the problems with [image:] is that [image:] is not a legal token in mathematics (at least as far
 as I know). Similarly, [image:] is not legal because there is no element with the
 abbreviation Zz.
The second type of syntax error pertains to the structure of a
 statement; that is, the way the tokens are arranged. The statement
 [image:] is illegal because even though
 + and = are legal tokens, you
 can’t have one right after the other. Similarly, in a chemical formula
 the subscript comes after the element name, not before.
Exercise 1-1.
Write a well-structured English sentence with invalid tokens in
 it. Then write another sentence with all valid tokens but with invalid
 structure.

When you read a sentence in English or a statement in a formal
 language, you have to figure out what the structure of the sentence is
 (although in a natural language you do this subconsciously). This
 process is called parsing.
For example, when you hear the sentence, “The penny dropped,” you
 understand that “the penny” is the subject and “dropped” is the
 predicate. Once you have parsed a sentence, you can figure out what it
 means, or the semantics of the sentence. Assuming that you know what a
 penny is and what it means to drop, you will understand the general
 implication of this sentence.
Although formal and natural languages have many features in
 common—tokens, structure, syntax, and semantics—there are some
 differences:
	Ambiguity:
	Natural languages are full of ambiguity, which people deal
 with by using contextual clues and other information. Formal
 languages are designed to be nearly or completely unambiguous,
 which means that any statement has exactly one meaning, regardless
 of context.

	Redundancy:
	In order to make up for ambiguity and reduce
 misunderstandings, natural languages employ lots of redundancy. As
 a result, they are often verbose. Formal languages are less
 redundant and more concise.

	Literalness:
	Natural languages are full of idiom and metaphor. If I say,
 “The penny dropped,” there is probably no penny and nothing
 dropping (this idiom means that someone realized something after a
 period of confusion). Formal languages mean exactly what they
 say.

People who grow up speaking a natural language (everyone) often
 have a hard time adjusting to formal languages. In some ways, the
 difference between formal and natural language is like the difference
 between poetry and prose, but more so:
	Poetry:
	Words are used for their sounds as well as for their
 meaning, and the whole poem together creates an effect or
 emotional response. Ambiguity is not only common but often
 deliberate.

	Prose:
	The literal meaning of words is more important, and the
 structure contributes more meaning. Prose is more amenable to
 analysis than poetry but still often ambiguous.

	Programs:
	The meaning of a computer program is unambiguous and
 literal, and can be understood entirely by analysis of the tokens
 and structure.

Here are some suggestions for reading programs (and other formal
 languages). First, remember that formal languages are much more dense
 than natural languages, so it takes longer to read them. Also, the
 structure is very important, so it is usually not a good idea to read
 from top to bottom, left to right. Instead, learn to parse the program
 in your head, identifying the tokens and interpreting the structure.
 Finally, the details matter. Small errors in spelling and punctuation,
 which you can get away with in natural languages, can make a big
 difference in a formal language.

The First Program

Traditionally, the first program you write in a new
 language is called “Hello, World!” because all it does is display the
 words “Hello, World!”. In Python, it looks like this:
print 'Hello, World!'
This is an example of a print
 statement, which doesn’t actually print anything on paper. It
 displays a value on the screen. In this case, the result is the
 words
Hello, World!
The quotation marks in the program mark the beginning and end of
 the text to be displayed; they don’t appear in the result.
In Python 3, the syntax for printing is slightly different:
print('Hello, World!')
The parentheses indicate that print is a function. We’ll get to functions in
 Chapter 3.
For the rest of this book, I’ll use the print statement. If you
 are using Python 3, you will have to translate. But other than that,
 there are very few differences we have to worry about.

Debugging

It is a good idea to read this book in front of a computer
 so you can try out the examples as you go. You can run most of the
 examples in interactive mode, but if you put the code in a script, it is
 easier to try out variations.
Whenever you are experimenting with a new feature, you should try
 to make mistakes. For example, in the “Hello, world!” program, what
 happens if you leave out one of the quotation marks? What if you leave
 out both? What if you spell print
 wrong?
This kind of experiment helps you remember what you read; it also
 helps with debugging, because you get to know what the error messages
 mean. It is better to make mistakes now and on purpose than later and
 accidentally.
Programming, and especially debugging, sometimes brings out strong
 emotions. If you are struggling with a difficult bug, you might feel
 angry, despondent or embarrassed.
There is evidence that people naturally respond to computers as if
 they were people. When they work well, we think of them as teammates,
 and when they are obstinate or rude, we respond to them the same way we
 respond to rude, obstinate people (Reeves and Nass, The Media
 Equation: How People Treat Computers, Television, and New Media Like
 Real People and Places).
Preparing for these reactions might help you deal with them. One
 approach is to think of the computer as an employee with certain
 strengths, like speed and precision, and particular weaknesses, like
 lack of empathy and inability to grasp the big picture.
Your job is to be a good manager: find ways to take advantage of
 the strengths and mitigate the weaknesses. And find ways to use your
 emotions to engage with the problem, without letting your reactions
 interfere with your ability to work effectively.
Learning to debug can be frustrating, but it is a valuable skill
 that is useful for many activities beyond programming. At the end of
 each chapter there is a debugging section, like this one, with my
 thoughts about debugging. I hope they help!

Glossary

	Problem solving:
	The process of formulating a problem, finding a solution,
 and expressing the solution.

	High-level language:
	A programming language like Python that is designed to be
 easy for humans to read and write.

	Low-level language:
	A programming language that is designed to be easy for a
 computer to execute; also called “machine language” or “assembly
 language.”

	Portability:
	A property of a program that can run on more than one kind
 of computer.

	Interpret:
	To execute a program in a high-level language by translating
 it one line at a time.

	Compile:
	To translate a program written in a high-level language into
 a low-level language all at once, in preparation for later
 execution.

	Source code:
	A program written in a high-level language before being
 compiled.

	Object code:
	The output of the compiler after it translates the
 program.

	Executable:
	Another name for object code that is ready to be
 executed.

	Prompt:
	Characters displayed by the interpreter to indicate that it
 is ready to take input from the user.

	Script:
	A program stored in a file (usually one that will be
 interpreted).

	Interactive mode:
	A way of using the Python interpreter by typing commands and
 expressions at the prompt.

	Script mode:
	A way of using the Python interpreter to read and execute
 statements in a script.

	Program:
	A set of instructions that specifies a
 computation.

	Algorithm:
	A general process for solving a category of
 problems.

	Bug:
	An error in a program.

	Debugging:
	The process of finding and removing any of the three kinds
 of programming errors.

	Syntax:
	The structure of a program.

	Syntax error:
	An error in a program that makes it impossible to parse (and
 therefore impossible to interpret).

	Exception:
	An error that is detected while the program is
 running.

	Semantics:
	The meaning of a program.

	Semantic error:
	An error in a program that makes it do something other than
 what the programmer intended.

	Natural language:
	Any one of the spoken languages that evolved
 naturally.

	Formal language:
	Any one of the languages that people have designed for
 specific purposes, such as representing mathematical ideas or
 computer programs; all programming languages are formal
 languages.

	Token:
	One of the basic elements of the syntactic structure of a
 program, analogous to a word in a natural language.

	Parse:
	To examine a program and analyze the syntactic
 structure.

	Print statement:
	An instruction that causes the Python interpreter to display
 a value on the screen.

Exercises

Exercise 1-2.
Use a web browser to go to the Python website http://python.org. This page contains information about
 Python and links to Python-related pages, and it gives you the ability
 to search the Python documentation.

Exercise 1-3.
Start the Python interpreter and type help() to start the online help utility. Or
 you can type help('print') to get information about the
 print statement.
If this example doesn’t work, you may need to install additional
 Python documentation or set an environment variable; the details
 depend on your operating system and version of Python.

Exercise 1-4.
Start the Python interpreter and use it as a calculator.
 Python’s syntax for math operations is almost the same as standard
 mathematical notation. For example, the symbols +, - and
 / denote addition, subtraction and
 division, as you would expect. The symbol for multiplication is
 *.
If you run a 10 kilometer race in 43 minutes 30 seconds, what is
 your average time per mile? What is your average speed in miles per
 hour? (Hint: there are 1.61 kilometers in a mile).

Chapter 2. Variables, Expressions, and Statements

Values and Types

A value is one of the
 basic things a program works with, like a letter or a number. The values
 we have seen so far are 1, 2, and 'Hello, World!'.
These values belong to different types: 2 is an
 integer, and 'Hello,
 World!' is a string,
 so-called because it contains a “string” of letters. You (and the
 interpreter) can identify strings because they are enclosed in quotation
 marks.
If you are not sure what type a value has, the interpreter can
 tell you.
>>> type('Hello, World!')
<type 'str'>
>>> type(17)
<type 'int'>
Not surprisingly, strings belong to the type str and integers belong to the type int. Less obviously, numbers with a decimal
 point belong to a type called float,
 because these numbers are represented in a format called floating-point.
>>> type(3.2)
<type 'float'>
What about values like '17' and '3.2'? They look like numbers, but they are in
 quotation marks like strings.
>>> type('17')
<type 'str'>
>>> type('3.2')
<type 'str'>
They’re strings.
When you type a large integer, you might be tempted to use commas
 between groups of three digits, as in 1,000,000. This is not a legal integer in
 Python, but it is legal:
>>> 1,000,000
(1, 0, 0)
Well, that’s not what we expected at all! Python interprets
 1,000,000 as a comma-separated
 sequence of integers. This is the first example we have seen of a
 semantic error: the code runs without producing an error message, but it
 doesn’t do the “right” thing.

Variables

One of the most powerful features of a programming
 language is the ability to manipulate variables. A variable is a name that refers to a
 value.
An assignment statement creates
 new variables and gives them values:
>>> message = 'And now for something completely different'
>>> n = 17
>>> pi = 3.1415926535897932
This example makes three assignments. The first assigns a string
 to a new variable named message; the
 second gives the integer 17 to
 n; the third assigns the
 (approximate) value of [image:] to pi.
A common way to represent variables on paper is to write the name
 with an arrow pointing to the variable’s value. This kind of figure is
 called a state diagram because it shows
 what state each of the variables is in (think of it as the variable’s
 state of mind). Figure 2-1 shows the result of the
 previous example.
[image: State diagram.]

Figure 2-1. State diagram.

The type of a variable is the type of the value it refers
 to.
>>> type(message)
<type 'str'>
>>> type(n)
<type 'int'>
>>> type(pi)
<type 'float'>
Exercise 2-1.
If you type an integer with a leading zero, you might get a
 confusing error:
>>> zipcode = 02492
 ^
SyntaxError: invalid token
Other numbers seem to work, but the results are bizarre:
>>> zipcode = 02132
>>> zipcode
1114
Can you figure out what is going on? Hint: display the values
 01, 010, 0100
 and 01000.

Variable Names and Keywords

Programmers generally choose names for their variables
 that are meaningful—they document what the variable is used for.
Variable names can be arbitrarily long. They can contain both
 letters and numbers, but they have to begin with a letter. It is legal
 to use uppercase letters, but it is a good idea to begin variable names
 with a lowercase letter (you’ll see why later).
The underscore character,
 _, can appear in a name. It is often used in names with
 multiple words, such as my_name or airspeed_of_unladen_swallow.
If you give a variable an illegal name, you get a syntax
 error:
>>> 76trombones = 'big parade'
SyntaxError: invalid syntax
>>> more@ = 1000000
SyntaxError: invalid syntax
>>> class = 'Advanced Theoretical Zymurgy'
SyntaxError: invalid syntax
76trombones is illegal because
 it does not begin with a letter. more@ is illegal because it contains an
 illegal character, @. But what’s
 wrong with class?
It turns out that class is one
 of Python’s keywords. The interpreter
 uses keywords to recognize the structure of the program, and they cannot
 be used as variable names.
Python 2 has 31 keywords:
and del from not while
as elif global or with
assert else if pass yield
break except import print
class exec in raise
continue finally is return
def for lambda try
In Python 3, exec is no longer
 a keyword, but nonlocal is.
You might want to keep this list handy. If the interpreter
 complains about one of your variable names and you don’t know why, see
 if it is on this list.

Operators and Operands

Operators are special
 symbols that represent computations like addition and multiplication.
 The values the operator is applied to are called operands.
The operators +, -, *,
 / and ** perform addition, subtraction,
 multiplication, division and exponentiation, as in the following
 examples:
20+32 hour-1 hour*60+minute minute/60 5**2 (5+9)*(15-7)
In some other languages, ^ is used for exponentiation, but in Python it is
 a bitwise operator called XOR. I won’t cover bitwise operators in this
 book, but you can read about them at http://wiki.python.org/moin/BitwiseOperators.
In Python 2, the division operator might not do what you
 expect:
>>> minute = 59
>>> minute/60
0
The value of minute is 59, and
 in conventional arithmetic 59 divided by 60 is 0.98333, not 0. The
 reason for the discrepancy is that Python is performing floor division. When both of the operands are
 integers, the result is also an integer; floor division chops off the
 fraction part, so in this example it rounds down to zero.
In Python 3, the result of this division is a float. The new operator // performs floor division.
If either of the operands is a floating-point number, Python
 performs floating-point division, and the result is a float:
>>> minute/60.0
0.98333333333333328

Expressions and Statements

An expression is a combination of
 values, variables, and operators. A value all by itself is considered an
 expression, and so is a variable, so the following are all legal
 expressions (assuming that the variable x has been assigned a value):
17
x
x + 17
A statement is a unit of code
 that the Python interpreter can execute. We have seen two kinds of
 statement: print and assignment.
Technically an expression is also a statement, but it is probably
 simpler to think of them as different things. The important difference
 is that an expression has a value; a statement does not.

Interactive Mode and Script Mode

One of the benefits of working with an interpreted language is
 that you can test bits of code in interactive mode before you put them
 in a script. But there are differences between interactive mode and
 script mode that can be confusing.
For example, if you are using Python as a calculator, you might
 type
>>> miles = 26.2
>>> miles * 1.61
42.182
The first line assigns a value to miles, but it has no visible effect. The
 second line is an expression, so the interpreter evaluates it and
 displays the result. So we learn that a marathon is about 42
 kilometers.
But if you type the same code into a script and run it, you get no
 output at all. In script mode an expression, all by itself, has no
 visible effect. Python actually evaluates the expression, but it doesn’t
 display the value unless you tell it to:
miles = 26.2
print miles * 1.61
This behavior can be confusing at first.
A script usually contains a sequence of statements. If there is
 more than one statement, the results appear one at a time as the
 statements execute.
For example, the script
print 1
x = 2
print x
produces the output
1
2
The assignment statement produces no output.
Exercise 2-2.
Type the following statements in the Python interpreter to see
 what they do:
5
x = 5
x + 1
Now put the same statements into a script and run it. What is
 the output? Modify the script by transforming each expression into a
 print statement and then run it again.

Order of Operations

When more than one operator appears in an expression, the
 order of evaluation depends on the rules of
 precedence. For mathematical operators, Python follows
 mathematical convention. The acronym PEMDAS is a useful way to remember the
 rules:
	Parentheses have the highest
 precedence and can be used to force an expression to evaluate in the
 order you want. Since expressions in parentheses are evaluated
 first, 2 * (3-1) is 4, and
 (1+1)**(5-2) is 8. You can also
 use parentheses to make an expression easier to read, as in (minute * 100) / 60, even if it doesn’t
 change the result.

	Exponentiation has the next
 highest precedence, so 2**1+1 is
 3, not 4, and 3*1**3 is 3, not
 27.

	Multiplication and Division have the same precedence, which is
 higher than Addition and Subtraction, which also have the same
 precedence. So 2*3-1 is 5, not 4,
 and 6+4/2 is 8, not 5.

	Operators with the same precedence are evaluated from left to
 right (except exponentiation). So in the expression degrees / 2 * pi, the division happens
 first and the result is multiplied by pi. To divide by [image:], you can use parentheses or write degrees / 2 / pi.

I don’t work very hard to remember rules of precedence for other
 operators. If I can’t tell by looking at the expression, I use
 parentheses to make it obvious.

String Operations

In general, you can’t perform mathematical operations on
 strings, even if the strings look like numbers, so the following are
 illegal:
'2'-'1' 'eggs'/'easy' 'third'*'a charm'
The + operator works with
 strings, but it might not do what you expect: it performs concatenation, which means joining the strings by
 linking them end-to-end. For example:
first = 'throat'
second = 'warbler'
print first + second
The output of this program is throatwarbler.
The * operator also works on
 strings; it performs repetition. For example, 'Spam'*3 is 'SpamSpamSpam'. If one of the operands is a
 string, the other has to be an integer.
This use of + and * makes sense by analogy with addition and
 multiplication. Just as 4*3 is
 equivalent to 4+4+4, we expect
 'Spam'*3 to be the same
 as 'Spam'+'Spam'+'Spam',
 and it is. On the other hand, there is a significant way in which string
 concatenation and repetition are different from integer addition and
 multiplication. Can you think of a property that addition has that
 string concatenation does not?

Comments

As programs get bigger and more complicated, they get more
 difficult to read. Formal languages are dense, and it is often difficult
 to look at a piece of code and figure out what it is doing, or
 why.
For this reason, it is a good idea to add notes to your programs
 to explain in natural language what the program is doing. These notes
 are called comments, and they start
 with the #
 symbol:
compute the percentage of the hour that has elapsed
percentage = (minute * 100) / 60

In this case, the comment appears on a line by itself. You can
 also put comments at the end of a line:
percentage = (minute * 100) / 60 # percentage of an hour

Everything from the # to the
 end of the line is ignored—it has no effect on the program.
Comments are most useful when they document non-obvious features
 of the code. It is reasonable to assume that the reader can figure out
 what the code does; it is much more useful to
 explain why.
This comment is redundant with the code and useless:
v = 5 # assign 5 to v

This comment contains useful information that is not in the
 code:
v = 5 # velocity in meters/second.

Good variable names can reduce the need for comments, but long
 names can make complex expressions hard to read, so there is a
 tradeoff.

Debugging

At this point the syntax error you are most likely to make
 is an illegal variable name, like class and yield, which are keywords, or odd~job and US$, which contain illegal
 characters.
If you put a space in a variable name, Python thinks it is two
 operands without an operator:
>>> bad name = 5
SyntaxError: invalid syntax
For syntax errors, the error messages don’t help much. The most
 common messages are SyntaxError: invalid
 syntax and SyntaxError: invalid
 token, neither of which is very informative.
The runtime error you are most likely to make is a “use before
 def;” that is, trying to use a variable before you have assigned a
 value. This can happen if you spell a variable name wrong:
>>> principal = 327.68
>>> interest = principle * rate
NameError: name 'principle' is not defined
Variables names are case sensitive, so LaTeX is not the same as latex.
At this point the most likely cause of a semantic error is the
 order of operations. For example, to evaluate [image:], you might be tempted to write
>>> 1.0 / 2.0 * pi
But the division happens first, so you would get [image:], which is not the same thing! There is no way for
 Python to know what you meant to write, so in this case you don’t get an
 error message; you just get the wrong answer.

Glossary

	Value:
	One of the basic units of data, like a number or string,
 that a program manipulates.

	Type:
	A category of values. The types we have seen so far are
 integers (type int),
 floating-point numbers (type float), and strings (type str).

	Integer:
	A type that represents whole numbers.

	Floating-point:
	A type that represents numbers with fractional
 parts.

	String:
	A type that represents sequences of characters.

	Variable:
	A name that refers to a value.

	Statement:
	A section of code that represents a command or action. So
 far, the statements we have seen are assignments and print
 statements.

	Assignment:
	A statement that assigns a value to a variable.

	State diagram:
	A graphical representation of a set of variables and the
 values they refer to.

	Keyword:
	A reserved word that is used by the compiler to parse a
 program; you cannot use keywords like if, def, and while as variable names.

	Operator:
	A special symbol that represents a simple computation like
 addition, multiplication, or string concatenation.

	Operand:
	One of the values on which an operator operates.

	Floor division:
	The operation that divides two numbers and chops off the
 fraction part.

	Expression:
	A combination of variables, operators, and values that
 represents a single result value.

	Evaluate:
	To simplify an expression by performing the operations in
 order to yield a single value.

	Rules of precedence:
	The set of rules governing the order in which expressions
 involving multiple operators and operands are evaluated.

	Concatenate:
	To join two operands end-to-end.

	Comment:
	Information in a program that is meant for other programmers
 (or anyone reading the source code) and has no effect on the
 execution of the program.

Exercises

Exercise 2-3.
Assume that we execute the following assignment
 statements:
width = 17
height = 12.0
delimiter = '.'
For each of the following expressions, write the value of the
 expression and the type (of the value of the expression).
	width/2

	width/2.0

	height/3

	1 + 2 * 5

	delimiter * 5

Use the Python interpreter to check your answers.

Exercise 2-4.
Practice using the Python interpreter as a calculator:
	The volume of a sphere with radius r is
 [image:]. What is the volume of a sphere with radius 5?
 Hint: 392.7 is wrong!

	Suppose the cover price of a book is $24.95, but bookstores
 get a 40% discount. Shipping costs $3 for the first copy and 75
 cents for each additional copy. What is the total wholesale cost
 for 60 copies?

	If I leave my house at 6:52 am and run 1 mile at an easy
 pace (8:15 per mile), then 3 miles at tempo (7:12 per mile) and 1
 mile at easy pace again, what time do I get home for
 breakfast?

Chapter 3. Functions

Function Calls

In the context of programming, a function is a named sequence of statements that
 performs a computation. When you define a function, you specify the name
 and the sequence of statements. Later, you can “call” the function by
 name. We have already seen one example of a function call:
>>> type(32)
<type 'int'>
The name of the function is type. The expression in parentheses is called
 the argument of the function. The
 result, for this function, is the type of the argument.
It is common to say that a function “takes” an argument and
 “returns” a result. The result is called the return value.

Type Conversion Functions

Python provides built-in functions that convert values
 from one type to another. The int
 function takes any value and converts it to an integer, if it can, or
 complains otherwise:
>>> int('32')
32
>>> int('Hello')
ValueError: invalid literal for int(): Hello
int can convert floating-point
 values to integers, but it doesn’t round off; it chops off the fraction
 part:
>>> int(3.99999)
3
>>> int(-2.3)
-2
float converts integers and
 strings to floating-point numbers:
>>> float(32)
32.0
>>> float('3.14159')
3.14159
Finally, str converts its
 argument to a string:
>>> str(32)
'32'
>>> str(3.14159)
'3.14159'

Math Functions

Python has a math module that provides most of the
 familiar mathematical functions. A module is a file that contains a collection of
 related functions.
Before we can use the module, we have to import it:
>>> import math
This statement creates a module
 object named math. If you print the module object, you get
 some information about it:
>>> print math
<module 'math' (built-in)>
The module object contains the functions and variables defined in
 the module. To access one of the functions, you have to specify the name
 of the module and the name of the function, separated by a dot (also
 known as a period). This format is called dot
 notation.
>>> ratio = signal_power / noise_power
>>> decibels = 10 * math.log10(ratio)

>>> radians = 0.7
>>> height = math.sin(radians)
The first example uses log10 to compute a signal-to-noise ratio in
 decibels (assuming that signal_power and noise_power are defined). The math module also
 provides log, which computes
 logarithms base e.
The second example finds the sine of radians. The name of the variable is a hint
 that sin and the other trigonometric
 functions (cos, tan, etc.) take arguments in radians. To
 convert from degrees to radians, divide by 360 and multiply by
 [image:]:
>>> degrees = 45
>>> radians = degrees / 360.0 * 2 * math.pi
>>> math.sin(radians)
0.707106781187
The expression math.pi gets the
 variable pi from the math module. The
 value of this variable is an approximation of [image:], accurate to about 15 digits.
If you know your trigonometry, you can check the previous result
 by comparing it to the square root of two divided by two:
>>> math.sqrt(2) / 2.0
0.707106781187

Composition

So far, we have looked at the elements of a
 program—variables, expressions, and statements—in isolation, without
 talking about how to combine them.
One of the most useful features of programming languages is their
 ability to take small building blocks and compose them. For example, the argument of a
 function can be any kind of expression, including arithmetic
 operators:
x = math.sin(degrees / 360.0 * 2 * math.pi)
And even function calls:
x = math.exp(math.log(x+1))
Almost anywhere you can put a value, you can put an arbitrary
 expression, with one exception: the left side of an assignment statement
 has to be a variable name. Any other expression on the left side is a
 syntax error (we will see exceptions to this rule later).
>>> minutes = hours * 60 # right
>>> hours * 60 = minutes # wrong!
SyntaxError: can't assign to operator

Adding New Functions

So far, we have only been using the functions that come with
 Python, but it is also possible to add new functions. A function definition specifies the name of a new
 function and the sequence of statements that execute when the function
 is called.
Here is an example:
def print_lyrics():
 print "I'm a lumberjack, and I'm okay."
 print "I sleep all night and I work all day."

def is a keyword that indicates
 that this is a function definition. The name of the function is print_lyrics. The rules for
 function names are the same as for variable names: letters, numbers and
 some punctuation marks are legal, but the first character can’t be a
 number. You can’t use a keyword as the name of a function, and you
 should avoid having a variable and a function with the same
 name.
The empty parentheses after the name indicate that this function
 doesn’t take any arguments.
The first line of the function definition is called the header; the rest is called the body. The header has to end with a colon and the
 body has to be indented. By convention, the indentation is always four
 spaces; see Debugging. The body can contain any number
 of statements.
The strings in the print statements are enclosed in double quotes.
 Single quotes and double quotes do the same thing; most people use
 single quotes except in cases like this where a single quote (which is
 also an apostrophe) appears in the string.
If you type a function definition in interactive mode, the
 interpreter prints ellipses (...) to let you know
 that the definition isn’t complete:
>>> def print_lyrics():
... print "I'm a lumberjack, and I'm okay."
... print "I sleep all night and I work all day."
...
To end the function, you have to enter an empty line (this is not
 necessary in a script).
Defining a function creates a variable with the same name.
>>> print print_lyrics
<function print_lyrics at 0xb7e99e9c>
>>> type(print_lyrics)
<type 'function'>
The value of print_lyrics is a function
 object, which has type 'function'.
The syntax for calling the new function is the same as for
 built-in functions:
>>> print_lyrics()
I'm a lumberjack, and I'm okay.
I sleep all night and I work all day.
Once you have defined a function, you can use it inside another
 function. For example, to repeat the previous refrain, we could write a
 function called repeat_lyrics:
def repeat_lyrics():
 print_lyrics()
 print_lyrics()

And then call repeat_lyrics:
>>> repeat_lyrics()
I'm a lumberjack, and I'm okay.
I sleep all night and I work all day.
I'm a lumberjack, and I'm okay.
I sleep all night and I work all day.
But that’s not really how the song goes.

Definitions and Uses

Pulling together the code fragments from the previous
 section, the whole program looks like this:
def print_lyrics():
 print "I'm a lumberjack, and I'm okay."
 print "I sleep all night and I work all day."

def repeat_lyrics():
 print_lyrics()
 print_lyrics()

repeat_lyrics()

This program contains two function definitions: print_lyrics and repeat_lyrics. Function
 definitions get executed just like other statements, but the result
 creates function objects. The statements inside the function do not get
 executed until the function is called, and the function definition
 generates no output.
As you might expect, you have to create a function before you can
 execute it. In other words, the function definition has to be executed
 before the function is called the first time.
Exercise 3-1.
Move the last line of this program to the top, so the function
 call appears before the definitions. Run the program and see what
 error message you get.

Exercise 3-2.
Move the function call back to the bottom and move the
 definition of print_lyrics after the definition of repeat_lyrics. What happens
 when you run this program?

Flow of Execution

In order to ensure that a function is defined before its
 first use, you have to know the order in which statements are executed,
 which is called the flow of
 execution.
Execution always begins at the first statement of the program.
 Statements are executed one at a time, in order, from top to
 bottom.
Function definitions do not alter the flow of execution of the
 program, but remember that statements inside the function are not
 executed until the function is called.
A function call is like a detour in the flow of execution. Instead
 of going to the next statement, the flow jumps to the body of the
 function, executes all the statements there, and then comes back to pick
 up where it left off.
That sounds simple enough, until you remember that one function
 can call another. While in the middle of one function, the program might
 have to execute the statements in another function. But while executing
 that new function, the program might have to execute yet another
 function!
Fortunately, Python is good at keeping track of where it is, so
 each time a function completes, the program picks up where it left off
 in the function that called it. When it gets to the end of the program,
 it terminates.
What’s the moral of this sordid tale? When you read a program, you
 don’t always want to read from top to bottom. Sometimes it makes more
 sense if you follow the flow of execution.

Parameters and Arguments

Some of the built-in functions we have seen require
 arguments. For example, when you call math.sin you pass a number as an argument.
 Some functions take more than one argument: math.pow takes two, the base and the
 exponent.
Inside the function, the arguments are assigned to variables
 called parameters. Here is an example
 of a user-defined function that takes an argument:
def print_twice(bruce):
 print bruce
 print bruce

This function assigns the argument to a parameter named bruce. When the function is called, it prints
 the value of the parameter (whatever it is) twice.
This function works with any value that can be printed.
>>> print_twice('Spam')
Spam
Spam
>>> print_twice(17)
17
17
>>> print_twice(math.pi)
3.14159265359
3.14159265359
The same rules of composition that apply to built-in functions
 also apply to user-defined functions, so we can use any kind of
 expression as an argument for print_twice:
>>> print_twice('Spam '*4)
Spam Spam Spam Spam
Spam Spam Spam Spam
>>> print_twice(math.cos(math.pi))
-1.0
-1.0
The argument is evaluated before the function is called, so in the
 examples the expressions 'Spam
 '*4 and math.cos(math.pi)
 are only evaluated once.
You can also use a variable as an argument:
>>> michael = 'Eric, the half a bee.'
>>> print_twice(michael)
Eric, the half a bee.
Eric, the half a bee.
The name of the variable we pass as an argument (michael) has nothing to do with the name of
 the parameter (bruce). It doesn’t
 matter what the value was called back home (in the caller); here in
 print_twice, we call
 everybody bruce.

Variables and Parameters Are Local

When you create a variable inside a function, it is
 local, which means that it only exists
 inside the function. For example:
def cat_twice(part1, part2):
 cat = part1 + part2
 print_twice(cat)

This function takes two arguments, concatenates them, and prints
 the result twice. Here is an example that uses it:
>>> line1 = 'Bing tiddle '
>>> line2 = 'tiddle bang.'
>>> cat_twice(line1, line2)
Bing tiddle tiddle bang.
Bing tiddle tiddle bang.
When cat_twice
 terminates, the variable cat is
 destroyed. If we try to print it, we get an exception:
>>> print cat
NameError: name 'cat' is not defined
Parameters are also local. For example, outside print_twice, there is no such
 thing as bruce.

Stack Diagrams

To keep track of which variables can be used where, it is
 sometimes useful to draw a stack
 diagram. Like state diagrams, stack diagrams show the value
 of each variable, but they also show the function each variable belongs
 to.
Each function is represented by a frame. A frame is a box with the name of a
 function beside it and the parameters and variables of the function
 inside it. The stack diagram for the previous example is shown in Figure 3-1.
[image: Stack diagram.]

Figure 3-1. Stack diagram.

The frames are arranged in a stack that indicates which function
 called which, and so on. In this example, print_twice was called by cat_twice, and cat_twice was called by __main__, which is a special name
 for the topmost frame. When you create a variable outside of any
 function, it belongs to __main__.
Each parameter refers to the same value as its corresponding
 argument. So, part1 has the same
 value as line1, part2 has the same value as line2, and bruce has the same value as cat.
If an error occurs during a function call, Python prints the name
 of the function, and the name of the function that called it, and the
 name of the function that called that, all the way
 back to __main__.
For example, if you try to access cat from within print_twice, you get a NameError:
Traceback (innermost last):
 File "test.py", line 13, in __main__
 cat_twice(line1, line2)
 File "test.py", line 5, in cat_twice
 print_twice(cat)
 File "test.py", line 9, in print_twice
 print cat
NameError: name 'cat' is not defined
This list of functions is called a traceback. It tells you what program file the
 error occurred in, and what line, and what functions were executing at
 the time. It also shows the line of code that caused the
 error.
The order of the functions in the traceback is the same as the
 order of the frames in the stack diagram. The function that is currently
 running is listed at the bottom.

Fruitful Functions and Void Functions

Some of the functions we are using, such as the math
 functions, yield results; for lack of a better name, I call them
 fruitful functions. Other functions,
 like print_twice,
 perform an action but don’t return a value. They are called void functions.
When you call a fruitful function, you almost always want to do
 something with the result; for example, you might assign it to a
 variable or use it as part of an expression:
x = math.cos(radians)
golden = (math.sqrt(5) + 1) / 2
When you call a function in interactive mode, Python displays the
 result:
>>> math.sqrt(5)
2.2360679774997898
But in a script, if you call a fruitful function all by itself,
 the return value is lost forever!
math.sqrt(5)
This script computes the square root of 5, but since it doesn’t
 store or display the result, it is not very useful.
Void functions might display something on the screen or have some
 other effect, but they don’t have a return value. If you try to assign
 the result to a variable, you get a special value called None.
>>> result = print_twice('Bing')
Bing
Bing
>>> print result
None
The value None is not the same
 as the string 'None'. It
 is a special value that has its own type:
>>> print type(None)
<type 'NoneType'>
The functions we have written so far are all void. We will start
 writing fruitful functions in a few chapters.

Why Functions?

It may not be clear why it is worth the trouble to divide
 a program into functions. There are several reasons:
	Creating a new function gives you an opportunity to name a
 group of statements, which makes your program easier to read and
 debug.

	Functions can make a program smaller by eliminating repetitive
 code. Later, if you make a change, you only have to make it in one
 place.

	Dividing a long program into functions allows you to debug the
 parts one at a time and then assemble them into a working
 whole.

	Well-designed functions are often useful for many programs.
 Once you write and debug one, you can reuse it.

Importing with from

Python provides two ways to import modules; we have already seen
 one:
>>> import math
>>> print math
<module 'math' (built-in)>
>>> print math.pi
3.14159265359
If you import math, you get a
 module object named math. The module
 object contains constants like pi and
 functions like sin and exp.
But if you try to access pi
 directly, you get an error.
>>> print pi
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
NameError: name 'pi' is not defined
As an alternative, you can import an object from a module like
 this:
>>> from math import pi
Now you can access pi directly,
 without dot notation.
>>> print pi
3.14159265359
Or you can use the star operator to import
 everything from the module:
>>> from math import *
>>> cos(pi)
-1.0
The advantage of importing everything from the math module is that
 your code can be more concise. The disadvantage is that there might be
 conflicts between names defined in different modules, or between a name
 from a module and one of your variables.

Debugging

If you are using a text editor to write your scripts, you
 might run into problems with spaces and tabs. The best way to avoid
 these problems is to use spaces exclusively (no tabs). Most text editors
 that know about Python do this by default, but some don’t.
Tabs and spaces are usually invisible, which makes them hard to
 debug, so try to find an editor that manages indentation for you.
Also, don’t forget to save your program before you run it. Some
 development environments do this automatically, but some don’t. In that
 case the program you are looking at in the text editor is not the same
 as the program you are running.
Debugging can take a long time if you keep running the same,
 incorrect, program over and over!
Make sure that the code you are looking at is the code you are
 running. If you’re not sure, put something like print 'hello' at the beginning of the program and
 run it again. If you don’t see hello, you’re not running the right
 program!

Glossary

	Function:
	A named sequence of statements that performs some useful
 operation. Functions may or may not take arguments and may or may
 not produce a result.

	Function definition:
	A statement that creates a new function, specifying its
 name, parameters, and the statements it executes.

	Function object:
	A value created by a function definition. The name of the
 function is a variable that refers to a function object.

	Header:
	The first line of a function definition.

	Body:
	The sequence of statements inside a function
 definition.

	Parameter:
	A name used inside a function to refer to the value passed
 as an argument.

	Function call:
	A statement that executes a function. It consists of the
 function name followed by an argument list.

	Argument:
	A value provided to a function when the function is called.
 This value is assigned to the corresponding parameter in the
 function.

	Local variable:
	A variable defined inside a function. A local variable can
 only be used inside its function.

	Return value:
	The result of a function. If a function call is used as an
 expression, the return value is the value of the
 expression.

	Fruitful function:
	A function that returns a value.

	Void function:
	A function that doesn’t return a value.

	Module:
	A file that contains a collection of related functions and
 other definitions.

	Import statement:
	A statement that reads a module file and creates a module
 object.

	Module object:
	A value created by an import statement that provides access to
 the values defined in a module.

	Dot notation:
	The syntax for calling a function in another module by
 specifying the module name followed by a dot (period) and the
 function name.

	Composition:
	Using an expression as part of a larger expression, or a
 statement as part of a larger statement.

	Flow of execution:
	The order in which statements are executed during a program
 run.

	Stack diagram:
	A graphical representation of a stack of functions, their
 variables, and the values they refer to.

	Frame:
	A box in a stack diagram that represents a function call. It
 contains the local variables and parameters of the
 function.

	Traceback:
	A list of the functions that are executing, printed when an
 exception occurs.

Exercises

Exercise 3-3.
Python provides a built-in function called len that returns the length of a string, so
 the value of len('allen') is 5.
Write a function named right_justify that takes a string named
 s as a parameter and prints the
 string with enough leading spaces so that the last letter of the
 string is in column 70 of the display.
>>> right_justify('allen')
 allen

Exercise 3-4.
A function object is a value you can assign to a
 variable or pass as an argument. For example, do_twice is a function that takes a function
 object as an argument and calls it twice:
def do_twice(f):
 f()
 f()

Here’s an example that uses do_twice to call a function named print_spam twice.
def print_spam():
 print 'spam'

do_twice(print_spam)

	Type this example into a script and test it.

	Modify do_twice so that it takes two arguments, a
 function object and a value, and calls the function twice, passing
 the value as an argument.

	Write a more general version of print_spam, called print_twice, that takes a string as a
 parameter and prints it twice.

	Use the modified version of do_twice to call print_twice twice, passing 'spam' as an
 argument.

	Define a new function called do_four that takes a function object and a
 value and calls the function four times, passing the value as a
 parameter. There should be only two statements in the body of this
 function, not four.

Solution: http://thinkpython.com/code/do_four.py.

Exercise 3-5.
This exercise can be done using only the statements and other
 features we have learned so far.
	Write a function that draws a grid like the
 following:
+ - - - - + - - - - +
| | |
| | |
| | |
| | |
+ - - - - + - - - - +
| | |
| | |
| | |
| | |
+ - - - - + - - - - +
Hint: to print more than one value on a line, you can print
 a comma-separated sequence:
print '+', '-'
If the sequence ends with a comma, Python leaves the line
 unfinished, so the value printed next appears on the same
 line.
print '+',
print '-'
The output of these statements is '+ -'.
A print statement all by
 itself ends the current line and goes to the next line.

	Write a function that draws a similar grid with four rows
 and four columns.

Solution: http://thinkpython.com/code/grid.py. Credit: This
 exercise is based on an exercise in Oualline, Practical C
 Programming, Third Edition, O’Reilly Media, 1997.

End of sample

 To search for additional titles please go to

 http://search.overdrive.com.

OEBPS/httpatomoreillycomsourceoreillyimages1274075.png
x<y<Z

OEBPS/httpatomoreillycomsourceoreillyimages1274149.png

OEBPS/httpatomoreillycomsourceoreillyimages1274165.png
O(n")

OEBPS/httpatomoreillycomsourceoreillyimages1274124.png
Time

time —=| hour —= 11
minute —= 59
second —= 30

OEBPS/httpatomoreillycomsourceoreillyimages1274125.png
Spades

Hearts
Diamonds
Clubs

1111

O == N WD

OEBPS/httpatomoreillycomsourceoreillyimages1274138.png

OEBPS/httpatomoreillycomsourceoreillyimages1274036.png
Source
Code

Interpreter

—

Output

OEBPS/httpatomoreillycomsourceoreillyimages1274118.png
Point

blank —= x —= 3.0

y—= 40

OEBPS/httpatomoreillycomsourceoreillyimages1274181.png
<module> dict list

inverse O—+{— 1 0 'a
1 P
2 't
3 'o

list

dict
hist O-f—|'a"

OEBPS/httpatomoreillycomsourceoreillyimages1274156.png

OEBPS/httpatomoreillycomsourceoreillyimages1274172.png

OEBPS/httpatomoreillycomsourceoreillyimages1274185.png
<module>
Point O

instantiate O—{+—

Rectangle O——]

tvpe instantiate
name__ O—{——'Point"' obj O
function
constructor—Q

__name__ O——— 'instantiate'

tvpe
__name__ O-f—— 'Rectangle’

Point

OEBPS/httpatomoreillycomsourceoreillyimages1274041.png

OEBPS/httpatomoreillycomsourceoreillyimages1274091.png

OEBPS/httpatomoreillycomsourceoreillyimages1274096.png
word1 —= ’pots’ word2 —= ’stop”

i—=0 ji—3

OEBPS/httpatomoreillycomsourceoreillyimages1274069.png

OEBPS/httpatomoreillycomsourceoreillyimages1274106.png
<module>

delete_head

letters —|

N/

list

0—="a
1—"0

2—C

OEBPS/httpatomoreillycomsourceoreillyimages1274088.png

OEBPS/httpatomoreillycomsourceoreillyimages1274120.png
Rectangle

box —=]|

width —= 100.0
height —= 200.0

Point

x —= 0.0

corner

y —= 0.0

OEBPS/httpatomoreillycomsourceoreillyimages1274050.png
I

OEBPS/orm_front_cover.jpg
T ™ ——————————————
How to Think Like a Computer Scientist

O’REILLY® Allen B. Downey

OEBPS/httpatomoreillycomsourceoreillyimages1274089.png

OEBPS/httpatomoreillycomsourceoreillyimages1274166.png

OEBPS/httpatomoreillycomsourceoreillyimages1274073.png

OEBPS/httpatomoreillycomsourceoreillyimages1274135.png

OEBPS/httpatomoreillycomsourceoreillyimages1274157.png

OEBPS/httpatomoreillycomsourceoreillyimages1274159.png

OEBPS/httpatomoreillycomsourceoreillyimages1274150.png
1000000n° + n*°

OEBPS/httpatomoreillycomsourceoreillyimages1274183.png
<module> Rectangle
box O width O———100.0
height O-}+——200.0
Point
corner (O y O

Rectangle

box2 O corner x O 0

height O—+——200.0
width O———100.0

OEBPS/httpatomoreillycomsourceoreillyimages1274145.png
O(nlogn)

OEBPS/httpatomoreillycomsourceoreillyimages1274187.png
object

Rectangle

corner
height
idth

\

Poin

OEBPS/httpatomoreillycomsourceoreillyimages1274137.png

OEBPS/httpatomoreillycomsourceoreillyimages1274076.png
n!

1
nn-—1)"

OEBPS/httpatomoreillycomsourceoreillyimages1274126.png
Jack - 11
Queen - 12

King ~ 13

OEBPS/httpatomoreillycomsourceoreillyimages1274167.png

OEBPS/httpatomoreillycomsourceoreillyimages1274164.png
O(n")

OEBPS/httpatomoreillycomsourceoreillyimages1274053.png

OEBPS/httpatomoreillycomsourceoreillyimages1274148.png
O(c")

OEBPS/httpatomoreillycomsourceoreillyimages1274058.png
QTr

OEBPS/httpatomoreillycomsourceoreillyimages1274112.png
tuple

0 —= "Cleese’
1 —= "John’

OEBPS/httpatomoreillycomsourceoreillyimages1274169.png
O(logn)

OEBPS/httpatomoreillycomsourceoreillyimages1274086.png
— xtalx

OEBPS/httpatomoreillycomsourceoreillyimages1274066.png

OEBPS/httpatomoreillycomsourceoreillyimages1274155.png

OEBPS/httpatomoreillycomsourceoreillyimages1274045.png

OEBPS/httpatomoreillycomsourceoreillyimages1274046.png

OEBPS/httpatomoreillycomsourceoreillyimages1274110.png
fibonacci fibonacci
n—3 n—2

fibonacci
n 0

fibonacci
n 1

fibonacci
n 1

fibonacci
n 2

fibonacci fibonacci
n—1 n—0

OEBPS/httpatomoreillycomsourceoreillyimages1274065.png
SNR y, = 10log, (Pionai! P,

noise)

OEBPS/httpatomoreillycomsourceoreillyimages1274074.png
Y — M

OEBPS/httpatomoreillycomsourceoreillyimages1274080.png

OEBPS/httpatomoreillycomsourceoreillyimages1274144.png
O(log,n)

OEBPS/httpatomoreillycomsourceoreillyimages1274173.png

OEBPS/httpatomoreillycomsourceoreillyimages1274090.png
. Z (4k)!(1103 4 26390k)
9801 (k!)*396%

OEBPS/httpatomoreillycomsourceoreillyimages1274133.png
Tartewond

Printcanvas | Quit
o) J\?N
S Make Turtle | Clear
i

NN N
bl
T,
he; o G
:,_:“wﬁ lbob = Turtle (world)

wif

g

h

&

-
4
<

Run code

OEBPS/httpatomoreillycomsourceoreillyimages1274122.png
box

width —= 100.0
height —= 200.0

x —= 0.0

100.0=— width |<—box2
200.0<=— height

corner

y—= 00

orner

OEBPS/httpatomoreillycomsourceoreillyimages1274163.png

OEBPS/httpatomoreillycomsourceoreillyimages1274134.png

OEBPS/httpatomoreillycomsourceoreillyimages1274044.png

OEBPS/httpatomoreillycomsourceoreillyimages1274038.png
Source
Code

Compler

Object
Code

.

Executor

Output

OEBPS/httpatomoreillycomsourceoreillyimages1274082.png

OEBPS/httpatomoreillycomsourceoreillyimages1274049.png
message —= "And now for something completely different’
n—=17

pi —= 3.1415926535897932

OEBPS/httpatomoreillycomsourceoreillyimages1274116.png
logf = logc— s logr

OEBPS/httpatomoreillycomsourceoreillyimages1274083.png

OEBPS/httpatomoreillycomsourceoreillyimages1274104.png

OEBPS/httpatomoreillycomsourceoreillyimages1274081.png
n+1 itm = 0
Alm,n)={A(m—-1,1) if m >0andn = 0
Am—-1,Am,n—1)) ifm >0andn > 0.

OEBPS/httpatomoreillycomsourceoreillyimages1274153.png

OEBPS/httpatomoreillycomsourceoreillyimages1274087.png

OEBPS/httpatomoreillycomsourceoreillyimages1274189.png
object

Deck

_init__
str__

add_card

move_cards

pop_card

emove_card

rank_names

suit_names

Hand

PokerHand

has_flush

suit_hist

cards

label

OEBPS/httpatomoreillycomsourceoreillyimages1274052.png
al?

OEBPS/httpatomoreillycomsourceoreillyimages1274092.png

OEBPS/httpatomoreillycomsourceoreillyimages1274094.png
mt— b anana’

index 0 1 2 3 4 56

OEBPS/httpatomoreillycomsourceoreillyimages1274152.png
(n“+n)-(n+1)

OEBPS/httpatomoreillycomsourceoreillyimages1274067.png

OEBPS/httpatomoreillycomsourceoreillyimages1274043.png
34+ = 356

OEBPS/httpatomoreillycomsourceoreillyimages1274170.png
O(logn)

OEBPS/httpatomoreillycomsourceoreillyimages1274079.png
fibonacci (0) 0
fibonacci (1) 1
fibonacci (n) = fibonacci (n — 1) + fibonacci (n — 2)

OEBPS/httpatomoreillycomsourceoreillyimages1274108.png
hist:

dict dict list
a 1 inv 0 a
o1 1
T —=2 2—t
T—1 3— 0
0 —=1 .
list

OEBPS/httpatomoreillycomsourceoreillyimages1274161.png

OEBPS/httpatomoreillycomsourceoreillyimages1274070.png
(X1: Y1)

OEBPS/httpatomoreillycomsourceoreillyimages1274147.png

OEBPS/httpatomoreillycomsourceoreillyimages1274154.png

OEBPS/httpatomoreillycomsourceoreillyimages1274131.png
Deck 3 Card

Hand

OEBPS/httpatomoreillycomsourceoreillyimages1274127.png

OEBPS/httpatomoreillycomsourceoreillyimages1274040.png
34+ = 356

OEBPS/httpatomoreillycomsourceoreillyimages1274143.png

OEBPS/httpatomoreillycomsourceoreillyimages1274175.png
<module>

n O———17

message (O—f—— "And now for something complete'

pi O} —3.14159265359

OEBPS/oreilly_large.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages1274098.png
list

cheeses —=| 0 —= 'Cheddar’
1 —= Edam’
2 —= "Gouda’

list

numbers —=| 0 —= 17

1.... 193
\5

list

empty —= D

OEBPS/httpatomoreillycomsourceoreillyimages1274071.png
(X2: ¥»)

OEBPS/httpatomoreillycomsourceoreillyimages1274162.png
O(n")

OEBPS/httpatomoreillycomsourceoreillyimages1274168.png

OEBPS/httpatomoreillycomsourceoreillyimages1274177.png
ntdown
<module> countdo countdown countdown

n o 2 l n o

OEBPS/httpatomoreillycomsourceoreillyimages1274051.png
3~

OEBPS/httpatomoreillycomsourceoreillyimages1274179.png
<module> list
cheeses O 0 O 'Cheddar’
1 O—+—'"Edam'
2 O—++——'Gouda'
list
numbers (O 0 O 17
1 O+—123
list

empty (O—

OEBPS/httpatomoreillycomsourceoreillyimages1274085.png

OEBPS/httpatomoreillycomsourceoreillyimages1274129.png
type list
Card —=| suit_names

list
rank_names ——=|

Card
cardl —=| suit — 1

rank —= 11

OEBPS/httpatomoreillycomsourceoreillyimages1274039.png

OEBPS/httpatomoreillycomsourceoreillyimages1274047.png

OEBPS/httpatomoreillycomsourceoreillyimages1274115.png
f=cr

OEBPS/httpatomoreillycomsourceoreillyimages1274042.png

OEBPS/httpatomoreillycomsourceoreillyimages1274151.png
n> + 10000001~

OEBPS/httpatomoreillycomsourceoreillyimages1274114.png
dict

(Cleese’, "John’) —= 08700 100 222’
(’Chapman’, ‘Graham’) —= '08700 100 222"
('ldle’, *Eric’) —= 08700 100 222

(Gilliam’, "Terry’) —= "08700 100 222
(‘Jones’, Terry’) —= 08700 100 222"
(‘Palin’, "Michael’) —= "08700 100 222

OEBPS/httpatomoreillycomsourceoreillyimages1274060.png

OEBPS/httpatomoreillycomsourceoreillyimages1274136.png

OEBPS/httpatomoreillycomsourceoreillyimages1274141.png

OEBPS/httpatomoreillycomsourceoreillyimages1274139.png

OEBPS/httpatomoreillycomsourceoreillyimages1274160.png

OEBPS/httpatomoreillycomsourceoreillyimages1274078.png
<module>

factorial

factorial

factorial

factorial

n 3 recurse 2 result 6
n 2 recurse 1 result 2
n 1 recurse 1 result 1
n—=0

OEBPS/httpatomoreillycomsourceoreillyimages1274146.png

OEBPS/httpatomoreillycomsourceoreillyimages1274072.png
distance = V(x, — x1)2 + (v, — yl)2

OEBPS/httpatomoreillycomsourceoreillyimages1274100.png
a —= ’banana’ a
Ty .
banana
b —= ‘banana’ b—=

OEBPS/httpatomoreillycomsourceoreillyimages1274102.png

OEBPS/httpatomoreillycomsourceoreillyimages1274055.png

OEBPS/httpatomoreillycomsourceoreillyimages1274064.png
<module>

countdown

countdown

countdown

countdown

OEBPS/httpatomoreillycomsourceoreillyimages1274054.png
I

OEBPS/httpatomoreillycomsourceoreillyimages1274062.png
K ERIOR

OEBPS/httpatomoreillycomsourceoreillyimages1274057.png
<module>

cat_twice

print_twice

line1 —= 'Bing tiddle
line2 —= ‘tiddle bang.’

parti —= 'Bing tiddle *
part2 —= ‘tiddle bang."
cat —= 'Bing tiddle tiddle bang."

bruce —= ’Bing tiddle tiddle bang.”

OEBPS/httpatomoreillycomsourceoreillyimages1274158.png

OEBPS/httpatomoreillycomsourceoreillyimages1274140.png

OEBPS/httpatomoreillycomsourceoreillyimages1274142.png

