

 [image: AppleScript: The Definitive Guide, 2nd Edition]

 AppleScript: The Definitive Guide, 2nd Edition

Matt Neuburg

Editor
Chuck Toporek

Copyright © 2009 O'Reilly Media, Inc.

[image:]

O'Reilly Media

Preface

If you use a Macintosh, there's something amazing lurking under the hood of your computer, and something even more amazing on the surface. Under the hood, there's a system-level mechanism for applications to communicate with one another, order each other about, get information from each other, and generally collaborate to avail themselves of each other's strengths and abilities. On the surface, there's AppleScript, which puts the power of this mechanism into the hands of ordinary users, letting them program the computer for themselves by writing and executing code in the AppleScript language, as a way of automating the behavior of applications, reducing many steps to one, throwing the burden of repetition and calculation onto the computer, and combining the powers of multiple applications into a seamless united workflow. AppleScript can be used to construct a simple brief automation or a massive complex chain of events. It's a brilliant labor-saving device—and saving labor is what computers are all about.
AppleScript is one of the greatest innovations of Mac OS, one of its most notable distinguishing features—and one of its most practical. Users from lone amateurs to mighty corporations have come to depend on it. Yet AppleScript was long treated by Apple itself as something of an unwanted, troublesome stepchild, and has even (according to apocryphal legend) at times come perilously near to being tossed onto the scrapheap. With the rise of Mac OS X, however, AppleScript has prospered, enjoying a kind of Golden Age, being embraced and acknowledged as one of Apple's star technologies. It is noted on Apple's own web pages as a major element of Mac OS X (for example, see http://www.apple.com/macosx/overview/). The Script Editor has been rewritten as a Cocoa application. Scripts may be run from a systemwide menu. More and more of Apple's own new applications are scriptable. Integration with Unix scripting has been provided. Automator (new in Tiger) lets users effectively assemble, customize, and run scripts without having to deal with any code. Even applications that are not technically scriptable can be targeted with AppleScript. Users can actually write a genuine application with a full-fledged Aqua user interface, using AppleScript as their programming language, thanks to the astounding AppleScript Studio. And it all comes for free as part of Mac OS X.
In this context, with interest in AppleScript waxing anew, the need for a complete explanatory manual and reference is greater than ever. In that spirit, this book has been offered. It is hoped that it will prove helpful to AppleScript's beginning and veteran users alike. Neither prior knowledge of AppleScript nor any previous programming experience is assumed, so that the complete beginner can use this book to learn AppleScript from the ground up; at the same time, the book aims at a degree of technical depth and completeness that will satisfy the needs of those who wish to consult it to check some point of syntax, or to gain a firmer understanding of such advanced arcana as how the scoping rules operate, how terminology is resolved, or what an Apple event really is.
The Scope of This Book

What should be the scope of a book about AppleScript? This is a tricky problem, and one that earlier books, in my view, have not always dealt with satisfactorily. The trouble is that AppleScript is really two subjects. First, there is what one may call AppleScript itself, a system-level technology and a "little language," not particularly useful or powerful on its own, but ready to talk to scriptable applications and to take advantage of their utility and power. Second, there is AppleScript as extended and implemented by particular scriptable applications: how to use AppleScript to talk to the Finder, how to use AppleScript to talk to Adobe Photoshop, how to use AppleScript to talk to QuarkXPress, and so forth.
On the whole, this book makes no attempt to treat this second aspect of AppleScript. This may be surprising to readers accustomed to some earlier books, but I believe it to be the right decision nonetheless. AppleScript as implemented by particular applications is a massive, encyclopedic subject. It would be easy to write an entire book of techniques, tricks, and tips for scripting just one major application. And the scope of any attempt to do this for every scriptable application would be open-ended, because it is impossible to know what scriptable applications the reader has or might acquire, and because new applications, any of which might be scriptable, are being developed all the time. Also, such treatment is largely unnecessary. Every scriptable application includes a dictionary telling the user about how it extends the language; the user can employ this, together with trial and error, and possibly examples from documentation and the Internet, to obtain pretty fair mastery over the art of scripting that application. There might even be books on the exact subject the reader is interested in. It is far better that the reader should consult a book entirely devoted to scripting, say, Adobe Illustrator than that the present book should attempt to compress a treatment of the same material into some reduced and undoubtedly inadequate form (Appendix C lists a few such books).
My choice, therefore, is between concisely teaching the reader to fish and giving the reader a large pile of possibly quite unnecessary fish. Readers who know anything of my work (or anything about fish) will know instantly which choice I would make. Rather than trying to encompass the details of scripting every application, my approach in this book has been to explain AppleScript itself, explicating the technology, documenting the language, describing how a dictionary works and what a user can and can't learn from it, and providing supplementary examples from across the range of applications that I actually use, so that the reader will be mentally equipped and educated and able to study and experiment independently with scripting any application.
Besides, books about the first aspect of AppleScript—about AppleScript itself—have been surprisingly few and far between. It is here that the need exists. The fact is that I have never seen the AppleScript language taught, explained, and documented in what I would regard as a clear, rigorous, and helpful way. Considering how long AppleScript has been around, it is hard to explain this lack. It may have partly to do with the absence of any clear and full explanation from Apple itself. After all, Apple wrote AppleScript, and only the folks at Apple have access to AppleScript's inner workings. Yet the only Apple manual of AppleScript, the AppleScript Language Guide, generally lacks explanatory depth.
There is a kind of unspoken myth—we may call it the "ease of use" myth—that tries to give the impression that AppleScript is so easy and intuitive that it doesn't really need explanation. Apple possibly didn't want users to see AppleScript as a full-fledged programming language, with all the precision, complexity, and sophistication that this entails, because that would be something that users would have to learn, exercising those parts of their brain to which a Macintosh, with its windows and icons and colorful buttons, isn't supposed to appeal. Instead, AppleScript is supposed to be so simple, so thin, so easy, so English-like, so intuitive, that there is hardly anything to learn in the first place; just pick up an application and its dictionary and presto, you're ready to script it.
Nothing could be further from the truth. First you must learn the language; only then will a dictionary make sense and be useful. AppleScript is not a mere veneer, an intuitive and obvious "glue" for hooking together the terms from an application's dictionary into sentences that will script that application as the user desires. On the contrary, it's a real programming language—a really interesting, fairly complicated, sometimes sophisticated, often opaque and quirky programming language. To conceal this fact from the potential user of AppleScript does that user no favor whatsoever. Every day I see on the Internet users who are starting AppleScript, who seem to imagine that with a few tiny "hints" they're just going to "pick it up"—that their AppleScript code will somehow just write itself. Well, it won't. A beginning user who expects to cut to the chase, to pick up an application's dictionary and just start scripting, is likely to give up in frustration. As Socrates said of virtue, AppleScript isn't something we all somehow are born knowing; it must be learned, and therefore it must be taught. There is nothing about AppleScript that makes it any less susceptible to scrutiny, careful description, and ordered, Euclidean exposition and definition than any other computer language.
In this light, I have written the AppleScript book that I have for so long myself wished to read. Before writing this book, I always found myself rather confused about AppleScript; I could use it with reasonable effectiveness, but I was always somewhat hazy on the details. So writing this book was first and foremost an opportunity for me to dispel my own confusion. My technique, aside from asking a few experts a lot of questions, has been one of sheer open-ended experimentation; essentially ignoring the Apple manual and the existing books and other expositions that have reproduced its myths and mistakes, I have subjected AppleScript to every test I could think of, trying to work out by empiricism and rational deduction the logic of the "little black box" concealed inside it. The result is a reasoned, rigorous, step-by-step presentation of the AppleScript language, intended for instruction and for reference—a studious, patient, detailed, ordered exposition and compendium of the facts as they really are. This book presents AppleScript as a programmer, a student, and a thinker would learn it. In short, it's just what I've always wanted! This book has helped me tremendously. Before I wrote it, I didn't really quite understand AppleScript; now I believe I do. I hope it will do the same for you.

Versions

Things change. All things change. And software often changes faster than the ability of printed books to keep up with it. It will therefore be useful for the reader to know what versions of software I was looking at when I wrote this edition of the book. The first draft was written using Mac OS X 10.4.2 ("Tiger") and AppleScript 1.10; the book was finished under Mac OS X 10.4.3 and AppleScript 1.10.3. Apple's Script Editor was at version 2.1 (later 2.1.1). Late Night Software's Script Debugger 4 was still in beta. (This means that screen shots of Script Debugger 4 don't quite match the finished product.) There may be further changes in Tiger, and possibly even in AppleScript, by the time the book goes to print, but if so, it seems unlikely that these will affect the book's content; still, the reader should be alert to the possibility of slight discrepancies between what I describe and the now-current state of things.
The book is written entirely from the perspective of Mac OS X. This is a deliberate design decision. There is an important sense in which Mac OS 9 really is frozen, if not downright moribund; very few new applications of any importance are being written for it, it is not likely to evolve further to any significant extent, and Apple has begun to produce computers that won't even boot in it (and will soon move to a system where Classic will not run at all). If you are not using Mac OS X, this book might still be useful to you, but please keep in mind that it isn't geared primarily to your situation.
This second edition is written entirely from the perspective of Tiger. Not much attention has been paid to differences between the Tiger version of AppleScript and earlier versions. Where a feature is new in Tiger, I say so. But if you are still using Panther (or Jaguar), you should stick with the first edition of this book.

How This Book Is Organized

This book is divided into four sections, as follows.
Part I, AppleScript Overview

Part I consists of general introductory material, explaining what AppleScript is, motivating the reader with examples of various ways and means for putting AppleScript to use, and defining fundamental terms that the reader will need to understand.
	Chapter 1, Why to Use AppleScript
	Provides some motivational guidelines and real-life examples intended to answer such big existential questions as what AppleScript is good for and why you would want to use it anyway.

	Chapter 2, Where to Use AppleScript
	Surveys the various areas of the computer where AppleScript can be employed—for example, by running a script in the Script Editor, by calling into AppleScript from some application's internal scripting language, or by way of a Unix scripting language like Perl.

	Chapter 3, Basic Concepts
	An explanation of the technologies underlying AppleScript and a glossary of fundamental terms. This is where the technical discussion starts. The rest of the book depends upon the facts and definitions laid down in this chapter.

Part II, The AppleScript Language

Part II develops AppleScript as a programming language. Learners should read the chapters in order; experienced users may employ this section as a linguistic reference.
	Chapter 4, Introducing the Language
	A subjective description of what AppleScript is like as a language, just to give you a sense of what you're getting into.

	Chapter 5, Syntactic Ground of Being
	Describes some fundamental externals of the language, such as lines and comments.

	Chapter 6, A Map of the World
	Surveys the consituent parts of an AppleScript program (as discussed in detail in the ensuing four chapters).

	Chapter 7, Variables
	Discusses how to assign and define variables and how their names should look.

	Chapter 8, Script Objects
	Discusses script objects (scripts within scripts), including how to refer to them, how to load and save them dynamically, and how inheritance works.

	Chapter 9, Handlers
	Shows how to declare and call handlers (subroutines), along with some powerful and interesting advanced devices for passing parameters and returning values.

	Chapter 10, Scope
	Discusses the visibility and storage of declared and undeclared variables, along with some advanced techniques involving free variables and closures.

	Chapter 11, Objects
	Describes how objects are targeted and how their attributes (properties and elements) are referred to.

	Chapter 12, References
	Describes a device for encapsulation and delayed evaluation of expressions targeting objects and referring to their values.

	Chapter 13, Datatypes
	A guide to the built-in value classes (such as numbers, strings, lists, and records).

	Chapter 14, Coercions
	Explains how one datatype can be turned into another explicitly or implicitly.

	Chapter 15, Operators
	Catalogues the various ways to test and combine values, such as addition, comparison, and concatenation.

	Chapter 16, Global Properties
	Catalogues some predefined variables, such as (believe it or not) pi.

	Chapter 17, Constants
	Catalogues enumerations and classes that behave as reserved words.

	Chapter 18, Commands
	Catalogues the few built-in verbs not previously covered.

	Chapter 19, Control
	Surveys the linguistic structures for determining the flow of an AppleScript program, such as branching, looping, and error handling.

Part III, AppleScript in Action

Part III describes aspects of AppleScript in practice and in relation to the wider world.
	Chapter 20, Dictionaries
	Talks about the mechanism whereby applications make themselves scriptable through AppleScript by extending the AppleScript language, and explains how terminology is resolved and how to read and understand a dictionary.

	Chapter 21, Scripting Additions
	Explains the scripting addition mechanism; surveys the built-in scripting additions and provides some additional technical details.

	Chapter 22, Speed
	Collects some tips for optimizing the speed of AppleScript code.

	Chapter 23, Scriptable Applications
	Explains how to drive applications with AppleScript, on the same or a different computer, including certain kinds of web services. Also mentions some useful scriptable applications that come with Mac OS X.

	Chapter 24, Unscriptable Applications
	Talks about how AppleScript can be used together with the system's Accessibility API to automate the interface of applications that are not directly scriptable.

	Chapter 25, Unix
	Talks about how AppleScript can call the Unix shell command line and how Unix scripting languages can call AppleScript.

	Chapter 26, Triggering Scripts Automatically
	Describes ways that an application or process can find and call your script automatically, including folder actions, CGI, and attachability.

	Chapter 27, Writing Applications
	Discusses ways to turn an AppleScript program into a standalone application, ranging from a simple applet (written with AppleScript alone) to a full-fledged application with a true user interface or an Automator action (written with AppleScript Studio). Also introduces the techniques whereby a developer can add scriptability to an Objective-C Cocoa application.

Part IV, Appendixes

	Appendix A, The AppleScript Experience
	A brief hands-on tutorial or walkthrough, illustrating what it's like to plan and implement a task using AppleScript in real life.

	Appendix B, Apple Events Without AppleScript
	Lists some alternatives to AppleScript for creating and sending Apple events.

	Appendix C, Tools and Resources
	A list of references and further readings.

Conventions Used in This Book

The following conventions are used in this book:
	Italic
	Used for file and folder names, URLs, and new terms when they are defined.

	
 Constant width

	Used for code examples and the names of variables, handlers, and commands.

	
 Constant-width italic

	Used for placeholders in code, where the programmer would supply the actual name of something.

	
 Constant-width bold

	Used in code examples, for user input from the command line; often seen in conjunction with %, which symbolizes the shell prompt.

	
 --
 code comment in italic

	Used in code examples, for my comments to the reader about the code or its effect.

	-- code comment in bold

	Used in code examples, to represent the result (output) of executing the line.

	
 vertical bar |

	Used in syntax templates to indicate alternatives.

	
 [square brackets]

	Used in syntax templates to indicate that something is optional.

	¬
	Used to indicate a line of code that continues; these lines will be unbroken in your code but were too long to fit on the printed pages of this book.

Tip
This icon represents a tip relating to the nearby text.

Warning
This icon represents a warning relating to the nearby text.

How to Contact Us

The book-writing process is long and arduous, and the examples have been tested and retested. However, mistakes do creep in from time to time. If you find any errors in the text or code examples, please write to:
	O'Reilly Media, Inc.
	1005 Gravenstein Highway North
	Sebastopol, CA 95472
	800-998-9938 (in the United States or Canada)
	707-829-0515 (international/local)
	707-829-0104 (fax)

We have a web page for the book, where we list any additional information. You can access this page at:
	
 http://www.oreilly.com/catalog/applescpttdg/

To comment or ask technical questions about this book, send email to:
	
 bookquestions@oreilly.com

For more information about our books, conferences, software, Resource Centers, and the O'Reilly Network, see our web site at:
	
 http://www.oreilly.com

The author maintains a web page with the source code for this book in downloadable form, along with a list of errata and supplementary comments:
	
 http://www.tidbits.com/matt/

Safari® Enabled

When you see a Safari® Enabled icon on the cover of your favorite technology book, that means the book is available online through the O'Reilly Network Safari Bookshelf. Safari offers a solution that's better than e-books. It's a virtual library that lets you easily search thousands of top tech books, cut and paste code samples, download chapters, and find quick answers when you need the most accurate, current information. Try it for free at http://safari.oreilly.com.

Acknowledgments (First Edition)

In a completely just world, Mark Alldritt of Late Night Software would probably have his name on the cover of this book. In fact, he really ought to have written the book himself, since in all probability no one outside of Apple knows more about AppleScript than he does. I have benefited from his knowledge in three ways: he wrote Script Debugger, without which much of AppleScript's behavior would have remained opaque to me; he provided untiring assistance and advice while I was writing; and he performed a thorough and valuable technical review of the first draft.
Paul Berkowitz also acted as technical reviewer, a task which he performed with brilliance and insight, combining a long and thoughtful experience of AppleScript with diligence and critical perspicacity. He corrected many errors of fact, and gave excellent advice from the perspective of a model reader. Those who find this book useful should know that much of the credit is his. Chuck Sholdt also made several helpful suggestions and provided much-needed encouragement.
All the members of the AppleScript team at Apple who were present at Apple's 2003 WWDC were extremely generous with their time despite the many other demands upon it. Some of them provided important technical advice that has greatly increased the book's accuracy.
It remains only to add that the responsibility where I have not taken or understood the advice of my technical reviewers must rest with me.
My editor, Chuck Toporek, did all the right things. He assigned me the book, he monitored the signals emerging from Apple, he enabled me to attend Apple's 2003 WWDC and put me in touch with the AppleScript team, and he displayed forbearance, confidence, and patience while I was writing, leaving me to wrestle with problems of form and content on my own, never criticizing an early draft that he knew I would eventually rip to shreds myself, while at the same time providing encouragement when needed and advice when requested. Having as copyeditor my old friend Nancy Kotary made this stage of the process a pleasure instead of a trial; she brought to the task her characteristic combination of sound judgement, sharp eyes, and a kind heart, and a number of passages read more clearly thanks to her intervention. Genevieve d'Entremont oversaw the production in a thoroughly professional manner. My thanks to them and to all at O'Reilly Media who participated in the making of this book.

Acknowledgments (Second Edition)

With this second edition I have produced the version of this book I would have preferred all along but failed to produce the first time around, owing to limitations of time and to my own sheer ignorance. (Sorry about that; the same thing happened with my REALbasic book, which required a second edition in order to achieve its proper form.) The presentation has been heavily reorganized, nearly every paragraph has been thoroughly rewritten, many facts about AppleScript that were misapprehended or left in doubt in the first edition have been at last sussed out and presented definitively and correctly, and of course everything has been thoroughly updated to reflect Tiger and other innovations two years on. I have also (as I did for the second edition of my REALbasic book) written the index myself.
My thanks go most particularly to readers of the first edition who provided corrections, criticism, feedback, and suggestions; I have taken their input very much to heart. Also I wish to thank the denizens of Apple's AppleScript-Users mailing list for letting me play in their sandbox; they have often opened my eyes to facts and possibilities that would not otherwise have occurred to me. I am grateful once again to Apple's own AppleScript team, who provided many a helpful and entertaining hour at the AppleScript Pro Sessions in Monterey, California, in May 2005 and at WWDC in San Francisco a month later. As always, I have benefitted from personal correspondence from many people, especially Mark Alldritt, Paul Berkowitz, Hamish Sanderson, and the daring duo of William Cook and Warren Harris. Michael Terry performed a truly incisive technical review, and I have been inspired by many of his suggestions. Nancy Kotary once again helped immensely with her clear-eyed copyediting. Finally I wish to thank my editor, Chuck Toporek, and the entire team at O'Reilly Media, for their patience, encouragement, expertise, assistance, adaptability, and industry.

Part I. AppleScript Overview

Part I introduces AppleScript. What is it? How does it work? Where can I use it? What can I do with it? These are the sorts of questions this part answers.
If you already have a notion of what AppleScript is and just want to get on with studying the language, you can skip the first two chapters; but you should read Chapter 3, because it contains fundamental information and definitions that are not repeated later, and on which the rest of the book depends.
The chapters are:

 Chapter 1, Why to Use AppleScript

 Chapter 2, Where to Use AppleScript

 Chapter 3, Basic Concepts

Chapter 1. Why to Use AppleScript

If you've never used AppleScript before, you're probably in need of motivation as much as information. You'd like to know: "What is AppleScript?" You'd also like to know: "And why should I care, anyway?"
Those are good questions, and they are best answered by a brief explanation of what AppleScript is for. Therefore, this first chapter classifies the main uses of AppleScript, along with some examples.
By presenting AppleScript in action, in some typical real-life contexts, I hope to inspire you to imagine how you might use AppleScript in your own life. AppleScript is a big subject, and your best incentive to press ahead is a vision of some task you actually want to accomplish with it. At the same time, you'll have a far easier, more enjoyable experience of AppleScript if your aims are consonant with its nature and abilities.
Tip
In this chapter, the examples are not intended for you to run on your own computer. This is real-life code that works on my machine, but is not expected to run elsewhere. Nor are you expected to understand the code at this point. I'm just showing it to you for purposes of illustration, so glance over it and move on! When you've read more of the book and have learned some AppleScript, you'll understand how to adapt these examples to your own purposes.

The Nature and Purpose of AppleScript

Consider the many and various applications on your computer, and how you typically make them do things. With your hands, you choose menu items, click buttons, and generally wield the mouse and keyboard in the usual way. You also use applications as a source of information; you typically get this information by reading it off the screen, and you can communicate information from one application to another by copying and pasting. Mediating between your hands, your eyes, and the application is your brain: as your eyes get information from the application, your brain decides what to do next, and instructs your hands accordingly.
With AppleScript, you make applications do things programmatically. An AppleScript program has the power to give commands to the application, taking the place of your hands on the mouse and keyboard, and it has the power to ask the application questions, taking the place of your eyes reading the screen; the program itself makes the decisions about what to do next, thus taking the place of your brain. Thus, AppleScript lets you automate the sorts of things you're accustomed to making applications do manually.
Why is that a good thing? For the same reason that any automation is good. AppleScript performs the same tasks you could perform manually, but it performs them faster, more accurately, and without your direct involvement—you needn't even be sitting at the computer. Some tasks, when performed manually, are tedious or repetitive or error-prone; it's downright annoying for you to have to perform them, whereas the computer never gets bored and never makes a mistake in calculation, and (let's face it) can perform them better than you.
For example, suppose you've got a folder full of image files and you want to change their names in a systematic way to image01.jpg, image02.jpg, and so forth. It isn't as if you don't know how to do this: you select the first image file with the mouse, press Return to start editing its name, type image01.jpg, and press Return again; then you select the next image file with mouse, and do it again, and so forth. The trouble is that you don't want to do it. The trouble is with that "Do it again," which rapidly becomes tiresome and error-prone; before long, your eyes are starting to go out of focus, or you are just plain bored out of your skull, and you start to make mistakes. The whole thing is simultaneously too easy (it's an annoying waste of time and brain-power) and too hard (it's easy to make a mistake). It's just not a fit task for a human being. But it's a perfect task for a computer, which won't get bored or make a mistake no matter how many files are in that folder. AppleScript lets you assign to the computer tasks that are better suited to it than to a human being. And that example was a tiny one; AppleScript is just as useful for assembling massive workflows, driving big applications through massive tasks, feeding information from one to the other, processing and reformatting it in complex ways.
To find reasons to use AppleScript, just leave your mental annoyance meter turned on. Does something feel slow, repetitious, clumsy, boring, error-prone? Do you feel that a program isn't quite doing what you want? Does a series of steps need to be reduced to one? Has the computer got you trained, like some sort of laboratory animal, to perform a sequence of set tasks in a certain way? That's just not right. The computer should work for you—not the other way around! Maybe AppleScript can turn the tables.
I've been talking about "AppleScript," and in particular about an "AppleScript program" that's going to replace your hands and brain and make the computer do the work for you. But where does this program come from? Someone has to write it. That "someone" could be someone else: you can find lots of AppleScript programs that might be useful to you, already written and floating around on the Internet, where there's an entire community and culture of AppleScript users, sharing their work and benefiting from one another's experience. On the other hand, that "someone" could be you. That's why this book is here; it teaches you to write programs using AppleScript. That way, you'll be in charge of the automating power of your computer—a power which even now is lurking there, just waiting for you to take advantage of its vast potential. (And, as you'll see in Chapter 2, it's lurking in a lot of places.)
The rest of this chapter will illustrate the following general principles about what AppleScript is good for:
	AppleScript is appropriate primarily when you want to automate an application.

	AppleScript is good for expressing calculated and repetitive activity.

	AppleScript is a means of reducing the number of steps needed to perform an action.

	AppleScript is a way of customizing an application.

	AppleScript lets you combine specialties: by automating more than one application, you make them work together, letting each application do what it's good at and uniting their several powers.

Is This Application Scriptable?

AppleScript isn't just a language; it's an underlying technology supporting that language. Because this technology is present as part of the system, you get it for free—so you may as well take advantage of it. And because you know this technology will be present on any Mac OS computer, you can share with others any useful AppleScript program you happen to write.
So AppleScript is omnipresent. But it's not omnipotent. AppleScript, remember, is all about telling an application to do automatically things of the sort you might make it do manually. But AppleScript does not let you tell every application to do everything it is capable of. AppleScript works by sending messages to the applications you are automating; these messages are called Apple events. You cannot send just any old Apple event
 to any old application. (Well, you can, but it might not have any effect.) The application to which you're sending an Apple event must recognize and respond to that Apple event. The ability to recognize and respond to a set of Apple events is a feature of the application. Giving the application this ability is up to the developers of the application—it isn't something that's within your power (unless you are also the developer of the application). An application that has this ability is said to be scriptable

. If an application isn't scriptable, you're probably not going to be able to use AppleScript to automate it. (As you'll see in Chapter 24, there is sometimes a way around this limitation, but it should probably be used only as a last resort.) So, before you consider using AppleScript at all, you should have in mind some scriptable application that you want to automate with it.
Not only is AppleScript not omnipotent; it isn't even all that potent. AppleScript is a genuine programming language with some interesting and valuable features, but it's not very powerful or useful on its own. It takes some scriptable application to give AppleScript any real muscle. So, for instance, AppleScript's numeric abilities are limited (it has no built-in trigonometric or logarithmic functions
) and its facilites for text processing are fairly rudimentary (it doesn't support regular expressions
, and it isn't even very good at extracting substrings). Granted, these shortcomings aren't as significant as they used to be. Mac OS X is loaded with other scripting languages, such as Perl, which are expert at regular expressions—and AppleScript can drive Perl (and vice versa), so success might simply be a matter of combining specialties appropriately. Nevertheless, the general spirit and intention of AppleScript is that the power should be invested mostly in various scriptable applications, not in AppleScript itself.
Thus it becomes crucial to be able to ascertain whether an application is scriptable. You'd think this would be an easily answered, black-and-white, yes-or-no question. But in fact it turns out to be frustratingly difficult to know whether an application is scriptable. (This book points out many instances of AppleScript's making something simple into something frustratingly difficult.)
You can obtain an initial overall survey of the situation by means of Apple's Script Editor program (it's in /Applications/AppleScript): choose File → Open Dictionary, which displays a list of applications present on your computer that the Script Editor thinks are scriptable. You should, however, regard this list with a bit of suspicion, and confirm that a particular application really is or is not scriptable. To do so, choose Window → Library, and in the Library window, press the "+" button (or Control-click to get the contextual menu, and choose Add). You'll see a standard Open dialog. Navigate to an application, select it, and press Open. One of two things will happen:
	
 The application is reported as not scriptable

	An error dialog may appear, stating: "Unable to add the application or extension because it is not scriptable." In this case, the application is definitely not scriptable and that's the end of that.

	
 The application is added to the Library window

	This means that the application might be scriptable. But you might have a false positive. To find out, double-click the application's listing in the Library window. This should open the application's dictionary display (see Figure 2-2). Even if it does, you still might have a false positive. Explore the dictionary, clicking the various Suites (in the first column of the browser) and looking through the classes and commands (in the second column) to make sure that these actually do something appropriate to the function of that particular application.

A good example is the application called, appropriately enough, Dictionary (located in /Applications). In Script Editor, you can open the Dictionary application's dictionary display; this dictionary has about two dozen entries. But it's a false positive; the Dictionary application is not really scriptable. What you're seeing are merely some classes and commands inherent in any Cocoa application, merely by virtue of being a Cocoa application. The way you know this is that none of these classes and commands has anything to with the primary function of the Dictionary application—namely, looking up the definition of a word.
What you're looking for, in other words, are applications whose scriptability exposes their true power so that AppleScript can automate them usefully. The scriptable applications I use with some regularity include many of those supplied by Apple as part of Mac OS X, such as Address Book, iCal, iTunes, Mail, Safari, Apple System Profiler, and the Finder. Then there are important third-party programs like Microsoft Word, Excel, and Entourage, FileMaker Pro, Interarchy, BBEdit, StuffIt Expander, and GraphicConverter. You might also have QuarkXPress, or any of the heavily scriptable Adobe applications such as Photoshop, Illustrator, InDesign, or Acrobat. A delightful recent trend is that Apple has made it increasingly easier to add scriptability to Cocoa applications, so new applications are tending to be scriptable. Examples are OmniOutliner and OmniGraffle, Hog Bay Notebook, Intaglio, and many others.
(As you read this book—for example, in Chapter 2, Chapter 3, and especially Chapter 20—you'll learn much more about an application's dictionary, how to navigate it, what it does, and what it tells you. See Chapter 23 for more about the scriptable applications included with a default Tiger installation.)

Calculation and Repetition

Computers are good at calculation and repetition
. Humans, on the other hand, are liable to calculate inaccurately, and all the more so in the face of repetitive activity, which can make them careless, bored, and angry. Calculation and repetition on a computer should be performed by the computer—not by a human.
Here's an example straight off the Internet, where someone writes: "I want to rename a whole lot of image files based on the names of the folders they're in." One's eyes glaze over at the prospect of doing this by hand. Yet with AppleScript, it's a snap. The task would make a good droplet—a little application, written with AppleScript, with a Finder icon onto which you can drop files and folders you want processed. (More details appear in "Applet and Droplet" in Chapter 3 and "Applets" in Chapter 27.) Here's the AppleScript code for such a droplet; you drop a folder or folders onto its icon in the Finder, and it renames all items in each folder using that folder's name followed by a number:
on open folderList
 repeat with aFolder in folderList
 if kind of (info for aFolder) is "Folder" then
 renameStuffIn(aFolder)
 end if
 end repeat
end open
on renameStuffIn(theFolder)
 set ix to 0
 tell application "Finder"
 set folderName to name of theFolder
 set allItems to (get every item of theFolder)
 repeat with thisItem in allItems
 set ix to ix + 1
 set newName to folderName & ix
 set name of thisItem to newName
 end repeat
 end tell
end renameStuffIn
The parameter folderList tells us what was dropped onto the droplet. We process each dropped item, starting with a sanity check to make sure it's really a folder. If it is, we give each item in the folder a new name based on the folder's name along with a number that increases each time.

Reduction

Even when a task doesn't involve repetition and calculation, it may involve many steps. If you can get AppleScript to perform many or all of those steps, you reduce the number of steps you have to perform. This can make for a noticeable improvement in your relationship with your computer, even if you perform this task fairly infrequently. Another advantage of reduction

 is that you no longer have to remember a sequence of steps; your AppleScript program remembers it for you.
Here's an example
 involving URLs. Often, working in some application, I see a URL that I'd like to "go to" in the approprate manner. If it's an http URL, my default browser should open and fetch that page. If it's an email address, my email program should create a new message to that addressee. In some applications you can just click a URL and the right thing happens, but many applications provide no such facility, so I have to resolve the URL manually. This means I must look at the URL and decide on the appropriate helper program; then I select and copy the URL; then I somehow start up the helper program; finally, I paste the URL into the appropriate location. In a browser, I must hit Return afterwards, in order to go to that URL; in an email program, I must create a new message first, in order to have something to paste into. This doesn't sound like very many steps, but it's all very annoying, especially in comparison to those applications where the right thing just happens with a single click.
The solution is an AppleScript program. I've assigned it a keyboard shortcut (ways of doing this are discussed in Chapter 2), so the procedure is this: select and copy the URL, then press the keyboard shortcut. That's a significant savings in time and trouble. Here's the script:
set theProc to (get path to frontmost
 application as Unicode text)
tell application "Finder"
 activate
 delay 1 -- give time for clip to convert from Classic
 set theURL to (get the clipboard as string)
end tell
ignoring application responses
 try
 open location theURL
 end try
end ignoring
activate application theProc
The switch to the Finder is to force the clipboard contents to convert themselves to a usable form (and the delay is to give this time to happen); this seems to be needed particularly when working in a Classic application. At the end of the script I switch back to the application I was using at the outset. The heart of the script is the open location command, which does the "right thing" with the URL.

Customization

No application in the world can meet everyone's desires and expectations, because whatever the application's features, it is impossible for the developers of that application to anticipate everything that every user will wish to do with it. AppleScript can be a solution to this problem. Scriptability can provide, in essence, an entire alternative user interface: instead of the graphical user interface of buttons and menus, it's a programming interface. An application's scriptability says to you: "Here are all the types of thing this application operates on, and here are the operations you can perform on them; if none of this application's menu items and buttons and other graphical interface items performs just the sequence of operations you desire, feel free to use AppleScript to create a sequence that does."
Here's a real-life example
. On the Internet, someone asked about assigning track numbers in iTunes. A track number is an attribute of a song, which can be set in that song's Get Info dialog; it can be made to appear in the playlist display, and you can sort on it. Thus, track numbers can be used to control the order of playback in a playlist. This user wanted to assign track numbers immediately after "ripping" a CD to iTunes
, so that the order in which the tracks appeared on the original CD, and in which they appeared in the initial playlist derived from that CD, could easily be restored within iTunes later on. In essence, the user was saying: "The tracks are already in their correct order within this playlist; how can I use that order to assign all the tracks a track number, in a single move?"
My response was: "Use AppleScript." Here's a script that does it:
set i to 1
tell application "iTunes"
 tell (get view of browser window 1)
 repeat with aTrack in (get every track)
 set track number of aTrack to i
 set i to i + 1
 end repeat
 end tell
end tell
An interesting philosophical debate then ensued. The user thanked me, but expressed regret that this was the "only way" to accomplish this task; iTunes, he said, should include this feature natively. My attitude was just the opposite: thanks to scriptability, iTunes does effectively include this feature natively. "Instead of berating the developers of iTunes for not including that one magic menu item that would do just what you want," I said, "you should be applauding them for making the application scriptable and letting you implement the functionality yourself." Through its scriptability, iTunes is customizable; you can give it features that are within its powers but are missing from its graphical user interface. And this, surely, is the way it should be. If iTunes included a menu item for every task every user on earth would like it to perform, it would have thousands of menu items. Instead, it has a graphical user interface for the tasks that most users want to perform, and leaves the rest up to the individual and AppleScript. iTunes even gives you a way to add your scripts to its graphical interface; put them in ~/Library/iTunes/Scripts/ and they show up automatically in iTunes' Script menu

.
Similarly, Microsoft Entourage
, an email application, lacks any menu item or keyboard shortcut that truly deletes an email message. Deleting a message that's already in the trash folder (called "Deleted Items") does truly delete it, but deleting any other message merely moves it into the trash folder. This is spectacularly annoying when, for example, you are ready to delete spam messages that have been categorized into the Junk E-Mail folder. But Entourage is scriptable, and it has a Script menu to which you can add your own scripts. So I've written a script to delete all currently selected messages:
tell application "Microsoft Entourage"
 display dialog "Really delete selected messages completely?"
 set theMessages to current messages
 try
 delete theMessages
 delete theMessages
 end try
end tell
Some scriptable applications provide a means for customization at an even deeper level, by letting you modify what happens when you choose one of the application's own menu items or perform some other action in that application. For example, the Finder can be set up with Folder Actions that take over automatically when you do things such as move a file into a certain folder. (See "Automatic Location" in Chapter 2 and "Folder Actions" in Chapter 26.)

Combining Specialties

Different applications are good at different things. Most users don't perform all tasks in a single application. For example, in a word processor, you wouldn't expect to perform extensive editing of pictures: a document might include pictures, but you'd create and edit them in some other program, and then incorporate them into the word processing document. That's how it should be, and that's how users typically like it, especially on Mac OS X where (in contrast to previous systems) there is no significant penalty to running several applications at the same time. "Swiss Army knife" programs that try to be all things to all users generally seem bloated with unnecessary features (such as Microsoft Word, with its Photoshop-like "graphics enhancement" features).
When it comes to assisting applications to combine their separate specialties, AppleScript really shines. Thanks to AppleScript, data can be moved back and forth between applications so that each can operate upon it in the appropriate manner. The result is a workflow
 in which multiple applications are coordinated, often without the intervention or even the awareness of the user.
Take, for example, SpamSieve
. This superb application uses Bayesian algorithms to distinguish between spam and nonspam email messages with astonishing accuracy—far better than those email client programs, such as Entourage and Apple Mail, that include spam filtering of their own. But SpamSieve is not itself an email client. So in order to filter out spam as your email client application receives it, that email client application and SpamSieve must cooperate. The email client receives the mail messages, and hands them over to SpamSieve for evaluation; if SpamSieve marks a message as spam, it tells the email client application, which can then take appropriate action (such as moving the message into a Spam folder). Whenever you check for new mail messages, the two-way communication between your email client and SpamSieve takes place automatically, seamlessly, swiftly, invisibly—and entirely through AppleScript. Thus AppleScript effectively incorporates SpamSieve's brain and its special kind of intelligence into your email application; the two specialties (receiving email messages and storing them in folders, on the one hand, and knowing what is spam and what isn't, on the other) are combined.
An interesting variation on the theme of combining specialities arises when one of the specialized applications isn't on your computer. This is feasible because AppleScript can send messages to remote applications (for details, see Chapter 23). For this example
, we'll have the remote application be a web service. AppleScript supplies a built-in way to talk to a web service implementing an XML-RPC
 or SOAP interface.
Tip
A good clearinghouse for finding and exploring SOAP-enabled web services is http://www.xmethods.net.

Suppose that in creating an email message, we'd like to append a random quotation in place of our normal signature. There are random quotation generators on the Internet, so we can incorporate one of these into a script that creates an email message. The example uses Entourage to create the email message. (I wanted to use Apple's Mail application, but at the time of this writing, scripting of signature creation and modification was hopelessly broken.)
try
 tell application "http://www.boyzoid.com/comp/randomQuote.cfc"
 set returnValue to call soap ¬
 {method name:"GetQuote", parameters:{HTMLformat:false}}
 end tell
 set L to |item| of returnValue
 repeat with anItem in L
 if |key| of anItem is "AUTHOR" then
 set auth to value of anItem
 end if
 if |key| of anItem is "QUOTE" then
 set quot to value of anItem
 end if
 end repeat
 set s to "-- " & return & quot & return & " -- " & auth
on error what
 set s to "No signature today, sorry."
end try
tell application "Microsoft Entourage"
 set sig to signature id 1
 set oldSig to (content of sig)
 set content of sig to s
 tell (make new draft window)
 set signature type to other
 set other signature choice to sig
 end tell
 set content of sig to oldSig
end tell
The script starts by calling a web service to generate a random quote. The result comes back as a record containing a list of two records (see Chapter 13); we then parse that structure to generate a signature. If anything goes wrong, there's no harm done; a dummy signature is used instead. A new Entourage outgoing message must use an existing signature, so we modify an existing signature, create
 the new message and apply the modified signature, and finally restore the signature's original text. Figure 1-1 shows the result of running the script.
[image: Mail message with a quotation supplied by a web service]

Figure 1-1. Mail message with a quotation supplied by a web service

For yet another example of combining specialties, see "Internally Scriptable Application" in Chapter 2, where a database supplies the email address for a new message in an email client program.

Chapter 2. Where to Use AppleScript

AppleScript, because it is implemented at system level, is omnipresent. Nevertheless, you do not use AppleScript at just any time and any place. AppleScript, like Archimedes' lever, may permit you to move the earth; but first, like Archimedes, you need a place to stand.
The various contexts and milieus in which AppleScript code can be executed may be conveniently grouped into a few general categories; this chapter presents these categories, along with some examples. In other words, this chapter describes the main places where you can use AppleScript. You'll discover that AppleScript is lurking, ready and at your command, in many corners of your computer.
The taxonomy presented here is somewhat artificial, and my names for the various kinds of context in which AppleScript can be used are mostly made up, but I don't think this makes the discussion any less useful. Bear in mind that the example scripts in this chapter are for the most part deliberately simple and contrived; the emphasis here is not on actual uses for AppleScript (as described in Chapter 1), but on places from which you can put it to use.
Script Editor

A script editor
 is an application such as Apple's own Script Editor (located in /Applications/AppleScript)—a general development environment where the user can create, edit, test, and run AppleScript code. A script editor application will almost certainly be central to your experience of AppleScript. Although you may use AppleScript code in other contexts, those contexts will generally provide no facilities for working on that code. Thus, no matter where you intend to use your code, you will first develop it in a script editor; if you wish to use it in some other context, you'll transfer it to that context from the script editor when you are satisfied that it is ready. If, using it in that other context, you discover there's a problem with it, you'll probably bring the code back into your script editor to test and improve it.
A script editor application will usually allow you to do things such as the following:
	Edit a script in a convenient interface

	Display a scriptable application's dictionary, which describes how to talk to it with AppleScript

	Record user actions in AppleScript form, if a scriptable application is recordable

	Compile a script, and display the compiled script in pretty-printed format (compilation is a necessary intermediate step between editing and running AppleScript code, and functions as an initial check on that code's validity)

	Run the script's code

	View the result, if any, of running the script's code

	Save the script in any of the standard AppleScript formats

(Technical terms in this list are formally introduced in Chapter 3.)
There are three main candidates for use as a script editor: Apple's Script Editor

, the freeware Smile, and the commercial Script Debugger. Each has its own advantages and peculiarities. You needn't feel confined to any single script editor; compiled scripts are a standard format, so any script editor can read the files of any other. (As of this writing, however, Smile still can't deal with bundle-formatted scripts.)
Warning
Using the AppleScript Utility
 application, located in /Applications/AppleScript, you can specify a default
 script editor application—the application that will open compiled script files when they are double-clicked from the Finder.
There are two hazards. First, the presence of Classic interferes somewhat; if anything but Script Editor is made the default editor, Script Editor files may try to open with the Classic Script Editor. Second, and more important, the distinction between files created by the different script editor applications is effectively destroyed; for example, if you use AppleScript Utility to set Script Editor as the default script editor, then a compiled script file subsequently created with Script Debugger may open in Script Editor when double-clicked.

Apple's Script Editor

Figure 2-1 shows a very short script being edited in Apple's Script Editor. The script has been compiled using the Compile button, which appears at the center of the toolbar at the top of the window; thus the script is pretty-printed with nice formatting and syntax coloring. The script has also been run, using the Run button in the toolbar; the result is shown in the lower half of the window. The script asks the Finder for the names of all mounted volumes; the response is a list of strings (see Chapter 13). Also shown is the Result History window, which logs the result of every execution of every script.
[image: Apple's Script Editor]

Figure 2-1. Apple's Script Editor

The lower pane of the script window consists of three tabs. The first tab, Description, lets the user enter a comment to be stored with the script. The second tab, the Result tab, is showing in Figure 2-1. The third tab, Event Log
, records all outgoing commands and incoming replies—that is, of all lines of AppleScript that equate to Apple events sent to other applications, and the responses returned by those applications. The Event Log is operative only if the Event Log tab is selected when a script is run; but another window (not shown), the Event Log History window, can be set to operate even when it is not open. Both the Event Log History window and the Result History window are particularly useful while developing and testing a script.
The Script Editor

 includes some facilities for helping you navigate and edit your scripts. At the top of the window, at the right side below the toolbar, is a popup menu for navigating among handlers (subroutines) within the script. The contextual menu
 that appears when you Control-click in the window gives access to various utility scripts that drive Script Editor itself (which is scriptable) to modify the text in useful ways. (You can edit these scripts, or add utility scripts of your own; they live in /Library/Scripts/Script Editor Scripts.) When the Script Assistant feature is turned on (in Script Editor's preferences), text is autocompleted as you type; press the Esc key to view or accept an offered completion.
Figure 2-2 shows an application's dictionary as displayed by the Script Editor. A dictionary contains (among other things) classes clumped into groups called "suites"; the dictionary window lets you navigate the resulting hierarchy. The figure illustrates two available navigation modes: you can use an outline at the left (front window) or a browser at the top (rear window). Here, the information for the disk class is being retrieved. Hyperlinks, a Back/Foward button in the toolbar similar to that of a web browser (rear window), and a Search field assist with navigation. The segmented button in the toolbar (rear window, left of the Print button) lets you display two further hierarchies in the browser: the containment chain (object model) and the inheritance chain.
[image: A dictionary in Script Editor]

Figure 2-2. A dictionary in Script Editor

Smile

Another free script editor application is Satimage's Smile. It provides an excellent working environment, including fine text-editing and navigation facilities, full scriptability, and some remarkable features to help you in developing scripts, including:
	Execution of selected text

	Automatic persistence of variables and readily accessible global context

	Translation to raw four-letter codes (see Chapter 20)

	Display of AppleScript's own dictionary (see Chapter 20)

	Global terminology searching

	Integrated facilities for constructing custom dialogs and displaying graphics

Script Debugger

A third alternative is Late Night Software's Script Debugger

. This is a commercial program, but its features can easily justify the price if you're planning on doing any serious AppleScript development; this book could not have been written without it. Among other things, Script Debugger provides:
	Display of script-level entity values

	Display of values and Apple events in several formats, with browser windows for analyzing complex datatypes

	Code coverage indication and timings

	Debugging facilities such as breakpoints, stepping, tracing, and expressions

	Superior dictionary display, with incorporation of inherited attributes, graphical class charts, and extensive cross-referencing

	Display of actual attributes of running applications

Figure 2-3 shows a script paused at a breakpoint in debug mode in Script Debugger (Version 4). The column at the left shows the line where we are currently paused—actually two lines, because we are paused while a handler is being called—with lines that have been executed shaded blue (code coverage). The drawer at the right displays the datatype and value of the most recently executed statement, the handler call stack, and the values of all variables and top-level entities currently in scope (including AppleScript's own properties—see Chapter 16). A complex datatype (a list) is shown in hierarchical format, with icons indicating the owner of object references.
Figure 2-4 shows Script Debugger's unique Explorer view, displaying the hierarchy of actual current Finder objects. The Finder's disk objects are listed among its top-level elements, and the listing for the first disk object has been opened further, drilling down the hierarchy two additional levels. The code needed to refer to the currenly selected object is displayed at the bottom of the window. At the right, a drawer charts the containment hierarchy in graphical form. This concrete display of a scriptable application's actual objects at a given moment is a very instructive and helpful means to understanding the repertory of things one can say to it.

Internally Scriptable Application

Some applications implement automation not through AppleScript but by means of some other language (possibly one unique to that application) that effectively operates entirely within that application. Such an application is internally scriptable
. But even though such an application does not use AppleScript for its internal
 scripting, the developers might still wish it to be able to communicate with other applications. That means Apple events, and AppleScript is a convenient way (convenient both for the developers and for the end user) to construct and send Apple events. The internal scripting language can most likely operate on text, so a typical approach is to give
[image: Script Debugger in action]

Figure 2-3. Script Debugger in action

[image: Explorer view in Script Debugger]

Figure 2-4. Explorer view in Script Debugger

it the ability to treat text as AppleScript code (by compiling and running it). Even though you can use AppleScript code in an internally scriptable application, you wouldn't want to develop it there, as there is no provision for editing and testing your code, displaying a target application's dictionary, and so forth. Thus you'll usually develop your code in a script editor application and then copy it into the internally scriptable application.
A good example is the database application FileMaker Pro
. It has an internal scripting language that can execute text as AppleScript. This text can be static or constructed dynamically ("calculated"). Figure 2-5 shows a case in point, with FileMaker Pro being used to communicate via AppleScript with Apple's Mail program. The idea is that you might like to store your contacts in a true database program, but then you might like to create and send an email message to one of them in a true email client (see "Combining Specialties" in Chapter 1). Thus, the FileMaker window (in front) displays a database of contacts; pressing the "To" button causes Mail to create a new email message (in back) using the email address from the current FileMaker record.
[image: FileMaker talking to Mail]

Figure 2-5. FileMaker talking to Mail

The FileMaker script triggered by pressing the "To" button consists of a single step, telling FileMaker to treat a piece of calculated text as AppleScript (entered by way of FileMaker's usual annoying cascade of modal dialogs, as shown in Figure 2-6):
"set theAddress to \"" & fm address book::email & "\"
tell application \"Mail\"
 tell (make new outgoing message)
 set visible to true
 make new to recipient at end of to recipients ¬¶
 with properties {address:theAddress}
 end tell
end tell"
[image: Specifying a calculated AppleScript step in a FileMaker script]

Figure 2-6. Specifying a calculated AppleScript step in a FileMaker script

The code is particularly ugly (and difficult to write), because it isn't AppleScript: it's the instructions, in FileMaker's internal calculation language, for constructing a string that will be treated as AppleScript. This string consists of three pieces—two literal strings, surrounded by quotation marks, and a reference to the current record's email field. The three strings are joined by FileMaker's concatenation operator (&, just as in AppleScript). But the constructed string must itself include quotation marks around the contents of the email field and around the name of the Mail application; to indicate these within a string literal, they have to be "escaped" by preceding them with a backward slash (\). This accounts for the rather bizarre appearance of the first and second lines of the code. But cheer up: things could be worse. At least FileMaker permits return characters within a string literal, so the code can be laid out in lines that reflect how the real AppleScript code would look. (The trick in the fifth line, allowing a line of AppleScript code to wrap in the middle by following AppleScript's line-continuation character with FileMaker's carriage-return character, is so bizarre that I won't even try to explain it.)
Another internally scriptable application is Radio UserLand
, the inexpensive "little brother" of UserLand Frontier
 (for our purposes the two programs are essentially identical). It's a multipurpose scripting program, typically used for creating web pages and for maintaining blogs. It stores scripts internally, and executes them; these scripts are usually in UserLand's own scripting language, UserTalk
, but alternatively they can be written in AppleScript.
Figure 2-7 shows some AppleScript code being run in Radio UserLand. The AppleScript code is in the middle window—the one whose language popup, at the bottom of the window, is set to "AppleScript." (You should ignore the triangles at the left of each line, which are a feature of Frontier's outline-based script editing environment.) The UserTalk code in the bottom window calls the AppleScript code in the middle window and displays the result in the top window.
[image: Radio UserLand]

Figure 2-7. Radio UserLand

Script Runner

An application without facilities for editing or compiling scripts may nevertheless offer to execute compiled scripts for you on demand by way of some convenient interface, such as a menu
. Such an application might be called a script runner

. There is usually a requirement that a compiled script file be placed beforehand in some particular location where the script runner can find it. Because the script is compiled beforehand, a time-consuming step (compilation) is skipped, and execution typically proceeds considerably faster in a script runner than it does in an internally scriptable application where the code must be compiled from text on the fly.
Many scriptable applications act as script runners, typically by means of a special Script menu

. This behavior is helpful because, having developed a script that drives such an application in a useful way, you might like some convenient interface for executing that script on future occasions; the application's Script menu provides such an interface. Scripts in an application's Script menu do not have to target that application, but the feature makes sense, and is provided, in the expectation that they will do so. (And when a script in an application's Script menu does target that application, there is sometimes a tremendous speed advantage over running that same script from elsewhere; see Chapter 22.)
For instance, as mentioned under "Customization" in Chapter 1, if you put scripts into ~/Library/iTunes/Scripts/, iTunes will generate a Script menu listing them and permitting you to run them; so that's a good place to store and access your scripts that customize iTunes.
BBEdit
 is a particularly fine example of a script runner. Whatever compiled scripts you place in ~/Library/Application Support/BBEdit/Scripts/ will appear as menu items in BBEdit's Script menu, where a script can be run by choosing its menu item. For even more convenient access, BBEdit lets you assign keyboard shortcuts to these menu items. BBEdit also implements some further conventions that have become a sort of de facto standard: you can edit a script by holding Option as you choose it from the Script menu, and you can reveal a script file in the Finder by holding Shift as you choose it from the Script menu. BBEdit also provides some useful naming conventions for setting the order of the items in the Script menu (otherwise the scripts would always appear in alphabetical order, because that's how the Finder supplies them); read the BBEdit manual to learn more. As an alternative interface, BBEdit also lists and lets you access scripts in a floating window.
Some other programs that act as script runners through a Script menu are Script Debugger, Smile, Microsoft Entourage, Tex-Edit Plus, and various Adobe applications. Apple's Script Editor takes a different approach: instead of a Script menu in the menu bar, it lets you access the compiled script files in a specific location by way of the contextual menu (see "Apple's Script Editor," earlier in this chapter).
An application can act as a script runner in a noncustomizable way as well. For example, an application might incorporate scripts as ordinary menu items. This makes sense when an application is scriptable and can best implement a command's functionality by taking advantage of its own scriptability. Mail's File → Import Mailboxes menu item works this way.
There is also a Script Menu provided by Apple that gives systemwide access to scripts; this is particularly helpful when a script needs to be available from every application, or when its target application has no Script menu
 of its own. It appears as a status menu item (on the right side of the menu bar) in the form of a black scrolled s-shaped icon. If you don't see it, you can turn it on with the AppleScript Utility. The menu items in the Script Menu represent the folders and script files inside /Library/Scripts and ~/Library/Scripts; AppleScript Utility provides an option for toggling the visibility of the /Library/Scripts items. The menu is global, but there is a special convention for specifying that a script should appear only when a particular application is frontmost: create a folder called ~/Library/Scripts/Applications/<AppName> (where for "AppName" you supply the name of some application), and put the script inside that. The Script Menu can also run Unix shell scripts, including Perl scripts. The Script Menu follows the BBEdit conventions for the Option and Shift keys.
Warning
Apple's global
 Script Menu is a nice idea, but it should not, in my view, be seen as preferable to Script menus in individual applications (especially in view of the latter's speed advantage). Unfortunately, it is beginning to look as if that's just how Apple does see it. Apple's Mail
 program had a Script menu in Panther, but in the Tiger version this has been removed. I'm guessing that this is because Apple would prefer that you use the global Script Menu. If this is a trend, it's an ominous one.

A utility similar to the Script Menu, with some advantages such as keyboard menu shortcuts and easier creation of application-specific folders, is Red Sweater's FastScripts

. An alternative of a completely different kind, using contextual menus instead of a drop-down menu in the menu bar, is Ranchero's Big Cat

. And Xendai's Bellhop
 lets you run a script from the Services menu that appears in most applications.
Still another script runner interface is provided by a launcher application. A launcher is a utility used to open things (folders, applications, files); many launchers
 will "open" a compiled script file by running it. My favorite is DragThing

. DragThing's primary interface is a "dock" with clickable icons, where each icon is a file or folder; launching a compiled script with DragThing either runs it or opens it for editing, depending on whether you're holding down the Option key. An icon can also be assigned a keyboard shortcut
 that launches it, and docks can be set to be active only in a particular application or set of applications. Other examples of launchers are iKey
 and Keyboard Maestro
.

Automatic Location

An automatic location
 is much like a script runner. But there's a significant difference. A script runner finds compiled script files in a prearranged location and offers you an interface so that you can run them when you want to. An automatic location is a place where an application finds compiled script files and runs them automatically, with no intervention on your part. The application runs the script when it wants to—typically in reponse to the occurrence of certain events or stimuli. This doesn't mean you've no involvement, though; you were involved when you arranged for the application to find this script in this location, or to look for it in response to this particular event or stimulus.
BBEdit is an example. I've mentioned (in the previous section, "Script Runner") that BBEdit will use a menu to let you run scripts it finds in a Scripts folder within ~/Library/Application Support/BBEdit/. BBEdit looks for two additional folders in that location—Startup Items and Shutdown Items. These are repositories for scripts that BBEdit will run automatically in response to being launched and being quit, respectively. Similarly, when you choose from any of BBEdit's built-in menus, BBEdit will run an appropriately named script located in the Menu Scripts folder. Now, all these scripts and folders did not come into existence by themselves; you put them there. But once you've done that, since these are automatic locations, BBEdit runs the scripts automatically when the appropriate events occur.
Email clients, such as Apple's Mail and Microsoft Entourage, have "rules," which are essentially filter actions to be applied to mail messages. The usual configuration is to have these rules applied automatically when new mail arrives. One of the things such a rule can do is to run an AppleScript file. Again, these applications do not spontaneously invent the rules or include AppleScript files in them; you do that. But once you've done it, the application turns to the AppleScript file automatically in response to the arrival of new mail. iCal, too, can run an AppleScript file when the alarm for an upcoming event is triggered.
There are also "folder actions
," a mechanism whereby a folder in the Finder can be set up to watch for when certain events occur within that folder—that folder's window is opened, closed, or moved, or something is put into or removed from that folder—and can respond to those events by running an associated script.
Some applications use automatic locations as their life's blood. For example, Salling Clicker
 is all about running AppleScript files in response to your pressing the buttons on a mobile phone or PDA. And Ovolab Phlink
 is all about running AppleScript files in response to phone calls arriving on your phone line, identification of the caller ID, the caller pressing buttons on a touchtone phone, the caller hanging up, and so forth.
For fuller treatment of the various ways in which a script can be triggered automatically (including an example of a folder action), see Chapter 26.

Application

The reasons why an application might want to employ AppleScript are the same as the reasons why anyone else would—the application wishes to communicate with some other application by way of Apple events (see "Is This Application Scriptable?" in Chapter 1). It is possible to write an application that forms and sends raw Apple events directly, without using AppleScript; but AppleScript makes the task much easier for the developer of an application, just as it does for anyone else.
To write an application that uses AppleScript, you don't have to be a professional developer who spends 15 hours a day at the computer and wears a beanie with a propeller. (Of course, the beanie can't hurt, either.) In fact, writing an AppleScript application could be as simple as saving a script from a script editor application. It may be useful to distinguish three different "levels" of application into which AppleScript can be incorporated: an applet

, an AppleScript Studio application, and a standard compiled application that happens to call AppleScript. I'll just briefly survey all three levels here; the first two are revisited in more detail in Chapter 27.
Applet

An applet is just a compiled script saved with a tiny application framework wrapped around it. This application framework is just sufficient to turn the script into a stand-alone application. You can make an applet very easily: save your script from within a script editor application, and as you do so, choose to save it as an Application. (You make this choice in the Save dialog; if the script has already been saved, you may need to choose File → Save As to bring up the Save dialog.) The result is an application that, when it runs, behaves almost exactly like your script when it runs.
If an applet behaves like the script it contains, why would you bother to make one? Why not simply leave the script as a compiled script file? One reason would be that you want the script to run in some context where merely opening a compiled script file would not run it. One obvious example is the Finder. Let's say there's some operation you frequently need to perform, and the way you want to perform it is by double-clicking
 something in the Finder. Perhaps you find the Script Menu too much trouble; perhaps you like having an icon right on your desktop, where you can see and access it easily by double-clicking it. Or perhaps you don't want it on your desktop; perhaps you'd like to put it in the toolbar area of your Finder windows. (The toolbar is the area of a Finder window above the files but below the titlebar.) Single-clicking a toolbar item is exactly like double-clicking the same item on the desktop or in a Finder window. But double-clicking a compiled script file in the Finder doesn't run it; it opens the script for editing in a script editor application. On the other hand, double-clicking an applet (or single-clicking it in the toolbar) does run the script. (Indeed, Apple provides, at http://www.apple.com/applescript/toolbar, some example scripts for you to put into your Finder window toolbar, and guess what? They're all applets.)
Similarly, suppose you have a script that you'd like to run automatically when you log in to your computer. To run things automatically when you log in, as you doubtless already know, you put them into the list of Login Items in the Accounts preference pane. But it's no use putting a compiled script into that list; this is not an automatic location, where a compiled script, if found, will be run. The Login Items list is not, for example, like BBEdit's Startup Items folder discussed earlier in this chapter. What the Login Items list expects is an application. Well, you can turn a script into an application by making it an applet; so that's what you do.
Another advantage of applets over compiled scripts is that an applet can be a droplet

—an application onto which you can drag and drop
 Finder items (files and folders) in order to process them with your script. An example appeared in "Calculation and Repetition" in Chapter 1.

AppleScript Studio

A compiled script or an applet has essentially no user interface. Your script can present a few basic dialogs for the user to interact with (as explained in Chapter 21), but that's all. This is usually not a problem, but sometimes it would really help to have some slightly more sophisticated user interface.
In this situation, AppleScript Studio can be helpful. AppleScript Studio is a way of writing a standard Cocoa application, with Mac OS X-native windows and interface widgets, when the only programming language you know is AppleScript—there is no need to know Objective-C, the default Cocoa programming language, and you don't need a very extensive understanding of the Cocoa application framework. AppleScript Studio doesn't give you direct AppleScript access to everything that Cocoa can do, not by a long chalk; but it can be an easy and rapid way to wrap an interface around some AppleScript code.
For example, Figure 2-8 shows an AppleScript Studio application containing a window that lists the user's hard disks. Here's the code:
on awake from nib theObject
 tell application "Finder"
 set L to (get name of every disk)
 end tell
 set content of table view 1 of scroll view 1 of window 1 to L
end awake from nib
[image: A Cocoa applicationAppleScriptplaces for usingCocoa application written with AppleScript Studio]

Figure 2-8. A Cocoa application
 written with AppleScript Studio

That's all there is to it. The code is recognizable AppleScript; indeed, within the awake from nib handler, the first three lines are essentially the same as the script in Figure 2-1, asking the Finder for the names of the disks. The only addition is the fourth line, starting with set content, which populates the interface with the Finder's reply.

Cocoa

As an example of incorporating AppleScript into a standard application, I'll recreate the previous example as a Cocoa application written in Objective-C. The task is more involved than in AppleScript Studio, because we must twice "cross the bridge" between Objective-C and AppleScript: from Objective-C we must summon AppleScript, and we must translate the response from AppleScript to Objective-C (whereas with AppleScript Studio there's no need for any of that, because the program is already written in AppleScript).
Cocoa has an NSAppleScript
 class that accepts and executes AppleScript code. There are two approaches: you can start with a string and compile and execute it, or you can start with a compiled script and execute that. Here's code demonstrating the first approach:
- (void) awakeFromNib {
 [self willChangeValueForKey:@"diskList"];
 diskList = [[NSMutableArray alloc] init];
 NSAppleScript* scpt = [[[NSAppleScript alloc] initWithSource
:
 @"tell application \"Finder\"\r"
 "get name of disk 1\r"
 "end tell"]
 autorelease];
 NSAppleEventDescriptor* result = [scpt executeAndReturnError
: nil];
 if ([result descriptorType] == 'utxt')
 [diskList addObject: [result stringValue]];
 else if ([result descriptorType] == 'list') {
 int i, u = [result numberOfItems];
 for (i=1; i<=u; i++)
 [diskList addObject: [[result descriptorAtIndex: i] stringValue]];
 }
 [self didChangeValueForKey:@"diskList"];
}
Even if you don't know any Objective-C, you can get a sense of what's going on here. Within the awakeFromNib method, the first two lines and the last line have essentially to do with the interface, and needn't concern us except to say that there is an instance variable diskList (an NSMutableArray) and whatever we put into it is going to show up in the interface as a line of the list displayed in our window. There are three lines where we form a literal string constituting our AppleScript code (the same code used in Figure 2-1); this string is slightly complicated because we must "escape" its quote characters, just as in the FileMaker code earlier in this chapter ("Internally Scriptable Application"), and we must explicitly insert "escaped" return characters. The next line (starting with the word NSAppleEventDescriptor) is where we ask for this AppleScript code to be compiled and executed.
After that, we have to do a surprising amount of work (and in fact we should be doing even more—I've deliberately omitted error checking, to condense the presentation). The problem is that when the reply comes back, we have to parse it differently depending on its type. This is all stuff that's taken care of for us when we get a result in a script editor application, but here we have to do it ourselves. If there's only one disk, the result will be a string; we insert that into diskList and that's that. If there's more than one disk, the result will be a list of strings, so we have to cycle through that list and insert each string into diskList. (The main surprise here for an experienced Cocoa programmer is that list indexes in an Apple event, unlike Objective-C collections, are 1-based!)
The other approach, probably faster, would be to compile the AppleScript code beforehand and incorporate the compiled script file into the project. When the application is built, the compiled script file is copied into its bundle as a resource. Instead of constructing the AppleScript code as a string, we retrieve the compiled script file from the bundle. So, for example, if the compiled script file is called askFinder.scpt, the relevant line of code (where we create our NSAppleScript object) would be changed to this:
 NSAppleScript* scpt = [[[NSAppleScript alloc] initWithContentsOfURL
:
 [NSURL fileURLWithPath:
 [[NSBundle mainBundle] pathForResource: @"askFinder" ofType: @"scpt"]]
 error: nil] autorelease];
The result when the application runs is a window that appears identical—and I do mean identical—to Figure 2-8; so I won't bother to repeat the screenshot.

Unix

Mac OS X, under the hood, is Unix
. It is possible to use AppleScript from the Unix command line in the Terminal and from shell-related environments such as Perl and Ruby scripts, by means of the osascript command. osascript can execute a compiled script file or can compile and execute a string (indicated by the -e switch).
You can enter script text directly at the command line by typing osascript and a return character, then typing the text, and finally signalling the end of the text with Control-D. There isn't much likelihood you'd want to do this, but at least it proves that osascript is working, and the code looks exactly like normal AppleScript:
% osascript -ss
tell app "Finder"
get name of every disk
end tell
^D
{"feathers", "gromit", "Network"}
(The -ss flag causes the result to appear in the familiar way that AppleScript usually formats a list of strings.)
Use of a literal string on the command line raises some difficulties of escaping characters parallel to those we've seen earlier in this chapter; there are various solutions, depending on what shell you're using. In a language such as Perl, you can take advantage of the language's "here document
" facility, which makes it easy to enter a multiple-line script without having to escape any quotes. Once again, the code looks exactly like normal AppleScript:
#!/usr/bin/perl
$s = <<DONE;
 tell app "Finder"
 get name of every disk
 end
DONE
print `osascript -e '$s'`;
Chapter 25 contains full details about calling AppleScript from

 Unix, as well as communication in the reverse direction (through AppleScript's do shell script command).

Hyperlinks

You can embed AppleScript code in an HTML hyperlink
. The user can't actually execute AppleScript code by clicking such a link (the ability to do so would constitute a serious security hole). Rather, when the user clicks that link, the code is displayed in a script editor, ready to execute if the user desires.
The mechanism involved is the applescript

 URL protocol. The href attribute of the link's <a> tag must begin like this:
applescript://com.apple.scripteditor?
The specification of Script Editor's bundle identifier is apparently a security measure; it is required, but it is also superfluous, because applescript URLs cannot be made to target any other script editor application by changing this value.
Tip
applescript URLs can be made to target a desired application (or applet) by means of a preference set by the user at system level. Apple provides no interface for setting this preference; but the freeware RCDefaultApp
 preference pane is an excellent way to do it (http://www.rubicode.com/Software/RCDefaultApp/).

The next component of the URL is one of the following three expressions:
action=new&
action=insert&
action=append&
They signify, respectively, that AppleScript code should be inserted in a new Script Editor window, placed at the insertion point in the currently frontmost Script Editor window, or appended to the end of the currently frontmost Script Editor window. (If no Script Editor window is currently open, all three have the same effect.)
Finally, the AppleScript code itself appears, in this format:
script=theCode
As this is a URL, illegal characters in theCode must be URL-encoded using a percent sign and the character's ASCII value in hexadecimal; for example, a space must be encoded as %20, a quote must be encoded as %22, and a return character must be encoded as %0D. At http://www.apple.com/applescript/scripteditor/12.html, Apple provides a utility script that URL-encodes text that has been copied to the clipboard, and embeds it in an applescript protocol <a> tag. Naturally, the script is provided as a link that uses, itself, the applescript protocol!
Thus, for example, this script:
tell application "Finder"
 get name of every disk
end tell
could be included in a web page as a link from the words "click me" using the following HTML (ignore the line breaks and other formatting, which are used here for clarity but would not be present in real life):
<a href="applescript://com.apple.scripteditor?action=new&script=
tell%20application%20%22Finder%22%0D
 %09get%20name%20of%20every%20disk%0D
end%20tell">click me
A web page is not the only place you can put an applescript link; certain other contexts will permit links that specify non-HTTP protocols. For instance, you can include such a link in a PDF document; this would allow the reader to click in the PDF in order to capture in the Script Editor some code that you have embedded into the link; this device is extensively used in the Take Control electronic book series as a way of letting the reader obtain and run a utility script with no need to copy and paste from the PDF book (see http://www.takecontrolbooks.com). Similarly, you can include such a link in a QuickTime movie (for an example, see http://brennan.young.net/Comp/LiveStage/GenerateASpath.html) and in various other contexts.

Automator

Automator is a utility application, new in Tiger, that allows the user to construct a script (called a workflow
) from a series of steps (called actions) in a graphical interface without knowing a programming language. The default actions are in /System/Library/Automator/; additional actions may be installed into /Library/Automator/ or ~/Library/Automator, or they may be included in an application's bundle, where Automator can see them directly. Workflows can be saved as files to be run by Automator, as applications to be run independently (rather like an AppleScript applet), or as plug-ins for use by various applications: for example, a workflow saved as a Finder plug-in becomes a Finder contextual menu item, and a workflow saved as a Script Menu plug-in becomes a menu item in the Script Menu.
The default actions include a Run AppleScript
 action
, which lets the user incorporate AppleScript code directly into a workflow. Even more interesting, an Automator action can easily be written using AppleScript, and instructions for doing this appear in Chapter 27. An action is a useful way to distribute a piece of AppleScript code to users. You can't know, after all, exactly what a user would like to do with your code, and some users don't understand programming well enough to customize AppleScript code in a script editor themselves. An Automator action can help to solve these problems. An action can easily be positioned among other actions in a workflow that the user constructs in order to achieve a desired result. Furthermore, an action has a graphical interface, which lets the user set various parameters to the AppleScript code without coming into direct contact with that code.
Figure 2-9 shows a simple Automator workflow; it puts up a dialog asking the user to chooose a folder, and lists the pathnames of the items within that folder into a new TextEdit document. Notice the graphical interface that allows the first action to be customized so that the dialog asks for a folder, not a file. Notice also the dataflow paradigm that links the actions: each action produces an output, which functions as the input to the next action in the sequence. The second action produces a list of files and folders (as aliases), but the third action expects text; nevertheless the workflow succeeds because Automator coerces from one type to another as necessary (here, turning a list of aliases into POSIX pathnames separated by return characters).
Automator is in its infancy as of this writing, and it shows. The interface is extraordinarily clumsy: among other things, it's difficult to find the action you want, because the interface, in a misguided attempt to make this easier, causes the order in which
[image: An Automator workflow]

Figure 2-9. An Automator workflow

actions are listed to change constantly (and there's no way to see them simply listed in alphabetical order). There is no provision for branching or looping, so workflows are necessarily very simple. Worst of all, Automator suffers from a serious dearth of useful actions. This, however, is a shortcoming that you, the AppleScript programmer, are in a position to correct. For example, Figure 2-10 shows a workflow that gets the song currently playing in iTunes, retrieves its name, and shows that name as the iChat status message seen by online buddies. (This particular workflow isn't really needed, as iChat now has an option to show the currently playing song as its status message automatically.) Automator doesn't include an action to get an iTunes song's name, nor does it include any actions having to do with iChat. These omissions, however, are easily remedied: I wrote those actions myself, in about five minutes. After you've read Chapter 27, you'll be able to do the same.
[image: An Automator workflow involving two homemade actions]

Figure 2-10. An Automator workflow involving two homemade actions

Chapter 3. Basic Concepts

Previous chapters have been pure introduction. Chapter 1 has shown what AppleScript is good for; Chapter 2 has toured the places on your computer where you can use AppleScript. If you're new to AppleScript, you should now be feeling informed and motivated and ready to begin sinking your teeth into some solid facts. If you already have some familiarity with AppleScript, you may be leafing forward through this book, looking for the serious part to begin. Either way, look no further. This is it. The solid, serious stuff starts here.
This chapter formally defines and describes AppleScript—what it is, why it exists, where it lives, and how it works—along with all the basic terms and concepts connected with it. Subsequent chapters will provide further details about some of what's here, but they all presuppose the basis laid out in this chapter. Whether you think of it as an introduction, a survey, or a glossary, to understand this chapter is to know AppleScript's world.
Apple Events

AppleScript would be pointless without Apple events. Apple events lie at the heart of what AppleScript is, what it does, how it works, and why you're going to use it. From writing more efficient AppleScript code to understanding an application's dictionary, a basic acquaintance with Apple events will help you.
A long time ago, in a galaxy far away—actually it was probably in about 1989, in Cupertino, California—some very smart people were completely redesigning and modernizing the Macintosh operating system, creating what was to become System 7 (released in May 1991). And some of these people had a brilliant idea. The system, they decided, should support a messaging system, a way of letting one running application communicate with another. Such communication is called interapplication communication

, and the messages sent between applications are called Apple events.
There are two parties to an interapplication communication: the application that initiates the message, and the application that receives it. I like to refer to these as the sender

 and the target

, respectively; I find this clearer and more instructive than the more technical terms "client" and "server."
An Apple event is an astonishingly powerful thing. Hermes-like, it crosses borders: two completely independent applications, with no prior arrangement or synchronization, are suddenly talking to each other. What's more, Apple events work across a network, including the Internet, so these two applications can be on different computers. Or, just the opposite, an application can send an Apple event to itself. (Why would it want to do that? You'll find out, in the section "Recordability," later in this chapter.)
The breadth of what may be expressed in an Apple event is also quite amazing. Their structure amounts to a remarkably sophisticated grammar: Apple events are like little sentences, possessing (so to speak) verbs and nouns and modifiers, and this grammar is so cleverly and flexibly devised that individual Apple events can be constructed to say surprisingly complicated things, such as (speaking to a word processing program), "Look at the text of your first window and give me a reference to every line of it whose second word begins with the letter t," or (speaking to an email program), "Look in the mailbox where the incoming mail is, find the first mail message with a subject that starts with the word 'applescript,' and move it into the 'AppleScript' mailbox." Much of the grammar of the AppleScript language is as it is because of the grammar of Apple events.
Reply

Every interapplication communication (under normal circumstances) results in a reply

 from the target application. The reply is itself an Apple event.
This comes as something of a surprise to the naïve user. As human beings, we naturally tend to feel that there are, broadly speaking, two reasons for sending an interapplication communication: either we tell the target to do something or we ask the target a question. Therefore an interapplication communication can be thought of as either a command

 or a query

. We expect a reply from a query—that's the purpose of the query—but not from a command. Under the hood, however, there is no real technical distinction here; either way, it's the same kind of message, and either way, there will be a reply.
What's the use of a reply from a command? Well, for one thing, even a command might result in some information useful to the sender. For example, the AppleScript make command creates a new entity—a document or a word, for example—but it also generates a reply, which is a reference to the newly created entity. That's useful because the usual reason for creating something is to do something with it, and it might be tricky to get a reference to the newly created entity otherwise.
There is also a solid technical reason why every interapplication communication generates a reply. Remember, these two applications are running independently, so they have to be coordinated somehow if they are to interact coherently. The sender, having sent a command to the target, typically doesn't want to proceed to its own next step until the target has finished obeying that command. The reply informs the sender that the command has been carried out (or, alternatively, that an error has occurred).
When two independently running applications communicate with each other, things can go wrong. The sender sends a message to the target, and then what? The target application might try to obey the message, and crash—leaving the sender in a state of limbo, waiting for a reply that will never come. The target might obey the message, but require a great deal of time to do so. The target might be busy or otherwise not in a position to receive the message in the first place. The sender needs a way to hedge his bets in order to cope with such possibilities. Apple events
 provide some bet-hedging mechanisms.
	
 Timeout value

	The sender may attach to the message a timeout

 value, a statement of how long he is willing to wait for an answer. If a reply doesn't come back within the specified time, the sender receives a reply anyway—a reply saying that, for one reason or another, no reply came back in time. Thus the sender has an opportunity to respond coherently to the situation. (Meanwhile the target is probably still performing his time-consuming task, blissfully unaware that the sender has lost interest.)

	
 Ignore reply

	The sender may signal up front that he won't be interested in the reply (presumably this is a command, not a query); he doesn't care to know what the reply is or whether there is one, or even whether the command was carried out. In this case the sender does not wait; the message is sent, and the sender immediately proceeds to the next step of his own process. The sender will never find out in any direct way what became of the Apple event. This devil-may-care approach is rather rarely used, but there are times when it comes in very handy.

Scriptability

Not just any old Apple event can be sent to any old application. Well, it can, but the result could easily be an error message instead of the desired result. The target application needs to have been constructed in the first place in such a way that the particular Apple event you send is one to which it is prepared to respond. Such an application defines internally a repertory
 of Apple events that it understands. The application is then said to be scriptable

.
The thing to understand clearly here is that a scriptable application is scriptable just with respect to the particular repertory of Apple events that the application itself defines. To a remarkable degree, every scriptable application gets to make up its own repertory; one scriptable application's repertory of acceptable Apple events doesn't necessarily resemble that of any other scriptable application. This presents something of a problem for the sender, as every possible target application is picky in a different way about what can be said to it.
This problem washes over into AppleScript, and is in fact one of the single greatest challenges facing the AppleScript programmer. It would be an exaggeration to claim that the AppleScript language is different with respect to every scriptable application—it's the vocabulary that changes, while the underlying language remains the same—but certainly a programmer trying to drive a particular target application for the first time often feels that all previous experience has suddenly been made irrelevant. (For a vivid account of a real-life user struggling with this challenge, see Appendix A.)
The knowledge of what Apple events a scriptable application can respond to, and what it will do in response to them, is an implicit fact built into its workings, not an explicit fact written somehow on its face. How, then, is it possible to know what a scriptable application's repertory is? Some secondary document is clearly needed to expose this information. In the AppleScript world, this document is the application's dictionary, a resource built in to the application for the specific purpose of describing its repertory. There is a section about dictionaries later in this chapter, and an entire chapter devoted to them later in the book (Chapter 20).

The Life of an Apple Event

There's obviously more to the story of interapplication communication than just the sender application and the target application. For example, earlier it was said that the sender normally receives a reply even if the target isn't even listening. How is this possible? It's possible because the system itself functions as the intermediary through which all interapplication communications happen. The sender doesn't speak directly to the target, but to the system. It is the system that is responsible for passing the message on to the target, and for letting the sender know how things went.
Figure 3-1 shows in more detail the process whereby an Apple event is sent and a reply is returned.
	The sender application (at the left of the figure) constructs the Apple event. The Apple event is rather like a letter inside an envelope that you post in the mail. It has information about how it is to be directed—who the target application is, and whether the sender intends to wait around for the reply, and if so, what the timeout value is. This information is intended for the system, and is rather like the stuff that goes on the outside of the envelope. Then there is the content—the details as to what kind of Apple event this is and the particular data that it involves. This information is intended for the target application, and is rather like the letter inside the envelope.
[image: Life of an Apple event]

Figure 3-1. Life of an Apple event

	The sender application calls the system (in the middle of the figure) and hands it the Apple event
. The system, rather like the postal service, examines the Apple event and looks at the information about how it is to be directed. Using this information, the system tries to locate the target application. Let's presume that it succeeds in doing this.

	The target application (at the right of the figure) is portrayed as having a repertory of Apple events to which it is prepared to respond. These Apple events are listed using pairs of four-letter codes. (Apple events really are identified by pairs of four-letter codes, and the Apple events shown in the diagram are genuine, common Apple events.)

	The system contacts the target application, handing it the Apple event supplied by the sender. The system also attaches to this Apple event a reply Apple event. It is rather as if, when the post office delivers a letter to you, it were to provide a stamped addressed envelope for you to put your reply into. The system holds out this reply event to the target application, but doesn't let go of it.

	The target application (presuming it is well behaved) responds to whatever the Apple event asks it to do, either doing it successfully or generating an error
 message; then it puts the result
 into the reply event. There are two parts to this result. First, the target application must supply a value signifying whether things succeeded. Second, the target application may insert into the reply any other information to be returned. If there was an error, it can insert a message describing the problem; if things succeeded and a result is expected, it can insert that result.

	The target application now signs off, and the system is left holding the reply Apple event (of which, as we said, it never let go). The system now delivers the reply Apple event to the sender application, and the story ends.

What an Apple Event Looks Like

An Apple event was never meant for human eyes. It is meant to be machine-constructible and machine-parsable. Nevertheless, it is possible to encode all the facts about an Apple event in a textual format. One commonly used format is called AEPrint
. Let's examine an AEPrint representation of a real live Apple event, to get an idea of what a typical Apple event looks like. The Apple event we'll use is a rather elaborate one I mentioned earlier, an Apple event that means: "Look in the mailbox where the incoming mail is, find the first mail message with a subject that starts with the word 'applescript', and move it into the 'AppleScript' mailbox." Example 3-1 displays that Apple event in AEPrint format
.
Example 3-1. A raw Apple event
 core\move{
 insh:insl{
 kobj:obj {
 form:'name',
 want:'Mbox',
 seld:"appleScript",
 from:'null'()
 },
 kpos:'end '
 },
 ----:obj {
 form:'indx',
 want:'cobj',
 seld:1,
 from:obj {
 form:'test',
 want:'msg ',
 from:obj {
 form:'prop',
 want:'prop',
 seld:'unBX',
 from:'null'()
 },
 seld:cmpd{
 relo:'bgwt',
 obj1:obj {
 form:'prop',
 want:'prop',
 seld:'subj',
 from:exmn($$)
 },
 obj2:"applescript"
 }
 }
 }
 }

I don't want to burden you with a full explanation of Example 3-1 (especially since the whole point of AppleScript is that you shouldn't have to worry about what a raw Apple event

 looks like), but a few characteristic points are of interest.
First, notice the predominance of four-letter codes. Nearly everything seems to consist of exactly four letters: core, move, insh, insl, kobj, form, want, seld, from, prop, kpos, indx, cobj, test, and so forth. Even some things that appear to be only three letters are actually four letters: obj and end and msg, for example, actually have a fourth character (a space).
Tip
These four-letter codes are actually integers. An integer
 is four bytes, while a character from the ASCII range is one byte, so an integer can express four "packed" characters. The expression of this integer as a four-letter string is simply a convenience for the human reader. The use of single quotes to delimit a four-letter code is a standard convention, and I'll use it in later parts of this book.

Second, observe the overall structure of the Apple event, which is actually quite simple. The command itself is specified in the first line: core\move, exactly as shown in Figure 3-1. Just about every Apple event has at least one parameter, known as the direct object

; this is symbolized by ---- (can you find it?), and this particular Apple event also has a second parameter, symbolized by insh.
Finally, you've probably already spotted the repeating pattern form, want, seld, from, which appears throughout the Apple event. This is how an Apple event specifies an object (such as "the 'AppleScript' mailbox"), something that it very commonly needs to do; we'll talk more about the AppleScript avatar of this pattern later on ("Element Specifiers" in Chapter 11).

Go and Catch an Apple Event

What I did to capture the Apple event displayed in Example 3-1 was to turn on the Apple Event Log in Script Debugger
, which has an option to display Apple events sent from Script Debugger in AEPrint format. Even if you don't have Script Debugger, you can do something similar. In fact, you can do something even better: you can capture and view any Apple event as it flies through the system on its way from sender to target. The system, as we have seen, plays the central role of postman whenever an Apple event is sent. Now imagine that Apple events are secret messages, and that you are an international spy who would like to get a look at them when they are sent. In effect, you would like to waylay the postman, bonk him over the head, snatch the letter out of his hand, and glance at its contents. Well, you can.
First, open the Console; that's where certain Apple events are going to be reported to us. Next, go into the Terminal and enter the following (I'm assuming your shell is bash, the default in both Panther and Tiger):
% export AEDebugSends=1; export AEDebugReceives=1
These commands turn on the environment settings that cause Apple events to be intercepted and reported. These settings will apply only within this shell session, and only with respect to applications that are launched from within this process. So, let's launch one:
% open /Applications/Safari.app
Now any Apple events sent to Safari will be logged. Let's send one. Possibly you were unaware that the Unix open command is implemented in Mac OS X with Apple events; you're about to discover that it is. Say this:
% open http://www.apple.com
(I'm assuming here that Safari is your default browser.)
Within the Terminal, the process started by the open command sends an Apple event, and this fact is reported within the Terminal. Immediately afterwards, Safari receives this Apple event, and this fact is reported within the Console. The two Apple events are exactly the same event. As reported in the Console, when Safari receives it, it will look something like this:
AE2000 (556): Received an event:
------oo start of event oo------
{ 1 } 'aevt': GURL/GURL {
 return id: 38666240 (0x24e0000)
 transaction id: 0 (0x0)
 interaction level: 112 (0x70)
 reply required: 0 (0x0)
 target:
 { 1 } 'psn ': 8 bytes {
 { 0x0, 0x3e0001 } (open)
 }
 optional attributes:
 < empty record >
 event data:
 { 1 } 'aevt': - 1 items {
 key '----' -
 { 1 } 'TEXT': 20 bytes {
 "http://www.apple.com"
 }
 }
}

------oo end of event oo------
The Apple event is displayed in a slightly different text format from Example 3-1. I don't know the official name for this text format, so let's call it AEDebug format
. AEDebug format is more verbose (and more informative) than AEPrint format, but the same basic elements are clearly present: this is a GURL\GURL event with just one parameter, namely the direct object designated by ---- (which turns out to be the actual URL that Safari was asked to open).
Another way to send an Apple event from the Terminal is to use AppleScript directly, by way of the osascript command (already mentioned under "Unix" in Chapter 2, and formally discussed in Chapter 25). In the Terminal, enter this:
% osascript -e 'tell app "Finder" to get disks'
This command causes the Terminal to spew out large amounts of information, most of it having to do with the mechanics of compiling and running AppleScript code, and culminating in the Apple event sent to the Finder, along with the Finder's reply. It should look something like this:
AE2000 (811): Sending an event:
------oo start of event oo------
{ 1 } 'aevt': core/getd {
 return id: 53149700 (0x32b0004)
 transaction id: 0 (0x0)
 interaction level: 64 (0x40)
 reply required: 1 (0x1)
 target:
 { 2 } 'psn ': 8 bytes {
 { 0x0, 0xc0001 } (Finder)
 }
 optional attributes:
 { 1 } 'reco': - 1 items {
 key 'csig' -
 { 1 } 'magn': 4 bytes {
 65536l (0x10000)
 }
 }

 event data:
 { 1 } 'aevt': - 1 items {
 key '----' -
 { 1 } 'obj ': - 4 items {
 key 'form' -
 { 1 } 'enum': 4 bytes {
 'indx'
 }
 key 'want' -
 { 1 } 'type': 4 bytes {
 'cdis'
 }
 key 'seld' -
 { 1 } 'abso': 4 bytes {
 'all '
 }
 key 'from' -
 { 4 } 'null': null descriptor
 }
 }
}

------oo end of event oo------
Once more you can see the characteristic parts of an Apple event. This event is called core\getd; it has one parameter, the direct object designated by ----; and that direct object is an object specifier comprising the standard form, want, seld, and from.

What All This Has to Do with AppleScript

A raw Apple event in AEPrint or AEDebug format isn't impossible to read, but it isn't exactly easy either. Constructing one is even harder. Raw Apple events are meant primarily for computers, not for humans, to construct and to read. But now look at this:
move item 1 of (every message of incoming mail ¬
 whose subject begins with "applescript") ¬
 to end of mailbox "appleScript"
That is the very same Apple event from Example 3-1, but this time it's expressed in an English-like form. It's quite legible, and you can probably imagine constructing something like this for yourself. I certainly hope you can imagine it, because that's what this book is all about. That code is AppleScript.
Now you understand why AppleScript exists. AppleScript is a programming language whose chief purpose is to allow Apple events to be constructed and presented in an English-like form that is fairly intuitive and accessible to a human being. Thanks to AppleScript, you can take advantage of the power of Apple events, constructing and sending them for yourself.

The Open Scripting Architecture

When System 7 was being created, along with Apple events and many other new technologies, it was already Apple's plan to create a language, AppleScript, that would give end users access to the power of Apple events. But, much to the disappointment of users and developers, there wasn't time to create AppleScript before the release of System 7 in mid-1991, and the bulk of the work was postponed until 1992-1993.
One of the conundrums facing the founders of AppleScript at this time was the architectural question of where the language should live. They could have made AppleScript the internal scripting language of a single application, like HyperCard's HyperTalk
, but this would mean that the user would run AppleScript code entirely from within this one application, which was unacceptable. AppleScript needed to be available everywhere, and thus would somehow have to be part of the system. But what part? There was no good place, so a new one was created: the resulting structure is the Open Scripting Architecture (OSA).
Components

Under the OSA, a scripting language is implemented by a something called a component

. (Components were not invented specially for the OSA; they existed already in connection with QuickTime.) Think of a component as a piece of self-contained functionality made available at system level so that any program can hook up to it and use it. One thing that's special about components is that they can be installed and uninstalled dynamically. So an OSA-savvy program doesn't necessarily think in terms of any particular scripting language; it asks the system—in particular, the Component Manager
—what scripting languages
 are presently installed, and if it wants to use one, the Component Manager provides access to it.
Because components are installed dynamically, this installation must actually take place while the computer is running. AppleScript
 is installed as the computer starts up and simply left in place, so that it's always available. You may recall that under Mac OS 9 there was an extension called AppleScript (in the Extensions folder of the system Folder). Its job was to install AppleScript as a component under the OSA as the computer started up. On Mac OS X, the same function is performed by a file called AppleScript.component, which is in /System/Library/Components; this type of file is called a component file.
One nice consequence of this architecture is that Apple can easily release upgrades to AppleScript, and the user can easily install them, with no effect on any other part of the system. AppleScript itself has a version
 number, which refers to the version number of the installed component that implements it; you can find out what this is by running the following one-word script in the Script Editor:
version
At the time of this writing, the result is "1.10.3".

Other Scripting Languages

One of Apple's purposes in designing the Open Scripting Architecture was to provide a place for other scripting languages that already existed, and for yet others that might exist in the future—hence the "Open" in its name. AppleScript is the only OSA language supplied by Apple, and in fact is designated the default scripting component, the one that is used when no particular scripting component is specified. Still, in theory there can be others.
In actual fact there have never been many other OSA languages. This may be because developers have not felt much need to supply them. (It also may be because the OSA itself hasn't quite lived up to its original promise.) Here are a few that I know of:
	UserTalk

, the internal scripting language of UserLand Frontier

	QuicKeys
 Script
, the scripting language of CE Software's QuicKeys

	JavaScript, by way of Late Night Software's JavaScript OSA

	AppleScript Debugger

, the debuggable version of AppleScript used by Late Night Software's Script Debugger

	The OSABridge

 components, created by Philip Aker

JavaScript OSA
 and AppleScript Debugger come in both a Mac OS 9 form (extensions called JavaScript and Script Debugger Nub) and a Mac OS X form (component files called JavaScript and ScriptDebugger). UserTalk and QuicKeys Script were available only on earlier systems. (UserTalk was truly dynamic, being loaded and available to other applications only when Frontier itself was running. On Mac OS X, UserTalk is still Frontier's internal scripting language, but it is not available as an OSA language

. Similarly, QuicKeys Script is not present as an OSA language in the Mac OS X version of QuicKeys.)
Let's take JavaScript OSA as an example. (It's free, so you can easily try it out.) You put the JavaScript component file into /Library/Components; you then log out and log in. The effect is that JavaScript is now available as an OSA scripting language on your machine. This means that any OSA-savvy environment can see it. For example, in Apple's Script Editor, there's an OSA language popup menu at the left side of the top of the window, below the toolbar (in Figure 2-1 this says "AppleScript"); this popup menu now displays "JavaScript" as an alternative language, meaning that you can switch to JavaScript and compile and run a JavaScript program, right within Script Editor. This behavior illustrates the dynamic and generalized nature of the Open Scripting Architecture.
(A cool feature of JavaScript OSA is that it adds to the JavaScript language some classes allowing Apple events to be expressed. Thus it enables JavaScript to be used as an alternative to AppleScript for driving scriptable applications. See Appendix B.)
A slightly different approach is taken by the OSABridge components. They do not, of themselves, implement a language; rather, they act as a bridge (hence the name) from the OSA to the text-based shell scripting languages already present in Mac OS X (Perl, Ruby, Python, PHP, sh, and Tcl). Among other things, this bridge makes it easy to package a script in one of these languages as an applet or droplet (see "Applet and Droplet," later in this chapter), and the Tcl component lets your script implement a graphical user interface.

Talking to a Scripting Component

Knowledge of an OSA scripting language resides in the component, not in the OSA-savvy application that uses it. For example, earlier we said, in the Terminal:
% osascript -e 'tell app "Finder" to get disks'
The phrase 'tell app "Finder" to get disks' is an AppleScript expression; when we gave this command in the Terminal, it was obeyed—references to all mounted volumes were displayed in the Terminal. But the Terminal doesn't know AppleScript. The shell, to which we're talking in the Terminal, doesn't know AppleScript. And the osascript program, which we call from the shell, doesn't know AppleScript either. So who does know it? The AppleScript scripting component
, of course.
Similarly, the Script Editor, even though it is the place where users mostly work with the AppleScript language, does not in fact know any AppleScript. The Script Editor is merely a conduit, a front end to the AppleScript scripting component, where all the work of compiling and running scripts
 actually takes place. That is why, in the previous section, the Script Editor was willing to stop compiling and running AppleScript and start compiling and running JavaScript instead.
There are two approaches that an application can take when it wants to gain access to a scripting component. An OSA-savvy application like the Script Editor wants to be able to access any scripting component at all, indiscriminately. For this purpose, the OSA supplies a special component called the Generic Scripting Component

 (GSC). The program asks the Component Manager to let it talk to the GSC, and after that the GSC routes communications between the program and the appropriate scripting component such as AppleScript. Alternatively, an application might ask the Component Manager for direct access to one particular scripting component. Either way, once it's in communication with the appropriate scripting component, the application can do scripting in that scripting language.
Figure 3-2 diagrams a typical chain of events by which a program turns text into a runnable script, runs it, and is able to display the result, under the OSA:
[image: The OSA in action]

Figure 3-2. The OSA in action

	The program asks the Component Manager to put it in touch with the scripting component.

	The program obtains some text and hands it to the scripting component with instructions to compile and run it. If any of the expressions in this script are equivalents of Apple events, those Apple events will be generated and sent, and we will then be in the world of Figure 3-1.

	The program asks the scripting component for the result as text; the scripting component complies.

The process diagrammed in Figure 3-2 is how a script editor application such as the Script Editor works. In fact, you can even build a simple working version of the Script Editor yourself, using the developer tool Interface Builder. With the example application shown in Figure 3-3, I can enter text, compile it, display it pretty-printed, and run it; yet, in creating this application, I didn't write a single line of code. This isn't because Interface Builder knows any AppleScript, but because the project uses an OSAScriptController to mediate between the Open Scripting Architecture and the text field in the window.
[image: Rolling your own Script Editor]

Figure 3-3. Rolling your own Script Editor

Maintenance of State

One of the structural problems that the Open Scripting Architecture was intended to solve was that of simultaneity. In those early days, remember, System 7 had only just introduced a way of letting more than one application run at the same time (cooperative multitasking
), without which Apple events and AppleScript would clearly be impossible. Now imagine the following scenario. Application A starts to run an AppleScript program, and will yield time to the AppleScript engine until the program is finished. The AppleScript engine encounters a line involving an Apple event, and will itself yield time, while the system delivers the Apple event to application B. But now suppose that, in the course of responding to this Apple event, application B were to start running some AppleScript code. The system can't say: "No, don't do that; my AppleScript engine is busy!" Rather, the system will have somehow to accommodate the possibility that two or more AppleScript programs may run simultaneously; every running AppleScript program thus needs somehow to be accorded the same status as a real application, with its own context and state that can be preserved while it is paused to give time to other processes.
Components are implemented in a special way that helps to solve this problem, which is one reason why components lie at the core of the Open Scripting Architecture. I'll describe metaphorically how it works. Imagine the AppleScript scripting component as a kind of little universe, a universe where the knowledge of AppleScript resides. And imagine that this universe can make copies of itself. When an application asks the Component Manager for access to the AppleScript scripting component, as at the top of Figure 3-2, it isn't simply given a telephone line to the one master copy of the AppleScript universe sitting in the system; instead, it's as if the Component Manager makes a copy of the AppleScript universe and gives the application a telephone line to that copy. The application now has its own private AppleScript universe. This private copy of the AppleScript universe is technically an instance

 of the AppleScript scripting component.
You can readily see how this architecture solves the simultaneity problem. Suppose we have two different applications, each of which gets a connection to the AppleScript scripting component and asks it to compile and execute a script. The AppleScript component does not get all flustered and say, "Oh, gosh, two different programs are trying to get me to do two different things at once!" Rather, there are in effect at that moment two different AppleScript component instances—the one that the first application is talking to and the one that the second application is talking to. Each application asks its own instance of the AppleScript component to compile and execute its script, and there is no conflict or confusion at all.
One important and characteristic consequence of this architecture is that each instance of a component has a memory of its own. When paused, it remembers what it was doing. We say that a component can maintain state. When it is handed a script to compile, it remembers the script. After compilation, it remembers the compiled version of the script. After the script is executed, it remembers the result. And this is true of each individual instance of the component, separately; state is maintained individually for each instance. The component to which a program gets a connection is like an instance in the world of object-oriented programming (that's why it's called an instance). In terms of our analogy, each little AppleScript universe remembers what goes on in it. Thus an application is able to return again and again to its same AppleScript universe and refer back to things that happened earlier. Multiple applications can do this at the same time, and yet the AppleScript scripting component maintains state
 for each of them without getting confused at some global level, because it isn't operating at a global level. It's operating at a local level—local to the application that summoned it.
You can see this happening in Figure 3-2. Recall that from the calling application's point of view, there are two separate steps: first the application hands the AppleScript scripting component some text to be compiled and executed; then, after execution is completed, the application asks for the result. The fact that the application can come back a second time and ask for the result of an execution that took place earlier is an example of the AppleScript scripting component's ability to maintain state. Similarly, although this does not appear in Figure 3-2, it would be possible to introduce a third step: we could have our application initially hand the text to the AppleScript component and ask it to compile it, but not (at that time) to execute it. Our application could then later return to the AppleScript component and say: "Hey, remember that script I had you compile a little while ago? Now I'd like you to execute it." And this will work, because the AppleScript component remembers the compiled version of the script.
Back in the world of System 7, on a computer where memory was tight and under a system architecture where context switching was slow, this approach was downright elegant. Virtually no information passes between the calling application and the AppleScript component instance unless the calling application explicitly demands it. Thus, for example, when the application asks for some text to be compiled, it does not receive a copy of the compiled code unless it asks for it. Then later, when the application comes back and asks that the compiled script be run, there is no overhead of handing across a lot of compiled code; the AppleScript component already has the compiled code, and is ready to rock and roll (as a computer scientist would say) with no further ado.
An application can ask the AppleScript component for a copy of the compiled code in various forms, though; and there are certain occasions when it will wish to do so. A script editor application, for example, immediately after compilation, will ask for a pretty-printed version of the code, for display in the script window. And then there's the problem of extended persistence

. The internal memory of an AppleScript scripting component instance, after all, will not persist forever. The lifetime of one of these instances can be no longer than that of the application that summoned it. When that application quits, any of these little component universes that it may have created must also fade away, and all the stuff that a component instance has been remembering escapes like the air from a popped balloon. So if an application asks the AppleScript scripting component to compile a script and then wants the compiled version to persist somehow after the application itself quits, it must take special steps to obtain the compiled version from the AppleScript component and save it to disk. This in fact is just what a script editor application does when you save a compiled script file.

End of sample

 To search for additional titles please go to

 http://search.overdrive.com.

OEBPS/httpatomoreillycomsourceoreillyimages197943.png
Ofst Oobr bwae 128

lame --preset standard

¥ Options

8 Show Action When Run

OEBPS/httpatomoreillycomsourceoreillyimages197935.png
O 0O Nswindow Inspector

(ovser 1) (D

Name: [search Index: 0

Event Handiers
>0 N
> Panel
> Toolbar
v Window

) became key

opened
resigned key
resigned main
resized

should close
should zoom
was miniaturized
will close

) will miniaturize

DOO®OO0O0C

E
 SearchTIdBTS applescript

=) o (G50)

OEBPS/httpatomoreillycomsourceoreillyimages197941.png
000 NSTextField Ins;

Value E

> value = selection.chrText [Parameters (NSObjectController)]

Value With Pattern
> displayPatternValuel

H
8
8
&
4

> enabled = selection.cbrswitch [Parameters (NSObjectController)]
> enabled2
> hidden

»font
> fontBold

> fontFamilyName
> fontitalic

> fontName.

> fontsize

> textColor

OEBPS/httpatomoreillycomsourceoreillyimages197895.png
606

Window

Your Disks

feathers

gromit
Network

OEBPS/oreilly_large.gif
O’REILLY

OEBPS/httpatomoreillycomsourceoreillyimages197911.png.jpg
AppleScript Error
Things fall apart, the centre cannot hold.

OEBPS/httpatomoreillycomsourceoreillyimages197923.png
806 & iTunes =
Explorer | (Q- Search Term P! '

o eoorer) (A1>) % (@ s @,
= e =] ralees

£ -

TN e

i S

ot v B

TpitSErge B

ADD

add (verb) : add one or more files to a playlist (fom iTunes Suite)

FUNCTION SYNTAX
set thoRosul to add {afas, .
to insertion location

3~

RESULT
track : reference to added track(s)
PARAMETERS

Parametor. Roquired | Type Doscription

droct parameter roquired | listofales | the fl(s) to add

o optional Ipsertion _ the location of the addod fle(s)

location

OEBPS/httpatomoreillycomsourceoreillyimages197903.png
>

v

~y

Scripting companent

OEBPS/httpatomoreillycomsourceoreillyimages197885.png
06 Untitled o)

v @ @ ®. u 3 . @ o Source | Agprnt
Comple | Record Stop Resume Passe Step Over Stepmo Siep Out e i
Applescript Debugger X 3| 111 + | feathers 3

8 tell ppication *Finder” .
set L to get every disk Stack
my getNameOf(1) Run (implicit)
end tell foetNameor
‘on getNameOf(what)
global L -
local s Variable Vaie
n s:ms to get name of item what of L ! » parent escript AppleScripts
B rns v AppleScript escript AppleScripts

end getilameot ol 3.14159265359

return \rt

space o

tab \t
P text item deli... list of 1 item
s U5 feathers”
what 1

L list of 3 items.
»item 1 & startup disk
»item 2 & disk "gromit”
»item 3 & disk "Network"
Brespin, uration:0.185, AppeSerpt: .03, ApplEvens: 0.

OEBPS/httpatomoreillycomsourceoreillyimages197929.png
(806 Search)

OEBPS/httpatomoreillycomsourceoreillyimages197919.png
806 iTunes o
<) (2A) BEER 2 =

Back/Forward _ Text Size View print

5 Standard suite | [GELZ
5 Tunes Suite» (@ back track
5 Internet suite | @ convert

@ fast forward

add v : add one or more files to a playlist
add list of alias : the file(s) to add

[to location reference] : the location of the added file(s)

—» track : reference to added track(s)

OEBPS/httpatomoreillycomsourceoreillyimages197939.png
606 View
Ofst Oor b [

Smal System Font Text

OEBPS/httpatomoreillycomsourceoreillyimages197931.png
806 Results

Double-click a title to display the artcle in your browser:

Tites

CENB N WN O

OEBPS/httpatomoreillycomsourceoreillyimages197901.png
Info about
Appleevent

A’ et

aevt\oapp
Sender 4

corelmove
Erorinfo and resultnfo |

Target

Contents of
Apple event

OEBPS/httpatomoreillycomsourceoreillyimages197917.png
606 K Finder =)

(o o) (] W o KW,

Back/Forward _Reload Tell Activate
Suites T desk accessorypr [1
Commands | € desktop window |y
Classes P < deskiop-object
Records | IS
Types » | &) document file
©)file
€. Findar window
T B
DISK
disk (nown), pl disks : A disk
PROPERTIES
Property Access Type Description
capacity et | integer the total numbor of bytes free or used) on the disk
cioctable et | boolean ‘Gan the media bo cected (foppies, CD's, and s on)?
format et format the flesystem formatofthis disk.
reo space et | iteger the number offree bytes et on the disk
ignore priviegos getset | boolean Ignore permissions on tis disk?
Joumalng enabled got_ boolean Doss tis disk do fle system urnaing?
Jocal volume et | boolean 15 the media a ocal voume (as opposed 1 a fle server)?
startup got | booean Is thi disk the boot disk?
ELEMENTS
Eloment Access | Key Forms
container ge | by namo
make/ | by index

intemetocationfle | get | by name
makel | by index

deloto
cloping 9o by name
makel | by index
deloto
packege go by name
make/ | by index
deloto
SUPERCLASS
The disk class inherits clements and properties from container.
'WHERE USED
This class is used in the following ways:
element of application class
element of deskiop-object class.

startup disk property of the application class/record

OEBPS/httpatomoreillycomsourceoreillyimages197899.png
3 GraphicConverter | G Set Status Message

5 ical

% Set Status Message

This acton ses th text of IChar's satus message, isbe to
Buddies an the network.

Input: (Text)

Result: (Anything)

Tunes songs m

OEBPS/httpatomoreillycomsourceoreillyimages197905.png.jpg
[®606 Window \

display dialog "howdy"

OEBPS/httpatomoreillycomsourceoreillyimages248528.jpg
O’REILLY®

Matt Neuburg

OEBPS/httpatomoreillycomsourceoreillyimages197913.png
Finder Dictionary

iz}

ol
Finder items
(T AVALABLE) 304 to avorites

ez e
Sppliation e

Class disk: A disk
Phual form:

tem by numeric index: by name

container by nuneri index; by name

folder by numeri: index, by rame, by ID

fill by rumeric index by rame

alias file by numeri index; by name

application file by numeric s, by rame, by ID

document fille by mumeric i, by rame.

internet location file by mumeri index, by rame.

clipping by nuneric index; by name

package by numerc i, by rame.
Propertis

<Inheritances container [U0] — iherits some of i properties from the conaine olsss

capacity double inteqer (U] - th tots mumber of bytes (freeor used) on th disk

free space double integer (1] — the rumber of ree byes lefton the disk

ejectable boolean (] — Can the media be sjected (Fospies, CO'c, and 20.n)7

Tocal volume boolean (] — i the medis s doal vokume (a5 cpoced t 4 file server)?

Startup boolean (6] — is i disk the oot disk?.

format Mao 05 format/Mac 05 Extendsd format/UFS format/NFS format/audio format/Propus
format/M5-DOS for mat/NTFS format/ IS0 9660 for mat/High Sierra for mat /QuickTake for mat /Apple
Photo format/AppleShare format/UIDF farmat /WebDAY for mat /FTP format/.. [{6] — the fiezy stem
Format of i disk

Jour naling enabled boolean (o] - boes tis disk do flesyster Jeurnaling?

ignore privileges boplean - ignore permissions cn this disk?

Tl | m|

NIl

OEBPS/httpatomoreillycomsourceoreillyimages197879.png
(CXeXG) i<l untitled 2
BN R PSR E
From: (dbits MattNewbury T¥)

o (cux« here to add recipients W

e

Subject:
b Attachments:_none

In time we hate that which we often fear.
-- William Shakespeare

OEBPS/httpatomoreillycomsourceoreillyimages197889.png
®00 New Message o
® 2@ @ @ (@

Send Chat Auach Address Fomis Colors Save As Draft

To:| _ethan@verizon.net

Ce:
Subject:
B Signaure: one 3]
806 fm address book :
nickname Neuburg, Ethan M
email ethan@verizon.net
&
100 Browse 41> SISV

OEBPS/httpatomoreillycomsourceoreillyimages197933.png
[©® O O MainMenu.nib (English) - MainMenu

SearchTidBITS Edit_Window Help
New %N

OEBPS/httpatomoreillycomsourceoreillyimages197909.png
© 0 6 | tempFile

OEBPS/httpatomoreillycomsourceoreillyimages197927.png
[Workbook1:1

30 Most Frequent Word:

OEBPS/httpatomoreillycomsourceoreillyimages197887.png
inheritance

606 i Finder
Dictionary_[“Explorer) <> P& (@ scachtem) F K
View Back/ForwardReload Search Tell Activate
Element/Property Value
> alias files 13 0 elements
»application files 4 R 0 elements
> clippings + X 0 elements
> clipping windows 4 R 0 elements
» containers 4 X 2 elements
vdisks 4 R 3 elements
vdisk 1 startup disk (Named *feathers")
»alias files 4 R 0 elements
»application files 4 R 0 elements
> clippings. 4+ R 0 elements
» containers 4+ X s elements
» document files 4 R 0 elements
»files 4 R 0 elements
folders 4 R s elements
»folder 1 folder *Applications" of startup disk
»folder 2 folder *Developer of startup disk
»folder 3 folder "Library” of startup disk
vfolder 4 folder *System” of startup disk
> alias files 4 R 0 elements
»application files 4 R 0 elements
> clippings + X 0 elements
» containers 4+ X 1 element
» document files 4 R 0 elements
> files 4 R 0 elements

v folders

X 1 element

¥

folder *Library” of folder “System" of startup disk | TR
/

OEBPS/httpatomoreillycomsourceoreillyimages197893.png
000 About Radio UserLand

¥ {"Puma’, "main", "0, "second”, "extra", "SecretSharer", "Network'}

O OO workspace appleScriptéxample

I e

tel appiication *Finder”
get the name of every disk

end tell
© 0 O workspace appleScriptExampleCaller
msg(workspace.appleScriptExample())
[]
T

ool

OEBPS/httpatomoreillycomsourceoreillyimages197915.png
[cXe)s) - Finder (=)
) A @8R & @ emmooy)

Back/Forward _TextSize View Print Search
Standard Suite & [@ container P @item T
Finder Basics » |+ [@ computer-object {5 container 2

inder items » [folder 0

- Containers and folders - ||| folder > Efle
Files - W deskop-object | [alias fle o
Window classes |4 @ rash-object » [application file e
Legacy suite 352 3] document file. 52

disk n [inh. container > tem] : every disk
eLevenrs
Internet location files, clippings, packages; contained by application, desktop-
objects.
PRoPERTIES
capacity (double integer, r/0) : the total number of bytes (free or used) on the
disk
free space (double integer, r/0) : the number of free bytes left on the disk
- ejectable (boolean, r/o) : Can the media be ejected (floppies, CD's, and 50 on)?
local volume (boolean, r/o) : Is the media a local volume (as opposed to a file
server)?
startup (boolean, r/o) : Is this disk the boot disk?
format (Mac OS format/Mac OS Extended format/UFS format/NFS format/audio
format/ProDOS format/MS-DOS format/NTFS format/ISO 9660 format/High
Sierra format/QuickTake format/Apple Photo format/AppleShare format/UDF
format/WebDAV format/FTP format/Packet-written UDF format/Xsan
format/unknown format, r/o) : the filesystem format of this disk
journaling enabled (boolean, r/o) : Does this disk o file system journaling?
ignore privileges (boolean) : Tgnore permissions on this disk?

OEBPS/httpatomoreillycomsourceoreillyimages197883.png
000

> ElFles
» (5 Window classes
> 5 Legacy suite

» [Type Defintons

= Finder o
D G EEs & Q- Terminology
Back/Forward TextSize View Print Search
|13 Standard Suite container G em T
|53 Finder Basics | [@ computer-object 5 container v
|15 Finder items disk [folder
o ¥ B P
53 Files | ¥ [@ desktop-object | [alias fle Y
|5 Window classes trash-object » pplication file i
| disk n [in. container > item) : every disk -
606 - Finder (=)
= = nt fies
¥ [5) Standard Suite Thtop-
b (5 Finder Basics disk n [inh. container > item) : every disk ¥
» [Finder iems aeers
v [El Containers and folders | | contains items, containers, folders, flles, alas files, application files, the disk
@ container ‘document fles, internet location flles, cippings, packages; contained by
application, desktop-objects. oy L
sropeRries fle <
‘capacity (double integer, r/0) : the total number of bytes (free or used) on i
the disk V.
[trash-object

free space (double integer, r/o) : the number of free bytes left on the disk |

ejectable (boolean, r/0) : Can the media be ejected (floppies, CD's, and so
on)?

focal volume (boolean, r/o) : Is the media a local volume (as opposed to a
fle server)?

startup (boolean, r/o) : Is this disk the boot disk?

OEBPS/httpatomoreillycomsourceoreillyimages197925.png
606 Ul Browser — TextEdit

R G Ta— Access on

root clement application Textgdit" menu bar 1 menu bar item “Format’ (5) _menu 1
application "TextEdit" B [standard window > | 'menu bar item "Apple (1) » | imenu 1 » menu item "Font" (1) »
menu bar 1 » | menu bar iem "Textedir menu item Text' @+
menu bar tem "File” 3) > menu item 3
menu bar tem "Edit" 4)
menu bar item » menu item "Prevent Edting”
menu bar item S menu item "Wrap to
menu bar tem "Help* (7) menu item *Allow

¥ Path o Element (] Highiight Aoplescript 1)
application Textzdit
menu bar 1
menu bar tem "Format” ()

menu 1 CXeXe) it Appleseript — Texttdit
menu item "Make Rich Text" (4) i £

lick menu tem *Make Rich Text” of menu 1 of menu bar ftem “Format" of menu bar 1

Type Value

0 children array. (array of O items)

1 enabled Boolean false

2 help

3 menu ftem string R

e o e Reference Form: @ Name O Index F
5 menu ftem ¢ number 1 U -
6 menu item

7 menu item n string -

8 menu item ¢ L

9 parent UlElement menu ¥

10 vosition _point 10. 54k x. v 2 Refresh All

OEBPS/httpatomoreillycomsourceoreillyimages197937.png
000 Search

Text: | AppleScript

Title:

Author: Matt Neuburg

Published 3 weeks ago in Tid
Article Size: 4.0K

DEVONthink Goes Pro
606 Results

"Take Control oF
Uparading to Tiger

by Matt Neuburg <matt@|

Double~click a tite to display the artcle in your browser:

DEVONthink is a snippef .-

suippet can be anything & peyyovETYCY T

text to a Web page, a W
or any of several other fon
DEVONthink's databases| Meet Automator

ized hierarchically af SCrIPting by the Bay, Redux (M
referenced via hyperlinks, Intaglio: May the Quartz Be wi
link to any file on disk, by | QuicKeys X3 at the Crossroads

You Type, It Typinates

)
You

emerges when the file is s | DEVONagent Rushes In Where Google Fears to Tread

and index, giving play tod Why Go Pro (Audio Hijack Pro, That Is)
searching, cataloging, and

e

OEBPS/httpatomoreillycomsourceoreillyimages197891.png
Define Scripts for “fm address book"

[E e (Perform)

Edit Script

View: (all by category 4

%) Script Name: new message to

Control
Perform Script
Pause/Resume Script

<] [Perform AppleScript Fset theAdaress to \" & fm address book:emal &\
*Perform AppleScript’ Options

Exit Script

Halt Script

i

Else If

Ese

EndIf

Loop.

Exit Loop If

End Loop

Allow User Abort

Set Error Capture
Navigation

Go'to Layout

Go to Record/Request/Pi

Go to Related Record

Go to Portal Row

Go'to Field

Go to Next Field

Go to Previous Field

Specify the AppleScript you want to perform. You can enter native script text, or use
a calculation to specify a field or a calculation, which returns a valid ApplesScript.

@ Calculated AppleScript

O Native Applescript

| I

) D

 Indicate web <omp Ty T TV e TN CCESS D Vg e m—

ClearAll) (Clear

) (Duplicate

OEBPS/httpatomoreillycomsourceoreillyimages197945.png
(006 LAME Encode \

Cfast Clebr bivate: 128

(e (o)
/|

my cool song.aiff

C4

my other cool song.aiff

OEBPS/httpatomoreillycomsourceoreillyimages197881.png
Result History

Clear History _Show Script

Result [Time
{'feathers", "gromit”, 08:!
06 Untitled

Q0ee® N\

Record Stop Run | Compile Bundie Contents

Applescript] <No selected element>

endtell

tell application "Finder”
‘get name of every disk

{"feather

rs", "gromit”, "Network""

Description |JResult] Event Log

OEBPS/httpatomoreillycomsourceoreillyimages197897.png
Startat: | [Desktop. =

rompt: [Fick a foder o st

21 Allow Multiple Selection

FesFolders

(3 Repeat for each subfolder found

» Options FesFolders

() o

OEBPS/httpatomoreillycomsourceoreillyimages197921.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages197947.png
806

FrameMaker 7 o

<) A EER & (

= - Terminology)
Back/Forward_TextSize View print search
Reauired Suite
_— Core Suite Suite that apples to all applcations

Text Suite
» [Quickdraw
Table Suite
b [Miscellaneous.
b [FrameMaker
b [FrameMaker

open v : Open a document or book

open alias : The file to be opened.
[with filter hint string] : The hint for the filter to be used when opening the file. A list of
these can be obtained by requesting the application property “import filters"”.

save v : Save a document or book

‘save reference : the object to save
[in alias] : The file in which to save the object.
[as binary/FASL/MIF/TEXT/view only/VIEW/Stationery/HTML/XML/SGML/PDF filter] : The file
type in which to save the object.
[with filter hint string] : The hint for the filter to be used when saving the file. A list of these
can be obtained by requesting the application property “export fiters".

application n [inh. base diass]

eLevens
contains books, documents.

PRoPERTIES

clipboard (st of anything) : The dlipboard.

frontmost (boolean, /o) : I this the frontmost application?

name (string, r/o) : Name of this application.

version (string, r/0) : The version of the application.

user selection (reference) : The selection of the currently active document.

‘selection (reference) : The selection of the currently active document. This is the same as user
selection.

selection class (no selection/text/graphic object/table range, r/0) : The class of the selection of
the currently active document.

Macintosh application.

NEIG

OEBPS/httpatomoreillycomsourceoreillyimages197907.png
AAKNOTLC

