

 [image: First Edition.]

 Version Control with Subversion

C. Michael Pilato

Ben Collins-Sussman

Brian W. Fitzpatrick

Editor
Tatiana Apandi

Copyright © 2009 Ben Collins-Sussman, Brian Fitzpatrick, and C. Michael Pilato

This book uses RepKover™, a durable and flexible
 lay-flat binding.

O’Reilly books may be purchased for educational, business, or sales
 promotional use. Online editions are also available for most titles
 (http://safari.oreilly.com). For more information,
 contact our corporate/institutional sales department: 800-998-9938 or
 corporate@oreilly.com.

O’Reilly and the O’Reilly logo are registered trademarks of O’Reilly
 Media, Inc. Version Control with Subversion, the
 image of sea turtles, and related trade dress are trademarks of O’Reilly
 Media, Inc.
Many of the designations uses by manufacturers and sellers to
 distinguish their products are claimed as trademarks. Where those
 designations appear in this book, and O’Reilly Media, Inc. was aware of a
 trademark claim, the designations have been printed in caps or initial
 caps

While every precaution has been taken in the preparation of this
 book, the publisher and authors assume no responsibility for errors or
 omissions, or for damages resulting from the use of the information
 contained herein.
This work is licensed under the Creative Commons Attribution
 License. To view a copy of this license, visit http://creativecommons.org/licenses/by/2.0/ or send a
 letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305,
 USA.

[image:]

O'Reilly Media

Foreword

Karl Chicago, March 14, 2004 Fogel
Chicago, March 14, 2004

A bad Frequently Asked Questions (FAQ) sheet is one that is composed
 not of the questions people actually ask, but of the questions the FAQ’s
 author wishes people would ask. Perhaps you’ve seen the
 type before:
Q: How can I use Glorbosoft XYZ to maximize team
 productivity?

A: Many of our customers want to know how they can maximize
 productivity through our patented office groupware innovations. The answer
 is simple. First, click on the File menu, scroll down
 to Increase Productivity, then…

The problem with such FAQs is that they are not, in a literal sense,
 FAQs at all. No one ever called the tech support line and asked, “How
 can we maximize productivity?” Rather, people asked highly specific
 questions, such as “How can we change the calendaring system to send
 reminders two days in advance instead of one?” and so on. But it’s a
 lot easier to make up imaginary Frequently Asked Questions than it is to
 discover the real ones. Compiling a true FAQ sheet requires a sustained,
 organized effort: over the lifetime of the software, incoming questions must
 be tracked, responses monitored, and all gathered into a coherent,
 searchable whole that reflects the collective experience of users in the
 wild. It calls for the patient, observant attitude of a field naturalist. No
 grand hypothesizing, no visionary pronouncements here—open eyes and accurate
 note-taking are what’s needed most.
What I love about this book is that it grew out of just such a
 process, and shows it on every page. It is the direct result of the authors’
 encounters with users. It began with Ben Collins-Sussman’s observation that
 people were asking the same basic questions over and over on the Subversion
 mailing lists: what are the standard workflows to use with Subversion? Do
 branches and tags work the same way as in other version control systems? How
 can I find out who made a particular change?
Frustrated at seeing the same questions day after day, Ben worked
 intensely over a month in the summer of 2002 to write The
 Subversion Handbook, a 60-page manual that covered all the
 basics of using Subversion. The manual made no pretense of being complete,
 but it was distributed with Subversion and got users over that initial hump
 in the learning curve. When O’Reilly decided to publish a full-length
 Subversion book, the path of least resistance was obvious: just expand the
 Subversion handbook.
The three coauthors of the new book were thus presented with an
 unusual opportunity. Officially, their task was to write a book top-down,
 starting from a table of contents and an initial draft. But they also had
 access to a steady stream—indeed, an uncontrollable geyser—of bottom-up
 source material. Subversion was already in the hands of thousands of early
 adopters, and those users were giving tons of feedback, not only about
 Subversion, but also about its existing documentation.
During the entire time they wrote this book, Ben, Mike, and Brian
 haunted the Subversion mailing lists and chat rooms incessantly, carefully
 noting the problems users were having in real-life situations. Monitoring
 such feedback was part of their job descriptions at CollabNet anyway, and it
 gave them a huge advantage when they set out to document Subversion. The
 book they produced is grounded firmly in the bedrock of experience, not in
 the shifting sands of wishful thinking; it combines the best aspects of user
 manual and FAQ sheet. This duality might not be noticeable on a first
 reading. Taken in order, front to back, the book is simply a straightforward
 description of a piece of software. There’s the overview, the obligatory
 guided tour, the chapter on administrative configuration, some advanced
 topics, and of course, a command reference and troubleshooting guide. Only
 when you come back to it later, seeking the solution to some specific
 problem, does its authenticity shine out: the telling details that can only
 result from encounters with the unexpected, the examples honed from genuine
 use cases, and most of all the sensitivity to the user’s needs and the
 user’s point of view.
Of course, no one can promise that this book will answer every
 question you have about Subversion. Sometimes the precision with which it
 anticipates your questions will seem eerily telepathic; yet occasionally,
 you will stumble into a hole in the community’s knowledge and come away
 empty-handed. When this happens, the best thing you can do is email
 users@subversion.tigris.org and present your problem. The
 authors are still there and still watching, and the authors include not just
 the three listed on the cover, but many others who contributed corrections
 and original material. From the community’s point of view, solving your
 problem is merely a pleasant side effect of a much larger project—namely,
 slowly adjusting this book, and ultimately Subversion itself, to more
 closely match the way people actually use it. They are eager to hear from
 you, not only because they can help you, but because you can help them. With
 Subversion, as with all active free software projects, you are not
 alone.
Let this book be your first companion.

Preface

	 	
 “It is important not to let the perfect become the enemy of
 the good, even when you can agree on what perfect is. Doubly so when you
 can’t. As unpleasant as it is to be trapped by past mistakes, you can’t
 make any progress by being afraid of your own shadow during
 design.”

	
	 	--Greg Hudson, Subversion developer

In the world of open source software, the Concurrent Versions
 System (CVS) was the tool of choice for version control for many years. And
 rightly so. CVS was open source software itself, and its nonrestrictive
 modus operandi and support for networked operation allowed dozens of
 geographically dispersed programmers to share their work. It fit the
 collaborative nature of the open source world very well. CVS and its
 semi-chaotic development model have since become cornerstones of open source
 culture.
But CVS was not without its flaws, and simply fixing those flaws
 promised to be an enormous effort. Enter Subversion. Subversion was designed
 to be a successor to CVS, and its originators set out to win the hearts of
 CVS users in two ways—by creating an open source system with a design (and
 “look and feel”) similar to CVS, and by attempting to avoid
 most of CVS’s noticeable flaws. While the result isn’t necessarily the next
 great evolution in version control design, Subversion
 is very powerful, very usable, and very flexible. And
 for the most part, almost all newly started open source projects now choose
 Subversion instead of CVS.
This book is written to document the 1.5 series of the Subversion
 version control system. We have made every attempt to be thorough in our
 coverage. However, Subversion has a thriving and energetic development
 community, so already a number of features and improvements are planned for
 future versions that may change some of the commands and specific notes in
 this book.
What Is Subversion?

Subversion is a free/open source version control system. That is,
 Subversion manages files and directories, and the changes made to them,
 over time. This allows you to recover older versions of your data or
 examine the history of how your data changed. In this regard, many people
 think of a version control system as a sort of “time machine.”
Subversion can operate across networks, which allows it to be used
 by people on different computers. At some level, the ability for various
 people to modify and manage the same set of data from their respective
 locations fosters collaboration. Progress can occur more quickly without a
 single conduit through which all modifications must occur. And because the
 work is versioned, you need not fear that quality is the trade-off for
 losing that conduit—if some incorrect change is made to the data, just
 undo that change.
Some version control systems are also software configuration
 management (SCM) systems. These systems are specifically tailored to
 manage trees of source code and have many features that are specific to
 software development—such as natively understanding programming languages,
 or supplying tools for building software. Subversion, however, is not one
 of these systems. It is a general system that can be used to manage
 any collection of files. For you, those files might
 be source code—for others, anything from grocery shopping lists to digital
 video mixdowns and beyond.
Is Subversion the Right Tool?

If you’re a user or system administrator pondering the use of
 Subversion, the first question you should ask yourself is: “Is this the
 right tool for the job?” Subversion is a fantastic hammer, but be
 careful not to view every problem as a nail.
If you need to archive old versions of files and directories,
 possibly resurrect them, or examine logs of how they’ve changed over
 time, then Subversion is exactly the right tool for you. If you need to
 collaborate with people on documents (usually over a network) and keep
 track of who made which changes, then Subversion is also appropriate.
 This is why Subversion is so often used in software development
 environments—working on a development team is an inherently social
 activity, and Subversion makes it easy to collaborate with other
 programmers. Of course, there’s a cost to using Subversion as well:
 administrative overhead. You’ll need to manage a data repository to
 store the information and all its history, and you’ll need to be
 diligent about backing it up. When working with the data on a daily
 basis, you won’t be able to copy, move, rename, or delete files the way
 you usually do. Instead, you’ll have to do all of those things through
 Subversion.
Assuming you’re fine with the extra workflow, you should still
 make sure you’re not using Subversion to solve a problem that other
 tools solve better. For example, because Subversion replicates data to
 all the collaborators involved, a common misuse is to treat it as a
 generic distribution system. People will sometimes use Subversion to
 distribute huge collections of photos, digital music, or software
 packages. The problem is that this sort of data usually isn’t changing
 at all. The collection itself grows over time, but the individual files
 within the collection aren’t being changed. In this case, using
 Subversion is “overkill.”[1] There are simpler tools that efficiently replicate data
 without the overhead of tracking changes, such as
 rsync or unison.

Subversion’s History

 In early 2000, CollabNet, Inc. (http://www.collab.net) began seeking developers to write
 a replacement for CVS. CollabNet offers a collaboration software suite
 called CollabNet Enterprise Edition (CEE), of which one component is
 version control. Although CEE used CVS as its initial version control
 system, CVS’s limitations were obvious from the beginning, and CollabNet
 knew it would eventually have to find something better. Unfortunately,
 CVS had become the de facto standard in the open source world largely
 because there wasn’t anything better, at least not
 under a free license. So CollabNet determined to write a new version
 control system from scratch, retaining the basic ideas of CVS, but
 without the bugs and misfeatures.
In February 2000, they contacted Karl Fogel, the author of
 Open Source Development with CVS (Coriolis,
 1999), and asked if he’d like to work on this new project.
 Coincidentally, at the time Karl was already discussing a design for a
 new version control system with his friend Jim Blandy. In 1995, the two
 had started Cyclic Software, a company providing CVS support contracts,
 and although they later sold the business, they still used CVS every day
 at their jobs. Their frustration with CVS had led Jim to think carefully
 about better ways to manage versioned data, and he’d already come up
 with not only the name “Subversion,” but also the basic
 design of the Subversion data store. When CollabNet called, Karl
 immediately agreed to work on the project, and Jim got his employer, Red
 Hat Software, to essentially donate him to the project for an indefinite
 period of time. CollabNet hired Karl and Ben Collins-Sussman, and
 detailed design work began in May 2000. With the help of some
 well-placed prods from Brian Behlendorf and Jason Robbins of CollabNet,
 and from Greg Stein (at the time an independent developer active in the
 WebDAV/DeltaV specification process), Subversion quickly attracted a
 community of active developers. It turned out that many people had
 encountered the same frustrating experiences with CVS and welcomed the
 chance to finally do something about it.
The original design team settled on some simple goals. They didn’t
 want to break new ground in version control methodology; they just
 wanted to fix CVS. They decided that Subversion would match CVS’s
 features and preserve the same development model, but would not
 duplicate CVS’s most obvious flaws. And although it did not need to be a
 drop-in replacement for CVS, it should be similar enough that any CVS
 user could make the switch with little effort.
After 14 months of coding, Subversion became
 “self-hosting” on August 31, 2001. That is, Subversion
 developers stopped using CVS to manage Subversion’s own source code and
 started using Subversion instead.
While CollabNet started the project, and still funds a large chunk
 of the work (it pays the salaries of a few full-time Subversion
 developers), Subversion is run like most open source projects, governed
 by a loose, transparent set of rules that encourage meritocracy.
 CollabNet’s copyright license is fully compliant with the Debian Free
 Software Guidelines. In other words, anyone is free to download, modify,
 and redistribute Subversion as he pleases; no permission from CollabNet
 or anyone else is required.

Subversion’s Architecture

Figure 1 illustrates a
 “mile-high” view of Subversion’s design.
[image: Subversion’s architecture]

Figure 1. Subversion’s architecture

On one end is a Subversion repository that holds all of your
 versioned data. On the other end is your Subversion client program,
 which manages local reflections of portions of that versioned data
 (called “working copies”). Between these extremes are
 multiple routes through various Repository Access (RA) layers. Some of
 these routes go across computer networks and through network servers,
 which then access the repository. Others bypass the network altogether
 and access the repository directly.

Subversion’s Components

Subversion, once installed, has a number of different pieces. The
 following is a quick overview of what you get. Don’t be alarmed if the
 brief descriptions leave you scratching your
 head—plenty more pages in this book are devoted to
 alleviating that confusion.
	svn
	The command-line client program

	svnversion
	A program for reporting the state (in terms of revisions of
 the items present) of a working copy

	svnlook
	A tool for directly inspecting a Subversion
 repository

	svnadmin
	A tool for creating, tweaking, or repairing a Subversion
 repository

	mod_dav_svn
	A plug-in module for the Apache HTTP Server, used to make
 your repository available to others over a network

	svnserve
	A custom standalone server program, runnable as a daemon
 process or invokable by SSH; another way to make your repository
 available to others over a network.

	svndumpfilter
	A program for filtering Subversion repository dump
 streams

	svnsync
	A program for incrementally mirroring one repository to
 another over a network

What’s New in Subversion

The first edition of this book was released in 2004, shortly after
 Subversion had reached 1.0. Over the following four years, Subversion
 released five major new versions, fixing bugs and adding major new
 features. While we’ve managed to keep the online version of this book up
 to date, we’re thrilled that the second edition from O’Reilly now covers
 Subversion up through release 1.5, a major milestone for the project.
 Here’s a quick summary of major new changes since Subversion 1.0. Note
 that this is not a complete list; for full details, please visit
 Subversion’s web site at http://subversion.tigris.org.
	Subversion 1.1 (September 2004)
	Release 1.1 introduced FSFS, a flat-file repository storage
 option for the repository. While the Berkeley DB backend is still
 widely used and supported, FSFS has since become the default
 choice for newly created repositories due to its low barrier to
 entry and minimal maintenance requirements. Also in this release
 came the ability to put symbolic links under version control,
 auto-escaping of URLs, and a localized user interface.

	Subversion 1.2 (May 2005)
	Release 1.2 introduced the ability to create server-side
 locks on files, thus serializing commit access to certain
 resources. Although Subversion is still a fundamentally concurrent
 version control system, certain types of binary files (e.g., art
 assets) cannot be merged together. The locking feature fulfills
 the need to version and protect such resources. With locking also
 came a complete WebDAV autoversioning implementation, allowing
 Subversion repositories to be mounted as network folders. Finally,
 Subversion 1.2 began using a new, faster binary-differencing
 algorithm to compress and retrieve old versions of files.

	Subversion 1.3 (December 2005)
	Release 1.3 brought path-based authorization controls to the
 svnserve server, matching a
 feature formerly found only in the Apache server. The Apache
 server, however, gained some new logging features of its own, and
 Subversion’s API bindings to other languages also made great leaps
 forward.

	Subversion 1.4 (September 2006)
	Release 1.4 introduced a whole new tool—svnsync—for doing one-way repository
 replication over a network. Major parts of the working copy
 metadata were revamped to no longer use XML (resulting in
 client-side speed gains), while the Berkeley DB repository backend
 gained the ability to automatically recover itself after a server
 crash.

	Subversion 1.5 (June 2008)
	Release 1.5 took much longer to finish than prior releases,
 but the headliner feature was gigantic: semiautomated tracking of
 branching and merging. This was a huge boon for users, and it
 pushed Subversion far beyond the abilities of CVS and into the
 ranks of commercial competitors such as Perforce and ClearCase.
 Subversion 1.5 also introduced a bevy of other user-focused
 features, such as interactive resolution of file conflicts,
 partial checkouts, client-side management of changelists, powerful
 new syntax for externals definitions, and Simple Authentication
 and Security Layer (SASL) authentication support for the svnserve server.

[1] Or as a friend puts it, “swatting a fly with a
 Buick.”

Audience

This book is written for computer-literate folk who want to use
 Subversion to manage their data. While Subversion runs on a number of
 different operating systems, its primary user interface is
 command-line-based. That command-line tool (svn), and some auxiliary programs, are the focus
 of this book.
For consistency, the examples in this book assume that the reader is
 using a Unix-like operating system and is relatively comfortable with Unix
 and command-line interfaces. That said, the svn program also runs on non-Unix platforms such
 as Microsoft Windows. With a few minor exceptions, such as the use of
 backward slashes (\) instead of forward
 slashes (/) for path separators, the
 input to and output from this tool when run on Windows are identical to
 its Unix counterpart.
Most readers are probably programmers or system administrators who
 need to track changes to source code. This is the most common use for
 Subversion, and therefore it is the scenario underlying all of the book’s
 examples. But Subversion can be used to manage changes to any sort of
 information—images, music, databases, documentation, and so on. To
 Subversion, all data is just data.
While this book is written with the assumption that the reader has
 never used a version control system, we’ve also tried to make it easy for
 users of CVS (and other systems) to make a painless leap into Subversion.
 Special sidebars may mention other version control systems from time to
 time, and Appendix B summarizes many of the differences
 between CVS and Subversion.
Note also that the source code examples used throughout the book are
 only examples. Although they will compile with the proper compiler
 incantations, they are intended to illustrate a particular scenario and
 not necessarily to serve as examples of good programming style or
 practices.

How to Read This Book

Technical book authors always face a certain dilemma: whether to
 cater to top-down or to
 bottom-up learners. A top-down learner prefers to
 read or skim documentation, getting a large overview of how the system
 works; only then does she actually start using the software. A bottom-up
 learner is a “learn by doing” person—someone who just wants
 to dive into the software and figure it out as she goes, referring to book
 sections when necessary. Most books tend to be written for one type of
 person or the other, and this book is undoubtedly biased toward top-down
 learners. (And if you’re actually reading this section, you’re probably
 already a top-down learner yourself!) However, if you’re a bottom-up
 person, don’t despair. While the book may be laid out as a broad survey of
 Subversion topics, the content of each section tends to be heavy with
 specific examples that you can try-by-doing. For the impatient folks who
 just want to get going, you can jump right to Appendix A.
Regardless of your learning style, this book aims to be useful to
 people of widely different backgrounds—from those with no previous
 experience in version control to experienced system administrators.
 Depending on your own background, certain chapters may be more or less important to
 you. The following can be considered a “recommended reading
 list” for various types of readers:
	Experienced system administrators
	The assumption here is that you’ve probably used version
 control before and are dying to get a Subversion server up and
 running ASAP. Chapters 5 and 6 will
 show you how to create your first repository and make it available
 over the network. After that’s done, Chapter 2 and
 Appendix B are the fastest routes to learning the
 Subversion client.

	New users
	Your administrator has probably already set up Subversion, and
 you need to learn how to use the client. If you’ve never used a
 version control system, then Chapter 1 is a vital
 introduction to the ideas behind version control. Chapter 2 is a guided tour of the Subversion
 client.

	Advanced users
	Whether you’re a user or administrator, eventually your
 project will grow larger. You’re going to want to learn how to do
 more advanced things with Subversion, such as how to use
 Subversion’s property support (Chapter 3), how
 to use branches and perform merges (Chapter 4), how to configure runtime options
 (Chapter 7), and other things. These
 chapters aren’t critical at first, but be sure to read them once
 you’re comfortable with the basics.

	Developers
	Presumably, you’re already familiar with Subversion, and you
 now want to either extend it or build new software on top of its
 many APIs. Chapter 8 is just for you.

The book ends with reference material—Chapter 9 is
 a reference guide for all Subversion commands, and the appendixes cover a
 number of useful topics. These are the chapters you’re mostly likely to
 come back to after you’ve finished the book.

Conventions Used in This Book

The following typographic conventions are used in this book:
	
 Constant width

	Used for literal user input, command output, and command-line
 options

	
 Italic

	Used for program and Subversion tool subcommand names, file
 and directory names, and new terms

	
 Constant width italic

	Used for replaceable items in code and text

Also, we’ve sprinkled especially helpful or important bits of
 information throughout the book (in contextually relevant locations), set
 off visually so they’re easy to find. Look for the following icons as you
 read:
Note
This icon designates a special point of interest.

Tip
This icon designates a helpful tip or recommended best
 practice.

Warning
This icon designates a warning. Pay close attention to these to
 avoid running into problems.

Organization of This Book

The chapters that follow and their contents are listed here:
	
 Chapter 1, Fundamental Concepts

	Explains the basics of version control and different
 versioning models, along with Subversion’s repository, working
 copies, and revisions.

	
 Chapter 2, Basic Usage

	Walks you through a day in the life of a Subversion user. It
 demonstrates how to use a Subversion client to obtain, modify, and
 commit data.

	
 Chapter 3, Advanced Topics

	Covers more complex features that regular users will
 eventually come into contact with, such as versioned metadata, file
 locking, and peg revisions.

	
 Chapter 4, Branching and Merging

	Discusses branches, merges, and tagging, including best
 practices for branching and merging, common use cases, how to undo
 changes, and how to easily swing from one branch to the next.

	
 Chapter 5, Repository Administration

	Describes the basics of the Subversion repository, how to
 create, configure, and maintain a repository, and the tools you can
 use to do all of this.

	
 Chapter 6, Server Configuration

	Explains how to configure your Subversion server and offers
 different ways to access your repository: HTTP, the svn protocol, and local disk access. It
 also covers the details of authentication, authorization and
 anonymous access.

	
 Chapter 7, Customizing Your Subversion Experience

	Explores the Subversion client configuration files, the
 handling of internationalized text, and how to make external tools
 cooperate with Subversion.

	
 Chapter 8, Embedding Subversion

	Describes the internals of Subversion, the Subversion
 filesystem, and the working copy administrative areas from a
 programmer’s point of view. It also demonstrates how to use the
 public APIs to write a program that uses Subversion.

	
 Chapter 9, Subversion Complete Reference

	Explains in great detail every subcommand of svn, svnadmin, and svnlook with plenty of examples for the
 whole family!

	Appendix A, Subversion Quick-Start
 Guide
	For the impatient, a whirlwind explanation of how to install
 Subversion and start using it immediately. You have been
 warned.

	Appendix B, Subversion for CVS
 Users
	Covers the similarities and differences between Subversion and
 CVS, with numerous suggestions on how to break all the bad habits
 you picked up from years of using CVS. Included are descriptions of
 Subversion revision numbers, versioned directories, offline
 operations, update versus
 status, branches, tags, metadata,
 conflict resolution, and authentication.

	Appendix C, WebDAV and
 Autoversioning
	Describes the details of WebDAV and DeltaV and how you can
 configure your Subversion repository to be mounted read/write as a
 DAV share.

	Appendix D, Copyright
	A copy of the Creative Commons Attribution License, under
 which this book is licensed.

This Book Is Free

This book started out as bits of documentation written by Subversion
 project developers, which were then coalesced into a single work and
 rewritten. As such, it has always been under a free license (see Appendix D). In fact, the book was written in the public
 eye, originally as part of the Subversion project itself. This means two
 things:
	You will always find the latest version of this book in the
 book’s own Subversion repository.

	You can make changes to this book and redistribute it however
 you wish—it’s under a free license. Your only obligation is to
 maintain proper attribution to the original authors. Of course, we’d
 much rather you send feedback and patches to the Subversion developer
 community, instead of distributing your private version of this
 book.

The online home of this book’s development and most of the
 volunteer-driven translation efforts
 regarding it is http://svnbook.red-bean.com. There
 you can find links to the latest releases and tagged versions of the book
 in various formats, as well as instructions for accessing the book’s
 Subversion repository (where its DocBook XML
 source code lives). Feedback is welcomed—encouraged, even. Please
 submit all comments, complaints, and
 patches against the book sources to
 svnbook-dev@red-bean.com.

Using Code Examples

This book is here to help you get your job done. In general, you may
 use the code in this book in your programs and documentation. You do not
 need to contact us for permission unless you’re reproducing a significant
 portion of the code. For example, writing a program that uses several
 chunks of code from this book does not require permission. Selling or
 distributing a CD-ROM of examples from O’Reilly books does require
 permission. Answering a question by citing this book and quoting example
 code does not require permission. Incorporating a significant amount of
 example code from this book into your product’s documentation does require
 permission.
If you feel your use of code examples falls outside fair use or the
 permission given above, feel free to contact us at
 permissions@oreilly.com.
This work is licensed under the Creative Commons Attribution
 License. To view a copy of this license, visit http://creativecommons.org/licenses/by/2.0/
 or send a letter to Creative
 Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA. See Appendix D for the full license.
An attribution usually includes the title, author, publisher, and
 ISBN. For example: Version Control with Subversion,
 Second Edition, by C. Michael Pilato, Ben Collins-Sussman, and Brian W.
 Fitzpatrick. Copyright 2002–2008 C. Michael Pilato, Ben Collins-Sussman, and Brian W. Fitzpatrick,
 978-0-596-51033-6.

Safari® Books Online

Note
When you see a Safari® Books Online icon on the cover of your
 favorite technology book, that means the book is available online
 through the O’Reilly Network Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s a virtual
 library that lets you easily search thousands of top tech books, cut and
 paste code samples, download chapters, and find quick answers when you
 need the most accurate, current information. Try it for free at http://safari.oreilly.com.

How to Contact Us

Please address comments and questions concerning this book to the
 publisher:
	O’Reilly Media, Inc.
	1005 Gravenstein Highway North
	Sebastopol, CA 95472
	800-998-9938 (in the United States or Canada)
	707-829-0515 (international/local)
	707-829-0104 (fax)

O’Reilly’s web page for this book, where we list errata, examples,
 or any additional information. You can access this page at:
	
 http://www.oreilly.com/catalog/9780596510336

To comment or ask technical questions about this book, send email
 to:
	
 bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers,
 and the O’Reilly Network, see our
 web site at:
	
 http://www.oreilly.com

Acknowledgments

This book would not be possible (nor very useful) if Subversion did
 not exist. For that, the authors would like to thank Brian Behlendorf and
 CollabNet for the vision to fund such a risky and ambitious new open
 source project; Jim Blandy for the original Subversion name and design—we
 love you, Jim; and Karl Fogel for being such a good friend and a great
 community leader, in that order.[2]
Thanks to O’Reilly and our various editors: Chuck Toporek, Linda
 Mui, Tatiana Apandi, Mary Brady, and Mary Treseler. Their patience and
 support has been tremendous.
Finally, we thank the countless people who contributed to this book
 with informal reviews, suggestions, and patches. While this is undoubtedly
 not a complete list, this book would be incomplete and incorrect without
 their help: Bhuvaneswaran A, David Alber, C. Scott Ananian, David
 Anderson, Ariel Arjona, Seth Arnold, Jani Averbach, Charles Bailey, Ryan
 Barrett, Francois Beausoleil, Brian R. Becker, Yves Bergeron, Karl Berry,
 Jennifer Bevan, Matt Blais, Jim Blandy, Phil Bordelon, Sietse Brouwer, Tom
 Brown, Zack Brown, Martin Buchholz, Paul Burba, Sean Callan-Hinsvark,
 Branko Cibej, Archie Cobbs, Jason Cohen, Ryan Cresawn, John R. Daily,
 Peter Davis, Olivier Davy, Robert P. J. Day, Mo DeJong, Brian Denny, Joe
 Drew, Markus Dreyer, Nick Duffek, Boris Dusek, Ben Elliston, Justin
 Erenkrantz, Jens M. Felderhoff, Kyle Ferrio, Shlomi Fish, Julian Foad,
 Chris Foote, Martin Furter, Vlad Georgescu, Peter Gervai, Dave Gilbert,
 Eric Gillespie, David Glasser, Marcel Gosselin, Lieven Govaerts, Steve
 Greenland, Matthew Gregan, Tom Gregory, Maverick Grey, Art Haas, Mark E.
 Hamilton, Eric Hanchrow, Liam Healy, Malte Helmert, Michael Henderson,
 Øyvind A. Holm, Greg Hudson, Alexis Huxley, Auke Jilderda, Toby Johnson,
 Jens B. Jorgensen, Tez Kamihira, David Kimdon, Mark Benedetto King, Robert
 Kleemann, Erik Kline, Josh Knowles, Andreas J. Koenig, Axel Kollmorgen,
 Nuutti Kotivuori, Kalin Kozhuharov, Matt Kraai, Regis Kuckaertz, Stefan
 Kueng, Steve Kunkee, Scott Lamb, Wesley J. Landaker, Benjamin Landsteiner,
 Vincent Lefevre, Morten Ludvigsen, Dennis Lundberg, Paul Lussier, Bruce A.
 Mah, Jonathon Mah, Karl Heinz Marbaise, Philip Martin, Feliciano Matias,
 Neil Mayhew, Patrick Mayweg, Gareth McCaughan, Craig McElroy, Simon
 McKenna, Christophe Meresse, Jonathan Metillon, Jean-Francois Michaud, Jon
 Middleton, Robert Moerland, Marcel Molina Jr., Tim Moloney, Alexander
 Mueller, Tabish Mustufa, Christopher Ness, Roman Neuhauser, Mats Nilsson,
 Greg Noel, Joe Orton, Eric Paire, Dimitri Papadopoulos-Orfanos, Jerry
 Peek, Chris Pepper, Amy Lyn Pilato, Kevin Pilch-Bisson, Hans Polak,
 Dmitriy Popkov, Michael Price, Mark Proctor, Steffen Prohaska, Daniel
 Rall, Srinivasa Ramanujan, Jack Repenning, Tobias Ringstrom, Jason
 Robbins, Garrett Rooney, Joel Rosdahl, Christian Sauer, Ryan Schmidt,
 Jochem Schulenklopper, Jens Seidel, Daniel Shahaf, Larry Shatzer, Danil
 Shopyrin, Erik Sjoelund, Joey Smith, W. Snyder, Stefan Sperling, Robert
 Spier, M. S. Sriram, Russell Steicke, David Steinbrunner, Sander Striker,
 David Summers, Johan Sundstroem, Ed Swierk, John Szakmeister, Arfrever
 Frehtes Taifersar Arahesis, Robert Tasarz, Michael W. Thelen, Mason
 Thomas, Erik van der Kolk, Joshua Varner, Eric Wadsworth, Chris Wagner,
 Colin Watson, Alex Waugh, Chad Whitacre, Andy Whitcroft, Josef Wolf, Luke
 Worth, Hyrum Wright, Blair Zajac, Florian Zumbiehl, and the entire
 Subversion community.
From Ben Collins-Sussman

Thanks to my wife, Frances, who for many months got to hear
 “But honey, I’m still working on the book,” rather than the
 usual “But honey, I’m still doing email.” I don’t know
 where she gets all that patience! She’s my perfect
 counterbalance.
Thanks to my extended family and friends for their sincere
 encouragement, despite having no actual interest in the subject. (You
 know, the ones who say, “Ooh, you wrote a book?”, and then
 when you tell them it’s a computer book, they sort of glaze
 over.)
Thanks to all my close friends, who make me a rich, rich man.
 Don’t look at me that way—you know who you are.
Thanks to my parents for the perfect low-level formatting and for
 being unbelievable role models. Thanks to my kids for giving me the
 opportunity to pass that on.

From Brian W. Fitzpatrick

Huge thanks to my wife, Marie, for being incredibly understanding,
 supportive, and most of all, patient. Thank you to my brother, Eric, who
 first introduced me to Unix programming way back when. Thanks to my Mom
 and Grandmother for all their support, not to mention enduring a
 Christmas holiday where I came home and promptly buried my head in my
 laptop to work on the book.
To Mike and Ben: it was a pleasure working with you on the book.
 Heck, it’s a pleasure working with you at work!
To everyone in the Subversion community and the Apache Software
 Foundation, thanks for having me. Not a day goes by where I don’t learn
 something from at least one of you.
Lastly, thanks to my grandfather, who always told me that
 “freedom equals responsibility.” I couldn’t agree
 more.

From C. Michael Pilato

Special thanks to Amy, my best friend and wife of more than 10
 incredible years, for her love and patient support, for putting up with
 the late nights, and for graciously enduring the version control
 processes I’ve imposed on her. Don’t worry, sweetheart—you’ll be a TortoiseSVN wizard
 in no time!
Gavin, you’re able to read half of the words in this book yourself
 now; sadly, it’s the other half that provide the key concepts. And
 sorry, Aidan—I couldn’t find a way to work Disney/Pixar characters into
 the text. But Daddy loves you both and can’t wait to teach you about
 programming.
Mom and Dad, thanks for your constant support and enthusiasm. Mom-
 and Dad-in-law, thanks for all of the same plus
 your fabulous daughter.
Hats off to Shep Kendall, through whom the world of computers was
 first opened to me; Ben Collins-Sussman, my tour guide through the open
 source world; Karl Fogel, you are my .emacs; Greg Stein, for oozing practical
 programming know-how; and Brian Fitzpatrick, for sharing this writing
 experience with me. To the many folks from whom I am constantly picking
 up new knowledge—keep dropping it!
Finally, to the One who perfectly demonstrates creative
 excellence—thank You.

[2] Oh, and thanks, Karl, for being too overworked to write this
 book yourself.

Chapter 1. Fundamental Concepts

This chapter is a short, casual introduction to Subversion. If you’re
 new to version control, this chapter is definitely for you. We begin with a
 discussion of general version control concepts, work our way into the
 specific ideas behind Subversion, and show some simple examples of
 Subversion in use.
Even though the examples in this chapter show people sharing
 collections of program source code, keep in mind that Subversion can manage
 any sort of file collection—it’s not limited to helping computer
 programmers.
The Repository

Subversion is a centralized system for sharing information. At its core
 is a repository, which is a central store of data. The repository stores
 information in the form of a filesystem tree—a typical hierarchy of files and directories. Any number of
 clients connect to the repository and then read or write to these
 files. By writing data, a client makes the information available to
 others; by reading data, the client receives information from others.
 Figure 1-1 illustrates this.
[image: A typical client/server system]

Figure 1-1. A typical client/server system

So, why is this interesting? So far, this sounds like the definition
 of a typical file server. And indeed, the repository
 is a kind of file server, but it’s not your usual
 breed. What makes the Subversion repository special is that it
 remembers every change ever written to it—every change to every
 file, and even changes to the directory tree itself, such as the addition,
 deletion, and rearrangement of files and directories.
When a client reads data from the repository, it normally sees only
 the latest version of the filesystem tree. But the client also has the
 ability to view previous states of the filesystem.
 For example, a client can ask historical questions such as, “What
 did this directory contain last Wednesday?” and, “Who was the
 last person to change this file, and what changes did he make?”
 These are the sorts of questions that are at the heart of any version control system: systems
 that are designed to track changes to data over time.

Versioning Models

The core mission of a version control system is to enable
 collaborative editing and sharing of data. But different systems use
 different strategies to achieve this. It’s important to understand these
 different strategies, for a couple of reasons. First, it will help you
 compare and contrast existing version control systems in case you
 encounter other systems similar to Subversion. Beyond that, it will also
 help you make more effective use of Subversion, since Subversion itself
 supports a couple of different ways of working.
The Problem of File Sharing

All version control systems have to solve the same fundamental
 problem: how will the system allow users to share information but
 prevent them from accidentally stepping on each other’s feet? It’s all
 too easy for users to accidentally overwrite each other’s changes in the
 repository.
Consider the scenario shown in Figure 1-2. Suppose we have
 two coworkers, Harry and Sally. They each decide to edit the same
 repository file at the same time. If Harry saves his changes to the
 repository first, it’s possible that (a few moments later) Sally could
 accidentally overwrite them with her own new version of the file.
 Although Harry’s version of the file won’t be lost forever (because the
 system remembers every change), any changes Harry made
 won’t be present in Sally’s newer version of the
 file, because she never saw Harry’s changes to begin with. Harry’s work
 is still effectively lost—or is at least missing from the latest version
 of the file—and probably by accident. This is definitely a situation we
 want to avoid!
[image: The problem to avoid]

Figure 1-2. The problem to avoid

The Lock-Modify-Unlock Solution

Many version control systems use a lock-modify-unlock model to
 address the problem of many authors clobbering each other’s work. In
 this model, the repository allows only one person to change a file at a
 time. This exclusivity policy is managed using locks. Harry must
 “lock” a file before he can begin making changes to it. If Harry has
 locked a file, Sally cannot also lock it, and therefore cannot make any
 changes to that file. All she can do is read the file and wait for Harry
 to finish his changes and release his lock. After Harry unlocks the
 file, Sally can take her turn by locking and editing the file. Figure 1-3 demonstrates this
 simple solution.
[image: The lock-modify-unlock solution]

Figure 1-3. The lock-modify-unlock solution

The problem with the lock-modify-unlock model is that it’s a bit
 restrictive and often becomes a roadblock for users:
	Locking may cause administrative
 problems. Sometimes Harry will lock a file and then
 forget about it. Meanwhile, because Sally is still waiting to edit
 the file, her hands are tied. And then Harry goes on vacation. Now
 Sally has to get an administrator to release Harry’s lock. The
 situation ends up causing a lot of unnecessary delay and wasted
 time.

	Locking may cause unnecessary
 serialization. What if Harry is editing the beginning of a text file, and
 Sally simply wants to edit the end of the same file? These changes
 don’t overlap at all. They could easily edit the file
 simultaneously, and no great harm would come, assuming the changes
 were properly merged together. There’s no need for them to take
 turns in this situation.

	Locking may create a false sense of
 security. Suppose Harry locks and edits file A, while Sally
 simultaneously locks and edits file B. But what if A and B depend on
 one another, and the changes made to each are semantically
 incompatible? Suddenly A and B don’t work together anymore. The
 locking system was powerless to prevent the problem—yet it somehow
 provided a false sense of security. It’s easy for Harry and Sally to
 imagine that by locking files, each is beginning a safe, insulated
 task, and thus they need not bother discussing their incompatible
 changes early on. Locking often becomes a substitute for real
 communication.

The Copy-Modify-Merge Solution

Subversion, CVS, and many other version control systems use a copy-modify-merge model as an
 alternative to locking. In this model, each user’s client contacts the
 project repository and creates a personal working copy—a local reflection of
 the repository’s files and directories. Users then work simultaneously
 and independently, modifying their private copies. Finally, the private
 copies are merged together into a new, final version. The version
 control system often assists with the merging, but ultimately, a human
 being is responsible for making it happen correctly.
Here’s an example. Say that Harry and Sally each create working
 copies of the same project, copied from the repository. They work
 concurrently and make changes to the same file A within their copies.
 Sally saves her changes to the repository first. When Harry attempts to
 save his changes later, the repository informs him that his file A
 is out of date. In other words, file
 A in the repository has somehow changed since he last copied it. So
 Harry asks his client to merge any new changes from the repository into his working copy of
 file A. Chances are that Sally’s changes don’t overlap with his own;
 once he has both sets of changes integrated, he saves his working copy
 back to the repository. Figures 1-4 and 1-5 show this process.
[image: The copy-modify-merge solution]

Figure 1-4. The copy-modify-merge solution

[image: The copy-modify-merge solution (continued)]

Figure 1-5. The copy-modify-merge solution (continued)

But what if Sally’s changes do overlap with
 Harry’s changes? What then? This situation is called a conflict, and it’s usually not
 much of a problem. When Harry asks his client to merge the latest
 repository changes into his working copy, his copy of file A is somehow
 flagged as being in a state of conflict: he’ll be able to see both sets
 of conflicting changes and manually choose between them. Note that
 software can’t automatically resolve conflicts; only humans are capable
 of understanding and making the necessary intelligent choices. Once
 Harry has manually resolved the overlapping changes—perhaps after a discussion with Sally—he
 can safely save the merged file back to the repository.
The copy-modify-merge model may sound a bit chaotic, but in
 practice, it runs extremely smoothly. Users can work in parallel, never
 waiting for one another. When they work on the same files, it turns out
 that most of their concurrent changes don’t overlap at all; conflicts
 are infrequent. And the amount of time it takes to resolve conflicts is
 usually far less than the time lost by a locking system.
In the end, it all comes down to one critical factor: user
 communication. When users communicate poorly, both syntactic and
 semantic conflicts increase. No system can force users to communicate
 perfectly, and no system can detect semantic conflicts. So there’s no
 point in being lulled into a false sense of security that a locking
 system will somehow prevent conflicts; in practice, locking seems to
 inhibit productivity more than anything else.
When Locking Is Necessary
While the lock-modify-unlock model is considered generally
 harmful to collaboration, sometimes locking is appropriate.
The copy-modify-merge model is based on the assumption that
 files are contextually mergeable—that is, that the majority of the
 files in the repository are line-based text files (such as program
 source code). But for files with binary formats, such as artwork or
 sound, it’s often impossible to merge conflicting changes. In these
 situations, it really is necessary for users to take strict turns when
 changing the file. Without serialized access, somebody ends up wasting
 time on changes that are ultimately discarded.
While Subversion is primarily a copy-modify-merge system, it
 still recognizes the need to lock an occasional file, and thus
 provides mechanisms for this. We discuss this feature in Locking.

Subversion in Action

It’s time to move from the abstract
 to the concrete. In this section, we’ll show real examples of Subversion
 being used.
Subversion Repository URLs

Throughout this book, Subversion uses URLs to identify versioned files and directories in Subversion
 repositories. For the most part, these URLs use the standard syntax,
 allowing for server names and port numbers to be specified as part of
 the URL:
$ svn checkout http://svn.example.com:9834/repos
...

But there are some nuances in Subversion’s handling of URLs that
 are notable. For example, URLs containing the file:// access method (used for local repositories) must, in accordance with
 convention, have either a server name of localhost or no server name at all:
$ svn checkout file:///var/svn/repos
...
$ svn checkout file://localhost/var/svn/repos
...

Also, users of the file://
 scheme on Windows platforms will need to use an unofficially
 “standard” syntax for accessing repositories that are on
 the same machine, but on a different drive than the client’s current
 working drive. Either of the two following URL path syntaxes will work,
 where X is the drive on which the
 repository resides:
C:\> svn checkout file:///X:/var/svn/repos
...
C:\> svn checkout "file:///X|/var/svn/repos"
...

In the second syntax, you need to quote the URL so that the
 vertical bar character is not interpreted as a pipe. Also, note that a
 URL uses forward slashes even though the native (non-URL) form of a path
 on Windows uses backslashes.
Note
You cannot use Subversion’s file:// URLs in a regular web browser the
 way typical file:// URLs can. When
 you attempt to view a file:// URL
 in a regular web browser, it reads and displays the contents of the
 file at that location by examining the filesystem directly. However,
 Subversion’s resources exist in a virtual filesystem (see Repository Layer), and your browser will not
 understand how to interact with that filesystem.

Finally, it should be noted that the Subversion client will
 automatically encode URLs as necessary, just like a web browser does.
 For example, if a URL contains a space or upper-ASCII character as in
 the following:
$ svn checkout "http://host/path with space/project/españa"

then Subversion will escape the unsafe characters and behave as
 though you had typed:
$ svn checkout http://host/path%20with%20space/project/espa%C3%B1a

If the URL contains spaces, be sure to place it within quotation
 marks so that your shell treats the whole thing as a single argument
 to the svn
 program.
Repository URLs
You can access Subversion repositories through many different
 methods—on local disk or through various network protocols, depending
 on how your administrator has set things up for you. A repository
 location, however, is always a URL. Table 1-1 describes how different URL
 schemes map to the available access methods.
Table 1-1. Repository access URLs
	Schema	Access method
	
 file:///
 	Direct repository access (on local disk)
	
 http://
 	Access via WebDAV protocol to Subversion-aware Apache
 server
	
 https://
 	Same as http://, but
 with SSL encryption
	
 svn://
 	Access via custom protocol to an svnserve server
	
 svn+ssh://
 	Same as svn://, but
 through an SSH tunnel

For more information on how Subversion parses URLs, see Subversion Repository URLs. For more information on the
 different types of network servers available for Subversion, see Chapter 6.

Working Copies

You’ve already read about working copies; now we’ll demonstrate how the
 Subversion client creates and uses them.
A Subversion working copy is an ordinary directory tree on your
 local system, containing a collection of files. You can edit these files
 however you wish, and if they’re source code files, you can compile your
 program from them in the usual way. Your working copy is your own
 private work area: Subversion will never incorporate other people’s
 changes, nor make your own changes available to others, until you
 explicitly tell it to do so. You can even have multiple working copies
 of the same project.
After you’ve made some changes to the files in your working copy
 and verified that they work properly, Subversion provides you with
 commands to “publish” your changes to the other people
 working with you on your project (by writing to the repository). If
 other people publish their own changes, Subversion provides you with
 commands to merge those changes into your working copy (by reading from
 the repository).
A working copy also contains some extra files, created and
 maintained by Subversion, to help it carry out these commands. In
 particular, each directory in your working copy contains a subdirectory
 named .svn, also known as the
 working copy’s administrative directory. The
 files in each administrative directory help Subversion recognize which
 files contain unpublished changes and which files are out of date with
 respect to others’ work.
A typical Subversion repository often holds the files (or source
 code) for several projects; usually, each project is a subdirectory in
 the repository’s filesystem tree. In this arrangement, a user’s working copy will
 usually correspond to a particular subtree of the repository.
For example, suppose you have a repository that contains two
 software projects, paint and calc. Each project lives in its own top-level
 subdirectory, as shown in Figure 1-6.
[image: The repository’s filesystem]

Figure 1-6. The repository’s filesystem

To get a working copy, you must check out
 some subtree of the repository. (The term check
 out may sound like it has something to do with locking or
 reserving resources, but it doesn’t; it simply creates a private copy of
 the project for you.) For example, if you check out /calc, you will get a working copy like
 this:
$ svn checkout http://svn.example.com/repos/calc
A calc/Makefile
A calc/integer.c
A calc/button.c
Checked out revision 56.

$ ls -A calc
Makefile button.c integer.c .svn/

The list of letter As in the
 left margin indicates that Subversion is adding a number of
 items to your working copy. You now have a personal copy of the
 repository’s /calc directory, with
 one additional entry—.svn—which
 holds the extra information needed by Subversion, as mentioned
 earlier.
Suppose you make changes to button.c. Since the .svn directory remembers the file’s original
 modification date and contents, Subversion can tell that you’ve changed
 the file. However, Subversion does not make your changes public until
 you explicitly tell it to. The act of publishing your changes is more
 commonly known as committing (or checking
 in) changes to the repository.
To publish your changes to others, you can use Subversion’s
 svn commit command:
$ svn commit button.c -m "Fixed a typo in button.c."
Sending button.c
Transmitting file data .
Committed revision 57.

Now your changes to button.c
 have been committed to the repository, with a note describing your
 change (namely, that you fixed a typo). If another user checks out a
 working copy of /calc, she will see
 your changes in the latest version of the file.
Suppose you have a collaborator, Sally, who checked out a working
 copy of /calc at the same time you
 did. When you commit your change to button.c, Sally’s working copy is left
 unchanged; Subversion modifies working copies only at the user’s
 request.
To bring her project up to date, Sally can ask Subversion to
 update her working copy, by using the svn update command. This will incorporate your changes into her working copy,
 as well as any others that have been committed since she checked it
 out:
$ pwd
/home/sally/calc

$ ls -A
Makefile button.c integer.c .svn/

$ svn update
U button.c
Updated to revision 57.

The output from the svn update
 command indicates that Subversion updated the contents of button.c. Note that Sally didn’t need to
 specify which files to update; Subversion uses the information in the
 .svn directory as well as further
 information in the repository to decide which files need to be brought
 up to date.

Revisions

An svn commit operation publishes changes to any number of files and directories
 as a single atomic transaction. In your working copy, you can change
 files’ contents; create, delete, rename, and copy files and directories;
 and then commit a complete set of changes as an atomic transaction.
By atomic transaction, we mean simply this: either all of the
 changes happen in the repository, or none of them happens. Subversion
 tries to retain this atomicity in the face of program crashes, system
 crashes, network problems, and other users’ actions.
Each time the repository accepts a commit, this creates a new
 state of the filesystem tree, called a revision. Each revision
 is assigned a unique natural number, one greater than the number of the
 previous revision. The initial revision of a freshly created repository
 is numbered 0 and consists of nothing but an empty root
 directory.
Global Revision Numbers
Unlike most version control systems, Subversion’s revision
 numbers apply to entire trees, not individual
 files. Each revision number selects an entire tree, a particular state
 of the repository after some committed change. Another way to think
 about it is that revision N represents the state of the repository
 filesystem after the Nth commit. When Subversion users talk about
 “revision 5 of foo.c,” they really mean
 “foo.c as it appears in
 revision 5.” Notice that in general, revisions N and M of a
 file do not necessarily differ! Many other
 version control systems use per-file revision numbers, so this concept
 may seem unusual at first. (Former CVS users might want to see Appendix B for more details.)

Figure 1-7 illustrates a
 nice way to visualize the repository. Imagine an array of revision
 numbers, starting at 0, stretching from left to right. Each revision
 number has a filesystem tree hanging below it, and each tree is a
 “snapshot” of the way the repository looked after a
 commit.
[image: The repository]

Figure 1-7. The repository

It’s important to note that working copies do not always
 correspond to any single revision in the repository; they may contain
 files from several different revisions. For example, suppose you check
 out a working copy from a repository whose most recent revision is
 4:
calc/Makefile:4
 integer.c:4
 button.c:4

At the moment, this working directory corresponds exactly to
 revision 4 in the repository. However, suppose you make a change to
 button.c and commit that change.
 Assuming no other commits have taken place, your commit will create
 revision 5 of the repository, and your working copy will now look like
 this:
calc/Makefile:4
 integer.c:4
 button.c:5

Suppose that, at this point, Sally commits a change to integer.c, creating revision 6. If you use
 svn update to bring your working copy
 up to date, it will look like this:
calc/Makefile:6
 integer.c:6
 button.c:6

Sally’s change to integer.c
 will appear in your working copy, and your change will still be present
 in button.c. In this example, the
 text of Makefile is identical in
 revisions 4, 5, and 6, but Subversion will mark your working copy of
 Makefile with revision 6 to
 indicate that it is still current. So, after you do a clean update at
 the top of your working copy, it will generally correspond to exactly
 one revision in the repository.

How Working Copies Track the Repository

For each file in a working directory,
 Subversion records two essential pieces of information in the .svn/ administrative area:
	Which revision your working file is based on (this is called
 the file’s working revision)

	A timestamp recording when the local copy was last updated by
 the repository

Given this information, by talking to the repository, Subversion
 can tell which of the following four states a working file is in:
	Unchanged, and current
	The file is unchanged in the working directory, and no changes to that
 file have been committed to the repository since its working
 revision. An svn commit of the
 file will do nothing, and an svn
 update of the file will do nothing.

	Locally changed, and current
	The file has been changed in the working directory, and no changes to that
 file have been committed to the repository since you last updated.
 There are local changes that have not been committed to the
 repository; thus an svn commit
 of the file will succeed in publishing your changes, and an
 svn update of the file will do
 nothing.

	Unchanged, and out of date
	The file has not been changed in the working directory, but it has been
 changed in the repository. The file should eventually be updated
 in order to make it current with the latest public revision. An
 svn commit of the file will do
 nothing, and an svn update of
 the file will fold the latest changes into your working
 copy.

	Locally changed, and out of date
	The file has been changed both in the working directory and in the
 repository. An svn commit of
 the file will fail with an “out of date” error. The
 file should be updated first; an svn
 update command will attempt to merge the public changes
 with the local changes. If Subversion can’t complete the merge in
 a plausible way automatically, it leaves it to the user to resolve
 the conflict.

This may sound like a lot to keep track of, but the svn status command will show you the state of
 any item in your working copy. For more information on that command,
 refer to See an overview of your changes.

Mixed Revision Working Copies

As a general principle, Subversion tries to be as flexible as possible. One
 special kind of flexibility is the ability to have a working copy
 containing files and directories with a mix of different working
 revision numbers. Unfortunately, this flexibility tends to confuse a
 number of new users. If the earlier example showing mixed revisions
 perplexed you, here’s a primer on why the feature exists and how to make
 use of it.
Updates and commits are separate

One of the fundamental rules of Subversion is that a
 “push” action does not cause a “pull,” nor
 vice versa. Just because you’re ready to submit new changes to the
 repository doesn’t mean you’re ready to receive changes from other
 people. And if you have new changes still in progress, svn update should
 gracefully merge repository changes into your own, rather than forcing
 you to publish them.
The main side effect of this rule is that it means a working
 copy has to do extra bookkeeping to track mixed revisions as well as
 be tolerant of the mixture. It’s made more complicated by the fact
 that directories themselves are versioned.
For example, suppose you have a working copy entirely at
 revision 10. You edit the file foo.html and then perform an svn commit, which creates revision 15 in the repository. After the commit
 succeeds, many new users would expect the working copy to be entirely
 at revision 15, but that’s not the case! Any number of changes might
 have happened in the repository between revisions 10 and 15. The
 client knows nothing of those changes in the repository, since you
 haven’t yet run svn update, and
 svn commit doesn’t pull down new
 changes. If, on the other hand, svn
 commit were to automatically download the newest changes, it
 would be possible to set the entire working copy to revision 15—but
 then we’d be breaking the fundamental rule of “push” and
 “pull” remaining separate actions. Therefore, the only
 safe thing the Subversion client can do is mark the one file—foo.html—as being at revision 15. The rest
 of the working copy remains at revision 10. Only by running svn update can the latest changes be
 downloaded and the whole working copy be marked as revision 15.

Mixed revisions are normal

The fact is, every time you run svn commit your working copy ends up with
 some mixture of revisions. The things you just committed are marked as
 having larger working revisions than everything else. After several
 commits (with no updates in between), your working copy will contain a
 whole mixture of revisions. Even if you’re the only person using the
 repository, you will still see this phenomenon. To examine your
 mixture of working revisions, use the svn status
 command with the --verbose option (see See an overview of your changes
 for more information).
Often, new users are completely unaware that their working copy
 contains mixed revisions. This can be confusing, because many client
 commands are sensitive to the working revision of the item they’re
 examining. For example, the svn log
 command is used to display the history of changes to a file or
 directory (see Generating a List of Historical Changes). When the user
 invokes this command on a working copy object, he expects to see the
 entire history of the object. But if the object’s working revision is
 quite old (often because svn update
 hasn’t been run in a long time), the history of the
 older version of the object is shown.

Mixed revisions are useful

If your project is sufficiently complex, you’ll discover that
 it’s sometimes nice to forcibly backdate (or update to
 a revision older than the one you already have) portions of your
 working copy to an earlier revision; you’ll learn how to do that in
 Chapter 2. Perhaps you’d like to test an earlier
 version of a submodule contained in a subdirectory, or perhaps you’d
 like to figure out when a bug first came into existence in a specific
 file. This is the “time machine” aspect of a version
 control system—the feature that allows you to move any portion of your
 working copy forward and backward in history.

Mixed revisions have limitations

However you make use of mixed revisions in your working copy,
 there are limitations to this flexibility.
First, you cannot commit the deletion of a file or directory
 that isn’t fully up to date. If a newer version of the item exists in
 the repository, your attempt to delete will be rejected to prevent you
 from accidentally destroying changes you’ve not yet seen.
Second, you cannot commit a metadata change to a directory
 unless it’s fully up to date. You’ll learn about attaching
 “properties” to items in Chapter 3.
 A directory’s working revision defines a specific set of entries and
 properties, and thus committing a property change to an out-of-date
 directory may destroy properties you’ve not yet seen.

Summary

We covered a number of fundamental Subversion concepts in this
 chapter:
	We introduced the notions of the central repository, the client
 working copy, and the array of repository revision trees.

	We saw some simple examples of how two collaborators can use
 Subversion to publish and receive changes from one another, using the
 “copy-modify-merge” model.

	We talked a bit about the way that Subversion tracks and manages
 information in a working copy.

At this point, you should have a good idea of how Subversion works
 in the most general sense. Armed with this knowledge, you should now be
 ready to move into the next chapter, which is a detailed tour of
 Subversion’s commands and features.

Chapter 2. Basic Usage

Now we will go into the details of using Subversion. By the time you
 reach the end of this chapter, you will be able to perform all the tasks you
 need to use Subversion in a normal day’s work. You’ll start with getting
 your files into Subversion, followed by an initial checkout of your code.
 We’ll then walk you through making changes and examining those changes.
 You’ll also see how to bring changes made by others into your working copy,
 examine them, and work through any conflicts that might arise.
Note that this chapter is not meant to be an exhaustive list of all of Subversion’s commands—rather, it’s a
 conversational introduction to the most common Subversion tasks that you’ll
 encounter. This chapter assumes that you’ve read and understood Chapter 1 and are familiar with the general model of
 Subversion. For a complete reference of all commands, see Chapter 9.
Help!

Before reading on, here is the most important command you’ll ever need when
 using Subversion: svn help. The
 Subversion command-line client is self-documenting—at any time, a quick
 svn help subcommand will
 describe the syntax, options, and behavior of the subcommand:
$ svn help import
import: Commit an unversioned file or tree into the repository.
usage: import [PATH] URL

 Recursively commit a copy of PATH to URL.
 If PATH is omitted '.' is assumed.
 Parent directories are created as necessary in the repository.
 If PATH is a directory, the contents of the directory are added
 directly under URL.
 Unversionable items such as device files and pipes are ignored
 if --force is specified.

Valid options:
 -q [--quiet] : print nothing, or only summary information
 -N [--non-recursive] : obsolete; try --depth=files or --depth=immediates
 --depth ARG : limit operation by depth ARG ('empty', 'files',
 'immediates', or 'infinity')
...

Options and Switches and Flags, Oh My!
The Subversion command-line client has numerous command
 modifiers (which we call options), but there are two distinct kinds of
 options: short options are a single hyphen followed by a single letter,
 and long options consist of two hyphens followed by a number of letters
 (e.g., -s and --this-is-a-long-option, respectively). Every
 option has a long format, but only certain options have an additional
 short format (these are typically options that are frequently used). To
 maintain clarity, we usually use the long form in
 code examples, but when describing options, if there’s a short form,
 we’ll provide the long form (to improve clarity) and the short form (to
 make it easier to remember). You should use whichever one you’re more
 comfortable with, but don’t try to use both.

Getting Data into Your Repository

You can get new files into your Subversion repository in two
 ways: svn import and
 svn add. We’ll discuss svn import now, and we’ll discuss svn add later in this chapter when we review a
 typical day with Subversion.
svn import

The svn import command is a
 quick way to copy an unversioned tree of files into a repository,
 creating intermediate directories as necessary. svn import doesn’t require a working copy, and
 your files are immediately committed to the repository. You typically
 use this when you have an existing tree of files that you want to begin
 tracking in your Subversion repository. For example:
$ svnadmin create /var/svn/newrepos
$ svn import mytree file:///var/svn/newrepos/some/project \
 -m "Initial import"
Adding mytree/foo.c
Adding mytree/bar.c
Adding mytree/subdir
Adding mytree/subdir/quux.h

Committed revision 1.

The example just shown copies the contents of directory mytree under the directory some/project in the
 repository:
$ svn list file:///var/svn/newrepos/some/project
bar.c
foo.c
subdir/

Note that after the import is finished, the original tree is
 not converted into a working copy. To start
 working, you still need to svn
 checkout a fresh working copy of the tree.

Recommended Repository Layout

While Subversion’s flexibility allows you to lay out your repository in any
 way that you choose, we recommend that you create a trunk directory to hold the “main
 line” of development, a branches directory to contain branch copies,
 and a tags directory to contain tag
 copies. For example:
$ svn list file:///var/svn/repos
/trunk
/branches
/tags

You’ll learn more about tags and branches in Chapter 4. For details and how to set up multiple
 projects, see Repository Layout and Planning Your Repository Organization to read more about
 project roots.

Initial Checkout

Most of the time, you will start using a Subversion repository by doing a
 checkout of your project. Checking out a repository
 creates a “working copy” of it on your local machine. This
 copy contains the HEAD (latest
 revision) of the Subversion repository that you specify on the command
 line:
$ svn checkout http://svn.collab.net/repos/svn/trunk
A trunk/Makefile.in
A trunk/ac-helpers
A trunk/ac-helpers/install.sh
A trunk/ac-helpers/install-sh
A trunk/build.conf
...
Checked out revision 8810.

What’s in a Name?
Subversion tries hard not to limit the type of data you can place
 under version control. The contents of files and property values are
 stored and transmitted as binary data, and File Content Type tells you how to give
 Subversion a hint that “textual” operations don’t make
 sense for a particular file. There are a few places, however, where
 Subversion places restrictions on information it stores.
Subversion internally handles certain bits of data—for example,
 property names, pathnames, and log messages—as UTF-8-encoded Unicode.
 This is not to say that all your interactions with Subversion must
 involve UTF-8, though. As a general rule, Subversion clients will
 gracefully and transparently handle conversions between UTF-8 and the
 encoding system in use on your computer, if such a conversion can
 meaningfully be done (which is the case for most common encodings in use
 today).
In WebDAV exchanges and older versions of some of Subversion’s
 administrative files, paths are used as XML attribute values and as
 property names in XML tag names. This means that pathnames can contain
 only legal XML (1.0) characters, and properties are further limited to
 ASCII characters. Subversion also prohibits TAB, CR,
 and LF characters in pathnames to
 prevent paths from being broken up in diffs or in the output of commands
 such as svn log or svn status.
Although it may seem like a lot to remember, in practice these
 limitations are rarely a problem. As long as your locale settings are
 compatible with UTF-8 and you don’t use control characters in pathnames,
 you should have no trouble communicating with Subversion. The
 command-line client adds an extra bit of help—to create “legally
 correct” versions for internal use, it will automatically escape
 illegal path characters as needed in URLs that you type.

Although the preceding example checks out the trunk directory, you
 can just as easily check out any deep subdirectory of a repository by
 specifying the subdirectory in the checkout URL:
$ svn checkout \
 http://svn.collab.net/repos/svn/trunk/subversion/tests/cmdline/
A cmdline/revert_tests.py
A cmdline/diff_tests.py
A cmdline/autoprop_tests.py
A cmdline/xmltests
A cmdline/xmltests/svn-test.sh
...
Checked out revision 8810.

Since Subversion uses a copy-modify-merge model instead of
 lock-modify-unlock (see Versioning Models), you can
 immediately make changes to the files and directories in your working
 copy. Your working copy is just like any other collection of files and
 directories on your system. You can edit and change it, move it around,
 even delete the entire working copy and forget about it.
Warning
Although your working copy is “just like any other
 collection of files and directories on your system,” and you can
 edit files at will, you must tell Subversion about everything
 else that you do. For example, if you want to copy or move an
 item in a working copy, you should use svn copy or
 svn move instead of the copy and move
 commands provided by your operating system. We’ll talk more about these
 later in this chapter.

Unless you’re ready to commit the addition of a new file or
 directory or changes to existing ones, there’s no need to further notify
 the Subversion server that you’ve done anything.
What’s with the .svn Directory?
Every directory in a working copy contains an administrative
 area—a subdirectory named .svn. Usually, directory listing commands
 won’t show this subdirectory, but it is nevertheless an important
 directory. Whatever you do, don’t delete or change anything in the
 administrative area! Subversion depends on it to manage your working
 copy.
If you accidentally remove the .svn subdirectory, the easiest way to fix the
 problem is to remove the entire containing directory (a normal system
 deletion, not svn delete), and then run svn update from a parent
 directory. The Subversion client will download the directory you’ve
 deleted, with a new .svn area
 included.

Although you can certainly check out a working copy with the URL of
 the repository as the only argument, you can also specify a directory
 after your repository URL. This places your working copy in the new
 directory that you name. For example:
$ svn checkout http://svn.collab.net/repos/svn/trunk subv
A subv/Makefile.in
A subv/ac-helpers
A subv/ac-helpers/install.sh
A subv/ac-helpers/install-sh
A subv/build.conf
...
Checked out revision 8810.

That will place your working copy in a directory named subv instead of a directory named trunk, as we did previously. The directory
 subv will be created if it doesn’t
 already exist.
Disabling Password Caching

When you perform a Subversion operation that requires you to
 authenticate, by default Subversion caches your authentication
 credentials on disk. This is done for convenience so that you don’t have
 to continually reenter your password for future operations. If you’re
 concerned about caching your Subversion passwords,[3] you can disable caching either permanently or on a
 case-by-case basis.
To disable password caching for a particular one-time command,
 pass the --no-auth-cache option on the command
 line. To permanently disable caching, you can add the line store-passwords = no to your local machine’s
 Subversion configuration file. See Client Credentials Caching for details.

Authenticating As a Different User

Since Subversion caches auth credentials by default (both username
 and password), it conveniently remembers who you were acting as the last
 time you modified your working copy. But sometimes that’s not
 helpful—particularly if you’re working in a shared working copy such as
 a system configuration directory or a web server document root. In this
 case, just pass the --username option on the command line, and Subversion will attempt to
 authenticate as that user, prompting you for a password if
 necessary.

[3] Of course, you’re not terribly worried—first because you know
 that you can’t really delete anything from
 Subversion, and second because your Subversion password isn’t the
 same as any of the other 3 million passwords you have, right?
 Right?

Basic Work Cycle

Subversion has numerous features,
 options, bells, and whistles, but on a day-to-day basis, odds are that you
 will use only a few of them. In this section, we’ll run through the most
 common things that you might find yourself doing with Subversion in the
 course of a day’s work.
The typical work cycle looks like this:
	Update your working copy.
	
 svn update

	Make changes.
	
 svn add

	
 svn delete

	
 svn copy

	
 svn move

	Examine your changes.
	
 svn status

	
 svn diff

	Possibly undo some changes.
	
 svn revert

	Resolve conflicts (merge others’ changes).
	
 svn update

	
 svn resolve

	Commit your changes.
	
 svn commit

Update Your Working Copy

When working on a project with a team, you’ll want to update
 your working copy to receive any changes other developers on the project
 have made since your last update. Use svn update to bring
 your working copy into sync with the latest revision in the
 repository:
$ svn update
U foo.c
U bar.c
Updated to revision 2.

In this case, it appears that someone checked in modifications to
 both foo.c and bar.c since the last time you updated, and
 Subversion has updated your working copy to include those
 changes.
When the server sends changes to your working copy via svn update, a letter code is displayed next to
 each item to tell you which actions Subversion performed to bring your
 working copy up to date. To learn what these letters mean, run
 svn help update.

Make Changes to Your Working Copy

Now you can get to work and make changes in your working copy.
 It’s usually most convenient to decide on a discrete change (or set of
 changes) to make, such as writing a new feature, fixing a bug, and so
 on. The Subversion commands that you will use here are svn add, svn
 delete, svn copy, svn move, and svn
 mkdir. However, if you are merely editing files that are
 already in Subversion, you may not need to use any of these commands
 until you commit.
Versioning Symbolic Links
On non-Windows platforms, Subversion is able to version files of the special type
 symbolic link (or “symlink”). A
 symlink is a file that acts as a sort of transparent reference to some
 other object in the filesystem, allowing programs to read and write to
 those objects indirectly by way of performing operations on the
 symlink itself.
When a symlink is committed into a Subversion repository,
 Subversion remembers that the file is in fact a symlink, and it also
 remembers the object to which the symlink “points.” When
 that symlink is checked out to another working copy on a non-Windows system, Subversion reconstructs
 a real filesystem-level symbolic link from the versioned symlink. But
 that doesn’t in any way limit the usability of working copies on
 systems such as Windows that do not support symlinks. On such systems,
 Subversion simply creates a regular text file whose contents are the
 path to which the original symlink pointed. While that file can’t be
 used as a symlink on a Windows system, it also won’t prevent Windows
 users from performing their other Subversion-related activities.

You can make two kinds of changes to your working copy: file changes and
 tree changes. You don’t need to tell Subversion
 that you intend to change a file; just make your changes using your text
 editor, word processor, graphics program, or whatever tool you would
 normally use. Subversion automatically detects which files have been
 changed, and in addition, it handles binary files just as easily as it
 handles text files—and just as efficiently, too. For tree changes, you
 can ask Subversion to “mark” files and directories for
 scheduled removal, addition, copying, or moving. These changes may take
 place immediately in your working copy, but no additions or removals
 will happen in the repository until you commit them.
Here is an overview of the five Subversion subcommands that you’ll
 use most often to make tree changes:
	
 svn add foo

	Schedule file, directory, or symbolic link foo to be added to the repository. When
 you next commit, foo will
 become a child of its parent directory. Note that if foo is a directory, everything
 underneath foo will be
 scheduled for addition. If you want only to add foo itself, pass the --depth
 empty option.

	
 svn delete foo

	Schedule file, directory, or symbolic link foo to be deleted from the repository.
 If foo is a file or link, it
 is immediately deleted from your working copy. If foo is a directory, it is not deleted,
 but Subversion schedules it for deletion. When you commit your
 changes, foo will be entirely
 removed from your working copy and the repository.[4]

	
 svn copy foo bar

	Create a new item bar as a
 duplicate of foo and
 automatically schedule bar
 for addition. When bar is
 added to the repository on the next commit, its copy history is
 recorded (as having originally come from foo). svn
 copy does not create intermediate directories unless you
 pass the --parents option.

	
 svn move foo bar

	This command is exactly the same as running svn copy foo
 bar; svn delete foo. That is, bar is scheduled for addition as a copy
 of foo, and foo is scheduled for removal. svn move does not create intermediate
 directories unless you pass the --parents
 option.

	
 svn mkdir blort

	This command is exactly the same as running mkdir blort;
 svn add blort. That is, a new directory named blort is created and scheduled for
 addition.

Changing the Repository Without a Working Copy
There are some use cases that immediately
 commit tree changes to the repository. This happens only when a
 subcommand is operating directly on a URL, rather than on a
 working-copy path. In particular, specific uses of svn mkdir, svn
 copy, svn move, and
 svn delete can work with URLs (and
 don’t forget that svn import always
 makes changes to a URL).
URL operations behave in this manner because commands that
 operate on a working copy can use the working copy as a sort of
 “staging area” to set up your changes before committing
 them to the repository. Commands that operate on URLs don’t have this
 luxury, so when you operate directly on a URL, any of the
 aforementioned actions represents an immediate commit.

Examine Your Changes

Once you’ve finished making changes, you need to commit them to the
 repository, but before you do so, it’s usually a good idea to take a
 look at exactly what you’ve changed. By examining your changes before
 you commit, you can make a more accurate log message. You may also
 discover that you’ve inadvertently changed a file, and this gives you a
 chance to revert those changes before committing. Additionally, this is
 a good opportunity to review and scrutinize changes before publishing
 them. You can see an overview of the changes you’ve made by using
 svn status, and you can dig into the
 details of those changes by using svn
 diff.
Look Ma! No Network!
You can use the commands svn
 status, svn diff, and
 svn revert without any network
 access even if your repository is across the
 network. This makes it easy to manage your changes-in-progress when
 you are somewhere without a network connection, such as traveling on
 an airplane, riding a commuter train, or hacking on the
 beach.[5]
Subversion does this by keeping private caches of pristine
 versions of each versioned file inside the .svn administrative areas. This allows
 Subversion to report—and revert—local modifications to those
 files without network access. This cache (called
 the “text-base”) also allows Subversion to send the
 user’s local modifications during a commit to the server as a
 compressed delta (or “difference”)
 against the pristine version. Having this cache is a tremendous
 benefit—even if you have a fast Internet connection, it’s much faster
 to send only a file’s changes rather than the whole file to the
 server.

Subversion has been optimized to help you with the task of
 examining your changes, and it is able to do many things without
 communicating with the repository. In particular, your working copy
 contains a hidden cached “pristine” copy of each
 version-controlled file within the .svn area. Because of this, Subversion can
 quickly show you how your working files have changed and can even allow
 you to undo your changes without contacting the repository.
See an overview of your changes

To get an overview of your changes, you’ll use the svn status command. You’ll probably use
 svn status more than any other
 Subversion command.
CVS Users: Hold That Update!
You’re probably used to using cvs
 update to see what changes you’ve made to your working
 copy. svn status will give you
 all the information you need regarding what has changed in your
 working copy—without accessing the repository or potentially
 incorporating new changes published by other users.
In Subversion, svn update
 does just that: it updates your working copy with any changes
 committed to the repository since the last time you updated your
 working copy. You may have to break the habit of using the update command to see what local
 modifications you’ve made.

If you run svn status at the
 top of your working copy with no arguments, it will detect all file
 and tree changes you’ve made. Here are a few examples of the most
 common status codes that svn status
 can return. (Note that the text following # is not actually printed by svn status.)
? scratch.c # file is not under version control
A stuff/loot/bloo.h # file is scheduled for addition
C stuff/loot/lump.c # file has textual conflicts from an update
D stuff/fish.c # file is scheduled for deletion
M bar.c # the content in bar.c has local modifications

In this output format, svn
 status prints six columns of characters, followed by several
 whitespace characters, followed by a file or directory name. The first
 column tells the status of a file or directory and/or its contents.
 The codes we listed are:
	
 A
 item

	The file, directory, or symbolic link item has been scheduled for addition
 into the repository.

	
 C
 item

	The file item
 is in a state of conflict. That is, changes received
 from the server during an update overlap with local changes that
 you have in your working copy (and weren’t resolved during the
 update). You must resolve this conflict before committing your
 changes to the repository.

	
 D
 item

	The file, directory, or symbolic link item has been scheduled for deletion
 from the repository.

	
 M
 item

	The contents of the file item have been modified.

If you pass a specific path to svn
 status, you get information about that item alone:
$ svn status stuff/fish.c
D stuff/fish.c

svn status also has a
 --verbose (-v) option, which will show you the status of
 every item in your working copy, even if it has
 not been changed:
$ svn status -v
M 44 23 sally README
 44 30 sally INSTALL
M 44 20 harry bar.c
 44 18 ira stuff
 44 35 harry stuff/trout.c
D 44 19 ira stuff/fish.c
 44 21 sally stuff/things
A 0 ? ? stuff/things/bloo.h
 44 36 harry stuff/things/gloo.c

This is the “long form” output of svn status. The letters in the first column mean the same as before, but
 the second column shows the working revision of the item. The third
 and fourth columns show the revision in which the item last changed
 and who changed it.
None of the prior invocations to svn
 status contact the repository—instead, they compare the
 metadata in the .svn directory
 with the working copy. Finally, there is the --show-updates (-u)
 option, which contacts the repository and adds
 information about things that are out of date:
$ svn status -u -v
M * 44 23 sally README
M 44 20 harry bar.c
 * 44 35 harry stuff/trout.c
D 44 19 ira stuff/fish.c
A 0 ? ? stuff/things/bloo.h
Status against revision: 46

Notice the two asterisks: if you were to run svn
 update at this point, you would receive changes to README and trout.c. This tells you some very useful
 information—you’ll need to update and get the server changes on
 README before you commit, or the
 repository will reject your commit for being out of date (more on this
 subject later).
svn status can display much
 more information about the files and directories in your working copy
 than we’ve shown here—for an exhaustive description of svn status and its output, see “svn status” in Chapter 9.

Examine the details of your local modifications

Another way to examine your changes is with the svn diff command. You can find out exactly how you’ve
 modified things by running svn diff with no
 arguments, which prints out file changes in unified diff format:
$ svn diff
Index: bar.c
===
--- bar.c	(revision 3)
+++ bar.c	(working copy)
@@ -1,7 +1,12 @@
+#include <sys/types.h>
+#include <sys/stat.h>
+#include <unistd.h>
+
+#include <stdio.h>

 int main(void) {
- printf("Sixty-four slices of American Cheese...\n");
+ printf("Sixty-five slices of American Cheese...\n");
 return 0;
 }

Index: README
===
--- README	(revision 3)
+++ README	(working copy)
@@ -193,3 +193,4 @@
+Note to self: pick up laundry.

Index: stuff/fish.c
===
--- stuff/fish.c	(revision 1)
+++ stuff/fish.c	(working copy)
-Welcome to the file known as 'fish'.
-Information on fish will be here soon.

Index: stuff/things/bloo.h
===
--- stuff/things/bloo.h	(revision 8)
+++ stuff/things/bloo.h	(working copy)
+Here is a new file to describe
+things about bloo.

The svn diff command produces
 this output by comparing your working files against the cached
 “pristine” copies within the .svn area. Files scheduled for addition are
 displayed as all added text, and files scheduled for deletion are
 displayed as all deleted text.
Output is displayed in unified diff format. That is, removed
 lines are prefaced with -, and
 added lines are prefaced with +.
 svn diff also prints filename and
 offset information useful to the patch program, so you can generate
 “patches” by redirecting the diff output to a
 file:
$ svn diff > patchfile

You could, for example, email the patch file to another
 developer for review or testing prior to a commit.
Subversion uses its internal diff engine, which produces unified
 diff format by default. If you want diff output in a different format,
 specify an external diff program using --diff-cmd and pass it any flags you’d
 like using the --extensions (-x)
 option. For example, to see local differences in file foo.c in context output format while
 ignoring case differences, you might run svn diff --diff-cmd
 /usr/bin/diff --extensions '-i' foo.c.

Undoing Working Changes

Suppose, while viewing the output of svn
 diff, you determine that all the changes you made to a
 particular file are mistakes. Maybe you shouldn’t have changed the file
 at all, or perhaps it would be easier to make different changes starting
 from scratch.
This is a perfect opportunity to use svn revert:
$ svn revert README
Reverted 'README'

Subversion reverts the file to its premodified state by
 overwriting it with the cached “pristine” copy from the
 .svn area. But also note that
 svn revert can undo
 any scheduled operations—for example, you might
 decide that you don’t want to add a new file after all:
$ svn status foo
? foo

$ svn add foo
A foo

$ svn revert foo
Reverted 'foo'

$ svn status foo
? foo

Note
svn revert item
 has exactly the same effect as deleting
 item from your working copy and then
 running svn update -r BASE
 item. However, if you’re
 reverting a file, svn revert has
 one very noticeable difference—it doesn’t have to communicate with the
 repository to restore your file.

Or perhaps you mistakenly removed a file from version
 control:
$ svn status README

$ svn delete README
D README

$ svn revert README
Reverted 'README'

$ svn status README

Resolve Conflicts (Merging Others’ Changes)

We’ve already seen how svn status -u can predict
 conflicts. Suppose you run svn update and some
 interesting things occur:
$ svn update
U INSTALL
G README
Conflict discovered in 'bar.c'.
Select: (p) postpone, (df) diff-full, (e) edit,
 (h) help for more options:

The U and
 G codes are no cause
 for concern; those files cleanly absorbed changes from the repository.
 The files marked with U
 contained no local changes but were Updated with changes from the
 repository. The G
 stands for merGed,
 which means that the file had local changes to begin with, but
 the changes coming from the repository didn’t overlap with the local
 changes.
But the next two lines are part of a feature (new in Subversion
 1.5) called interactive conflict resolution.
 This means that the changes from the server overlapped with your own,
 and you have the opportunity to resolve this conflict. The most commonly
 used options are displayed, but you can see all of the options by typing
 h:
...
 (p) postpone - mark the conflict to be resolved later
 (df) diff-full - show all changes made to merged file
 (e) edit - change merged file in an editor
 (r) resolved - accept merged version of file
 (mf) mine-full - accept my version of entire file (ignore their changes)
 (tf) theirs-full - accept their version of entire file (lose my changes)
 (l) launch - launch external tool to resolve conflict
 (h) help - show this list

Let’s briefly review each of these options before we go into
 detail on what each option means:
	(p)ostpone
	Leave the file in a conflicted state for you to resolve
 after your update is complete.

	(d)iff
	Display the differences between the base revision and the
 conflicted file itself in unified diff format.

	(e)dit
	Open the file in conflict with your favorite editor, as
 set in the environment variable EDITOR.

	(r)esolved
	After editing a file, tell svn
 that you’ve resolved the conflicts in the file and that it should
 accept the current contents—basically, that you’ve
 “resolved” the conflict.

	(m)ine-(f)ull
	Discard the newly received changes from the server and use
 only your local changes for the file under review.

	(t)heirs-(f)ull
	Discard your local changes to the file under review and use only
 the newly received changes from the server.

	(l)aunch
	Launch an external program to perform the conflict
 resolution. This requires a bit of preparation beforehand.

	(h)elp
	Show the list of all possible commands you can use in
 interactive conflict resolution.

We’ll cover these commands in more detail now, grouping them
 together by related functionality.
Viewing conflict differences interactively

Before deciding how to attack a conflict interactively, odds are
 that you’d like to see exactly what is in conflict, and the diff command
 (d) is what you’ll use for this:
...
Select: (p) postpone, (df) diff-full, (e) edit,
 (h)elp for more options : d
--- .svn/text-base/sandwich.txt.svn-base Tue Dec 11 21:33:57 2007
+++ .svn/tmp/tempfile.32.tmp Tue Dec 11 21:34:33 2007
@@ -1 +1,5 @@
-Just buy a sandwich.
+<<<<<<< .mine
+Go pick up a cheesesteak.
+=======
+Bring me a taco!
+>>>>>>> .r32
...

The first line of the diff content shows the previous contents
 of the working copy (the BASE
 revision); the next content line is your change; and the last
 content line is the change that was just received from the server
 (usually the HEAD revision). With this information in
 hand, you’re ready to move on to the next action.

Resolving conflict differences interactively

There are four different ways to resolve conflicts
 interactively—two of which allow you to selectively merge and edit
 changes, and two of which allow you to simply pick a version of the
 file and move along.
If you wish to choose some combination of your local changes,
 you can use the “edit” command (e) to
 manually edit the file with conflict markers in a text editor
 (determined by the EDITOR environment
 variable). Editing the file by hand in your favorite text editor is a
 somewhat low-tech way of remedying conflicts (see Merging conflicts by hand for a walkthrough), so some
 people like to use fancy graphical merge tools instead.
To use a merge tool, you need to either set the SVN_MERGE environment variable or define the merge-tool-cmd option in your Subversion
 configuration file (see Configuration Options
 for more details). Subversion will pass four arguments to the merge
 tool: the BASE revision of the
 file, the revision of the file received from the server as part of the
 update, the copy of the file containing your local edits, and the
 merged copy of the file (which contains conflict markers). If your
 merge tool is expecting arguments in a different order or format,
 you’ll need to write a wrapper script for Subversion to invoke. After
 you’ve edited the file, if you’re satisfied with the changes you’ve
 made, you can tell Subversion that the edited file is no longer in
 conflict by using the “resolve” command (r).
If you decide that you don’t need to merge any changes but just
 want to accept one version of the file or the other, you can either
 choose your changes (a.k.a. “mine”) by using the
 “mine-full” command (mf) or choose
 theirs by using the “theirs-full” command (tf).

Postponing conflict resolution

This may sound like an appropriate section for avoiding marital
 disagreements, but it’s actually still about Subversion, so read on.
 If you’re doing an update and encounter a conflict that you’re not
 prepared to review or resolve, you can type p to
 postpone resolving a conflict on a file-by-file basis when you run
 svn update. If you’re running an update and don’t
 want to resolve any conflicts, you can pass the --non-interactive option to
 svn update, and any file in conflict will be marked with a
 C
 automatically.
The C stands
 for conflict. This
 means that the changes from the server overlapped with your own, and
 now you have to manually choose between them after the update has
 completed. When you postpone a conflict resolution, svn typically does three things to assist
 you in noticing and resolving that conflict:
	Subversion prints a C during the update and remembers that the file is in a state
 of conflict.

	If Subversion considers the file to be mergeable, it
 places conflict
 markers—special strings of text that delimit the
 “sides” of the conflict—into the file to visibly
 demonstrate the overlapping areas. (Subversion uses the svn:mime-type property to decide whether a file is capable of contextual,
 line-based merging. See File Content Type to learn
 more.)

	For every conflicted file, Subversion places three extra
 unversioned files in your working copy:
	
 filename.mine

	This is your file as it existed in your working copy before you updated your working
 copy—that is, without conflict markers. This file has only
 your latest changes in it. (If Subversion considers the file
 to be unmergeable, the .mine file isn’t created, since
 it would be identical to the working file.)

	
 filename.rOLDREV

	This is the file that was the BASE revision before you updated
 your working copy. That is, it’s the file that you checked
 out before you made your latest edits.

	
 filename.rNEWREV

	This is the file that your Subversion client just
 received from the server when you updated your working copy.
 This file corresponds to the HEAD revision of the
 repository.

Here, OLDREV is the revision
 number of the file in your .svn directory, and
 NEWREV is the revision number of the
 repository HEAD.

For example, Sally makes changes to the file
 sandwich.txt, but does not yet commit those
 changes. Meanwhile, Harry commits changes to that same file. Sally
 updates her working copy before committing and she gets a conflict,
 which she postpones:
$ svn update
Conflict discovered in 'sandwich.txt'.
Select: (p) postpone, (df) diff-full, (e) edit,
 (h)elp for more options : p
C sandwich.txt
Updated to revision 2.
$ ls -1
sandwich.txt
sandwich.txt.mine
sandwich.txt.r1
sandwich.txt.r2

At this point, Subversion will not allow
 Sally to commit the file sandwich.txt until the three temporary
 files are removed:
$ svn commit -m "Add a few more things"
svn: Commit failed (details follow):
svn: Aborting commit: '/home/sally/svn-work/sandwich.txt' remains in conflict

If you’ve postponed a conflict, you need to resolve the conflict
 before Subversion will allow you to commit your changes. You’ll do
 this with the svn resolve command
 and one of several arguments to the --accept
 option.
If you want to choose the version of the file that you last
 checked out before making your edits, choose the
 base argument.
If you want to choose the version that contains only your edits,
 choose the mine-full argument.
If you want to choose the version that your most recent update
 pulled from the server (and thus discard your edits entirely), choose
 the theirs-full argument.
However, if you want to pick and choose from your changes and
 the changes that your update fetched from the server, merge the
 conflicted text “by hand” (by examining and editing the
 conflict markers within the file), and then choose the
 working argument.
svn resolve removes the three temporary files and accepts the version of
 the file that you specified with the --accept option,
 and Subversion no longer considers the file to be in a state of
 conflict:
$ svn resolve --accept working sandwich.txt
Resolved conflicted state of 'sandwich.txt'

Merging conflicts by hand

Merging conflicts by hand can be quite intimidating the first time you
 attempt it, but with a little practice, it can become as easy as
 falling off a bike.
Here’s an example. Due to a miscommunication, you and Sally,
 your collaborator, both edit the file sandwich.txt at the same time. Sally
 commits her changes, and when you go to update your working copy, you
 get a conflict. You’re going to have to edit sandwich.txt to resolve the conflict.
 First, take a look at the file:
$ cat sandwich.txt
Top piece of bread
Mayonnaise
Lettuce
Tomato
Provolone
<<<<<<< .mine
Salami
Mortadella
Prosciutto
=======
Sauerkraut
Grilled Chicken
>>>>>>> .r2
Creole Mustard
Bottom piece of bread

The strings of less-than signs, equals signs, and greater-than
 signs are conflict markers and are not part of the actual data in
 conflict. You generally want to ensure that those markers are removed
 from the file before your next commit. The text between the first two
 sets of markers is composed of the changes you made in the conflicting
 area:
<<<<<<< .mine
Salami
Mortadella
Prosciutto
=======

The text between the second and third sets of conflict markers
 is the text from Sally’s commit:
=======
Sauerkraut
Grilled Chicken
>>>>>>> .r2

Usually you won’t want to just delete the conflict markers and
 Sally’s changes—she’s going to be awfully surprised when the sandwich
 arrives and it’s not what she wanted. This is where you pick up the
 phone or walk across the office and explain to Sally that you can’t
 get sauerkraut from an Italian deli.[6] Once you’ve agreed on the changes you will commit, edit
 your file and remove the conflict markers:
Top piece of bread
Mayonnaise
Lettuce
Tomato
Provolone
Salami
Mortadella
Prosciutto
Creole Mustard
Bottom piece of bread

Now use svn resolve,
 and you’re ready to commit your changes:
$ svn resolve --accept working sandwich.txt
Resolved conflicted state of 'sandwich.txt'
$ svn commit -m "Go ahead and use my sandwich, discarding Sally's edits."

Note that svn resolve, unlike
 most of the other commands we deal with in this chapter, requires that
 you explicitly list any filenames that you wish to resolve. In any
 case, you want to be careful and use svn
 resolve only when you’re certain that you’ve fixed the
 conflict in your file—once the temporary files are removed, Subversion
 will let you commit the file even if it still contains conflict
 markers.
If you ever get confused while editing the conflicted file, you
 can always consult the three files that Subversion creates for you in
 your working copy—including your file as it was before you updated.
 You can even use a third-party interactive merging tool to examine
 those three files.

Discarding your changes in favor of a newly fetched
 revision

If you get a conflict and decide that you want to throw out your
 changes, you can run svn resolve --accept theirs-full
 CONFLICTED-PATH and Subversion
 will discard your edits and remove the temporary files:
$ svn update
Conflict discovered in 'sandwich.txt'.
Select: (p) postpone, (df) diff-full, (e) edit,
 (h) help for more options: p
C sandwich.txt
Updated to revision 2.
$ ls sandwich.*
sandwich.txt sandwich.txt.mine sandwich.txt.r2 sandwich.txt.r1
$ svn resolve --accept theirs-full sandwich.txt
Resolved conflicted state of 'sandwich.txt'

Punting: using svn revert

If you decide that you want to throw out your changes and start
 your edits again (whether this occurs after a conflict or at any
 time), just revert your changes:
$ svn revert sandwich.txt
Reverted 'sandwich.txt'
$ ls sandwich.*
sandwich.txt

Note that when you revert a conflicted file, you don’t have to
 use svn resolve.

Commit Your Changes

Finally! Your edits are finished,
 you’ve merged all changes from the server, and you’re ready to commit
 your changes to the repository.
The svn commit
 command sends all of your changes to the repository. When you
 commit a change, you need to supply a log message
 describing your change. Your log message will be attached to the new
 revision you create. If your log message is brief, you may wish to
 supply it on the command line using the --message (or
 -m) option:
$ svn commit -m "Corrected number of cheese slices."
Sending sandwich.txt
Transmitting file data .
Committed revision 3.

However, if you’ve been composing your log message as you work,
 you may want to tell Subversion to get the message from a file by
 passing the filename with the --file (-F)
 option:
$ svn commit -F logmsg
Sending sandwich.txt
Transmitting file data .
Committed revision 4.

If you fail to specify either the --message or
 --file option, Subversion will automatically launch
 your favorite editor (see the information on editor-cmd in Config) for composing a log
 message.
Tip
If you’re in your editor writing a commit message and decide
 that you want to cancel your commit, you can just quit your editor
 without saving changes. If you’ve already saved your commit message,
 simply delete the text, save again, and then abort:
$ svn commit
Waiting for Emacs...Done

Log message unchanged or not specified
(a)bort, (c)ontinue, (e)dit
a
$

The repository doesn’t know or care whether your changes make any
 sense as a whole; it checks only to make sure nobody else has changed
 any of the same files that you did when you weren’t looking. If somebody
 has done that, the entire commit will fail with a
 message informing you that one or more of your files are out of
 date:
$ svn commit -m "Add another rule"
Sending rules.txt
svn: Commit failed (details follow):
svn: File '/sandwich.txt' is out of date
...

(The exact wording of this error message depends on the network
 protocol and server you’re using, but the idea is the same in all
 cases.)
At this point, you need to run svn update, deal
 with any merges or conflicts that result, and attempt your commit
 again.
That covers the basic work cycle for using Subversion. Subversion
 offers many other features that you can use to manage your repository
 and working copy, but most of your day-to-day use of Subversion will
 involve only the commands that we’ve discussed so far in this chapter.
 We will, however, cover a few more commands that you’ll use fairly
 often.

[4] Of course, nothing is ever totally deleted from the
 repository—just from the HEAD of the repository. You can get
 back anything you delete by checking out (or updating your
 working copy to) a revision earlier than the one in which you
 deleted it. Also see Resurrecting Deleted Items.

[5] And you don’t have a WLAN card. Thought you got us,
 huh?

[6] And if you ask them for it, they may very well ride you out
 of town on a rail.

End of sample

 To search for additional titles please go to

 http://search.overdrive.com.

OEBPS/httpatomoreillycomsourceoreillyimages208641.png
i changed

> my-calc-branch

integer.c 1343
created changed changed
: : E > trunk
198 1303 1341 1344

time @ HHHIIIIIIIIIIIIIIIIII_

OEBPS/httpatomoreillycomsourceoreillyimages208625.png
Harry “locks” file A, then copies = i While Harry edits, Sally’s lock

it for editing attempt fails
Repository Repository
@2

Lock

arry writes his version, then 7 ow Sally can lock, read, an
releases his lock edit the latest version

Repository Repository

UNLOCK

OEBPS/oreilly_large.gif
O’REILLY

OEBPS/httpatomoreillycomsourceoreillyimages208631.png
!

L/

B
W oool

Makefile

integer.c

button.c

Makefile

canvas.c

brush.c

OEBPS/httpatomoreillycomsourceoreillyimages208621.png
Repository

)
Wnte Read Read

N 00

Client Client (lient

OEBPS/httpatomoreillycomsourceoreillyimages208619.png
Working copy

library

command-line
dientapp

Clent ibrary

Repository access

Ye Olde
Internet ¢
(AnyTCP/IP
Network) ¢

ient interface

OEBPS/httpatomoreillycomsourceoreillyimages208645.png

OEBPS/httpatomoreillycomsourceoreillyimages208643.png
bar

foo/

baz

bloo/

OEBPS/httpatomoreillycomsourceoreillyimages208637.png
)

ﬁE

I

trunk

branches

-

(i

trunk

branches

i/

OEBPS/httpatomoreillycomsourceoreillyimages208635.png
3rd branch

1st branch

Original line of development

2nd branch

time (%) 'y

OEBPS/httpatomoreillycomsourceoreillyimages208639.png

OEBPS/httpatomoreillycomsourceoreillyimages208614.jpg
Next Generation
Open Source Version Control

Version Control with

, ® C. Michael Pilato, Ben Collins-Sussman
O'REILLY & Brian . Fitzpatrick

OEBPS/httpatomoreillycomsourceoreillyimages208633.png

OEBPS/httpatomoreillycomsourceoreillyimages208629.png
A new merged version is created
to hisown

Repository Repository
L

<]

The merged version is published H Now both users have each
- others’ changes
Repository Repository

Read

OEBPS/httpatomoreillycomsourceoreillyimages208623.png
" Two users read the same file They both begin to edit their copies
Repository Repository

{ Read Read 1

LY Y

yp
Repository

OEBPS/httpatomoreillycomsourceoreillyimages208627.png
Two users copy the same file They both begin to edit their copies
Repository Repository

A A

J_ Read Readﬂv

Sally publishes her version first Harry gets an “out-of-date” error
Repository Repository

A” . AII

