

 [image: First Edition.]

 Masterminds of Programming

Federico Biancuzzi

Chromatic

Editor
Andy Oram

Copyright © 2009 Federico Biancuzzi and Shane Warden

O'Reilly books may be purchased for educational, business, or
 sales promotional use. Online editions are also available for most
 titles (safari.oreilly.com). For more
 information, contact our corporate/institutional sales department: (800)
 998-9938 or corporate@oreilly.com.

The O'Reilly logo is a registered trademark of O'Reilly Media,
 Inc. Masterminds of Programming and related trade
 dress are trademarks of O'Reilly Media, Inc. Many of the designations
 used by manufacturers and sellers to distinguish their products are
 claimed as trademarks. Where those designations appear in this book, and
 O'Reilly Media, Inc. was aware of a trademark claim, the designations
 have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this
 book, the publisher and authors assume no responsibility for errors or
 omissions, or for damages resulting from the use of the information
 contained herein.

[image:]

O'Reilly Media

SPECIAL OFFER: Upgrade this ebook with O’Reilly

Click here for more information on this offer!
Please note that upgrade offers are not available from sample content.

Foreword

PROGRAMMING LANGUAGE DESIGN IS A FASCINATING
 TOPIC. There are so many programmers who think they can design a
 programming language better than one they are currently using; and there
 are so many researchers who believe they can design a programming language
 better than any that are in current use. Their beliefs are often
 justified, but few of their designs ever leave the designer's bottom
 drawer. You will not find them represented in this book.
Programming language design is a serious business. Small errors in a
 language design can be conducive to large errors in an actual program
 written in the language, and even small errors in programs can have large
 and extremely costly consequences. The vulnerabilities of widely used
 software have repeatedly allowed attack by malware to cause billions of
 dollars of damage to the world economy. The safety and security of
 programming languages is a recurrent theme of this book.
Programming language design is an unpredictable adventure. Languages
 designed for universal application, even when supported and sponsored by
 vast organisations, end up sometimes in just a niche market. In contrast,
 languages designed for limited or local use can win a broad clientele,
 sometimes in environments and for applications that their designers never
 dreamed of. This book concentrates on languages of the latter kind.
These successful languages share a significant characteristic: each
 of them is the brainchild of a single person or a small team of
 like-minded enthusiasts. Their designers are masterminds of programming;
 they have the experience, the vision, the energy, the persistence, and the
 sheer genius to drive the language through its initial implementation,
 through its evolution in the light of experience, and through its
 standardisation by usage (de facto) and by committee (de jure).
In this book the reader will meet this collection of masterminds in
 person. Each of them has granted an extended interview, telling the story
 of his language and the factors that lie behind its success. The combined
 role of good decisions and good luck is frankly acknowledged. And finally,
 the publication of the actual words spoken in the interview gives an
 insight into the personality and motivations of the designer, which is as
 fascinating as the language design itself.
—Sir Tony Hoare

 Sir Tony Hoare, winner of an ACM Turing Award and a Kyoto
 Award, has been a leader in research into computing algorithms and
 programming languages for 50 years. His first academic paper, written in
 1969, explored the idea of proving the correctness of programs, and
 suggested that a goal of programming language design was to make it easier
 to write correct programs. He is delighted to see the idea spread
 gradually among programming language designers.

Preface

WRITING SOFTWARE IS HARD—AT LEAST, WRITING
 SOFTWARE THAT STANDS UP UNDER TESTS, TIME, and different
 environments is hard. Not only has the software engineering field
 struggled to make writing software easier over the past five decades, but
 languages have been designed to make it easier. But what makes it hard in
 the first place?
Most of the books and the papers that claim to address this problem
 talk about architecture, requirements, and similar topics that focus on
 the software. What if the hard part was in the
 writing? To put it another way, what if we saw our
 jobs as programmers more in terms of
 communication—language—and less in terms of
 engineering?
Children learn to talk in their first years of life, and we start
 teaching them how to read and write when they are five or six years old. I
 don't know any great writer who learned to read and write as an adult. Do
 you know any great programmer who learned to program late in life?
And if children can learn foreign languages much more easily than
 adults, what does this tell us about learning to program—an activity
 involving a new language?
Imagine that you are studying a foreign language and you don't know
 the name of an object. You can describe it with the words that you know,
 hoping someone will understand what you mean. Isn't this what we do every
 day with software? We describe the object we have in our mind with a
 programming language, hoping the description will be clear enough to the
 compiler or interpreter. If something doesn't work, we bring up the
 picture again in our mind and try to understand what we missed or
 misdescribed.
With these questions in mind, I chose to launch a series of
 investigations into why a programming language is created, how it's
 technically developed, how it's taught and learned, and how it evolves
 over time.
Shane and I had the great privilege to let 27 great designers guide
 us through our journey, so that we have been able to collect their wisdom
 and experience for you.
In Masterminds of Programming, you will
 discover some of the thinking and steps needed to build a successful
 language, what makes it popular, and how to approach the current problems
 that its programmers are facing. So if you want to learn more about
 successful programming language design, this book surely can help
 you.
If you are looking for inspiring thoughts regarding software and
 programming languages, you will need a highlighter, or maybe two, because
 I promise that you will find plenty of them throughout these pages.
—Federico Biancuzzi
Organization of the Material

The chapters in this book are ordered to provide a varied and
 provocative perspective as you travel through it. Savor the interviews
 and return often.
Chapter 1, C++, interviews Bjarne
 Stroustrup.
Chapter 2, Python, interviews Guido van
 Rossum.
Chapter 3, APL, interviews Adin D.
 Falkoff.
Chapter 4, Forth, interviews Charles H.
 Moore.
Chapter 5, BASIC, interviews Thomas E.
 Kurtz.
Chapter 6, AWK, interviews Alfred Aho, Peter
 Weinberger, and Brian Kernighan.
Chapter 7, Lua, interviews Luiz Henrique de
 Figueiredo and Roberto Ierusalimschy.
Chapter 8, Haskell, interviews Simon Peyton
 Jones, Paul Hudak, Philip Wadler, and John Hughes.
Chapter 9, ML, interviews Robin
 Milner.
Chapter 10, SQL, interviews Don
 Chamberlin.
Chapter 11, Objective-C, interviews Tom Love
 and Brad Cox.
Chapter 12, Java, interviews James
 Gosling.
Chapter 13, C#, interviews Anders
 Hejlsberg.
Chapter 14, UML, interviews Ivar Jacobson,
 James Rumbaugh, and Grady Booch.
Chapter 15, Perl, interviews Larry
 Wall.
Chapter 16, PostScript, interviews Charles
 Geschke and John Warnock.
Chapter 17, Eiffel, interviews Bertrand
 Meyer.
Contributors lists the biographies of all the
 contributors.

Conventions Used in This Book

The following typographical conventions are used in this
 book:
	
 Italic

	Indicates new terms, URLs, filenames, and utilities.

	
 Constant width

	Indicates the contents of computer files and generally
 anything found in programs.

How to Contact Us

Please address comments and questions concerning this book to the
 publisher:
	O'Reilly Media, Inc.
	1005 Gravenstein Highway North
	Sebastopol, CA 95472
	800-998-9938 (in the United States or Canada)
	707-829-0515 (international or local)
	707-829-0104 (fax)

We have a web page for this book, where we list errata, examples,
 and any additional information. You can access this page at:
	
 http://www.oreilly.com/catalog/9780596515171

To comment or ask technical questions about this book, send email
 to:
	
 bookquestions@oreilly.com

For more information about our books, conferences, Resource
 Centers, and the O'Reilly Network, see our website at:
	
 http://www.oreilly.com

Safari® Books Online

When you see a Safari® Books Online icon on the cover of your
 favorite technology book, that means the book is available online
 through the O'Reilly Network Safari Bookshelf.
Safari offers a solution that's better than e-books. It's a
 virtual library that lets you easily search thousands of top tech books,
 cut and paste code samples, download chapters, and find quick answers
 when you need the most accurate, current information. Try it for free at
 http://my.safaribooksonline.com.

Chapter 1. C++

C++ occupies an interesting space among languages: it is built on
 the foundation of C, incorporating object-orientation ideas from Simula;
 standardized by ISO; and designed with the mantras "you don't pay for
 what you don't use" and "support user-defined and built-in types equally
 well." Although popularized in the 80s and 90s for OO and GUI
 programming, one of its greatest contributions to software is its
 pervasive generic programming techniques, exemplified in its Standard
 Template Library. Newer languages such as Java and C# have attempted to
 replace C++, but an upcoming revision of the C++ standard adds new and
 long-awaited features. Bjarne Stroustrup is the creator of the language
 and still one of its strongest advocates.

Design Decisions

 Why did you choose to extend an existing language
 instead of creating a new one?

Bjarne Stroustrup: When I
 started—in 1979—my purpose was to help programmers build systems. It
 still is. To provide genuine help in solving a problem, rather than
 being just an academic exercise, a language must be complete for the
 application domain. That is, a non-research language exists to solve a
 problem. The problems I was addressing related to operating system
 design, networking, and simulation. I—and my colleagues—needed a
 language that could express program organization as could be done in
 Simula (that's what people tend to call object-oriented programming),
 but also write efficient low-level code, as could be done in C. No
 language that could do both existed in 1979, or I would have used it. I
 didn't particularly want to design a new programming language; I just
 wanted to help solve a few problems.
Given that, building on an existing language makes a lot of sense.
 From the base language, you get a basic syntactic and semantic
 structure, you get useful libraries, and you become part of a culture.
 Had I not built on C, I would have based C++ on some other language. Why
 C? I had Dennis Ritchie, Brian Kernighan, and other Unix greats just
 down (or across) the hall from me in Bell Labs' Computer Science
 Research Center, so the question may seem redundant. But it was a
 question I took seriously.
In particular, C's type system was informal and weakly enforced
 (as Dennis Ritchie said, "C is a strongly typed, weakly checked
 language"). The "weakly checked" part worried me and causes problems for
 C++ programmers to this day. Also, C wasn't the widely used language it
 is today. Basing C++ on C was an expression of faith in the model of
 computation that underlies C (the "strongly typed" part) and an
 expression of trust in my colleagues. The choice was made based on
 knowledge of most higher-level programming languages used for systems
 programming at the time (both as a user and as an implementer). It is
 worth remembering that this was a time when most work "close to the
 hardware" and requiring serious performance was still done in assembler.
 Unix was a major breakthrough in many ways, including its use of C for
 even the most demanding systems programming tasks.
So, I chose C's basic model of the machine over better-checked
 type systems. What I really wanted as the framework for programs was
 Simula's classes, so I mapped those into the C model of memory and
 computation. The result was something that was extremely expressive and
 flexible, yet ran at a speed that challenged assembler without a massive
 runtime support system.

 Why did you choose to support multiple
 paradigms?

Bjarne: Because a combination of
 programming styles often leads to the best code, where "best" means code
 that most directly expresses the design, runs faster, is most
 maintainable, etc. When people challenge that statement, they usually do
 so by either defining their favorite programming style to include every
 useful construct (e.g., "generic programming is simply a form of OO") or
 excluding application areas (e.g., "everybody has a 1GHz, 1GB
 machine").

 Java focuses solely on object-oriented programming. Does
 this make Java code more complex in some cases where C++ can instead
 take advantage of generic programming?

Bjarne: Well, the Java
 designers—and probably the Java marketers even more so—emphasized OO to
 the point where it became absurd. When Java first appeared, claiming
 purity and simplicity, I predicted that if it succeeded Java would grow
 significantly in size and complexity. It did.
For example, using casts to convert from Object
 when getting a value out of a container (e.g.,
 (Apple)c.get(i)) is an absurd consequence of not
 being able to state what type the objects in the container is supposed
 have. It's verbose and inefficient. Now Java has generics, so it's just
 a bit slow. Other examples of increased language complexity (helping the
 programmer) are enumerations, reflection, and inner classes.
The simple fact is that complexity will emerge somewhere, if not
 in the language definition, then in thousands of applications and
 libraries. Similarly, Java's obsession with putting every algorithm
 (operation) into a class leads to absurdities like classes with no data
 consisting exclusively of static functions. There are reasons why math
 uses f(x) and f(x,y) rather than
 x.f(), x.f(y), and
 (x,y).f()—the latter is an attempt to express the
 idea of a "truly object-oriented method" of two arguments and to avoid
 the inherent asymmetry of x.f(y).
C++ addresses many of the logical as well as the notational
 problems with object orientation through a combination of data
 abstraction and generic programming techniques. A classical example is
 vector<T> where T can be any
 type that can be copied—including built-in types, pointers to OO
 hierarchies, and user-defined types, such as strings and complex
 numbers. This is all done without adding runtime overheads, placing
 restrictions on data layouts, or having special rules for standard
 library components. Another example that does not fit the classical
 single-dispatch hierarchy model of OO is an operation that requires
 access to two classes, such as
 operator*(Matrix,Vector), which is not naturally a
 "method" of either class.

 One fundamental difference between C++ and Java is the
 way pointers are implemented. In some ways, you could say that Java
 doesn't have real pointers. What differences are there between the two
 approaches?

Bjarne: Well, of course Java has
 pointers. In fact, just about everything in Java is implicitly a
 pointer. They just call them references. There are
 advantages to having pointers implicit as well as disadvantages.
 Separately, there are advantages to having true local objects (as in
 C++) as well as disadvantages.
C++'s choice to support stack-allocated local variables and true
 member variables of every type gives nice uniform semantics, supports
 the notion of value semantics well, gives compact layout and minimal
 access costs, and is the basis for C++'s support for general resource
 management. That's major, and Java's pervasive and implicit use of
 pointers (aka references) closes the door to all that.
Consider the layout tradeoff: in C++ a
 vector<complex>(10) is represented as a handle to an
 array of 10 complex numbers on the free store. In all, that's 25 words:
 3 words for the vector, plus 20 words for the complex numbers, plus a
 2-word header for the array on the free store (heap). The equivalent in
 Java (for a user-defined container of objects of user-defined types)
 would be 56 words: 1 for the reference to the container, plus 3 for the
 container, plus 10 for the references to the objects, plus 20 for the
 objects, plus 24 for the free store headers for the 12 independently
 allocated objects. Obviously, these numbers are approximate because the
 free store (heap) overhead is implementation defined in both languages.
 However, the conclusion is clear: by making references ubiquitous and
 implicit, Java may have simplified the programming model and the garbage
 collector implementation, but it has increased the memory overhead
 dramatically—and increased the memory access cost (requiring more
 indirect accesses) and allocation overheads proportionally.
What Java doesn't have—and good for Java for that—is C and C++'s
 ability to misuse pointers through pointer arithmetic. Well-written C++
 doesn't suffer from that problem either: people use higher-level
 abstractions, such as iostreams, containers, and algorithms, rather than
 fiddling with pointers. Essentially all arrays and most pointers belong
 deep in implementations that most programmers don't have to see.
 Unfortunately, there is also lots of poorly written and unnecessarily
 low-level C++ around.
There is, however, an important place where pointers—and pointer
 manipulation—is a boon: the direct and efficient expression of data
 structures. Java's references are lacking here; for example, you can't
 express a swap operation in Java. Another example is
 simply the use of pointers for low-level direct access to (real) memory;
 for every system, some language has to do that, and often that language
 is C++.
The "dark side" of having pointers (and C-style arrays) is of
 course the potential for misuse: buffer overruns, pointers into deleted
 memory, uninitialized pointers, etc. However, in well-written C++ that
 is not a major problem. You simply don't get those problems with
 pointers and arrays used within abstractions (such as vector,
 string, map, etc.). Scoped resource management takes care of
 most needs; smart pointers and specialized handles can be used to deal
 with most of the rest. People whose experience is primarily C or
 old-style C++ find this hard to believe, but scope-based resource
 management is an immensely powerful tool and user-defined with suitable
 operations can address classical problems with less code than the old
 insecure hacks. For example, this is the simplest form of the classical
 buffer overrun and security problem:
char buf[MAX_BUF];
gets(buf); // Yuck!
Use a standard library string and the problem goes away:
string s;
cin >> s; // read whitespace separated characters
These are obviously trivial examples, but suitable "strings" and
 "containers" can be crafted to meet essentially all needs, and the
 standard library provides a good set to start with.

 What do you mean by "value semantics" and "general
 resource management"?

Bjarne: "Value semantics" is
 commonly used to refer to classes where the objects have the property
 that when you copy one, you get two independent copies (with the same
 value). For example:
X x1 = a;
X x2 = x1; // now x1==x2
x1 = b; // changes x1 but not x2
 // now x1!=x2 (provided X(a)!=X(b))
This is of course what we have for usual numeric types, such as
 ints, doubles, complex numbers, and mathematical abstractions, such as
 vectors. This is a most useful notion, which C++ supports for built-in
 types and for any user-defined type for which we want it. This contrast
 to Java where built-in types such and char and
 int follow it, but user-defined types do not, and
 indeed cannot. As in Simula, all user-defined types in Java have
 reference semantics. In C++, a programmer can support either, as the
 desired semantics of a type requires. C# (incompletely) follows C++ in
 supporting user-defined types with value semantics.
"General resource management" refers to the popular technique of
 having a resource (e.g., a file handle or a lock) owned by an object. If
 that object is a scoped variable, the lifetime of the variable puts a
 maximum limit on the time the resource is held. Typically, a constructor
 acquires the resource and the destructor releases it. This is often
 called RAII (Resource Acquisition Is Initialization) and integrates
 beautifully with error handling using exceptions. Obviously, not every
 resource can be handled in this way, but many can, and for those,
 resource management becomes implicit and efficient.

 "Close to the hardware" seems to be a guiding principle
 in designing C++. Is it fair to say that C++ was designed more bottom-up
 than many languages, which are designed top-down, in the sense that they
 try to provide abstractly rational constructs and force the compiler to
 fit these constructs to the available computing
 environment?

Bjarne: I think top-down and
 bottom-up are the wrong way to characterize those design decisions. In
 the context of C++ and other languages, "close to the hardware" means
 that the model of computation is that of the computer—sequences of
 objects in memory and operations as defined on objects of fixed
 size—rather than some mathematical abstraction. This is true for both
 C++ and Java, but not for functional languages. C++ differs from Java in
 that its underlying machine is the real machine rather than a single
 abstract machine.
The real problem is how to get from the human conception of
 problems and solutions to the machine's limited world. You can "ignore"
 the human concerns and end up with machine code (or the glorified
 machine code that is bad C code). You can ignore the machine and come up
 with a beautiful abstraction that can do anything at extraordinary cost
 and/or lack of intellectual rigor. C++ is an attempt to give a very
 direct access to hardware when you need it (e.g., pointers and arrays)
 while providing extensive abstraction mechanisms to allow high-level
 ideas to be expressed (e.g., class hierarchies and templates).
That said, there has been a consistent concern for runtime and
 space performance throughout the development of C++ and its libraries.
 This pervades both the basic language facilities and the abstraction
 facilities in ways that are not shared by all languages.

Using the Language

 How do you debug? Do you have any suggestion for C++
 developers?

Bjarne: By introspection. I study
 the program for so long and poke at it more or less systematically for
 so long that I have sufficient understanding to provide an educated
 guess where the bug is.
Testing is something else, and so is design to minimize errors. I
 intensely dislike debugging and will go a long way to avoid it. If I am
 the designer of a piece of software, I build it around interfaces and
 invariants so that it is hard to get seriously bad code to compile and
 run incorrectly. Then, I try hard to make it testable. Testing is the
 systematic search for errors. It is hard to systematically test badly
 structured systems, so I again recommend a clean structure of the code.
 Testing can be automated and is repeatable in a way that debugging is
 not. Having flocks of pigeons randomly peck at the screen to see if they
 can break a GUI-based application is no way to ensure quality
 systems.
Advice? It is hard to give general advice because the best
 techniques often depend on what is feasible for a given system in a
 given development environment. However: identify key interfaces that can
 be systematically tested and write test scripts that exercise those.
 Automate as much as you can and run those automated tests often. And do
 keep regression tests and run them frequently. Make sure that every
 entry point into the system and every output can be systematically
 tested. Compose your system out of quality components: monolithic
 programs are unnecessarily hard to understand and test.

 At what level is it necessary to improve the security of
 software?

Bjarne: First of all: security is a
 systems issue. No localized or partial remedy will by itself succeed.
 Remember, even if all of your code was perfect, I could probably still
 gain access to your stored secrets if I could steal your computer or the
 storage device holding your backup. Secondly, security is a cost/benefit
 game: perfect security is probably beyond the reach for most of us, but
 I can probably protect my system sufficiently that "bad guys" will
 consider their time better spent trying to break into someone else's
 system. Actually, I prefer not to keep important secrets online and
 leave serious security to the experts.
But what about programming languages and programming techniques?
 There is a dangerous tendency to assume that every line of code has to
 be "secure" (whatever that means), even assuming that someone with bad
 intentions messes with some other part of the system. This is a most
 dangerous notion that leaves the code littered with unsystematic tests
 guarding against ill-formulated imagined threats. It also makes code
 ugly, large, and slow. "Ugly" leaves places for bugs to hide, "large"
 ensures incomplete testing, and "slow" encourages the use of shortcuts
 and dirty tricks that are among the most fertile sources of security
 holes.
I think the only permanent solution to security problems is in a
 simple security model applied systematically by quality hardware and/or
 software to selected interfaces. There has to be a place behind a
 barrier where code can be written simply, elegantly, and efficiently
 without worrying about random pieces of code abusing random pieces of
 other code. Only then can we focus on correctness, quality, and serious
 performance. The idea that anyone can provide an untrusted callback,
 plug-in, overrider, whatever, is plain silly. We have to distinguish
 between code that defends against fraud, and code that simply is
 protected against accidents.
I do not think that you can design a programming language that is
 completely secure and also useful for real-world systems. Obviously,
 that depends on the meaning of "secure" and "system." You could possibly
 achieve security in a domain-specific language, but my main domain of
 interest is systems programming (in a very broad meaning of that term),
 including embedded systems programming. I do think that type safety can
 and will be improved over what is offered by C++, but that is only part
 of the problem: type safety does not equal security. People who write
 C++ using lots of unencapsulated arrays, casts, and unstructured new and
 delete operations are asking for trouble. They are stuck in an 80s style
 of programming. To use C++ well, you have to adopt a style that
 minimizes type safety violations and manage resources (including memory)
 in a simple and systematic way.

 Would you recommend C++ for some systems where
 practitioners are reluctant to use it, such as system software and
 embedded applications?

Bjarne: Certainly, I do recommend
 it and not everybody is reluctant. In fact, I don't see much reluctance
 in those areas beyond the natural reluctance to try something new in
 established organizations. Rather, I see steady and significant growth
 in C++ use. For example, I helped write the coding guidelines for the
 mission-critical software for Lockheed Martin's Joint Strike Fighter.
 That's an "all C++ plane." You may not be particularly keen on military
 planes, but there is nothing particularly military about the way C++ is
 used and well over 100,000 copies of the JSF++ coding rules have been
 downloaded from my home pages in less than a year, mostly by nonmilitary
 embedded systems developers, as far as I can tell.
C++ has been used for embedded systems since 1984, many useful
 gadgets have been programmed in C++, and its use appears to be rapidly
 increasing. Examples are mobile phones using Symbian or Motorola, the
 iPods, and GPS systems. I particularly like the use of C++ on the Mars
 rovers: the scene analysis and autonomous driving subsystems, much of
 the earth-based communication systems, and the image processing.
People who are convinced that C is necessarily more efficient than
 C++ might like to have a look at my paper entitled "Learning Standard
 C++ as a New Language" [C/C++ Users
 Journal, May 1999], which describes a bit of design
 philosophy and shows the result of a few simple experiments. Also, the
 ISO C++ standards committee issued a technical report on performance
 that addresses a lot of issues and myths relating to the use of C++
 where performance matters (you can find it online searching for
 "Technical Report on C++ Performance").[1] In particular, that report addresses embedded systems
 issues.

 Kernels like Linux's or BSD's are still written in C.
 Why haven't they moved to C++? Is it something in the OO
 paradigm?

Bjarne: It's mostly conservatism
 and inertia. In addition, GCC was slow to mature. Some people in the C
 community seem to maintain an almost willful ignorance based on
 decade-old experiences. Other operating systems and much systems
 programming and even hard real-time and safety-critical code has been
 written in C++ for decades. Consider some examples: Symbian, IBM's
 OS/400 and K42, BeOS, and parts of Windows. In general, there is a lot
 of open source C++ (e.g., KDE).
You seem to equate C++ use with OO. C++ is not and was never meant
 to be just an object-oriented programming language. I wrote a paper
 entitled "Why C++ is not just an Object-Oriented Programming Language"
 in 1995; it is available online.[2] The idea was and is to support multiple programming styles
 ("paradigms," if you feel like using long words) and their combinations.
 The most relevant other paradigm in the context of high-performance and
 close-to-the-hardware use is generic programming (sometimes abbreviated
 to GP). The ISO C++ standard library is itself more heavily GP than OO
 through its framework for algorithms and containers (the STL). Generic
 programming in the typical C++ style relying heavily on templates is
 widely used where you need both abstraction and performance.
I have never seen a program that could be written better in C than
 in C++. I don't think such a program could exist. If nothing else, you
 can write C++ in a style close to that of C. There is nothing that
 requires you to go hog-wild with exceptions, class hierarchies, or
 templates. A good programmer uses the more advanced features where they
 help more directly to express ideas and do so without avoidable
 overheads.

 Why should a programmer move his code from C to C++?
 What advantages would he have using C++ as a generic programming
 language?

Bjarne: You seem to assume that
 code first was written in C and that the programmer started out as a C
 programmer. For many—probably most—C++ programs and C++ programmers,
 that has not been the case for quite a while. Unfortunately, the "C
 first" approach lingers in many curricula, but it is no longer something
 to take for granted.
Someone might switch from C to C++ because they found C++'s
 support for the styles of programming usually done with C is better than
 C's. The C++ type checking is stricter (you can't forget to declare a
 function or its argument types) and there is type-safe notational
 support for many common operations, such as object creation (including
 initialization) and constants. I have seen people do that and be very
 happy with the problems they left behind. Usually, that's done in
 combination with the adoption of some C++ libraries that may or may not
 be considered object-oriented, such as the standard vector, a GUI
 library, or some application-specific library.
Just using a simple user-defined type, such as vector,
 string, or complex, does not require a
 paradigm shift. People can—if they so choose—use those just like the
 built-in types. Is someone using std::vector "using
 OO"? I would say no. Is someone using a C++ GUI without actually adding
 new functionality "using OO"? I'm inclined to say yes, because their use
 typically requires the users to understand and use inheritance.
Using C++ as "a generic-programming programming language" gives
 you the standard containers and algorithms right out of box (as part of
 the standard library). That is major leverage in many applications and a
 major step up in abstraction from C. Beyond that, people can start to
 benefit from libraries, such as Boost, and start to appreciate some of
 the functional programming techniques inherent in generic
 programming.
However, I think the question is slightly misleading. I don't want
 to represent C++ as "an OO language" or "a GP language"; rather, it is a
 language supporting:
	C-style programming

	Data abstraction

	Object-oriented programming

	Generic programming

Crucially, it supports programming styles that combines those
 ("multiparadigm programming" if you must) and does so with a bias toward
 systems programming.

[1] http://www.open-std.org/JTC1/sc22/wg21/docs/TR18015.pdf/

[2] http://www.research.att.com/~bs/oopsla.pdf/

OOP and Concurrency

 The average complexity and size (in number of lines of
 code) of software seems to grow year after year. Does OOP scale well to
 this situation or just make things more complicated? I have the feeling
 that the desire to make reusable objects makes things more complicated
 and, in the end, it doubles the workload. First, you have to design a
 reusable tool. Later, when you need to make a change, you have to write
 something that exactly fits the gap left by the old part, and this means
 restrictions on the solution.

Bjarne: That's a good description
 of a serious problem. OO is a powerful set of techniques that can help,
 but to be a help, it must be used well and for problems where the
 techniques have something to offer. A rather serious problem for all
 code relying on inheritance with statically checked interfaces is that
 to design a good base class (an interface to many, yet unknown, classes)
 we require a lot of foresight and experience. How does the designer of
 the base class (abstract class, interface, whatever you choose to call
 it) know that it specifies all that is needed for all classes that will
 be derived from it in the future? How does the designer know that what
 is specified can be implemented reasonably by all classes that will be
 derived from it in the future? How does the designer of the base class
 know that what is specified will not seriously interfere with something
 that is needed by some classes that will be derived from it in the
 future?
In general, we can't know that. In an environment where we can
 enforce our design, people will adapt—often by writing ugly workarounds.
 Where no one organization is in charge, many incompatible interfaces
 emerge for essentially the same functionality.
Nothing can solve these problems in general, but generic programming seems to be an answer in many
 important cases where the OO approach fails. A noteworthy example is
 simply containers: we cannot express the notion of being an element well
 through an inheritance hierarchy, and we can't express the notion of being a container well
 through an inheritance hierarchy. We can, however, provide effective
 solutions using generic programming. The STL (as found in the C++
 standard library) is an example.

 Is this problem specific to C++, or does it afflict
 other programming languages as well?

Bjarne: The problem is common to
 all languages that rely on statically checked interfaces to class hierarchies.
 Examples are C++, Java, and C#, but not dynamically typed languages,
 such as Smalltalk and Python. C++ addresses that problem through generic
 programming, where the C++ containers and algorithms in standard library
 provide a good example. The key language feature here is templates, providing a late type-checking model that gives
 a compile time equivalent to what the dynamically typed languages do at
 runtime. Java's and C#'s recent addition of "generics" are attempts to
 follow C++'s lead here, and are often—incorrectly, I think—claimed to
 improve upon templates.
"Refactoring" is especially popular as an attempt to
 address that problem by the brute force technique of simply reorganizing
 the code when it has outlived its initial interface design.
If this is a problem of OO in general, how can we be
 sure that the advantages of OO are more valuable than the disadvantages?
 Maybe the problem that a good OO design is difficult to achieve is the
 root of all other problems.
Bjarne: The fact that there is a
 problem in some or even many cases doesn't change the fact that many
 beautiful, efficient, and maintainable systems have been written in such
 languages. Object-oriented design is one of the fundamental ways of
 designing systems and statically checked interfaces provide advantages
 as well as this problem.
There is no one "root of all evil" in software development. Design
 is hard in many ways. People tend to underestimate the intellectual and
 practical difficulties involved in building a significant system
 involving software. It is not and will not be reduced to a simple
 mechanical "assembly line" process. Creativity, engineering principles,
 and evolutionary change are needed to create a satisfactory large
 system.

 Are there links between the OO paradigm and concurrency?
 Does the current pervasive need for improved concurrency change the
 implementation of designs or the nature of OO
 designs?

Bjarne: There is a very old link
 between object-oriented programming and concurrency. Simula 67, the
 programming language that first directly supported object-oriented
 programming, also provided a mechanism for expressing concurrent
 activities.
The first C++ library was a library supporting what today
 we would call threads. At Bell Labs, we ran C++ on
 a six-processor machine in 1988 and we were not alone in such uses. In
 the 90s there were at least a couple of dozen experimental C++ dialects
 and libraries attacking problems related to distributed and parallel
 programming. The current excitement about multicores isn't my first
 encounter with concurrency. In fact, distributed computing was my Ph.D.
 topic and I have followed that field ever since.
However, people who first consider concurrency, multicores, etc.,
 often confuse themselves by simply underestimating the cost of running
 an activity on a different processor. The cost of starting an activity
 on another processor (core) and for that activity to access data in the
 "calling processor's" memory (either copying or accessing "remotely")
 can be 1,000 times (or more) higher than we are used to for a function
 call. Also, the error possibilities are significantly different as soon
 as you introduce concurrency. To effectively exploit the concurrency
 offered by the hardware, we need to rethink the organization of our
 software.
Fortunately, but confusingly, we have decades' worth of research
 to help us. Basically, there is so much research that it's just about
 impossible to determine what's real, let alone what's best. A good place
 to start looking would be the HOPL-III paper about Emerald. That
 language was the first to explore the interaction between language
 issues and systems issues, taking cost into account. It is also
 important to distinguish between data parallel programming as has been
 done for decades—mostly in FORTRAN—for scientific calculations, and the
 use of communicating units of "ordinary sequential code" (e.g.,
 processes and threads) on many processors. I think that for broad
 acceptance in this brave new world of many "cores" and clusters, a
 programming system must support both kinds of concurrency, and probably
 several varieties of each. This is not at all easy, and the issues go
 well beyond traditional programming language issues—we will end up
 looking at language, systems, and applications issues in
 combination.

 Is C++ ready for concurrency? Obviously we can create
 libraries to handle everything, but does the language and standard
 library need a serious review with concurrency in
 mind?

Bjarne: Almost. C++0x will be. To be ready for concurrency, a language
 first has to have a precisely specified memory model to allow compiler
 writers to take advantage of modern hardware (with deep pipelines, large
 caches, branch-prediction buffers, static and dynamic instruction
 reordering, etc.). Then, we need a few small language extensions:
 thread-local storage and atomic data types. Then, we can add support for
 concurrency as libraries. Naturally, the first new standard library will
 be a threads library allowing portable programming across systems such
 as Linux and Windows. We have of course had such libraries for many
 years, but not standard ones.
Threads plus some form of locking to avoid data races is just
 about the worst way to directly exploit concurrency, but C++ needs that
 to support existing applications and to maintain its role as a systems
 programming language on traditional operating systems. Prototypes of
 this library exist—based on many years of active use.
One key issue for concurrency is how you "package up" a task to be
 executed concurrently with other tasks. In C++, I suspect the answer
 will be "as a function object." The object can contain whatever data is
 needed and be passed around as needed. C++98 handles that well for named
 operations (named classes from which we instantiate function objects),
 and the technique is ubiquitous for parameterization in generic
 libraries (e.g., the STL). C++0x makes it easier to write simple
 "one-off" function objects by providing "lambda functions" that can be
 written in expression contexts (e.g., as function arguments) and
 generates function objects ("closures") appropriately.
The next steps are more interesting. Immediately post-C++0x, the
 committee plans for a technical report on libraries. This will almost
 certainly provide for thread pools and some form of work stealing. That
 is, there will be a standard mechanism for a user to request relatively
 small units of work ("tasks") to be done concurrently without fiddling
 with thread creation, cancellation, locking, etc., probably built with
 function objects as tasks. Also, there will be facilities for
 communicating between geographically remote processes through sockets,
 iostreams, and so on, rather like
 boost::networking.
In my opinion, much of what is interesting about concurrency will
 appear as multiple libraries supporting logically distinct concurrency
 models.

 Many modern systems are componentized and spread out
 over a network; the age of web applications and mashups may accentuate
 that trend. Should a language reflect those aspects of the
 network?

Bjarne: There are many forms of
 concurrency. Some are aimed at improving the throughput or response time
 of a program on a single computer or cluster, some are aimed at dealing
 with geographical distribution, and some are below the level usually
 considered by programmers (pipelining, caching, etc.).
C++0x will provide a set of facilities and
 guarantees that saves programmers from the lowest-level details by
 providing a "contract" between machine architects and compiler writers—a
 "machine model." It will also provide a threads library providing a
 basic mapping of code to processors. On this basis, other models can be
 provided by libraries. I would have liked to see some simpler-to-use,
 higher-level concurrency models supported in the
 C++0x standard library, but that now appears
 unlikely. Later—hopefully, soon after C++0x—we will
 get more libraries specified in a technical report: thread pools and
 futures, and a library for I/O streams over wide area networks (e.g.,
 TCP/IP). These libraries exist, but not everyone considers them well
 enough specified for the standard.
Years ago, I hoped that C++0x would address
 some of C++'s long-standing problems with distribution by specifying a
 standard form of marshalling (or serialization), but that didn't happen.
 So, the C++ community will have to keep addressing the higher levels of
 distributed computing and distributed application building through
 nonstandard libraries and/or frameworks (e.g., CORBA or .NET).
The very first C++ library (really the very first C with classes)
 library, provided a lightweight form of concurrency and over the years, hundreds of libraries and
 frameworks for concurrent, parallel, and distributed computing have been built in C++, but the community has
 not been able to agree on standards. I suspect that part of the problem
 is that it takes a lot of money to do something major in this field, and
 that the big players preferred to spend their money on their own
 proprietary libraries, frameworks, and languages. That has not been good
 for the C++ community as a whole.

Future

 Will we ever see C++ 2.0?

Bjarne: That depends on what you
 mean by "C++ 2.0." If you mean a new language built more or less from
 scratch providing all of the best of C++ but none of what's bad (for
 some definitions of "good" and "bad"), the answer is "I don't know." I
 would like to see a major new language in the C++ tradition, but I don't
 see one on the horizon, so let me concentrate on the next ISO C++
 standard, nicknamed C++0x.
It will be a "C++ 2.0" to many, because it will supply new
 language features and new standard libraries, but it will be almost 100%
 compatible with C++98. We call it C++0x, hoping
 that it'll become C++09. If we are slow—so that that
 x has to become hexadecimal—I (and others) will be
 quite sad and embarrassed.
C++0x will be almost 100% compatible with C++98. We have no
 particular desire to break your code. The most significant
 incompatibilities come from the use of a few new keywords, such as
 static_assert, constexpr, and
 concept. We have tried to minimize impact by choosing
 new keywords that are not heavily used. The major improvements
 are:
	Support for modern machine architectures and concurrency: a
 machine model, a thread library, thread local storage and atomic
 operations, and an asynchronous value return mechanism
 ("futures").

	Better support for generic programming: concepts (a type
 system for types, combinations of types, and combinations of types
 and integers) to give better checking of template definitions and
 uses, and better overloading of templates. Type deduction based on
 initializers (auto), generalized initializer
 lists, generalized constant expressions
 (constexpr), lambda expressions, and more.

	Many "minor" language extensions, such as static assertions,
 move semantics, improved enumerations, a name for the null pointer
 (nullptr), etc.

	New standard libraries for regular expression matching, hash
 tables (e.g., unordered_map), "smart" pointers,
 etc.

For complete details, see the website of the "C++ Standards Committee."[3] For an overview, see my online C++0x FAQ.[4]
Please note that when I talk about "not breaking code," I am
 referring to the core language and the standard library. Old code will
 of course be broken if it uses nonstandard extensions from some compiler
 provider or antique nonstandard libraries. In my experience, when people
 complain about "broken code" or "instability" they are referring to
 proprietary features and libraries. For example, if you change operating
 systems and didn't use one of the portable GUI libraries, you probably
 have some work to do on the user interface code.

 What stops you from creating a major new
 language?

Bjarne: Some key questions soon
 emerge:
	What problem would the new language solve?

	Who would it solve problems for?

	What dramatically new could be provided (compared to every
 existing language)?

	Could the new language be effectively deployed (in a world
 with many well-supported languages)?

	Would designing a new language simply be a pleasant
 distraction from the hard work of helping people build better
 real-world tools and systems?

So far, I have not been able to answer those questions to my
 satisfaction.
That doesn't mean that I think that C++ is the perfect language of
 its kind. It is not; I'm convinced that you could design a language
 about a tenth of the size of C++ (whichever way you measure size)
 providing roughly what C++ does. However, there has to be more to a new
 language that just doing what an existing language can, but slightly
 better and slightly more elegantly.

 What do the lessons about the invention, further
 development, and adoption of your language say to people developing
 computer systems today and in the foreseeable
 future?

Bjarne: That's a big question: can
 we learn from history? If so, how? What kind of lessons can we learn? During the early development of C++,
 I articulated a set of "rules of thumb," which you can find in
 The Design and Evolution of C++ [Addison-Wesley],
 and also discussed in my two HOPL papers. Clearly, any serious language
 design project needs a set of principles, and as soon as possible, these
 principles need to be articulated. That's actually a conclusion from the
 C++ experience: I didn't articulate C++'s design principles early enough
 and didn't get those principles understood widely enough. As a result,
 many people invented their own rationales for C++'s design; some of
 those were pretty amazing and led to much confusion. To this day, some
 see C++ as little more than a failed attempt to design something like
 Smalltalk (no, C++ was not supposed to be "like Smalltalk"; it follows
 the Simula model of OO), or as nothing but an attempt to remedy some
 flaws in C for writing C-style code (no, C++ was not supposed to be just
 C with a few tweaks).
The purpose of a (nonexperimental) programming language is to help
 build good systems. It follows that notions of system design and
 language design are closely related.
My definition of "good" in this context is basically "correct,
 maintainable, and providing acceptable resource usage." The obvious
 missing component is "easy to write," but for the kind of systems I
 think most about, that's secondary. "RAD development" is not my ideal. It can be as important
 to say what is not a primary aim as to state what is. For example, I
 have nothing against rapid development—nobody in their right mind wants
 to spend more time than necessary on a project—but I'd rather have lack
 of restrictions on application areas and performance. My aim for C++ was
 and is direct expression of ideas, resulting in code that can be
 efficient in time and space.
C and C++ have provided stability over decades. That has been
 immensely important to their industrial users. I have small programs
 that have been essentially unchanged since the early 80s. There is a
 price to pay for such stability, but languages that don't provide it are
 simply unsuitable for large, long-lived projects. Corporate languages
 and languages that try to follow trends closely tend to fail miserably
 here, causing a lot of misery along the way.
This leads to thinking about how to manage evolution. How much can be changed? What is the
 granularity of change? Changing a language every year or so as new
 releases of a product are released is too ad hoc and leads to a series
 of de facto subsets, discarded libraries and language features, and/or
 massive upgrade efforts. Also, a year is simply not sufficient gestation
 period for significant features, so the approach leads to half-baked
 solutions and dead ends. On the other hand, the 10-year cycle of ISO
 standardized languages, such as C and C++, is too long and leads to
 parts of the community (including parts of the committee)
 fossilizing.
A successful language develops a community: the community shares
 techniques, tools, and libraries. Corporate languages have an inherent
 advantage here: they can buy market share with marketing, conferences,
 and "free" libraries. This investment can pay off in terms of others
 adding significantly, making the community larger and more vibrant.
 Sun's efforts with Java showed how amateurish and underfinanced every
 previous effort to establish a (more or less) general-purpose language
 had been. The U.S. Department of Defense's efforts to establish Ada as a
 dominant language was a sharp contrast, as were the unfinanced efforts
 by me and my friends to establish C++.
I can't say that I approve of some of the Java tactics, such as
 selling top-down to nonprogramming executives, but it shows what can be
 done. Noncorporate successes include the Python and Perl communities.
 The successes at community building around C++ have been too few and too
 limited, given the size of the community. The ACCU conferences are
 great, but why haven't there been a continuous series of huge
 international C++ conferences since 1986 or so? The Boost libraries are
 great, but why hasn't there been a central repository for C++ libraries
 since 1986 or so? There are thousands of open source C++ libraries in
 use. I don't even know of a comprehensive list of commercial C++
 libraries. I won't start answering those questions, but will just point
 out that any new language must somehow manage the centrifugal forces in
 a large community, or suffer pretty severe consequences.
A general-purpose language needs the input from and approval of
 several communities, such as, industrial programmers, educators,
 academic researchers, industrial researchers, and the open
 source community. These communities are not disjoint, but individual
 subcommunities often see themselves as self-sufficient, in possession of
 knowledge of what is right and in conflict with other communities that
 for some reason "don't get it." This can be a significant practical
 problem. For example, parts of the open source community have opposed
 the use of C++ because "it's a Microsoft language" (it isn't) or
 "AT&T owns it" (it doesn't), whereas some major industrial players
 have considered it a problem with C++ that they
 don't own it.
This really crucial problem here is that many subcommunities push
 a limited and parochial view of "what programming really is" and "what
 is really needed": "if everybody just did things the right way, there'd
 be no problem." The real problem is to balance the various needs to
 create a larger and more varied community. As people grow and face new
 challenges, the generality and flexibility of a language start to matter
 more than providing optimal solutions to a limited range of
 problems.
To get to technical points, I still think that a flexible,
 extensible, and general static type system is great. My reading of the
 C++ experience reinforces that view. I am also very keen on genuine
 local variables of user-defined types: the C++ techniques for handling
 general resources based on scoped variables have been very effective
 compared to just about anything. Constructors and destructors, often
 used together with RAII, can yield very elegant and efficient
 code.

[3] http://www.open-std.org/jtc1/sc22/wg21//

[4] http://www.research.att.com/~bs/C++0xFAQ.html/

Teaching

 You left industry to become an academic.
 Why?

Bjarne: Actually, I haven't
 completely left industry, because I maintain a link to AT&T Labs as
 an AT&T fellow, and spend much time each year with industry people.
 I consider my connection with industry essential because that's what
 keeps my work anchored in reality.
I went to Texas A&M University as a professor five years ago
 because (after almost 25 years in "The Labs") I felt a need for a change
 and because I thought I had something to contribute in the area of
 education. I also entertained some rather idealistic ideas about doing
 more fundamental research after my years of very practical research and
 design.
Much computer science research is either too remote from everyday
 problems (even from conjectured future everyday problems), or so
 submerged in such everyday problems that it becomes little more than
 technology transfer. Obviously, I have nothing against technology
 transfer (we badly need it), but there ought to be strong feedback loops
 from industrial practice to advanced research. The short planning
 horizon of many in industry and the demands of the academic
 publication/tenure race conspire to divert attention and effort from
 some of the most critical problems.

 During these years in academia, what did you learn about
 teaching programming to beginners?

Bjarne: The most concrete result of
 my years in academia (in addition to the obligatory academic papers) is
 a new textbook for teaching programming to people who have never
 programmed before, Programming: Principles and Practice Using
 C++ [Addison-Wesley].
This is my first book for beginners. Before I went to academia, I
 simply didn't know enough beginners to write such a book. I did,
 however, feel that too many software developers were very poorly
 prepared for their tasks in industry and elsewhere. Now I have taught
 (and helped to teach) programming to more than 1,200 beginners and I
 feel a bit more certain that my ideas in this area can scale.
A beginner's book must serve several purposes. Most fundamentally,
 it must provide a good foundation for further learning (if successful,
 it will be the start of a lifelong effort) and also provide some
 practical skills. Also, programming—and in general software
 development—is not a purely theoretical skill, nor is it something you
 can do well without learning some fundamental concepts. Unfortunately,
 far too often, teaching fails to maintain a balance between
 theory/principles and practicalities/techniques. Consequently, we see
 people who basically despise programming ("mere coding") and think that
 software can be developed from first principles without any practical
 skills. Conversely, we see people who are convinced that "good code" is
 everything and can be achieved with little more than a quick look at an
 online manual and a lot of cutting and pasting; I have met programmers
 who considered K&R "too complicated and theoretical." My opinion is
 that both attitudes are far too extreme and lead to poorly structured,
 inefficient, and unmaintainable messes even when they do manage to
 produce minimally functioning code.

 What is your opinion on code examples in textbooks?
 Should they include error/exception checking? Should they be complete
 programs so that they can actually be compiled and
 run?

Bjarne: I strongly prefer examples
 that in as few lines as possible illustrate an idea. Such program
 fragments are often incomplete, though I insist that mine will compile
 and run if embedded in suitable scaffolding code. Basically, my code
 presentation style is derived from K&R. For my new book, all code
 examples will be available in a compilable form. In the text, I vary
 between small fragments embedded in explanatory text and longer, more
 complete, sections of code. In key places, I use both techniques for a
 single example to allow the reader two looks at critical
 statements.
Some examples should be complete with error checking and all
 should reflect designs that can be checked. In addition to the
 discussion of errors and error handling scattered throughout the book,
 there are separate chapters on error handling and testing. I strongly
 prefer examples derived from real-world programs. I really dislike
 artificial cute examples, such as inheritance trees of animals and
 obtuse mathematical puzzles. Maybe I should add a label to my book: "no
 cute cuddly animals were abused in this book's examples."

Chapter 2. Python

Python is a modern, general-purpose, high-level language
 developed by Guido van Rossum as a result of his work with the ABC
 programming language. Python's philosophy is pragmatic; its users often
 speak of the Zen of Python, strongly preferring a single obvious way to
 accomplish any task. Ports exist for VMs such as Microsoft's CLR and the
 JVM, but the primary implementation is CPython, still developed by van
 Rossum and other volunteers, who just released Python 3.0, a
 backward-incompatible rethinking of parts of the language and its core
 libraries.

The Pythonic Way

 What differences are there between developing a
 programming language and developing a "common" software
 project?

Guido van Rossum: More than with
 most software projects, your most important users are programmers
 themselves. This gives a language project a high level of "meta"
 content. In the dependency tree of software projects, programming
 languages are pretty much at the bottom—everything else
 depends on one or more languages. This also makes it hard to change a
 language—an incompatible change affects so many dependents that it's
 usually just not feasible. In other words, all mistakes, once released,
 are cast in stone. The ultimate example of this is probably C++, which
 is burdened with compatibility requirements that effectively require code
 written maybe 20 years ago to be still valid.

 How do you debug a language?

Guido: You don't. Language design
 is one area where agile development methodologies just don't make
 sense—until the language is stable, few people want to use it, and you
 won't find the bugs in the language definition until you have so many
 users that it's too late to change things.
Of course there's plenty in the
 implementation that can be debugged like any old
 program, but the language design itself pretty much requires careful
 design up front, because the cost of bugs is so exorbitant.

 How do you decide when a feature should go in a library
 as an extension or when it needs to have support from the core
 language?

Guido: Historically, I've had a
 pretty good answer for that. One thing I noticed very early on was that
 everybody wants their favorite feature added to the language, and most
 people are relatively inexperienced about language design. Everybody is
 always proposing "let's add this to the language," "let's have a
 statement that does X." In many cases, the answer is, "Well, you can
 already do X or something almost like X by writing these two or three
 lines of code, and it's not all that difficult." You can use a
 dictionary, or you can combine a list and a tuple and a regular
 expression, or write a little metaclass—all of those things. I may even
 have had the original version of this answer from Linus, who seems to
 have a similar philosophy.
Telling people you can already do that and here is how is a first
 line of defense. The second thing is, "Well, that's a useful thing and
 we can probably write or you can probably write your own module or
 class, and encapsulate that particular bit of abstraction." Then the
 next line of defense is, "OK, this looks so interesting and useful that
 we'll actually accept it as a new addition to the standard library, and
 it's going to be pure Python." And then, finally, there are things that
 just aren't easy to do in pure Python and we'll suggest or recommend how
 to turn them into a C extension. The C extensions are the last line of
 defense before we have to admit, "Well, yeah, this is so useful and you
 really cannot do this, so we'll have to change the language."
There are other criteria that determine whether it makes more
 sense to add something to the language or it makes more sense to add
 something to the library, because if it has to do with the semantics of
 namespaces or that kind of stuff, there's really nothing you can do
 besides changing the language. On the other hand, the extension
 mechanism was made powerful enough that there is an amazing amount of
 stuff you can do from C code that extends the library and possibly even
 adds new built-in functionality without actually changing the language.
 The parser doesn't change. The parse tree doesn't change. The
 documentation for the language doesn't change. All your tools still
 work, and yet you have added new functionality to your system.

 I suppose there are probably features that you've looked
 at that you couldn't implement in Python other than by changing the
 language, but you probably rejected them. What criteria do you use to
 say this is something that's Pythonic, this is something that's not
 Pythonic?

Guido: That's much harder. That is
 probably, in many cases, more a matter of a gut feeling than anything
 else. People use the word Pythonic and "that is Pythonic" a lot, but
 nobody can give you a watertight definition of what it means for
 something to be Pythonic or un-Pythonic.

 You have the "Zen of Python," but beyond
 that?

Guido: That requires a lot of
 interpretation, like every good holy book. When I see a good or a bad
 proposal, I can tell if it is a good or bad proposal, but it's really
 hard to write a set of rules that will help someone else to distinguish
 good language change proposals from bad change proposals.
Sounds almost like it's a matter of taste as much as
 anything.
Guido: Well, the first thing is
 always try to say "no," and see if they go away or find a way to get
 their itch scratched without changing the language. It's remarkable how
 often that works. That's more of a operational definition of "it's not
 necessary to change the language."
If you keep the language constant, people will still find a way to
 do what they need to do. Beyond that it's often a matter of use cases
 coming from different areas where there is nothing application-specific.
 If something was really cool for the Web, that would not make it a good
 feature to add to the language. If something was really good for writing
 shorter functions or writing classes that are more maintainable, that
 might be a good thing to add to the language. It really needs to
 transcend application domains in general, and make things simpler or
 more elegant.
When you change the language, you affect everyone. There's no
 feature that you can hide so well that most people don't need to know
 about. Sooner or later, people will encounter code written by someone
 else that uses it, or they'll encounter some obscure corner case where
 they have to learn about it because things don't work the way they
 expected.
Often elegance is also in the eye of the beholder. We had a recent
 discussion on one of the Python lists where people were arguing
 forcefully that using dollar instead of
 self-dot was much more elegant. I think their
 definition of elegance was number of keystrokes.
There's an argument to make for parsimony there, but
 very much in the context of personal taste.
Guido: Elegance and simplicity and
 generality all are things that, to a large extent, depend on personal
 taste, because what seems to cover a larger area for me may not cover
 enough for someone else, and vice versa.

 How did the Python Enhancement Proposal (PEP) process
 come about?

Guido: That's a very interesting
 historical tidbit. I think it was mostly started and championed by Barry
 Warsaw, one of the core developers. He and I started working together in
 '95, and I think around 2000, he came up with the suggestion that we
 needed more of a formal process around language changes.
I tend to be slow in these things. I mean I wasn't the person who
 discovered that we really needed a mailing list. I wasn't the person who
 discovered that the mailing list got unwieldy and we needed a newsgroup.
 I wasn't the person to propose that we needed a website. I was also not
 the person to propose that we needed a process for discussing and
 inventing language changes, and making sure to avoid the occasional
 mistake where things had been proposed and quickly accepted without
 thinking through all of the consequences.
At the time between 1995 and 2000, Barry, myself, and a few other
 core developers, Fred Drake, Ken Manheimer for a while, were all at
 CNRI, and one of the things that CNRI did was organize the IETF
 meetings. CNRI had this little branch that eventually split off that was
 a conference organizing bureau, and their only customer was the IETF.
 They later also did the Python conferences for a while, actually.
 Because of that it was a pretty easy boondoggle to attend IETF meetings
 even if they weren't local. I certainly got a taste of the IETF process
 with its RFCs and its meeting groups and stages, and Barry also got a
 taste of that. When he proposed to do something similar for Python, that
 was an easy argument to make. We consciously decided that we wouldn't
 make it quite as heavy-handed as the IETF RFCs had become by then,
 because Internet standards, at least some of them, affect way more
 industries and people and software than a Python change, but we
 definitely modeled it after that. Barry is a genius at coming up with
 good names, so I am pretty sure that PEP was his idea.
We were one of the first open source projects at the time to have
 something like this, and it's been relatively widely copied. The Tcl/Tk
 community basically changed the title and used exactly the same defining
 document and process, and other projects have done similar
 things.

 Do you find that adding a little bit of formalism really
 helps crystallize the design decisions around Python
 enhancements?

Guido: I think it became necessary
 as the community grew and I wasn't necessarily able to judge every
 proposal on its value by itself. It has really been helpful for me to
 let other people argue over various details, and then come with
 relatively clear-cut conclusions.

 Do they lead to a consensus where someone can ask you to
 weigh in on a single particular crystallized set of expectations and
 proposals?

Guido: Yes. It often works in a way
 where I initially give a PEP a thumb's up in the sense that I say, "It
 looks like we have a problem here. Let's see if someone figures out what
 the right solution is." Often they come out with a bunch of clear
 conclusions on how the problem should be solved and also a bunch of open
 issues. Sometimes my gut feelings can help close the open issues. I'm
 very active in the PEP process when it's an area that I'm excited
 about—if we had to add a new loop control statement, I wouldn't want that to be
 designed by other people. Sometimes I stay relatively far away from it
 like database APIs.

 What creates the need for a new major
 version?

Guido: It depends on your
 definition of major. In Python, we generally consider releases like 2.4,
 2.5, and 2.6 "major" events, which only happen every 18–24 months. These
 are the only occasions where we can introduce new features. Long ago,
 releases were done at the whim of the developers (me, in particular).
 Early this decade, however, the users requested some predictability—they
 objected against features being added or changed in "minor" revisions
 (e.g., 1.5.2 added major features compared to 1.5.1), and they wished
 the major releases to be supported for a certain minimum amount of time
 (18 months). So now we have more or less time-based major releases: we
 plan the series of dates leading up to a major release (e.g., when alpha
 and beta versions and release candidates are issued) long in advance,
 based on things like release manager availability, and we urge the
 developers to get their changes in well in advance of the final release
 date.
Features selected for addition to releases are generally agreed
 upon by the core developers, after (sometimes long) discussions on the
 merits of the feature and its precise specification. This is the PEP
 process: Python Enhancement Proposal, a document-base process not unlike
 the IETF's RFC process or the Java world's JSR process, except that we
 aren't quite as formal, as we have a much smaller community of
 developers. In case of prolonged disagreement (either on the merits of a
 feature or on specific details), I may end up breaking a tie; my
 tie-breaking algorithm is mostly intuitive, since by the time it is
 invoked, rational argument has long gone out of the window.
The most contentious discussions are typically about user-visible
 language features; library additions are usually easy (as they don't
 harm users who don't care), and internal improvements are not really
 considered features, although they are constrained by pretty stringent
 backward compatibility at the C API level.
Since the developers are typically the most vocal users, I can't
 really tell whether features are proposed by users or by developers—in
 general, developers propose features based on needs they perceived among
 the users they know. If a user proposes a new feature, it is rarely a
 success, since without a thorough understanding of the implementation
 (and of language design and implementation in general) it is nearly
 impossible to properly propose a new feature. We like to ask users to
 explain their problems without having a specific solution in mind, and
 then the developers will propose solutions and discuss the merits of
 different alternatives with the users.
There's also the concept of a radically major or breakthrough
 version, like 3.0. Historically, 1.0 was evolutionarily close to 0.9,
 and 2.0 was also a relatively small step from 1.6. From now on, with the
 much larger user base, such versions are rare indeed, and provide the
 only occasion for being truly incompatible with previous versions. Major
 versions are made backward compatible with previous major versions with
 a specific mechanism available for deprecating features slated for
 removal.

 How did you choose to handle numbers as arbitrary
 precision integers (with all the cool advantages you get) instead of the
 old (and super common) approach to pass it to the
 hardware?

Guido: I originally inherited this
 idea from Python's predecessor, ABC. ABC used arbitrary precision
 rationals, but I didn't like the rationals that much, so I switched to
 integers; for reals, Python uses the standard floating-point
 representation supported by the hardware (and so did ABC, with some
 prodding).
Originally Python had two types of integers: the customary 32-bit
 variety ("int") and a separate arbitrary precision variety ("long").
 Many languages do this, but the arbitrary precision variety is relegated
 to a library, like Bignum in Java and Perl, or GNU MP for C. In Python, the two have (nearly) always lived side-by-side
 in the core language, and users had to choose which one to use by
 appending an "L" to a number to select the long variety. Gradually this
 was considered an annoyance; in Python 2.2, we introduced automatic
 conversion to long when the mathematically correct result of an
 operation on ints could not be represented as an int (for example,
 2**100).
Previously, this would raise an OverflowError
 exception. There was once a time where the result would silently be
 truncated, but I changed it to raising an exception before ever letting
 others use the language. In early 1990, I wasted an afternoon debugging
 a short demo program I'd written implementing an algorithm that made
 non-obvious use of very large integers. Such debugging sessions are
 seminal experiences.
However, there were still certain cases where the two number types
 behaved slightly different; for example, printing an int in hexadecimal
 or octal format would produce an unsigned outcome (e.g., –1 would be
 printed as FFFFFFFF), while doing the same on the mathematically equal
 long would produce a signed outcome (–1, in this case). In Python 3.0,
 we're taking the radical step of supporting only a single integer type;
 we're calling it int, but the implementation is
 largely that of the old long type.

 Why do you call it a radical step?

Guido: Mostly because it's a big
 deviation from current practice in Python. There was a lot of discussion
 about this, and people proposed various alternatives where two (or more)
 representations would be used internally, but completely or mostly
 hidden from end users (but not from C extension writers). That might
 perform a bit better, but in the end it was already a massive amount of
 work, and having two representations internally would just increase the
 effort of getting it right, and make interfacing to it from C code even hairier. We are now hoping that the performance
 hit is minor and that we can improve performance with other techniques
 like caching.

 How did you adopt the "there should be one—and
 preferably only one—obvious way to do it" philosophy?

Guido: This was probably
 subconscious at first. When Tim Peters wrote the "Zen of Python" (from which you quote), he made explicit a
 lot of rules that I had been applying without being aware of them. That
 said, this particular rule (while often violated, with my consent) comes
 straight from the general desire for elegance in mathematics and computer science. ABC's
 authors also applied it, in their desire for a small number of
 orthogonal types or concepts. The idea of orthogonality is lifted
 straight from mathematics, where it refers to the very
 definition of having one way (or one true way) to
 express something. For example, the XYZ coordinates of any point in 3D
 space are uniquely determined, once you've picked an origin and three
 basis vectors.
I also like to think that I'm doing most users a favor by not
 requiring them to choose between similar alternatives. You can contrast
 this with Java, where if you need a listlike data structure, the
 standard library offers many versions (a linked list, or an array list,
 and others), or C, where you have to decide how to implement your own
 list data type.

 What is your take on static versus dynamic
 typing?

Guido: I wish I could say something
 simple like "static typing bad, dynamic typing good," but it isn't always that simple.
 There are different approaches to dynamic typing, from Lisp to Python,
 and different approaches to static typing, from C++ to Haskell. Languages like C++ and
 Java probably give static typing a bad name because they require you to
 tell the compiler the same thing several times over. Languages like
 Haskell and ML, however, use type inferencing, which is quite different,
 and has some of the same benefits as dynamic typing, such as more
 concise expression of ideas in code. However the functional paradigm
 seems to be hard to use on its own—things like I/O or GUI interaction
 don't fit well into that mold, and typically are solved with the help of
 a bridge to a more traditional language, like C, for example.
In some situations the verbosity of Java is considered a plus; it
 has enabled the creation of powerful code-browsing tools that can answer
 questions like "where is this variable changed?" or "who calls this
 method?" Dynamic languages make answering such questions harder, because
 it's often hard to find out the type of a method argument without
 analyzing every path through the entire codebase. I'm not sure how
 functional languages like Haskell support such tools; it could well be
 that you'd have to use essentially the same technique as for dynamic
 languages, since that's what type inferencing does anyway—in my limited
 understanding!

 Are we moving toward hybrid typing?

Guido: I expect there's a lot to
 say for some kind of hybrid. I've noticed that most large systems
 written in a statically typed language actually contain a significant
 subset that is essentially dynamically typed. For example, GUI widget
 sets and database APIs for Java often feel like they are fighting the
 static typing every step of the way, moving most correctness checks to
 runtime.
A hybrid language with functional and dynamic aspects might be
 quite interesting. I should add that despite Python's support for some
 functional tools like map() and
 lambda, Python does not have a
 functional-language subset: there is no type inferencing, and no
 opportunity for parallelization.

 Why did you choose to support multiple
 paradigms?

Guido: I didn't really; Python
 supports procedural programming, to some extent, and OO. These two
 aren't so different, and Python's procedural style is still strongly
 influenced by objects (since the fundamental data types are all
 objects). Python supports a tiny bit of functional programming—but it
 doesn't resemble any real functional language, and it never will.
 Functional languages are all about doing as much as possible at compile
 time—the "functional" aspect means that the compiler can optimize things
 under a very strong guarantee that there are no side effects, unless
 explicitly declared. Python is about having the simplest, dumbest
 compiler imaginable, and the official runtime semantics actively
 discourage cleverness in the compiler like parallelizing loops or
 turning recursion into loops.
Python probably has the reputation of supporting functional
 programming based on the inclusion of lambda,
 map, filter, and
 reduce in the language, but in my eyes these are just
 syntactic sugar, and not the fundamental building blocks that they are
 in functional languages. The more fundamental property that Python
 shares with Lisp (not a functional language either!) is that functions
 are first-class objects, and can be passed around like any other object.
 This, combined with nested scopes and a generally Lisp-like approach to
 function state, makes it possible to easily implement concepts that
 superficially resemble concepts from functional languages, like
 currying, map, and reduce. The primitive operations that are necessary
 to implement those concepts are built in Python, where in functional languages, those concepts
 are the primitive operations. You can write
 reduce() in a few lines of Python. Not so in a
 functional language.

 When you created the language, did you consider the type
 of programmers it might have attracted?

Guido: Yes, but I probably didn't
 have enough imagination. I was thinking of professional programmers in a
 Unix or Unix-like environment. Early versions of the Python tutorial
 used a slogan something like "Python bridges the gap between C and shell
 programming," because that was where I was myself, and the people
 immediately around me. It never occurred to me that Python would be a
 good language to embed in applications until people
 started asking about that.
The fact that it was useful for teaching first principles of
 programming in a middle school or college setting or for
 self-teaching was merely a lucky coincidence, enabled by the many ABC
 features that I kept—ABC was aimed specifically at teaching programming to nonprogrammers.

 How do you balance the different needs of a language
 that should be easy to learn for novices versus a language that should
 be powerful enough for experienced programmers to do useful things? Is
 that a false dichotomy?

Guido: Balance is the word. There
 are some well-known traps to avoid, like stuff that is thought to help
 novices but annoys experts, and stuff that experts need but confuses novices.
 There's plenty enough space in between to keep both sides happy. Another
 strategy is to have ways for experts to do advanced things that novices
 will never encounter—for example, the language supports metaclasses, but
 there's no reason for novices to know about them.

The Good Programmer

 How do you recognize a good
 programmer?

Guido: It takes time to recognize a
 good programmer. For example, it's really hard to tell good from bad in
 a one-hour interview. When you work together with someone though, on a
 variety of problems, it usually becomes pretty clear which are the good
 ones. I hesitate to give specific criteria—I guess in general the good
 ones show creativity, learn quickly, and soon start producing code that
 works and doesn't need a lot of changes before it's ready to be checked
 in. Note that some folks are good at different aspects of programming
 than others—some folks are good at algorithms and data structures,
 others are good at large-scale integration, or protocol design, or
 testing, or API design, or user interfaces, or whatever other aspects of
 programming exist.

 What method would you use to hire
 programmers?

Guido: Based on my interviewing
 experience in the past, I don't think I'd be any good at hiring in the traditional way—my interview skills are
 nearly nonexistent on both sides of the table! I guess what I'd do would
 be to use some kind of apprentice system where I'd be working closely
 with people for quite some time and would eventually get a feeling for
 their strengths and weaknesses. Sort of the way an open source project
 works.

 Is there any characteristic that becomes fundamental to
 evaluate if we are looking for great Python
 programmers?

Guido: I'm afraid you are asking
 this from the perspective of the typical manager who simply wants to
 hire a bunch of Python programmers. I really don't think there's a
 simple answer, and in fact I think it's probably the wrong question. You
 don't want to hire Python programmers. You want to hire smart, creative,
 self-motivated people.

 If you check job ads for programmers, nearly all of them
 include a line about being able to work in a team. What is your opinion
 on the role of the team in programming? Do you still see space for the
 brilliant programmer who can't work with others?

Guido: I am with the job ads in
 that one aspect. Brilliant programmers who can't do teamwork shouldn't
 get themselves in the position of being hired into a traditional
 programming position—it will be a disaster for all involved, and their
 code will be a nightmare for whoever inherits it. I actually think it's
 a distinct lack of brilliance if you can't do teamwork. Nowadays there
 are ways to learn how to work with other people, and if you're really so
 brilliant you should be able to learn teamwork skills easily—it's really not as hard as learning how to
 implement an efficient Fast Fourier Transform, if you set your mind
 about it.

 Being the designer of Python, what advantages do you see
 when coding with your language compared to another skilled developer
 using Python?

Guido: I don't know—at this point
 the language and VM have been touched by so many people that I'm
 sometimes surprised at how certain things work in detail myself! If I
 have an advantage over other developers, it probably has more to do with
 having used the language longer than anyone than with having written it
 myself. Over that long period of time, I have had the opportunity to
 ponder which operations are faster and which are slower—for example, I
 may be aware more than most users that locals are faster than globals
 (though others have gone overboard using this, not
 me!), or that functions and method calls are expensive (more so than in
 C or Java), or that the fastest data type is a tuple.
When it comes to using the standard library and beyond, I often
 feel that others have an advantage. For example, I write about one web
 application every few years, and the technology available changes each
 time, so I end up writing a "first" web app using a new framework or
 approach each time. And I still haven't had the opportunity to do
 serious XML mangling in Python.

 It seems that one of the features of Python is its
 conciseness. How does this affect the maintainability of the
 code?

Guido: I've heard of research as
 well as anecdotal evidence indicating that the error rate per number of
 lines of code is pretty consistent, regardless of the programming
 language used. So a language like Python where a typical application is
 just much smaller than, say, the same amount of functionality written in
 C++ or Java, would make that application much more maintainable. Of
 course, this is likely going to mean that a single programmer is
 responsible for more functionality. That's a separate issue, but it
 still comes out in favor of Python: more productivity per programmer
 probably means fewer programmers on a team, which means less
 communication overhead, which according to The Mythical
 Man-Month [Frederick P. Brooks; Addison-Wesley Professional]
 goes up by the square of the team size, if I remember correctly.

 What link do you see between the easiness of prototyping
 offered by Python and the effort needed to build a complete
 application?

Guido: I never meant Python to be a
 prototyping language. I don't believe there should be a clear
 distinction between prototyping and "production" languages. There are
 situations where the best way to write a prototype would be to write a
 little throwaway C hack. There are other situations where a prototype
 can be created using no "programming" at all—for example, using a
 spreadsheet or a set of find and
 grep commands.
The earliest intentions I had for Python were simply for it to be
 a language to be used in cases where C was overkill and shell scripts
 became too cumbersome. That covers a lot of prototyping, but it also
 covers a lot of "business logic" (as it's come to be called these days)
 that isn't particularly greedy in computing resources but requires a lot
 of code to be written. I would say that most Python code is not written
 as a prototype but simply to get a job done. In most cases Python is
 fully up to the job, and there is no need to change much in order to
 arrive at the final application.
A common process is that a simple application gradually acquires
 more functionality, and ends up growing tenfold in complexity, and there
 is never a precise cutover point from prototype to final application.
 For example, the code review application Mondrian that I started at
 Google has probably grown tenfold in code size since I first released
 it, and it is still all written in Python. Of course, there are also
 examples where Python did eventually get replaced by a faster
 language—for example, the earliest Google crawler/indexer was (largely)
 written in Python—but those are the exceptions, not the rule.

 How does the immediacy of Python affect the design
 process?

Guido: This is often how I work,
 and, at least for me, in general it works out well! Sure, I write a lot
 of code that I throw away, but it's much less code than I would have
 written in any other language, and writing code (without even running it) often helps me tremendously in
 understanding the details of the problem. Thinking about how to
 rearrange the code so that it solves the problem in an optimal fashion
 often helps me think about the problem. Of course, this is not to be
 used as an excuse to avoid using a whiteboard to sketch out a design or
 architecture or interaction, or other early design techniques. The trick
 is to use the right tool for the job. Sometimes that's a pencil and a
 napkin—other times it's an Emacs window and a shell prompt.

 Do you think that bottom-up program development is more
 suited to Python?

Guido: I don't see bottom-up versus top-down as religious opposites like vi
 versus Emacs. In any software development process, there are times when
 you work bottom-up, and other times when you work top-down. Top-down
 probably means you're dealing with something that needs to be carefully
 reviewed and designed before you can start coding, while bottom-up
 probably means that you are building new abstractions on top of existing
 ones, for example, creating new APIs. I'm not implying that you should
 start coding APIs without having some kind of design in mind, but often
 new APIs follow logically from the available lower-level APIs, and the
 design work happens while you are actually writing code.

 When do you think Python programmers appreciate more its
 dynamic nature?

Guido: The language's dynamic features are often most useful when you are exploring a large problem
 or solution space and you don't know your way around yet—you can do a
 bunch of experiments, each using what you learned from the previous
 ones, without having too much code that locks you into a
 particular approach. Here it really helps that you can write very
 compact code in Python—writing 100 lines of Python to run an experiment
 once and then starting over is much more efficient than writing a
 1,000-line framework for experimentation in Java and then finding out it
 solves the wrong problem!

 From a security point of view, what does Python offer to
 the programmer?

Guido: That depends on the attacks
 you're worried about. Python has automatic memory allocation, so Python
 programs aren't prone to certain types of bugs that are common in C and
 C++ code like buffer overflows or using deallocated memory, which have
 been the bread and butter of many attacks on Microsoft software. Of
 course the Python runtime itself is written in C, and indeed
 vulnerabilities have been found here over the years, and there are
 intentional escapes from the confines of the Python runtime, like the
 ctypes module that lets one call arbitrary C
 code.

 Does its dynamic nature help or rather the
 opposite?

Guido: I don't think the dynamic
 nature helps or hurts. One could easily design a dynamic language that
 has lots of vulnerabilities, or a static language that has none. However
 having a runtime, or virtual machine as is now the
 "hip" term, helps by constraining access to the raw underlying machine.
 This is coincidentally one of the reasons that Python is the first
 language supported by Google App Engine, the project in which I am
 currently participating.

 How can a Python programmer check and improve his code
 security?

Guido: I think Python programmers
 shouldn't worry much about security, certainly not without having a
 specific attack model in mind. The most important thing to look for is
 the same as in all languages: be suspicious of data provided by someone
 you don't trust (for a web server, this is every byte of the incoming
 web request, even the headers). One specific thing to watch out for is
 regular expressions—it is easy to write a regular expression that runs
 in exponential time, so web applications that implement searches where
 the end user types in a regular expression should have some mechanism to
 limit the running time.

 Is there any fundamental concept (general rule, point of
 view, mindset, principle) that you would suggest to be proficient in
 developing with Python?

Guido: I would say pragmatism. If
 you get too hung up about theoretical concepts like data hiding, access
 control, abstractions, or specifications, you aren't a real Python
 programmer, and you end up wasting time fighting the language, instead
 of using (and enjoying) it; you're also likely to use it inefficiently.
 Python is good if you're an instant gratification junkie like myself. It
 works well if you enjoy approaches like extreme programming or other
 agile development methods, although even there I would recommend taking
 everything in moderation.

 What do you mean by "fighting the
 language"?

Guido: That usually means that
 they're trying to continue their habits that worked well with a
 different language.
A lot of the proposals to somehow get rid of explicit self come
 from people who have recently switched to Python and still haven't
 gotten used to it. It becomes an obsession for them. Sometimes they come
 out with a proposal to change the language; other times they come up
 with some super-complicated metaclass that somehow makes self implicit.
 Usually things like that are super-inefficient or don't actually work in
 a multithreaded environment or whatever other edge case, or they're so
 obsessed about having to type those four characters that they changed
 the convention from self to s or capital
 S. People will turn everything into a class, and turn
 every access into an accessor method, where that is really not a wise
 thing to do in Python; you'll just have more verbose code that is harder
 to debug and runs a lot slower. You know the expression "You can write
 FORTRAN in any language?" You can write Java in any language,
 too.
You spent so much time trying to create (preferably) one
 obvious way to do things. It seems like you're of the opinion that doing
 things that way, the Python way, really lets you take advantage of
 Python.
Guido: I'm not sure that I really
 spend a lot of time making sure that there's only one way. The
 "Zen of Python" is much younger than the language Python,
 and most defining characteristics of the language were there long before
 Tim Peters wrote it down as a form of poetry. I don't think he
 expected it to be quite as widespread and successful when he wrote it
 up.
It's a catchy phrase.
Guido: Tim has a way with words.
 "There's only one way to do it" is actually in most cases a white lie.
 There are many ways to do data structures. You can use tuples and lists.
 In many cases, it really doesn't matter that much whether you use a
 tuple or a list or sometimes a dictionary. It turns out usually if you
 look really carefully, one solution is objectively better because it
 works just as well in a number of situations, and there's one or two
 cases where lists just works so much better than tuples when you keep
 growing them.
That comes more actually from the original ABC philosophy that was trying to be very sparse in the
 components. ABC actually shared a philosophy with ALGOL-68, which is now
 one of the deadest languages around, but was very influential. Certainly
 where I was at the time during the 80s, it was very influential because
 Adriaan van Wijngaarden was the big guy from ALGOL 68. He was still
 teaching classes when I went to college. I did one or two semesters
 where he was just telling anecdotes from the history of ALGOL 68 if he
 felt like it. He had been the director of CWI. Someone else was it by
 the time I joined.
There were many people who had been very close with ALGOL 68. I
 think Lambert Meertens, the primary author of ABC, was also one of the
 primary editors of the ALGOL 68 report, which probably means he did a
 lot of the typesetting, but he may occasionally also have done quite a
 lot of the thinking and checking. He was clearly influenced by ALGOL
 68's philosophy of providing constructs that can be combined in many
 different ways to produce all sorts of different data structures or ways
 of structuring a program.
It was definitely his influence that said, "We have lists or
 arrays, and they can contain any kind of other thing. They can contain
 numbers or strings, but they can also contain other arrays and tuples of
 other things. You can combine all of these things together." Suddenly
 you don't need a separate concept of a multidimensional array because an
 array of arrays solves that for any dimensionality. That philosophy of
 taking a few key things that cover different directions of flexibility
 and allow them to be combined was very much a part of ABC. I borrowed
 all of that almost without thinking about it very hard.
While Python tries to give the appearance that you can combine
 things in very flexible ways as long as you don't try to nest statements
 inside expressions, there is actually a remarkable number of special
 cases in the syntax where in some cases a comma means a separation
 between parameters, and in other cases the comma means the items of a
 list, and in yet another case it means an implicit tuple.
There are a whole bunch of variations in the syntax where certain
 operators are not allowed because they would conflict with some
 surrounding syntax. That is never really a problem because you can
 always put an extra pair of parentheses around something when it doesn't
 work. Because of that the syntax, at least from the parser author's
 perspective, has grown quite a bit. Things like list comprehensions and
 generator expressions are syntactically still not completely unified. In
 Python 3000, I believe they are. There's still some subtle
 semantic differences, but the syntax at least is the same.

Multiple Pythons

 Does the parser get simpler in Python
 3000?

Guido: Hardly. It didn't become
 more complex, but it also didn't really become simpler.
No more complex I think is a win.
Guido: Yeah.

 Why the simplest, dumbest compiler
 imaginable?

Guido: That was originally a very
 practical goal, because I didn't have a degree in code generation. There
 was just me, and I had to have the byte code generator behind me before
 I could do any other interesting work on the language.
I still believe that having a very simple parser is a good thing;
 after all, it is just the thing that turns the text into a tree that
 represents the structure of the program. If the syntax is so ambiguous
 that it takes really advanced parts of technology to figure it out, then
 human readers are probably confused half the time as well. It also makes
 it really hard to write another parser.
Python is incredibly simple to parse, at least at the syntactic
 level. At the lexical level, the analysis is relatively subtle because
 you have to read the indentation with a little stack that is embedded in
 the lexical analyzer, which is a counterexample for the theory of
 separation between lexical and grammatical analysis. Nevertheless, that
 is the right solution. The funny thing is that I love automatically
 generated parsers, but I do not believe very strongly in automatically
 generated lexical analysis. Python has always had a manually generated
 scanner and an automated parser.
People have written many different parsers for Python. Even port
 of Python to a different virtual machine, whether Jython or IronPython
 or PyPy, has its own parser, and it's no big deal because the parser is
 never a very complex piece of the project, because the structure of the
 language is such that you can very easily parse it with the most basic
 one-token lookahead recursive descent parser.
What makes parsers slow is actually ambiguities that can only be
 resolved by looking ahead until the end of the program. In natural
 languages there are many examples where it's impossible to parse a
 sentence until you've read the last word and the arbitrary nesting in
 the sentence. Or there are sentences that can only be parsed if you
 actually know the person that they are talking about, but that's a
 completely different situation. For parsing programming languages, I
 like my one-token lookahead.

 That suggests to me that there may never be macros in
 Python because you have to perform another parsing phase
 then!

Guido: There are ways of embedding
 the macros in the parser that could probably work. I'm not at
 all convinced that macros solve any problem that is particularly
 pressing for Python, though. On the other hand, since the language is
 easy to parse, if you come up with some kind of hygienic set of macros
 that fit within the language syntax, it might be very simple to
 implement micro-evaluation as parse tree manipulations. That's just not
 an area that I'm particularly interested in.

 Why did you choose to use strict formatting in source
 code?

Guido: The choice of indentation
 for grouping was not a novel concept in Python; I inherited this from
 ABC, but it also occurred in occam, an older language. I don't know if
 the ABC authors got the idea from occam, or invented it independently,
 or if there was a common ancestor. The idea may be attributed to Don
 Knuth, who proposed this as early as 1974.
Of course, I could have chosen not to follow ABC's lead, as I did
 in other areas (e.g., ABC used uppercase for language keywords and
 procedure names, an idea I did not copy), but I had come to like the
 feature quite a bit while using ABC, as it seemed to do away with a
 certain type of pointless debate common amongst C users at the time,
 about where to place the curly braces. I also was well aware that
 readable code uses indentation voluntarily anyway to indicate grouping,
 and I had come across subtle bugs in code where the indentation
 disagreed with the syntactic grouping using curly braces—the programmer
 and any reviewers had assumed that the indentation matched the grouping
 and therefore not noticed the bug. Again, a long debugging session
 taught a valuable lesson.

 Strict formatting should produce a cleaner code and
 probably reduce the differences in the "layout" of the code of different
 programmers, but doesn't this sound like forcing a human being to adapt
 to the machine, instead of the opposite path?

Guido: Quite the contrary—it helps
 the human reader more than it helps the machine; see the previous
 example. Probably the advantages of this approach are more visible when
 maintaining code written by another programmer.
New users are often put off by this initially, although I don't
 hear about this so much any more; perhaps the people teaching Python
 have learned to anticipate this effect and counter it
 effectively.
I would like to ask you about multiple implementations
 of Python. There are four or five big implementations, including
 Stackless and PyPy.
Guido: Stackless, technically, is
 not a separate implementation. Stackless is often listed as a separate
 Python implementation because it is a fork of Python that replaces a
 pretty small part of the virtual machine with a different
 approach.

 Basically the byte code dispatch,
 right?

Guido: Most of the byte code
 dispatch is very similar. I think the byte codes are the same and
 certainly all of the objects are the same. What they do different is
 when you have a call from one Python procedure to another procedure:
 they do that with manipulation of objects, where they just push a stack
 of stack frames and the same bit of C code remains in charge. The way
 it's done in C Python is that, at that point, a C function is invoked
 which will then eventually invoke a new instance of the virtual machine.
 It's not really the whole virtual machine, but the loop that interprets
 the byte code. There's only one of those loops on the C stack in
 stackless. In traditional C Python, you can have that same loop on your
 C stack many times. That's the only difference.
PyPy, IronPython, Jython are separate implementations. I don't
 know about something that translates to JavaScript, but I wouldn't be
 surprised if someone had gotten quite far with that at some point. I
 have heard of experimental things that translate to OCaml and Lisp and
 who knows what. There once was something that translated to C code as
 well.
Mark Hammond and Greg Stein worked on it in the late 90s, but they found out
 that the speedup that they could obtain was very, very modest. In the
 best circumstances, it would run twice as fast; also, the generated code
 was so large that you had these enormous binaries, and that became a
 problem.
Start-up time hurt you there.
Guido: I think the PyPy people are
 on the right track.
It sounds like you're generally supportive of these
 implementations.
Guido: I have always been
 supportive of alternate implementations. From the day that Jim Hugunin
 walked in the door with a more or less completed JPython implementation,
 I was excited about it. In a sense, it counts as a validation of the
 language design. It also means that people can use their favorite
 language on the platform where otherwise they wouldn't have access to
 it. We still have a way to go there, but it certainly helped me isolate
 which features were really features of the language that I cared about,
 and which features were features of a particular implementation where I
 was OK with other implementations doing things differently. That's where
 we ended up on the unfortunately slippery slope of garbage collection.
That's always a slippery slope.
Guido: But it's also necessary. I
 cannot believe how long we managed to live with pure reference counting
 and no way to break cycles. I have always seen reference counting as a
 way of doing garbage collection, and not a particularly bad one. There
 used to be this holy war between reference counting versus garbage
 collection, and that always seemed rather silly to me.

 Regarding these implementations again, I think Python is
 an interesting space because it has a pretty good specification.
 Certainly compared to other languages like Tcl, Ruby, and Perl 5. Was
 that something that came about because you wanted to standardize the
 language and its behavior, or because you were looking at multiple
 implementations, or something else?

Guido: It was probably more a side
 effect of the community process around PEPs and the multiple
 implementations. When I originally wrote the first set of documentation,
 I very enthusiastically started a language reference manual, which was
 supposed to be a sufficiently precise specification that someone from
 Mars or Jupiter could implement the language and get the semantics
 right. I never got anywhere near fulfilling that goal.
ALGOL 68 probably got the closest of any language ever with their
 highly mathematical specification. Other languages like C++ and
 JavaScript have managed with sheer willpower of the standardization
 committee, especially in the case of C++. That's obviously an incredibly
 impressive effort. At the same time, it takes so much manpower to write
 a specification that is that precise, that my hope of getting something
 like that for Python never really got implemented.
What we do have is enough understanding of how the language is
 supposed to work, and enough unit tests, and enough people on hand that
 can answer to implementers of other versions in finite time. I know
 that, for example, the IronPython folks have been very conscientious in
 trying to run the entire Python test suite, and for every failure
 deciding if the test suite was really testing the specific behavior of
 the C Python implementation or if they actually had more work to do in
 their implementation.
The PyPy folks did the same thing, and they went one step further.
 They have a couple of people who are much smarter than I, and who have
 come up with an edge case probably prompted by their own thinking about
 how to generate code and how to analyze code in a JIT environment. They
 have actually contributed quite a few tests and disambiguations and
 questions when they found out that there was a particular combination of
 things that nobody had ever really thought about. That was very helpful.
 The process of having multiple implementations of the language has been
 tremendously helpful for getting the specification of the language
 disambiguated.

 Do you foresee a time when C Python may not be the
 primary implementation?

Guido: That's hard to see. I mean
 some people foresee a time where .NET rules the world; other people
 foresee a time where JVMs rule the world. To me, that all seems like
 wishful thinking. At the same time, I don't know what will happen. There
 could be a quantum jump where, even though the computers that we know
 don't actually change, a different kind of platform suddenly becomes
 much more prevalent and the rules are different.

 Perhaps a shift away from the von Neumann
 architecture?

Guido: I wasn't even thinking of
 that, but that's certainly also a possibility. I was more thinking of
 what if mobile phones become the ubiquitous computing device. Mobile
 phones are only a few years behind the curve of the power of regular
 laptops, which suggests that in a few years, mobile phones, apart from
 the puny keyboard and screen, will have enough computing power so that
 you don't need a laptop anymore. It may well be that mobile phones for
 whatever platform politics end up all having a JVM or some other
 standard environment where C Python is not the best approach and some
 other Python implementation would work much better.
There's certainly also the question of what do we do when we have
 64 cores on a chip, even in a laptop or in a cell phone. I don't
 actually know if that should change the programming paradigm all that
 much for most of the things we do. There may be a use for some languages
 that let you specify incredibly subtle concurrent processes, but in most
 cases the average programmer cannot write correct thread-safe code
 anyway. Assuming that somehow the ascent of multiple cores forces them
 to do that is kind of unrealistic. I expect that multiple cores will
 certainly be useful, but they will be used for coarse-grained
 parallelism, which is better anyway, because with the enormous cost
 difference between cache hits and cache misses, main memory no longer
 really serves the function of shared memory. You want to have your
 processes as isolated as possible.

 How should we deal with concurrency? At what level
 should this problem be dealt with or, even better,
 solved?

Guido: My feeling is that writing single-threaded code is hard
 enough, and writing multithreaded code is way harder—so hard that most
 people don't have a hope of getting it right, and that includes myself.
 Therefore, I don't believe that fine-grained synchronization primitives
 and shared memory are the solution—instead, I'd much rather see
 message-passing solutions get back in style. I'm pretty sure that
 changing all programming languages to add synchronization constructs is
 a bad idea.
I also still don't believe that trying to remove the GIL from
 CPython will work. I do believe that some support for
 managing multiple processes (as opposed to threads) is a piece of the
 puzzle, and for that reason Python 2.6 and 3.0 will have a new standard library
 module, multiprocessing, that offers an API similar to that of the
 threading module for doing exactly that. As a bonus, it even supports
 processes running on different hosts!

Expedients and Experience

 Is there any tool or feature that you feel is missing
 when writing software?

Guido: If I could sketch on a
 computer as easily as I can with pencil and paper, I might be making
 more sketches while doing the hard thinking about a design. I fear that
 I'll have to wait until the mouse is universally replaced by a pen (or
 your finger) that lets you draw on the screen. Personally, I feel
 terribly handicapped when using any kind of computerized drawing tool,
 even if I'm pretty good with pencil and paper—perhaps I inherited it
 from my father, who was an architect and was always making rough
 sketches, so I was always sketching as a teenager.
At the other end of the scale, I suppose I may not even know what
 I'm missing for spelunking large codebases. Java programmers have IDEs now that
 provide quick answers to questions like "where are the callers of this
 method?" or "where is this variable assigned to?" For large Python
 programs, this would also be useful, but the necessary static analysis
 is harder because of Python's dynamic nature.

 How do you test and debug your code?

Guido: Whatever is expedient. I do
 a lot of testing when I write code, but the testing method varies
 per project. When writing your basic pure algorithmic code, unit tests
 are usually great, but when writing code that is highly interactive or
 interfaces to legacy APIs, I often end up doing a lot of manual testing,
 assisted by command-line history in the shell or page-reload in the
 browser. As an (extreme) example, you can't very well write a unit test
 for a script whose sole purpose is to shut down the current machine;
 sure, you can mock out the part that actually does the shut down, but
 you still have to test that part, too, or else how do you know that your
 script actually works?
Testing something in different environments is also often hard to
 automate. Buildbot is great for large systems, but the overhead to set
 it up is significant, so for smaller systems often you just end up doing
 a lot of manual QA. I've gotten a pretty good intuition for doing QA,
 but unfortunately it's hard to explain.

 When should debugging be taught? And
 how?

Guido: Continuously. You are
 debugging your entire life. I just "debugged" a problem with my
 six-year-old son's wooden train set where his trains kept getting
 derailed at a certain point on the track. Debugging is usually a matter
 of moving down an abstraction level or two, and helped by stopping to
 look carefully, thinking, and (sometimes) using the right tools.
I don't think there is a single "right" way of debugging that can
 be taught at a specific point, even for a very specific target such as
 debugging program bugs. There is an incredibly large spectrum of
 possible causes for program bugs, including simple typos, "thinkos,"
 hidden limitations of underlying abstractions, and outright bugs in
 abstractions or their implementation. The right approach varies from
 case to case. Tools come into play mostly when the required analysis
 ("looking carefully") is tedious and repetitive. I note that Python
 programmers often need few tools because the search space (the program
 being debugged) is so much smaller.

 How do you resume programming?

Guido: This is actually an
 interesting question. I don't recall ever looking consciously at how I
 do this, while I indeed deal with this all the time. Probably the tool I
 used most for this is version control: when I come back to a project I
 do a diff between my workspace and the repository, and that will tell me
 the state I'm in.
If I have a chance, I leave XXX markers in the unfinished code
 when I know I am about to be interrupted, telling me about specific
 subtasks. I sometimes also use something I picked up from Lambert
 Meertens some 25 years ago: leave a specific mark in the current source
 file at the place of the cursor. The mark I use is "HIRO," in his honor.
 It is colloquial Dutch for "here" and selected for its unlikeliness to
 ever occur in finished code. :-)
At Google we also have tools integrated with Perforce that help me
 in an even earlier stage: when I come in to work, I might execute a
 command that lists each of the unfinished projects in my workspace, so
 as to remind me which projects I was working on the previous day. I also
 keep a diary in which I occasionally record specific hard-to-remember
 strings (like shell commands or URLs) that help me perform specific
 tasks for the project at hand—for example, the full URL to a server
 stats page, or the shell command that rebuilds the components I'm
 working on.

 What are your suggestions to design an interface or an
 API?

Guido: Another area where I haven't
 spent a lot of conscious thought about the best process, even though
 I've designed tons of interfaces (or APIs). I wish I could just include a talk
 by Josh Bloch on the subject here; he talked about designing Java APIs,
 but most of what he said would apply to any language. There's lots of
 basic advice like picking clear names (nouns for classes, verbs for
 methods), avoiding abbreviations, consistency in naming, providing a
 small set of simple methods that provide maximal flexibility when
 combined, and so on. He is big on keeping the argument lists short: two
 to three arguments is usually the maximum you can have without creating
 confusion about the order. The worst thing is having several consecutive
 arguments that all have the same type; an accidental swap can go
 unnoticed for a long time then.
I have a few personal pet peeves: first of all, and this is
 specific to dynamic languages, don't make the return type of a method
 depend on the value of one of the arguments;
 otherwise it may be hard to understand what's returned if you don't know
 the relationship—maybe the type-determining argument is passed in from a
 variable whose content you can't easily guess while reading the
 code.
Second, I dislike "flag" arguments that are intended to change the
 behavior of a method in some big way. With such APIs the flag is always
 a constant in actually observed parameter lists, and the call would be
 more readable if the API had separate methods: one for each flag
 value.
Another pet peeve is to avoid APIs that could create confusion
 about whether they return a new object or modify an object in place.
 This is the reason why in Python the list method
 sort() doesn't return a value: this emphasizes that
 it modifies the list in place. As an alternative, there is the built-in
 sorted() function, which returns a new, sorted
 list.

 Should application programmers adopt the "less is more"
 philosophy? How should they simplify the user interface to provide a
 shorter learning path?

Guido: When it comes to graphical
 user interfaces, it seems there's finally growing support for my "less
 is more" position. The Mozilla foundation has hired Aza Raskin, son of
 the late Jef Raskin (codesigner of the original Macintosh UI) as a UI
 designer. Firefox 3 has at least one example of a UI that offers a lot
 of power without requiring buttons, configuration, preferences or
 anything: the smart location bar watches what I type, compares it to
 things I've browsed to before, and makes useful suggestions. If I ignore
 the suggestions it will try to interpret what I type as a URL or, if
 that fails, as a Google query. Now that's smart! And it replaces three
 or four pieces of functionality that would otherwise require separate
 buttons or menu items.
This reflects what Jef and Aza have been saying for so many years:
 the keyboard is such a powerful input device, let's use it in novel ways
 instead of forcing users to do everything with the mouse, the slowest of
 all input devices. The beauty is that it doesn't require new hardware,
 unlike Sci-Fi solutions proposed by others like virtual reality helmets
 or eye movement sensors, not to mention brainwave detectors.
There's a lot to do of course—for example, Firefox's Preferences
 dialog has the dreadful look and feel of anything coming out of
 Microsoft, with at least two levels of tabs and many modal dialogs
 hidden in obscure places. How am I supposed to remember that in order to
 turn off JavaScript I have to go to the Content tab? Are Cookies under
 the Privacy tab or under Security? Maybe Firefox 4 can replace the
 Preferences dialog with a "smart" feature that lets you type keywords so
 that if I start typing "pass," it will take me to the section to
 configure passwords.

 What do the lessons about the invention, further
 development, and adoption of your language say to people developing
 computer systems today and in the forseeable
 future?

Guido: I have one or two small
 thoughts about this. I'm not the philosophical kind, so this is not the
 kind of question I like or to which I have a prepared response, but
 here's one thing I realized early on that I did right with Python (and
 which Python's predecessor, ABC, didn't do, to its detriment). A system
 should be extensible by its users. Moreover, a large system should be
 extensible at two (or more) levels.
Since the first time I released Python to the general public, I
 got requests to modify the language to support certain kinds of use
 cases. My first response to such requests is always to suggest writing
 some Python code to cover their needs and put it in a module for their
 own use. This is the first level of extensibility—if the functionality is useful enough, it
 may end up in the standard library.
The second level of extensibility is to write an extension module
 in C (or in C++, or other languages). Extension modules can do certain
 things that are not feasible in pure Python (though the capabilities of
 pure Python have increased over the years). I would much rather add a
 C-level API so that extension modules can muck around in Python's
 internal data structures, than change the language itself, since
 language changes are held to the highest possible standard of
 compatibility, quality, semantic clarity, etc. Also, "forks" in the
 language might happen when people "help themselves" by changing the
 language implementation in their own copy of the interpreter, which they
 may distribute to others as well. Such forks cause all sorts of
 problems, such as maintenance of the private changes as the core
 language also evolves, or merging multiple independently forked versions
 that other users might need to combine. Extension modules don't have
 these problems; in practice most functionality needed by extensions is
 already available in the C API, so changes to the C API are rarely
 necessary in order to enable a particular extension.
Another thought is to accept that you don't get everything right
 the first time. Early on during development, when you have a small
 number of early adopters as users, is the time to fix things drastically
 as soon as you notice a problem, never mind backward compatibility. A
 great anecdote I often like to quote, and which has been confirmed as
 truthful by someone who was there at the time, is that Stuart Feldman,
 the original author of "Make" in Unix v7, was asked to change the
 dependence of the Makefile syntax on hard tab characters. His response
 was something along the lines that he agreed tab was a problem, but that
 it was too late to fix since there were already a dozen or so
 users.
As the user base grows, you need to be more conservative, and at
 some point absolute backward compatibility is a necessity. There comes a
 point where you have accumulated so many misfeatures that this is no
 longer feasible. A good strategy to deal with this is what I'm doing
 with Python 3.0: announce a break with backward compatibility for one
 particular version, use the opportunity to fix as many such issues as
 possible, and give the user community a lot of time to deal with the
 transition.
In Python's case, we're planning to support Python 2.6 and 3.0
 alongside each other for a long time—much longer than the usual support
 lifetime of older releases. We're also offering several transitional
 strategies: an automated source-to-source conversion tool that is far
 from perfect, combined with optional warnings in version 2.6 about the
 use of functionality that will change in 3.0 (especially if the
 conversion tool cannot properly recognize the situation), as well as
 selective back-porting of certain 3.0 features to 2.6. At the same time,
 we're not making 3.0 a total rewrite or a total redesign (unlike Perl 6
 or, in the Python world, Zope 3), thereby minimizing the risk of
 accidentally dropping essential functionality.

 One trend I've noticed in the past four or five years is
 much greater corporate adoption of dynamic languages. First PHP, Ruby in
 some context, definitely Python in other contexts, especially Google.
 That's interesting to me. I wonder where these people were 20 years ago
 when languages like Tcl and Perl, and Python a little bit later, were
 doing all of these useful things. Have you seen desire to make these
 languages more enterprise-friendly, whatever that
 means?

Guido: Enterprise-friendly is
 usually when the really smart people lose interest and the people of
 more mediocre skills have to somehow fend for themselves. I don't know
 if Python is harder to use for mediocre people. In a sense you would
 think that there is quite a bit of damage you cannot do in Python
 because it's all interpreted. On the other hand, if you write something
 really huge and you don't use enough unit testing, you may have no idea
 what it actually does.
You've made the argument that a line of Python, a line
 of Ruby, a line of Perl, a line of PHP, may be 10 lines of Java
 code.
Guido: Often it is. I think that
 the adoption level in the enterprise world, even though there are
 certain packages of functionality that are helpful, is probably just a
 fear of very conservative managers. Imagine the people in charge of IT
 resources for 100,000 people in a company where IT is not a main
 product—maybe they are building cars, or doing insurance, or something
 else, but everything they do is touched by computers. The people in
 charge of that infrastructure necessarily have to be very conservative.
 They will go with stuff that looks like it has a big name attached, like
 maybe Sun or Microsoft, because they know that Sun and Microsoft screw
 up all the time, but these companies are obliged to recover from those
 screwups and fix them, even if it takes five years.
Open source projects traditionally have just not offered that same
 peace of mind to the average CIO. I don't know exactly if and how and
 when that will change. It's possible that if Microsoft or Sun suddenly
 supported Python on their respective VMs, programmers in enterprises
 would actually discover that they can get higher productivity without
 any downsides by using more advanced languages.

Chapter 3. APL

In the late 1950s, while on the faculty of Harvard University,
 Kenneth Iverson devised an extension of mathematical notation for
 the precise description of algorithms. Then, along with Adin Falkoff and other researchers at IBM, the team gradually
 turned the notation into a full-fledged programming language called
 APL. The language uses an extended character set requiring
 a specialized keyboard and appears on the page as strings of sometimes
 unfamiliar symbols—but the underlying consistency of the language makes
 it easy to learn, and its unmatched array-processing capabilities make
 it extraordinarily powerful. Its spiritual descendents, J and K,
 continue APL's legacy of concise and powerful algebraic
 manipulations.

Paper and Pencil

 I read a paper written by you and Ken Iverson, "The
 Design of APL," which said that the first seven or eight years of
 development happened without any computer involved! This let you change
 design aspects without having to worry about legacy issues. How did the
 first software implementation influence the evolution of the
 language?

Adin Falkoff: Yes, the first years
 of the evolution of APL, when it had no name other than "Iverson's
 notation," were mainly concerned with paper-and-pencil mathematical
 applications, analysis of digital systems, and teaching. To a great
 extent, we thought of programming as a branch of mathematics concerned
 with the discovery and design of algorithms, and this concept was
 supported by the symbolic form of the notation. The attractiveness of
 the notation as a general programming language became evident after a
 while, and was advanced by the efforts of various people (in particular,
 Herb Hellerman at IBM) who experimented with machine implementations of
 significant elements of the notation, including primitive functions and
 array operations. Nevertheless, it is true that throughout this period
 we had complete freedom to design the language without concern for
 "legacy" issues.
The most significant early evolution of the language took place in
 two steps. First was the writing and publication of "The Formal Description of System 360" [IBM
 Systems Journal, 1964]. In order to formally describe some of
 the behavior of this newly designed computing system, some additions and
 modifications to the notation described in Iverson's book (A
 Programming Language [Wiley]) were necessary. Second was the
 design of a type element for Selectric-based terminals, which we
 undertook in anticipation of using the language on a machine. This
 imposed significant restraints arising from the linear nature of
 typewriting, and mechanical requirements of the Selectric mechanism. I
 believe there is considerable detail on the influence of these two
 factors on the evolution of the language in the paper you refer to,
 "The Design of APL" [IBM Journal of Research and
 Development, 1974].
The first comprehensive implementation of the language was, of
 course, APL\360. It necessarily introduced facilities to write
 defined functions (i.e., programs)—something taken for granted when
 using pencil and paper—and for controlling the environment in which
 programs would be executed. The ideas introduced then, including the
 workspace and library system, rules for scope of names, and the use of
 shared variables for communication with other systems, have persisted
 without significant change. Programs written for APL\360 run without
 modification on the modern APL systems that I am familiar with.
It is fair to say that the presence of an implementation
 influenced further evolution of the language by the strict application
 of the principle that new ideas must always subsume the earlier ones,
 and, of course, by the constant critical examination of how the language
 was working for new and different applications.

 When you defined the syntax, how did you picture the
 typical APL programmer?

Adin: We did not direct our
 thinking about syntax to programmers as such, but rather conceived the language as
 being a communication medium for people, which incidentally should also
 work for people communicating with machines. We did realize that users
 would have to be comfortable with a symbolic language like algebra, but
 also felt that they would come to appreciate the power of symbolic representation, as it facilitates formal
 manipulation of expressions leading to more effective analysis and
 synthesis of algorithms. Specifically, we did not believe a lot of
 experience or knowledge of mathematics was necessary, and in fact used
 the APL system for teaching at the elementary and high school level with
 some notable success.
As time went on, we found that some of the most skilled and
 experienced programmers were attracted to APL, used it, and contributed
 to its development.

 Did the complex syntax limit the diffusion of
 APL?

Adin: The syntax of APL and its
 effect on the acceptance of the language is well worth discussing,
 although I do not agree with the statement that it is "complex." APL was
 based on mathematical notation and algebraic expressions,
 regularized by removing anomalous forms and generalizing accepted
 notation. For example, it was decided that dyadic functions like
 addition or multiplication would stand between their two arguments, and
 monadic functions would consistently have the function symbols written
 before the argument, without exceptions such as are found in traditional
 math notation, so that absolute value in APL has one vertical bar before
 the argument and not bars on both sides, and the symbol for factorial in
 APL comes before the argument rather than following it. In this respect,
 the syntax of APL was simpler than the syntax of its historical
 source.
The syntax of APL was also simpler than that of algebraic notation
 and other programming languages in another very important way: the
 precedence rule for the evaluation of expressions in APL is simply that
 all functions have the same precedence, and the user does not have to
 remember whether exponentiation is carried out before multiplication, or
 where defined functions fit into the hierarchy. The rule is simply that
 the rightmost subexpression is evaluated first.
Hence, I don't believe that the syntax of APL limited the
 diffusion of the language, although the character set, using many nonalphabetic symbols not easily
 available on standard keyboards, probably did have such an
 effect.

 How did you decide to use a special character set? How
 did that character set evolve over time?

Adin: The character set was defined
 by the use of conventional mathematical notation, augmented by a few
 Greek letters and some visually suggestive symbols like the quad.
There was also the practical influence of the linear typewriter
 limitation, leading to the invention of some characters that could be
 produced by overstriking. Later on, as terminals and input devices
 became more versatile, these composite characters became primitive
 symbols in their own right, and a few new characters were introduced to
 accommodate new facilities, such as the diamond for a statement
 separator.

 Was there a conscious decision to use the limited
 resources of the time more productively?

Adin: The character set definitely
 was influenced by the desire to optimize the use of the limited
 resources available at the time; but the concise, symbolic
 form was developed and maintained because of the conviction that it
 facilitated analysis and formal manipulation of expressions. Also, the
 brevity of programs compared to equivalent ones written in other
 languages makes it easier to comprehend the logical flow of a program
 once the effort is made to read it in the concise APL
 representation.

 I would think people needed a lot of training to learn
 the language, especially the character set. Was there a process of
 natural selection, which meant that APL programmers were experts at the
 language? Were they more productive? Did they write higher-quality code
 with fewer bugs?

Adin: Learning APL to the point of being able to write programs
 at the level of FORTRAN, for example, was actually not difficult or
 lengthy. Programming in APL was more productive because of the
 simplicity of the rules, and the availability of primitive functions for
 data manipulation like sorting, or mathematical functions like matrix
 inversion. These factors contributed to the conciseness of APL programs,
 which made them easier to analyze and debug. Credit for productivity
 must also be given to the APL implementations, using workspaces with all their useful
 properties, and the interactive terminal-based interpretive
 systems.

 A super-concise form of expression might be incredibly
 useful on devices with a small screen like PDAs or smartphones!
 Considering that APL was first coded on big iron such as IBM System/360,
 would it be extensible to handle modern projects that need to manage
 network connections and multimedia data?

Adin: An implementation of APL on a
 handheld device would at the very least provide a very powerful hand
 calculator; and I see no problem with networks and multimedia, as such
 applications have been managed in APL systems for a very long time.
 Tools for managing GUIs are generally available on modern APL
 systems.
Early on in the development of APL systems, facilities for
 managing host operating systems and hardware from within APL functions
 were introduced, and were utilized by APL system programmers to manage
 the performance of APL itself. And commercial APL time-sharing systems
 dependent upon networks for their economic viability used APL for
 managing their networks.
It is true that the first commercially viable APL systems were
 coded on large machines, but the earliest implementations, which
 demonstrated the feasibility of APL systems, were done on relative small machines, such
 as the IBM 1620 and the IBM 1130 family, including the IBM 1500, which
 had significant usage in educational applications. There was even an
 implementation on an early experimental desktop machine, dubbed "LC" for
 "low cost," that had but a few bytes of memory and a low-capacity disk. The evolution of IBM
 APL implementation is described in some detail in the paper "The IBM
 Family of APL Systems" [IBM Systems Journal,
 1991].

Elementary Principles

 When you pursued standardization, was it a deliberate
 decision?

Adin: We surely started
 standardization fairly early; in fact I think I wrote a paper about it,
 and we got to be part of ISO. We always wanted to standardize things and
 we managed to a large extent to do that. We discouraged people from
 fiddling around with the basic structures of the language, adding
 arbitrary kind of things that would complicate the syntax, or violate
 some of the elementary principles we were trying to maintain.

 What was your main desire for standardization,
 compatibility or conceptual purity?

Adin: The desire of standardization
 is an economic issue. We surely wanted APL to be viable economically,
 and since a lot of different people were implementing and using it, it
 seemed a good idea to have a standard.

 Several different vendors had different APL compilers.
 Without strong standardization, what happens when you have an extension
 that works on one system but not on another?

Adin: That is something worked on
 rather carefully by the APL standardization committees, and efforts were
 made to compromise between extensibility and purity.

 You want people to be able to solve problems you haven't
 anticipated, but you don't want them to remove the essential nature of
 your system. Forty years later, how do you think the language holds up?
 Are the design principles you chose still
 applicable?

Adin: I think so; I really don't
 see anything really wrong.

 Is that because you spent a lot of time designing it
 carefully or because you had a very strong theoretical background with
 algebra?

Adin: I think we were a couple of
 reasonably smart people with a belief in the concepts of simplicity and
 practicality, and an unwillingness to compromise that vision.
I found it too much trouble to try to learn and remember all the
 rules in other languages so I tried to keep it simple from that
 standpoint, so that I could use it.
Some of our way of thinking shows up in papers, especially the
 ones jointly authored by Iverson and me. I myself later wrote a paper
 that was called "A Note on Pattern Matching: Where do you find the match to
 an empty array?"[APL Quote Quad, 1979], which used some nice reasoning
 involving small programs and algebraic principles, to obtain the
 reported results, which turned out to be consistent and useful. The
 paper looked at various possibilities, and found that the one simplest
 to express works out better than any other.

 I found it really fascinating to build a language from a
 small set of principles and discovering new ideas built on those
 principles. That seems like a good description of mathematics. What is
 the role of math in computer science and
 programming?

Adin: I believe that computer science is a branch of
 mathematics.
Programming of mathematical computations is obviously part of
 mathematics, especially the numerical analysis required to constantly
 maintain compatibility between discrete digital operations and the
 continuity of theoretical analysis.
Some other thoughts that come to mind are: the impetus from math
 problems that can be solved only by extensive computations that inspire
 need for speed; the discipline of logical thought required for math and
 carried over to programming of all kinds; the notion of algorithms,
 which are a classical mathematical tool; and the various specialized
 branches of mathematics, such as topology, that lend themselves to
 analysis of computational problems.
I have read some other discussions where you and other
 people suggested that one of the interesting applications was using APL
 to teach programming and mathematics at the elementary and high school
 levels.
Adin: We did some of that,
 particularly at the beginning, and we had a little fun with it.
At that time we only had typewriter terminals and we made some
 available to some local private schools. There was one in particular
 where problem students were supposed to be taught, and we gave them
 exercises to do on the typewriter and turned them loose.
The fun part was that we found that some of these students who
 were supposed to be resistant to learning broke into the school after
 hours so they could do more work on it. They were using typewriter
 terminals hooked to our time-sharing system.

 So they enjoyed that so much they suddenly had to do it
 even afterward?

Adin: Yes.

 You used APL to teach "programming thinking" to
 nonprogrammers. What made APL attractive for
 nonprogrammers?

Adin: In the early days one of the
 things was you didn't have all this overhead, you didn't have to make
 declarations before you added two numbers, so if you wanted to add 7 and
 5 you just wrote down 7 + 5, instead of saying there is a number called
 7 and there is a number called 5, these are numbers, floating point or
 not floating point, and the result is a number and I want to store the
 result here, so there was a lower barrier in APL to doing what you
 wanted.
When someone is learning to program, the initial step
 toward doing that first thing is very small. You basically write down
 what you want to do, and you don't have to spend time pleasing a
 compiler to get it to work.
Adin: That's right.

 Easy to start and easy to play with. Does this technique
 let people become programmers or increase their programming
 knowledge?

Adin: The easy accessibility makes
 it easy to experiment, and if you can experiment and try out different
 things, you learn, and so I think that is favorable toward the
 development of programming skills.
The notation that you chose for APL is different from
 traditional algebraic notation.
Adin: Well, it's not that
 different…the precedence rules are different. They are very simple: you
 go from right to left.

 Did you find that much easier to
 teach?

Adin: Yes, because there is only
 one rule and you don't have to say that if it's a defined function, you
 go this way, and if it's exponentiation, it has precedence over
 multiplication, or stuff like that. You just say, "look at the line of
 the instructions and take it from right to left."

 Was this a deliberate design decision to break with
 familiar notation and precedence in favor of greater
 simplicity?

Adin: That's right. Greater
 simplicity and greater generality.
I think Iverson was mainly responsible for that. He was quite good
 at algebra and he was very interested in teaching. One example he liked
 to use was the representation of polynomials, which is extremely simple
 in APL.

 When I first saw that notation, even though it was
 unfamiliar, it did seem conceptually much simpler overall. How do you
 recognize simplicity in a design or an implementation? Is that a matter
 of good taste or experience, or is there a rigorous process you apply to
 try to find optimal simplicity?

Adin: I think to some extent it
 must be subjective, because it depends somewhat on your experience and
 where you come from. I would say the fewer there rules are, the simpler
 it is in general.

 You started from a small set of axioms and you can build
 from there, but if you understand that small set of axioms, you can
 derive more complexity?

Adin: Well, let's take this matter
 of precedence. I think it's simpler to have the precedence based on a simple form from right to left, than on a basis
 of a table that says this function goes first and that function goes
 second. I think it is one rule versus an almost limitless number of
 rules.
You see, in any particular application you set up your own set of
 variables and functions, and for a particular application you might find
 it simpler to write some new rules, but if you are looking at a general
 language like APL, you want to start with the fewest possible number of
 rules.

 To give people designing systems built with the
 language more opportunity to evolve?

Adin: People who are building
 applications are in fact building languages; fundamentally, programming
 has to do with developing languages suitable for particular
 applications.
You express the problem in a language specific to its
 domain.
Adin: But then those objects,
 notably the nouns and the verbs, the objects and the functions, they
 have to be defined in something, for example in a general-purpose
 language like APL.
So you use APL to define these things, but then you set up your
 operations to facilitate the kind of things you want to do in that
 application.

 Is your concern constructing the building blocks people
 can use to express themselves?

Adin: My concern is giving them the
 basic building blocks if you like, the fundamental tools for
 constructing the building blocks that are suitable and appropriate for
 what they are trying to accomplish in the field in which they are
 working.
It seems to be a concern shared by other language
 designers; I think of Chuck Moore with Forth, or John McCarthy with
 Lisp, and Smalltalk in the early 70s.
Adin: I'm sure that's the
 case.
McCarthy, I know, is a theoretical kind of person and he was
 concerned with developing a system to express the lambda calculus
 effectively, but I don't think the lambda calculus is as convenient for
 most purposes as plain old algebra, from which APL derives.

 Suppose I want to design a new programming language.
 What's the best piece of advice you can give me?

Adin: I guess the best thing I can
 say is do something that you enjoy, something that pleases you to work
 with, something that helps you accomplish something that you would like
 to do.
We were always very personal in our approach, and I think most designers are,
 as I read what people have to say. They started doing things that they
 wanted to do, which then turned out to be useful generally.

 When you were designing APL, were you able to see at
 some point "we are going in the wrong direction here; we need to scale
 back this complexity" or "we have several different solutions; we can
 unify them into something much simpler"?

Adin: That is approximately right,
 but there was usually a question of "is this a generalization which
 subsumes what we already have, and what is the likelihood that it is
 going to enable us to do a lot more with very little further
 complication?"
We paid a lot of attention to end conditions—what happens in a
 limit when you go from 6 to 5 to 4 down to 0, for example. Thus, in
 reduction you are applying a function like summation to a vector, and if
 you are summing up a vector that has n elements and
 then n minus one elements, and so on, what happens
 when you eventually have no elements? What's the sum? It has to be 0
 because that's the identity element.
In the case of multiplication, the multiplication over an empty
 vector goes to 1, because that's the identity element for that
 function.

 You mentioned looking at several different solutions and
 trying to generalize and asking yourself the question of what happens
 when approaching 0, for example. If you hadn't already known that when
 you do a reduction, you need to end up at the identity element for when
 n is 0, you could look at both those cases and say "Here is the argument
 we make: it is 0 when this case and it's 1 in this case, because it is
 the identity element."

Adin: That's right. That's one of
 the processes we used.
What happens in the special cases is very important, and when you
 use APL effectively, you keep applying that criterion to the more
 elaborate functions that you might be developing for a particular
 application. This often leads to unexpected but gratifying
 simplification.

 Do the design techniques you use when creating a
 language inform the design techniques people might use when programming
 in the language?

Adin: Yes, because as I said
 before, programming is a process of designing languages. I think that's
 a very fundamental thing, which is not often mentioned in the literature
 as far as I know.

 Lisp programmers do, but in a lot of the languages that
 came afterward, especially Algol and its C derivatives, people don't
 seem to think this way. Is there a divide between what is built in the
 language and what's not, where everything else is second
 class?

Adin: Well, what do we mean by
 second class? In APL the so-called second class follows the same rules
 as the first class, and we don't have any problem there.

 You can make the same argument for almost all of Lisp or
 Scheme or Smalltalk, but C has a distinct division between operators and
 functions, and user-created functions. Is making that distinction sharp
 between these entities a design mistake?

Adin: I don't know if I would call
 it a mistake, but I think it's simpler to have the same rules apply to
 both what's primitive and not primitive.

 What's the biggest mistake you've made with regard to
 design or programming? What did you learn from it?

Adin: When work on APL first began,
 we consciously avoided making design decisions that catered to the
 computer environment. For example, we eschewed the use of declarations,
 seeing their use as an unnecessary burden on the user when the machine
 could easily determine the size and type of a data object from the
 object itself at the time of its input or generation. In the course of
 time, however, as APL became more widely used with more and more vested
 interests, hardware factors were increasingly difficult to avoid.
Perhaps the biggest mistake that I personally made was to
 underestimate advances in hardware and become too conservative in system
 design. In contemplating early implementation of APL on the PC, for
 instance, I advocated leaving out recent language extensions to
 general arrays and complex numbers because these would
 strain the capacity of the extant hardware to provide satisfactory
 performance. Fortunately, I was overruled, and it was not long before
 major increases in PC memory and processor speeds made such powerful
 extensions completely feasible.
It is hard to think of big mistakes made in programming because
 one expects to make errors in the course of writing a program of
 reasonable complexity. It then depends on the programming tools how the
 error grows, when it is discovered, and how much has to be redone to
 recover from it. Modularization and ready reuse of idiomatic code
 fragments, as follows from the functional programming style fostered by
 APL, tends to limit the generation and propagation of errors so they
 don't become big mistakes.
As for mistakes in the design of APL itself, our method of
 development, using consensus among the designers and implementers as the
 ultimate deciding factor, and feedback from users gaining practical
 experience in a diversity of applications as well as our own use of the
 language before design was frozen, helped us avoid serious
 errors.
However, one person's exercise of principle may be another's idea
 of a mistake, and even over long periods of time, differences may not be
 empirically resolvable. Two things come to mind.
One is the character set. There was from the earliest times
 considerable pressure to use reserved words instead of the abstract
 symbols chosen to represent primitive functions. Our position was that
 we were really dealing with extensions to mathematics, and the evolution
 of mathematical notation was clearly in the direction of using symbols,
 which facilitated formal manipulation of expressions. Later on, Ken
 Iverson, who had an abiding interest in the teaching of mathematics,
 chose to limit the character set to ASCII in his further work, on the
 language J, so that J systems could be easily accessible to students and
 others without specialized hardware. My own inclination was and is to
 stick with the symbolic approach; it's more in keeping with history and
 ultimately easier to read. Time will tell if either direction is
 mistaken, or if it doesn't really matter.
The second thing that comes to mind as possibly leading to a
 significant mistake in direction that may never be decided is the
 treatment of general arrays, i.e., arrays whose scalar elements may
 themselves have an accessible structure within the language. After APL\360 was established as an
 IBM product (one of the very first such when IBM unbundled its software and
 hardware in 1966 or 1967), we began to look at extensions to more general arrays and had
 extensive studies and discussions regarding the theoretical
 underpinnings. Ultimately APL systems have been built with rival ways of
 treating scalar elements and syntactic consequences. It will be
 interesting to see how this evolves as the general interest in parallel
 programming becomes more commercially important.

End of sample

 To search for additional titles please go to

 http://search.overdrive.com.

OEBPS/oreilly_large.gif
O’REILLY

OEBPS/httpatomoreillycomsourceoreillyimages265900.jpg
AFUra
(B
9 (e
oy

%

Lig)
2P

& :
_C%r

@asiclu
@)

b

O'REILLY®

OO%

@OBIECIM

D

