

 [image: bash Cookbook]

 bash Cookbook

Carl Albing

JP Vossen

Cameron Newham

Editor
Mike Loukides

Copyright © 2008 O'Reilly Media, Inc.

[image:]

O'Reilly Media

SPECIAL OFFER: Upgrade this ebook with O’Reilly

Click here for more information on this offer!
Please note that upgrade offers are not available from sample content.

A Note Regarding Supplemental Files

Supplemental files and examples for this book can be found at http://examples.oreilly.com/9780596526788/. Please use a standard desktop web browser to access these files, as they may not be accessible from all ereader devices.
All code files or examples referenced in the book will be available online. For physical books that ship with an accompanying disc, whenever possible, we’ve posted all CD/DVD content. Note that while we provide as much of the media content as we are able via free download, we are sometimes limited by licensing restrictions. Please direct any questions or concerns to booktech@oreilly.com.

Preface

Every modern operating system has at least one shell and some have
 many. Some shells are command-line oriented, such as the shell discussed
 in this book. Others are graphical, like Windows Explorer or the Macintosh
 Finder. Some users will interact with the shell only long enough to launch
 their favorite application, and then never emerge from that until they log
 off. But most users spend a significant amount of time using the shell.
 The more you know about your shell, the faster and more productive you can
 be.
Whether you are a system administrator, a programmer, or an end
 user, there are certainly occasions where a simple (or perhaps not so
 simple) shell script can save you time and effort, or facilitate
 consistency and repeatability for some important task. Even using an alias
 to change or shorten the name of a command you use often can have a
 significant effect. We'll cover this and much more.
As with any general programming language, there is more than one way
 to do a given task. In some cases, there is only one
 best way, but in most cases there are at least two or
 three equally effective and efficient ways to write a solution. Which way
 you choose depends on your personal style, creativity, and familiarity
 with different commands and techniques. This is as true for us as authors
 as it is for you as the reader. In most cases we will choose a single
 method and implement it. In a few cases we may choose a particular method
 and explain why we think it's the best. We may also occasionally show more
 than one equivalent solution so you can choose the one that best fits your
 needs and environment.
There is also sometimes a choice between a clever way to write some
 code, and a readable way. We will choose the readable way every time
 because experience has taught us that no matter how transparent you think
 your clever code is now, six or eighteen months and 10 projects from now,
 you will be scratching your head asking your-self what you were thinking.
 Trust us, write clear code, and document it—you'll thank yourself (and us)
 later.
Who Should Read This Book

This book is for anyone who uses a Unix or Linux system, as well
 as system administrators who may use several systems on any given day.
 With it, you will be able to create scripts that allow you to accomplish
 more, in less time, more easily, consistently, and repeatably than ever
 before.
Anyone? Yes. New users will appreciate the sections on automating
 repetitive tasks, making simple substitutions, and customizing their
 environment to be more friendly and perhaps behave in more familiar
 ways. Power users and administrators will find new and different
 solutions to common tasks and challenges. Advanced users will have a
 collection of techniques they can use at a moment's notice to put out
 the latest fire, without having to remember every little detail of
 syntax.
Ideal readers include:
	New Unix or Linux users who don't know much about the shell,
 but want to do more than point and click

	Experienced Unix or Linux users and system administrators
 looking for quick answers to shell scripting questions

	Programmers who work in a Unix or Linux (or even Windows)
 environment and want to be more productive

	New Unix or Linux sysadmins, or those coming from a Windows
 environment who need to come up to speed quickly

	Experienced Windows users and sysadmins who want a more
 powerful scripting environment

This book will only briefly cover basic and intermediate shell
 scripting—see Learning the bash Shell by Cameron
 Newham (O'Reilly) and Classic Shell Scripting by
 Nelson H.F. Beebe and Arnold Robbins (O'Reilly) for more in-depth
 coverage. Instead, our goal is to provide solutions to common problems,
 with a strong focus on the "how to" rather than the theory. We hope this
 book will save you time when figuring out solutions or trying to
 remember syntax. In fact, that's why we wrote this book. It's one we
 wanted to read through to get ideas, then refer to practical working
 examples when needed. That way we don't have to remember the subtle
 differences between the shell, Perl, C, and so forth.
This book assumes you have access to a Unix or Linux system (or
 see Getting bash for Unix, "Getting bash Without
 Getting bash" and Testing Scripts in VMware, "Testing
 Scripts in VM ware") and are familiar with logging in, typing basic
 commands, and using a text editor. You do not have to be root to use the
 vast majority of the recipes, though there are a few, particularly
 dealing with installing bash, where root access will be needed.

About This Book

This book covers bash, the GNU Bourne Again
 Shell, which is a member of the Bourne family of shells that includes
 the original Bourne shell sh, the Korn shell
 ksh, and the Public Domain Korn Shell
 pdksh. While these and other shells such as
 dash, and zsh are not
 specifically covered, odds are that most of the scripts will work pretty
 well with them.
You should be able to read this book cover to cover, and also just
 pick it up and read anything that catches your eye. But perhaps most
 importantly, we hope that when you have a question about how to do
 something or you need a hint, you will be able to easily find the right
 answer—or something close enough—and save time and effort.
A great part of the Unix philosophy is to build simple tools that
 do one thing well, then combine them as needed. This combination of
 tools is often accomplished via a shell script because these commands,
 called pipelines, can be long or difficult to remember and type. Where
 appropriate, we'll cover the use of many of these tools in the context
 of the shell script as the glue that holds the pieces together to
 achieve the goal.
This book was written using OpenOffice.org Writer running on
 whatever Linux or Windows machine happened to be handy, and kept in
 Subversion (see Appendix D). The nature of the
 Open Document Format facilitated many critical aspects of writing this
 book, including cross-references and extracting code see Processing Files with No Line Breaks, "Processing Files
 with No Line Breaks."
GNU Software

bash, and many of the tools we discuss in
 this book, are part of the GNU Project (http://www.gnu.org/). GNU (pronounced guh-noo, like
 canoe) is a recursive acronym for "GNU's Not Unix" and the project
 dates back to 1984. Its goal is to develop a free (as in freedom)
 Unix-like operating system.
Without getting into too much detail, what is commonly referred
 to as Linux is, in fact, a kernel with various
 supporting software as a core. The GNU tools are wrapped around it and
 it has a vast array of other software possibly included, depending on
 your distribution. However, the Linux kernel itself is not GNU
 software.
The GNU project argues that Linux should in fact be called
 "GNU/Linux" and they have a good point, so some distributions, notably
 Debian, do this. Therefore GNU's goal has arguably been achieved,
 though the result is not exclusively GNU.
The GNU project has contributed a vast amount of superior
 software, notably including bash, but there are
 GNU versions of practically every tool we discuss in this book. And
 while the GNU tools are more rich in terms of features and (usually)
 friendliness, they are also sometimes a little different. We discuss
 this in Developing Portable Shell Scripts,
 "Developing Portable Shell Scripts," though the commercial Unix
 vendors in the 1980s and 1990s are also largely to blame for these
 differences.
Enough (several books this size worth) has already been said
 about all of these aspects of GNU, Unix, and Linux, but we felt that
 this brief note was appropriate. See http://www.gnu.org for much more on the topic.

A Note About Code Examples

When we show an executable piece of shell scripting in this
 book, we typically show it in an offset area like this:
	$ ls
	a.out cong.txt def.conf file.txt more.txt zebra.list
	$
The first character is often a dollar sign ($) to indicate that
 this command has been typed at the bash shell
 prompt. (Remember that you can change the prompt, as in Customizing Your Prompt, "Customizing Your Prompt," so
 your prompt may look very different.) The prompt is printed by the
 shell; you type the remainder of the line. Similarly, the last line in
 such an example is often a prompt (the $ again), to show that the
 command has ended execution and control has returned to the
 shell.
The pound or hash sign (#) is a little trickier. In many Unix or
 Linux files, including bash shell scripts, a leading # denotes a
 comment, and we have used it that way in some out our code examples.
 But as the trailing symbol in a bash command prompt (instead of $), #
 means you are logged in as root. We only have one example that is
 running anything as root, so that shouldn't be confusing, but it's
 important to understand.
When you see an example without the prompt string, we are
 showing the contents of a shell script. For several large examples we
 will number the lines of the script, though the numbers are not part
 of the script.
We may also occasionally show an example as a session log or a
 series of commands. In some cases, we may cat one or more files so you can see the
 script and/or data files we'll be using in the example or in the
 results of our operation.
	$ cat data_file
	static header line1
	static header line2
	1 foo
	2 bar
	3 baz
Many of the longer scripts and functions are available to
 download as well. See the end of this Preface for details. We have
 chosen to use #!/usr/bin/env bash
 for these examples, where applicable, as that is more portable than
 the #!/bin/bash you will see on
 Linux or a Mac. See Finding bash Portably for #!,
 "Finding bash Portably for #!" for more details.
Also, you may notice something like the following in some code
 examples:
	# cookbook filename: snippet_name
That means that the code you are reading is available for
 download on our site (http://www.bashcookbook.com). The download
 (.tgz or .zip) is
 documented, but you'll find the code in something like
 ./chXX/snippet_name, where
 chXX is the chapter and
 snippet_name is the name of the file.

Useless Use of cat

Certain Unix users take a positively giddy delight in pointing
 out inefficiencies in other people's code. Most of the time this is
 constructive criticism gently given and gratefully received.
Probably the most common case is the so-called "useless use of
 cat award" bestowed when someone does something
 like cat file | grep foo instead of
 simply grep foo file. In this case,
 cat is unnecessary and incurs some system
 overhead since it runs in a subshell. Another common case would be
 cat file | tr '[A-Z]' '[a-z]'
 instead of tr '[A-Z]' '[a-z]' <
 file. Sometimes using cat can even
 cause your script to fail (see Forgetting That Pipelines Make Subshells, "Forgetting
 That Pipelines Make Subshells").
But… (you knew that was coming, didn't you?) sometimes
 unnecessarily using cat actually does serve a
 purpose. It might be a placeholder to demonstrate the fragment of a
 pipeline, with other commands later replacing it (perhaps even
 cat -n). Or it might be that
 placing the file near the left side of the code draws the eye to it
 more clearly than hiding it behind a < on the far right side of the
 page.
While we applaud efficiency and agree it is a goal to strive
 for, it isn't as critical as it once was. We are
 not advocating carelessness and code-bloat, we're
 just saying that processors aren't getting any slower any time soon.
 So if you like cat, use it.

A Note About Perl

We made a conscious decision to avoid using Perl in our
 solutions as much as possible, though there are still a few cases
 where it makes sense. Perl is already covered elsewhere in far greater
 depth and breadth than we could ever manage here. And Perl is
 generally much larger, with significantly more overhead, than our
 solutions. There is also a fine line between shell scripting and Perl
 scripting, and this is a book about shell scripting.
Shell scripting is basically glue for sticking Unix programs
 together, whereas Perl incorporates much of the functionality of the
 external Unix programs into the language itself. This makes it more
 efficient and in some ways more portable, at the expense of being
 different, and making it harder to efficiently run any external
 programs you still need.
The choice of which tool to use often has more to do with
 familiarity than with any other reason. The bottom line is always
 getting the work done; the choice of tools is secondary. We'll show
 you many of ways to do things using bash and
 related tools. When you need to get your work done, you get to choose
 what tools you use.

More Resources

	Perl Cookbook, Nathan Torkington and
 Tom Christiansen (O'Reilly)

	Programming Perl, Larry Wall et al.
 (O'Reilly)

	Perl Best Practices, Damian Conway
 (O'Reilly)

	Mastering Regular Expressions, Jeffrey
 E. F. Friedl (O'Reilly)

	Learning the bash Shell, Cameron Newham
 (O'Reilly)

	Classic Shell Scripting, Nelson H.F.
 Beebe and Arnold Robbins (O'Reilly)

Conventions Used in This Book

The following typographical conventions are used in this
 book:
	Plain text
	Indicates menu titles, menu options, menu buttons, and
 keyboard accelerators (such as Alt and Ctrl).

	Italic
	Indicates new terms, URLs, email addresses, filenames, file
 extensions, pathnames, directories, and Unix utilities.

	Constant width
	Indicates commands, options, switches, variables,
 attributes, keys, functions, types, classes, namespaces, methods,
 modules, properties, parameters, values, objects, events, event
 handlers, XML tags, HTML tags, macros, the contents of files, or
 the output from commands.

	Constant width
 bold
	Shows commands or other text that should be typed literally
 by the user.

	Constant width italic
	Shows text that should be replaced with user-supplied
 values.

Tip
This icon signifies a tip, suggestion, or general note.

Warning
This icon indicates a warning or caution.

Using Code Examples

This book is here to help you get your job done. In general, you
 may use the code in this book in your programs and documentation. You do
 not need to contact us for permission unless you're reproducing a
 significant portion of the code. For example, writing a program that
 uses several chunks of code from this book does not require permission.
 Selling or distributing a CD-ROM of examples from O'Reilly books does
 require permission. Answering a question by citing this book and quoting
 example code does not require permission. Incorporating a significant
 amount of example code from this book into your product's documentation
 does require permission.
We appreciate, but do not require, attribution. An attribution
 usually includes the title, author, publisher, and ISBN. For example:
 "bash Cookbook by Carl Albing, JP Vossen, and
 Cameron Newham. Copyright 2007 O'Reilly Media, Inc.,
 978-0-596-52678-8."
If you feel your use of code examples falls outside fair use or
 the permission given above, feel free to contact us at
 permissions@oreilly.com.

We'd Like to Hear from You

Please address comments and questions concerning this book to the
 publisher:
	O'Reilly Media, Inc.
	1005 Gravenstein Highway North
	Sebastopol, CA 95472
	800-998-9938 (in the United States or Canada)
	707-829-0515 (international or local)
	707-829-0104 (fax)

We have a web page for this book, where we list errata, examples,
 and any additional information. You can access this page at:
	http://www.oreilly.com/catalog/9780596526788

You can find information about this book, code samples, errata,
 links, bash documentation, and more at the authors'
 site:
	http://www.bashcookbook.com

Please drop by for a visit to learn, contribute, or chat. The
 authors would love to hear from you about what you like and don't like
 about the book, what bash wonders you may have
 found, or lessons you have learned.
To comment or ask technical questions about this book, send email
 to:
	bookquestions@oreilly.com

For more information about our books, conferences, Resource
 Centers, and the O'Reilly Network, see our web site at:
	http://www.oreilly.com

Safari® Enabled

When you see a Safari® Enabled icon on the cover of your favorite
 technology book, that means the book is available online through the
 O'Reilly Network Safari Bookshelf.
Safari offers a solution that's better than e-books. It's a
 virtual library that lets you easily search thousands of top tech books,
 cut and paste code samples, download chapters, and find quick answers
 when you need the most accurate, current information. Try it for free at
 http://safari.oreilly.com.

Acknowledgments

Thank you to the GNU Software Foundation and Brian Fox for writing
 bash. And thank you to Chet Ramey, who has been
 maintaining and improving bash since around version
 1.14 in the early to mid-1990s. More thanks to Chet for answering our
 questions and for reviewing a draft of this book.
Reviewers

Many thanks to our reviewers: Yves Eynard, Chet Ramey, William
 Shotts, Ryan Waldron, and Michael Wang. They all provided valuable
 feedback, suggestions and in some cases provided alternate solutions,
 pointed out issues we had overlooked, and in general greatly improved
 the book. Any errors or omissions in this text are ours and not
 theirs. An excellent example of their wisdom is the correct
 observation, "that sentence doesn't know whether it's coming or
 going!"

O'Reilly

Thanks to the entire team at O'Reilly, including Mike Loukides,
 Derek Di Matteo, and Laurel Ruma.

From the Authors

Carl

The writing of a book is never a solitary effort, though it
 has its moments. Thanks to JP and Cameron for working on this
 project with me. Our complementary talents and time schedules have
 made this a better book than it could have been alone. Thanks also
 to JP for his great sysadmin efforts to provide us with some
 infrastructure. Thanks to Mike for listening to my proposal for a
 bash cookbook and putting me in touch with JP
 and Cameron who were doing the same, for pushing us along when we
 got stuck, and reining us in when we went crazy. His steady guidance
 and technical input were much appreciated. My wife and children have
 patiently sup-ported me through this process, giving me
 encouragement, motivation, as well as time and space to work. I
 thank them wholeheartedly.
But deeper than the immediate task of this book was the
 background and preparation. I'm greatly indebted to Dr. Ralph Bjork
 who made it possible for me to start working with Unix, back before
 almost anyone had ever heard of it. His vision, fore-sight, and
 guidance have paid dividends for me longer than I would ever have
 expected.
My work on this book is dedicated to my parents, Hank and
 Betty, who have given me every good thing they had to offer—life
 itself, Christian faith, love, an excellent education, a sense of
 belonging, and all those good and healthy things one hopes to pass
 on to one's own children. I can never thank them enough.

JP

Thanks to Cameron for writing Learning the bash
 Shell, from which I learned a lot and which was my
 primary reference until I started this project, and for contributing
 so much useful material from it. Thanks to Carl for all his work,
 without whom this would have taken four times as long and only been
 half as good. Thanks to Mike for getting the ball rolling, then
 keeping it rolling, and for bringing Carl on board. And thanks to
 both Carl and Mike for their patience with my life and time
 management issues.
This book is dedicated to Dad, who'd get a kick out of it. He
 always told me there are only two decisions that matter: what you do
 and who you marry. I've managed to get two for two, so I guess I'm
 doing pretty well. So this is also dedicated to Karen, for her
 incredible support, patience, and understanding during this longer
 than expected process and without whom even computers wouldn't be as
 fun. Finally, to Kate and Sam, who contributed greatly to my
 aforementioned life management issues.

Cameron

I'd like to thank both JP and Carl for their splendid work,
 without which this book probably wouldn't exist. I'd also like to
 thank JP for coming up with the idea of creating a bash cookbook;
 I'm sure he was regretting it through all those long hours at the
 keyboard, but with the tome complete in his hands I'm certain that
 he's glad he took part. Lastly, I'd like to once again thank
 Adam.

Chapter 1. Beginning bash

What's a shell, and why should you care about it?
Any recent computer operating system (by
 recent, we mean since about 1970) has some sort of
 user interface—some way of specifying commands for the operating system to
 execute. But in lots of operating systems, that command interface was
 really built in and there was only one way to talk to the computer.
 Furthermore, an operating system's command interface would let you execute
 commands, but that was about all. After all, what else was there to
 do?
The Unix operating system popularized the notion of separating the
 shell (the part of the system that lets you type
 commands) from everything else: the input/output system, the scheduler,
 memory management, and all of the other things the operating system takes
 care of for you (and that most users don't want to care about). The shell
 was just one more program; it was a program whose job was executing other
 programs on behalf of users.
But that was the beginning of a revolution. The shell was just
 another program that ran on Unix, if you didn't like the standard one, you
 could create your own. So by the end of Unix's first decade, there were at
 least two competing shells: the Bourne Shell, sh (which was a
 descendant of the original Thomson shell), plus the C Shell, csh. By the end of Unix's
 second decade, there were a few more alternatives: the Korn shell, (ksh), and the first
 versions of the bash shell (bash). By the end of
 Unix's third decade, there were probably a dozen different shells.
You probably don't sit around saying "should I use
 csh or bash or
 ksh today?" You're probably happy with the standard shell that came with your Linux (or BSD or Mac OS X
 or Solaris or HP/UX) system. But disentangling the shell from the
 operating system itself made it much easier for software developers (such
 as Brian Fox, the creator of bash, and Chet
 Ramey, the current developer and maintainer of bash),
 to write better shells—you could create a new shell without modifying the
 operating system itself. It was much easier to get a new shell accepted,
 since you didn't have to talk some operating vendor into building the
 shell into their system; all you had to do was package the shell so that
 it could be installed just like any other program.
Still, that sounds like a lot of fuss for something that just takes
 commands and executes them. And you would be right—a shell that
 just let you type commands wouldn't be very interesting.
 However, two factors drove the evolution of the Unix shell: user convenience and programming. And the result
 is a modern shell that does much more than just accept commands.
Modern shells are very convenient. For example, they remember
 commands that you've typed, and let you re-use those commands. Modern
 shells also let you edit those commands, so they don't have to be the same
 each time. And modern shells let you define your own command
 abbreviations, shortcuts, and other features. For an experienced user,
 typing commands (e.g., with shorthand, shortcuts, command completion) is a
 lot more efficient and effective than dragging things around in a fancy
 windowed interface.
But beyond simple convenience, shells are programmable. There are
 many sequences of commands that you type again and again. Whenever you do
 anything a second time, you should ask "Can't I write a program to do this
 for me?" You can. A shell is also a programming language that's specially
 designed to work with your computer system's commands. So, if you want to
 generate a thousand MP3 files from WAV files, you write a shell program
 (or a shell script). If you want to compress all of
 your system's logfiles, you can write a shell script to do it. Whenever
 you find yourself doing a task repeatedly, you should try to automate it
 by writing a shell script. There are more powerful scripting languages,
 like Perl, Python, and Ruby, but the Unix shell (whatever flavor of shell
 you're using) is a great place to start. After all, you already know how
 to type commands; why make things more complex?
Why bash?

Why is this book about bash, and not some
 other shell? Because bash is everywhere. It may not
 be the newest, and it's arguably not the fanciest or the most powerful
 (though if not, it comes close), nor is it the only shell that's
 distributed as open source software, but it is ubiquitous.
The reason has to do with history. The first shells were fairly
 good programing tools, but not very convenient for users. The C shell
 added a lot of user conveniences (like the ability to repeat a command
 you just typed), but as a programming language it was quirky. The Korn
 shell, which came along next (in the early 80s), added a lot of user
 conveniences, and improved the programming language, and looked like it
 was on the path to widespread adoption. But ksh
 wasn't open source software at first; it was a proprietary software
 product, and was therefore difficult to ship with a free operating
 system like Linux. (The Korn shell's license was changed in 2000, and
 again in 2005.)
In the late 1980s, the Unix community decided standardization was
 a good thing, and the POSIX working groups (organized by the IEEE) were
 formed. POSIX standardized the Unix libraries and utilities, including
 the shell. The standard shell was primarily based on the 1988 version of
 the Korn Shell, with some C shell features and a bit of invention to
 fill in the gaps. bash was begun as part of the GNU
 project's effort to produce a complete POSIX system, which naturally
 needed a POSIX shell.
bash provided the programming features that
 shell programmers needed, plus the conveniences that command-line users
 liked. It was originally conceived as an alternative to the Korn shell,
 but as the free software movement became more important, and as
 Linux became more popular, bash
 quickly overshadowed ksh.
As a result, bash is the default user shell on every Linux distribution we know
 about (there are a few hundred Linux distros, so there are probably a
 few with some oddball default shell), as well as Mac OS X. It's also available for just about every other
 Unix operating system, including BSD Unix and Solaris. In the rare cases
 where bash doesn't ship with the operating system,
 it's easy to install. It's even available for Windows (via Cygwin). It's both a powerful programming language and a
 good user interface and you won't find yourself sacrificing keyboard
 shortcuts to get elaborate programming features.
You can't possibly go wrong by learning bash.
 The most common default shells are the old Bourne shell and bash, which is
 mostly Bourne shell compatible. One of these shells is certainly present
 on any modern, major Unix or Unix-like operating system. And as noted,
 if bash isn't present you can always install it.
 But there are other shells. In the spirit of free software, the authors
 and maintainers of all of these shells share ideas. If you read the
 bash change logs, you'll see many places where a
 feature was introduced or tweaked to match behavior on another shell.
 But most people won't care. They'll use whatever is already there and be
 happy with it. So if you are interested, by all means investigate other
 shells. There are many good alternatives and you may find one you like
 better—though it probably won't be as ubiquitous as
 bash.

The bash Shell

bash is a shell: a command interpreter. The
 main purpose of bash (or of any shell) is to allow
 you to interact with the computer's operating system so that you can
 accomplish whatever you need to do. Usually that involves launching
 programs, so the shell takes the commands you type, determines from that
 input what programs need to be run, and launches them for you. You will
 also encounter tasks that involve a sequence of actions to perform that
 are recurring, or very complicated, or both. Shell programming, usually
 referred to as shell scripting, allows you to
 automate these tasks for ease of use, reliability, and
 reproducibility.
In case you're new to bash, we'll start with
 some basics. If you've used Unix or Linux at all, you probably aren't
 new to bash—but you may not have known you were
 using it. bash is really just a language for
 executing commands—so the commands you've been typing all along (e.g.,
 ls, cd, grep, cat) are, in a sense,
 bash commands. Some of these commands are built
 into bash itself; others are separate programs. For
 now, it doesn't make a difference which is which.
We'll end this chapter with a few recipes on getting
 bash. Most systems come with
 bash pre-installed, but a few don't. Even if your
 system comes with bash, it's always a good idea to
 know how to get and install it—new versions, with new features, are released from time
 to time.
If you're already running bash, and are
 somewhat familiar with it, you may want to go straight to Chapter 2. You are not likely to read this book in
 order, and if you dip into the middle, you should find some recipes that
 demonstrate what bash is really capable of. But
 first, the basics.

Decoding the Prompt

Problem

You'd like to know what all the punctuation on your screen
 means.

Solution

All command-line shells have some kind of prompt to alert you
 that the shell is ready to accept your input. What the prompt looks
 like depends on many factors including your operating system type and
 version, shell type and version, distribution, and how someone else
 may have configured it. In the Bourne family of shells, a trailing $
 in the prompt generally means you are logged in as a regular user,
 while a trailing # means you are root. The
 root account is the administrator of the system,
 equivalent to the System account on Windows
 (which is even more powerful than the
 Administrator account), or the
 Supervisor account on Netware.
 root is all-powerful and can do anything on a
 typical Unix or Linux system.
Default prompts also often display the path to the
 directory that you are currently in; however, they usually abbreviate
 it. So a ~ means you are in your home directory. Some default
 prompts may also display your username and the name of the machine you
 are logged into. If that seems silly now, it won't when you're logged
 into five machines at once possibly under different usernames.
Here is a typical Linux prompt for a user named
 jp on a machine called
 adams, sitting in the home directory. The
 trailing $ indicates this is a regular user, not
 root.
	jp@adams:~$
Here's the prompt after changing to the
 /tmp directory. Notice how ~, which really meant
 /home/jp, has changed to
 /tmp.
	jp@adams:/tmp$

Discussion

The shell's prompt is the thing you will see most often when you
 work at the command line, and there are many ways to customize it more
 to your liking. But for now, it's enough to know how to interpret it.
 Of course, your default prompt may be different, but you should be
 able to figure out enough to get by for now.
There are some Unix or Linux systems where the power of
 root may be shared, using commands like
 su and sudo. Or
 root may not even be all-powerful, if the system
 is running some kind of mandatory access control (MAC) system such as
 the NSA's SELinux.

See Also

	Showing Where You Are, "Showing Where You
 Are"

	Using sudo More Securely, "Using
 sudo More Securely"

	Customizing Your Prompt, "Customizing
 Your Prompt"

	Using sudo on a Group of Commands, "Using
 sudo on a Group of Commands"

Showing Where You Are

Problem

You are not sure what directory you are in, and the default prompt is not
 helpful.

Solution

Use the pwd built-in command, or set a more
 useful prompt (as in Customizing Your Prompt,
 "Customizing Your Prompt"). For example:
	bash-2.03$ pwd
	/tmp

	bash-2.03$ export PS1='[\u@\h \w]$ '
	[jp@solaris8 /tmp]$

Discussion

pwd stands for print working
 directory and takes two options. -L displays your logical path and is the
 default. -P displays your physical location, which
 may differ from your logical path if you have followed a symbolic
 link.
	bash-2.03$ pwd
	/tmp/dir2

	bash-2.03$ pwd-L
	/tmp/dir2

	bash-2.03$ pwd -P
	/tmp/dir1

See Also

	Customizing Your Prompt, "Customizing
 Your Prompt"

Finding and Running Commands

Problem

You need to find and run a particular command under
 bash.

Solution

Try the type, which, apropos, locate, slocate,
 find, and ls commands.

Discussion

bash keeps a list of directories in which
 it should look for commands in an environment variable called $PATH. The bash
 built-in type command searches your environment
 (including aliases, keywords, functions, built-ins, and files in the
 $PATH) for executable commands
 matching its arguments and displays the type and location of any
 matches. It has several arguments, notably the -a flag, which causes it to print all
 matches instead of stopping at the first one. The
 which command is similar but only searches your
 $PATH (and csh
 aliases). It may vary from system to system (it's usually a
 csh shell script on BSD, but a binary on Linux),
 and usually has a -a flag like
 type. Use these commands when you know the name
 of a command and need to know exactly where it's located, or to see if
 it's on this computer. For example:
	$ type which
	which is hashed (/usr/bin/which)

	$ type ls
	ls is aliased to `ls -F-h'

	$ type -a ls
	ls is aliased to `ls -F -h'
	ls is /bin/ls

	$ which which
	/usr/bin/which
Almost all commands come with some form of help on how to use them. Usually there is online
 documentation called manpages, where "man" is
 short for manual. These are accessed using the
 man command, so man
 ls will give you documentation about the
 ls command. Many programs also have a built-in
 help facility, accessed by providing a "help me" argument such as
 -h or --help. Some programs, especially on other
 operating systems, will give you help if you don't give them
 arguments. Some Unix commands will also do that, but a great many of
 them will not. This is due to the way that Unix commands fit together
 into something called pipelines, which we'll
 cover later. But what if you don't know or can't remember the name of
 the command you need? apropos searches manpage
 names and descriptions for regular expressions supplied as arguments.
 This is incredibly useful when you don't remember the name of the
 command you need. This is the same as man
 -k.
	$ apropos music
	cms (4) - Creative Music System device driver

	$ man -k music
	cms (4) - Creative Music System device driver
locate and slocate
 consult database files about the system (usually compiled and updated
 by a cron job) to find files or commands almost
 instantly. The location of the actual database files, what is indexed
 therein, and how often it is checked, may vary from system to system.
 Consult your system's manpages for details. slocate stores permission information (in addition to filenames and
 paths) so that it will not list programs to which the user does not
 have access. On most Linux systems, locate is a
 symbolic link to slocate; other systems may have
 separate programs, or may not have slocate at
 all.
	$ locate apropos
	/usr/bin/apropos
	/usr/share/man/de/man1/apropos.1.gz
	/usr/share/man/es/man1/apropos.1.gz
	/usr/share/man/it/man1/apropos.1.gz
	/usr/share/man/ja/man1/apropos.1.gz
	/usr/share/man/man1/apropos.1.gz
For much more on the find command, see all
 of Chapter 9.
Last but not least, try using ls also.
 Remember if the command you wish to run is in your current directory,
 you must prefix it with a ./ since the current working directory is
 usually not in your $PATH for
 security reasons (see Setting a Secure $PATH,
 "Setting a Secure $PATH" and Adding the Current Directory to the $PATH, "Adding the
 Current Directory to the $PATH").

See Also

	help type

	man which

	man apropos

	man locate

	man slocate

	man find

	man ls

	Chapter 9

	Running Any Executable, "Running Any
 Executable"

	Adding the Current Directory to the $PATH,
 "Adding the Current Directory to the $PATH"

Getting Information About Files

Problem

You need more information about a file, such as what it is, who
 owns it, if it's executable, how many hard links it has, or when it
 was last accessed or changed.

Solution

Use the ls, stat, file, or
 find commands.
	$ touch /tmp/sample_file

	$ ls /tmp/sample_file
	/tmp/sample_file

	$ ls -l /tmp/sample_file
	-rw-r--r-- 1 jp	 jp 0 Dec 18 15:03 /tmp/sample_file

	$ stat /tmp/sample_file
	File: "/tmp/sample_file"
	Size: 0 Blocks: 0 IO Block: 4096 Regular File
	Device: 303h/771d Inode: 2310201 Links: 1
	Access: (0644/-rw-r--r--) Uid: (501/ jp) Gid: (501/ jp)
	Access: Sun Dec 18 15:03:35 2005
	Modify: Sun Dec 18 15:03:35 2005
	Change: Sun Dec 18 15:03:42 2005

	$ file /tmp/sample_file
	/tmp/sample_file: empty

	$ file -b /tmp/sample_file
	empty

	$ echo '#!/bin/bash -' > /tmp/sample_file

	$ file /tmp/sample_file
	/tmp/sample_file: Bourne-Again shell script text executable

	$ file -b /tmp/sample_file
	Bourne-Again shell script text executable
For much more on the find command, see all
 of Chapter 9.

Discussion

The command ls shows only
 filenames, while -l provides more
 details about each file. ls has
 many options; consult the manpage on your system for the ones it
 supports. Useful options include:ls
	-a
	Do not hide files starting with . (dot)

	-F
	Show the type of file with one of these trailing type
 designators: /*@%=|

	-l
	Long listing

	-L
	Show information about the linked file, rather than the
 symbolic link itself

	-Q
	Quote names (GNU extension, not supported on all
 systems)

	-r
	Reverse sort order

	-R
	Recurse though subdirectories

	-S
	Sort by file size

	-1
	Short format but only one file per line

When using -F a slash (/)
 indicates a directory, an asterisk (*) means the file is executable, an at sign
 (@) indicates a symbolic link, a percent sign (%) shows a whiteout, an
 equal sign (=) is a socket, and a pipe or vertical bar (|) is a
 FIFO.
stat, file, and find
 all have many options that control the output format; see the manpages
 on your system for supported options. For example, these options
 produce output that is similar to ls
 -l:
	$ls -l /tmp/sample_file
	-rw-r--r--	 1 jp jp 14 Dec 18 15:04 /tmp/sample_file

	$ stat -c'%A %h %U %G %s %y %n' /tmp/sample_file
	-rw-r--r-- 1 jp jp 14 Sun Dec 18 15:04:12 2005 /tmp/sample_file

	$ find /tmp/ -name sample_file -printf '%m %n %u %g %t %p'
	644 1 jp jp Sun Dec 18 15:04:12 2005 /tmp/sample_file
Not all operating systems and versions have all of these tools.
 For example, Solaris does not include stat by
 default.
It is also worth pointing out that directories are
 nothing more than files that the operating system knows to treat
 specially. So the commands above work just fine on directories, though
 sometimes you may need to modify a command to get the behavior you
 expect. For example, using ls -d to
 list information about the directory, rather than just ls (listing the contents of the
 directory).

See Also

	man ls

	man stat

	man file

	man find

	Chapter 9

Showing All Hidden (dot) Files in the Current Directory

Problem

You want to see only hidden (dot) files in a directory to edit a file you
 forget the name of or remove obsolete files. ls -a shows all files, including normally
 hidden ones, but that is often too noisy, and ls -a .* doesn't do what you think it
 will.

Solution

Use ls-d along with whatever
 other criteria you have.
	ls -d .*
	ls -d .b*
	ls -d .[!.]*
Or construct your wildcard in such a way that . and .. don't
 match.
	$ grep -l 'PATH' ~/.[!.]*
	/home/jp/.bash_history
	/home/jp/.bash_profile

Discussion

Due to the way the shell handles file wildcards, the sequence .* does not behave as you might
 expect or desire. The way filename expansion or
 globbing works is that any string containing the
 characters *, ?, or [is treated as a pattern,
 and replaced by an alphabetically sorted list of file names matching
 the pattern. * matches any string, including the null string, while ?
 matches any single character. Characters enclosed in [] specify a
 list or range of characters, any of which will match. There are also
 various extended pattern-matching operators that we're not going
 to cover here (see "Pattern-Matching Characters" and "extglob Extended
 Pattern-Matching Operators" in Appendix A). So
 *.txt means any file ending in
 .txt, while *txt means any file ending in txt (no dot). f?o would match
 foo or fao but not fooo. So you'd think that .* would match any
 file beginning with a dot.
The problem is that .* is expanded to include . and .., which
 are then both displayed. Instead of getting just the dot files in the
 current directory, you get those files, plus all the files and
 directories in the current directory (.), all the files and
 directories in the parent directory (..), and the names and contents
 of any subdirectories in the current directory that start with a dot.
 This is very confusing, to say the least.
You can experiment with the same ls command
 with -d and without, then try
 echo.*. The
 echo trick simply shows you what the shell
 expanded your .* to. Try echo.[!.]*
 also.
.[!.]* is a filename expansion pattern where [] denotes
 a list of characters to match, but the leading ! negates the list. So
 we are looking for a dot, followed by any character that is
 not a dot, followed by any number of any
 characters. You may also use ^ to negate a character class, but ! is
 specified in the POSIX standard and thus is more portable.
Warning
.[!.]* will miss a file named ..foo. You
 could add something like .??* to match anything starting with a dot that is also
 at least three characters long. But ls
 -d .[!.]* .??* will then display anything that matches
 both patterns twice. Or you can use .??* alone, but that will miss
 files like .a. Which you use depends on your
 needs and environment; there is no good one-size-fits-all
 solution.
	$ ls -a
	. ..foo .normal_dot_file
	.. .a normal_file

	$ ls -d .[!.]*
	.a .normal_dot_file

	$ ls -d .??*
	..foo .normal_dot_file

	..foo .a .normal_dot_file
	normal_dot_file

	$ ls -d .[!.]* .??* | sort -u
	..foo
	.a
	.normal_dot_file
You can use echo * as an
 emergency substitute for ls if the
 ls command is corrupt or not available for some
 reason. This works because * is expanded by the shell to everything
 in the current directory, which results in a list similar to what
 you'd get with ls.

See Also

	man ls

	http://www.gnu.org/software/coreutils/faq/#ls-_002da-_002a-does-not-list-dot-files

	Section 2.11 in http://www.faqs.org/faqs/unix-faq/faq/part2

	"Pattern Matching Characters" in Appendix A

	"extglob Extended Pattern-Matching Operators" in Appendix A

Using Shell Quoting

Problem

You need a rule of thumb for using command-line quoting.

Solution

Enclose a string in single quotes unless it contains elements
 that you want the shell to interpolate.

Discussion

Unquoted text and even text enclosed in double quotes is
 subject to shell expansion and substitution. Consider:
	$ echo A coffee is $5?!
	A coffee is ?!

	$ echo "A coffee is $5?!"
	-bash: !": event not found

	$ echo 'A coffee is $5?!'
	A coffee is $5?!
In the first example, $5 is
 treated as a variable to expand, but since it doesn't exist it is set
 to null. In the second example, the same is true, but we never even
 get there because !" is treated as a history substitution, which fails
 in this case because it doesn't match anything in the history. The
 third example works as expected.
To mix some shell expansions with some literal strings you may
 use the shell escape character \ or change your quoting. The
 exclamation point is a special case because the preceding backslash escape character is not removed. You can work
 around that by using single quotes or a trailing space as shown here.
	$ echo 'A coffee is $5 for' "$USER" '?!'
	A coffee is $5 for jp ?!

	$ echo "A coffee is \$5 for $USER?\!"
	A coffee is $5 for jp?\!

	$ echo "A coffee is \$5 for $USER?! "
	A coffee is $5 for jp?!
Also, you can't embed a single quote inside single quotes, even
 if using a backslash, since nothing (not even the backslash) is
 interpolated inside single quotes. But you can work around that by
 using double quotes with escapes, or by escaping a single quote
 outside of surrounding single quotes.
	# We'll get a continuation prompt since we now have unbalanced quotes
	$ echo '$USER won't pay $5 for coffee.'
	> ^C

	# WRONG
	$ echo "$USER won't pay $5 for coffee."
	jp won't pay for coffee.

	# Works
	$ echo "$USER won't pay \$5 for coffee."
	jp won't pay $5 for coffee.

	# Also works
	$ echo 'I won'\''t pay $5 for coffee.'
	I won't pay $5 for coffee.

See Also

	Chapter 5 for more
 about shell variable and the $VAR syntax

	Chapter 18 for more
 about ! and the history commands

Using or Replacing Built-ins and External Commands

Problem

You want to replace a built-in command with your own function or
 external command, and you need to know exactly what your script is
 executing (e.g., /bin/echo or the built-in
 echo). Or you've created a new command and it may
 be conflicting with an existing external or built-in
 command.

Solution

Use the type and which
 commands to see if a given command exists and whether it is built-in
 or external.
	# type cd
	cd is a shell builtin

	# type awk
	awk is /bin/awk

	# which cd
	/usr/bin/which: no cd in (/bin:/sbin:/usr/bin:/usr/sbin:/usr/local/bin:/usr/local/
	sbin:/usr/bin/X11:/usr/X11R6/bin:/root/bin)

	# which awk
	/bin/awk

Discussion

A built-in command is just that; it is built into the shell
 itself, while an external command is an external file launched by the
 shell. The external file may be a binary, or it may be a shell script
 itself, and its important to understand the difference for a couple of
 reasons. First, when you are using a given version of a particular
 shell, built-ins will always be available but external programs may or
 may not be installed on a particular system. Second, if you give one
 of your own programs the same name as a built-in, you will be very
 confused about the results since the built-in will always take
 precedence (see Naming Your Script Test, "Naming
 Your Script Test"). It is possible to use the
 enable command to turn built-in commands off and on, though we strongly
 recommend against doing so unless you are absolutely sure you
 understand what you are doing. enable
 -a will list all built-ins and their enabled or disabled
 status.
One problem with built-in commands is that you generally can't
 use a -h or --help option to get usage reminders, and if
 a manpage exists it's often just a pointer to the large
 bash manpage. That's where the
 help command, which is itself a built-in, comes
 in handy. help displays help about shell built-ins.
	# help help
	help: help [-s] [pattern ...]
	 Display helpful information about builtin commands. If PATTERN is
	 specified, gives detailed help on all commands matching PATTERN,
	 otherwise a list of the builtins is printed. The -s option
	 restricts the output for each builtin command matching PATTERN to
	 a short usage synopsis.
When you need to redefine a built-in you use the
 builtin command to avoid loops. For
 example:
	cd () {
	 builtin cd "$@"
	 echo "$OLDPWD --> $PWD"
	}
To force the use of an external command instead of any function
 or built-in that would otherwise have precedence, use enable -n, which turns off shell built-ins,
 or command, which ignores shell functions. For
 example, to use the test found in $PATH instead of the shell built-in version,
 type enable -n test and then run test. Or, use command ls to use the native
 ls command rather than any
 ls function you may have created.

See Also

	man which

	help help

	help builtin

	help command

	help enable

	help type

	Naming Your Script Test, "Naming Your
 Script Test"

	"Built-in Shell Variables" in Appendix A

Determining If You Are Running Interactively

Problem

You have some code you want to run only if you are (or are not)
 running interactively.

Solution

Use the following case
 statement:
	#!/usr/bin/env bash
	# cookbook filename: interactive

	case "$-" in
	 i) # Code for interactive shell here
	 ;;
	 *) # Code for non-interactive shell here
	 ;;
	esac

Discussion

$- is a string listing of all the current shell option flags. It
 will contain i if the shell is
 interactive.
You may also see code like the following (this will work, but
 the solution above is the preferred method):
	if ["$PS1"]; then
	 echo This shell is interactive
	else
	 echo This shell is not interactive
	fi

See Also

	help case

	help set

	Branching Many Ways, "Branching Many
 Ways," for more explanation of the case statement

Setting bash As Your Default Shell

Problem

You're using a BSD system, Solaris, or some other Unix variant
 for which bash isn't the default shell. You're
 tired of starting bash explicitly all the time,
 and want to make bash your default
 shell.

Solution

First, make sure bash is installed. Try
 typing bash --version at a
 command line. If you get a version, it's
 installed:
	$ bash --version
	GNU bash, version 3.00.16(1)-release (i386-pc-solaris2.10)
	Copyright (C) 2004 Free Software Foundation, Inc.
If you don't see a version number, you may be missing a
 directory from your path. chsh -l
 or cat /etc/shells may give you a
 list of valid shells on some systems. Otherwise, ask your system
 administrator where bash is, or if it can be
 installed.
chsh -l provides a list of
 valid shells on Linux, but opens an editor and allows you to change
 settings on BSD. -l is not a valid
 option to chsh on Mac OS X, but
 just running chsh will open an
 editor to allow you to change settings, and chpass -s shell
 will change your shell.
If bash is installed, use the chsh -s command to change your default
 shell. For example, chsh -s
 /bin/bash. If for any reason that fails try chsh, passwd -e, passwd -l chpass,or
 usermod -s /usr/bin/bash. If you
 still can't change your shell ask your system administrator, who may
 need to edit the /etc/passwd file. On most
 systems, /etc/passwd will have lines of the
 form:
	cam:pK1Z9BCJbzCrBNrkjRUdUiTtFOh/:501:100:Cameron Newham:/home/cam:/bin/bash
	cc:kfDKDjfkeDJKJySFgJFWErrElpe/:502:100:Cheshire Cat:/home/cc:/bin/bash
As root, you can just edit the last field
 of the lines in the password file to the full pathname of whatever
 shell you choose. If your system has a vipw
 command, you should use it to ensure password file consistency.
Warning
Some systems will refuse to allow a login shell that is not
 listed in /etc/shells. If
 bash is not listed in that file, you will have
 to have your system administrator add it.

Discussion

Some operating systems, notably the BSD Unixes, typically place bash in
 the /usr partition. You may want to think twice
 about changing root's shell on such
 systems. If the system runs into trouble while booting, and you have
 to work on it before /usr is mounted, you've got
 a real problem: there isn't a shell for root to
 use. Therefore, it's best to leave the default shell for
 root unchanged. However, there's no reason not to
 make bash the default shell for regular user
 accounts. And it goes without saying that it's bad practice to use the
 root account unless it's absolutely necessary.
 Use your regular (user) account whenever possible. With commands like
 sudo, you should very rarely need a
 root shell.
If all else fails, you can probably replace your existing login
 shell with bash using exec,
 but this is not for the faint of heart. See "A7) How can I make bash
 my login shell?" in the bash FAQ at ftp://ftp.cwru.edu/pub/bash/FAQ.

See Also

	man chsh

	man passwd

	man chpass

	/etc/shells

	"A7) How can I make bash my login shell?" from ftp://ftp.cwru.edu/pub/bash/FAQ

	Using sudo More Securely, "Using sudo
 More Securely"

	Setting Permissions, "Setting
 Permissions"

Getting bash for Linux

Problem

You want to get bash for your Linux system,
 or you want to make sure you have the latest version.

Solution

bash is included in virtually all modern
 Linux distributions. To make sure you have the latest version
 available for your distribution, use the distribution's built-in
 packaging tools. You must be root or have the
 root password to upgrade or install applications.
Some Linux distributions (notably Debian) include bash version 2.x as
 plain bash and version 3.x as
 bash3, so you need to watch out for that. Table 1-1 lists the default versions as
 of early 2007 (distributions update their repositories often, so
 versions might have changed from this listing).
Table 1-1. Default Linux distributions
	Distribution
	2.x in base install
	2.x in updates
	3.x in base install
	3.x in updates

	Debian Woody
	2.05a
	N/A
	N/A
	N/A

	Debian Sarge[a]
	2.05b
	3.1dfsg-8 (testing & unstable)
	3.0-12(1)-release
	3.00.16(1)-release

	Fedora Core 1
	bash-2.05b-31.i386.rpm
	bash-2.05b-34.i386.rpm
	N/A
	N/A

	Fedora Core 2
	bash-2.05b-38.i386.rpm
	N/A
	N/A
	N/A

	Fedora Core3
	N/A
	N/A
	bash-3.0-17.i386.rpm
	bash-3.0-18.i386.rpm

	Fedora Core 4
	N/A
	N/A
	bash-3.0-31.i386.rpm
	N/A

	Fedora Core 5
	N/A
	N/A
	bash-3.1-6.2.i386.rpm
	bash-3.1-9.fc5.1.i386.rpm

	Fedora Core 6
	N/A
	N/A
	bash-3.1-16.1.i386.rpm
	N/A

	Knoppix 3.9 & 4.0.2
	N/A
	N/A
	3.0-15
	N/A

	Mandrake 9.2[b]
	bash-2.05b-14mdk.i586.rpm
	N/A
	N/A
	N/A

	Mandrake 10.1[c]
	bash-2.05b-22mdk.i586.rpm
	N/A
	N/A
	N/A

	Mandrake 10.2[d]
	N/A
	N/A
	bash-3.0-2mdk.i586.rpm
	N/A

	Mandriva 2006.0[e]
	N/A
	N/A
	bash-3.0-6mdk.i586.rpm
	N/A

	Mandriva 2007.0[f]
	N/A
	N/A
	bash-3.1-7mdv2007.0.i586.rpm
	N/A

	OpenSUSE 10.0
	N/A
	N/A
	3.00.16(1)-release
	3.0.17(1)-release

	OpenSUSE 10.1
	N/A
	N/A
	3.1.16(1)-release
	N/A

	OpenSUSE 10.2
	N/A
	N/A
	bash-3.1-55.i586.rpm
	N/A

	SLED 10 RC3
	N/A
	N/A
	3.1.17(1)-release
	N/A

	RHEL 3.6, CentOS 3.6
	bash-2.05b.0(1)
	N/A
	N/A
	N/A

	RHEL 4.4, CentOS 4.4
	N/A
	N/A
	3.00.15(1)-release
	N/A

	MEPIS 3.3.1
	N/A
	N/A
	3.0-14
	N/A

	Ubuntu 5.10[g]
	N/A
	N/A
	3.0.16(1)
	N/A

	Ubuntu 6.06[h]
	N/A
	N/A
	3.1.17(1)-release
	N/A

	Ubuntu 6.10[i]
	N/A
	N/A
	3.1.17(1)-release
	N/A

	[a] Debian Sarge: see also bash-builtins,
 bash-doc, bash-minimal, bash-static,
 bash3-doc

[b] Mandrake 9.2:
 bash-completion-20030821-3mdk.noarch.rpm,
 bash-doc-2.05b-14mdk.i586.rpm,
 bash1-1.14.7-31mdk.i586.rpm

[c] Mandrake 10.1: see also
 bash-completion-20040711-1mdk.noarch.rpm,
 bash-doc-2.05b-22mdk.i586.rpm,
 bash1-1.14.7-31mdk.i586.rpm

[d] Mandrake 10.2: see also
 bash-completion-20050121-2mdk.noarch.rpm,
 bash-doc-3.0-2mdk.i586.rpm

[e] Mandriva 2006.0: see also
 bash-completion-20050721-1mdk.noarch.rpm,
 bash-doc-3.0-6mdk.i586.rpm

[f] Mandriva 2007.0: see also
 bash-completion-20060301-5mdv2007.0.noarch.rpm,
 bash-doc-3.1-7mdv2007.0.i586.rpm

[g] Ubuntu: see also the bash-builtins,
 bash-doc, bash-static, and
 abs-guide packages

[h] Ubuntu: see also the bash-builtins,
 bash-doc, bash-static, and
 abs-guide packages

[i] Ubuntu 6.10 symlinks dash to
 /bin/sh instead of
 bash as previous versions of Ubuntu
 and most other Linux distributions (https://wiki.ubuntu.com/DashAsBinSh)

For Debian and Debian-derived systems such as Knoppix, Ubuntu, and MEPIS, make sure your
 /etc/apt/sources.list file is pointing at an
 up-to-date Debian mirror; then use the graphical Synaptic, kpackage, gnome-apt, or
 Add/Remove Programs tools, the terminal-based
 aptitude tool, or from the command
 line:
	apt-get update && apt-get install bash bash3 bash-builtins bash-doc bash3-doc
For Red Hat distributions, including Fedora Core (FC) and Red Hat Enterprise Linux (RHEL), use the GUI Add/Remove Applications tool (if the GUI is missing from
 the menus, at a command line for RHEL3 type redhat-config-packages & or for RHEL4
 type system-config-packages
 &). For a command line only:
	up2date install bash
For Fedora Core and CentOS, you may use the above RHEL directions or from
 the command line:
	yum update bash
For SUSE, use either the GUI or terminal version of
 YaST. You may also use the command-line RPM tool.
For Mandriva/Mandrake, use the GUI Rpmdrake tool or from the command line:
	urpmi bash

Discussion

It's impossible to cover every Linux distribution and difficult
 even to cover the major ones, as they are all evolving rapidly.
 Fortunately, much of that evolution is in the area of ease-of-use, so
 it should not be very difficult to figure out how to install software
 on your distribution of choice.
When using Knoppix, Ubuntu, or other Live CDs, software updates and installations will most
 likely fail due to the read-only media. Versions of such distributions
 that have been installed to a hard disk should be updatable.
The apt-get update && apt-get
 install bash bash3 bash-builtins bash-doc bash3-doc command
 above will generate errors on systems that do not provide a
 bash3 package. You may safely ignore such
 errors.

See Also

	http://wiki.linuxquestions.org/wiki/Installing_Software

	CentOS: http://www.centos.org/docs/3/rhel-sag-en-3/pt-pkg-management.html

	http://www.centos.org/docs/4/html/rhel-sag-en-4/pt-pkg-management.html

	Debian: http://www.debian.org/doc/,
 see the "APT HOWTO" and "dselect Documentation for
 Beginners"

	http://www.debianuniverse.com/readonline/chapter/06

	Fedora Core: http://fedora.redhat.com/docs/yum/

	Red Hat Enterprise Linux: https://www.redhat.com/docs/manuals/enterprise/RHEL-3-Manual/sysadmin-guide/pt-pkg-management.html

	https://www.redhat.com/docs/manuals/enterprise/RHEL-4-Manual/sysadmin-guide/pt-pkg-management.html

	Mandriva: http://www.mandriva.com/en/community/users/documentation

	http://doc.mandrivalinux.com/MandrakeLinux/101/en/Starter.html/software-management.html

	http://doc.mandrivalinux.com/MandrakeLinux/101/en/Starter.html/ch19s05.html

	MEPIS (note about installing or removing applications):
 http://mepis.org/docs

	OpenSuSE: http://www.opensuse.org/Documentation

	http://www.opensuse.org/User_Documentation

	http://forge.novell.com/modules/xfmod/project/?yast

	Ubuntu: http://www.ubuntulinux.org/support/documentation/helpcenter_view

	Setting bash As Your Default Shell,
 "Setting bash As Your Default Shell"

Getting bash for xBSD

Problem

You want to get bash for your FreeBSD, NetBSD, or OpenBSD system, or you want to make sure you have the
 latest version.

Solution

To see if bash is installed, check the
 /etc/shells file. To install or update
 bash, use the pkg_add command. If you are an experienced
 BSD user, you may prefer using the ports collection, but we will not
 cover that here.
FreeBSD:
pkg_add -vr bash
For NetBSD, browse to Application Software for NetBSD at http://netbsd.org/Documentation/software/ and locate
 the latest bash package for your version and
 architecture, then use a command such as:
	pkg_add -vu ftp://ftp.netbsd.org/pub/NetBSD/packages/pkgsrc-2005Q3/NetBSD-2.0/i386/
	All/bash-3.0pl16nb3.tgz
For OpenBSD, you use the pkg_add
 -vr command. You may have to adjust the FTP path for your
 version and architecture. Also, there may be a statically compiled
 version. For example: ftp://ftp.openbsd.org/pub/OpenBSD/3.8/packages/i386/bash-3.0.16p1-static.tgz.
	pkg_add -vr ftp://ftp.openbsd.org/pub/OpenBSD/3.8/packages/i386/bash-3.0.16p1.tgz

Discussion

FreeBSD and OpenBSD place bash in
 /usr/local/bin/bash while NetBSD uses
 /usr/pkg/ bin/bash.
Interestingly, PC-BSD 1.2, a "rock-solid Unix operating system
 based on FreeBSD," comes with bash 3.1.17(0) in
 /usr/local/bin/bash, though the default shell is
 still csh.

See Also

	Setting bash As Your Default Shell,
 "Setting bash As Your Default Shell"

	Testing Scripts in VMware, "Testing
 Scripts in VMware"

Getting bash for Mac OS X

Problem

You want to get bash for your Mac, or you
 want to make sure you have the latest version.

Solution

According to Chet Ramey's bash page (http://tiswww.tis.case.edu/~chet/bash/bashtop.html),
 Mac OS 10.2 (Jaguar) and newer ship with
 bash as /bin/sh. 10.4
 (Tiger) has version 2.05b.0(1)-release (powerpc-apple-darwin8.0). There are also precompiled OS X packages of
 bash-2.05 available from many web sites. One such
 package is at HMUG. Bash for Darwin (the base for Mac OS X) is
 available from Fink or DarwinPorts.

Discussion

It is also possible to build a more recent version of
 bash from source, but this is recommended only for experienced
 users.

See Also

	http://tiswww.tis.case.edu/~chet/bash/bashtop.html

	http://www.hmug.org/pub/MacOS_X/BSD/Applications/Shells/bash/

	http://fink.sourceforge.net/pdb/package.php/bash

	http://darwinports.opendarwin.org/ports.php?by=name&substr=bash

Getting bash for Unix

Problem

You want to get bash for your Unix system,
 or you want to make sure you have the latest version.

Solution

If it's not already installed or in your operating system's
 program repository, check Chet Ramey's bash page
 for binary downloads, or build it from source (see Appendix E).

Discussion

According to Chet Ramey's bash page (http://tiswww.tis.case.edu/~chet/bash/bashtop.html):
Solaris 2.x, Solaris 7, and Solaris 8 users can get a precompiled version of
 bash-3.0 from the Sunfreeware site. Sun ships
 bash-2.03 with Solaris 8 distributions, ships
 bash-2.05 as a supported part of Solaris 9, and
 ships bash-3.0 as a supported part of Solaris
 10 (directly on the Solaris 10 CD).
AIX users can get precompiled versions of older releases of
 bash for various versions of AIX from
 Groupe Bull, and sources and binaries of current
 releases for various AIX releases from UCLA. IBM makes bash-3.0 available for
 AIX 5L as part of the AIX tool-box for [GNU/]Linux applications.
 They use RPM format; you can get RPM for AIX from there,
 too.
SGI users can get an installable version of
 bash-2.05b from the SGI Freeware page.
HP-UX users can get bash-3.0 binaries and
 source code from the Software Porting and Archive Center for HP-UX.
Tru64 Unix users can get sources and binaries for
 bash-2.05b from the HP/Compaq Tru64 Unix Open
 Source Software Collection.

See Also

	http://tiswww.tis.case.edu/~chet/bash/bashtop.html

	http://www.sun.com/solaris/freeware.html

	http://aixpdslib.seas.ucla.edu/packages/bash.html

	http://www.ibm.com/servers/aix/products/aixos/linux/index.html

	http://freeware.sgi.com/index-by-alpha.html

	http://hpux.cs.utah.edu/

	http://hpux.connect.org.uk/hppd/hpux/Shells/

	http://hpux.connect.org.uk/hppd/hpux/Shells/bash-3.00.16/

	http://h30097.www3.hp.com/demos/ossc/html/bash.htm

	Setting bash As Your Default Shell,
 "Setting bash As Your Default Shell"

	Appendix E

Getting bash for Windows

Problem

You want to get bash for your Windows
 system, or you want to make sure you have the latest version.

Solution

Use Cygwin.
Download http://www.cygwin.com/setup.exe
 and run it. Follow the prompts and choose the packages to install,
 including bash, which is located in the shells
 category and is selected by default. As of early 2007,
 bash-3.1-6 and 3.2.9-11 are available.
Once Cygwin is installed, you will have to configure it. See the
 User Guide at http://cygwin.com/cygwin-ug-net.

Discussion

From the Cygwin site:
What Is Cygwin
Cygwin is a Linux-like environment for Windows. It consists of two
 parts:
	A DLL (cygwin1.dll), which acts as a Linux API emulation layer providing substantial
 Linux API functionality.

	A collection of tools, which provide Linux look and
 feel.
The Cygwin DLL works with all non-beta, non "release
 candidate," x86 32-bit versions of Windows since Windows 95,
 with the exception of Windows CE.
What Isn't Cygwin

	Cygwin is not a way to run native Linux apps on Windows.
 You have to rebuild your application from source if you want to
 get it running on Windows.

	Cygwin is not a way to magically make native Windows apps
 aware of Unix functionality (e.g., signals, ptys). Again, you
 need to build your apps from source if you want to take
 advantage of Cygwin functionality.

Cygwin is a true Unix-like environment running on top of
 Windows. It is an excellent tool, but sometimes it might be overkill.
 For Windows native binaries of the GNU Text Utils (not including bash), see http://unxutils.sourceforge.net/.
Microsoft Services for Unix (http://www.microsoft.com/windowsserversystem/sfu/default.mspx)
 may also be of interest, but note that it is not under active
 development anymore, though it will be supported until at least 2011
 (http://www.eweek.com/article2/0,1895,1855274,00.asp).
For powerful character-based and GUI command-line shells with a
 more consistent interface, but a DOS/Windows flavor, see http://jpsoft.com/. None of the authors are affiliated
 with this company, but one is a long-time satisfied user.

See Also

	http://www.cygwin.com/

	http://unxutils.sourceforge.net/

	http://www.microsoft.com/windowsserversystem/sfu/default.mspx

	http://jpsoft.com/

	http://www.eweek.com/article2/0,1895,1855274,00.asp

Getting bash Without Getting bash

Problem

You want to try out a shell or a shell script on a system you
 don't have the time or the resources to build or buy.
Or, you feel like reading a Zen-like recipe just about
 now.

Solution

Get a free or almost free shell account from HP, Polar Home, or another vendor.

Discussion

HP maintains a free "test drive" program that provides free
 shell accounts on many operating systems on various HP hardware. See
 http://www.testdrive.hp.com/ for details.
Polar Home provides many free services and almost free shell
 accounts. According to their web site:
polarhome.com is non commercial, educational effort for
 popularization of shell enabled operating systems and Internet
 services, offering shell accounts, mail and other online services on
 all available systems (currently on Linux, OpenVMS, Solaris, AIX,
 QNX, IRIX, HP-UX, Tru64, FreeBSD, OpenBSD, NetBSD and
 OPENSTEP).
[…]
Note: this site is
 continuously under construction and running on slow lines and low
 capacity servers that have been retired, therefore as a non
 commercial site user/visitor, nobody should have too high
 expectations in any meaning of the word. Even if polarhome.com does
 all to provide services on professional level, users should not
 expect more than "AS-IS".
polarhome.com is a distributed site, but more than 90% of
 polarhome realm is located in Stockholm, Sweden.

See Also

	List of free shell accounts: http://www.ductape.net/~mitja/freeunix.shtml

	http://www.testdrive.hp.com/os/

	http://www.testdrive.hp.com/faq/

	http://www.polarhome.com/

Learning More About bash Documentation

Problem

You'd like to read more about bash but
 don't know where to start.

Solution

Well you're reading this book, which is a great place to start!
 The other O'Reilly books about bash and shell
 scripting are: Learning the bash Shell by Cameron
 Newham (O'Reilly) and Classic Shell Scripting by
 Nelson H.F. Beebe and Arnold Robbins (O'Reilly).
Unfortunately, the official bash
 documentation has not been easily accessible online—until now!
 Previously, you had to download several different tarballs, locate all
 the files that contain documentation, and then decipher the file names
 to find what you wanted. Now, our companion web site (http://www.bashcookbook.com/) has done all this work
 for you and provides the official bash reference
 documentation online so it's easy to refer to. Check it out, and refer
 others to it as needed.
Official documentation

The official bash FAQ is at: ftp://ftp.cwru.edu/pub/bash/FAQ. See especially "H2)
 What kind of bash documentation is there?" The
 official reference guide is also strongly recommended; see below for
 details.
Chet Ramey's (the current bash
 maintainer) bash page (called bashtop) contains
 a ton of very useful information (http://tiswww.tis.case.edu/~chet/bash/bashtop.html).
 Chet also maintains the following (listed in bashtop):
	README
	A file describing bash: http://tiswww.tis.case.edu/chet/bash/README

	NEWS
	A file tersely listing the notable changes between the
 current and previous versions: http://tiswww.tis.case.edu/chet/bash/NEWS

	CHANGES
	A complete bash change history:
 http://tiswww.tis.case.edu/chet/bash/CHANGES

	INSTALL
	Installation instructions: http://tiswww.tis.case.edu/chet/bash/INSTALL

	NOTES
	Platform-specific configuration and operation notes:
 http://tiswww.tis.case.edu/chet/bash/NOTES

	COMPAT
	Compatibility issues between bash3
 and bash1: http://tiswww.tis.case.edu/~chet/bash/COMPAT

The latest bash source code and documentation are always available at:
 http://ftp.gnu.org/gnu/bash/.
We highly recommend downloading both the source and the
 documentation even if you are using prepackaged binaries. Here is a
 brief list of the documentation. See Appendix B for an index of the
 included examples and source code. See the source tarball's
 ./doc directory, for example: http://ftp.gnu.org/gnu/bash/bash-3.1.tar.gz/,
 bash-3.1/doc:
	.FAQ
	A set of frequently asked questions about
 bash with answers

	.INTRO
	A short introduction to bash

	article.ms
	An article Chet wrote about bash
 for The Linux Journal

	bash.1
	The bash manpage

	bashbug.1
	The bashbug manpage

	builtins.1
	A manpage that documents the built-ins extracted from
 bash.1

	bashref.texi
	The "bash reference manual"

	bashref.info
	The "bash reference manual" processed by
 "makeinfo"

	rbash.1
	The restricted bash shell
 manpage

	readline.3
	The readline manpage

The .ps files are postscript versions of
 the above. The .html files are HTML versions of
 the manpage and reference manual. The .0 files
 are formatted manual pages. The .txt versions
 are ASCII—the output of groff
 -Tascii.
In the document tarball, for example: http://ftp.gnu.org/gnu/bash/bash-doc-3.1.tar.gz,bash-doc-3.1:
	.bash.0
	The bash manpage (formatted) (also
 PDF, ps, HTML)

	bashbug.0
	The bashbug manpage (formatted)

	bashref
	The Bash Reference Guide (also PDF,
 ps, HTML, dvi)

	builtins.0
	The built-ins manpage (formatted)

	.rbash.0
	The restricted bash shell manpage
 (formatted)

Other documentation

	The Advanced Bash-Scripting Guide at
 http://www.tldp.org/LDP/abs/html/index.html and
 http://www.tldp.org/LDP/abs/abs-guide.pdf

	Writing Shell Scripts at http://www.linuxcommand.org/writing_shell_scripts.php

	BASH Programming –
 Introduction HOW-TO at http://www.tldp.org/HOWTO/Bash-Prog-Intro-HOWTO.html

	Bash Guide for Beginners at http://www.tldp.org/LDP/Bash-Beginners-Guide/html/
 and http://www.tldp.org/LDP/Bash-Beginners-Guide/Bash-Beginners-Guide.pdf

	The Bash Prompt HOWTO at http://www.tldp.org/HOWTO/Bash-Prompt-HOWTO/index.html

	Very old, but still useful: UNIX shell
 differences and how to change your shell at http://www.faqs.org/faqs/unix-faq/shell/shell-differences/

	[Apple's] Shell Scripting Primer at
 http://developer.apple.com/documentation/OpenSource/Conceptual/ShellScripting/

See Also

	Appendix B

Chapter 2. Standard Output

No software is worth anything if there is no output of some sort.
 But I/O (Input/ Output) has long been one of the nastier areas of
 computing. If you're ancient, you remember the days most of the work
 involved in running a program was setting up the program's input and
 output. Some of the problems have gone away; for example, you no longer
 need to get operators to mount tapes on a tape drive (not on any laptop or
 desktop system that I've seen). But many of the problems are still with
 us.
One problem is that there are many different types of output.
 Writing something on the screen is different from writing something in a
 file—at least, it sure seems different. Writing something in a file seems
 different from writing it on a tape, or in flash memory, or on some other
 kind of device. And what if you want the output from one program to go
 directly into another program? Should software developers be tasked with
 writing code to handle all sorts of output devices, even ones that haven't
 been invented yet? That's certainly inconvenient. Should users have to
 know how to connect the programs they want to run to different kinds of
 devices? That's not a very good idea, either.
One of the most important ideas behind the Unix operating system was
 that everything looked like a file (an ordered
 sequence of bytes). The operating system was responsible for this magic.
 It didn't matter whether you were writing to a file on the disk, the
 terminal, a tape drive, a memory stick, or something else; your program
 only needed to know how to write to a file, and the operating system would
 take it from there. That approach greatly simplified the problem. The next
 question was, simply, "which file?" How does a program know whether to
 write to the file that represents a terminal window, a file on the disk,
 or some other kind of file? Simple: that's something that can be left to
 the shell.
When you run a program, you still have to connect it to output files
 and input files (which we'll see in the next chapter). That task doesn't
 go away. But the shell makes it trivially easy. A command as simple
 as:
	$ dosomething < inputfile > outputfile
reads its input from inputfile
 and sends its output to outputfile. If
 you omit > outputfile, the output
 goes to your terminal window. If you omit <inputfile, the program takes its input from
 the keyboard. The program literally doesn't know where its output is
 going, or where its input is coming from. You can send the out-put
 anywhere you want (including to another program) by using
 bash's redirection facilities.
But that's just the start. In this chapter, we'll look at ways to
 generate output, and the shell's methods for sending that output to
 different places.
Writing Output to the Terminal/Window

Problem

You want some simple output from your shell commands.

Solution

Use the echo built-in command. All the
 parameters on the command line are printed to the screen. For
 example:
	echo Please wait.
produces
	Please wait.
as we see in this simple session where we typed the command at
 the bash prompt (the $ character):
	$ echo Please wait.
	Please wait.
	$

Discussion

The echo command is one of the most simple
 of all bash commands. It prints the arguments of
 the command line to the screen. But there are a few points to keep in
 mind. First, the shell is parsing the arguments on the
 echo command line (like it does for every other
 command line). This means that it does all its substitutions, wildcard
 matching, and other things before handing the arguments off to the
 echo command. Second, since they are parsed as
 arguments, the spacing between arguments is ignored. For
 example:
	$ echo this was very widely spaced
	this was very widely spaced
	$
Normally the fact that the shell is very forgiving about white
 space between arguments is a helpful feature. Here, with
 echo, it's a bit disconcerting.

See Also

	help echo

	help printf

	Writing Output with More Formatting Control, "Writing
 Output with More Formatting Control"

	Using echo Portably, "Using echo
 Portably"

	Forgetting to Set Execute Permissions,
 "Forgetting to Set Execute Permissions"

	"echo Options and Escape Sequences" in Appendix A

	"printf" in Appendix A

Writing Output but Preserving Spacing

Problem

You want the output to preserve your spacing.

Solution

Enclose the string in quotes. The previous example, but with
 quotes added, will preserve our spacing.
	$ echo "this was very widely spaced"
	this was very widely spaced
	$
or:
	$ echo 'this was very widely spaced'
	this was very widely spaced
	$

Discussion

Since the words are enclosed in quotes, they form a single
 argument to the echo command. That argument is a
 string and the shell doesn't need to interfere with the contents of
 the string. In fact, by using the single quotes ('') the shell is told explicitly not to
 interfere with the string at all. If you use double quotes ("), some shell substitutions will take
 place (variable and tilde expansions and command substitutions), but
 since we have none in this example, the shell has nothing to change.
 When in doubt, use the single quotes.

See Also

	help echo

	help printf

	Chapter 5 for more
 information about substitution

	Writing Output with More Formatting Control, "Writing
 Output with More Formatting Control"

	Using echo Portably, "Using echo
 Portably"

	Seeing Odd Behavior from printf, "Seeing
 Odd Behavior from printf"

	"echo Options and Escape Sequences" in Appendix A

Writing Output with More Formatting Control

Problem

You want more control over the formatting and placement of
 output.

Solution

Use the printf built-in command.
For example:
	$ printf '%s = %d\n' Lines $LINES
	Lines = 24
	$
or:
	$ printf '%-10.10s = %4.2f\n' 'GigaHerz' 1.92735
	GigaHerz = 1.93
	$

Discussion

The printf built-in command behaves like
 the C language library call, where the first argument is the format control string and the
 successive arguments are formatted according to the format
 specifications (%).
The numbers between the % and the format type (s or f in
 our example) provide additional formatting details. For the
 floating-point type (f), the first
 number (4 in the 4.2 specifier) is the width of the entire
 field. The second number (2) is
 how many digits should be printed to the right of the decimal point.
 Note that it rounds the answer.
For a string, the first digit is the maximum field width, and the second is the minimum field
 width. The string will be truncated (if longer than max) or blank
 padded (if less than min) as needed. When the max and min specifiers are the same, then the string is
 guaranteed to be that length. The negative sign on the specifier means to left align the string
 (within its field width). Without the minus sign, the string would
 right justify, thus:
	$ printf '%10.10s = %4.2f\n' 'GigaHerz' 1.92735
	GigaHerz = 1.93
	$
The string argument can either be quoted or unquoted. Use
 quotes if you need to preserve embedded spacing (there were no spaces needed in our
 one-word strings), or if you need to escape the special meaning of any
 special characters in the string (again, our example had none). It's a
 good idea to be in the habit of quoting any string that you pass to
 printf, so that you don't forget the quotes when
 you need them.

See Also

	help printf

	http://www.opengroup.org/onlinepubs/009695399/functions/printf.html

	Learning the bash Shell, Cameron
 Newham (O'Reilly), See Also, or
 any C refer-ence on its printf
 function

	Using echo Portably, "Using echo Portably"

	Seeing Odd Behavior from printf, "Seeing
 Odd Behavior from printf"

	"printf" in Appendix A

Writing Output Without the Newline

Problem

You want to produce some output without the default newline that
 echo provides.

Solution

Using printf it's easy—just leave off the
 ending \n in your format string.
 With echo, use the -n option.
	$ printf "%s %s" next prompt
	next prompt$
or:
	$ echo -n prompt
	prompt$

Discussion

Since there was no newline at the end of the
 printf format string (the first argument), the
 prompt character ($) appears right where the
 printf left off. This feature is much more useful
 in shell scripts where you may want to do partial output across
 several statements before completing the line, or where you want to
 display a prompt to the user before reading input.
With the echo command there are two ways to
 eliminate the newline. First, the -n option suppresses the trailing newline.
 The echo command also has several escape
 sequences with special meanings similar to those in C language strings
 (e.g., \n for newline). To use
 these escape sequences, you must invoke
 echo with the -e option. One of
 echo's escape sequences is \c, which doesn't print a character, but
 rather inhibits printing the ending newline. Thus, here's a third
 solution:
	$ echo -e 'hi\c'
	hi$
Because of the powerful and flexible formatting that
 printf provides, and because it is a built-in
 with very little over head to invoke (unlike other shells or older
 versions of bash, where
 printf was a standalone executable), we will use
 printf for many of our examples throughout the
 book.

See Also

	help echo

	help printf

	http://www.opengroup.org/onlinepubs/009695399/functions/printf.html

	See Chapter 3, particularly Getting User Input, "Getting User Input"

	Writing Output with More Formatting Control, "Writing
 Output with More Formatting Control"

	Using echo Portably, "Using echo
 Portably"

	Seeing Odd Behavior from printf, "Seeing
 Odd Behavior from printf"

	"echo Options and Escape Sequences" in Appendix A

	"printf" in Appendix A

Saving Output from a Command

Problem

You want to keep the output from a command by putting it in a
 file.

Solution

Use the > symbol to tell the shell to redirect the output
 into a file. For example:
	$ echo fill it up
	fill it up
	$ echo fill it up > file.txt	
	$
Just to be sure, let's look at what is inside
 file.txt to see if it captured our output:
	$ cat file.txt
	fill it up
	$

Discussion

The first line of the example shows an echo
 command with three arguments that are printed out. The second line of
 code uses the > to capture that output into a file named
 file.txt, which is why no output appears after
 that echo command.
The second part of the example uses the cat
 command to display the contents of the file. We can see that the file
 contains what the echo command would have
 otherwise sent as output.
The cat command gets its name from the
 longer word concatenation. The
 cat command concatenates the
 output from the several files listed on its command line, as in:
 cat file1 filetwo anotherfile
 morefiles—the contents of those files would be sent, one
 after another, to the terminal window. If a large file had been split
 in half then it could be glued back together (i.e., concatenated) by
 capturing the output into a third file:
	$ cat first.half second.half > whole.file
So our simple command, cat
 file.txt, is really just the trivial case of concatenating
 only one file, with the result sent to the screen. That is to say,
 while cat is capable of more, its primary use is
 to dump the contents of a file to the screen.

See Also

	man cat

	Numbering Lines, "Numbering Lines"

Saving Output to Other Files

Problem

You want to save the output with a redirect to elsewhere in the
 filesystem, not in the current directory.

Solution

Use more of a pathname when you redirect the output.
	$ echo some more data > /tmp/echo.out
or:
	$ echo some more data > ../../over.here

Discussion

The filename that appears after the redirection character (the
 >) is actually a path-name. If it begins with no other qualifiers,
 the file will be placed in the current directory.
If that filename begins with a slash (/) then this is an absolute
 pathname, and will be placed where it specifies in the filesystem
 hierarchy (i.e., tree) beginning at the root
 (provided all the intermediary directories exist and have permissions
 that allow you to traverse them). We used /tmp
 since it is a well-known, universally available scratch directory on
 virtually all Unix systems. The shell, in this example, will create
 the file named echo.out in the
 /tmp directory.
Our second example, placing the output into
 ../../over.here, uses a
 relative path-name, and the .. is the
 specially-named directory inside every directory that refers to the
 parent directory. So each reference to .. moves up a level in the
 filesystem tree (toward the root, not what we usually mean by up in a
 tree). The point here is that we can redirect our output, if we want,
 into a file that is far away from where we are running the
 command.

See Also

	Learning the bash Shell by Cameron
 Newham (O'Reilly), See Also, Problem, Discussion, See Also for an introduction to files, directories,
 and the dot notation (i.e., . and ..)

Saving Output from the ls Command

Problem

You tried to save output from the ls
 command with a redirect, but when you look at the resulting file, the
 format is not what you expected.

Solution

Use the -C option on
 ls when you redirect the output.
Here's the ls command showing the contents
 of a directory:
	$ ls
	a.out cong.txt def.conf file.txt more.txt zebra.list
	$
But when we save the output with the > to redirect it to a
 file, and then show the file contents, we get this:
	$ ls > /tmp/save.out
	$ cat /tmp/save.out
	a.out
	cong.txt
	def.conf
	file.txt
	more.txt.
	zebra.list
	$
This time we'll use the -C
 option:
	$ ls -C > /tmp/save.out
	$ cat /tmp/save.out
	a.out cong.txt def.conf file.txt more.txt zebra.list
	$
Alternatively, if we use the -1 option on ls when we
 don't redirect, then we get out-put like this:
	$ ls -1
	a.out
	Cong.txt
	def.conf.
	file.txt
	more.txt
	save.out
	zebra.list
	$
Then the original attempt at redirection matches this
 output.

Discussion

Just when you thought that you understood redirection and you
 tried it on a simple ls command, it didn't quite
 work right. What's going on here?
The shell's redirection is meant to be transparent to all
 programs, so programs don't need special code to make their output
 redirect-able. The shell takes care of it when you use the > to
 send the output elsewhere. But it turns out that code can be added to
 a program to figure out when its output is being redirected. Then, the
 program can behave differently in those two cases—and that's what
 ls is doing.
The authors of ls figured that if your
 output is going to the screen then you probably want columnar output
 (-C option), as screen real estate
 is limited. But they assumed if you're redirecting it to a file, then
 you'll want one file per line (the minus one -1 option) since there are more interesting
 things you can do (i.e., other processing) that is easier if each
 filename is on a line by itself.

See Also

	man ls

	Saving Output to Other Files, "Saving
 Output to Other Files"

Sending Both Output and Error Messages to Different Files

Problem

You are expecting output from a program but you don't want it to
 get littered with error messages. You'd like to save your error
 messages, but it's harder to find them mixed among the expected
 output.

Solution

Redirect output and error messages to different
 files.
	$ myprogram 1>messages.out 2> message.err
Or more commonly:
	$ myprogram > messages.out 2> message.err

Discussion

This example shows two different output files that will be
 created by the shell. The first, messages.out,
 will get all the output from the hypothetical
 myprogram redirected into it. Any error messages
 from myprogram will be redirected into
 message.err.
In the constructs 1> and
 2> the number is the file
 descriptor, so 1 is STDOUT and 2 is STDERR. When no number is specified,
 STDOUT is assumed.

See Also

	Saving Output to Other Files, "Saving
 Output to Other Files"

	Throwing Output Away, "Throwing Output
 Away"

Sending Both Output and Error Messages to the Same File

Problem

Using redirection, you can redirect output or error messages to
 separate files, but how do you capture all the output and error
 messages to a single file?

Solution

Use the shell syntax to redirect standard error messages to the
 same place as standard output.
Preferred:
	$ both >& outfile
or:
	$ both &> outfile
or older and slightly more verbose:
	$ both > outfile 2>&1
where both is just our
 (imaginary) program that is going to generate output to both
 STDERR and STDOUT.

Discussion

&> or >& is a shortcut that simply sends
 both STDOUT and STDERR to the same place—exactly what we want to
 do.
In the third example, the 1
 appears to be used as the target of the redirection, but the >& says to interpret the 1 as a file descriptor
 instead of a filename. In fact, the 2>& are a single entity, indicating
 that standard output (2) will be
 redirected (>) to a file descriptor (&) that follows (1). The 2>& all have to appear together
 without spaces, otherwise the 2
 would look just like another argument, and the & actually means
 something completely different when it appears by itself. (It has to
 do with running the command in the background.)
It may help to think of all redirection operators as taking a leading number (e.g.,
 2>) but that the default number
 for > is 1, the standard output
 file descriptor.
You could also do the redirection in the other order, though it
 is slightly less read-able, and redirect standard output to the same
 place to which you have already redirected standard error:
	$ both 2> outfile 1>&2
The 1 is used to indicate
 standard output and the 2 for
 standard error. By our reasoning (above) we could have written just
 >&2 for that last
 redirection, since 1 is the default
 for >, but we find it more readable to write the number explicitly
 when redirecting file descriptors.
Note the order of the contents of the output file. Sometimes the
 error messages may appear sooner in the file than they do on the
 screen. That has to do with the unbuffered nature of standard error,
 and the effect becomes more pronounced when writing to a file instead
 of the screen.

See Also

	Saving Output to Other Files, "Saving
 Output to Other Files"

	Throwing Output Away, "Throwing Output
 Away"

Appending Rather Than Clobbering Output

Problem

Each time you redirect your output, it creates that output file
 anew. What if you want to redirect output a second (or third, or …)
 time, and don't want to clobber the previous output?

Solution

The double greater-than sign (>>) is a
 bash redirector that means append the
 output:
	$ ls > /tmp/ls.out
	$ cd ../elsewhere
	$ ls >> /tmp/ls.out
	$ cd ../anotherdir
	$ ls >> /tmp.ls.out
	$

Discussion

The first line includes a redirect that removes the file if it
 exists and starts with a clean (empty) file, filling it with the
 output from the ls command.
The second and third invocations of ls use
 the double greater than sign (>>) to indicate appending to,
 rather than replacing, the output file.

See Also

	Saving Output to Other Files, "Saving
 Output to Other Files"

	Throwing Output Away, "Throwing Output
 Away"

Using Just the Beginning or End of a File

Problem

You need to display or use just the beginning or end of a
 file.

Solution

Use the head or tail
 commands. By default, head will output the first
 10 lines and tail will output the last 10 lines
 of the given file. If more than one file is given, the appropriate
 lines from each of them are output. Use the
 -number switch (e.g., -5) to change the number of lines.
 tail also has the -f and -F
 switches, which follow the end of the file as it is written to. And it
 has an interesting + switch that we cover in Skipping a Header in a File, "Skipping a Header in a
 File."

Discussion

head and tail, along
 with cat, grep, sort, cut, and
 uniq, are some of the most commonly used Unix
 text processing tools out there. If you aren't already familiar with
 them, you'll soon wonder how you ever got along without them.

See Also

	Skipping a Header in a File, "Skipping a
 Header in a File"

	Sifting Through Files for a String,
 "Sifting Through Files for a String"

	Sorting Your Output, "Sorting Your
 Output"

	Cutting Out Parts of Your Output,
 "Cutting Out Parts of Your Output"

	Removing Duplicate Lines, "Removing
 Duplicate Lines"

	Numbering Lines, "Numbering Lines"

Skipping a Header in a File

Problem

You have a file with one or more header lines and you need to process just the data, and
 skip the header.

Solution

Use the tail command with a special
 argument. For example, to skip the first line of a file:
	$ tail +2 lines
	Line 2

	Line 4
	Line 5

Discussion

An argument to tail, which is a number
 starting dash (-), will specify a line offset relative to the end
 of the file. So tail -10
 file shows the last 10 lines of
 file, which also happens to be the default if you
 don't specify anything. But a number starting with a plus (+) sign is an offset relative to the top of the
 file. Thus, tail+1
 file gives you the entire file, the same as
 cat. +2 skips
 the first line, and so on.

See Also

	man tail

	Setting Up a Database with MySQL,
 "Setting Up a Database with MySQL"

Throwing Output Away

Problem

Sometimes you don't want to save the output into a file; in
 fact, sometimes you don't even want to see it at all.

Solution

Redirect the output to /dev/null as shown
 in these examples:
	$ find / -name myfile -print 2> /dev/null
or:
	$ noisy >/dev/null 2>&1

Discussion

We could redirect the unwanted output into a file, then remove
 the file when we're done. But there is an easier way. Unix and Linux
 systems have a special device that isn't real hardware at all, just a
 bit bucket where we can dump unwanted data. It's called
 /dev/null and is perfect for these situations.
 Any data written there is simply thrown away, so it takes up no disk
 space. Redirection makes it easy.
In the first example, only the output going to standard error is
 thrown away. In the second example, both standard output and standard
 error are discarded.
In rare cases, you may find yourself in a situation where
 /dev is on a read-only file system (for example,
 certain information security appliances), in which case you are stuck
 with the first suggestion of writing to a file and then removing
 it.

See Also

	Saving Output to Other Files, "Saving
 Output to Other Files"

Saving or Grouping Output from Several Commands

Problem

You want to capture the output with a redirect, but you're
 typing several commands on one line.
	$ pwd; ls; cd ../elsewhere; pwd; ls > /tmp/all.out
The final redirect applies only to the last command, the last
 ls on that line. All the other output appears on
 the screen (i.e., does not get redirected).

Solution

Use braces { } to group these commands together, then
 redirection applies to the output from all commands in the group. For
 example:
	$ { pwd; ls; cd ../elsewhere; pwd; ls; } > /tmp/all.out
Warning
There are two very subtle catches here. The braces are
 actually reserved words, so they must be
 surrounded by whitespace. Also, the trailing semicolon is required
 before the closing space.

Alternately, you could use parentheses () to tell bash to run
 the commands in a subshell, then redirect the output of the entire
 subshell's execution. For example:
	$ (pwd; ls; cd ../elsewhere; pwd; ls) > /tmp/all.out

Discussion

While these two solutions look very similar, there are two
 important differences. The first difference is syntactic, the second is semantic. Syntactically, the braces need to have white
 space around them and the last command inside the list must terminate
 with a semicolon. That's not required when you use parentheses. The
 bigger difference, though, is semantic—what these constructs mean. The
 braces are just a way to group several commands together, more like a
 shorthand for our redirecting, so that we don't have to redirect each
 command separately. Commands enclosed in parentheses, however, run in
 another instance of the shell, a child of the current shell called a
 subshell.
The subshell is almost identical to the current shell's
 environment, i.e., variables, including $PATH, are all the same, but traps are
 handled differently (for more on traps, see Trapping Interrupts, "Trapping Interrupts"). Now here is
 the big difference in using the subshell approach: because a subshell
 is used to execute the cd commands, when the
 subshell exits, your main shell is back where it started, i.e., its
 current directory hasn't moved, and its variables haven't
 changed.
With the braces used for grouping, you end up in the new
 directory (../elsewhere in our example). Any
 other changes that you make (variable assignments, for example) will
 be made to your current shell instance. While both approaches result
 in the same output, they leave you in very different places.
One interesting thing you can do with braces is form more
 concise branching blocks (Branching on Conditions,
 "Branching on Conditions"). You can shorten this:
	if [$result = 1]; then
	 echo "Result is 1; excellent."
	 exit 0
	else
	 echo "Uh-oh, ummm, RUN AWAY! "
	 exit 120
	fi
into this:
	[$result = 1] \
	 && { echo "Result is 1; excellent." ; exit 0; } \
	 || { echo "Uh-oh, ummm, RUN AWAY! " ; exit 120; }
How you write it depends on your style and what you think is
 readable.

See Also

	Branching on Conditions, "Branching on
 Conditions"

	Trapping Interrupts, "Trapping
 Interrupts"

	Getting Input from Another Machine,
 "Getting Input from Another Machine"

	Expecting to Change Exported Variables,
 "Expecting to Change Exported Variables"

	Forgetting That Pipelines Make Subshells,
 "Forgetting That Pipelines Make Subshells"

	"Built-in Shell Variables" in Appendix A to learn about BASH_SUBSHELL

Connecting Two Programs by Using Output As Input

Problem

You want to take the output from one program and use it as the
 input of another program.

Solution

You could redirect the output from the first program into a
 temporary file, then use that file as input to the second program. For
 example:
	$ cat one.file another.file > /tmp/cat.out
	$ sort < /tmp/cat.out
	...
	$ rm /tmp/cat.out
Or you could do all of that in one step by sending the output
 directly to the next program by using the pipe symbol | to connect
 them. For example:
	$ cat one.file another.file | sort
You can also link a sequence of several commands together by
 using multiple pipes:
	$ cat my* | tr 'a-z' 'A-Z' | uniq | awk -f transform.awk | wc

Discussion

By using the pipe symbol we don't have to invent a temporary
 filename, remember it, and remember to delete it.
Programs like sort can take input from
 standard in (redirected via the < symbol) but they can also take
 input as a filename—for example:
	$ sort /tmp/cat.out
rather than redirecting the input into
 sort:
	$ sort < /tmp/cat.out
That behavior (of using a filename if supplied, and if not, of
 using standard input) is a typical Unix/Linux characteristic, and a
 useful model to follow so that commands can be connected one to
 another via the pipe mechanism. If you write your programs and shell
 scripts that way, they will be more useful to you and to those with
 whom you share your work.
Feel free to be amazed at the powerful simplicity of the pipe
 mechanism. You can even think of the pipe as a rudimentary parallel
 processing mechanism. You have two commands (programs) running in
 parallel, sharing data—the output of one as the input to the next.
 They don't have to run sequentially (where the first runs to
 completion before the second one starts)—the second one can get
 started as soon as data is available from the first.
Be aware, however, that commands run this way (i.e., connected
 by pipes), are run in separate subshells. While such a subtlety can
 often be ignored, there are a few times when the implications of this
 are important. We'll discuss that in Forgetting That Pipelines Make Subshells, "Forgetting
 That Pipelines Make Subshells."
Also consider a command such as svn -v
 log | less.If less exits before
 Subversion has finished sending data, you'll get an error like
 "svn: Write error: Broken pipe".
 While it isn't pretty, it also isn't harmful. It happens all the time
 when you pipe some a voluminous amount of data into a program like
 less—you often want to quit once you've found
 what you're looking for, even if there is more data coming down the
 pipe.

See Also

	Getting Input from a File, "Getting Input
 from a File"

	Forgetting That Pipelines Make Subshells,
 "Forgetting That Pipelines Make Subshells"

Saving a Copy of Output Even While Using It As Input

Problem

You want to debug a long sequence of piped I/O, such as:
	$ cat my* | tr 'a-z' 'A-Z' | uniq | awk -f transform.awk | wc
How can you see what is happening between uniq and awk without disrupting the pipe?

Solution

The solution to these problems is to use what plumbers call a
 T-joint in the pipes. For bash, that means using
 the tee command to split the output into two
 identical streams, one that is written to a file and the other that is
 written to standard out, so as to continue the sending of data along
 the pipes.
For this example where we'd like to debug a long string of
 pipes, we insert the tee command between
 uniq and awk:
	$... uniq | tee /tmp/x.x | awk -f transform.awk ...

Discussion

The tee command writes the output to the
 filename specified as its parameter and also write that same output to
 standard out. In our example, that sends a copy to
 /tmp/x.x and also sends the same data to
 awk, the command to which the output of
 tee is connected via the | pipe symbol.
Don't worry about what each different piece of the command line
 is doing in these examples; we just want to illustrate how
 tee can be used in any sequence of
 commands.
Let's back up just a bit and start with a simpler command line.
 Suppose you'd just like to save the output from a long-running command
 for later reference, while at the same time seeing it on the screen.
 After all, a command like:
	find / -name '*.c' -print | less
could find a lot of C source files, so it will likely scroll off
 the window. Using more or
 less will let you look at the output in
 manageable pieces, but once completed they don't let you go back and
 look at that output without re-running the command. Sure, you could
 run the command and save it to a file:
	find / -name '*.c' -print > /tmp/all.my.sources
but then you have to wait for it to complete before you can see
 the contents of the file. (OK, we know about tail -f but that's just getting off topic
 here.) The tee command can be used instead of the
 simple redirection of standard output:
	find / -name '*.c' -print | tee /tmp/all.my.sources
In this example, since the output of tee
 isn't redirected anywhere, it will print to the screen. But the copy
 that is diverted into a file will be there for later use (e.g., cat /tmp/all.my.sources).
Notice, too, that in these examples we did not redirect standard
 error at all. This means that any errors, like you might expect from
 find, will be printed to the screen but won't
 show up in the tee file. We could have added a
 2>&1to the
 find command:
	find / -name '*.c' -print 2>&1 | tee /tmp/all.my.sources
to include the error output in the tee
 file. It won't be neatly separated, but it will be captured.

See Also

	man tee

	Reusing Arguments, "Reusing
 Arguments"

	Debugging Scripts, "Debugging
 Scripts"

Connecting Two Programs by Using Output As Arguments

Problem

What if one of the programs to which you would like to connect
 with a pipe doesn't work that way? For example, you can remove files
 with the rm command, specifing the files to be
 removed as parameters to the command:
	$ rm my.java your.c their.*
but rm doesn't read from standard input, so
 you can't do something like:
	find . -name '*.c' | rm
Since rm only takes its filenames as
 arguments or parameters on the command line, how can we get the output
 of a previously-run command (e.g., echo or
 ls) onto the command line?

Solution

Use the command substitution feature of
 bash:
	$ rm $(find . -name '*.class')
	$

Discussion

The $() encloses a command that is run in a subshell. The output
 from that command is substituted in place of the $() phrase. Newlines
 in the output are replaced with a space character (actually it uses
 the first character of $IFS, which is a space by default, during word
 splitting), so several lines of output become several parameters on
 the command line.
The earlier shell syntax was to use back-quotes instead of
 $()for enclosing the sub-command. The $() syntax is preferred over the
 older backward quotes `` syntax because it easier to nest and arguably
 easier to read. However, you will probably see `` more often than $()
 especially in older scripts or from those who grew up with the
 original Bourne or C shells.
In our example, the output from find,
 typically a list of names, will become the arguments to the
 rm command.
Warning: be very careful when doing something like this because
 rm is very unforgiving. If your
 find command finds more than you expect,
 rm will remove it with no recourse. This is not
 Windows; you cannot recover deleted files from the trashcan. You can
 mitigate the danger with rm-i,
 which will prompt you to verify each delete. That's OK on a small
 number of files, but interminable on a large set.
One way to use such a mechanism in bash
 with greater safety is to run that inner command first by itself. When
 you can see that you are getting the results that you want, only then
 do you use it in the command with back-quotes.
For example:
	$ find . -name '*.class'
	First.class
	Other.class
	$ rm $(find . -name '*.class')
	$
We'll see in an upcoming recipe how this can be made even more
 foolproof by using !! instead of retyping the
 find command (see Repeating the Last Command, "Repeating the Last
 Command").

See Also

	Repeating the Last Command, "Repeating
 the Last Command"

	Working Around "argument list too long" Errors,
 "Working Around "argument list too long" Errors"

Using Multiple Redirects on One Line

Problem

You want to redirect output to several different places.

Solution

Use redirection with file numbers to open all the files that you
 want to use. For example:
	$divert 3> file.three 4> file.four 5> file.five 6> else.where
	$
where divert might be a shell
 script with various commands whose output you want to send to
 different places. For example, you might write
 divert to contain lines like this: echo option $OPTSTR >&5. That is, our
 divert shell script could direct its output to
 various different descriptors which the invoking program can send to
 different destinations.
Similarly, if divert was a C program
 executable, you could actually write to descriptors 3, 4, 5, and 6
 without any need for open()
 calls.

Discussion

In an earlier recipe we explained that each file descriptor is
 indicated by a number, starting at 0 (zero). So standard input is 0,
 out is 1, and error is 2. That means that you could redirect standard output with the slightly more verbose
 1> (rather than a simple >) followed by a filename, but there's
 no need. The shorthand> is fine. It also means that you can have
 the shell open up any number of arbitrary file descriptors and have
 them set to write various files so that the program that the shell
 then invokes from the command line can use these opened file
 descriptors without further ado.
While we don't recommend this technique, it is
 intriguing.

See Also

	Saving Output to Other Files, "Saving
 Output to Other Files"

	Sending Both Output and Error Messages to Different Files,
 "Sending Both Output and Error Messages to Different Files"

	Throwing Output Away, "Throwing Output
 Away"

Saving Output When Redirect Doesn't Seem to Work

Problem

You tried using > but some (or all) of the output still
 appears on the screen.
For example, the compiler is producing some error
 messages.
	$ gcc bad.c
	bad.c: In function `main':
	bad.c:3: error: `bad' undeclared (first use in this function)
	bad.c:3: error: (Each undeclared identifier is reported only once
	bad.c:3: error: for each function it appears in.)
	bad.c:3: error: parse error before "c"
	$
You wanted to capture those messages, so you tried redirecting
 the output:
	$ gcc bad.c > save.it
	bad.c: In function `main':
	bad.c:3: error: `bad' undeclared (first use in this function)
	bad.c:3: error: (Each undeclared identifier is reported only once
	bad.c:3: error: for each function it appears in.)
	bad.c:3: error: parse error before "c"
	$
However, it doesn't seem to have redirected anything. In fact,
 when you examine the file into which you were directing the output,
 that file is empty (zero bytes long):
	$ ls -l save.it
	-rw-r--r-- 1 albing users 0 2005-11-13 15:30 save.it
	$ cat save.it
	$

Solution

Redirect the error output, as follows:
	$ gcc bad.c 2> save.it
	$
The contents of save.it are now the error
 messages that we had seen before.

Discussion

So what's going on here? Every process in Unix and Linux
 typically starts out with three open file descriptors: one for input
 called standard input (STDIN), one for out-put called standard
 output (STDOUT), and one for error messages called
 standard error (STDERR). It is really up to the
 programmer, who writes any particular program, to stick to these
 conventions and write error messages to standard error and to write
 the normally expected output to standard out, so there is no guarantee
 that every error message that you ever get will go to standard error.
 But most of the long-established utilities are well behaved this way.
 That is why these compiler messages are not being diverted with a
 simple > redirect; it only redirects standard output, not standard
 error.
Each file descriptor is indicated by a number, starting at 0. So
 standard input is 0, output is 1, and error is 2. That means that you
 could redirect standard output with the slightly more verbose:
 1> (rather than a simple >)
 followed by a filename, but there's no need. The shorthand > is
 fine.
One other difference between standard output and standard error:
 standard output is buffered but standard error is
 unbuffered, that is every character is written
 individually, not collected together and written as a bunch. This
 means that you see the error messages right away and that there is
 less chance of them being dropped when a fault occurs, but the cost is
 one of efficiency. It's not that standard output is unreliable, but in
 error situations (e.g., a program dies unexpectedly), the buffered
 output may not have made it to the screen before the program stops
 executing. That's why standard error is unbuffered: to be sure the
 message gets written. By contrast, standard out is buffered. Only when
 the buffer is full (or when the file is closed) does the out-put
 actually get written. It's more efficient for the more frequently used
 output. Efficiency isn't as important when an error is being
 reported.
What if you want to see the output as you are saving it? The
 tee command we discussed in Saving a Copy of Output Even While Using It As Input,
 "Saving a Copy of Output Even While Using It As Input" seems just the
 thing:
		$ gcc bad.c 2>&1 | tee save.it
This will take standard error and redirect it to standard out,
 piping them both into tee. The
 tee command will write its input to both the file
 (save.it) and
 tee's standard out, which will go to your screen
 since it isn't otherwise redirected.
This is a special case of redirecting because normally the order
 of the redirections is important. Compare these two commands:
	$ somecmd >my.file 2>&1
	$ somecmd 2>&1 >my.file
In the first case, standard out is redirected to a file (my.file), and then standard error is
 redirected to the same place as standard out. All output will appear
 in my.file.
But that is not the case with the second command. In the second
 command, standard error is redirected to standard out (which at that
 point is connected to the screen), after which standard out is
 redirected to my.file. Thus only
 standard out messages will be put in the file and errors will still
 show on the screen.
However, this ordering had to be subverted for pipes, since you
 couldn't put the second redirect after the pipe symbol, because after
 the pipe comes the next command. So bash makes an
 exception when you write:
	$ somecmd 2>&1 | othercmd
and recognizes that standard out is being piped. It therefore
 assumes that you want to include standard error in the piping when you
 write 2>&1 even though its
 normal ordering wouldn't work that way.
The other result of this, and of pipe syntax in general, is that
 it gives us no way to pipe just standard error and not standard out
 into another command—unless we first swap the file descriptors (see
 the next recipe).

See Also

	Connecting Two Programs by Using Output As Arguments,
 "Connecting Two Programs by Using Output As Arguments

	Swapping STDERR and STDOUT, "Swapping
 STDERR and STDOUT"

Swapping STDERR and STDOUT

Problem

You need to swap STDERR and STDOUT so you can send STDOUT to a
 logfile, but then send STDERR to the screen and to a file using the
 tee command. But pipes only work with
 STDOUT.

Solution

Swap STDERR and STDOUT before the pipe redirection using a third
 file descriptor:
	$./myscript 3>&1 1>stdout.logfile 2>&3- | tee -a stderr.logfile

Discussion

Whenever you redirect file descriptors, you are duplicating the
 open descriptor to another descriptor. This gives you a way to swap
 descriptors, much like how any program swaps two values—by means of a
 third, temporary holder. It looks like: copy A into C, copy B into A,
 copy C into B and then you have swapped the values of A and B. For
 file descriptors, it looks like this:
$./myscript 3>&1 1>&2 2>&3
Read the syntax 3>&1
 as "give file descriptor 3 the same value as output file descriptor
 1." What happens here is that it duplicates file descriptor 1 (i.e.,
 STDOUT) into file descriptor 3, our temporary holding place. Then it
 duplicates file descriptor 2 (i.e., STDERR) into STDOUT, and finally duplicates file
 descriptor 3 into STDERR. The net effect is that STDERR and STDOUT file descriptors have swapped
 places.
So far so good. Now we just change this slightly. Once we've
 made the copy of STDOUT (into file
 descriptor 3), we are free to redirect STDOUT into the logfile we want to have
 capture the output of our script or other program. Then we can copy
 the file descriptor from its temporary holding place (fd 3) into
 STDERR. Adding the pipe will now work because the pipe connects to the
 (original) STDOUT. That gets us to
 the solution we wrote above:
	$./myscript 3>&1 1>stdout.logfile 2>&3- | tee -a stderr.logfile
Note the trailing -on the 2>&3- term. We do that so that we
 close file descriptor 3 when we are done with it. That way our program
 doesn't have an extra open file descriptor. We are tidying up after
 ourselves.

See Also

	Linux Server Hacks, First Edition, hack
 #5 "n>&m: Swap STDOUT and STDERR," by Rob Flickenger
 (O'Reilly)

	Saving Output When Redirect Doesn't Seem to Work,
 "Saving Output When Redirect Doesn't Seem to Work"

	"Daemon-izing" Your Script, ""Daemonizing"
 Your Script"

Keeping Files Safe from Accidental Overwriting

Problem

You don't want to delete the contents of a file by mistake. It
 can be too easy to mistype a filename and find that you've redirected
 output into a file that you meant to save.

Solution

Tell the shell to be more careful, as follows:
	$ set -onoclobber
	$
If you decide you don't want to be so careful after all, then
 turn the option off:
	$ set +o noclobber
	$

Discussion

The noclobber option tells
 bash not to overwrite any existing files when you
 redirect output. If the file to which you redirect output doesn't
 (yet) exist, everything works as normal, with
 bash creating the file as it opens it for output.
 If the file already exists, however, you will get an error
 message.
Here it is in action. We begin by turning the option off, just
 so that your shell is in a known state, regardless of how your
 particular system may be configured.
	$ set +o noclobber
	$ echo something > my.file
	$ echo some more > my.file
	$ set -o noclobber
	$ echo something > my.file
	bash: my.file: cannot overwrite existing file
	$ echo some more >> my.file
	$
The first time we redirect output to
 my.file the shell will create it for us. The
 second time we redirect, bash overwrites the file
 (it truncates the file to 0 bytes and starts writing from there). Then
 we set the noclobber option and we
 get an error message when we try to write to that file. As we show in
 the last part of this example, we can append to the file (using
 >>) just fine.
Warning
Beware! The noclobber
 option only refers to the shell's clobbering of a file when
 redirecting output. It will not stop other file
 manipulating actions of other programs from clobbering files (see
 Setting Permissions, "Setting
 Permissions").
	$ echo useless data > some.file
	$ echo important data > other.file
	$ set -o noclobber
	$ cp some.file other.file
	$
Notice that no error occurs; the file is copied over the top
 of an existing file. That copy is done via the
 cp command. The shell doesn't get
 involved.

If you're a good and careful typist this may not seem like an
 important option, but we will look at other recipes where filenames
 are generated with regular expressions or passed as variables. Those
 filenames could be used as the filename for output redirection. In
 such cases, having noclobber set
 may be an important safety feature for preventing unwanted side
 effects (whether goofs or malicious actions).

See Also

	A good Linux reference on the chmod command and file permissions, such as:
—http://www.linuxforums.org/security/file_permissions.html
—http://www.comptechdoc.org/os/linux/usersguide/linux_ugfilesup.html
—http://www.faqs.org/docs/linux_intro/sect_03_04.html
—http://www.perlfect.com/articles/chmod.shtml

	Setting Permissions, "Setting
 Permissions"

End of sample

 To search for additional titles please go to

 http://search.overdrive.com.

OEBPS/httpatomoreillycomsourceoreillyimages85047.png.jpg
..[RolighActioni.jpg - Mozilla Firefox!
Eile Edit View Go Bookmarks Tools Help

@-H-G) [T file:/smome albing/photos/album/RoughAction . htmi

[Personal [MEPIS [(Media [News oogle @Radar Forecast Java APl

RoughActionl.jpg

OEBPS/httpatomoreillycomsourceoreillyimages206704.jpg
Solutions and Examples for bash Users

1 Albing, JP Vossen
Cameron Newham

O’REILLY®

OEBPS/oreilly_large.gif
O’REILLY

OEBPS/httpatomoreillycomsourceoreillyimages85049.png
spitnto tokens

check st token

opening keyword other keyword

not keyword

expanded aas

check 15t token

not alias

brace expansion

tide expansion

B

: °
g o command substitution

2

g

H

g o arithmeticsubstitution

g

(] wardspiting

pathname expansion
command lookup:function, buitt-in command,
executable file

eval

syntaertor

double quotes

double quotes

singlequotes

