

 [image: First Edition.]

 C++ Pocket Reference

Kyle Loudon

Editor
Jonathan Gennick

Copyright © 2009 O'Reilly Media, Inc.

O'Reilly Media, Inc. books may be purchased for educational, business, or sales promotional use. Online editions are also available for most titles (safari.oreilly.com). For more information, contact our corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered trademarks of O'Reilly Media, Inc. The Pocket Reference series designations, C++ Pocket Reference, the image of a chipmunk, and related trade dress are trademarks of O'Reilly Media, Inc. Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in this book, and O'Reilly Media, Inc. was aware of a trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author assume no responsibility for errors or omissions, or for damages resulting from the use of the information contained herein.

[image:]

O'Reilly Media

Chapter 1. C++ Pocket Reference

Introduction

The C++ Pocket Reference is a quick reference to the C++ programming language as defined by the international standard INCITS/ISO/IEC 14882–1998. It consists of a number of short sections, each further divided into specific topics. Many of the topics include pointed, canonical examples.
At the outset, it is important to recognize that C++ is a vast language, admittedly difficult to describe in a pocket reference. As a result, this reference is devoted almost exclusively to presenting the language itself. Other references are available from O'Reilly & Associates describing the C++ Standard Library, a vast subject on its own. The C++ Standard Library includes all of the facilities of the C Standard Library plus many new ones, such as the Standard Template Library (STL) and I/O streams.
This book has been written for developers with a variety of backgrounds and experience levels in C++. Those with experience using C++ will find this book to be a uniquely focused reference to its most commonly used features. If you are new to C++, you may wish to work with a tutorial first and return to this reference later to research specific topics.
Typographic Conventions

This book uses the following typographic conventions:
	Italic
	This style is used for filenames and for items emphasized in the text.

	Constant width
	This style is used for code, commands, keywords, and names for types, variables, functions, and classes.

	Constant width italic
	This style is used for items that you need to replace.

Acknowledgments

I would like to thank Jonathan Gennick, my editor at O'Reilly, for his support and direction with this book. Thanks also to Uwe Schnitker, Danny Kalev, and Ron Passerini for taking the time to read and comment on an early draft of this book.

Compatibility with C

With some minor exceptions, C++ was developed as an extension, or superset, of C. This means that well-written C programs generally will compile and run as C++ programs. (Most incompatibilities stem from the stricter type checking that C++ provides.) So, C++ programs tend to look syntactically similar to C and use much of C's original functionality.
This being said, don't let the similarities between C and C++ fool you into thinking that C++ is merely a trivial derivation of C. In fact, it is a rich language that extends C with some grand additions. These include support for object-oriented programming, generic programming using templates, namespaces, inline functions, operator and function overloading, better facilities for memory management, references, safer forms of casting, runtime type information, exception handling, and an extended standard library.

Program Structure

At the highest level, a C++ program is composed of one or more source files that contain C++ source code. Together, these files define exactly one starting point, and perhaps various points at which to end.
C++ source files frequently import, or include, additional source code from header files. The C++ preprocessor is responsible for including code from these files before each file is compiled. At the same time, the preprocessor can also perform various other operations through the use of preprocessor directives. A source file after preprocessing has been completed is called a translation unit.
Startup

The function main is the designated start of a C++ program, which you as the developer must define. In its standard form, this function accepts zero or two arguments supplied by the operating system when the program starts, although many C++ implementations allow additional parameters. Its return type is int. For example:
int main()
int main(int argc, char *argv[])
argc is the number of arguments specified on the command line; argv is an array of null-terminated (C-style) strings containing the arguments in the order they appear. The name of the executable is stored in argv[0], and may or may not be prefixed by its path. The value of argv[argc] is 0.
The following shows the main function for a simple C++ program that prompts the user for actions to perform on an account:
#include <iostream>
#include <cmath>
#include <cstdlib>
using namespace std;

#include "Account.h"

int main(int argc, char *argv[])
{
 Account account(0.0);
 char action;
 double amount;

 if (argc > 1)
 account.deposit(atof(argv[1]));

 while (true)
 {
 cout << "Balance is "
 << account.getBalance()
 << endl;

 cout << "Enter d, w, or q: ";
 cin >> action;

 switch (action)
 {
 case 'd':
 cout << "Enter deposit: ";
 cin >> amount;
 account.deposit(amount);
 break;

 case 'w':
 cout << "Enter withdrawal: ";
 cin >> amount;
 account.withdraw(amount);
 break;

 case 'q':
 exit(0);

 default:
 cout << "Bad command" << endl;
 }
 }

 return 0;
}
The class for the account is defined in a later example. An initial deposit is made into the account using an amount specified on the command line when the program is started. The function atof (from the C++ Standard Library) is used to convert the command-line argument from a string to a double.

Termination

A C++ program terminates when you return from main. The value you return is passed back to the operating system and becomes the return value for the executable. If no return is present in main, an implicit return of 0 takes places after falling through the body of main. You can also terminate a program by calling the exit function (from the C++ Standard Library), which accepts the return value for the executable as an argument.

Header Files

Header files contain source code to be included in multiple files. They usually have a .h extension. Anything to be included in multiple places belongs in a header file. A header file should never contain the following:
	Definitions for variables and static data members (see Declarations for the difference between declarations and definitions).

	Definitions for functions, except those defined as template functions or inline functions.

	Namespaces that are unnamed.
Note
Header files in the C++ Standard Library do not use the .h extension; they have no extension.

Often you create one header file for each major class that you define. For example, Account is defined in the header file Account.h, shown below. Of course, header files are used for other purposes, and not all class definitions need to be in header files (e.g., helper classes are defined simply within the source file in which they will be used).
#ifndef ACCOUNT_H
#define ACCOUNT_H

class Account
{
public:
 Account(double b);

 void deposit(double amt);
 void withdraw(double amt);
 double getBalance() const;

private:
 double balance;
};

#endif
The implementation of this class is in Account.cpp. You use the preprocessor directive #include to include a header file within another file (see Preprocessor Directives).
Because header files are often included by other headers themselves, care must be taken not to include the same file more than once, which can lead to compilation errors. To avoid this, it is conventional to wrap the contents of header files with the preprocessor directives #ifndef, #define, and #endif, as done in the previous example.
The tactic of wrapping a header file forces the preprocessor to test an identifier. If that identifier is not defined, the preprocessor defines it and processes the file's contents. As an example, the contents of Account.h are processed only when ACCOUNT_H is undefined, and the first thing that processing does is to define ACCOUNT_H to ensure the header is not processed a second time. To ensure uniqueness, X_H is typically used as the identifier, where X is the name of the header file without its extension.

Source Files

C++ source files contain C++ source code. They usually have a .cpp extension. During compilation, the compiler typically translates source files into object files, which often have a .obj or .o extension. Object files are joined by the linker to produce a final executable or library.
Often you create one source file for each major class you implement. For example, the implementation of Account is in Account.cpp, shown below. Of course, there is no requirement about this; source files often contain more than just the implementation of a single class.
#include "Account.h"

Account::Account(double b)
{
 balance = b;
}

void Account::deposit(double amt)
{
 balance += amt;
}

void Account::withdraw(double amt)
{
 balance −= amt;
}

double Account::getBalance() const
{
 return balance;
}

Preprocessor Directives

The C++ preprocessor can be used to perform a number of useful operations controlled via several directives. Each directive begins with a pound sign (#) as the first character that is not whitespace on a line. Directives can span multiple lines by including a backslash (\) at the end of intermediate lines.
#define

The #define directive replaces an identifier with the text that follows it wherever the identifier occurs in a source file. For example:
#define BUFFER_SIZE 80

char buffer[BUFFER_SIZE];
If you specify no text after the identifier, the preprocessor simply defines the identifier so that any check for its definition tests true and it expands to nothing in the source code. (You can see this in use earlier where ACCOUNT_H was defined.)
Note
In C++, it is preferable to use enumerations, and to a lesser degree, variables and data members declared using the keywords const or static const for constant data, rather than the #define directive.

The #define directive can accept arguments for macro substitution in the text. For example:
#define MIN(a, b) (((a) < (b)) ? (a):(b))

int x = 5, y = 10, z;

z = MIN(x, y); // This sets z to 5.
In order to avoid unexpected problems with operator precedence, parameters should be fully parenthesized in the text, as shown above.
Note
In C++, it is preferable to use templates and inline functions in place of macros. Templates and inline functions eliminate unexpected results produced by macros, such as MIN(x++, y) incrementing x twice when a is less than b. (Macro substitution treats x++, not the result of x++, as the first parameter.)

#undef

The #undef directive undefines an identifier so that a check for its definition tests false. For example:
#undef LOGGING_ENABLED

#ifdef, #ifndef, #else, #endif

You use the #ifdef, #ifndef, #else, and #endif directives together. The #ifdef directive causes the preprocessor to include different code based on whether or not an identifier is defined. For example:
#ifdef LOGGING_ENABLED
cout << "Logging is enabled" << endl;
#else
cout << "Logging is disabled" << endl;
#endif
Using #else is optional. #ifndef works similarly but includes the code following the #ifndef directive only if the identifier is not defined.

#if, #elif, #else, #endif

The #if, #elif, #else, and #endif directives, like the directives of #ifdef, are used together. These cause the preprocessor to include or exclude code based on whether an expression is true. For example:
#if (LOGGING_LEVEL == LOGGING_MIN && \
 LOGGING_FLAG)
cout << "Logging is minimal" << endl;
#elif (LOGGING_LEVEL == LOGGING_MAX && \
 LOGGING_FLAG)
cout << "Logging is maximum" << endl;
#elif LOGGING_FLAG
cout << "Logging is standard" << endl;
#endif
The #elif (else-if) directive is used to chain a series of tests together, as shown above.

#include

The #include directive causes the preprocessor to include another file, usually a header file. You enclose standard header files with angle brackets, and user-defined header files with quotes. For example:
#include <iostream>
#include "Account.h"
The preprocessor searches different paths depending on the form of enclosure. The paths searched depend on the system.

#error

The #error directive causes compilation to stop and a specified string to be displayed. For example:
#ifdef LOGGING_ENABLED
#error Logging should not be enabled
#endif

#line

The #line directive causes the preprocessor to change the current line number stored internally by the compiler during compilation in the macro _ _LINE_ _. For example:
#line 100
A filename optionally can be specified in double quotes after the line number. This changes the name of the file stored internally by the compiler in the macro _ _FILE_ _. For example:
#line 100 "NewName.cpp"

#pragma

Some operations that the preprocessor can perform are implementation-specific. The #pragma directive allows you to control these operations by specifying the directive along with any parameters in a form that the directive requires. For example:
#ifdef LOGGING_ENABLED
#pragma message("Logging enabled")
#endif
Under Microsoft Visual C++ 6.0, the message directive informs the preprocessor to display a message during compilation at the point where this line is encountered. The directive requires one parameter: the message to display. This is enclosed in parentheses and quoted.

Preprocessor Macros

The C++ preprocessor defines several macros for inserting information into a source file during compilation. Each macro begins and ends with two underscores, except for _ _cplusplus, which has no terminating underscores.
	_ _LINE_ _
	Expands to the current line number of the source file being compiled.

	_ _FILE_ _
	Expands to the name of the source file being compiled.

	_ _DATE_ _
	Expands to the date on which the compilation is taking place.

	_ _TIME_ _
	Expands to the time at which the compilation is taking place.

	_ _TIMESTAMP_ _
	Expands to the date and time at which the compilation is taking place.

	_ _STDC_ _
	Will be defined if the compiler is in full compliance with the ANSI C standard.

	_ _cplusplus
	Will be defined if the program being compiled is a C++ program. How a compiler determines whether a given program is a C++ program is compiler-specific. You may need to set a compiler option, or your compiler may look at the source file's extension.

Fundamental Types

The type for an identifier determines what you are allowed to do with it. You associate a type with an identifier when you declare it. When declaring an identifier, you also may have the opportunity to specify a storage class and one or more qualifiers (see Declarations).
The fundamental types of C++ are its Boolean, character, integer, floating-point, and void types. The Boolean, character, and integer types of C++ are called integral types. Integral and floating-point types are collectively called arithmetic types.
bool

Booleans are of type bool. The bool type is used for values of truth. For example:
bool flag;
...
if (flag)
{
 // Do something when the flag is true.
}
Boolean values

Booleans have only two possible values: true or false. The typical size of a bool is one byte.

Boolean literals

The only Boolean literals are the C++ keywords true and false. By convention, false is defined as 0; any other value is considered true.

char and wchar_t

Characters are of type char or wchar_t. The char type is used for integers that refer to characters in a character set (usually ASCII). For example:
char c = 'a';

cout << "Letter a: " << c << endl;
The wchar_t type is a distinct type large enough to represent the character sets of all locales supported by the implementation. To use facilities related to the wchar_t type, you include the standard header file <cwchar>.
Character types may be specified either as signed or unsigned and are sometimes used simply to store small integers. For example:
signed char small = −128;
unsigned char flags = 0x7f;
A signed char represents both positive and negative values, typically by sacrificing one bit to store a sign. An unsigned char doesn't have a sign and therefore can hold larger positive values, typically twice as large. If neither signed nor unsigned is specified, characters are usually signed by default, but this is left up to the compiler.
Character values

The range of values that characters may represent is found in the standard header file <climits>. The size of a char is one byte. The size of a byte technically is implementation-defined, but it is rarely anything but eight bits. The size of the wchar_t type is also implementation-defined, but is typically two bytes.

Character literals

Character literals are enclosed by single quotes. For example:
char c = 'A';
To specify literals for wide characters, you use the prefix L. For example:
wchar_t c = L'A';
To allow special characters, such as newlines and single quotes, to be used within literals, C++ defines a number of escape sequences, each of which begins with a backslash. Table 1-1 presents these escape sequences. There is no limit to the number of hexadecimal digits that can appear after \x in a hexadecimal escape sequence. Octal escape sequences can be at most three digits.
Table 1-1. Character escape sequences
	Escape sequence
	Description

	\a
	Alert (system bell)

	\b
	Backspace

	\f
	Form feed

	\n
	Newline

	\r
	Carriage return

	\t
	Horizontal tab

	\v
	Vertical tab

	\\
	Backslash

	\'
	Single quote

	\"
	Double quote

	\?
	Question mark

	\ooo
	Octal number ooo

	\xhhh...
	Hexadecimal number hhh...

short, int, long

Integers are of type short, int, or long. These types differ in size and the range of values they can represent. For example:
short sval = 32767;
int ival = 2147483647;
long lval = 0x7fffffff;
Integers may be specified as either signed or unsigned. For example:
signed short total;
unsigned short flags = 0xf0f0;
Signed integers represent both positive and negative values, typically by sacrificing one bit to store a sign. Unsigned integers don't have a sign and therefore can hold larger positive values. If an integer is not specified as either signed or unsigned, it is signed by default.
Integer values

The range of values that each of the integer types may represent is found in the standard header file <climits>. The exact size of a short, int, or long is left up to the compiler, but is typically two, four, or four bytes respectively. Although the size of each type can vary, the compiler guarantees that the size of a short is less than or equal to the size of an int, and the size of an int is less than or equal to the size of a long.

Integer literals

Literals for integers have several forms, as shown in Table 1-2. If U, u, L, or l is not used as a suffix, the compiler assigns a type appropriate for the magnitude of the literal.
Table 1-2. Integer literals
	Examples
	Description

	12

−5
	The most common form of integer literals.

	012

0377
	Literals that begin with 0 are octal values (e.g., 012 is the octal literal for the decimal number 10).

	0x2a

0xffff
	Literals that begin with 0x are hexadecimal values (e.g., 0x2a is the hexadecimal literal for the decimal number 42).

	256L

0x7fL
	Literals with L (or l) in the suffix are treated as long.

	0x80U

0xffffUL
	Literals with U (or u) in the suffix are treated as unsigned.

float, double, long double

Floating points are of type float, double, or long double. These types differ in size and in the range and precision of values they can represent. For example:
float fval = 3.4e+38F;
double dval = 1.7e+308;
Floating-point values

The range and precision of values that each of the floating-point types may represent is found in the standard header file <cfloat>. The exact size, range, and precision of a float, double, or long double is left up to the compiler, but is typically four, eight, or ten bytes respectively. Although the size of each type can vary, the compiler guarantees that the size of a float is less than or equal to the size of a double, and the size of a double is less than or equal to the size of a long double.

Floating-point literals

Literals for floating points can take on several forms, as shown in Table 1-3. If F, f, L, or l is not used as a suffix, the compiler assigns a type of double.
Table 1-3. Floating-point literals
	Examples
	Description

	1.2345

−57.0

0.4567
	The most common form of literal floating points.

	1.992e+2

1.71e-25
	Literals expressed in scientific notation.

	8.00275F

3.4e+38L
	Literals with the suffix F (or f) are given the type float; literals with the suffix L (or l) are given the type long double.

void

The void type indicates the absence of a value. One use is in declaring functions that do not return a value. For example:
void sayHello()
{
 cout << "Hello" << endl;
}
Another use is in declaring a pointer that can point to any type of data. For example:
int i = 200;
void *p = &i;
The variable p points to an int. Variables that are not pointers cannot be declared as void.

End of sample

 To search for additional titles please go to

 http://search.overdrive.com.

OEBPS/oreilly_large.gif
O’REILLY

OEBPS/httpatomoreillycomsourceoreillyimages250988.jpg
C++ Syntax and Fundamentals

C++

Pocket Reference
N

O’REILLY® Kyle Loudon

