

 [image: First Edition]

 Clojure Programming

Chas Emerick

Brian Carper

Christophe Grand

Editor
Mike Loukides

Editor
Julie Steele

Copyright © 2012 Chas Emerick, Brian Carper and Christophe Grand, Chas Emerick and Dave Fayram

O’Reilly books may be purchased for educational, business, or sales
 promotional use. Online editions are also available for most titles
 (http://my.safaribooksonline.com).
 For more information, contact our corporate/institutional sales
 department: (800) 998-9938 or corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo
 are registered trademarks of O’Reilly Media, Inc. Clojure
 Programming, the image of a painted snipe, and related trade
 dress are trademarks of O’Reilly Media, Inc.
Many of the designations used by manufacturers and sellers to
 distinguish their products are claimed as trademarks. Where those
 designations appear in this book, and O’Reilly Media, Inc., was aware of a
 trademark claim, the designations have been printed in caps or initial
 caps.

While every precaution has been taken in the preparation of this
 book, the publisher and authors assume no responsibility for errors or
 omissions, or for damages resulting from the use of the information
 contained herein.

[image:]

O'Reilly Media

SPECIAL OFFER: Upgrade this ebook with O’Reilly

Click here for more information on this offer!
Please note that upgrade offers are not available from sample content.

Preface

Clojure is a dynamically and strongly typed programming language
 hosted on the Java Virtual Machine (JVM), now in its fifth year. It has seen
 enthusiastic adoption by programmers from a variety of backgrounds, working
 in essentially all problem domains. Clojure offers a compelling mix of
 features and characteristics applicable to solving modern programming
 challenges:
	Functional programming foundations, including a suite of
 persistent data structures with performance characteristics approaching
 typical mutable data structures

	A mature, efficient runtime environment, as provided by the host
 JVM

	JVM/Java interoperability capabilities suited for a wide variety
 of architectural and operational requirements

	A set of mechanisms providing reliable concurrency and parallelism
 semantics

	A Lisp pedigree, thereby providing remarkably flexible and
 powerful metaprogramming facilities

Clojure offers a compelling practical alternative to many who strain
 against the limitations of typical programming languages and environments.
 We aim to demonstrate this by showing Clojure seamlessly interoperating with
 existing technologies, libraries, and services that many working programmers
 already use on a day-to-day basis. Throughout, we’ll provide a solid
 grounding in Clojure fundamentals, starting from places of common expertise
 and familiarity rather than from (often foreign) computer science first
 principles.
Who Is This Book For?

We wrote this book with a couple of audiences in mind. Hopefully,
 you consider yourself a part of one of them.
Clojure matches and often exceeds your current favorite language’s
 expressivity, concision, and flexibility while allowing you to
 effortlessly leverage the performance, libraries, community, and
 operational stability of the JVM. This makes it a natural next step for
 Java developers (and even JVM developers using interpreted or otherwise
 not particularly fast non-Java languages), who simply will not accept a
 performance hit or who do not want to give up their JVM platform
 investment. Clojure is also a natural step for Ruby and Python developers
 who refuse to compromise on language expressivity, but wish they had a
 more reliable, efficient execution platform and a larger selection of
 quality libraries.
Engaged Java Developers

There are millions of Java developers in the world, but some fewer
 number are working in demanding environments solving nontrivial, often
 domain-specific problems. If this describes you, you’re probably always
 on the hunt for better tools, techniques, and practices that will boost
 your productivity and value to your team, organization, and community.
 In addition, you’re probably at least somewhat frustrated with the
 constraints of Java compared to other languages, but you continue to
 find the JVM ecosystem compelling: its process maturity, massive
 third-party library selection, vendor support, and large skilled
 workforce is hard to walk away from, no matter how shiny and appealing
 alternative languages are.
You’ll find Clojure to be a welcome relief. It runs on the JVM
 with excellent performance characteristics, interoperates with all of
 your existing libraries, tools, and applications, and is
 simpler than Java, yet is demonstrably more
 expressive and less verbose.

Ruby, Python, and Other Developers

Ruby and Python are not new languages by any means, but they have
 garnered significant (dare we say, “mainstream”?) traction over recent
 years. It’s not hard to see why: both are expressive, dynamic languages
 that, along with their thriving communities, encourage maximal developer
 productivity in many domains.
Clojure is a natural next step for you. As a Ruby or Python
 programmer, you’re probably unwilling to compromise on their strengths,
 but you may wish for a more capable execution platform, better runtime
 performance, and a larger selection of libraries. The fact that Clojure
 is efficiently hosted on the JVM fulfills those desires—and it matches
 or exceeds the degrees of language sophistication and developer
 productivity that you’ve come to expect.
Note
We will frequently compare and contrast Clojure with Java,
 Ruby, and Python to help you translate your existing expertise to
 Clojure. In such comparisons, we will always refer to the canonical
 implementations of these other languages:
	Ruby MRI (also called CRuby)

	CPython

	Java 6/7

How to Read This Book

In formulating our approach to this book, we wanted to provide a
 fair bit of concrete detail and practical examples that you could relate
 to, but stay clear of what we thought were generally unsuccessful
 approaches for doing so. In particular, we’ve been frustrated in the past
 by books that attempted to thread the implementation of a single program
 or application through their pages. Such approaches seem to result in a
 disjointed narrative, as well as the dominance of a tortured “practical”
 example that may or may not apply or appeal to readers.
With that in mind, we split the book in two, starting with
 foundational, instructional narrative that occupies roughly two-thirds of
 the book, followed in Part IV by a number of
 discrete, practical examples from real-world domains. This clear
 segmentation of content with decidedly distinct objectives may qualify
 this book as a “duplex book.” (This term may have been coined by Martin
 Fowler in http://martinfowler.com/bliki/DuplexBook.html.) In any
 case, we can conceive of two obvious approaches to reading it.
Start with Practical Applications of Clojure

Often the best way to learn is to dig straight into the
 nitty-gritty of how a language is used in the real world. If that sounds
 appealing, the hope is that you will find that at least a couple of the
 practicums resonate with what you do on a day-to-day basis, so that you
 can readily draw parallels between how you solve certain categories of
 problems in your current language(s) and how they may be solved using
 Clojure. You’re going to bump into a lot of potentially foreign concepts
 and language constructs in those chapters—when you do, use that context
 within the domain in question as your entry point for understanding
 those concepts using the relevant instructional material in the first
 part of the book.

Start from the Ground Up with Clojure’s Foundational
 Concepts

Sometimes the only way to truly understand something is to learn
 it inside-out, starting with the fundamentals. If you prefer that
 approach, then you will likely find that digesting this book starting
 from the first page of Chapter 1 will be best. We have
 attempted to provide a comprehensive treatment of all of Clojure’s
 foundational principles and constructs in a narrative that progresses
 such that it will be very rare for you to need to
 look ahead in the book to understand concepts in earlier sections. As
 you begin to get a handle on Clojure’s fundamentals, feel free to jump
 ahead into the practicums you find most interesting and relevant to your
 work.

Who’s “We”?

We are three software developers who have each taken different paths
 in coming to use and appreciate Clojure. In writing this book, we have
 attempted to distill all that we’ve learned about why and how you should
 use Clojure so that you can be successful in your use of it as
 well.
Chas Emerick

Chas has been a consistent presence in the Clojure community since
 early 2008. He has made contributions to the core language, been
 involved in dozens of Clojure open source projects, and frequently
 writes and speaks about Clojure and software development
 generally.
Chas maintains the Clojure Atlas (http://clojureatlas.com), an interactive visualization of
 and learning aid for the Clojure language and its standard
 libraries.
The founder of Snowtide (http://snowtide.com), a small software company in Western
 Massachusetts, Chas’s primary domain is unstructured data extraction,
 with a particular specialty around PDF documents. He writes about
 Clojure, software development, entrepreneurship, and other passions at
 http://cemerick.com.

Brian Carper

Brian is a Ruby programmer turned Clojure devotee. He’s been
 programming Clojure since 2008, using it at home and at work for
 everything from web development to data analysis to GUI apps.
Brian is the author of Gaka (https://github.com/briancarper/gaka), a Clojure-to-CSS
 compiler, and Oyako (https://github.com/briancarper/oyako), an
 Object-Relational Mapping library. He writes about Clojure and other
 topics at http://briancarper.net.

Christophe Grand

Christophe was a long-time enthusiast of functional programming
 lost in Java-land when he encountered Clojure in early 2008, and it was
 love at first sight! He authored Enlive (http://github.com/cgrand/enlive), an HTML/XML
 transformation, extraction, and templating library; Parsley (http://github.com/cgrand/parsley), an incremental parser
 generator; and Moustache (http://github.com/cgrand/moustache), a routing and
 middleware application DSL for Ring.
As an independent consultant, he develops, coaches, and offers
 training in Clojure. He also writes about Clojure at http://clj-me.cgrand.net.

Acknowledgments

Like any sizable piece of work, this book would not exist without
 the tireless efforts of dozens, probably hundreds of people.
First, Rich Hickey, the creator of Clojure. In just a few short
 years, he has designed, implemented, and shepherded a new programming
 language into the world that, for so many, has been not just another tool,
 but a reinvigoration of our love of programming. Beyond that, he’s
 personally taught us a great deal—certainly about programming, but also
 about patience, humility, and perspective. Thanks, Rich.
Dave Fayram and Mike Loukides were essential in helping to formulate
 the initial concept and approach of the book. Of course, you likely
 wouldn’t be reading this book right now if it weren’t for Julie Steele,
 our editor, and all of the fine people at O’Reilly who took care of the
 logistics and minutiae that go along with publishing.
The quality of this book would be far less than it is were it not
 for the efforts of our technical reviewers, including Sam Aaron, Antoni
 Batchelli, Tom Faulhaber, Chris Granger, Anthony Grimes, Phil Hagelberg,
 Tom Hicks, Alex Miller, William Morgan, Laurent Petit, and Dean Wampler.
 We’d also like to thank all of those who provided feedback and comments on
 the early releases and Rough Cuts of the book, both on the O’Reilly forums
 and via email, Twitter, and so on.
Michael Fogus and Chris Houser have inspired us in many ways large
 and small. One of the smaller ways was the style and presentation of the
 REPL interactions in their Clojure book, The Joy of
 Clojure, which we shamelessly copied and iterated.
If we’ve neglected to mention anyone, please accept our implicit
 thanks and our apologies; at the end of this endeavor, we are quite lucky
 to be upright and coherent at all!
And Last, but Certainly Far from Least

The Clojure community has been my home away from home for a number
 of years. The hospitality and positive, helpful energy I see anywhere
 Clojure programmers congregate continues to be an inspiration and
 example to me. In particular, many of the regular denizens of #clojure on Freenode IRC—in addition to
 becoming good friends—have guided
 me toward learning things I never would have otherwise.
To my coauthors, Christophe and Brian: working with you has been a
 great honor for me. There is absolutely no way that I would have been
 able to complete this work without you.
To my parents, Charley and Darleen: my compulsive curiosity about
 how things work, my love of language and rhetoric, and my interest in
 business—all of these can be traced back over the years to your
 consistent influence. Without it, I am certain I would not have found my
 unique path, started a software company, or written this book, each done
 against all odds.
Finally, to my wife, Krissy: the sacrifices you’ve made to enable
 me to chase my ambitions are legion. It is likely that I’ll never be
 able to thank you sufficiently. So, I’ll just say: I love you.
—Chas Emerick, February 2012
To everyone in the community who helped create Clojure: thank you
 for your tireless hard work, for making my professional and personal
 coding life so much more enjoyable, and for opening my eyes to what’s
 possible.
To my coauthors, Christophe and Chas: I’ve never worked with a
 smarter group of people. It’s been an honor and a privilege.
To my wife Nicole: sorry I kept you awake all night with my
 typing.
—Brian Carper, February 2012
To Rich Hickey for creating Clojure and fostering such a friendly
 community.
To this community for having brought me to higher
 standards.
To my coauthors, Brian and Chas: it has been a great honor to work
 with you.
A mon professeur Daniel Goffinet, et à ses exercices improbables,
 qui a radicalement changé mon approche de la programmation et de
 l’informatique—sur ces sujets je lui suis plus redevable qu’à nul
 autre.
(To Pr. Daniel Goffinet, and his meta mind twisters, who radically
 altered the way I think about programming and computing—on those
 subjects there is no one I’m more indebted to.)
A mes parents pour votre amour bien sûr mais aussi pour tout le
 temps à s’inquiéter que je passais trop de temps sur l’Amstrad.
(To my parents: for your love obviously and for buying me that
 8-bit computer you worried I was spending too much time on.)
A ma compagne Emilie, et mon fils Gaël, merci d’être là et de
 m’avoir supporté pendant l’écriture de ce livre.
(To my wife Emilie and to my son Gaël: thank you for being there
 and having supported me throughout the writing of this book.)
—Christophe Grand, February 2012

Conventions Used in This Book

The following typographical conventions are used in this
 book:
	Italic
	Indicates new terms, URLs, email addresses, filenames, and
 file extensions.

	Constant width
	Used for program listings, as well as within paragraphs to
 refer to program elements such as variable or function names,
 databases, data types, environment variables, statements, and
 keywords.

	; listing lines prefixed with a
 semicolon
	Used to indicate content printed (i.e.,
 to standard out/err) by code evaluated in the REPL.

	;= listing lines prefixed with a
 semicolon + equal sign
	Used to indicate the result/return value
 of a REPL evaluation.

	Constant width
 bold
	Shows commands or other text that should be typed literally by
 the user.

	Constant width italic
	Shows text that should be replaced with user-supplied values
 or by values determined by context.

Note
This icon signifies a tip, suggestion, or general note.

Warning
This icon indicates a warning or caution.

Using Code Examples

This book is here to help you get your job done. In general, you may
 use the code in this book in your programs and documentation. You do not
 need to contact us for permission unless you’re reproducing a significant
 portion of the code. For example, writing a program that uses several
 chunks of code from this book does not require permission. Selling or
 distributing a CD-ROM of examples from O’Reilly books does require
 permission. Answering a question by citing this book and quoting example
 code does not require permission. Incorporating a significant amount of
 example code from this book into your product’s documentation does require
 permission.
We appreciate, but do not require, attribution. An attribution
 usually includes the title, author, publisher, and ISBN. For example:
 “Clojure Programming by Chas Emerick, Brian Carper,
 and Christophe Grand (O’Reilly). Copyright 2012 Chas Emerick, Brian
 Carper, and Christophe Grand, 978-1-449-39470-7.”
If you feel your use of code examples falls outside fair use or the
 permission given above, feel free to contact us at
 permissions@oreilly.com.

Safari® Books Online

Note
Safari Books Online is an on-demand digital library that lets you
 easily search over 7,500 technology and creative reference books and
 videos to find the answers you need quickly.

With a subscription, you can read any page and watch any video from
 our library online. Read books on your cell phone and mobile devices.
 Access new titles before they are available for print, and get exclusive
 access to manuscripts in development and post feedback for the authors.
 Copy and paste code samples, organize your favorites, download chapters,
 bookmark key sections, create notes, print out pages, and benefit from
 tons of other time-saving features.
O’Reilly Media has uploaded this book to the Safari Books Online
 service. To have full digital access to this book and others on similar
 topics from O’Reilly and other publishers, sign up for free at http://my.safaribooksonline.com.

How to Contact Us

Please address comments and questions concerning this book to the
 publisher:
	O’Reilly Media, Inc.
	1005 Gravenstein Highway North
	Sebastopol, CA 95472
	800-998-9938 (in the United States or Canada)
	707-829-0515 (international or local)
	707-829-0104 (fax)

We have a web page for this book, where we list errata, examples,
 and any additional information. You can access this page at:
	http://shop.oreilly.com/product/0636920013754.do

To comment or ask technical questions about this book, send email
 to:
	bookquestions@oreilly.com

For more information about our books, courses, conferences, and
 news, see our website at http://www.oreilly.com.
Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia
Watch us on YouTube: http://www.youtube.com/oreillymedia

Chapter 1. Down the Rabbit Hole

If you’re reading this book, you are presumably open to
 learning new programming languages. On the other hand, we assume that you
 expect reciprocity for the time and effort you’ll expend to learn a new
 language, some tangible benefits that can make you more productive, your
 team more effective, and your organization more flexible.
We believe that you will find this virtuous cycle in effect as you
 learn, apply, and leverage Clojure. As we are fond of saying,
 Clojure demands that you raise your game, and pays you back for
 doing so.
As software developers, we often build up a complex and sometimes very
 personal relationship with our tools and languages. Deciding which raw
 materials to use is sometimes dominated by pragmatic and legacy concerns.
 However, all other things being equal, programmers prefer using whatever
 maximally enhances their productivity and hopefully enables us to fulfill
 our potential to build useful, elegant systems. As the old saying goes, we
 want whatever makes the easy stuff easy, and the hard stuff possible.
Why Clojure?

Clojure is a programming language that lives up to that
 standard. Forged of a unique blend of the best features of a number of
 different programming languages—including various Lisp implementations,
 Ruby, Python, Java, Haskell, and others—Clojure provides a set of
 capabilities suited to address many of the most frustrating problems
 programmers struggle with today and those we can see barreling toward us
 over the horizon. And, far from requiring a sea-change to a new or
 unfamiliar architecture and runtime (typical of many otherwise promising
 languages over the years), Clojure is hosted on the Java Virtual Machine,
 a fact that puts to bed many of the most pressing pragmatic and legacy
 concerns raised when a new language is considered.
To whet your appetite, let’s enumerate some of Clojure’s marquee
 features and characteristics:
	Clojure is hosted on the JVM
	Clojure code can use any Java library, Clojure
 libraries can in turn be used from Java, and Clojure applications
 can be packaged just like any Java application and deployed
 anywhere other Java applications can be deployed: to web
 application servers; to desktops with Swing, SWT, or command-line
 interfaces; and so on. This also means that Clojure’s runtime is
 Java’s runtime, one of the most efficient and operationally
 reliable in the world.

	Clojure is a Lisp
	Unlike Java, Python, Ruby, C++, and other members of
 the Algol family of programming languages, Clojure is part of the
 Lisp family. However, forget everything you know (or might have
 heard rumored) about Lisps: Clojure retains the best of Lisp
 heritage, but is unburdened by the shortcomings and sometimes
 anachronistic aspects of many other Lisp implementations. Also,
 being a Lisp, Clojure has macros, an approach
 to metaprogramming and syntactic extension that has been the
 benchmark against which other such systems have been measured for
 decades.

	Clojure is a functional programming language
	Clojure encourages the use of first-class and higher-order
 functions with values and comes with its own set of efficient
 immutable data structures. The focus on a strong flavor of
 functional programming encourages the elimination of common bugs
 and faults due to the use of unconstrained mutable state and
 enables Clojure’s solutions for concurrency and
 parallelization.

	Clojure offers innovative solutions to the challenges inherent
 in concurrency and parallelization
	The realities of multicore, multi-CPU, and
 distributed computing demand that we use languages and libraries
 that have been designed with these contexts in mind. Clojure’s
 reference types enforce a clean separation of
 state and identity, providing defined concurrency semantics that are
 to manual locking and threading strategies what garbage collection
 is to manual memory management.

	Clojure is a dynamic programming language
	Clojure is dynamically and strongly typed (and
 therefore similar to Python and Ruby), yet function calls are
 compiled down to (fast!) Java method invocations. Clojure is also
 dynamic in the sense that it deeply supports updating and loading
 new code at runtime, either locally or remotely. This is
 particularly useful for enabling interactive development and
 debugging or even instrumenting and patching remote applications
 without downtime.

Of course, we don’t expect you to understand all of that, but we do
 hope the gestalt sounds compelling. If so, press on. By the end of this
 chapter, you’ll be able to write simple programs in Clojure, and be well
 on your way to understanding and leveraging it to help realize your
 potential.

Obtaining Clojure

You’ll need two things to work with the code in this chapter
 and otherwise explore Clojure on your own:
	The Java runtime. You can download the Oracle JVM for free for
 Windows and Linux (http://java.com/en/download/); it is bundled with or
 automatically installed by all versions of Mac OS X. Clojure requires
 Java v1.5 or higher; the latest releases of v1.6 or v1.7 are
 preferable.

	Clojure itself, available from clojure.org (http://clojure.org/downloads). All of the
 code in this book requires v1.3.0 or higher, and has been tested
 against v1.4.0 as well.[1] Within the zip file you download, you’ll find
 a file named something like clojure-1.4.0.jar;
 this is all you’ll need to get started.

Note
There are a number of different Clojure plug-ins for popular development environments like Eclipse and
 Emacs; see Tooling for an overview of Clojure
 tooling. While Clojure’s command-line REPL is sufficient for your first
 few steps in understanding Clojure, we encourage you to use your
 favorite text editor or IDE if it has quality Clojure support, or to
 pick up one that does.
If you don’t yet want to commit to a particular editor or IDE for
 Clojure development, you should at least use Leiningen, the most popular
 project management tool for Clojure. It will download Clojure for you,
 give you a better REPL than Clojure’s default, and you’ll likely be
 using it on a daily basis for your own projects in short order anyway.
 See Leiningen for an introduction to
 it.
If you want to avoid downloading anything right now, you can run
 many of the samples in this book in the online, in-browser Clojure
 implementation available at http://tryclj.com.

[1] Given Clojure’s history with regard to backwards
 compatibility, the code and concepts in this book should remain
 applicable to future versions of Clojure as well.

The Clojure REPL

Many languages have REPLs, often also referred to as
 interpreters: Ruby has irb; Python has
 its command-line interpreter; Groovy has its console; even Java has
 something akin to a REPL in BeanShell. The “REPL” acronym is derived from
 a simple description of what it does:
	Read: code is read as text from some input (often stdin, but this varies if you’re using a
 REPL in an IDE or other nonconsole environment).

	Eval: the code is evaluated, yielding some value.

	Print: the value is printed to some output device (often
 stdout, sometimes preceded by other
 output if the code in question happened to print content
 itself).

	Loop: control returns to the read
 step.

Clojure has a REPL too, but it differs from many other languages’
 REPLs in that it is not an interpreter or otherwise using a limited or
 lightweight subset of Clojure: all code entered into a Clojure REPL is
 compiled to JVM bytecode as part of its evaluation,
 with the same result as when code is loaded from a Clojure source file. In
 these two scenarios, compilation is performed entirely at runtime, and requires no separate
 “compile” step.[2] In fact, Clojure is never interpreted.
 This has a couple of implications:
	Operations performed in the REPL run at “full speed”; that is to
 say, there is no runtime penalty or difference in semantics associated
 with running code in the REPL versus running the same code as part of
 a “proper” application.

	Once you understand how Clojure’s REPL works (in
 particular, its read and
 eval phases), you’ll understand how Clojure
 itself works at the most fundamental level.

With this second point in mind, let’s dig into the Clojure REPL and
 see if we can find bedrock.
Note
The optimal workflow for programming in Clojure makes much more
 use of the REPL than is typical in other languages to make the
 development process as interactive as possible. Taking advantage of this
 is a significant source of the enhanced productivity—and really,
 fun!—that Clojure enables. We talk about this extensively in Chapter 10.

Example 1-1. Starting a Clojure REPL on the command line
% java -cp clojure-1.4.0.jar clojure.main
Clojure 1.4.0
user=>

This incantation starts a new JVM process, with a
 classpath that includes the clojure.jar file in
 the current directory, running the clojure.main class as its main entry
 point.[3] See A classpath primer if you don’t yet
 know what the classpath is; for now, you can just think of the classpath
 as the JVM’s analogue to Python’s PYTHONPATH, Ruby’s $:, and your shell’s PATH, the set of files and directories from
 which the JVM will load classes and resources.
When you see the user=>
 prompt, the REPL is ready for you to enter some Clojure code. The portion
 of the Clojure REPL prompt preceding => is the name of the current
 namespace. Namespaces are
 like modules or packages; we discuss them extensively later in this
 chapter in Namespaces. Clojure REPL sessions
 always start in the default user
 namespace.
Let’s look at some real code, a function that calculates the average
 of some numbers in Java, Ruby, and Python:
Example 1-2. Averaging numbers in Java, Ruby, and Python
public static double average (double[] numbers) {
 double sum = 0;
 for (int i = 0; i < numbers.length; i++) {
 sum += numbers[i];
 }
 return sum / numbers.length;
}

def average (numbers)
 numbers.inject(:+) / numbers.length
end

def average (numbers):
 return sum(numbers) / len(numbers)

Here is the Clojure equivalent:
(defn average [image: 1]
 [numbers] [image: 2]
 (/ (apply + numbers) (count numbers))) [image: 3]
	[image: 1]
	defn defines a new function
 named average in the current
 namespace.

	[image: 2]
	The average function takes
 one argument, referred to within its body as numbers. Note that there is no type
 declaration; this function will work equally well when provided with
 any collection or array of numbers of any type.

	[image: 3]
	The body of the average
 function, which sums the provided numbers with (apply + numbers),[4] divides that sum by the number of numbers
 provided—obtained with (count
 numbers)—and returns the result of that division
 operation.

We can enter that defn expression
 at the REPL, and then call our function with a vector of numbers, which
 yields the expected result:
user=> (defn average
 [numbers]
 (/ (apply + numbers) (count numbers)))
#'user/average
user=> (average [60 80 100 400])
160
A Word about REPL Interaction Styles
From here on, we will adopt a simple convention for
 listings that show REPL interactions so you can identify the different
 types of REPL output. The return value of evaluated expressions will be
 printed with a ;= prefix:
(average [60 80 100 400])
;= 160
And content that is written to stdout by an
 expression—aside from what the REPL prints for the expression’s return
 value—will be shown with a single semicolon prefix:
(println (average [60 80 100 400]))
; 160
;= nil
There are the two differently prefixed lines of REPL output
 because println returns nil after printing the provided value(s) to
 stdout.
Lines prefixed with semicolons are comments in Clojure, so you can
 copy and paste these interactions into your REPL with relative abandon.
 We’ll not include the namespace=>
 prompt in listings, as they are not valid Clojure code and will cause an
 error if they are accidentally pasted into a REPL.

[2] If necessary, you can ahead-of-time compile Clojure to Java
 class files. See Ahead-of-Time Compilation for details.

[3] Alternatively, you can use java -jar
 clojure.jar, but the -cp
 flag and the clojure.main entry
 point are both important to know about; we talk about both in Chapter 8.

[4] Note that + here is not a
 special language operator, as in most other languages. It is a
 regular function, no different in type than the one we’re
 defining. apply is also a
 function, which applies a function it is provided with to a
 collection of arguments (numbers here); so, (apply + [a b c]) will yield the same
 value as (+ a b c).

No, Parentheses Actually Won’t Make You Go Blind

Many programmers who don’t already use a Lisp or secretly
 harbor fond memories of their last usage of Lisp from university blanch at
 the sight of Lisp syntax. Typical reasons offered for this reaction
 include:
	The particular usage of parentheses to delimit scope, rather
 than the more familiar braces {...}
 or do ... end blocks

	The use of prefix notation indicating the operation being
 performed; e.g., (+ 1 2) rather
 than the familiar infix 1 +
 2

These objections are born first out of simple unfamiliarity. The
 braces that Java (and C and C++ and C# and PHP and…) uses for delimiting
 scope seem perfectly fine—why bother with what appears to be an
 ill-conceived animal? Similarly, we’ve all known and used infix notation
 for mathematics since early childhood—why work to use an unusual notation
 when what we’ve been using seems to have been so reliable? We are
 creatures of habit, and outside of building an understanding of why any
 particular difference may be significant, we understandably prefer the
 familiar and reliable.
In both cases, the answer is that Clojure did not import its
 syntactic foundations from other Lisp implementations on a whim; their
 adoption carries powerful benefits that are worth a minor shift in
 perspective:
	Prefixed operations used uniformly simplify the language’s
 syntax significantly and eliminate potential ambiguity from nontrivial
 expressions.

	The use of parentheses (as a textual representation of lists) is
 an outgrowth of Clojure being a homoiconic
 language. We’ll see what this means in Homoiconicity, but the ramifications of it are
 manifold: homoiconicity enables the development and use of metaprogramming and
 domain-specific language constructs simply unavailable in any
 programming language that is not homoiconic.

After getting through an initial period of unfamiliarity, you will
 very likely find that Clojure’s syntax reduces the cognitive load
 necessary to read and write code. Quick: is << (bit-shift left) in Java executed
 before or after & (bitwise and) in
 order of operations? Every time a programmer has to pause and think about
 this (or look it up in a manual), every time a programmer has to go back
 and add grouping parentheses “just in case,” a mental page fault has
 occurred. And, every time a programmer forgets to think about this, a
 potential error has entered his code. Imagine a language with no order of
 operations to worry about at all; Clojure is that language.
You might be saying, “But there are so many parentheses!” Actually,
 there aren’t.
In places where it makes sense, Clojure has borrowed a lot of syntax
 from other languages—like Ruby—for its data literals. Where other Lisps
 you might have seen use parenthesized lists
 everywhere, Clojure provides a rich set of literals
 for data and collections like vectors, maps, sets, and lists, as well as
 things like records (roughly, Clojure’s corollary to structs).
If you count and compare the number of delimiting characters and
 tokens of all kinds ((), [], {},
 Ruby’s || and end, and so on) in Clojure, Java, Ruby, and
 Python codebases of similar sizes, you will find that the Clojure code
 won’t have appreciably more than the others—and will often have many fewer
 thanks to its concision.

Expressions, Operators, Syntax, and Precedence

All Clojure code is made up of expressions, each of which
 evaluates to a single value. This is in contrast to many languages that
 rely upon valueless statements—such as if, for, and
 continue—to control program flow
 imperatively. Clojure’s corollaries to these statements are all
 expressions that evaluate to a value.
You’ve already seen a few examples of expressions in Clojure:
	60

	[60 80 100 400]

	(average [60 80 100
 400])

	(+ 1 2)

These expressions all evaluate to a single value. The rules for that
 evaluation are extraordinarily simple compared to other languages:
	Lists (denoted by parentheses) are calls, where the first
 value in the list is the operator and the rest of the values are
 parameters. The first element in a list is often referred to as being
 in function position (as that’s where one
 provides the function or symbol naming the function to be called).
 Call expressions evaluate to the value returned by the call.

	Symbols (such as average or
 +) evaluate to the named value in
 the current scope—which can be a function, a named local like numbers in our average function, a Java class, a macro, or
 a special form. We’ll learn about macros and special forms in a little
 bit; for now, just think of them as functions.

	All other expressions evaluate to the literal values they
 describe.

Note
Lists in Lisps are often called s-expressions
 or sexprs—short for symbolic
 expressions due to the significance of symbols in
 identifying the values to be used in calls denoted by such lists.
 Generally, valid s-expressions
 that can be successfully evaluated are often referred to as
 forms: e.g., (if condition
 then else) is an if form,
 [60 80 100 400] is a vector form. Not
 all s-expressions are forms: (1 2 3)
 is a valid s-expression—a list of three integers—but evaluating it will
 produce an error because the first value in the list is an integer,
 which is not callable.

The second and third points are roughly equivalent to most other
 languages (although Clojure’s literals are more expressive, as we’ll see
 shortly). However, an examination of how calls work in other languages
 quickly reveals the complexity of their syntax.
Table 1-1. Comparison of call syntax between Clojure, Java, Python, and
 Ruby
	Clojure expression	Java equivalent	Python equivalent	Ruby equivalent
	 (not k)

	 !k

	 not k

	not k or ! k

	 (inc a)

	a++, ++a, a +=
 1, a + 1[a]
	a += 1, a + 1
	 a += 1

	 (/ (+ x y) 2)

	 (x + y) / 2

	 (x + y) / 2

	 (x + y) / 2

	 (instance? java.util.List
 al)
	 al instanceof
 java.util.List
	 isinstance(al,
 list)
	 al.is_a? Array

	(if (not a) (inc b) (dec
 b)) [b]
	 !a ? b + 1 : b -
 1
	 b + 1 if not a else b -
 1
	 !a ? b + 1 : b -
 1

	 (Math/pow 2 10)
 [c]
	 Math.pow(2, 10)

	 pow(2, 10)

	 2 ** 10

	 (.someMethod someObj "foo"
 (.otherMethod otherObj 0))
	 someObj.someMethod("foo",
 otherObj.otherMethod(0))
	 someObj.someMethod("foo",
 otherObj.otherMethod(0))
	 someObj.someMethod("foo",
 otherObj.otherMethod(0))

	[a] In-place increment and decrement operations have no
 direct corollary in Clojure, because unfettered mutability
 isn’t available. See Chapter 2, particularly On the Importance of Values for a complete discussion of
 why this is a good thing.

[b] Remember, even forms that influence control flow in
 Clojure evaluate to values just like any other expression,
 including if and when. Here, the value of the
 if expression will be
 either (inc b) or (dec b), depending on the value of
 (not a).

[c] Here’s your first taste of what it looks like to call
 Java libraries from Clojure. For details, see Chapter 9.

Notice that call syntax is all over the map (we’re picking on Java
 here the most, but Python and Ruby aren’t so different):
	Infix operators are available (e.g., a +
 1, al instanceof List),
 but any nontrivial code ends up having to use often-significant
 numbers of parentheses to override default precedence rules and make
 evaluation order explicit.

	Unary operators are seemingly arbitrary in regard to whether they use
 prefix (e.g., !k and ++a) or postfix position (e.g., a++).

	Static method calls have prefix position, such as Math.pow(2, 10), but…

	Instance method calls use an unusual variety of infix positions, where the
 target of the method (which will be assigned to this within the body of the method being
 called) is specified first, with the formal parameters to the method
 coming after the method name.[5]

In contrast, Clojure call expressions follow one simple rule: the
 first value in a list is the operator, the remainder are parameters to
 that operator. There are no call expressions that use infix or postfix
 position, and there are no difficult-to-remember precedence rules. This
 simplification helps make Clojure’s syntax very easy to learn and
 internalize, and helps make Clojure code very easy to read.

[5] Python uses the same sort of infix position for its instance
 methods, but varies from Algol-family brethren by requiring that
 methods explicitly name their first parameter, usually self.

Homoiconicity

Clojure code is composed of literal representations of its
 own data structures and atomic values; this characteristic is formally
 called homoiconicity, or more casually,
 code-as-data.[6] This is a significant simplification compared to most other
 languages, which also happens to enable metaprogramming facilities to a
 much greater degree than languages that are not homoiconic. To understand
 why, we’ll need to talk some about languages in general and how their code
 relates to their internal representations.
Recall that a REPL’s first stage is to read
 code provided to it by you. Every language has to provide a way to
 transform that textual representation of code into something that can be
 compiled and/or evaluated. Most languages do this by parsing that text
 into an abstract syntax tree (AST). This sounds more complicated than it is: an AST is simply
 a data structure that represents formally what is manifested concretely in
 text. For example, Figure 1-1 shows some examples of
 textual language and possible transformations to their corresponding
 syntax trees.[7]
[image: Sample transformations from textual language to formal models]

Figure 1-1. Sample transformations from textual language to formal
 models

These transformations from a textual manifestation of language to an
 AST are at the heart of how languages are defined, how expressive they
 are, and how well-suited they are to the purpose of relating to the world
 within which they are designed to be used. Much of the appeal of
 domain-specific languages springs from exactly this point: if you have a
 language that is purpose-built for a given field of use, those that have
 expertise in that field will find it far easier to define and express what
 they wish in that language compared to a general-purpose language.
The downside of this approach is that most languages do not provide
 any way to control their ASTs; the correspondence between their textual
 syntax and their ASTs is defined solely by the language implementers. This
 prompts clever programmers to conjure up clever workarounds in order to
 maximize the expressivity and utility of the textual syntax that they have
 to work with:
	Code generation

	Textual macros and preprocessors (used to legendary effect by C
 and C++ programmers for decades now)

	Compiler plug-ins (as in Scala, Project Lombok for Java,
 Groovy’s AST transformations, and Template Haskell)

That’s a lot of incidental complexity—complexity introduced solely
 because language designers often view textual syntax as primary, leaving
 formal models of it to be implementation-specific (when they’re exposed at
 all).
Clojure (like all Lisps) takes a different path: rather than
 defining a syntax that will be transformed into an AST, Clojure programs
 are written using Clojure data structures that represent that AST
 directly. Consider the requiresRole...
 example from Figure 1-1, and see how a Clojure
 transliteration of the example is an AST for it
 (recalling the call semantics of function position in Clojure
 lists).
[image: image with no caption]

The fact that Clojure programs are represented as
 data means that Clojure programs can be used to write and
 transform other Clojure programs, trivially so. This is the basis for
 macros—Clojure’s metaprogramming facility—a far different beast than the
 gloriously painful hack that are C-style macros and other textual
 preprocessors, and the ultimate escape hatch when expressivity or
 domain-specific notation is paramount. We explore Clojure macros in Chapter 5.
In practical terms, the direct correspondence between code and data
 means that the Clojure code you write in the REPL or in a text source file
 isn’t text at all: you are programming using Clojure data structure
 literals. Recall the simple averaging
 function from Example 1-2:
(defn average
 [numbers]
 (/ (apply + numbers) (count numbers)))
This isn’t just a bunch of text that is somehow transformed into a
 function definition through the operation of a black box; this is a list
 data structure that contains four values: the symbol defn, the symbol average, a vector data structure containing the
 symbol numbers, and another list that
 comprises the function’s body. Evaluating that list data structure is what
 defines the function.

[6] Clojure is by no means the only homoiconic language, nor is
 homoiconicity a new concept. Other homoiconic languages include all
 other Lisps, all sorts of machine language (and therefore arguably
 Assembly language as well), Postscript, XSLT and XQuery, Prolog, R,
 Factor, Io, and more.

[7] The natural language parse tree was mostly lifted from http://en.wikipedia.org/wiki/Parse_tree.

The Reader

Although Clojure’s compilation and evaluation machinery
 operates exclusively on Clojure data structures, the practice of
 programming has not yet progressed beyond storing code as plain text.
 Thus, a way is needed to produce those data structures from textual code.
 This task falls to the Clojure reader.
The operation of the reader is completely defined by a single
 function, read, which reads text
 content from a character stream[8] and returns the next data structure encoded in the stream’s
 content. This is what the Clojure REPL uses to read text input; each
 complete data structure read from that input source is then passed on to
 be evaluated by the Clojure runtime.
More convenient for exploration’s sake is read-string, a function that does the same thing
 as read but uses a string argument as
 its content source:
(read-string "42")
;= 42
(read-string "(+ 1 2)")
;= (+ 1 2)
The operation of the reader is fundamentally one of
 deserialization. Clojure data structures and other literals have a
 particular textual representation, which the reader deserializes to the
 corresponding values and data structures.
You may have noticed that values printed by the Clojure REPL have
 the same textual representation they do when entered into the REPL:
 numbers and other atomic literals are printed as you’d expect, lists are
 delimited by parentheses, vectors by square brackets, and so on. This is
 because there are duals to the reader’s read and read-string functions: pr and pr-str, which prints to *out*[9] and returns as a string the readable textual representation of Clojure
 values, respectively. Thus, Clojure data structures and values are
 trivially serialized and deserialized in a way that is both human- and
 reader-readable:
(pr-str [1 2 3])
;= "[1 2 3]"
(read-string "[1 2 3]")
;= [1 2 3]
Note
It is common for Clojure applications to use the reader as a
 general-purpose serialization mechanism where you might otherwise choose XML or java.io.Serializable serialization or pickling
 or marshaling, especially in cases where human-readable serializations
 are desirable.

Scalar Literals

Scalar literals are reader syntax for noncollection values. Many of these
 are bread-and-butter types that you already know intimately from Java or
 very similar analogues in Ruby, Python, and other languages; others are
 specific to Clojure and carry new semantics.
Strings

Clojure strings are Java Strings (that is, instances of java.lang.String), and are represented in
 exactly the same way, delimited by double quotes:
"hello there"
;= "hello there"
Clojure’s strings are naturally multiline-capable, without any
 special syntax (as in, for example, Python):
"multiline strings
are very handy"
;= "multiline strings\nare very handy"

Booleans

The tokens true and
 false are used to denote literal
 Boolean values in Clojure, just as in Java, Ruby, and Python (modulo
 the latter’s capitalization).

nil

nil in Clojure corresponds to null in Java, nil in Ruby, and None in Python. nil is also logically false in Clojure
 conditionals, as it is in Ruby and Python.

Characters

Character literals are denoted by a backslash:
(class \c)
;= java.lang.Character
Both Unicode and octal representations of characters may be used
 with corresponding prefixes:
\u00ff
;= \ÿ
\o41
;= \!
Additionally, there are a number of special named character
 literals for cases where the character in question is commonly used
 but prints as whitespace:
	\space

	\newline

	\formfeed

	\return

	\backspace

	\tab

Keywords

Keywords evaluate to themselves, and are often used as accessors
 for the values they name in Clojure collections and types, such as
 hash maps and records:
(def person {:name "Sandra Cruz"
 :city "Portland, ME"})
;= #'user/person
(:city person)
;= "Portland, ME"
Here we create a hashmap with two slots, :name
 and :city, and then look up the
 value of :city in that map. This
 works because keywords are functions that look themselves up in
 collections passed to them.
Syntactically, keywords are always prefixed with a colon, and
 can otherwise consist of any nonwhitespace character. A slash
 character (/) denotes a
 namespaced keyword, while a keyword prefixed with two colons (::) is expanded by the reader to a
 namespaced keyword in the current namespace—or another namespace if
 the keyword started by a namespace alias, ::alias/kw for example. These have similar
 usage and motivation as namespaced entities in XML; that is, being
 able to use the same name for values with different semantics or
 roles:[10]
(def pizza {:name "Ramunto's"
 :location "Claremont, NH"
 ::location "43.3734,-72.3365"})
;= #'user/pizza
pizza
;= {:name "Ramunto's", :location "Claremont, NH", :user/location "43.3734,-72.3365"}
(:user/location pizza)
;= "43.3734,-72.3365"
This allows different modules in the same application and
 disparate groups within the same organization to safely lay claim to
 particular names, without complex domain modeling or conventions like
 underscored prefixes for conflicting names.
Keywords are one type of “named” values, so called because they
 have an intrinsic name that is accessible using the name function and an optional namespace
 accessible using namespace:
(name :user/location)
;= "location"
(namespace :user/location)
;= "user"
(namespace :location)
;= nil
The other named type of value is the symbol.

Symbols

Like keywords, symbols are identifiers, but they
 evaluate to values in the Clojure runtime they name. These values
 include those held by vars (which are named storage locations used to
 hold functions and other values), Java classes, local references, and
 so on. Thinking back to our original example in Example 1-2:
(average [60 80 100 400])
;= 160
average here is a symbol,
 referring to the function held in the var named average.
Symbols must begin with a non-numeric character, and can contain
 *, +, !,
 -, _, and ?
 in addition to any alphanumeric characters. Symbols that contain a
 slash (/) denote a
 namespaced symbol and will evaluate to the named value in the specified
 namespace. The evaluation of symbols to the entity they name depends
 upon their context and the namespaces available within that context.
 We talk about the semantics of namespaces and symbol evaluation
 extensively in Namespaces.

Numbers

Clojure provides a plethora of numeric literals (see
 Table 1-2). Many of them are
 pedestrian, but others are rare to find in a general-purpose
 programming language and can simplify the implementation of certain
 algorithms—especially in cases where the algorithms are defined in terms of particular numeric
 representations (octal, binary, rational numbers, and scientific
 notation).
Warning
While the Java runtime defines a particular range of numeric
 primitives, and Clojure supports interoperability with those
 primitives, Clojure has a bias toward longs and doubles at the
 expense of other widths, including bytes, shorts, ints, and floats.
 This means that these smaller primitives will be produced as needed
 from literals or runtime values for interop operations (such as
 calling Java methods), but pure-Clojure operations will default to
 using the wider numeric representations.
For the vast majority of programming domains, you don’t need
 to worry about this. If you are doing work where mathematical
 precision and other related topics is important, please refer to
 Chapter 11 for a comprehensive discussion of Clojure’s
 treatment of operations on primitives and other math topics.

Table 1-2. Clojure numeric literals
	Literal syntax	Numeric type
	42, 0xff, 2r111, 040
	long
 (64-bit signed integer)

	3.14, 6.0221415e23
	double (64-bit
 IEEE floating point decimal)

	42N

	clojure.lang.BigInt
 (arbitrary-precision integer[a])

	0.01M

	java.math.BigDecimal
 (arbitrary-precision signed floating point
 decimal)

	 22/7

	 clojure.lang.Ratio

	[a] clojure.lang.BigInt is
 automatically coerced to java.math.BigInteger when
 needed. Again, please see Chapter 11 for the
 in-depth details of Clojure’s treatment of
 numerics.

Any numeric literal can be negated by prefixing it with a dash
 (-).
Let’s take a quick look at the more interesting numeric
 literals:
	Hexadecimal notation
	Just as in most languages, Clojure supports
 typical hexadecimal notation for integer values; 0xff is 255, 0xd055 is 53333, and so on.

	Octal notation
	Literals starting with a zero are interpreted as octal
 numbers. For example, the octal 040 is 32 in the usual base-10
 notation.

	Flexible numeral bases
	You can specify the base of an integer in a prefix
 BrN, where N is the digits that represent the
 desired number, and B is
 the base or radix by which N should be interpreted. So we can
 use a prefix of 2r for
 binary integers (2r111 is
 7), 16r for hexadecimal (16rff is 255), and so on. This is
 supported up to base 36.[11]

	Arbitrary-precision numbers
	Any numeric literal (except for rational
 numbers) can be specified as arbitrary-precision by suffixing
 it appropriately; decimals with an M, integers with an N. Please see Bounded Versus Arbitrary Precision for a full exploration of why and
 when this is relevant.

	Rational numbers
	Clojure directly supports rational numbers, also
 called ratios, as literals in the reader
 as well as throughout its numeric operators. Rational number
 literals must always be two integers separated by a slash
 (/).

For a full discussion of rational numbers in Clojure and how
 they interact with the rest of Clojure’s numerical model, please see
 Rationals.

Regular expressions

The Clojure reader treats strings prefixed with a hash
 character as regular expression (regex) literals:
(class #"(p|h)ail")
;= java.util.regex.Pattern
This is exactly equivalent to Ruby’s /.../ regex syntax, with a minor difference
 of pattern delimiters. In fact, Ruby and Clojure are
 very similar in their handling of regular
 expressions:
Ruby
>> "foo bar".match(/(...) (...)/).to_a
["foo bar", "foo", "bar"]

;; Clojure
(re-seq #"(...) (...)" "foo bar")
;= (["foo bar" "foo" "bar"])
Clojure’s regex syntax does not require escaping of backslashes
 as required in Java:
(re-seq #"(\d+)-(\d+)" "1-3") ;; would be "(\\d+)-(\\d+)" in Java
;= (["1-3" "1" "3"])
The instances of java.util.regex.Pattern that Clojure regex
 literals yield are entirely equivalent to those you might create
 within Java, and therefore use the generally excellent java.util.regex regular expression
 implementation.[12] Thus, you can use those Pattern instances directly via Clojure’s
 Java interop if you like, though you will likely find Clojure’s
 related utility functions (such as re-seq, re-find, re-matches, and others in the clojure.string namespace) simpler and more
 pleasant to use.

Comments

There are two comment types that are defined by the
 reader:
	Single-line comments are indicated by prefixing the comment
 with a semicolon (;); all content
 following a semicolon is ignored entirely. These are equivalent to
 // in Java and JavaScript, and
 # in Ruby and Python.

	Form-level are available using the #_ reader macro. This cues the reader to
 elide the next Clojure form following the
 macro:

(read-string "(+ 1 2 #_(* 2 2) 8)")
;= (+ 1 2 8)
What would have been a list with four numbers—(+ 1 2 4 8)—yields a list of only three
 numbers because the entire multiplication form was ignored due to the
 #_ prefix.
Because Clojure code is defined using data structure literals,
 this comment form can be far more useful in certain cases than purely
 textual comments that affect lines or character offsets (such as the
 /* */ multiline comments in Java and
 JavaScript). For example, consider the time-tested debugging technique
 of printing to stdout:
(defn some-function
 […arguments…]
 …code…
 (if …debug-conditional…
 (println …debug-info…)
 (println …more-debug-info…))
 …code…)
Making those println forms
 functionally disappear is as easy as prefixing the
 if form with the #_ reader macro and reloading the function
 definition; whether the form spans one or a hundred lines is
 irrelevant.
Note
There is only one other way to comment code in Clojure, the
 comment macro:
(when true
 (comment (println "hello")))
;= nil
comment forms can contain any amount of ignored code, but they are not
 elided from the reader’s output in the way that #_ impacts the forms following it. Thus,
 comment forms always evaluate to
 nil. This often is not a problem;
 but, sometimes it can be inconvenient. Consider a reformulation of our
 first #_ example:
(+ 1 2 (comment (* 2 2)) 8)
;= #<NullPointerException java.lang.NullPointerException>
That fails because comment
 returns nil, which is not a valid
 argument to +.

Whitespace and Commas

You may have noticed that there have been no commas
 between forms, parameters to function calls, elements in data structure
 literals, and so on:
(defn silly-adder
 [x y]
 (+ x y))
This is because whitespace is sufficient to separate values and
 forms provided to the reader. In addition, commas are
 considered whitespace by the reader. For example, this is
 functionally equivalent to the snippet above:
(defn silly-adder
 [x, y]
 (+, x, y))
And to be slightly pedantic about it:
(= [1 2 3] [1, 2, 3])
;= true
Whether you use commas or not is entirely a question of personal
 style and preference. That said, they are generally used only when doing
 so enhances the human readability of the code in
 question. This is most common in cases where pairs of values are listed,
 but more than one pair appears per line:[13]
(create-user {:name new-username, :email email})

Collection Literals

The reader provides syntax for the most commonplace
 Clojure data structures:
'(a b :name 12.5) ;; list

['a 'b :name 12.5] ;; vector

{:name "Chas" :age 31} ;; map

#{1 2 3} ;; set
Since lists are used to denote calls in Clojure, you need to quote
 (') the list literal in order to
 prevent the evaluation of the list as a call.
The specifics of these data structures are explored in detail in
 Chapter 3.

Miscellaneous Reader Sugar

The reader provides for some additional syntax in certain
 cases to improve concision or regularity with other aspects of
 Clojure:
	Evaluation can be suppressed by prefixing a form with a quote
 character ('); see Suppressing Evaluation: quote.

	Anonymous function literals can be defined very concisely
 using the #() notation; see Function literals.

	While symbols evaluate to the values held by vars, vars
 themselves can be referred to by prefixing a symbol
 with #'; see Referring to Vars: var.

	Instances of reference types can be dereferenced (yielding the
 value contained within the reference object) by prefixing @ to a symbol naming the instance; see
 Clojure Reference Types.

	The reader provides three bits of special syntax for macros:
 `, ~, and ~@. Macros are explored in Chapter 5.

	While there are technically only two Java interop forms, the
 reader provides some sugar for interop that expands into those two
 special forms; see Java Interop: . and new.

	All of Clojure’s data structures and reference types support
 metadata—small bits of information that can be associated with
 a value or reference that do not affect things like equality
 comparisons. While your applications can use metadata for many
 purposes, metadata is used in Clojure itself where you might
 otherwise use keywords in other languages (e.g., to indicate that a
 function is namespace-private, or to indicate the type of a value or
 return type of a function). The reader allows you to attach metadata
 to literal values being read using the ^ notation; see Metadata.

[8] Technically, read requires a
 java.io.PushbackReader as an
 implementation detail.

[9] *out* defaults to stdout, but can be redirected easily. See
 Building a Primitive Logging System with Composable Higher-Order
 Functions for an example.

[10] Namespaced keywords are also used prominently with
 multimethods and isa?
 hierarchies, discussed in depth in Chapter 7.

[11] The implementation limit of java.math.BigInteger’s radix
 support. Note that even though BigInteger is used for parsing
 these literals, the concrete type of the number as emitted
 by the reader is consistent with other Clojure integer
 literals: either a long
 or a big integer if the number specified requires
 arbitrary precision to represent.

[12] See the java.util.regex.Pattern javadoc for a
 full specification of what forms the Java regular expression
 implementation supports: http://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html.

[13] Questions of style are notoriously difficult to answer in
 absolutes, but it would be very rare to see more than two or three
 pairs of values on the same line of text in any map literal, set of
 keyword arguments, and so on. Further, some forms that expect pairs
 of values (such as bindings in let) are essentially
 always delimited by linebreaks rather than
 being situated on the same line.

Namespaces

At this point, we should understand much of how the
 nontrivial parts of the Clojure REPL (and therefore Clojure itself)
 work:
	Read: the Clojure reader reads the textual representation of
 code, producing the data structures (e.g., lists, vectors, and so on)
 and atomic values (e.g., symbols, numbers, strings, etc.) indicated in
 that code.

	Evaluate: many of the values emitted by the reader evaluate to
 themselves (including most data structures and scalars like strings
 and keywords). We explored earlier in Expressions, Operators, Syntax, and Precedence how lists evaluate to calls to the
 operator in function position.

The only thing left to understand about evaluation now is how
 symbols are evaluated. So far, we’ve used them to both name and refer to
 functions, locals, and so on. Outside of identifying locals, the semantics
 of symbol evaluation are tied up with namespaces, Clojure’s fundamental
 unit of code modularity.
All Clojure code is defined and evaluated within a namespace.
 Namespaces are roughly analogous to modules in Ruby or Python, or packages
 in Java.[14] Fundamentally, they are dynamic mappings between
 symbols and either vars or
 imported Java classes.
One of Clojure’s reference types,[15] vars are mutable storage locations that can hold any value.
 Within the namespace where they are defined, vars are associated with a
 symbol that other code can use to look up the var, and therefore the value
 it holds.
Vars are defined in Clojure using the def special form, which only ever acts within
 the current namespace.[16] Let’s define a var now in the user namespace, named x; the name of the var is the symbol that it is
 keyed under within the current namespace:
(def x 1)
;= #'user/x
We can access the var’s value using that symbol:
x
;= 1
The symbol x here is
 unqualified, so is resolved within the current
 namespace. We can also redefine vars; this is critical for supporting
 interactive development at the REPL:
(def x "hello")
;= #'user/x
x
;= "hello"
Vars are not variables
Vars should only ever be defined in an interactive
 context—such as a REPL—or within a Clojure source file as a way of
 defining named functions, other constant values, and the like. In
 particular, top-level vars (that is, globally accessible vars mapped
 within namespaces, as defined by def
 and its variants) should only ever be defined by top-level expressions,
 never in the bodies of functions in the normal course of operation of a
 Clojure program.
See Vars Are Not Variables for further
 elaboration.

Symbols may also be namespace-qualified, in which case they are
 resolved within the specified namespace instead of the current one:
ns [image: 1]
;= #<Namespace user>
(ns foo)
;= nil
ns
;= #<Namespace foo>
user/x
;= "hello"
x
;= #<CompilerException java.lang.RuntimeException:
;= Unable to resolve symbol: x in this context, compiling:(NO_SOURCE_PATH:0)>
	[image: 1]
	The current namespace is always bound to *ns*.

Here we created a new namespace using the ns macro (which has the side effect of switching
 us to that new namespace in our REPL), and then referred to the value of
 x in the user namespace by using the namespace-qualified
 symbol user/x. Since we only just
 created this new namespace foo, it
 doesn’t have a mapping for the x
 symbol, so attempting to resolve it fails.
Note
You need to know how to create, define, organize, and manipulate
 namespaces in order to use Clojure effectively. There is a whole suite
 of functions for this; please refer to Defining and Using Namespaces for our guidelines in their use.

We mentioned earlier that namespaces also map between symbols and
 imported Java classes. All classes in the java.lang package are imported by default into
 each Clojure namespace, and so can be referred to without package
 qualification; to refer to un-imported classes, a package-qualified symbol
 must be used. Any symbol that names a class evaluates to that
 class:
String
;= java.lang.String
Integer
;= java.lang.Integer
java.util.List
;= java.util.List
java.net.Socket
;= java.net.Socket
In addition, namespaces by default alias all of the vars defined in the primary namespace of
 Clojure’s standard library, clojure.core. For example, there is a filter function defined in clojure.core, which we can access without
 namespace-qualifying our reference to it:
filter
;= #<core$filter clojure.core$filter@7444f787>
These are just the barest basics of how Clojure namespaces work;
 learn more about them and how they should be used to help you structure
 your projects in Defining and Using Namespaces.

[14] In fact, namespaces correspond precisely with Java packages when
 types defined in Clojure are compiled down to Java classes. For
 example, a Person type defined in
 the Clojure namespace app.entities
 will produce a Java class named app.entities.Person. See more about defining
 types and records in Clojure in Chapter 6.

[15] See Clojure Reference Types for a full
 discussion of Clojure’s reference types, all of which contribute
 different capabilities to its concurrency toolbox.

[16] Remember that the Clojure REPL session always starts in the
 default user namespace.

Symbol Evaluation

With a basic understanding of namespaces under our belt, we
 can turn again to the example average
 function from Example 1-2 and have a more
 concrete idea of how it is evaluated:
(defn average
 [numbers]
 (/ (apply + numbers) (count numbers)))
As we learned in Homoiconicity, this is
 just a canonical textual representation of a Clojure data structure that
 itself contains other data. Within the body of this function, there are
 many symbols, each of which refers to either a var in scope in the current
 namespace or a local value:
	/, apply, +,
 and count all evaluate to functions
 held in vars defined and so named in the clojure.core namespace

	numbers either defines the
 sole argument to the function (when provided in the argument vector
 [numbers]),[17] or is used to refer to that argument’s value in the body
 of the function (when used in the (apply +
 numbers) and (count
 numbers) expressions).

With this information, and recalling the semantics of lists as calls
 with the operator in function position, you should have a nearly complete
 understanding of how calls to this function are evaluated:
(average [60 80 100 400])
;= 160
The symbol average refers here to
 the value of #'average, the var in the
 current namespace that holds the function we defined. That function is
 called with a vector of numbers, which is locally bound as numbers within the body of the average function. The result of the operations
 in that body produce a value—160—which
 is then returned to the caller: in this case, the REPL, which prints it to
 stdout.

[17] We’ll get into all the details of how to define functions
 and therefore their arguments in Creating Functions: fn.

Special Forms

Ignoring Java interoperability for a moment, symbols
 in function position can evaluate to only two things:
	The value of a named var or local, as we’ve already seen.

	A Clojure special form.[18]

Special forms are Clojure’s primitive building blocks of
 computation, on top of which all the rest of Clojure is built. This
 foundation shares a lineage with the earliest Lisps, which also defined a limited set of primitives that define
 the fundamental operations of the runtime, and are taken as sufficient to
 describe any possible computation.[19] Further, special forms have their own syntax (e.g., many do
 not take arguments per se) and evaluation semantics.
As you’ve seen, things that are often described as primitive
 operations or statements in most languages—including control forms like
 when and operators like addition and
 negation—are not primitives in Clojure. Rather, everything that isn’t a
 special form is implemented in Clojure itself by bootstrapping from that
 limited set of primitive operations.[20] The practical effect of this is that, if Clojure doesn’t
 provide a language construct that you want or need, you can likely build
 it yourself.[21]
Though all of Clojure is built on top of its special forms, you need
 to understand what each one does—as you’ll use many of them constantly.
 Let’s now discuss each one in turn.
Suppressing Evaluation: quote

quote suppresses evaluation of a Clojure expression. The most
 obvious impact of this relates to symbols, which, if they name a var,
 evaluate to that var’s value. With quote, evaluation is suppressed, so symbols
 evaluate to themselves (just like strings, numbers, and so on):
(quote x)
;= x
(symbol? (quote x))
;= true
There is reader syntax for quote; prefixing any form with a quote
 character (') will expand into a
 usage of quote:
'x
;= x
Any Clojure form can be quoted, including data structures. Doing
 so returns the data structure in question, with evaluation recursively
 suppressed for all of its elements:
'(+ x x)
;= (+ x x)
(list? '(+ x x))
;= true
While lists are usually evaluated as calls, quoting a list suppresses
 that evaluation, yielding the list itself; in this case, a list of three
 symbols: '+, 'x, and 'x.
 Note that this is exactly what we get if we “manually” construct the
 list without using a list literal:
(list '+ 'x 'x)
;= (+ x x)
Tip
You can usually have a peek at what the reader produces by
 quoting a form. Let’s go meta for a moment and try it first on quote
 itself:
''x
;= (quote x)
It’s informative to use this trick on other reader
 sugars:
'@x
;= (clojure.core/deref x)
'#(+ % %)
;= (fn* [p1__3162792#] (+ p1__3162792# p1__3162792#))
'`(a b ~c)
;= (seq (concat (list (quote user/a))
;= (list (quote user/b))
;= (list c))) [image: 1]
	[image: 1]
	clojure.core
 namespace-prefixes elided for legibility.

Code Blocks: do

do evaluates all of the expressions provided to it in order and yields the last expression’s
 value as its value. For example:
(do
 (println "hi")
 (apply * [4 5 6]))
; hi
;= 120
The values of all but the last expression are discarded, although
 their side effects do occur (such as printing to standard out as we’re
 doing here, or manipulations of a stateful object available in the
 current scope).
Note that many other forms (including fn, let,
 loop, and try—and any derivative of these, such as
 defn) wrap their bodies in an
 implicit do expression, so that multiple inner expressions can be evaluated. For
 example, let expressions—like this
 one that defines two locals—provide an implicit do context to their bodies:
(let [a (inc (rand-int 6))
 b (inc (rand-int 6))]
 (println (format "You rolled a %s and a %s" a b))
 (+ a b))
This allows any number of expressions to be evaluated within the
 context of the let form, with only
 the final one determining its ultimate result. If let didn’t wrap its body with a do form, you would have to add it
 explicitly:[22]
(let [a (inc (rand-int 6))
 b (inc (rand-int 6))]
 (do
 (println (format "You rolled a %s and a %s" a b))
 (+ a b)))

Defining Vars: def

We’ve already seen def
 in action;[23] it defines (or redefines) a var (with an optional value)
 within the current namespace:
(def p "foo")
;= #'user/p
p
;= "foo"
Many other forms implicitly create or redefine vars, and therefore
 use def internally. It is customary
 for such forms to be prefixed with “def,” such as defn, defn-, defprotocol, defonce, defmacro, and so on.
Warning
Although forms that create or redefine vars have names that
 start with “def,” unfortunately not all forms that start with “def”
 create or redefine vars. Examples of the latter include deftype, defrecord, and defmethod.

Local Bindings: let

let allows you to define named references that are lexically
 scoped to the extent of the let
 expression. Said another way, let
 defines locals. For example, this rudimentary static method in
 Java:
public static double hypot (double x, double y) {
 final double x2 = x * x;
 final double y2 = y * y;
 return Math.sqrt(x2 + y2);
}
is equivalent to this Clojure function:
(defn hypot
 [x y]
 (let [x2 (* x x)
 y2 (* y y)]
 (Math/sqrt (+ x2 y2))))
The x2 and y2 locals in the respective function/method
 bodies serve the same purpose: to establish a named, scoped reference to
 an intermediate value.
Note
There are many terms used to talk about named references
 established by let in Clojure
 parlance:
	locals

	local bindings

	particular values are said to be
 let-bound

Bindings and bound
 used in connection with let are
 entirely distinct from the binding
 macro, which controls scoped thread-local variables; see Dynamic Scope for more about the
 latter.

Note that let is implicitly
 used anywhere locals are required. In particular, fn (and therefore all other function-creation
 and function-definition forms like defn) uses let to bind function parameters as locals
 within the scope of the function being defined. For example, x and y in
 the hypot function above are
 let-bound by defn. So, the vector
 that defines the set of bindings for a let scope obeys the same semantics whether it
 is used to define function parameters or an auxiliary local binding
 scope.
Note
Occasionally, you will want evaluate an expression in the
 binding vector provided to let, but
 have no need to refer to its result within the context of the let’s body. In these cases, it is customary
 to use an underscore as the bound name for such values, so that readers of
 the code will know that results of such expressions are going unused
 intentionally.
This is only ever relevant when the expression in question is
 side-effecting; a common example
 would be printing some intermediate value:
(let [location (get-lat-long)
 _ (println "Current location:" location)
 location (find-city-name location)]
 …display city name for current location in UI…)
Here we’re retrieving our current latitude and longitude using a
 hypothetical API, and we’d like to print that out before converting
 the location data to a human-recognizable city name. We might want to
 rebind the same name a couple of times in the course of the let’s binding vector, paving over those
 intermediate values. To print out that intermediate value, we add it
 to the binding vector prior to rebinding its name, but we indicate
 that we are intentionally ignoring the return value of that expression
 by naming it _.

let has two particular semantic
 wrinkles that are very different from locals you may be used to in other
 languages:
	All locals are immutable. You can
 override a local binding within a nested let form or a later binding of the same
 name within the same binding vector, but there is no way to bash out
 a bound name and change its value within the scope of a single
 let form. This eliminates a
 source of common errors and bugs without sacrificing
 capability:
	The loop and recur special forms provide for looping cases where
 values need to change on each cycle of a loop; see Looping: loop and recur.

	If you really need a “mutable” local binding, Clojure
 provides a raft of reference types that enforce specific mutation semantics; see
 Clojure Reference Types.

	let’s binding vector is
 interpreted at compile time to provide optional
 destructuring of common collection types. Destructuring can aid
 substantially in eliminating certain types of verbose (and frankly,
 dull) code often associated with working with collections provided
 as arguments to functions.

Destructuring (let, Part 2)

A lot of Clojure programming involves working with various
 implementations of data structure abstractions,
 sequential and map collections being two of those key abstractions. Many Clojure functions
 accept and return seqs and maps generally—rather than specific
 implementations—and most Clojure libraries and applications are built up
 relying upon these abstractions instead of particular concrete structures, classes, and so
 on. This allows functions and libraries to be trivially composed around
 the data being handled with a minimum of integration, “glue code,” and
 other incidental complexity.
One challenge when working with abstract collections is being able
 to concisely access multiple values in those collections. For example,
 here’s a collection, a Clojure vector:
(def v [42 "foo" 99.2 [5 12]])
;= #'user/v
Consider a couple of approaches for accessing the values in our
 sample vector:
(first v) [image: 1]
;= 42
(second v)
;= "foo"
(last v)
;= [5 12]
(nth v 2) [image: 2]
;= 99.2
(v 2) [image: 3]
;= 99.2
(.get v 2) [image: 4]
;= 99.2
	[image: 1]
	Clojure provides convenience functions for accessing the first, second, and last values from a sequential
 collection.

	[image: 2]
	The nth function allows you
 pluck any value from a sequential collection using an index into
 that collection.

	[image: 3]
	Vectors are functions of their indices.

	[image: 4]
	All of Clojure’s sequential collections implement the java.util.List interface, so you can use that interface’s .get method to access their
 contents.

All of these are perfectly fine ways to access a single
 “top-level” value in a vector, but things start getting more complex if
 we need to access multiple values to perform some operation:
(+ (first v) (v 2))
;= 141.2
Or if we need to access values in nested collections:
(+ (first v) (first (last v)))
;= 47
Clojure destructuring provides a concise syntax for declaratively pulling apart
 collections and binding values contained therein as named locals within
 a let form. And, because
 destructuring is a facility provided by let, it can be used in any expression that
 implicitly uses let (like fn, defn,
 loop, and so on).
There are two flavors of destructuring: one that operates over
 sequential collections, and another that works with maps.
Sequential destructuring

Sequential destructuring works with any sequential
 collection, including:
	Clojure lists, vectors, and seqs

	Any collection that implements java.util.List (like ArrayLists and LinkedLists)

	Java arrays

	Strings, which are destructured into their characters

Here’s a basic example, where we are destructuring the same
 value v discussed above:
Example 1-3. Basic sequential destructuring
(def v [42 "foo" 99.2 [5 12]])
;= #'user/v
(let [[x y z] v]
 (+ x z))
;= 141.2

In its simplest form, the vector provided to let contains pairs of names and values, but
 here we’re providing a vector of symbols—[x y
 z]—instead of a scalar symbol name. What this does is cause
 the value v to be destructured
 sequentially, with the first value bound to x within the body of the let form, the second value bound to y, and the third value bound to z. We can then use those destructured locals
 like any other locals. This is equivalent to:
(let [x (nth v 0)
 y (nth v 1)
 z (nth v 2)]
 (+ x z))
;= 141.2
Note
Python has something similar to Clojure’s sequential
 destructuring, called unpacking. The equivalent to the preceding code snippet in
 Python would be something like:
>>> v = [42, "foo", 99.2, [5, 12]]
>>> x, y, z, a = v
>>> x + z
141.19999999999999
The same goes for Ruby:
>> x, y, z, a = [42, "foo", 99.2, [5, 12]]
[42, "foo", 99.2, [5, 12]]
>> x + z
141.2
Clojure, Python, and Ruby all seem pretty similar on their
 face; but, as you’ll see as we go along, Clojure goes quite a long
 ways beyond what Python and Ruby offer.

Destructuring forms are intended to mirror the structure of the
 collection that is being bound.[24] So, we can line up our destructuring form with the
 collection being destructured and get a very accurate notion of which
 values are going to be bound to which names:[25]
[x y z]
[42 "foo" 99.2 [5 12]]
Destructuring forms can be composed as well, so we can dig into
 the nested vector in v with
 ease:[26]
(let [[x _ _ [y z]] v]
 (+ x y z))
;= 59
If we visually line up our destructuring form and the source
 vector again, the work being done by that form should again be very
 clear:
[x _ _ [y z]]
[42 "foo" 99.2 [5 12]]
Warning
If our nested vector had a vector inside of it, we could destructure it as
 well. The destructuring mechanism has no limit to how far it can
 descend into a deeply nested data structure, but there are limits to
 good taste. If you’re using destructuring to pull values out of a
 collection four or more levels down, chances are your destructuring
 form will be difficult to interpret for the next person to see that
 code—even if that next person is you!

There are two additional features of sequential destructuring
 forms you should know about:
	Gathering extra-positional sequential values
	You can use & to gather values that lay beyond the positions
 you’ve named in your destructuring form into a sequence; this
 is similar to the mechanism underlying varargs in Java methods
 and is the basis of rest
 arguments in Clojure functions:
(let [[x & rest] v]
 rest)
;= ("foo" 99.2 [5 12])
This is particularly useful when processing
 items from a sequence, either via recursive function calls or
 in conjunction with a loop
 form. Notice that the value of rest here is a sequence, and
 not a vector, even though we provided a
 vector to the destructuring form.

	Retaining the destructured value
	You can establish a local binding for the original collection being destructured
 by specifying the name it should have via the :as option within the destructuring
 form:
(let [[x _ z :as original-vector] v]
 (conj original-vector (+ x z)))
;= [42 "foo" 99.2 [5 12] 141.2]
Here, original-vector is bound to the
 unchanged value of v. This
 comes in handy when you are destructuring a collection that is
 the result of a function call, but you need to retain a
 reference to that unaltered result in addition to having the
 benefit of destructuring it. Without this feature, doing so
 would require something like this:
(let [some-collection (some-function …)
 [x y z [a b]] some-collection]
 …do something with some-collection and its values…)

Map destructuring

Map destructuring is conceptually identical to
 sequential destructuring—we aim to mirror the structure of the
 collection being bound. It works with:
	Clojure hash-maps,
 array-maps, and
 records[27]

	Any collection that implements java.util.Map

	Any value that is supported by the get function can be map-destructured,
 using indices as keys:
	Clojure vectors

	Strings

	Arrays

Let’s start with a Clojure map and a basic destructuring of
 it:
(def m {:a 5 :b 6
 :c [7 8 9]
 :d {:e 10 :f 11}
 "foo" 88
 42 false})
;= #'user/m
(let [{a :a b :b} m]
 (+ a b))
;= 11
Here we’re binding the value for :a in the map to a, and the value for :b in the map to b. Going back to our visual alignment of the
 destructuring form with the (in this case, partial) collection being
 destructured, we can again see the structural correspondence:
{a :a b :b}
{:a 5 :b 6}
Note that there is no requirement that the keys used for map lookups in destructuring be keywords; any
 type of value may be used for lookup:
(let [{f "foo"} m]
 (+ f 12))
;= 100
(let [{v 42} m]
 (if v 1 0))
;= 0
Indices into vectors, strings, and arrays can be used as keys in
 a map destructuring form.[28] One place where this can be helpful is if you are
 representing matrices by using vectors, but only need a couple of values from
 one. Using map destructuring to pull out two or three values from a
 3×3 matrix can be much easier than using a potentially nine-element
 sequential destructuring form:
(let [{x 3 y 8} [12 0 0 -18 44 6 0 0 1]]
 (+ x y))
;= -17
Just as sequential destructuring forms could be composed, so can
 the map variety:
(let [{{e :e} :d} m]
 (* 2 e))
;= 20
The outer map destructuring—{{e :e} :d}—is acting
 upon the top-level source collection m to pull out the value mapped to :d. The inner map destructuring—{e :e}—is acting on
 the value mapped to :d to pull out
 its value for :e.
The coup de grâce is the composition of
 both map and sequential destructuring, however they are needed to
 effectively extract the values you need from the collections at
 hand:
(let [{[x _ y] :c} m]
 (+ x y))
;= 16
(def map-in-vector ["James" {:birthday (java.util.Date. 73 1 6)}])
;= #'user/map-in-vector
(let [[name {bd :birthday}] map-in-vector]
 (str name " was born on " bd))
;= "James was born on Thu Feb 06 00:00:00 EST 1973"
Map destructuring also has some additional features.
Retaining the destructured value. Just like sequential destructuring, adding an :as pair to the destructuring form to hold a reference to
 the source collection, which you can use like any other let-bound value:
(let [{r1 :x r2 :y :as randoms}
 (zipmap [:x :y :z] (repeatedly (partial rand-int 10)))]
 (assoc randoms :sum (+ r1 r2)))
;= {:sum 17, :z 3, :y 8, :x 9}
Default values. You can use an :or pair to provide a defaults map; if a key specified in
 the destructuring form is not available in the source collection,
 then the defaults map will be consulted:
(let [{k :unknown x :a
 :or {k 50}} m]
 (+ k x))
;= 55
This allows you to avoid either merging the source map into a
 defaults map ahead of its destructuring, or manually setting defaults
 on destructured bindings that have nil values in the source collection, which
 would get very tiresome beyond one or two
 bindings with desired default values:
(let [{k :unknown x :a} m
 k (or k 50)]
 (+ k x))
;= 55
Furthermore, and unlike the code in the above example, :or knows the difference between no value
 and a false (nil or false) value:
(let [{opt1 :option} {:option false}
 opt1 (or opt1 true)
 {opt2 :option :or {opt2 true}} {:option false}]
 {:opt1 opt1 :opt2 opt2})
;= {:opt1 true, :opt2 false}
Binding values to their keys’ names. There are often stable names for various values in
 maps, and it’s often desirable to bind those values by using the
 same names in the scope of the let form as they are mapped to in the
 source map. However, doing this using “vanilla” map destructuring
 can get very repetitive:
(def chas {:name "Chas" :age 31 :location "Massachusetts"})
;= #'user/chas
(let [{name :name age :age location :location} chas]
 (format "%s is %s years old and lives in %s." name age location))
;= "Chas is 31 years old and lives in Massachusetts."
Having to type the content of each key twice is decidedly
 contrary to the spirit of destructuring’s concision. In such cases,
 you can use the :keys, :strs, and :syms options to specify keyword, string,
 and symbol keys (respectively) into the source map and the names the
 corresponding values should be bound to in the let form without repetition. Our sample map
 uses keywords for keys, so we’ll use :keys for it:
(let [{:keys [name age location]} chas]
 (format "%s is %s years old and lives in %s." name age location))
;= "Chas is 31 years old and lives in Massachusetts."
…and switch to using :strs or
 :syms when we know that the source
 collection is using strings or symbols for keys:
(def brian {"name" "Brian" "age" 31 "location" "British Columbia"})
;= #'user/brian
(let [{:strs [name age location]} brian]
 (format "%s is %s years old and lives in %s." name age location))
;= "Brian is 31 years old and lives in British Columbia."

(def christophe {'name "Christophe" 'age 33 'location "Rhône-Alpes"})
;= #'user/christophe
(let [{:syms [name age location]} christophe]
 (format "%s is %s years old and lives in %s." name age location))
;= "Christophe is 31 years old and lives in Rhône-Alpes."
You will likely find yourself using :keys more than :strs or :syms; keyword keys are by far the most
 common key type in Clojure maps and keyword arguments, and are the
 general-purpose accessor by dint of their usage in conjunction with
 records.
Destructuring rest sequences as map key/value pairs. We’ve already seen how extra-positional values in
 sequential destructuring forms can be gathered into a “rest” seq,
 and map and sequential destructuring can be composed as needed to
 drill into any given data structure. Here’s a simple case of a
 vector that contains some positional values, followed by a set of
 key/value pairs:
(def user-info ["robert8990" 2011 :name "Bob" :city "Boston"])
;= #'user/user-info
Data like this isn’t uncommon, and handling it is rarely
 elegant. The “manual” approach in Clojure is tolerable as these things
 go:
(let [[username account-year & extra-info] user-info [image: 1]
 {:keys [name city]} (apply hash-map extra-info)] [image: 2]
 (format "%s is in %s" name city))
;= "Bob is in Boston"
	[image: 1]
	We can destructure the original vector into its positional
 elements, gathering the remainder into a rest seq.

	[image: 2]
	That rest seq, consisting of alternating keys and values,
 can be used as the basis for creating a new hashmap, which we can
 then destructure as we wish.

However, “tolerable” isn’t a very high bar given the prevalence
 of sequences of key/value pairs in programming. A better alternative
 is a special variety of the compositional behavior offered by let’s destructuring forms: map destructuring
 of rest seqs. If a rest seq has an even number of values—semantically,
 key/value pairs—then it can be destructured as a map of those
 key/value pairs instead of sequentially:
(let [[username account-year & {:keys [name city]}] user-info]
 (format "%s is in %s" name city))
;= "Bob is in Boston"
That is a far cleaner notation for doing exactly the same work
 as us manually building a hash-map
 out of the rest seq and destructuring that map, and is the basis of
 Clojure functions’ optional keyword arguments described in “Keyword arguments”.

Creating Functions: fn

Functions are first-class values in Clojure; creating them
 falls to the fn special form, which
 also folds in the semantics of let
 and do.
Here is a simple function that adds 10 to the number provided as an
 argument:
(fn [x] [image: 1]
 (+ 10 x)) [image: 2]
	[image: 1]
	fn accepts a let-style binding vector that defines the
 names and numbers of arguments accepted by the function; the same
 optional destructuring forms discussed in Destructuring (let, Part 2) can be applied to each argument
 here.

	[image: 2]
	The forms following the binding vector constitute the
 body of the function. This body is placed in an
 implicit do form, so each
 function’s body may contain any number of forms; as with do, the last form in the body supplies the
 result of the function call that is returned to the caller.

The arguments to a function are matched to each name or
 destructuring form based on their positions in the calling form. So in
 this call:
((fn [x] (+ 10 x)) 8)
;= 18
8 is the sole argument to the
 function, and it is bound to the name x within the body of the function. This makes
 the function call the equivalent of this let form:
(let [x 8]
 (+ 10 x))
You can define functions that accept multiple arguments:
((fn [x y z] (+ x y z))
 3 4 12)
;= 19
In this case, the function call is the equivalent of this let form:
(let [x 3
 y 4
 z 12]
 (+ x y z))
Functions with multiple arities can be created as well; here, we’ll put the function in a
 var so we can call it multiple times
 by only referring to the var’s
 name:
(def strange-adder (fn adder-self-reference
 ([x] (adder-self-reference x 1))
 ([x y] (+ x y))))
;= #'user/strange-adder
(strange-adder 10)
;= 11
(strange-adder 10 50)
;= 60
When defining a function with multiple arities, each arity’s
 binding vector and implementation body must be enclosed within a pair of
 parentheses. Function calls dispatch based on argument count; the proper
 arity is selected based on the number of arguments that we provide in
 our call.
In this last example, notice the optional name that we’ve given to
 the function, adder-self-reference.
 This optional first argument to fn
 can be used within the function’s bodies to refer to itself—in this
 case, so that the single-argument arity can call the two-argument arity
 with a default second argument without referring to or requiring any
 containing var.
Mutually recursive functions with letfn
Named fns (like the
 above adder-self-reference) allow
 you to easily create self-recursive functions. What is more tricky is
 to create mutually recursive functions.
For such rare cases, there is the letfn special form, which allows you to
 define several named functions at once, and all these functions will
 know each other. Consider these naive reimplementations of odd? and even?:
(letfn [(odd? [n]
 (even? (dec n)))
 (even? [n]
 (or (zero? n)
 (odd? (dec n))))] [image: 1]
 (odd? 11))
;= true
	[image: 1]
	The vector consists of several regular fn bodies, only the fn symbol is missing.

defn builds on fn. We’ve already seen defn used before, and the example above
 should look familiar; defn is a
 macro that encapsulates the functionality of def and fn so that you can concisely define
 functions that are named and registered in the current namespace with
 a given name. For example, these two definitions are
 equivalent:
(def strange-adder (fn strange-adder
 ([x] (strange-adder x 1))
 ([x y] (+ x y))))

(defn strange-adder
 ([x] (strange-adder x 1))
 ([x y] (+ x y))))
and single-arity functions can be defined, with the additional parentheses eliminated
 as well; these two definitions are also equivalent:
(def redundant-adder (fn redundant-adder
 [x y z]
 (+ x y z)))

(defn redundant-adder
 [x y z]
 (+ x y z))
We’ll largely use defn forms to
 illustrate fn forms for the rest of
 this section, simply because calling functions bound to named vars is
 easier to read than continually defining the functions to be called
 inline.
Destructuring function arguments

defn supports the destructuring of function arguments thanks
 to it reusing let for binding
 function arguments for the scope of a function’s body. You should
 refer to the prior comprehensive discussion of destructuring to remind
 yourself of the full range of options available; here, we’ll discuss
 just a couple of destructuring idioms that are particularly common in
 conjunction with functions.
Variadic functions. Functions can optionally gather all additional
 arguments used in calls to it into a seq; this uses the same
 mechanism as sequential destructuring does when gathering additional
 values into a seq. Such functions are called
 variadic, with the gathered arguments usually
 called rest arguments or varargs. Here’s a function
 that accepts one named positional argument, but gathers all
 additional arguments into a remainder seq:
(defn concat-rest
 [x & rest]
 (apply str (butlast rest)))
;= #'user/concat-rest
(concat-rest 0 1 2 3 4)
;= "123"
The seq formed for the rest arguments can be destructured just
 like any other sequence; here we’re destructuring rest arguments to
 make a function behave as if it had an explicitly defined zero-arg
 arity:
(defn make-user
 [& [user-id]]
 {:user-id (or user-id
 (str (java.util.UUID/randomUUID)))})
;= #'user/make-user
(make-user)
;= {:user-id "ef165515-6d6f-49d6-bd32-25eeb024d0b4"}
(make-user "Bobby")
;= {:user-id "Bobby"}
Keyword arguments. It is often the case that you would like to define a
 function that can accept many arguments, some of which might be
 optional and some of which might have defaults. Further, you would
 often like to avoid forcing a particular argument ordering upon
 callers.[29]
fn (and therefore defn) provides support for such use cases
 through keyword arguments, which is an idiom
 built on top of the map
 destructuring of rest sequences that let provides. Keyword arguments are pairs of
 keywords and values appended to any strictly positional arguments in a
 function call, and if the function was defined to accept keyword
 arguments, those keyword/value pairs will be gathered into a map and
 destructured by the function’s map destructuring form that is placed
 in the same position as the rest
 arguments seq:
(defn make-user
 [username & {:keys [email join-date] [image: 1]
 :or {join-date (java.util.Date.)}}] [image: 2]
 {:username username
 :join-date join-date
 :email email
 ;; 2.592e9 -> one month in ms
 :exp-date (java.util.Date. (long (+ 2.592e9 (.getTime join-date))))})
;= #'user/make-user
(make-user "Bobby") [image: 3]
;= {:username "Bobby", :join-date #<Date Mon Jan 09 16:56:16 EST 2012>,
;= :email nil, :exp-date #<Date Wed Feb 08 16:56:16 EST 2012>}
(make-user "Bobby" [image: 4]
 :join-date (java.util.Date. 111 0 1)
 :email "bobby@example.com")
;= {:username "Bobby", :join-date #<Date Sun Jan 01 00:00:00 EST 2011>,
;= :email "bobby@example.com", :exp-date #<Date Tue Jan 31 00:00:00 EST 2011>}
	[image: 1]
	The make-user function
 strictly requires only one argument, a username. The rest of the
 arguments are assumed to be keyword/value pairs, gathered into a
 map, and then destructured using the map destructuring form
 following &.

	[image: 2]
	In the map destructuring form, we define a default of “now”
 for the join-date value.

	[image: 3]
	Calling make-user with a
 single argument returns the user map, populated with defaulted
 join- and expiration-date values and a nil email value since none was provided
 in the keyword arguments.

	[image: 4]
	Additional arguments provided to make-user are interpreted by the keyword
 destructuring map, without consideration of their order.

Note
Because keyword arguments are built using let’s map destructuring, there’s nothing
 stopping you from destructuring the rest argument map using types of
 key values besides keywords (such as strings or numbers or even
 collections). For example:
(defn foo
 [& {k ["m" 9]}]
 (inc k))
;= #'user/foo
(foo ["m" 9] 19)
;= 20
["m" 9] is being treated
 here as the name of a “keyword” argument.
That said, we’ve never actually seen non-keyword key types
 used in named function arguments. Keywords are overwhelmingly the
 most common argument key type used, thus the use of
 keyword arguments to describe the idiom.

Pre- and postconditions. fn provides support for
 pre- and postconditions for performing assertions with function arguments and
 return values. They are valuable features when testing and for
 generally enforcing function invariants; we discuss them in Preconditions and Postconditions.

Function literals

We mentioned function literals briefly in Miscellaneous Reader Sugar. Equivalent to blocks in Ruby and lambdas
 in Python, Clojure function literals’ role is
 straightforward: when you need to define an anonymous
 function—especially a very simple function—they provide the most
 concise syntax for doing so.
For example, these anonymous function expressions are
 equivalent:
(fn [x y] (Math/pow x y))

#(Math/pow %1 %2)
The latter is simply some reader sugar that is expanded into the
 former; we can clearly see this by checking the result of reading the
 textual code:[30]
(read-string "#(Math/pow %1 %2)")
;= (fn* [p1__285# p2__286#] (Math/pow p1__285# p2__286#))
The differences between the fn form and the shorter function literal
 are:
No implicit do form. “Regular” fn forms (and all
 of their derivatives) wrap their function bodies in an implicit
 do form, as we discussed in Creating Functions: fn. This allows you to do things
 like:
(fn [x y]
 (println (str x \^ y))
 (Math/pow x y))
The equivalent function literal requires an explicit do form:
#(do (println (str %1 \^ %2))
 (Math/pow %1 %2))
Arity and arguments specified using unnamed positional
 symbols. The fn examples above use
 the named symbols x and y to specify both the arity of the function being defined, as well as the names of
 the arguments passed to the function at runtime. In contrast, the
 literal uses unnamed positional %
 symbols, where %1 is the first
 argument, %2 is the second
 argument, and so on. In addition, the highest positional symbol
 defines the arity of the function, so if we wanted to define a
 function that accepted four arguments, we need only to refer to
 %4 within the function literal’s
 body.
There are two additional wrinkles to defining arguments in
 function literals:
	Function literals that accept a single argument are so
 common that you can refer to the first argument to the function by
 just using %. So, #(Math/pow % %2) is equivalent to
 #(Math/pow %1 %2). You should
 prefer the shorter notation in general.

	You can define a variadic function[31] and refer to that function’s rest arguments using
 the %& symbol. These
 functions are therefore equivalent:

(fn [x & rest]
 (- x (apply + rest)))

#(- % (apply + %&))
Function literals cannot be nested. So, while this is perfectly legal:
(fn [x]
 (fn [y]
 (+ x y)))
This is not:
#(#(+ % %))
;= #<IllegalStateException java.lang.IllegalStateException:
;= Nested #()s are not allowed>
Aside from the fact that the bodies of function literals are
 intended to be terse, simple expressions, making the prospect of
 nested function literals a readability and comprehension nightmare,
 there’s simply no way to disambiguate which function’s first argument
 % is referring to.

Conditionals: if

if is Clojure’s sole primitive conditional operator. Its
 syntax is simple: if the value of the first expression in an if form is logically
 true, then the result of the if form
 is the value of the second expression. Otherwise, the result of the
 if form is the value of the third
 expression, if provided. The second and third expressions are only
 evaluated as necessary.
Clojure conditionals determine logical truth to be anything other
 than nil or false:
(if "hi" \t)
;= \t
(if 42 \t)
;= \t
(if nil "unevaluated" \f)
;= \f
(if false "unevaluated" \f)
;= \f
(if (not true) \t)
;= nil
Note that if a conditional expression is logically false, and no
 else expression is provided, the result of an
 if expression is nil.[32]
Many refinements are built on top of if, including:
	when, best used when
 nil should be returned (or no
 action should be taken) if a condition is false.

	cond—similar to the else
 if construction in Java and Ruby, and elif in Python—allows you to concisely
 provide multiple conditions to check, along with multiple
 then expressions if a given conditional is
 true.

	if-let and when-let, which are compositions of let with if and when, respectively: if the value of the
 test expression is logically true, it is bound to a local for the
 extent of the then expression.

Warning
Clojure provides true? and false? predicates, but these are unrelated to if conditionals. For example:
(true? "string")
;= false
(if "string" \t \f)
;= \t
true? and false? check for the Boolean values true and false, not the logical truth condition used
 by if, which is equivalent to
 (or (not (nil? x)) (true? x)) for
 any value x.

Looping: loop and recur

Clojure provides a number of useful imperative looping
 constructs, including doseq and
 dotimes, all of which are built upon
 recur. recur transfers control to the local-most
 loop head without consuming stack space, which is
 defined either by loop or a function.
 Let’s take a look at a very simple countdown loop:
(loop [x 5] [image: 1]
 (if (neg? x)
 x [image: 2]
 (recur (dec x)))) [image: 3]
;= -1
	[image: 1]
	loop establishes bindings
 via an implicit let form, so it
 takes a vector of binding names and initial values.

	[image: 2]
	If the final expression within a loop form consists of a value, that is
 taken as the value of the form itself. Here, when x is negative, the loop form returns the value of x.

	[image: 3]
	A recur form will transfer
 control to the local-most loop head, in this case the loop form, resetting the local bindings to
 the values provided as arguments to recur. In this case, control jumps to the
 beginning of the loop form, with
 x bound to the value (dec x).

Loop heads are also established by functions, in which case
 recur rebinds the function’s
 parameters using the values provided as arguments to recur:
(defn countdown
 [x]
 (if (zero? x)
 :blastoff!
 (do (println x)
 (recur (dec x)))))
;= #'user/countdown
(countdown 5)
; 5
; 4
; 3
; 2
; 1
;= :blastoff!
Appropriate use of recur. recur is a very low-level
 looping and recursion operation that is usually not necessary:
	When they can do the job, use the higher-level looping and
 iteration forms found in Clojure’s core library, doseq and dotimes.

	When “iterating” over a collection or sequence, functional
 operations like map, reduce, for, and so on are almost always
 preferable.

Because recur does not consume
 stack space (thereby avoiding stack overflow errors), recur is critical when
 implementing certain recursive algorithms. In addition, because it
 allows you to work with numerics without the overhead of boxed
 representations, recur is very useful
 in the implementation of many mathematical and data-oriented operations.
 See Visualizing the Mandelbrot Set in Clojure for a live example of recur within such circumstances.
Finally, there are scenarios where the accumulation or consumption
 of a collection or set of collections is complicated enough that
 orchestrating things with a series of purely functional operations using
 map, reduce, and so on is either difficult or
 inefficient. In these cases, the use of recur (and sometimes loop in order to set up intermediate loop
 heads) can provide an important escape hatch.

Referring to Vars: var

Symbols that name a var evaluate to that var’s
 value:
(def x 5)
;= #'user/x
x
;= 5
However, there are occasions when you’d like to have a reference
 to the var itself, rather than the value it holds. The var special form does this:
(var x)
;= #'user/x
You’ve seen a number of times now how vars are printed in the
 REPL: #', followed by a symbol. This
 is reader syntax that expands to a call to var:
#'x
;= #'user/x
You’ll learn a lot more about vars in Vars.

Java Interop: . and new

All Java interoperability—instantiation, static and
 instance method invocation, and field access—flows through the new and .
 special forms. That said, the Clojure reader provides some syntactic
 sugar on top of these primitive interop forms that makes Java interop
 more concise in general and more syntactically consistent with Clojure’s
 notion of function position for method calls and instantiation. Thus,
 it’s rare to see . and new used directly, but you will nevertheless
 come across them out in the wild at some point:
Table 1-3. Sugared Java interop forms and their fully expanded
 equivalents
	Operation	Java code	Sugared interop form	Equivalent special form usage
	Object instantiation
	 new
 java.util.ArrayList(100)
	 (java.util.ArrayList.
 100)
	 (new java.util.ArrayList
 100)

	Static method invocation
	 Math.pow(2, 10)

	 (Math/pow 2 10)

	 (. Math pow 2
 10)

	Instance method invocation
	 "hello".substring(1,
 3)
	 (.substring "hello" 1
 3)
	 (. "hello" substring 1
 3)

	Static field access
	 Integer.MAX_VALUE
	 Integer/MAX_VALUE
	 (. Integer
 MAX_VALUE)

	Instance field access
	 someObject.someField
	 (.someField
 some-object)
	 (. some-object
 some-field)

The sugared syntax shown in Table 1-3 is idiomatic and should be preferred
 in every case over direct usage of the . and new
 special forms. Java interop is discussed in depth in Chapter 9.

Exception Handling: try and throw

These special forms allow you to participate in and use
 the exception-handling and -throwing mechanisms in Java from Clojure.
 They are explained in Exceptions and Error Handling.

Specialized Mutation: set!

While Clojure emphasizes the use of immutable data structures and
 values, there are contexts where you need to effect an in-place mutation
 of state. The most common settings for this involve the use of setter
 and other stateful methods on Java objects you are using in an interop
 setting; for the remaining cases, Clojure provides set!, which can be used to:
	Set the thread-local value of vars that have a non-root
 binding, discussed in Dynamic Scope

	Set the value of a Java field, demonstrated in “Accessing object fields”

	Set the value of mutable fields defined by deftype; see Types for details of that usage

Primitive Locking: monitor-enter and monitor-exit

These are lock primitives that allow Clojure to
 synchronize on the monitor associated with every Java object. You should
 never need to use these special forms, as there’s a macro, locking, that ensures proper acquisition and
 release of an object’s monitor. See Locking for details.

[18] Special forms are always given precedence when resolving
 symbols in function position. For example, you can have a var or
 local named def, but you will
 not be able to refer to the value of that var or local in function
 position—though you can refer to that value anywhere else.

[19] Paul Graham’s The Roots of Lisp (http://www.paulgraham.com/rootsoflisp.html) is a brief
 yet approachable precis of the fundamental operations of computation,
 as originally discovered and enumerated by John McCarthy. Though that
 characterization of computation was made more than 50 years ago, you
 can see it thriving in Clojure today.

[20] If you were to open the core.clj file from
 Clojure’s source repository, you will see this bootstrapping in
 action: everything from when and
 or to defn and = is defined in Clojure itself. Indeed, if
 you were so motivated, you could implement Clojure (or another
 language of your choosing) from scratch, on your own, on top of
 Clojure’s special forms.

[21] This sort of syntactic extension generally requires
 macros, which are treated in detail in Chapter 5.

[22] The other alternative would be for let (and all other forms that utilize
 do) to (re?) implement its own
 semantics of “do several things and return the value of the last
 expression”: hardly a reasonable thing to do.

[23] See Namespaces for a discussion of
 the typical usage of vars as stable references to values in
 namespaces; see Vars for more a more
 comprehensive treatment of them, including esoteric usages related
 to dynamic scope and thread-local references.

[24] Thus the term: destructuring is undoing
 (de-) the creation of the data
 structure.

[25] Values in the source collection that have no corresponding
 bound name are simply not bound within the context of the let form; you do not need to fully match
 the structure of the source collection, but sequential
 destructuring forms do need to be “anchored” at the beginning of
 the source.

[26] Again, note the use of underscores (_) in this destructuring form to
 indicate an ignored binding, similar to the idiom discussed in the
 note earlier in this chapter.

[27] See Records to learn more
 about records.

[28] This is due to the polymorphic behavior of get, which looks up values in a
 collection given a key into that collection; in the case of these
 indexable sequential values, get uses indices as keys. For more about
 get, see Associative.

[29] Python is a language that supports this usage pervasively,
 where every argument may be named and provided in any order in a
 function call, and argument defaults can be provided when a
 function is defined.

[30] Since the name of the arguments to the function is
 irrelevant, the function literal generates a unique symbol for
 each argument to refer to them; in this case, p1__285# and p2__286#.

[31] See “Variadic functions”.

[32] when is far more
 appropriate for such scenarios.

End of sample

 To search for additional titles please go to

 http://search.overdrive.com.

OEBPS/httpatomoreillycomsourceoreillyimages1101490.png
i ne type nesa T 0 you neod
need to define eXan 2 gava cass e named type o any
o In Clojure” or mplemen any. an instanca o an

niriaces? anonymous ypo?

No'

Instance of
anonymous type

i tho typo
paricpato in Coure
protocos of o
“issociaied w/

Named
" * "

00 you nesd o bo

2Dt rwer o me

s Satcany om
Tavar

00 you nesdto
extond an exsing
Dase oass?

No

s your cass modelng
adomain vae ~ i
banating rom nasn-
mapke uncionaity
“na semanica?

ves

o you nes

meinods n agation

o Tnosa aained by
Intoiaces youro

00 you nesdto
extond an exsing
Dase oass?

e Do younesdto
Getha matip
Consruciors?

Do yaunesato
o any Siaic
metnots

50 you nesd o dotne
tatie feics?

OEBPS/httpatomoreillycomsourceoreillyimages1101199.png
D> Time

OEBPS/httpatomoreillycomsourceoreillyimages1101349.png
(ns com.clojurebook.url-shortener
C:use [compojure.core :only (GET PUT POST defroutes)])
C:require Ccompojure handler route)

[ring.util.response -as response]))

Cdef Azprivate counter (aton 0))
(def A:private mappings (ref {1))

(defn url-for
[id]
Cenappings id))
- url_shortener.clj Top (5,0) Git:master (Clojure Fill)
REPL started; server listening on localhost port 55657
user=> #' con. clojurebook.url-shortener/app
user=> (in-ns *con.clojurebook.url-shortener)
#<Namespace com.clojurebook.url-shortener>
com. clojurebook.url-shortener=> (dosync (alter mappings assoc :a 5))
{:a 5}
com. clojurebook. url-shortener=> |

“Ui**- *inferior-lisp* ALLL7 (Inferior Lisp:run)

OEBPS/httpatomoreillycomsourceoreillyimages1101197.png
refa

refx D>
Y, v, %
refy D>
refz DD Time
v
C retry
D> Time
2 L :
“,

OEBPS/httpatomoreillycomsourceoreillyimages1101046.png.jpg
The
World

Your
Program

OEBPS/httpatomoreillycomsourceoreillyimages1101193.png
coordinated uncoordinated

Atoms

Agents

asynchronous synchronous

OEBPS/httpatomoreillycomsourceoreillyimages1101291.png
“agent*
“allow-unresolved-vars*
“assert
“clojure-version*
“command-line-args*

“compile-files™
“compile-path*

e A
“errt §

C Show Info 3

OEBPS/httpatomoreillycomsourceoreillyimages1101105.png

OEBPS/httpatomoreillycomsourceoreillyimages1101048.png
8]0

OEBPS/httpatomoreillycomsourceoreillyimages1101430.png
localhost:8080/ helloZat=world

You requested /hello with query at=world

OEBPS/httpatomoreillycomsourceoreillyimages1101385.png
user> (require ‘swank.core)
nit
user> (defn debug-me

x y]

Clet [z (merge x y)]

(swank . core/break)))

#'user/debug-me
user> (debug-me {:a 5} {"b" 5/6})

U:#%- *slime-repl nil® ALL L9 (REPL)

Restarts:
0: [QUIT] Quit to the SLIME top level
1: [CONTINUE] Continue from breakpoint

Backtrace:
0: userSdebug_e. invoke(NO_SOURCE_FTLE:1)
Locals:
debug-me = #<userSdebug_me userSdebug_mee4bed7fab>
x = {:a 5}
y = {"" 5/6}
z = {"b" 5/6, :a 5}
1: userSeval2819. invoke(NO_SOURCE_FILE:1)
U~ *sldb clojure/2* 9% 113 (sldb[1])

OEBPS/httpatomoreillycomsourceoreillyimages1101214.png
refb

refa

(ensure a)

C
3

D> Time

!

retry

OEBPS/httpatomoreillycomsourceoreillyimages1101284.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages1101312.png
(:added "1.0"
istatic true}
(& naps]

(uhen (some identity maps)

nil

(ma)

max-key - clojure.core
make-hierarchy - clojure.core
map - dlojure.core

mapcat - clojure.core
macroexpand-1 - clojure.core
map? - clojure.core
macroexpand - clojure.core
max - clojure.core
map-indexed - clojure.core
make-array - clojure.core

Completion for symbals visible from current namespas

VATT be Ehe WappIng 1%

(reducel #(conj (or %1 (}) %2) maps)))

e FeSULE.

Arguments.
[F & colls]

ist(s):

Documentation:
Returns the result of applying concat to the result of
applying map.

o f and colls. Thus function f should return a
collection,

OEBPS/orm_front_cover.jpg
Practical Lisp for the Java World

Programming

. n Chas Emerick, Brian Carper
O’REILLY & Christophe Grand

OEBPS/httpatomoreillycomsourceoreillyimages1101113.png

OEBPS/httpatomoreillycomsourceoreillyimages1101119.png
O-(%) o
@ %&%@

OEBPS/httpatomoreillycomsourceoreillyimages1101207.png
refb

refb

(deref a)

B> Time

B> Time

OEBPS/httpatomoreillycomsourceoreillyimages1101265.png
Macroexpansion

Bytecode
generation

Clojure source
code

1

Clojure data
structures

Evaluation

OEBPS/httpatomoreillycomsourceoreillyimages1101143.png
800

Maze

OEBPS/httpatomoreillycomsourceoreillyimages1101365.png
sdynamic true}
*response-codet nil)

(defn- send-
Cwith-open [output (.getOutputStrean connection)]
Cio/copy data output)
5 make sure streans are closed so we don't hold locks on files on Windows
Cwhen (instance? InputStrean data) (.close AlnputStrean data))))

(defn-_get-response

http_client.clj 39% (52,5) Git-master (Clojure Hi Slime[clojure] Fill)

class java.net.URLConnection

public java.lang.String java.net.URLConnection. toString()
public java.net.URL java.net.URLConnection.getURLC)

public java.lang.Object java.net.URLConnection.getContent(java. lang.Class[]) thro >
public java.lang.Object java.net.URLConnection.getContent() throws java.io.IOExce >
public java.io.InputStrean java.net.URLConnection.getInputStrean() throws java.io >
public java.security.Permission java.net.URLConnection.getPermission() throws jav >

OEBPS/httpatomoreillycomsourceoreillyimages1101060.png

OEBPS/httpatomoreillycomsourceoreillyimages1101054.png
The
World

Input/
Output

Stateful Bridge

Functional Core

Your Program

OEBPS/httpatomoreillycomsourceoreillyimages1101330.png
Outl

Find: ‘Ado

v 8 clojure.core
© doall
© dorun
© doseg
© dosync
© dotimes
N © dore

Arguments Lists):
ix forms]

» { Documentation:
Evaluates x then calls all of the methods and functions with the

value of x supplied at the front of the given arguments. The forms

V4 are evaluated in order. Returns x.

4 {_(doto (new java.uil.HashMap) put “a* 1) (put °

2)

© do-template
v i dlojure.test
© do-report

OEBPS/httpatomoreillycomsourceoreillyimages1101232.png
Root Value

:d <«——(binding [*var* :d] ..)

OEBPS/httpatomoreillycomsourceoreillyimages1101246.png
(send a £ .)
(send-off a g ..)

Biaig .

agenta

OEBPS/httpatomoreillycomsourceoreillyimages1101239.png
Root Value

il 404

(set! *response-code* 404)

OEBPS/httpatomoreillycomsourceoreillyimages1101254.png
Retrieve URL

Update
crawler
state
Scrape page

OEBPS/httpatomoreillycomsourceoreillyimages1101293.png
Alpha - name subject to change.
Takes a set of functions and returns a fn that is the juxtaposition
of those fns. The returned fn takes a variable number of args, and
returns a vector containing the result of applying each fn to the

ght).
[@x) (bx) ()]

OEBPS/httpatomoreillycomsourceoreillyimages1101182.png
value

deref

value

Reference type

OEBPS/httpatomoreillycomsourceoreillyimages1101389.png
double

BigDecimal

I

Rationals

BigInt

long

OEBPS/httpatomoreillycomsourceoreillyimages1101058.png
/

OEBPS/callouts/13.png

OEBPS/oreilly_large.gif
O’REILLY

OEBPS/callouts/12.png

OEBPS/callouts/11.png

OEBPS/callouts/10.png

OEBPS/httpatomoreillycomsourceoreillyimages1101044.png
(and requiresRole (userHasRole "MODIFY" assetId))

()

| userHasRole] (assetzd |

k.

"Modify"

OEBPS/httpatomoreillycomsourceoreillyimages1101115.png.jpg
o 2D
50

OEBPS/httpatomoreillycomsourceoreillyimages1101391.png

OEBPS/httpatomoreillycomsourceoreillyimages1101483.png
GET/ »(#'homepage
PUT/iid
" retain
s/ ———
GET /id #'redirect
GET /list/ #'directory

OEBPS/httpatomoreillycomsourceoreillyimages1101407.png
localhost:8080/ helloZat=world

You requested /hello

OEBPS/callouts/15.png

OEBPS/callouts/14.png

OEBPS/httpatomoreillycomsourceoreillyimages1101486.png
Java application server

Java Clojure

webapp webapp

HTTP Server
(optional)

OEBPS/httpatomoreillycomsourceoreillyimages1101488.png
Compojure webapp

(Compojure)
Routes Ring handlers

ET /" —————(fn [request] ..
POST " /upload’———p(fn [request]
ET "/contact” —————p(fn [request]

Ring requesrT lﬂiﬂg response

Ring/servlet adapter

Serv/enequesrT lServm response

OEBPS/httpatomoreillycomsourceoreillyimages1101117.png

OEBPS/httpatomoreillycomsourceoreillyimages1101042.png
requiresRole 8% userHasRole("MODIFY", assetId)

(o)

| userHasRole . l assetIdJ

"Modify" |

Sally has a ball.
[Noun Phrase . [Verb Phrase .

[Sany | | Verb

lhas H Determiner] | Noun I

OEBPS/httpatomoreillycomsourceoreillyimages1101295.png
=T I I]

*select-encode-fn® - def
select-encode-id-fn - def
‘domain-metadata-keys - def
escape-encode - def
escape-id-encode - def
query-language : def
where-expansions - def
as-collection - defn
batch-delete-attrs - defr
batch-put-attrs - dein
create-client - dfn
create-domain - den
delete-attrs - defn
delete-domain - defn
domain-metadata - defn
get-aturs - defn
list-domains - dfn
put-aturs - defn,

query : defn

query-all - defn
select-string - defn
as-set - defn-
attribute-clause - defn-
build-aturs - den-
build-delete-attrs - defn -

clent - defn-
decode-item - defo-

RIS

OEBPS/httpatomoreillycomsourceoreillyimages1101289.png

OEBPS/httpatomoreillycomsourceoreillyimages1101052.png
g0

OEBPS/httpatomoreillycomsourceoreillyimages1101270.png
dj source files

load / require /
use

VM bytecode

ClassLoader

Loaded dlasses

«assfiles

AoT
compilation

OEBPS/httpatomoreillycomsourceoreillyimages1101162.png
u_“_hﬂ.m_._._t =.I.m........L 4|}

-

MH—H
b

L

ﬁ ﬁﬂ%

L*%ﬂ

OEBPS/callouts/9.png

OEBPS/callouts/8.png

OEBPS/callouts/7.png

OEBPS/httpatomoreillycomsourceoreillyimages1101050.png
Ba

LJCJ

OEBPS/callouts/6.png

OEBPS/callouts/5.png

OEBPS/callouts/4.png

OEBPS/callouts/3.png

OEBPS/callouts/2.png

OEBPS/callouts/1.png

OEBPS/httpatomoreillycomsourceoreillyimages1101456.png
localhost:8080/ helloZat=world

You requested /hello with query (“at’ “world"}

OEBPS/httpatomoreillycomsourceoreillyimages1101056.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages1101121.png
DR

ﬁ%_,

==

e
=HEE

ER RIS
iR

a

e
it
|

o

| S

OEBPS/httpatomoreillycomsourceoreillyimages1101062.png

OEBPS/httpatomoreillycomsourceoreillyimages1101393.png

OEBPS/httpatomoreillycomsourceoreillyimages1101195.png
(swap! a g ..)

(g @a.)
re

(f @a .)
(swap! a f .)

(g @a)

ﬁ D> Time

3

<o |ja--

e

OEBPS/httpatomoreillycomsourceoreillyimages1101222.png
Root Value

Thread-local bindings

OEBPS/httpatomoreillycomsourceoreillyimages1101201.png
refa D> Time

