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Preface



Clojure is a dynamically and strongly typed programming language
  hosted on the Java Virtual Machine (JVM), now in its fifth year. It has seen
  enthusiastic adoption by programmers from a variety of backgrounds, working
  in essentially all problem domains. Clojure offers a compelling mix of
  features and characteristics applicable to solving modern programming
  challenges:
	Functional programming foundations, including a suite of
      persistent data structures with performance characteristics approaching
      typical mutable data structures

	A mature, efficient runtime environment, as provided by the host
      JVM

	JVM/Java interoperability capabilities suited for a wide variety
      of architectural and operational requirements

	A set of mechanisms providing reliable concurrency and parallelism
      semantics

	A Lisp pedigree, thereby providing remarkably flexible and
      powerful metaprogramming facilities



Clojure offers a compelling practical alternative to many who strain
  against the limitations of typical programming languages and environments.
  We aim to demonstrate this by showing Clojure seamlessly interoperating with
  existing technologies, libraries, and services that many working programmers
  already use on a day-to-day basis. Throughout, we’ll provide a solid
  grounding in Clojure fundamentals, starting from places of common expertise
  and familiarity rather than from (often foreign) computer science first
  principles.
Who Is This Book For?



We wrote this book with a couple of audiences in mind. Hopefully,
    you consider yourself a part of one of them.
Clojure matches and often exceeds your current favorite language’s
    expressivity, concision, and flexibility while allowing you to
    effortlessly leverage the performance, libraries, community, and
    operational stability of the JVM. This makes it a natural next step for
    Java developers (and even JVM developers using interpreted or otherwise
    not particularly fast non-Java languages), who simply will not accept a
    performance hit or who do not want to give up their JVM platform
    investment. Clojure is also a natural step for Ruby and Python developers
    who refuse to compromise on language expressivity, but wish they had a
    more reliable, efficient execution platform and a larger selection of
    quality libraries.
Engaged Java Developers



There are millions of Java developers in the world, but some fewer
      number are working in demanding environments solving nontrivial, often
      domain-specific problems. If this describes you, you’re probably always
      on the hunt for better tools, techniques, and practices that will boost
      your productivity and value to your team, organization, and community.
      In addition, you’re probably at least somewhat frustrated with the
      constraints of Java compared to other languages, but you continue to
      find the JVM ecosystem compelling: its process maturity, massive
      third-party library selection, vendor support, and large skilled
      workforce is hard to walk away from, no matter how shiny and appealing
      alternative languages are.
You’ll find Clojure to be a welcome relief. It runs on the JVM
      with excellent performance characteristics, interoperates with all of
      your existing libraries, tools, and applications, and is
      simpler than Java, yet is demonstrably more
      expressive and less verbose.

Ruby, Python, and Other Developers



Ruby and Python are not new languages by any means, but they have
      garnered significant (dare we say, “mainstream”?) traction over recent
      years. It’s not hard to see why: both are expressive, dynamic languages
      that, along with their thriving communities, encourage maximal developer
      productivity in many domains.
Clojure is a natural next step for you. As a Ruby or Python
      programmer, you’re probably unwilling to compromise on their strengths,
      but you may wish for a more capable execution platform, better runtime
      performance, and a larger selection of libraries. The fact that Clojure
      is efficiently hosted on the JVM fulfills those desires—and it matches
      or exceeds the degrees of language sophistication and developer
      productivity that you’ve come to expect.
Note
We will frequently compare and contrast Clojure with Java,
          Ruby, and Python to help you translate your existing expertise to
          Clojure. In such comparisons, we will always refer to the canonical
          implementations of these other languages:
	Ruby MRI (also called CRuby)

	CPython

	Java 6/7







How to Read This Book



In formulating our approach to this book, we wanted to provide a
    fair bit of concrete detail and practical examples that you could relate
    to, but stay clear of what we thought were generally unsuccessful
    approaches for doing so. In particular, we’ve been frustrated in the past
    by books that attempted to thread the implementation of a single program
    or application through their pages. Such approaches seem to result in a
    disjointed narrative, as well as the dominance of a tortured “practical”
    example that may or may not apply or appeal to readers.
With that in mind, we split the book in two, starting with
    foundational, instructional narrative that occupies roughly two-thirds of
    the book, followed in Part IV by a number of
    discrete, practical examples from real-world domains. This clear
    segmentation of content with decidedly distinct objectives may qualify
    this book as a “duplex book.” (This term may have been coined by Martin
    Fowler in http://martinfowler.com/bliki/DuplexBook.html.) In any
    case, we can conceive of two obvious approaches to reading it.
Start with Practical Applications of Clojure



Often the best way to learn is to dig straight into the
      nitty-gritty of how a language is used in the real world. If that sounds
      appealing, the hope is that you will find that at least a couple of the
      practicums resonate with what you do on a day-to-day basis, so that you
      can readily draw parallels between how you solve certain categories of
      problems in your current language(s) and how they may be solved using
      Clojure. You’re going to bump into a lot of potentially foreign concepts
      and language constructs in those chapters—when you do, use that context
      within the domain in question as your entry point for understanding
      those concepts using the relevant instructional material in the first
      part of the book.

Start from the Ground Up with Clojure’s Foundational
      Concepts



Sometimes the only way to truly understand something is to learn
      it inside-out, starting with the fundamentals. If you prefer that
      approach, then you will likely find that digesting this book starting
      from the first page of Chapter 1 will be best. We have
      attempted to provide a comprehensive treatment of all of Clojure’s
      foundational principles and constructs in a narrative that progresses
      such that it will be very rare for you to need to
      look ahead in the book to understand concepts in earlier sections. As
      you begin to get a handle on Clojure’s fundamentals, feel free to jump
      ahead into the practicums you find most interesting and relevant to your
      work.


Who’s “We”?



We are three software developers who have each taken different paths
    in coming to use and appreciate Clojure. In writing this book, we have
    attempted to distill all that we’ve learned about why and how you should
    use Clojure so that you can be successful in your use of it as
    well.
Chas Emerick



Chas has been a consistent presence in the Clojure community since
      early 2008. He has made contributions to the core language, been
      involved in dozens of Clojure open source projects, and frequently
      writes and speaks about Clojure and software development
      generally.
Chas maintains the Clojure Atlas (http://clojureatlas.com), an interactive visualization of
      and learning aid for the Clojure language and its standard
      libraries.
The founder of Snowtide (http://snowtide.com), a small software company in Western
      Massachusetts, Chas’s primary domain is unstructured data extraction,
      with a particular specialty around PDF documents. He writes about
      Clojure, software development, entrepreneurship, and other passions at
      http://cemerick.com.

Brian Carper



Brian is a Ruby programmer turned Clojure devotee. He’s been
      programming Clojure since 2008, using it at home and at work for
      everything from web development to data analysis to GUI apps.
Brian is the author of Gaka (https://github.com/briancarper/gaka), a Clojure-to-CSS
      compiler, and Oyako (https://github.com/briancarper/oyako), an
      Object-Relational Mapping library. He writes about Clojure and other
      topics at http://briancarper.net.

Christophe Grand



Christophe was a long-time enthusiast of functional programming
      lost in Java-land when he encountered Clojure in early 2008, and it was
      love at first sight! He authored Enlive (http://github.com/cgrand/enlive), an HTML/XML
      transformation, extraction, and templating library; Parsley (http://github.com/cgrand/parsley), an incremental parser
      generator; and Moustache (http://github.com/cgrand/moustache), a routing and
      middleware application DSL for Ring.
As an independent consultant, he develops, coaches, and offers
      training in Clojure. He also writes about Clojure at http://clj-me.cgrand.net.
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Conventions Used in This Book



The following typographical conventions are used in this
    book:
	Italic
	Indicates new terms, URLs, email addresses, filenames, and
          file extensions.

	Constant width
	Used for program listings, as well as within paragraphs to
          refer to program elements such as variable or function names,
          databases, data types, environment variables, statements, and
          keywords.

	; listing lines prefixed with a
        semicolon
	Used to indicate content printed (i.e.,
          to standard out/err) by code evaluated in the REPL.

	;= listing lines prefixed with a
        semicolon + equal sign
	Used to indicate the result/return value
          of a REPL evaluation.

	Constant width
        bold
	Shows commands or other text that should be typed literally by
          the user.

	Constant width italic
	Shows text that should be replaced with user-supplied values
          or by values determined by context.



Note
This icon signifies a tip, suggestion, or general note.

Warning
This icon indicates a warning or caution.


Using Code Examples



This book is here to help you get your job done. In general, you may
    use the code in this book in your programs and documentation. You do not
    need to contact us for permission unless you’re reproducing a significant
    portion of the code. For example, writing a program that uses several
    chunks of code from this book does not require permission. Selling or
    distributing a CD-ROM of examples from O’Reilly books does require
    permission. Answering a question by citing this book and quoting example
    code does not require permission. Incorporating a significant amount of
    example code from this book into your product’s documentation does require
    permission.
We appreciate, but do not require, attribution. An attribution
    usually includes the title, author, publisher, and ISBN. For example:
    “Clojure Programming by Chas Emerick, Brian Carper,
    and Christophe Grand (O’Reilly). Copyright 2012 Chas Emerick, Brian
    Carper, and Christophe Grand, 978-1-449-39470-7.”
If you feel your use of code examples falls outside fair use or the
    permission given above, feel free to contact us at
    permissions@oreilly.com.

Safari® Books Online



Note
Safari Books Online is an on-demand digital library that lets you
      easily search over 7,500 technology and creative reference books and
      videos to find the answers you need quickly.

With a subscription, you can read any page and watch any video from
    our library online. Read books on your cell phone and mobile devices.
    Access new titles before they are available for print, and get exclusive
    access to manuscripts in development and post feedback for the authors.
    Copy and paste code samples, organize your favorites, download chapters,
    bookmark key sections, create notes, print out pages, and benefit from
    tons of other time-saving features.
O’Reilly Media has uploaded this book to the Safari Books Online
    service. To have full digital access to this book and others on similar
    topics from O’Reilly and other publishers, sign up for free at http://my.safaribooksonline.com.

How to Contact Us



Please address comments and questions concerning this book to the
    publisher:
	O’Reilly Media, Inc.
	1005 Gravenstein Highway North
	Sebastopol, CA 95472
	800-998-9938 (in the United States or Canada)
	707-829-0515 (international or local)
	707-829-0104 (fax)

We have a web page for this book, where we list errata, examples,
    and any additional information. You can access this page at:
	http://shop.oreilly.com/product/0636920013754.do

To comment or ask technical questions about this book, send email
    to:
	bookquestions@oreilly.com

For more information about our books, courses, conferences, and
    news, see our website at http://www.oreilly.com.
Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia
Watch us on YouTube: http://www.youtube.com/oreillymedia

Chapter 1. Down the Rabbit Hole



If you’re reading this book, you are presumably open to
  learning new programming languages. On the other hand, we assume that you
  expect reciprocity for the time and effort you’ll expend to learn a new
  language, some tangible benefits that can make you more productive, your
  team more effective, and your organization more flexible.
We believe that you will find this virtuous cycle in effect as you
  learn, apply, and leverage Clojure. As we are fond of saying,
  Clojure demands that you raise your game, and pays you back for
  doing so.
As software developers, we often build up a complex and sometimes very
  personal relationship with our tools and languages. Deciding which raw
  materials to use is sometimes dominated by pragmatic and legacy concerns.
  However, all other things being equal, programmers prefer using whatever
  maximally enhances their productivity and hopefully enables us to fulfill
  our potential to build useful, elegant systems. As the old saying goes, we
  want whatever makes the easy stuff easy, and the hard stuff possible.
Why Clojure?



Clojure is a programming language that lives up to that
    standard. Forged of a unique blend of the best features of a number of
    different programming languages—including various Lisp implementations,
    Ruby, Python, Java, Haskell, and others—Clojure provides a set of
    capabilities suited to address many of the most frustrating problems
    programmers struggle with today and those we can see barreling toward us
    over the horizon. And, far from requiring a sea-change to a new or
    unfamiliar architecture and runtime (typical of many otherwise promising
    languages over the years), Clojure is hosted on the Java Virtual Machine,
    a fact that puts to bed many of the most pressing pragmatic and legacy
    concerns raised when a new language is considered.
To whet your appetite, let’s enumerate some of Clojure’s marquee
    features and characteristics:
	Clojure is hosted on the JVM
	Clojure code can use any Java library, Clojure
            libraries can in turn be used from Java, and Clojure applications
            can be packaged just like any Java application and deployed
            anywhere other Java applications can be deployed: to web
            application servers; to desktops with Swing, SWT, or command-line
            interfaces; and so on. This also means that Clojure’s runtime is
            Java’s runtime, one of the most efficient and operationally
            reliable in the world.

	Clojure is a Lisp
	Unlike Java, Python, Ruby, C++, and other members of
            the Algol family of programming languages, Clojure is part of the
            Lisp family. However, forget everything you know (or might have
            heard rumored) about Lisps: Clojure retains the best of Lisp
            heritage, but is unburdened by the shortcomings and sometimes
            anachronistic aspects of many other Lisp implementations. Also,
            being a Lisp, Clojure has macros, an approach
            to metaprogramming and syntactic extension that has been the
            benchmark against which other such systems have been measured for
            decades.

	Clojure is a functional programming language
	Clojure encourages the use of first-class and higher-order
            functions with values and comes with its own set of efficient
            immutable data structures. The focus on a strong flavor of
            functional programming encourages the elimination of common bugs
            and faults due to the use of unconstrained mutable state and
            enables Clojure’s solutions for concurrency and
            parallelization.

	Clojure offers innovative solutions to the challenges inherent
          in concurrency and parallelization
	The realities of multicore, multi-CPU, and
            distributed computing demand that we use languages and libraries
            that have been designed with these contexts in mind. Clojure’s
            reference types enforce a clean separation of
            state and identity, providing defined concurrency semantics that are
            to manual locking and threading strategies what garbage collection
            is to manual memory management.

	Clojure is a dynamic programming language
	Clojure is dynamically and strongly typed (and
            therefore similar to Python and Ruby), yet function calls are
            compiled down to (fast!) Java method invocations. Clojure is also
            dynamic in the sense that it deeply supports updating and loading
            new code at runtime, either locally or remotely. This is
            particularly useful for enabling interactive development and
            debugging or even instrumenting and patching remote applications
            without downtime.



Of course, we don’t expect you to understand all of that, but we do
    hope the gestalt sounds compelling. If so, press on. By the end of this
    chapter, you’ll be able to write simple programs in Clojure, and be well
    on your way to understanding and leveraging it to help realize your
    potential.


Obtaining Clojure



You’ll need two things to work with the code in this chapter
    and otherwise explore Clojure on your own:
	The Java runtime. You can download the Oracle JVM for free for
        Windows and Linux (http://java.com/en/download/); it is bundled with or
        automatically installed by all versions of Mac OS X. Clojure requires
        Java v1.5 or higher; the latest releases of v1.6 or v1.7 are
        preferable.

	Clojure itself, available from clojure.org (http://clojure.org/downloads). All of the
        code in this book requires v1.3.0 or higher, and has been tested
        against v1.4.0 as well.[1] Within the zip file you download, you’ll find
        a file named something like clojure-1.4.0.jar;
        this is all you’ll need to get started.



Note
There are a number of different Clojure plug-ins for popular development environments like Eclipse and
      Emacs; see Tooling for an overview of Clojure
      tooling. While Clojure’s command-line REPL is sufficient for your first
      few steps in understanding Clojure, we encourage you to use your
      favorite text editor or IDE if it has quality Clojure support, or to
      pick up one that does.
If you don’t yet want to commit to a particular editor or IDE for
      Clojure development, you should at least use Leiningen, the most popular
      project management tool for Clojure. It will download Clojure for you,
      give you a better REPL than Clojure’s default, and you’ll likely be
      using it on a daily basis for your own projects in short order anyway.
      See Leiningen for an introduction to
      it.
If you want to avoid downloading anything right now, you can run
      many of the samples in this book in the online, in-browser Clojure
      implementation available at http://tryclj.com.



[1] Given Clojure’s history with regard to backwards
            compatibility, the code and concepts in this book should remain
            applicable to future versions of Clojure as well.



The Clojure REPL



Many languages have REPLs, often also referred to as
    interpreters: Ruby has irb; Python has
    its command-line interpreter; Groovy has its console; even Java has
    something akin to a REPL in BeanShell. The “REPL” acronym is derived from
    a simple description of what it does:
	Read: code is read as text from some input (often stdin, but this varies if you’re using a
        REPL in an IDE or other nonconsole environment).

	Eval: the code is evaluated, yielding some value.

	Print: the value is printed to some output device (often
        stdout, sometimes preceded by other
        output if the code in question happened to print content
        itself).

	Loop: control returns to the read
        step.



Clojure has a REPL too, but it differs from many other languages’
    REPLs in that it is not an interpreter or otherwise using a limited or
    lightweight subset of Clojure: all code entered into a Clojure REPL is
    compiled to JVM bytecode as part of its evaluation,
    with the same result as when code is loaded from a Clojure source file. In
    these two scenarios, compilation is performed entirely at runtime, and requires no separate
    “compile” step.[2] In fact, Clojure is never interpreted.
    This has a couple of implications:
	Operations performed in the REPL run at “full speed”; that is to
        say, there is no runtime penalty or difference in semantics associated
        with running code in the REPL versus running the same code as part of
        a “proper” application.

	Once you understand how Clojure’s REPL works (in
        particular, its read and
        eval phases), you’ll understand how Clojure
        itself works at the most fundamental level.



With this second point in mind, let’s dig into the Clojure REPL and
    see if we can find bedrock.
Note
The optimal workflow for programming in Clojure makes much more
      use of the REPL than is typical in other languages to make the
      development process as interactive as possible. Taking advantage of this
      is a significant source of the enhanced productivity—and really,
      fun!—that Clojure enables. We talk about this extensively in Chapter 10.

Example 1-1. Starting a Clojure REPL on the command line
% java -cp clojure-1.4.0.jar clojure.main
Clojure 1.4.0
user=>


This incantation starts a new JVM process, with a
    classpath that includes the clojure.jar file in
    the current directory, running the clojure.main class as its main entry
    point.[3] See A classpath primer if you don’t yet
    know what the classpath is; for now, you can just think of the classpath
    as the JVM’s analogue to Python’s PYTHONPATH, Ruby’s $:, and your shell’s PATH, the set of files and directories from
    which the JVM will load classes and resources.
When you see the user=>
    prompt, the REPL is ready for you to enter some Clojure code. The portion
    of the Clojure REPL prompt preceding => is the name of the current
    namespace. Namespaces are
    like modules or packages; we discuss them extensively later in this
    chapter in Namespaces. Clojure REPL sessions
    always start in the default user
    namespace.
Let’s look at some real code, a function that calculates the average
    of some numbers in Java, Ruby, and Python:
Example 1-2. Averaging numbers in Java, Ruby, and Python
public static double average (double[] numbers) {
  double sum = 0;
  for (int i = 0; i < numbers.length; i++) {
    sum += numbers[i];
  }
  return sum / numbers.length;
}

def average (numbers)
  numbers.inject(:+) / numbers.length
end

def average (numbers):
    return sum(numbers) / len(numbers)


Here is the Clojure equivalent:
(defn average                            [image: 1]
  [numbers]                              [image: 2]
  (/ (apply + numbers) (count numbers))) [image: 3]
	[image: 1] 
	defn defines a new function
        named average in the current
        namespace.

	[image: 2] 
	The average function takes
        one argument, referred to within its body as numbers. Note that there is no type
        declaration; this function will work equally well when provided with
        any collection or array of numbers of any type.

	[image: 3] 
	The body of the average
        function, which sums the provided numbers with (apply + numbers),[4] divides that sum by the number of numbers
        provided—obtained with (count
        numbers)—and returns the result of that division
        operation.



We can enter that defn expression
    at the REPL, and then call our function with a vector of numbers, which
    yields the expected result:
user=> (defn average
         [numbers]
         (/ (apply + numbers) (count numbers)))
#'user/average
user=> (average [60 80 100 400])
160
A Word about REPL Interaction Styles
From here on, we will adopt a simple convention for
      listings that show REPL interactions so you can identify the different
      types of REPL output. The return value of evaluated expressions will be
      printed with a ;= prefix:
(average [60 80 100 400])
;= 160
And content that is written to stdout by an
      expression—aside from what the REPL prints for the expression’s return
      value—will be shown with a single semicolon prefix:
(println (average [60 80 100 400]))
; 160
;= nil
There are the two differently prefixed lines of REPL output
      because println returns nil after printing the provided value(s) to
      stdout.
Lines prefixed with semicolons are comments in Clojure, so you can
      copy and paste these interactions into your REPL with relative abandon.
      We’ll not include the namespace=>
      prompt in listings, as they are not valid Clojure code and will cause an
      error if they are accidentally pasted into a REPL.



[2] If necessary, you can ahead-of-time compile Clojure to Java
        class files. See Ahead-of-Time Compilation for details.

[3] Alternatively, you can use java -jar
        clojure.jar, but the -cp
        flag and the clojure.main entry
        point are both important to know about; we talk about both in Chapter 8.

[4] Note that + here is not a
            special language operator, as in most other languages. It is a
            regular function, no different in type than the one we’re
            defining. apply is also a
            function, which applies a function it is provided with to a
            collection of arguments (numbers here); so, (apply + [a b c]) will yield the same
            value as (+ a b c).



No, Parentheses Actually Won’t Make You Go Blind



Many programmers who don’t already use a Lisp or secretly
    harbor fond memories of their last usage of Lisp from university blanch at
    the sight of Lisp syntax. Typical reasons offered for this reaction
    include:
	The particular usage of parentheses to delimit scope, rather
        than the more familiar braces {...}
        or do ... end blocks

	The use of prefix notation indicating the operation being
        performed; e.g., (+ 1 2) rather
        than the familiar infix 1 +
        2



These objections are born first out of simple unfamiliarity. The
    braces that Java (and C and C++ and C# and PHP and…) uses for delimiting
    scope seem perfectly fine—why bother with what appears to be an
    ill-conceived animal? Similarly, we’ve all known and used infix notation
    for mathematics since early childhood—why work to use an unusual notation
    when what we’ve been using seems to have been so reliable? We are
    creatures of habit, and outside of building an understanding of why any
    particular difference may be significant, we understandably prefer the
    familiar and reliable.
In both cases, the answer is that Clojure did not import its
    syntactic foundations from other Lisp implementations on a whim; their
    adoption carries powerful benefits that are worth a minor shift in
    perspective:
	Prefixed operations used uniformly simplify the language’s
        syntax significantly and eliminate potential ambiguity from nontrivial
        expressions.

	The use of parentheses (as a textual representation of lists) is
        an outgrowth of Clojure being a homoiconic
        language. We’ll see what this means in Homoiconicity, but the ramifications of it are
        manifold: homoiconicity enables the development and use of metaprogramming and
        domain-specific language constructs simply unavailable in any
        programming language that is not homoiconic.



After getting through an initial period of unfamiliarity, you will
    very likely find that Clojure’s syntax reduces the cognitive load
    necessary to read and write code. Quick: is << (bit-shift left) in Java executed
    before or after & (bitwise and) in
    order of operations? Every time a programmer has to pause and think about
    this (or look it up in a manual), every time a programmer has to go back
    and add grouping parentheses “just in case,” a mental page fault has
    occurred. And, every time a programmer forgets to think about this, a
    potential error has entered his code. Imagine a language with no order of
    operations to worry about at all; Clojure is that language.
You might be saying, “But there are so many parentheses!” Actually,
    there aren’t.
In places where it makes sense, Clojure has borrowed a lot of syntax
    from other languages—like Ruby—for its data literals. Where other Lisps
    you might have seen use parenthesized lists
    everywhere, Clojure provides a rich set of literals
    for data and collections like vectors, maps, sets, and lists, as well as
    things like records (roughly, Clojure’s corollary to structs).
If you count and compare the number of delimiting characters and
    tokens of all kinds ((), [], {},
    Ruby’s || and end, and so on) in Clojure, Java, Ruby, and
    Python codebases of similar sizes, you will find that the Clojure code
    won’t have appreciably more than the others—and will often have many fewer
    thanks to its concision.

Expressions, Operators, Syntax, and Precedence



All Clojure code is made up of expressions, each of which
    evaluates to a single value. This is in contrast to many languages that
    rely upon valueless statements—such as if, for, and
    continue—to control program flow
    imperatively. Clojure’s corollaries to these statements are all
    expressions that evaluate to a value.
You’ve already seen a few examples of expressions in Clojure:
	60

	[60 80 100 400]

	(average [60 80 100
        400])

	(+ 1 2)



These expressions all evaluate to a single value. The rules for that
    evaluation are extraordinarily simple compared to other languages:
	Lists (denoted by parentheses) are calls, where the first
        value in the list is the operator and the rest of the values are
        parameters. The first element in a list is often referred to as being
        in function position (as that’s where one
        provides the function or symbol naming the function to be called).
        Call expressions evaluate to the value returned by the call.

	Symbols (such as average or
        +) evaluate to the named value in
        the current scope—which can be a function, a named local like numbers in our average function, a Java class, a macro, or
        a special form. We’ll learn about macros and special forms in a little
        bit; for now, just think of them as functions.

	All other expressions evaluate to the literal values they
        describe.



Note
Lists in Lisps are often called s-expressions
      or sexprs—short for symbolic
      expressions due to the significance of symbols in
      identifying the values to be used in calls denoted by such lists.
      Generally, valid s-expressions
      that can be successfully evaluated are often referred to as
      forms: e.g., (if condition
      then else) is an if form,
      [60 80 100 400] is a vector form. Not
      all s-expressions are forms: (1 2 3)
      is a valid s-expression—a list of three integers—but evaluating it will
      produce an error because the first value in the list is an integer,
      which is not callable.

The second and third points are roughly equivalent to most other
    languages (although Clojure’s literals are more expressive, as we’ll see
    shortly). However, an examination of how calls work in other languages
    quickly reveals the complexity of their syntax.
Table 1-1. Comparison of call syntax between Clojure, Java, Python, and
      Ruby
	Clojure expression	Java equivalent	Python equivalent	Ruby equivalent
	 (not k)
            
	 !k
            
	 not k
            
	not k or ! k

	 (inc a)
            
	a++, ++a, a +=
            1, a + 1[a]
	a += 1, a + 1
	 a += 1
            

	 (/ (+ x y) 2)
            
	 (x + y) / 2
            
	 (x + y) / 2
            
	 (x + y) / 2
            

	 (instance? java.util.List
            al) 
	 al instanceof
            java.util.List 
	 isinstance(al,
            list) 
	 al.is_a? Array
            

	(if (not a) (inc b) (dec
            b)) [b]
	 !a ? b + 1 : b -
            1 
	 b + 1 if not a else b -
            1 
	 !a ? b + 1 : b -
            1 

	 (Math/pow 2 10)
            [c] 
	 Math.pow(2, 10)
            
	 pow(2, 10)
            
	 2 ** 10
            

	 (.someMethod someObj "foo"
            (.otherMethod otherObj 0)) 
	 someObj.someMethod("foo",
            otherObj.otherMethod(0)) 
	 someObj.someMethod("foo",
            otherObj.otherMethod(0)) 
	 someObj.someMethod("foo",
            otherObj.otherMethod(0)) 

	[a] In-place increment and decrement operations have no
                direct corollary in Clojure, because unfettered mutability
                isn’t available. See Chapter 2, particularly On the Importance of Values for a complete discussion of
                why this is a good thing.

[b] Remember, even forms that influence control flow in
                Clojure evaluate to values just like any other expression,
                including if and when. Here, the value of the
                if expression will be
                either (inc b) or (dec b), depending on the value of
                (not a).

[c] Here’s your first taste of what it looks like to call
                Java libraries from Clojure. For details, see Chapter 9.





Notice that call syntax is all over the map (we’re picking on Java
    here the most, but Python and Ruby aren’t so different):
	Infix operators are available (e.g., a +
        1, al instanceof List),
        but any nontrivial code ends up having to use often-significant
        numbers of parentheses to override default precedence rules and make
        evaluation order explicit.

	Unary operators are seemingly arbitrary in regard to whether they use
        prefix (e.g., !k and ++a) or postfix position (e.g., a++).

	Static method calls have prefix position, such as Math.pow(2, 10), but…

	Instance method calls use an unusual variety of infix positions, where the
        target of the method (which will be assigned to this within the body of the method being
        called) is specified first, with the formal parameters to the method
        coming after the method name.[5]



In contrast, Clojure call expressions follow one simple rule: the
    first value in a list is the operator, the remainder are parameters to
    that operator. There are no call expressions that use infix or postfix
    position, and there are no difficult-to-remember precedence rules. This
    simplification helps make Clojure’s syntax very easy to learn and
    internalize, and helps make Clojure code very easy to read.


[5] Python uses the same sort of infix position for its instance
            methods, but varies from Algol-family brethren by requiring that
            methods explicitly name their first parameter, usually self.



Homoiconicity



Clojure code is composed of literal representations of its
    own data structures and atomic values; this characteristic is formally
    called homoiconicity, or more casually,
    code-as-data.[6] This is a significant simplification compared to most other
    languages, which also happens to enable metaprogramming facilities to a
    much greater degree than languages that are not homoiconic. To understand
    why, we’ll need to talk some about languages in general and how their code
    relates to their internal representations.
Recall that a REPL’s first stage is to read
    code provided to it by you. Every language has to provide a way to
    transform that textual representation of code into something that can be
    compiled and/or evaluated. Most languages do this by parsing that text
    into an abstract syntax tree (AST). This sounds more complicated than it is: an AST is simply
    a data structure that represents formally what is manifested concretely in
    text. For example, Figure 1-1 shows some examples of
    textual language and possible transformations to their corresponding
    syntax trees.[7]
[image: Sample transformations from textual language to formal models]

Figure 1-1. Sample transformations from textual language to formal
        models


These transformations from a textual manifestation of language to an
    AST are at the heart of how languages are defined, how expressive they
    are, and how well-suited they are to the purpose of relating to the world
    within which they are designed to be used. Much of the appeal of
    domain-specific languages springs from exactly this point: if you have a
    language that is purpose-built for a given field of use, those that have
    expertise in that field will find it far easier to define and express what
    they wish in that language compared to a general-purpose language.
The downside of this approach is that most languages do not provide
    any way to control their ASTs; the correspondence between their textual
    syntax and their ASTs is defined solely by the language implementers. This
    prompts clever programmers to conjure up clever workarounds in order to
    maximize the expressivity and utility of the textual syntax that they have
    to work with:
	Code generation

	Textual macros and preprocessors (used to legendary effect by C
        and C++ programmers for decades now)

	Compiler plug-ins (as in Scala, Project Lombok for Java,
        Groovy’s AST transformations, and Template Haskell)



That’s a lot of incidental complexity—complexity introduced solely
    because language designers often view textual syntax as primary, leaving
    formal models of it to be implementation-specific (when they’re exposed at
    all).
Clojure (like all Lisps) takes a different path: rather than
    defining a syntax that will be transformed into an AST, Clojure programs
    are written using Clojure data structures that represent that AST
    directly. Consider the requiresRole...
    example from Figure 1-1, and see how a Clojure
    transliteration of the example is an AST for it
    (recalling the call semantics of function position in Clojure
    lists).
[image: image with no caption]

The fact that Clojure programs are represented as
    data means that Clojure programs can be used to write and
    transform other Clojure programs, trivially so. This is the basis for
    macros—Clojure’s metaprogramming facility—a far different beast than the
    gloriously painful hack that are C-style macros and other textual
    preprocessors, and the ultimate escape hatch when expressivity or
    domain-specific notation is paramount. We explore Clojure macros in Chapter 5.
In practical terms, the direct correspondence between code and data
    means that the Clojure code you write in the REPL or in a text source file
    isn’t text at all: you are programming using Clojure data structure
    literals. Recall the simple averaging
    function from Example 1-2:
(defn average
  [numbers]
  (/ (apply + numbers) (count numbers)))
This isn’t just a bunch of text that is somehow transformed into a
    function definition through the operation of a black box; this is a list
    data structure that contains four values: the symbol defn, the symbol average, a vector data structure containing the
    symbol numbers, and another list that
    comprises the function’s body. Evaluating that list data structure is what
    defines the function.


[6] Clojure is by no means the only homoiconic language, nor is
        homoiconicity a new concept. Other homoiconic languages include all
        other Lisps, all sorts of machine language (and therefore arguably
        Assembly language as well), Postscript, XSLT and XQuery, Prolog, R,
        Factor, Io, and more.

[7] The natural language parse tree was mostly lifted from http://en.wikipedia.org/wiki/Parse_tree.



The Reader



Although Clojure’s compilation and evaluation machinery
    operates exclusively on Clojure data structures, the practice of
    programming has not yet progressed beyond storing code as plain text.
    Thus, a way is needed to produce those data structures from textual code.
    This task falls to the Clojure reader.
The operation of the reader is completely defined by a single
    function, read, which reads text
    content from a character stream[8] and returns the next data structure encoded in the stream’s
    content. This is what the Clojure REPL uses to read text input; each
    complete data structure read from that input source is then passed on to
    be evaluated by the Clojure runtime.
More convenient for exploration’s sake is read-string, a function that does the same thing
    as read but uses a string argument as
    its content source:
(read-string "42")
;= 42
(read-string "(+ 1 2)")
;= (+ 1 2)
The operation of the reader is fundamentally one of
    deserialization. Clojure data structures and other literals have a
    particular textual representation, which the reader deserializes to the
    corresponding values and data structures.
You may have noticed that values printed by the Clojure REPL have
    the same textual representation they do when entered into the REPL:
    numbers and other atomic literals are printed as you’d expect, lists are
    delimited by parentheses, vectors by square brackets, and so on. This is
    because there are duals to the reader’s read and read-string functions: pr and pr-str, which prints to *out*[9] and returns as a string the readable textual representation of Clojure
    values, respectively. Thus, Clojure data structures and values are
    trivially serialized and deserialized in a way that is both human- and
    reader-readable:
(pr-str [1 2 3])
;= "[1 2 3]"
(read-string "[1 2 3]")
;= [1 2 3]
Note
It is common for Clojure applications to use the reader as a
      general-purpose serialization mechanism where you might otherwise choose XML or java.io.Serializable serialization or pickling
      or marshaling, especially in cases where human-readable serializations
      are desirable.

Scalar Literals



Scalar literals are reader syntax for noncollection values. Many of these
      are bread-and-butter types that you already know intimately from Java or
      very similar analogues in Ruby, Python, and other languages; others are
      specific to Clojure and carry new semantics.
Strings



Clojure strings are Java Strings (that is, instances of java.lang.String), and are represented in
        exactly the same way, delimited by double quotes:
"hello there"
;= "hello there"
Clojure’s strings are naturally multiline-capable, without any
        special syntax (as in, for example, Python):
"multiline strings
are very handy"
;= "multiline strings\nare very handy"

Booleans



The tokens true and
        false are used to denote literal
        Boolean values in Clojure, just as in Java, Ruby, and Python (modulo
        the latter’s capitalization).

nil



nil in Clojure corresponds to null in Java, nil in Ruby, and None in Python. nil is also logically false in Clojure
        conditionals, as it is in Ruby and Python.

Characters



Character literals are denoted by a backslash:
(class \c)
;= java.lang.Character
Both Unicode and octal representations of characters may be used
        with corresponding prefixes:
\u00ff
;= \ÿ
\o41
;= \!
Additionally, there are a number of special named character
        literals for cases where the character in question is commonly used
        but prints as whitespace:
	\space

	\newline

	\formfeed

	\return

	\backspace

	\tab




Keywords



Keywords evaluate to themselves, and are often used as accessors
        for the values they name in Clojure collections and types, such as
        hash maps and records:
(def person {:name "Sandra Cruz"
             :city "Portland, ME"})
;= #'user/person
(:city person)
;= "Portland, ME"
Here we create a hashmap with two slots, :name
        and :city, and then look up the
        value of :city in that map. This
        works because keywords are functions that look themselves up in
        collections passed to them.
Syntactically, keywords are always prefixed with a colon, and
        can otherwise consist of any nonwhitespace character. A slash
        character (/) denotes a
        namespaced keyword, while a keyword prefixed with two colons (::) is expanded by the reader to a
        namespaced keyword in the current namespace—or another namespace if
        the keyword started by a namespace alias, ::alias/kw for example. These have similar
        usage and motivation as namespaced entities in XML; that is, being
        able to use the same name for values with different semantics or
        roles:[10]
(def pizza {:name "Ramunto's"
            :location "Claremont, NH"
            ::location "43.3734,-72.3365"})
;= #'user/pizza
pizza
;= {:name "Ramunto's", :location "Claremont, NH", :user/location "43.3734,-72.3365"}
(:user/location pizza)
;= "43.3734,-72.3365"
This allows different modules in the same application and
        disparate groups within the same organization to safely lay claim to
        particular names, without complex domain modeling or conventions like
        underscored prefixes for conflicting names.
Keywords are one type of “named” values, so called because they
        have an intrinsic name that is accessible using the name function and an optional namespace
        accessible using namespace:
(name :user/location)
;= "location"
(namespace :user/location)
;= "user"
(namespace :location)
;= nil
The other named type of value is the symbol.

Symbols



Like keywords, symbols are identifiers, but they
        evaluate to values in the Clojure runtime they name. These values
        include those held by vars (which are named storage locations used to
        hold functions and other values), Java classes, local references, and
        so on. Thinking back to our original example in Example 1-2:
(average [60 80 100 400])
;= 160
average here is a symbol,
        referring to the function held in the var named average.
Symbols must begin with a non-numeric character, and can contain
        *, +, !,
        -, _, and ?
        in addition to any alphanumeric characters. Symbols that contain a
        slash (/) denote a
        namespaced symbol and will evaluate to the named value in the specified
        namespace. The evaluation of symbols to the entity they name depends
        upon their context and the namespaces available within that context.
        We talk about the semantics of namespaces and symbol evaluation
        extensively in Namespaces.

Numbers



Clojure provides a plethora of numeric literals (see
        Table 1-2). Many of them are
        pedestrian, but others are rare to find in a general-purpose
        programming language and can simplify the implementation of certain
        algorithms—especially in cases where the algorithms are defined in terms of particular numeric
        representations (octal, binary, rational numbers, and scientific
        notation).
Warning
While the Java runtime defines a particular range of numeric
          primitives, and Clojure supports interoperability with those
          primitives, Clojure has a bias toward longs and doubles at the
          expense of other widths, including bytes, shorts, ints, and floats.
          This means that these smaller primitives will be produced as needed
          from literals or runtime values for interop operations (such as
          calling Java methods), but pure-Clojure operations will default to
          using the wider numeric representations.
For the vast majority of programming domains, you don’t need
          to worry about this. If you are doing work where mathematical
          precision and other related topics is important, please refer to
          Chapter 11 for a comprehensive discussion of Clojure’s
          treatment of operations on primitives and other math topics.

Table 1-2. Clojure numeric literals
	Literal syntax	Numeric type
	42, 0xff, 2r111, 040
	long
                (64-bit signed integer)

	3.14, 6.0221415e23
	double (64-bit
                IEEE floating point decimal)

	42N
                
	clojure.lang.BigInt
                (arbitrary-precision integer[a])

	0.01M
                
	java.math.BigDecimal
                (arbitrary-precision signed floating point
                decimal)

	 22/7
                
	 clojure.lang.Ratio 

	[a] clojure.lang.BigInt is
                    automatically coerced to java.math.BigInteger when
                    needed. Again, please see Chapter 11 for the
                    in-depth details of Clojure’s treatment of
                    numerics.





Any numeric literal can be negated by prefixing it with a dash
        (-).
Let’s take a quick look at the more interesting numeric
        literals:
	Hexadecimal notation
	Just as in most languages, Clojure supports
                typical hexadecimal notation for integer values; 0xff is 255, 0xd055 is 53333, and so on.

	Octal notation
	Literals starting with a zero are interpreted as octal
                numbers. For example, the octal 040 is 32 in the usual base-10
                notation.

	Flexible numeral bases
	You can specify the base of an integer in a prefix
                BrN, where N is the digits that represent the
                desired number, and B is
                the base or radix by which N should be interpreted. So we can
                use a prefix of 2r for
                binary integers (2r111 is
                7), 16r for hexadecimal (16rff is 255), and so on. This is
                supported up to base 36.[11]

	Arbitrary-precision numbers
	Any numeric literal (except for rational
                numbers) can be specified as arbitrary-precision by suffixing
                it appropriately; decimals with an M, integers with an N. Please see Bounded Versus Arbitrary Precision for a full exploration of why and
                when this is relevant.

	Rational numbers
	Clojure directly supports rational numbers, also
                called ratios, as literals in the reader
                as well as throughout its numeric operators. Rational number
                literals must always be two integers separated by a slash
                (/).



For a full discussion of rational numbers in Clojure and how
        they interact with the rest of Clojure’s numerical model, please see
        Rationals.

Regular expressions



The Clojure reader treats strings prefixed with a hash
        character as regular expression (regex) literals:
(class #"(p|h)ail")
;= java.util.regex.Pattern
This is exactly equivalent to Ruby’s /.../ regex syntax, with a minor difference
        of pattern delimiters. In fact, Ruby and Clojure are
        very similar in their handling of regular
        expressions:
# Ruby
>> "foo bar".match(/(...) (...)/).to_a
["foo bar", "foo", "bar"]

;; Clojure
(re-seq #"(...) (...)" "foo bar")
;= (["foo bar" "foo" "bar"])
Clojure’s regex syntax does not require escaping of backslashes
        as required in Java:
(re-seq #"(\d+)-(\d+)" "1-3")     ;; would be "(\\d+)-(\\d+)" in Java
;= (["1-3" "1" "3"])
The instances of java.util.regex.Pattern that Clojure regex
        literals yield are entirely equivalent to those you might create
        within Java, and therefore use the generally excellent java.util.regex regular expression
        implementation.[12] Thus, you can use those Pattern instances directly via Clojure’s
        Java interop if you like, though you will likely find Clojure’s
        related utility functions (such as re-seq, re-find, re-matches, and others in the clojure.string namespace) simpler and more
        pleasant to use.


Comments



There are two comment types that are defined by the
      reader:
	Single-line comments are indicated by prefixing the comment
          with a semicolon (;); all content
          following a semicolon is ignored entirely. These are equivalent to
          // in Java and JavaScript, and
          # in Ruby and Python.

	Form-level are available using the #_ reader macro. This cues the reader to
          elide the next Clojure form following the
          macro:



(read-string "(+ 1 2 #_(* 2 2) 8)")
;= (+ 1 2 8)
What would have been a list with four numbers—(+ 1 2 4 8)—yields a list of only three
      numbers because the entire multiplication form was ignored due to the
      #_ prefix.
Because Clojure code is defined using data structure literals,
      this comment form can be far more useful in certain cases than purely
      textual comments that affect lines or character offsets (such as the
      /* */ multiline comments in Java and
      JavaScript). For example, consider the time-tested debugging technique
      of printing to stdout:
(defn some-function
  […arguments…]
  …code…
  (if …debug-conditional…
    (println …debug-info…)
    (println …more-debug-info…))
  …code…)
Making those println forms
      functionally disappear is as easy as prefixing the
      if form with the #_ reader macro and reloading the function
      definition; whether the form spans one or a hundred lines is
      irrelevant.
Note
There is only one other way to comment code in Clojure, the
        comment macro:
(when true
  (comment (println "hello")))
;= nil
comment forms can contain any amount of ignored code, but they are not
        elided from the reader’s output in the way that #_ impacts the forms following it. Thus,
        comment forms always evaluate to
        nil. This often is not a problem;
        but, sometimes it can be inconvenient. Consider a reformulation of our
        first #_ example:
(+ 1 2 (comment (* 2 2)) 8)
;= #<NullPointerException java.lang.NullPointerException>
That fails because comment
        returns nil, which is not a valid
        argument to +.


Whitespace and Commas



You may have noticed that there have been no commas
      between forms, parameters to function calls, elements in data structure
      literals, and so on:
(defn silly-adder
  [x y]
  (+ x y))
This is because whitespace is sufficient to separate values and
      forms provided to the reader. In addition, commas are
      considered whitespace by the reader. For example, this is
      functionally equivalent to the snippet above:
(defn silly-adder
  [x, y]
  (+, x, y))
And to be slightly pedantic about it:
(= [1 2 3] [1, 2, 3])
;= true
Whether you use commas or not is entirely a question of personal
      style and preference. That said, they are generally used only when doing
      so enhances the human readability of the code in
      question. This is most common in cases where pairs of values are listed,
      but more than one pair appears per line:[13]
(create-user {:name new-username, :email email})

Collection Literals



The reader provides syntax for the most commonplace
      Clojure data structures:
'(a b :name 12.5)       ;; list

['a 'b :name 12.5]      ;; vector

{:name "Chas" :age 31}  ;; map

#{1 2 3}                ;; set
Since lists are used to denote calls in Clojure, you need to quote
      (') the list literal in order to
      prevent the evaluation of the list as a call.
The specifics of these data structures are explored in detail in
      Chapter 3.

Miscellaneous Reader Sugar



The reader provides for some additional syntax in certain
      cases to improve concision or regularity with other aspects of
      Clojure:
	Evaluation can be suppressed by prefixing a form with a quote
          character ('); see Suppressing Evaluation: quote.

	Anonymous function literals can be defined very concisely
          using the #() notation; see Function literals.

	While symbols evaluate to the values held by vars, vars
          themselves can be referred to by prefixing a symbol
          with #'; see Referring to Vars: var.

	Instances of reference types can be dereferenced (yielding the
          value contained within the reference object) by prefixing @ to a symbol naming the instance; see
          Clojure Reference Types.

	The reader provides three bits of special syntax for macros:
          `, ~, and ~@. Macros are explored in Chapter 5.

	While there are technically only two Java interop forms, the
          reader provides some sugar for interop that expands into those two
          special forms; see Java Interop: . and new.

	All of Clojure’s data structures and reference types support
          metadata—small bits of information that can be associated with
          a value or reference that do not affect things like equality
          comparisons. While your applications can use metadata for many
          purposes, metadata is used in Clojure itself where you might
          otherwise use keywords in other languages (e.g., to indicate that a
          function is namespace-private, or to indicate the type of a value or
          return type of a function). The reader allows you to attach metadata
          to literal values being read using the ^ notation; see Metadata.






[8] Technically, read requires a
        java.io.PushbackReader as an
        implementation detail.

[9] *out* defaults to stdout, but can be redirected easily. See
        Building a Primitive Logging System with Composable Higher-Order
      Functions for an example.

[10] Namespaced keywords are also used prominently with
            multimethods and isa?
            hierarchies, discussed in depth in Chapter 7.

[11] The implementation limit of java.math.BigInteger’s radix
                    support. Note that even though BigInteger is used for parsing
                    these literals, the concrete type of the number as emitted
                    by the reader is consistent with other Clojure integer
                    literals: either a long
                    or a big integer if the number specified requires
                    arbitrary precision to represent.

[12] See the java.util.regex.Pattern javadoc for a
            full specification of what forms the Java regular expression
            implementation supports: http://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html.

[13] Questions of style are notoriously difficult to answer in
          absolutes, but it would be very rare to see more than two or three
          pairs of values on the same line of text in any map literal, set of
          keyword arguments, and so on. Further, some forms that expect pairs
          of values (such as bindings in let) are essentially
          always delimited by linebreaks rather than
          being situated on the same line.



Namespaces



At this point, we should understand much of how the
    nontrivial parts of the Clojure REPL (and therefore Clojure itself)
    work:
	Read: the Clojure reader reads the textual representation of
        code, producing the data structures (e.g., lists, vectors, and so on)
        and atomic values (e.g., symbols, numbers, strings, etc.) indicated in
        that code.

	Evaluate: many of the values emitted by the reader evaluate to
        themselves (including most data structures and scalars like strings
        and keywords). We explored earlier in Expressions, Operators, Syntax, and Precedence how lists evaluate to calls to the
        operator in function position.



The only thing left to understand about evaluation now is how
    symbols are evaluated. So far, we’ve used them to both name and refer to
    functions, locals, and so on. Outside of identifying locals, the semantics
    of symbol evaluation are tied up with namespaces, Clojure’s fundamental
    unit of code modularity.
All Clojure code is defined and evaluated within a namespace.
    Namespaces are roughly analogous to modules in Ruby or Python, or packages
    in Java.[14] Fundamentally, they are dynamic mappings between
    symbols and either vars or
    imported Java classes.
One of Clojure’s reference types,[15] vars are mutable storage locations that can hold any value.
    Within the namespace where they are defined, vars are associated with a
    symbol that other code can use to look up the var, and therefore the value
    it holds.
Vars are defined in Clojure using the def special form, which only ever acts within
    the current namespace.[16] Let’s define a var now in the user namespace, named x; the name of the var is the symbol that it is
    keyed under within the current namespace:
(def x 1)
;= #'user/x
We can access the var’s value using that symbol:
x
;= 1
The symbol x here is
    unqualified, so is resolved within the current
    namespace. We can also redefine vars; this is critical for supporting
    interactive development at the REPL:
(def x "hello")
;= #'user/x
x
;= "hello"
Vars are not variables
Vars should only ever be defined in an interactive
      context—such as a REPL—or within a Clojure source file as a way of
      defining named functions, other constant values, and the like. In
      particular, top-level vars (that is, globally accessible vars mapped
      within namespaces, as defined by def
      and its variants) should only ever be defined by top-level expressions,
      never in the bodies of functions in the normal course of operation of a
      Clojure program.
See Vars Are Not Variables for further
      elaboration.

Symbols may also be namespace-qualified, in which case they are
    resolved within the specified namespace instead of the current one:
*ns*                 [image: 1]
;= #<Namespace user>
(ns foo)
;= nil
*ns*
;= #<Namespace foo>
user/x
;= "hello"
x
;= #<CompilerException java.lang.RuntimeException:
;=   Unable to resolve symbol: x in this context, compiling:(NO_SOURCE_PATH:0)>
	[image: 1] 
	The current namespace is always bound to *ns*.



Here we created a new namespace using the ns macro (which has the side effect of switching
    us to that new namespace in our REPL), and then referred to the value of
    x in the user namespace by using the namespace-qualified
    symbol user/x. Since we only just
    created this new namespace foo, it
    doesn’t have a mapping for the x
    symbol, so attempting to resolve it fails.
Note
You need to know how to create, define, organize, and manipulate
      namespaces in order to use Clojure effectively. There is a whole suite
      of functions for this; please refer to Defining and Using Namespaces for our guidelines in their use.

We mentioned earlier that namespaces also map between symbols and
    imported Java classes. All classes in the java.lang package are imported by default into
    each Clojure namespace, and so can be referred to without package
    qualification; to refer to un-imported classes, a package-qualified symbol
    must be used. Any symbol that names a class evaluates to that
    class:
String
;= java.lang.String
Integer
;= java.lang.Integer
java.util.List
;= java.util.List
java.net.Socket
;= java.net.Socket
In addition, namespaces by default alias all of the vars defined in the primary namespace of
    Clojure’s standard library, clojure.core. For example, there is a filter function defined in clojure.core, which we can access without
    namespace-qualifying our reference to it:
filter
;= #<core$filter clojure.core$filter@7444f787>
These are just the barest basics of how Clojure namespaces work;
    learn more about them and how they should be used to help you structure
    your projects in Defining and Using Namespaces.


[14] In fact, namespaces correspond precisely with Java packages when
        types defined in Clojure are compiled down to Java classes. For
        example, a Person type defined in
        the Clojure namespace app.entities
        will produce a Java class named app.entities.Person. See more about defining
        types and records in Clojure in Chapter 6.

[15] See Clojure Reference Types for a full
        discussion of Clojure’s reference types, all of which contribute
        different capabilities to its concurrency toolbox.

[16] Remember that the Clojure REPL session always starts in the
        default user namespace.



Symbol Evaluation



With a basic understanding of namespaces under our belt, we
    can turn again to the example average
    function from Example 1-2 and have a more
    concrete idea of how it is evaluated:
(defn average
  [numbers]
  (/ (apply + numbers) (count numbers)))
As we learned in Homoiconicity, this is
    just a canonical textual representation of a Clojure data structure that
    itself contains other data. Within the body of this function, there are
    many symbols, each of which refers to either a var in scope in the current
    namespace or a local value:
	/, apply, +,
        and count all evaluate to functions
        held in vars defined and so named in the clojure.core namespace

	numbers either defines the
        sole argument to the function (when provided in the argument vector
        [numbers]),[17] or is used to refer to that argument’s value in the body
        of the function (when used in the (apply +
        numbers) and (count
        numbers) expressions).



With this information, and recalling the semantics of lists as calls
    with the operator in function position, you should have a nearly complete
    understanding of how calls to this function are evaluated:
(average [60 80 100 400])
;= 160
The symbol average refers here to
    the value of #'average, the var in the
    current namespace that holds the function we defined. That function is
    called with a vector of numbers, which is locally bound as numbers within the body of the average function. The result of the operations
    in that body produce a value—160—which
    is then returned to the caller: in this case, the REPL, which prints it to
    stdout.


[17] We’ll get into all the details of how to define functions
            and therefore their arguments in Creating Functions: fn.



Special Forms



Ignoring Java interoperability for a moment, symbols
    in function position can evaluate to only two things:
	The value of a named var or local, as we’ve already seen.

	A Clojure special form.[18]



Special forms are Clojure’s primitive building blocks of
    computation, on top of which all the rest of Clojure is built. This
    foundation shares a lineage with the earliest Lisps, which also defined a limited set of primitives that define
    the fundamental operations of the runtime, and are taken as sufficient to
    describe any possible computation.[19] Further, special forms have their own syntax (e.g., many do
    not take arguments per se) and evaluation semantics.
As you’ve seen, things that are often described as primitive
    operations or statements in most languages—including control forms like
    when and operators like addition and
    negation—are not primitives in Clojure. Rather, everything that isn’t a
    special form is implemented in Clojure itself by bootstrapping from that
    limited set of primitive operations.[20] The practical effect of this is that, if Clojure doesn’t
    provide a language construct that you want or need, you can likely build
    it yourself.[21]
Though all of Clojure is built on top of its special forms, you need
    to understand what each one does—as you’ll use many of them constantly.
    Let’s now discuss each one in turn.
Suppressing Evaluation: quote



quote suppresses evaluation of a Clojure expression. The most
      obvious impact of this relates to symbols, which, if they name a var,
      evaluate to that var’s value. With quote, evaluation is suppressed, so symbols
      evaluate to themselves (just like strings, numbers, and so on):
(quote x)
;= x
(symbol? (quote x))
;= true
There is reader syntax for quote; prefixing any form with a quote
      character (') will expand into a
      usage of quote:
'x
;= x
Any Clojure form can be quoted, including data structures. Doing
      so returns the data structure in question, with evaluation recursively
      suppressed for all of its elements:
'(+ x x)
;= (+ x x)
(list? '(+ x x))
;= true
While lists are usually evaluated as calls, quoting a list suppresses
      that evaluation, yielding the list itself; in this case, a list of three
      symbols: '+, 'x, and 'x.
      Note that this is exactly what we get if we “manually” construct the
      list without using a list literal:
(list '+ 'x 'x)
;= (+ x x)
Tip
You can usually have a peek at what the reader produces by
        quoting a form. Let’s go meta for a moment and try it first on quote
        itself:
''x
;= (quote x)
It’s informative to use this trick on other reader
        sugars:
'@x
;= (clojure.core/deref x)
'#(+ % %)
;= (fn* [p1__3162792#] (+ p1__3162792# p1__3162792#))
'`(a b ~c)
;= (seq (concat (list (quote user/a))
;=              (list (quote user/b))
;=              (list c)))                  [image: 1]
	[image: 1] 
	clojure.core
            namespace-prefixes elided for legibility.





Code Blocks: do



do evaluates all of the expressions provided to it in order and yields the last expression’s
      value as its value. For example:
(do
  (println "hi")
  (apply * [4 5 6]))
; hi
;= 120
The values of all but the last expression are discarded, although
      their side effects do occur (such as printing to standard out as we’re
      doing here, or manipulations of a stateful object available in the
      current scope).
Note that many other forms (including fn, let,
      loop, and try—and any derivative of these, such as
      defn) wrap their bodies in an
      implicit do expression, so that multiple inner expressions can be evaluated. For
      example, let expressions—like this
      one that defines two locals—provide an implicit do context to their bodies:
(let [a (inc (rand-int 6))
      b (inc (rand-int 6))]
  (println (format "You rolled a %s and a %s" a b))
  (+ a b))
This allows any number of expressions to be evaluated within the
      context of the let form, with only
      the final one determining its ultimate result. If let didn’t wrap its body with a do form, you would have to add it
      explicitly:[22]
(let [a (inc (rand-int 6))
      b (inc (rand-int 6))]
  (do
    (println (format "You rolled a %s and a %s" a b))
    (+ a b)))

Defining Vars: def



We’ve already seen def
      in action;[23] it defines (or redefines) a var (with an optional value)
      within the current namespace:
(def p "foo")
;= #'user/p
p
;= "foo"
Many other forms implicitly create or redefine vars, and therefore
      use def internally. It is customary
      for such forms to be prefixed with “def,” such as defn, defn-, defprotocol, defonce, defmacro, and so on.
Warning
Although forms that create or redefine vars have names that
        start with “def,” unfortunately not all forms that start with “def”
        create or redefine vars. Examples of the latter include deftype, defrecord, and defmethod.


Local Bindings: let



let allows you to define named references that are lexically
      scoped to the extent of the let
      expression. Said another way, let
      defines locals. For example, this rudimentary static method in
      Java:
public static double hypot (double x, double y) {
    final double x2 = x * x;
    final double y2 = y * y;
    return Math.sqrt(x2 + y2);
}
is equivalent to this Clojure function:
(defn hypot
  [x y]
  (let [x2 (* x x)
        y2 (* y y)]
    (Math/sqrt (+ x2 y2))))
The x2 and y2 locals in the respective function/method
      bodies serve the same purpose: to establish a named, scoped reference to
      an intermediate value.
Note
There are many terms used to talk about named references
        established by let in Clojure
        parlance:
	locals

	local bindings

	particular values are said to be
            let-bound



Bindings and bound
        used in connection with let are
        entirely distinct from the binding
        macro, which controls scoped thread-local variables; see Dynamic Scope for more about the
        latter.

Note that let is implicitly
      used anywhere locals are required. In particular, fn (and therefore all other function-creation
      and function-definition forms like defn) uses let to bind function parameters as locals
      within the scope of the function being defined. For example, x and y in
      the hypot function above are
      let-bound by defn. So, the vector
      that defines the set of bindings for a let scope obeys the same semantics whether it
      is used to define function parameters or an auxiliary local binding
      scope.
Note
Occasionally, you will want evaluate an expression in the
        binding vector provided to let, but
        have no need to refer to its result within the context of the let’s body. In these cases, it is customary
        to use an underscore as the bound name for such values, so that readers of
        the code will know that results of such expressions are going unused
        intentionally.
This is only ever relevant when the expression in question is
        side-effecting; a common example
        would be printing some intermediate value:
(let [location (get-lat-long)
      _ (println "Current location:" location)
      location (find-city-name location)]
  …display city name for current location in UI…)
Here we’re retrieving our current latitude and longitude using a
        hypothetical API, and we’d like to print that out before converting
        the location data to a human-recognizable city name. We might want to
        rebind the same name a couple of times in the course of the let’s binding vector, paving over those
        intermediate values. To print out that intermediate value, we add it
        to the binding vector prior to rebinding its name, but we indicate
        that we are intentionally ignoring the return value of that expression
        by naming it _.

let has two particular semantic
      wrinkles that are very different from locals you may be used to in other
      languages:
	All locals are immutable. You can
          override a local binding within a nested let form or a later binding of the same
          name within the same binding vector, but there is no way to bash out
          a bound name and change its value within the scope of a single
          let form. This eliminates a
          source of common errors and bugs without sacrificing
          capability:
	The loop and recur special forms provide for looping cases where
              values need to change on each cycle of a loop; see Looping: loop and recur.

	If you really need a “mutable” local binding, Clojure
              provides a raft of reference types that enforce specific mutation semantics; see
              Clojure Reference Types.




	let’s binding vector is
          interpreted at compile time to provide optional
          destructuring of common collection types. Destructuring can aid
          substantially in eliminating certain types of verbose (and frankly,
          dull) code often associated with working with collections provided
          as arguments to functions.




Destructuring (let, Part 2)



A lot of Clojure programming involves working with various
      implementations of data structure abstractions,
      sequential and map collections being two of those key abstractions. Many Clojure functions
      accept and return seqs and maps generally—rather than specific
      implementations—and most Clojure libraries and applications are built up
      relying upon these abstractions instead of particular concrete structures, classes, and so
      on. This allows functions and libraries to be trivially composed around
      the data being handled with a minimum of integration, “glue code,” and
      other incidental complexity.
One challenge when working with abstract collections is being able
      to concisely access multiple values in those collections. For example,
      here’s a collection, a Clojure vector:
(def v [42 "foo" 99.2 [5 12]])
;= #'user/v
Consider a couple of approaches for accessing the values in our
      sample vector:
(first v)    [image: 1]
;= 42
(second v)
;= "foo"
(last v)
;= [5 12]
(nth v 2)    [image: 2]
;= 99.2
(v 2)        [image: 3]
;= 99.2
(.get v 2)   [image: 4]
;= 99.2
	[image: 1] 
	Clojure provides convenience functions for accessing the first, second, and last values from a sequential
          collection.

	[image: 2] 
	The nth function allows you
          pluck any value from a sequential collection using an index into
          that collection.

	[image: 3] 
	Vectors are functions of their indices.

	[image: 4] 
	All of Clojure’s sequential collections implement the java.util.List interface, so you can use that interface’s .get method to access their
          contents.



All of these are perfectly fine ways to access a single
      “top-level” value in a vector, but things start getting more complex if
      we need to access multiple values to perform some operation:
(+ (first v) (v 2))
;= 141.2
Or if we need to access values in nested collections:
(+ (first v) (first (last v)))
;= 47
Clojure destructuring provides a concise syntax for declaratively pulling apart
      collections and binding values contained therein as named locals within
      a let form. And, because
      destructuring is a facility provided by let, it can be used in any expression that
      implicitly uses let (like fn, defn,
      loop, and so on).
There are two flavors of destructuring: one that operates over
      sequential collections, and another that works with maps.
Sequential destructuring



Sequential destructuring works with any sequential
        collection, including:
	Clojure lists, vectors, and seqs

	Any collection that implements java.util.List (like ArrayLists and LinkedLists)

	Java arrays

	Strings, which are destructured into their characters



Here’s a basic example, where we are destructuring the same
        value v discussed above:
Example 1-3. Basic sequential destructuring
(def v [42 "foo" 99.2 [5 12]])
;= #'user/v
(let [[x y z] v]
  (+ x z))
;= 141.2


In its simplest form, the vector provided to let contains pairs of names and values, but
        here we’re providing a vector of symbols—[x y
        z]—instead of a scalar symbol name. What this does is cause
        the value v to be destructured
        sequentially, with the first value bound to x within the body of the let form, the second value bound to y, and the third value bound to z. We can then use those destructured locals
        like any other locals. This is equivalent to:
(let [x (nth v 0)
      y (nth v 1)
      z (nth v 2)]
  (+ x z))
;= 141.2
Note
Python has something similar to Clojure’s sequential
          destructuring, called unpacking. The equivalent to the preceding code snippet in
          Python would be something like:
>>> v = [42, "foo", 99.2, [5, 12]]
>>> x, y, z, a = v
>>> x + z
141.19999999999999
The same goes for Ruby:
>> x, y, z, a = [42, "foo", 99.2, [5, 12]]
[42, "foo", 99.2, [5, 12]]
>> x + z
141.2
Clojure, Python, and Ruby all seem pretty similar on their
          face; but, as you’ll see as we go along, Clojure goes quite a long
          ways beyond what Python and Ruby offer.

Destructuring forms are intended to mirror the structure of the
        collection that is being bound.[24] So, we can line up our destructuring form with the
        collection being destructured and get a very accurate notion of which
        values are going to be bound to which names:[25]
[x  y     z]
[42 "foo" 99.2 [5 12]]
Destructuring forms can be composed as well, so we can dig into
        the nested vector in v with
        ease:[26]
(let [[x _ _ [y z]] v]
  (+ x y z))
;= 59
If we visually line up our destructuring form and the source
        vector again, the work being done by that form should again be very
        clear:
[x  _     _    [y z ]]
[42 "foo" 99.2 [5 12]]
Warning
If our nested vector had a vector inside of it, we could destructure it as
          well. The destructuring mechanism has no limit to how far it can
          descend into a deeply nested data structure, but there are limits to
          good taste. If you’re using destructuring to pull values out of a
          collection four or more levels down, chances are your destructuring
          form will be difficult to interpret for the next person to see that
          code—even if that next person is you!

There are two additional features of sequential destructuring
        forms you should know about:
	Gathering extra-positional sequential values
	You can use & to gather values that lay beyond the positions
                you’ve named in your destructuring form into a sequence; this
                is similar to the mechanism underlying varargs in Java methods
                and is the basis of rest
                arguments in Clojure functions:
(let [[x & rest] v]
  rest)
;= ("foo" 99.2 [5 12])
This is particularly useful when processing
                items from a sequence, either via recursive function calls or
                in conjunction with a loop
                form. Notice that the value of rest here is a sequence, and
                not a vector, even though we provided a
                vector to the destructuring form.

	Retaining the destructured value
	You can establish a local binding for the original collection being destructured
                by specifying the name it should have via the :as option within the destructuring
                form:
(let [[x _ z :as original-vector] v]
  (conj original-vector (+ x z)))
;= [42 "foo" 99.2 [5 12] 141.2]
Here, original-vector is bound to the
                unchanged value of v. This
                comes in handy when you are destructuring a collection that is
                the result of a function call, but you need to retain a
                reference to that unaltered result in addition to having the
                benefit of destructuring it. Without this feature, doing so
                would require something like this:
(let [some-collection (some-function …)
      [x y z [a b]] some-collection]
  …do something with some-collection and its values…)




Map destructuring



Map destructuring is conceptually identical to
        sequential destructuring—we aim to mirror the structure of the
        collection being bound. It works with:
	Clojure hash-maps,
            array-maps, and
            records[27]

	Any collection that implements java.util.Map

	Any value that is supported by the get function can be map-destructured,
            using indices as keys:
	Clojure vectors

	Strings

	Arrays






Let’s start with a Clojure map and a basic destructuring of
        it:
(def m {:a 5 :b 6
        :c [7 8 9]
        :d {:e 10 :f 11}
        "foo" 88
        42 false})
;= #'user/m
(let [{a :a b :b} m]
  (+ a b))
;= 11
Here we’re binding the value for :a in the map to a, and the value for :b in the map to b. Going back to our visual alignment of the
        destructuring form with the (in this case, partial) collection being
        destructured, we can again see the structural correspondence:
{a  :a b  :b}
{:a 5  :b 6}
Note that there is no requirement that the keys used for map lookups in destructuring be keywords; any
        type of value may be used for lookup:
(let [{f "foo"} m]
  (+ f 12))
;= 100
(let [{v 42} m]
  (if v 1 0))
;= 0
Indices into vectors, strings, and arrays can be used as keys in
        a map destructuring form.[28] One place where this can be helpful is if you are
        representing matrices by using vectors, but only need a couple of values from
        one. Using map destructuring to pull out two or three values from a
        3×3 matrix can be much easier than using a potentially nine-element
        sequential destructuring form:
(let [{x 3 y 8} [12 0 0 -18 44 6 0 0 1]]
  (+ x y))
;= -17
Just as sequential destructuring forms could be composed, so can
        the map variety:
(let [{{e :e} :d} m]
 (* 2 e))
;= 20
The outer map destructuring—{{e :e} :d}—is acting
        upon the top-level source collection m to pull out the value mapped to :d. The inner map destructuring—{e :e}—is acting on
        the value mapped to :d to pull out
        its value for :e.
The coup de grâce is the composition of
        both map and sequential destructuring, however they are needed to
        effectively extract the values you need from the collections at
        hand:
(let [{[x _ y] :c} m]
  (+ x y))
;= 16
(def map-in-vector ["James" {:birthday (java.util.Date. 73 1 6)}])
;= #'user/map-in-vector
(let [[name {bd :birthday}] map-in-vector]
  (str name " was born on " bd))
;= "James was born on Thu Feb 06 00:00:00 EST 1973"
Map destructuring also has some additional features.
Retaining the destructured value. Just like sequential destructuring, adding an :as pair to the destructuring form to hold a reference to
          the source collection, which you can use like any other let-bound value:
(let [{r1 :x r2 :y :as randoms}
      (zipmap [:x :y :z] (repeatedly (partial rand-int 10)))]
  (assoc randoms :sum (+ r1 r2)))
;= {:sum 17, :z 3, :y 8, :x 9}
Default values. You can use an :or pair to provide a defaults map; if a key specified in
          the destructuring form is not available in the source collection,
          then the defaults map will be consulted:
(let [{k :unknown x :a
       :or {k 50}} m]
  (+ k x))
;= 55
This allows you to avoid either merging the source map into a
        defaults map ahead of its destructuring, or manually setting defaults
        on destructured bindings that have nil values in the source collection, which
        would get very tiresome beyond one or two
        bindings with desired default values:
(let [{k :unknown x :a} m
      k (or k 50)]
  (+ k x))
;= 55
Furthermore, and unlike the code in the above example, :or knows the difference between no value
        and a false (nil or false) value:
(let [{opt1 :option} {:option false}
      opt1 (or opt1 true)
      {opt2 :option :or {opt2 true}} {:option false}]
  {:opt1 opt1 :opt2 opt2})
;= {:opt1 true, :opt2 false}
Binding values to their keys’ names. There are often stable names for various values in
          maps, and it’s often desirable to bind those values by using the
          same names in the scope of the let form as they are mapped to in the
          source map. However, doing this using “vanilla” map destructuring
          can get very repetitive:
(def chas {:name "Chas" :age 31 :location "Massachusetts"})
;= #'user/chas
(let [{name :name age :age location :location} chas]
  (format "%s is %s years old and lives in %s." name age location))
;= "Chas is 31 years old and lives in Massachusetts."
Having to type the content of each key twice is decidedly
        contrary to the spirit of destructuring’s concision. In such cases,
        you can use the :keys, :strs, and :syms options to specify keyword, string,
        and symbol keys (respectively) into the source map and the names the
        corresponding values should be bound to in the let form without repetition. Our sample map
        uses keywords for keys, so we’ll use :keys for it:
(let [{:keys [name age location]} chas]
  (format "%s is %s years old and lives in %s." name age location))
;= "Chas is 31 years old and lives in Massachusetts."
…and switch to using :strs or
        :syms when we know that the source
        collection is using strings or symbols for keys:
(def brian {"name" "Brian" "age" 31 "location" "British Columbia"})
;= #'user/brian
(let [{:strs [name age location]} brian]
  (format "%s is %s years old and lives in %s." name age location))
;= "Brian is 31 years old and lives in British Columbia."

(def christophe {'name "Christophe" 'age 33 'location "Rhône-Alpes"})
;= #'user/christophe
(let [{:syms [name age location]} christophe]
  (format "%s is %s years old and lives in %s." name age location))
;= "Christophe is 31 years old and lives in Rhône-Alpes."
You will likely find yourself using :keys more than :strs or :syms; keyword keys are by far the most
        common key type in Clojure maps and keyword arguments, and are the
        general-purpose accessor by dint of their usage in conjunction with
        records.
Destructuring rest sequences as map key/value pairs. We’ve already seen how extra-positional values in
          sequential destructuring forms can be gathered into a “rest” seq,
          and map and sequential destructuring can be composed as needed to
          drill into any given data structure. Here’s a simple case of a
          vector that contains some positional values, followed by a set of
          key/value pairs:
(def user-info ["robert8990" 2011 :name "Bob" :city "Boston"])
;= #'user/user-info
Data like this isn’t uncommon, and handling it is rarely
        elegant. The “manual” approach in Clojure is tolerable as these things
        go:
(let [[username account-year & extra-info] user-info     [image: 1]
      {:keys [name city]} (apply hash-map extra-info)]   [image: 2]
  (format "%s is in %s" name city))
;= "Bob is in Boston"
	[image: 1] 
	We can destructure the original vector into its positional
            elements, gathering the remainder into a rest seq.

	[image: 2] 
	That rest seq, consisting of alternating keys and values,
            can be used as the basis for creating a new hashmap, which we can
            then destructure as we wish.



However, “tolerable” isn’t a very high bar given the prevalence
        of sequences of key/value pairs in programming. A better alternative
        is a special variety of the compositional behavior offered by let’s destructuring forms: map destructuring
        of rest seqs. If a rest seq has an even number of values—semantically,
        key/value pairs—then it can be destructured as a map of those
        key/value pairs instead of sequentially:
(let [[username account-year & {:keys [name city]}] user-info]
  (format "%s is in %s" name city))
;= "Bob is in Boston"
That is a far cleaner notation for doing exactly the same work
        as us manually building a hash-map
        out of the rest seq and destructuring that map, and is the basis of
        Clojure functions’ optional keyword arguments described in “Keyword arguments”.


Creating Functions: fn



Functions are first-class values in Clojure; creating them
      falls to the fn special form, which
      also folds in the semantics of let
      and do.
Here is a simple function that adds 10 to the number provided as an
      argument:
(fn [x]     [image: 1]
  (+ 10 x)) [image: 2]
	[image: 1] 
	fn accepts a let-style binding vector that defines the
          names and numbers of arguments accepted by the function; the same
          optional destructuring forms discussed in Destructuring (let, Part 2) can be applied to each argument
          here.

	[image: 2] 
	The forms following the binding vector constitute the
          body of the function. This body is placed in an
          implicit do form, so each
          function’s body may contain any number of forms; as with do, the last form in the body supplies the
          result of the function call that is returned to the caller.



The arguments to a function are matched to each name or
      destructuring form based on their positions in the calling form. So in
      this call:
((fn [x] (+ 10 x)) 8)
;= 18
8 is the sole argument to the
      function, and it is bound to the name x within the body of the function. This makes
      the function call the equivalent of this let form:
(let [x 8]
  (+ 10 x))
You can define functions that accept multiple arguments:
((fn [x y z] (+ x y z))
 3 4 12)
;= 19
In this case, the function call is the equivalent of this let form:
(let [x 3
      y 4
      z 12]
  (+ x y z))
Functions with multiple arities can be created as well; here, we’ll put the function in a
      var so we can call it multiple times
      by only referring to the var’s
      name:
(def strange-adder (fn adder-self-reference
                     ([x] (adder-self-reference x 1))
                     ([x y] (+ x y))))
;= #'user/strange-adder
(strange-adder 10)
;= 11
(strange-adder 10 50)
;= 60
When defining a function with multiple arities, each arity’s
      binding vector and implementation body must be enclosed within a pair of
      parentheses. Function calls dispatch based on argument count; the proper
      arity is selected based on the number of arguments that we provide in
      our call.
In this last example, notice the optional name that we’ve given to
      the function, adder-self-reference.
      This optional first argument to fn
      can be used within the function’s bodies to refer to itself—in this
      case, so that the single-argument arity can call the two-argument arity
      with a default second argument without referring to or requiring any
      containing var.
Mutually recursive functions with letfn
Named fns (like the
        above adder-self-reference) allow
        you to easily create self-recursive functions. What is more tricky is
        to create mutually recursive functions.
For such rare cases, there is the letfn special form, which allows you to
        define several named functions at once, and all these functions will
        know each other. Consider these naive reimplementations of odd? and even?:
(letfn [(odd? [n]
          (even? (dec n)))
        (even? [n]
          (or (zero? n)
            (odd? (dec n))))]  [image: 1]
  (odd? 11))
;= true
	[image: 1] 
	The vector consists of several regular fn bodies, only the fn symbol is missing.




defn builds on fn. We’ve already seen defn used before, and the example above
        should look familiar; defn is a
        macro that encapsulates the functionality of def and fn so that you can concisely define
        functions that are named and registered in the current namespace with
        a given name. For example, these two definitions are
        equivalent:
(def strange-adder (fn strange-adder
                     ([x] (strange-adder x 1))
                     ([x y] (+ x y))))

(defn strange-adder
  ([x] (strange-adder x 1))
  ([x y] (+ x y))))
and single-arity functions can be defined, with the additional parentheses eliminated
      as well; these two definitions are also equivalent:
(def redundant-adder (fn redundant-adder
                       [x y z]
                       (+ x y z)))

(defn redundant-adder
  [x y z]
  (+ x y z))
We’ll largely use defn forms to
      illustrate fn forms for the rest of
      this section, simply because calling functions bound to named vars is
      easier to read than continually defining the functions to be called
      inline.
Destructuring function arguments



defn supports the destructuring of function arguments thanks
        to it reusing let for binding
        function arguments for the scope of a function’s body. You should
        refer to the prior comprehensive discussion of destructuring to remind
        yourself of the full range of options available; here, we’ll discuss
        just a couple of destructuring idioms that are particularly common in
        conjunction with functions.
Variadic functions. Functions can optionally gather all additional
          arguments used in calls to it into a seq; this uses the same
          mechanism as sequential destructuring does when gathering additional
          values into a seq. Such functions are called
          variadic, with the gathered arguments usually
          called rest arguments or varargs. Here’s a function
          that accepts one named positional argument, but gathers all
          additional arguments into a remainder seq:
(defn concat-rest
  [x & rest]
  (apply str (butlast rest)))
;= #'user/concat-rest
(concat-rest 0 1 2 3 4)
;= "123"
The seq formed for the rest arguments can be destructured just
        like any other sequence; here we’re destructuring rest arguments to
        make a function behave as if it had an explicitly defined zero-arg
        arity:
(defn make-user
  [& [user-id]]
  {:user-id (or user-id
              (str (java.util.UUID/randomUUID)))})
;= #'user/make-user
(make-user)
;= {:user-id "ef165515-6d6f-49d6-bd32-25eeb024d0b4"}
(make-user "Bobby")
;= {:user-id "Bobby"}
Keyword arguments. It is often the case that you would like to define a
          function that can accept many arguments, some of which might be
          optional and some of which might have defaults. Further, you would
          often like to avoid forcing a particular argument ordering upon
          callers.[29]
fn (and therefore defn) provides support for such use cases
        through keyword arguments, which is an idiom
        built on top of the map
        destructuring of rest sequences that let provides. Keyword arguments are pairs of
        keywords and values appended to any strictly positional arguments in a
        function call, and if the function was defined to accept keyword
        arguments, those keyword/value pairs will be gathered into a map and
        destructured by the function’s map destructuring form that is placed
        in the same position as the rest
        arguments seq:
(defn make-user
  [username & {:keys [email join-date]                [image: 1]
               :or {join-date (java.util.Date.)}}]    [image: 2]
  {:username username
   :join-date join-date
   :email email
   ;; 2.592e9 -> one month in ms
   :exp-date (java.util.Date. (long (+ 2.592e9 (.getTime join-date))))})
;= #'user/make-user
(make-user "Bobby")                                   [image: 3]
;= {:username "Bobby", :join-date #<Date Mon Jan 09 16:56:16 EST 2012>,
;=  :email nil, :exp-date #<Date Wed Feb 08 16:56:16 EST 2012>}
(make-user "Bobby"                                    [image: 4]
  :join-date (java.util.Date. 111 0 1)
  :email "bobby@example.com")
;= {:username "Bobby", :join-date #<Date Sun Jan 01 00:00:00 EST 2011>,
;=  :email "bobby@example.com", :exp-date #<Date Tue Jan 31 00:00:00 EST 2011>}
	[image: 1] 
	The make-user function
            strictly requires only one argument, a username. The rest of the
            arguments are assumed to be keyword/value pairs, gathered into a
            map, and then destructured using the map destructuring form
            following &.

	[image: 2] 
	In the map destructuring form, we define a default of “now”
            for the join-date value.

	[image: 3] 
	Calling make-user with a
            single argument returns the user map, populated with defaulted
            join- and expiration-date values and a nil email value since none was provided
            in the keyword arguments.

	[image: 4] 
	Additional arguments provided to make-user are interpreted by the keyword
            destructuring map, without consideration of their order.



Note
Because keyword arguments are built using let’s map destructuring, there’s nothing
          stopping you from destructuring the rest argument map using types of
          key values besides keywords (such as strings or numbers or even
          collections). For example:
(defn foo
  [& {k ["m" 9]}]
  (inc k))
;= #'user/foo
(foo ["m" 9] 19)
;= 20
["m" 9] is being treated
          here as the name of a “keyword” argument.
That said, we’ve never actually seen non-keyword key types
          used in named function arguments. Keywords are overwhelmingly the
          most common argument key type used, thus the use of
          keyword arguments to describe the idiom.

Pre- and postconditions. fn provides support for
          pre- and postconditions for performing assertions with function arguments and
          return values. They are valuable features when testing and for
          generally enforcing function invariants; we discuss them in Preconditions and Postconditions.

Function literals



We mentioned function literals briefly in Miscellaneous Reader Sugar. Equivalent to blocks in Ruby and lambdas
        in Python, Clojure function literals’ role is
        straightforward: when you need to define an anonymous
        function—especially a very simple function—they provide the most
        concise syntax for doing so.
For example, these anonymous function expressions are
        equivalent:
(fn [x y] (Math/pow x y))

#(Math/pow %1 %2)
The latter is simply some reader sugar that is expanded into the
        former; we can clearly see this by checking the result of reading the
        textual code:[30]
(read-string "#(Math/pow %1 %2)")
;= (fn* [p1__285# p2__286#] (Math/pow p1__285# p2__286#))
The differences between the fn form and the shorter function literal
        are:
No implicit do form. “Regular” fn forms (and all
          of their derivatives) wrap their function bodies in an implicit
          do form, as we discussed in Creating Functions: fn. This allows you to do things
          like:
(fn [x y]
  (println (str x \^ y))
  (Math/pow x y))
The equivalent function literal requires an explicit do form:
#(do (println (str %1 \^ %2))
     (Math/pow %1 %2))
Arity and arguments specified using unnamed positional
          symbols. The fn examples above use
          the named symbols x and y to specify both the arity of the function being defined, as well as the names of
          the arguments passed to the function at runtime. In contrast, the
          literal uses unnamed positional %
          symbols, where %1 is the first
          argument, %2 is the second
          argument, and so on. In addition, the highest positional symbol
          defines the arity of the function, so if we wanted to define a
          function that accepted four arguments, we need only to refer to
          %4 within the function literal’s
          body.
There are two additional wrinkles to defining arguments in
        function literals:
	Function literals that accept a single argument are so
            common that you can refer to the first argument to the function by
            just using %. So, #(Math/pow % %2) is equivalent to
            #(Math/pow %1 %2). You should
            prefer the shorter notation in general.

	You can define a variadic function[31] and refer to that function’s rest arguments using
            the %& symbol. These
            functions are therefore equivalent:



(fn [x & rest]
  (- x (apply + rest)))

#(- % (apply + %&))
Function literals cannot be nested. So, while this is perfectly legal:
(fn [x]
  (fn [y]
    (+ x y)))
This is not:
#(#(+ % %))
;= #<IllegalStateException java.lang.IllegalStateException:
;=   Nested #()s are not allowed>
Aside from the fact that the bodies of function literals are
        intended to be terse, simple expressions, making the prospect of
        nested function literals a readability and comprehension nightmare,
        there’s simply no way to disambiguate which function’s first argument
        % is referring to.


Conditionals: if



if is Clojure’s sole primitive conditional operator. Its
      syntax is simple: if the value of the first expression in an if form is logically
      true, then the result of the if form
      is the value of the second expression. Otherwise, the result of the
      if form is the value of the third
      expression, if provided. The second and third expressions are only
      evaluated as necessary.
Clojure conditionals determine logical truth to be anything other
      than nil or false:
(if "hi" \t)
;= \t
(if 42 \t)
;= \t
(if nil "unevaluated" \f)
;= \f
(if false "unevaluated" \f)
;= \f
(if (not true) \t)
;= nil
Note that if a conditional expression is logically false, and no
      else expression is provided, the result of an
      if expression is nil.[32]
Many refinements are built on top of if, including:
	when, best used when
          nil should be returned (or no
          action should be taken) if a condition is false.

	cond—similar to the else
          if construction in Java and Ruby, and elif in Python—allows you to concisely
          provide multiple conditions to check, along with multiple
          then expressions if a given conditional is
          true.

	if-let and when-let, which are compositions of let with if and when, respectively: if the value of the
          test expression is logically true, it is bound to a local for the
          extent of the then expression.



Warning
Clojure provides true? and false? predicates, but these are unrelated to if conditionals. For example:
(true? "string")
;= false
(if "string" \t \f)
;= \t
true? and false? check for the Boolean values true and false, not the logical truth condition used
        by if, which is equivalent to
        (or (not (nil? x)) (true? x)) for
        any value x.


Looping: loop and recur



Clojure provides a number of useful imperative looping
      constructs, including doseq and
      dotimes, all of which are built upon
      recur. recur transfers control to the local-most
      loop head without consuming stack space, which is
      defined either by loop or a function.
      Let’s take a look at a very simple countdown loop:
(loop [x 5]            [image: 1]
  (if (neg? x)
    x                  [image: 2]
    (recur (dec x))))  [image: 3]
;= -1
	[image: 1] 
	loop establishes bindings
          via an implicit let form, so it
          takes a vector of binding names and initial values.

	[image: 2] 
	If the final expression within a loop form consists of a value, that is
          taken as the value of the form itself. Here, when x is negative, the loop form returns the value of x.

	[image: 3] 
	A recur form will transfer
          control to the local-most loop head, in this case the loop form, resetting the local bindings to
          the values provided as arguments to recur. In this case, control jumps to the
          beginning of the loop form, with
          x bound to the value (dec x).



Loop heads are also established by functions, in which case
      recur rebinds the function’s
      parameters using the values provided as arguments to recur:
(defn countdown
  [x]
  (if (zero? x)
    :blastoff!
    (do (println x)
        (recur (dec x)))))
;= #'user/countdown
(countdown 5)
; 5
; 4
; 3
; 2
; 1
;= :blastoff!
Appropriate use of recur. recur is a very low-level
        looping and recursion operation that is usually not necessary:
	When they can do the job, use the higher-level looping and
          iteration forms found in Clojure’s core library, doseq and dotimes.

	When “iterating” over a collection or sequence, functional
          operations like map, reduce, for, and so on are almost always
          preferable.



Because recur does not consume
      stack space (thereby avoiding stack overflow errors), recur is critical when
      implementing certain recursive algorithms. In addition, because it
      allows you to work with numerics without the overhead of boxed
      representations, recur is very useful
      in the implementation of many mathematical and data-oriented operations.
      See Visualizing the Mandelbrot Set in Clojure for a live example of recur within such circumstances.
Finally, there are scenarios where the accumulation or consumption
      of a collection or set of collections is complicated enough that
      orchestrating things with a series of purely functional operations using
      map, reduce, and so on is either difficult or
      inefficient. In these cases, the use of recur (and sometimes loop in order to set up intermediate loop
      heads) can provide an important escape hatch.

Referring to Vars: var



Symbols that name a var evaluate to that var’s
      value:
(def x 5)
;= #'user/x
x
;= 5
However, there are occasions when you’d like to have a reference
      to the var itself, rather than the value it holds. The var special form does this:
(var x)
;= #'user/x
You’ve seen a number of times now how vars are printed in the
      REPL: #', followed by a symbol. This
      is reader syntax that expands to a call to var:
#'x
;= #'user/x
You’ll learn a lot more about vars in Vars.

Java Interop: . and new



All Java interoperability—instantiation, static and
      instance method invocation, and field access—flows through the new and .
      special forms. That said, the Clojure reader provides some syntactic
      sugar on top of these primitive interop forms that makes Java interop
      more concise in general and more syntactically consistent with Clojure’s
      notion of function position for method calls and instantiation. Thus,
      it’s rare to see . and new used directly, but you will nevertheless
      come across them out in the wild at some point:
Table 1-3. Sugared Java interop forms and their fully expanded
        equivalents
	Operation	Java code	Sugared interop form	Equivalent special form usage
	Object instantiation
	 new
              java.util.ArrayList(100) 
	 (java.util.ArrayList.
              100) 
	 (new java.util.ArrayList
              100) 

	Static method invocation
	 Math.pow(2, 10)
              
	 (Math/pow 2 10)
              
	 (. Math pow 2
              10) 

	Instance method invocation
	 "hello".substring(1,
              3) 
	 (.substring "hello" 1
              3) 
	 (. "hello" substring 1
              3) 

	Static field access
	 Integer.MAX_VALUE 
	 Integer/MAX_VALUE 
	 (. Integer
              MAX_VALUE) 

	Instance field access
	 someObject.someField 
	 (.someField
              some-object) 
	 (. some-object
              some-field) 




The sugared syntax shown in Table 1-3 is idiomatic and should be preferred
      in every case over direct usage of the . and new
      special forms. Java interop is discussed in depth in Chapter 9.

Exception Handling: try and throw



These special forms allow you to participate in and use
      the exception-handling and -throwing mechanisms in Java from Clojure.
      They are explained in Exceptions and Error Handling.

Specialized Mutation: set!



While Clojure emphasizes the use of immutable data structures and
      values, there are contexts where you need to effect an in-place mutation
      of state. The most common settings for this involve the use of setter
      and other stateful methods on Java objects you are using in an interop
      setting; for the remaining cases, Clojure provides set!, which can be used to:
	Set the thread-local value of vars that have a non-root
          binding, discussed in Dynamic Scope

	Set the value of a Java field, demonstrated in “Accessing object fields”

	Set the value of mutable fields defined by deftype; see Types for details of that usage




Primitive Locking: monitor-enter and monitor-exit



These are lock primitives that allow Clojure to
      synchronize on the monitor associated with every Java object. You should
      never need to use these special forms, as there’s a macro, locking, that ensures proper acquisition and
      release of an object’s monitor. See Locking for details.



[18] Special forms are always given precedence when resolving
            symbols in function position. For example, you can have a var or
            local named def, but you will
            not be able to refer to the value of that var or local in function
            position—though you can refer to that value anywhere else.

[19] Paul Graham’s The Roots of Lisp (http://www.paulgraham.com/rootsoflisp.html) is a brief
        yet approachable precis of the fundamental operations of computation,
        as originally discovered and enumerated by John McCarthy. Though that
        characterization of computation was made more than 50 years ago, you
        can see it thriving in Clojure today.

[20] If you were to open the core.clj file from
        Clojure’s source repository, you will see this bootstrapping in
        action: everything from when and
        or to defn and = is defined in Clojure itself. Indeed, if
        you were so motivated, you could implement Clojure (or another
        language of your choosing) from scratch, on your own, on top of
        Clojure’s special forms.

[21] This sort of syntactic extension generally requires
        macros, which are treated in detail in Chapter 5.

[22] The other alternative would be for let (and all other forms that utilize
          do) to (re?) implement its own
          semantics of “do several things and return the value of the last
          expression”: hardly a reasonable thing to do.

[23] See Namespaces for a discussion of
          the typical usage of vars as stable references to values in
          namespaces; see Vars for more a more
          comprehensive treatment of them, including esoteric usages related
          to dynamic scope and thread-local references.

[24] Thus the term: destructuring is undoing
            (de-) the creation of the data
            structure.

[25] Values in the source collection that have no corresponding
            bound name are simply not bound within the context of the let form; you do not need to fully match
            the structure of the source collection, but sequential
            destructuring forms do need to be “anchored” at the beginning of
            the source.

[26] Again, note the use of underscores (_) in this destructuring form to
            indicate an ignored binding, similar to the idiom discussed in the
            note earlier in this chapter.

[27] See Records to learn more
                about records.

[28] This is due to the polymorphic behavior of get, which looks up values in a
            collection given a key into that collection; in the case of these
            indexable sequential values, get uses indices as keys. For more about
            get, see Associative.

[29] Python is a language that supports this usage pervasively,
              where every argument may be named and provided in any order in a
              function call, and argument defaults can be provided when a
              function is defined.

[30] Since the name of the arguments to the function is
            irrelevant, the function literal generates a unique symbol for
            each argument to refer to them; in this case, p1__285# and p2__286#.

[31] See “Variadic functions”.

[32] when is far more
          appropriate for such scenarios.






End of sample
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