

 [image: Algorithms in a Nutshell]

 Algorithms in a Nutshell

George T. Heineman

Gary Pollice

Stanley Selkow

Editor
Mary Treseler

Copyright © 2009 Gary Pollice, Stankley Selkow and George Heineman

[image:]

O'Reilly Media

A Note Regarding Supplemental Files

Supplemental files and examples for this book can be found at http://examples.oreilly.com/9780596516246/. Please use a standard desktop web browser to access these files, as they may not be accessible from all ereader devices.
All code files or examples referenced in the book will be available online. For physical books that ship with an accompanying disc, whenever possible, we’ve posted all CD/DVD content. Note that while we provide as much of the media content as we are able via free download, we are sometimes limited by licensing restrictions. Please direct any questions or concerns to booktech@oreilly.com.

Preface

As Trinity states in the movie The Matrix:
It's the question that drives us, Neo. It's the question that brought you here.
You know the question, just as I did.

As authors of this book, we answer the question that has led you here:
Can I use algorithm X to solve my problem? If so, how do I implement it?

You likely do not need to understand the reasons why an algorithm is correct—if you do, turn to other sources, such as the 1,180-page bible on algorithms, Introduction to Algorithms, Second Edition, by Thomas H. Cormen et al. (2001). There you will find lemmas, theorems, and proofs; you will find exercises and step-by-step examples showing the algorithms as they perform. Perhaps surprisingly, however, you will not find any real code, only fragments of "pseudocode," the device used by countless educational textbooks to present a high-level description of algorithms. These educational textbooks are important within the classroom, yet they fail the software practitioner because they assume it will be straightforward to develop real code from pseudocode fragments.
We intend this book to be used frequently by experienced programmers looking for appropriate solutions to their problems. Here you will find solutions to the problems you must overcome as a programmer every day. You will learn what decisions lead to an improved performance of key algorithms that are essential for the success of your software applications. You will find real code that can be adapted to your needs and solution methods that you can learn.
All algorithms are fully implemented with test suites that validate the correct implementation of the algorithms. The code is fully documented and available as a code repository addendum to this book. We rigorously followed a set of principles as we designed, implemented, and wrote this book. If these principles are meaningful to you, then you will find this book useful.
Principle: Use Real Code, Not Pseudocode

What is a practitioner to do with Figure P-1's description of the Ford-Fulkerson algorithm for computing maximum network flow?
[image: Example of pseudocode commonly found in textbooks]

Figure 1. Example of pseudocode commonly found in textbooks

The algorithm description in this figure comes from Wikipedia (http://en.wikipedia.org/wiki/Ford_Fulkerson), and it is nearly identical to the pseudocode found in (Cormen et al., 2001). It is simply unreasonable to expect a software practitioner to produce working code from the description of Ford-Fulkerson shown here! Turn to Chapter 8 to see our code listing by comparison. We use only documented, well-designed code to describe the algorithms. Use the code we provide as-is, or include its logic in your own programming language and software system.
Some algorithm textbooks do have full real-code solutions in C or Java. Often the purpose of these textbooks is to either teach the language to a beginner or to explain how to implement abstract data types. Additionally, to include code listings within the narrow confines of a textbook page, authors routinely omit documentation and error handling, or use shortcuts never used in practice. We believe programmers can learn much from documented, well-designed code, which is why we dedicated so much effort to develop actual solutions for our algorithms.

Principle: Separate the Algorithm from the Problem Being Solved

It is hard to show the implementation for an algorithm "in the general sense" without also involving details of the specific solution. We are critical of books that show a full implementation of an algorithm yet allow the details of the specific problem to become so intertwined with the code for the generic problem that it is hard to identify the structure of the original algorithm. Even worse, many available implementations rely on sets of arrays for storing information in a way that is "simpler" to code but harder to understand. Too often, the reader will understand the concept from the supplementary text but be unable to implement it!
In our approach, we design each implementation to separate the generic algorithm from the specific problem. In Chapter 7, for example, when we describe the A*Search algorithm, we use an example such as the 8-puzzle (a sliding tile puzzle with tiles numbered 1–8 in a three-by-three grid). The implementation of A*Search depends only on a set of well-defined interfaces. The details of the specific 8-puzzle problem are encapsulated cleanly within classes that implement these interfaces.
We use numerous programming languages in this book and follow a strict design methodology to ensure that the code is readable and the solutions are efficient. Because of our software engineering background, it was second nature to design clear interfaces between the general algorithms and the domain-specific solutions. Coding in this way produces software that is easy to test, maintain, and expand to solve the problems at hand. One added benefit is that the modern audience can more easily read and understand the resulting descriptions of the algorithms. For select algorithms, we show how to convert the readable and efficient code that we produced into highly optimized (though less readable) code with improved performance. After all, the only time that optimization should be done is when the problem has been solved and the client demands faster code. Even then it is worth listening to C. A. R. Hoare, who stated, "Premature optimization is the root of all evil."

Principle: Introduce Just Enough Mathematics

Many treatments of algorithms focus nearly exclusively on proving the correctness of the algorithm and explaining only at a high level its details. Our focus is always on showing how the algorithm is to be implemented in practice. To this end, we only introduce the mathematics needed to understand the data structures and the control flow of the solutions.
For example, one needs to understand the properties of sets and binary trees for many algorithms. At the same time, however, there is no need to include a proof by induction on the height of a binary tree to explain how a red-black binary tree is balanced; read Chapter 13 in (Cormen et al., 2001) if you want those details. We explain the results as needed, and refer the reader to other sources to understand how to prove these results mathematically.
In this book you will learn the key terms and analytic techniques to differentiate algorithm behavior based on the data structures used and the desired functionality.

Principle: Support Mathematical Analysis Empirically

We mathematically analyze the performance of each algorithm in this book to help programmers understand the conditions under which each algorithm performs at its best. We provide live code examples, and in the accompanying code repository there are numerous JUnit (http://sourceforge.net/projects/junit) test cases to document the proper implementation of each algorithm. We generate benchmark performance data to provide empirical evidence regarding the performance of each algorithm.
We classify each algorithm into a specific performance family and provide benchmark data showing the execution performance to support the analysis. We avoid algorithms that are interesting only to the mathematical algorithmic designer trying to prove that an approach performs better at the expense of being impossible to implement. We execute our algorithms on a variety of programming platforms to demonstrate that the design of the algorithm—not the underlying platform—is the driving factor in efficiency.
The appendix contains the full details of our approach toward benchmarking, and can be used to independently validate the performance results we describe in this book. The advice we give you is common in the open source community: "Your mileage may vary." Although you won't be able to duplicate our results exactly, you will be able to verify the trends that we document, and we encourage you to use the same empirical approach when deciding upon algorithms for your own use.

Audience

If you were trapped on a desert island and could have only one algorithms book, we recommend the complete box set of The Art of Computer Programming, Volumes 1–3, by Donald Knuth (1998). Knuth describes numerous data structures and algorithms and provides exquisite treatment and analysis. Complete with historical footnotes and exercises, these books could keep a programmer active and content for decades. It would certainly be challenging, however, to put directly into practice the ideas from Knuth's book.
But you are not trapped on a desert island, are you? No, you have sluggish code that must be improved by Friday and you need to understand how to do it!
We intend our book to be your primary reference when you are faced with an algorithmic question and need to either (a) solve a particular problem, or (b) improve on the performance of an existing solution. We cover a range of existing algorithms for solving a large number of problems and adhere to the following principles:
	When describing each algorithm, we use a stylized pattern to properly frame each discussion and explain the essential points of the algorithm. By using patterns, we create a readable book whose consistent presentation shows the impact that similar design decisions have on different algorithms.

	We use a variety of languages to describe the algorithms in the book (including C, C++, Java, and Ruby). In doing so, we make concrete the discussion on algorithms and speak using languages that you are already familiar with.

	We describe the expected performance of each algorithm and empirically provide evidence that supports these claims. Whether you trust in mathematics or in demonstrable execution times, you will be persuaded.

We intend this book to be most useful to software practitioners, programmers, and designers. To meet your objectives, you need access to a quality resource that explains real solutions to real algorithms that you need to solve real problems. You already know how to program in a variety of programming languages. You know about the essential computer science data structures, such as arrays, linked lists, stacks, queues, hash tables, binary trees, and undirected and directed graphs. You don't need to implement these data structures, since they are typically provided by code libraries.
We expect that you will use this book to learn about tried and tested solutions to solve problems efficiently. You will learn some advanced data structures and some novel ways to apply standard data structures to improve the efficiency of algorithms. Your problem-solving abilities will improve when you see the key decisions for each algorithm that make for efficient solutions.

Contents of This Book

This book is divided into three parts. Part I (Chapters 1–3) provides the mathematical introduction to algorithms necessary to properly understand the descriptions used in this book. We also describe the pattern-based style used throughout in the presentation of each algorithm. This style is carefully designed to ensure consistency, as well as to highlight the essential aspects of each algorithm. Part II contains a series of chapters (4–9), each consisting of a set of related algorithms. The individual sections of these chapters are self-contained descriptions of the algorithms.
Part III (Chapters 10 and 11) provides resources that interested readers can use to pursue these topics further. A chapter on approaches to take when "all else fails" provides helpful hints on solving problems when there is (as yet) no immediate efficient solution. We close with a discussion of important areas of study that we omitted from Part II simply because they were too advanced, too niche-oriented, or too new to have proven themselves. In Part IV, we include a benchmarking appendix that describes the approach used throughout this book to generate empirical data that supports the mathematical analysis used in each chapter. Such benchmarking is standard in the industry yet has been noticeably lacking in textbooks describing algorithms.

Conventions Used in This Book

The following typographical conventions are used in this book:
	
Code

	All code examples appear in this typecase.
This code is replicated directly from the code repository and reflects real code.

	
Italic

	Indicates key terms used to describe algorithms and data structures. Also used when referring to variables within a pseudocode description of an example.

	
Constant width

	Indicates the name of actual software elements within an implementation, such as a Java class, the name of an array within a C implementation, and constants such as true or false.

	
Small Caps

	Indicates the name of an algorithm.

We cite numerous books, articles, and websites throughout the book. These citations appear in text using parentheses, such as (Cormen et al., 2001), and each chapter closes with a listing of references used within that chapter. When the reference citation immediately follows the name of the author in the text, we do not duplicate the name in the reference. Thus, we refer to the Art of Computer Programming books by Donald Knuth (1998) by just including the year in parentheses.
All URLs used in the book were verified as of August 2008 and we tried to use only URLs that should be around for some time. We include small URLs, such as http://www.oreilly.com, directly within the text; otherwise, they appear in footnotes and within the references at the end of a chapter.

Using Code Examples

This book is here to help you get your job done. In general, you may use the code in this book in your programs and documentation. You do not need to contact us for permission unless you're reproducing a significant portion of the code. For example, writing a program that uses several chunks of code from this book does not require permission. Selling or distributing a CD-ROM of examples from O'Reilly books does require permission. Answering a question by citing this book and quoting example code does not require permission. Incorporating a significant amount of example code from this book into your product's documentation does require permission.
We appreciate, but do not require, attribution. An attribution usually includes the title, author, publisher, and ISBN. For example: "Algorithms in a Nutshell by George T. Heineman, Gary Pollice, and Stanley Selkow. Copyright 2009 George Heineman, Gary Pollice, and Stanley Selkow, 978-0-596-51624-6."
If you feel your use of code examples falls outside fair use or the permission given here, feel free to contact us at permissions@oreilly.com.

Comments and Questions

Please address comments and questions concerning this book to the publisher:
	O'Reilly Media, Inc.
	1005 Gravenstein Highway North
	Sebastopol, CA 95472
	800-998-9938 (in the United States or Canada)
	707-829-0515 (international or local)
	707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional information. You can access this page at:
	
http://www.oreilly.com/catalog/9780596516246

To comment or ask technical questions about this book, send email to:
	
bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the O'Reilly Network, see our website at:
	
http://www.oreilly.com

Safari® Books Online

When you see a Safari® Books Online icon on the cover of your favorite technology book, that means the book is available online through the O'Reilly Network Safari Bookshelf.
Safari offers a solution that's better than e-books. It's a virtual library that lets you easily search thousands of top tech books, cut and paste code samples, download chapters, and find quick answers when you need the most accurate, current information. Try it for free at http://safari.oreilly.com.

Acknowledgments

We would like to thank the book reviewers for their attention to detail and suggestions, which improved the presentation and removed defects from earlier drafts: Alan Davidson, Scot Drysdale, Krzysztof Duleba, Gene Hughes, Murali Mani, Jeffrey Yasskin, and Daniel Yoo.
George Heineman would like to thank those who helped instill in him a passion for algorithms, including Professors Scot Drysdale (Dartmouth College) and Zvi Galil (Columbia University). As always, George thanks his wife, Jennifer, and his children, Nicholas (who always wanted to know what "notes" Daddy was working on) and Alexander (who was born as we prepared the final draft of the book).
Gary Pollice would like to thank his wife Vikki for 40 great years. He also wants to thank the WPI computer science department for a great environment and a great job.
Stanley Selkow would like to thank his wife, Deb. This book was another step on their long path together.

References

Cormen, Thomas H., Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein, Introduction to Algorithms, Second Edition. McGraw-Hill, 2001.
Knuth, Donald E., The Art of Computer Programming, Volumes 1–3, Boxed Set Second Edition. Addison-Wesley Professional, 1998.

Part I. I

Chapter 1, Algorithms Matter
Chapter 2, The Mathematics of Algorithms
Chapter 3, Patterns and Domains

Chapter 1. Algorithms Matter

Algorithms matter! Knowing which algorithm to apply under which set of circumstances can make a big difference in the software you produce. If you don't believe us, just read the following story about how Gary turned failure into success with a little analysis and choosing the right algorithm for the job.[1]
Once upon a time, Gary worked at a company with a lot of brilliant software developers. Like most organizations with a lot of bright people, there were many great ideas and people to implement them in the software products. One such person was Graham, who had been with the company from its inception. Graham came up with an idea on how to find out whether a program had any memory leaks—a common problem with C and C++ programs at the time. If a program ran long enough and had memory leaks, it would crash because it would run out of memory. Anyone who has programmed in a language that doesn't support automatic memory management and garbage collection knows this problem well.
Graham decided to build a small library that wrapped the operating system's memory allocation and deallocation routines, malloc() an free(), with his own functions. Graham's functions recorded each memory allocation and deallocation in a data structure that could be queried when the program finished. The wrapper functions recorded the information and called the real operating system functions to perform the actual memory management. It took just a few hours for Graham to implement the solution and, voilà, it worked! There was just one problem: the program ran so slowly when it was instrumented with Graham's libraries that no one was willing to use it. We're talking really slow here. You could start up a program, go have a cup of coffee—or maybe a pot of coffee—come back, and the program would still be crawling along. This was clearly unacceptable.
Now Graham was really smart when it came to understanding operating systems and how their internals work. He was an excellent programmer who could write more working code in an hour than most programmers could write in a day. He had studied algorithms, data structures, and all of the standard topics in college, so why did the code execute so much slower with the wrappers inserted? In this case, it was a problem of knowing enough to make the program work, but not thinking through the details to make it work quickly. Like many creative people, Graham was already thinking about his next program and didn't want to go back to his memory leak program to find out what was wrong. So, he asked Gary to take a look at it and see whether he could fix it. Gary was more of a compiler and software engineering type of guy and seemed to be pretty good at honing code to make it release-worthy.
Gary thought he'd talk to Graham about the program before he started digging into the code. That way, he might better understand how Graham structured his solution and why he chose particular implementation options.
Tip
Before proceeding, think about what you might ask Graham. See whether you would have obtained the information that Gary did in the following section.

Understand the Problem

A good way to solve problems is to start with the big picture: understand the problem, identify potential causes, and then dig into the details. If you decide to try to solve the problem because you think you know the cause, you may solve the wrong problem, or you might not explore other—possibly better—answers. The first thing Gary did was ask Graham to describe the problem and his solution.
Graham said that he wanted to determine whether a program had any memory leaks. He thought the best way to find out would be to keep a record of all memory that was allocated by the program, whether it was freed before the program ended, and a record of where the allocation was requested in the user's program. His solution required him to build a small library with three functions:
	
malloc()

	A wrapper around the operating system's memory allocation function

	
free()

	A wrapper around the operating system's memory deallocation function

	
exit()

	A wrapper around the operating system's function called when a program exits

This custom library would be linked with the program under test in such a way that the customized functions would be called instead of the operating system's functions. The custom malloc() and free() functions would keep track of each allocation and deallocation. When the program under test finished, there would be no memory leak if every allocation was subsequently deallocated. If there were any leaks, the information kept by Graham's routines would allow the programmer to find the code that caused them. When the exit() function was called, the custom library routine would display its results before actually exiting. Graham sketched out what his solution looked like, as shown in Figure 1-1.
[image: Graham's solution]

Figure 1-1. Graham's solution

The description seemed clear enough. Unless Graham was doing something terribly wrong in his code to wrap the operating system functions, it was hard to imagine that there was a performance problem in the wrapper code. If there were, then all programs would be proportionately slow. Gary asked whether there was a difference in the performance of the programs Graham had tested. Graham explained that the running profile seemed to be that small programs—those that did relatively little—all ran in acceptable time, regardless of whether they had memory leaks. However, programs that did a lot of processing and had memory leaks ran disproportionately slow.

[1] The names of participants and organizations, except the authors, have been changed to protect the innocent and avoid any embarrassment—or lawsuits. :-)

Experiment if Necessary

Before going any further, Gary wanted to get a better understanding of the running profile of programs. He and Graham sat down and wrote some short programs to see how they ran with Graham's custom library linked in. Perhaps they could get a better understanding of the conditions that caused the problem to arise.
Tip
What type of experiments would you run? What would your program(s) look like?

The first test program Gary and Graham wrote (ProgramA) is shown in Example 1-1.
Example 1-1. ProgramA code
int main(int argc, char **argv) {
 int i = 0;
 for (i = 0; i < 1000000; i++) {
 malloc(32);
 }
 exit (0);
}

They ran the program and waited for the results. It took several minutes to finish. Although computers were slower back then, this was clearly unacceptable. When this program finished, there were 32 MB of memory leaks. How would the program run if all of the memory allocations were deallocated? They made a simple modification to create ProgramB, shown in Example 1-2.
Example 1-2. ProgramB code
int main(int argc, char **argv) {
 int i = 0;
 for (i = 0; i < 1000000; i++) {
 void *x = malloc(32);
 free(x);
 }
 exit (0);
}

When they compiled and ran ProgramB, it completed in a few seconds. Graham was convinced that the problem was related to the number of memory allocations open when the program ended, but couldn't figure out where the problem occurred. He had searched through his code for several hours and was unable to find any problems. Gary wasn't as convinced as Graham that the problem was the number of memory leaks. He suggested one more experiment and made another modification to the program, shown as ProgramC in Example 1-3, in which the deallocations were grouped together at the end of the program.
Example 1-3. ProgramC code
int main(int argc, char **argv) {
 int i = 0;
 void *addrs[1000000];
 for (i = 0; i < 1000000; i++) {
 addrs[i] = malloc(32);
 }
 for (i = 0; i < 1000000; i++) {
 free(addrs[i]);
 }
 exit (0);
}

This program crawled along even slower than the first program! This example invalidated the theory that the number of memory leaks affected the performance of Graham's program. However, the example gave Gary an insight that led to the real problem.
It wasn't the number of memory allocations open at the end of the program that affected performance; it was the maximum number of them that were open at any single time. If memory leaks were not the only factor affecting performance, then there had to be something about the way Graham maintained the information used to determine whether there were leaks. In ProgramB, there was never more than one 32-byte chunk of memory allocated at any point during the program's execution. The first and third programs had one million open allocations. Allocating and deallocating memory was not the issue, so the problem must be in the bookkeeping code Graham wrote to keep track of the memory.
Gary asked Graham how he kept track of the allocated memory. Graham replied that he was using a binary tree where each node was a structure that consisted of pointers to the children nodes (if any), the address of the allocated memory, the size allocated, and the place in the program where the allocation request was made. He added that he was using the memory address as the key for the nodes since there could be no duplicates, and this decision would make it easy to insert and delete records of allocated memory.
Using a binary tree is often more efficient than simply using an ordered linked list of items. If an ordered list of n items exists—and each item is equally likely to be sought—then a successful search uses, on average, about n/2 comparisons to find an item. Inserting into and deleting from an ordered list requires one to examine or move about n/2 items on average as well. Computer science textbooks would describe the performance of these operations (search, insert, and delete) as being O(n), which roughly means that as the size of the list doubles, the time to perform these operations also is expected to double.[2]
Using a binary tree can deliver O(logn) performance for these same operations, although the code may be a bit more complicated to write and maintain. That is, as the size of the list doubles, the performance of these operations grows only by a constant amount. When processing 1,000,000 items, we expect to examine an average of 20 items, compared to about 500,000 if the items were contained in a list. Using a binary tree is a great choice—if the keys are distributed evenly in the tree. When the keys are not distributed evenly, the tree becomes distorted and loses those properties that make it a good choice for searching.
Knowing a bit about trees and how they behave, Gary asked Graham the $64,000 (it is logarithmic, after all) question: "Are you balancing the binary tree?" Graham's response was surprising, since he was a very good software developer. "No, why should I do that? It makes the code a lot more complex." But the fact that Graham wasn't balancing the tree was exactly the problem causing the horrible performance of his code. Can you figure out why? The malloc() routine in C allocates memory (from the heap) in order of increasing memory addresses. Not only are these addresses not evenly distributed, the order is exactly the one that leads to right-oriented trees, which behave more like linear lists than binary trees. To see why, consider the two binary trees in Figure 1-2. The (a) tree was created by inserting the numbers 1-15 in order. Its root node contains the value 1 and there is a path of 14 nodes to reach the node containing the value 15. The (b) tree was created by inserting these same numbers in the order <8, 4, 12, 2, 6, 10, 14, 1, 3, 5, 7, 9, 11, 13, 15>. In this case, the root node contains the value 8 but the paths to all other nodes in the tree are three nodes or less. As we will see in Chapter 5, the search time is directly affected by the length of the maximum path.
[image: Constructing two sample binary trees]

Figure 1-2. Constructing two sample binary trees

Algorithms to the Rescue

A balanced binary tree is a binary search tree for which the length of all paths from the root of the tree to any leaf node is as close to the same number as possible. Let's define depth(Li) to be the length of the path from the root of the tree to a leaf node Li. In a perfectly balanced binary tree with n nodes, for any two leaf nodes, L1 and L2, the absolute value of the difference, |depth(L2)-depth (L1)|≤1; also depth(Li)≤log(n) for any leaf node Li.[3] Gary went to one of his algorithms books and decided to modify Graham's code so that the tree of allocation records would be balanced by making it a red-black binary tree. Red-black trees (Cormen et al., 2001) are an efficient implementation of a balanced binary tree in which given any two leaf nodes L1 and L2, depth(L2)/depth(L1)≤2; also depth(Li)≤2*log2(n+1) for any leaf node Li. In other words, a red-black tree is roughly balanced, to ensure that no path is more than twice as long as any other path.
The changes took a few hours to write and test. When he was done, Gary showed Graham the result. They ran each of the three programs shown previously.
ProgramA and ProgramC took just a few milliseconds longer than ProgramB. The performance improvement reflected approximately a 5,000-fold speedup. This is what might be expected when you consider that the average number of nodes to visit drops from 500,000 to 20. Actually, this is an order of magnitude off: you might expect a 25,000-fold speedup, but that is offset by the computation overhead of balancing the tree. Still, the results are dramatic, and Graham's memory leak detector could be released (with Gary's modifications) in the next version of the product.

[2] Chapter 2 contains information about this "big O" notation.

[3] Throughout this book, all logarithms are computed in base 2.

Side Story

Given the efficiency of using red-black binary trees, is it possible that the malloc() implementation itself is coded to use them? After all, the memory allocation functionality must somehow maintain the set of allocated regions so they can be safely deallocated. Also, note that each of the programs listed previously make allocation requests for 32 bytes. Does the size of the request affect the performance of malloc() and free() requests? To investigate the behavior of malloc(), we ran a set of experiments. First, we timed how long it took to allocate 4,096 chunks of n bytes, with n ranging from 1 to 2,048. Then, we timed how long it took to deallocate the same memory using three strategies:
	
freeUp

	In the order in which it was allocated; this is identical to ProgramC

	
freeDown

	In the reverse order in which it was allocated

	
freeScattered

	In a scattered order that ultimately frees all memory

For each value of n we ran the experiment 100 times and discarded the best and worst performing runs. Figure 1-3 contains the average results of the remaining 98 trials. As one might expect, the performance of the allocation follows a linear trend—as the size of n increases, so does the performance, proportional to n. Surprisingly, the way in which the memory is deallocated changes the performance. freeUp has the best performance, for example, while freeDown executes about four times as slowly.
The empirical evidence does not answer whether malloc() and free() use binary trees (balanced or not!) to store information; without inspecting the source for free(), there is no easy explanation for the different performance based upon the order in which the memory is deallocated.
Showing this example serves two purposes. First, the algorithm(s) behind memory allocation and deallocation are surprisingly complex, often highly tuned based upon the specific capabilities of the operating system (in this case a high-end computer). As we will learn throughout this book, various algorithms have "sweet spots" in which their performance has no equal and designers can take advantage of specific information about a problem to improve performance. Second, we also describe throughout the book different algorithms and explain why one algorithm outperforms another. We return again and again to empirically support these mathematical claims.
[image: Performance analysis of malloc/free requests]

Figure 1-3. Performance analysis of malloc/free requests

The Moral of the Story

The previous story really happened. Algorithms do matter. You might ask whether the tree-balancing algorithm was the optimal solution for the problem. That's a great question, and one that we'll answer by asking another question: does it really matter? Finding the right algorithm is like finding the right solution to any problem. Instead of finding the perfect solution, the algorithm just has to work well enough. You must balance the cost of the solution against the value it adds. It's quite possible that Gary's implementation could be improved, either by optimizing his implementation or by using a different algorithm. However, the performance of the memory leak detection software was more than acceptable for the intended use, and any additional improvements would have been unproductive overhead.
The ability to choose an acceptable algorithm for your needs is a critical skill that any good software developer should have. You don't necessarily have to be able to perform detailed mathematical analysis on the algorithm, but you must be able to understand someone else's analysis. You don't have to invent new algorithms, but you do need to understand which algorithms fit the problem at hand. This book will help you develop these capabilities. When you have them, you've added another tool to your software development toolkit.

References

Cormen, Thomas H., Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein, Introduction to Algorithms, Second Edition. McGraw-Hill, 2001.

Chapter 2. The Mathematics of Algorithms

In choosing an algorithm to solve a problem, you are trying to predict which algorithm will be fastest for a particular data set on a particular platform (or family of platforms). Characterizing the expected computation time of an algorithm is inherently a mathematical process. In this chapter we present the mathematical tools behind this prediction of time. Readers will be able to understand the various mathematical terms throughout this book after reading this chapter.
A common theme throughout this chapter (and indeed throughout the entire book) is that all assumptions and approximations may be off by a constant, and ultimately our abstraction will ignore these constants. For all algorithms covered in this book, the constants are small for virtually all platforms.
Size of a Problem Instance

An instance of a problem is a particular input data set to which a program is applied. In most problems, the execution time of a program increases with the size of the encoding of the instance being solved. At the same time, overly compact representations (possibly using compression techniques) may unnecessarily slow down the execution of a program. It is surprisingly difficult to define the optimal way to encode an instance because problems occur in the real world and must be translated into an appropriate machine representation to be solved on a computer. Consider the two encodings shown in the upcoming sidebar, "Instances Are Encoded," for a number x.
Instances Are Encoded
Suppose you are given a large number x and want to compute the parity of the number of 1s in its binary representation (that is, whether there is an even or odd number of 1s). For example, if x=15,137,300,128, its base 2 representation is:
	x2=1110000110010000001101111010100000

and its parity is even. We consider two possible encoding strategies:
	Encoding 1 of x: 1110000110010000001101111010100000

Here, the 34-bit representation of x in base 2 is the representation of the problem and so the size of the input is n=34. Note that log2(x) is y≅33.82, so this encoding is optimal. However, to compute the parity of the number of 1s, every bit must be probed. The optimal time to compute the parity grows linearly with n (logarithmically with x).
x can also be encoded as an n-bit number plus an extra checksum bit that shows the parity of the number of 1s in the encoding of x.
	Encoding 2 of x: 1110000110010000001101111010100000[0]

The last bit of x in Encoding 2 is a 0 reflecting the fact that x has an even number of 1s (even parity=0). For this representation, n=35. In either case, the size of the encoded instance, n, grows logarithmically with x. However, the time for an optimal algorithm to compute the parity of x with Encoding 1 grows logarithmically with the size of the encoding of x, and with Encoding 2 the time for an optimal algorithm is constant and doesn't depend on the size of the encoding of x.

As much as possible, we want to evaluate algorithms by assuming that the encoding of the problem instance is not the determining factor in whether the algorithm can be implemented efficiently. Although the encodings are nearly identical in size, they offer different performance on the key operation, which determines whether x has an even or odd number of 1-bits in its binary representation.
Selecting the representation of a problem instance depends on the type and variety of operations that need to be performed. Designing efficient algorithms often starts by selecting the proper data structures in which to represent the problem to be solved, as shown in Figure 2-1.
[image: More complex encodings of a problem instance]

Figure 2-1. More complex encodings of a problem instance

Because we cannot formally define the size of an instance, we assume that an instance is encoded in some generally accepted, concise manner. For example, when sorting n numbers, we adopt the general convention that each of the n numbers fits into a word in the platform, and the size of an instance to be sorted is n. In case some of the numbers require more than one word—but only a constant, fixed number of words—our measure of the size of an instance is off by a constant. So an algorithm that performs a computation using integers stored in 64 bits may take twice as long as a similar algorithm coded using integers stored in 32 bits.
To store collections of information, most programming languages support arrays, contiguous regions of memory indexed by an integer i to enable rapid access to the ith element. An array is one-dimensional when each element fits into a word in the platform (for example, an array of integers, Boolean values, or characters). Some arrays extend into multiple dimensions, enabling more interesting data representations, as shown in Figure 2-1. And, as shown in the upcoming sidebar, "The Effect of Encoding on Performance," the encoding could affect an algorithm's performance.
The Effect of Encoding on Performance
Assume a program stored information about the periodic table of elements. Three questions that frequently occur are a) "What is the atomic weight of element number N?", b) "What is the atomic number of the element named X?", and c)"What is the name of element number N?". One interesting challenge for this problem is that as of January 2008, element 117 had not yet been discovered, although element 118, Ununoctium, had been.
Encoding 1 of periodic table: store two arrays, elementName[], whose ith value stores the name of the element with atomic number i, and elementWeight[], whose ith value stores the weight of the element.
Encoding 2 of periodic table: store a string of 2,626 characters representing the entire table. The first 62 characters are:
	1 H Hydrogen 1.00794
	2 He Helium 4.002602
	3 Li Lithium 6.941

The following table shows the results of 32 trials of 100,000 random query invocations (including invalid ones). We discard the best and worst results, leaving 30 trials whose average execution time (and standard deviation) are shown in milliseconds:
	 	

Weight

	

Number

	

Name

	

Enc1

	
2.1±5.45

	
131.73±8.83

	
2.63±5.99

	

Enc2

	
635.07±41.19

	
1050.43±75.60

	
664.13±45.90

As expected, Encoding 2 offers worse performance because each query involves using string manipulaton operations. Encoding 1 can efficiently process weight and name queries but number queries require an unordered search through the table.
This example shows how different encodings result in vast differences in execution times. It also shows that designers must choose the operations they would like to optimize.

Because of the vast differences in programming languages and computer platforms on which programs execute, algorithmic researchers accept that they are unable to compute with pinpoint accuracy the costs involved in using a particular encoding in an implementation. Therefore, they assert that performance costs that differ by a multiplicative constant are asymptotically equivalent. Although such a definition would be impractical for real-world situations (who would be satisfied to learn they must pay a bill that is 1,000 times greater than expected?), it serves as the universal means by which algorithms are compared. When implementing an algorithm as production code, attention to the details reflected in the constants is clearly warranted.

Rate of Growth of Functions

The widely accepted method for describing the behavior of an algorithm is to represent the rate of growth of its execution time as a function of the size of the input problem instance. Characterizing an algorithm's performance in this way is an abstraction that ignores details. To use this measure properly requires an awareness of the details hidden by the abstraction.
Every program is run on a platform, which is a general term meant to encompass:
	The computer on which the program is run, its CPU, data cache, floating-point unit (FPU), and other on-chip features

	The programming language in which the program is written, along with the compiler/interpreter and optimization settings for generated code

	The operating system

	Other processes being run in the background

One underlying assumption is that changing any of the parameters comprising a platform will change the execution time of the program by a constant factor. To place this discussion in context, we briefly discuss the Sequential Search algorithm, presented later in Chapter 5. Sequential Search examines a list of n≥1 distinct elements, one at a time, until a desired value, v, is found. For now, assume that:
	There are n distinct elements in the list

	The element being sought, v, is in the list

	Each element in the list is equally likely to be the value v

To understand the performance of Sequential Search, we must know how many elements it examines "on average." Since v is known to be in the list and each element is equally likely to be v, the average number of examined elements, E(n), is the sum of the number of elements examined for each of the n values divided by n. Mathematically:
[image: image with no caption]

Thus, Sequential Search examines about half of the elements in a list of n distinct elements subject to these assumptions. If the number of elements in the list doubles, then Sequential Search should examine about twice as many elements; the expected number of probes is a linear function of n. That is, the expected number of probes is linear or "about" c*n for some constant c. Here, c=1/2. A fundamental insight of performance analysis is that the constant c is unimportant in the long run, since the most important cost factor is the size of the problem instance, n. As n gets larger and larger, the error in claiming that:
[image: image with no caption]

becomes less significant. In fact, the ratio between the two sides of this approximation approaches 1. That is:
[image: image with no caption]

although the error in the estimation is significant for small values of n. In this context we say that the rate of growth of the expected number of elements that Sequential Search examines is linear. That is, we ignore the constant multiplier and are concerned only when the size of an instance is large.
When using the abstraction of the rate of growth to choose between algorithms, we must be aware of the following assumptions:
	
Constants matter

	That's why we use supercomputers and upgrade our computers on a regular basis.

	
The size of n is not always large

	We will see in Chapter 4 that the rate of growth of the execution time of Quicksort is less than the rate of growth of the execution time of Insertion Sort. Yet Insertion Sort outperforms Quicksort for small arrays on the same platform.

An algorithm's rate of growth determines how it will perform on increasingly larger problem instances. Let's apply this underlying principle to a more complex example.
Consider evaluating four sorting algorithms for a specific sorting task. The following performance data was generated by sorting a block of n random strings. For string blocks of size n=1-512, 50 trials were run. The best and worst performances were discarded, and the chart in Figure 2-2 shows the average running time (in microseconds) of the remaining 48 results. The variance between the runs is surprising.
[image: Comparing four sort algorithms on small data sets]

Figure 2-2. Comparing four sort algorithms on small data sets

One way to interpret these results is to try to design a function that will predict the performance of each algorithm on a problem instance of size n. Since it is unlikely that we will be able to guess such a function, we use commercially available software to compute a trend line with a statistical process known as regression analysis. The "fitness" of a trend line to the actual data is based on a value between 0 and 1, known as the R2 value. Values near 1 indicate a high fitness. For example, if R2 = 0.9948, there is only a 0.52% chance that the fitness of the trend line is due to random variations in the data.
Sort-4 is clearly the worst performing of these sort algorithms. Given the 512 data points as plotted in a spreadsheet, the trend line to which the data conforms is:
	y = 0.0053*n2−0.3601*n+39.212
	R2 = 0.9948

Having an R2 confidence value so close to 1 declares this is an accurate estimate. Sort-2 offers the fastest implementation over the given range of points. Its behavior is characterized by the following trend line equation:
	y = 0.05765*n*log(n)+7.9653

Sort-2 marginally outperforms Sort-3 initially, and its ultimate behavior is perhaps 10% faster than Sort-3. Sort-1 shows two distinct behavioral patterns. For blocks of 39 or fewer strings, the behavior is characterized by:
	y = 0.0016*n2+0.2939*n+3.1838
	R2 = 0.9761

However, with 40 or more strings, the behavior is characterized by:
	y = 0.0798*n*log(n)+142.7818

The numeric coefficients in these equations are entirely dependent upon the platform on which these implementations execute. As described earlier, such incidental differences are not important. The long-term trend as n increases dominates the computation of these behaviors. Indeed, Figure 2-2 graphs the behavior using two different ranges to show that the real behavior for an algorithm may not be apparent until n gets large enough.
Algorithm designers seek to understand the behavioral differences that exist between algorithms. The source code for these algorithms is available from open source repositories, and it is instructive to see the impact of these designers' choices on the overall execution. Sort-1 reflects the performance of qsort on Linux 2.6.9. When reviewing the source code (which can be found through any of the available Linux code repositories[4]), one discovers the following comment: "Qsort routine from Bentley & McIlroy's Engineering a Sort Function." Bentley and McIlroy (1993) describe how to optimize Quicksort by varying the strategy for problem sizes less than 7, between 8 and 39, and for 40 and higher. It is satisfying to see that the empirical results presented here confirm the underlying implementation.

[4] http://lxr.linux.no/linux+v2.6.11/fs/xfs/support/qsort.c

Analysis in the Best, Average, and Worst Cases

One question to ask is whether the results of the previous section will be true for all input problem instances. Perhaps Sort-2 is only successful in sorting a small number of strings. There are many ways the input could change:
	There could be 1,000,000 strings. How does an algorithm scale to large input?

	The data could be partially sorted, meaning that almost all elements are not that far from where they should be in the final sorted list.

	The input could contain duplicate values.

	Regardless of the size n of the input set, the elements could be drawn from a much smaller set and contain a significant number of duplicate values.

Although Sort-4 from Figure 2-2 was the slowest of the four algorithms for sorting n random strings, it turns out to be the fastest when the data is already sorted. This advantage rapidly fades away, however, with just 16 random items out of position, as shown in Figure 2-3.
[image: Comparing sort algorithms on sorted and nearly sorted data]

Figure 2-3. Comparing sort algorithms on sorted and nearly sorted data

However, suppose an input array with n strings is "nearly sorted"—that is, n/4 of the strings (25% of them) are swapped with another position just four locations away. It may come as a surprise to see in Figure 2-4 that Sort-4 outperforms the others.
[image: Sort-4 wins on nearly sorted data]

Figure 2-4. Sort-4 wins on nearly sorted data

The conclusion to draw is that for many problems, no single optimal algorithm exists. Choosing an algorithm depends on understanding the problem being solved and the underlying probability distribution of the instances likely to be treated, as well as the behavior of the algorithms being considered.
To provide some guidance, algorithms are typically presented with three common cases in mind:
	
Worst-case

	Defines a class of input instances for which an algorithm exhibits its worst runtime behavior. Instead of trying to identify the specific input, algorithm designers typically describe properties of the input that prevent an algorithm from running efficiently.

	
Average-case

	Defines the expected behavior when executing the algorithm on random input instances. Informally, while some input problems will require greater time to complete because of some special cases, the vast majority of input problems will not. This measure describes the expectation an average user of the algorithm should have.

	
Best-case

	Defines a class of input instances for which an algorithm exhibits its best runtime behavior. For these input instances, the algorithm does the least work. In reality, the best case rarely occurs.

By knowing the performance of an algorithm under each of these cases, you can judge whether an algorithm is appropriate for use in your specific situation.

Worst-Case

As n grows, most problems have a greater number of potential instances of size n. For any particular value of n, the work done by an algorithm or program may vary dramatically over all the instances of size n. For a given program and a given value n, the worst-case execution time is the maximum execution time, where the maximum is taken over all instances of size n.
Paying attention to the worst case is a pessimistic view of the world. We are interested in the worst-case behavior of an algorithm because of:
	
The desire for an answer

	This often is the easiest analysis of the complexity of an algorithm.

	
Real-time constraints

	If you are designing a system to aid a surgeon performing open-heart surgery, it is unacceptable for the program to execute for an unusually long time (even if such slow behavior doesn't happen "often").

More formally, if Sn is the set of instances si of size n, and t measures the work done by an algorithm on each instance, then work done by an algorithm on Sn in the worst case is the maximum of t(si) over all si∈Sn. Denoting this worst-case work on Sn by Twc(n), the rate of growth of Twc(n) defines the worst-case complexity of the algorithm.
In general, there are not enough resources to compute each individual instance si on which to run the algorithm to determine empirically the input problem that leads to worst-case performance. Instead, an adversary tries to craft a worst-case input problem given the description of an algorithm.

Average-Case

A telephone system designed to support a large number n of telephones must, in the worst case, be able to complete all calls where n/2 people pick up their phones and call the other n/2 people. Although this system will never crash because of overload, it will be prohibitively expensive to construct. Besides, the probability that each of n/2 people calls a unique member of the other n/2 people is exceedingly small. One could design a system that is cheaper and will very rarely (possibly never) crash due to overload. But we must resort to mathematical tools to consider probabilities.
For the set of instances of size n, we associate a probability distribution Pr, which assigns a probability between 0 and 1 to each instance such that the sum, over all instances of size n, of the probability of that instance is 1. More formally, if Sn is the set of instances of size n, then:
[image: image with no caption]

If t measures the work done by an algorithm on each instance, then the average-case work done by an algorithm on Sn is:
[image: image with no caption]

That is, the actual work done on instance si, t(si), is weighted with the probability that si will actually be presented as input. If Pr{si}=0, then the actual value of t(si) does not impact the expected work done by the program. Denoting this average-case work on Sn by Tac(n), then the rate of growth of Tac(n) defines the average-case complexity of the algorithm.
Recall that when describing the rate of growth of work or time, we consistently ignore constants. So when we say that Sequential Search of n elements takes, on average:
[image: image with no caption]

probes (subject to our earlier assumptions), then by convention we simply say that subject to these assumptions, we expect Sequential Search will examine a linear number of elements, or order n.

Best-Case

Knowing the best case for an algorithm is useful even though the situation rarely occurs in practice. In many cases, it provides insight into the optimal circumstance for an algorithm. For example, the best case for Sequential Search is when it searches for a desired value, v, which ends up being the first element in the list. A slightly different approach, which we'll call Counting Search, searches for a desired value, v, and counts the number of times that v appears in the list. If the computed count is zero, then the item was not found, so it returns false; otherwise, it returns true. Note that Counting Search always searches through the entire list; therefore, even though its worst-case behavior is O(n)—the same as Sequential Search—its best-case behavior remains O(n), so it is unable to take advantage of either the best-case or average-case situations in which it could have performed better.

Performance Families

We compare algorithms by evaluating their performance on input data of size n. This methodology is the standard means developed over the past half-century for comparing algorithms. By doing so, we can determine which algorithms scale to solve problems of a nontrivial size by evaluating the running time needed by the algorithm in relation to the size of the provided input. A secondary form of performance evaluation is to consider how much memory or storage an algorithm needs; we address these concerns within the individual algorithm chapters, as appropriate.
We use the following classifications exclusively in this book, and they are ordered by decreasing efficiency:
	Constant

	Logarithmic

	Sublinear

	Linear

	n log (n

	Quadratic

	Exponential

We'll now present several discussions to illustrate some of these performance identifications.

Discussion 0: Constant Behavior

When analyzing the performance of the algorithms in this book, we frequently claim that some primitive operations provide constant performance. Clearly this claim is not an absolute determinant for the actual performance of the operation since we do not refer to specific hardware. For example, comparing whether two 32-bit numbers x and y are the same value should have the same performance regardless of the actual values of x and y. A constant operation is defined to have O(1) performance.
What about the performance of comparing two 256-bit numbers? Or two 1,024-bit numbers? It turns out that for a predetermined fixed size k, you can compare two k-bit numbers in constant time. The key is that the problem size (i.e., the values of the numbers x and y that are being compared) cannot grow beyond the fixed size k. We abstract the extra effort, which is multiplicative in terms of k, with the notation O(1).

Discussion 1: Log n Behavior

A bartender offers the following $10,000 bet to any patron. "I will choose a number from 1 to 1,000,000 and you can guess 20 numbers, one at a time; after each guess, I will either tell you TOO LOW, TOO HIGH, or YOU WIN. If you win in 20 questions, I give you $10,000; otherwise, you give me $10,000." Would you take this bet? You should because you can always win. Table 2-1 shows a sample scenario for the range 1–10 that asks a series of questions, reducing the problem size by about half each time.
Table 2-1. Sample behavior for guessing number from 1–10
	
Number

	
First guess

	
Second guess

	
Third guess

	
1

	
Is it 5?

TOO HIGH

	
Is it 2?

TOO HIGH

	
Is it 1?

YOU WIN

	
2

	
Is it 5?

TOO HIGH

	
Is it 2?

YOU WIN

	
	
3

	
Is it 5?

TOO HIGH

	
Is it 2?

TOO LOW

	
Is it 3?

YOU WIN

	
4

	
Is it 5?

TOO HIGH

	
Is it 2?

TOO LOW

	
Is it 3?

TOO LOW, so it must be 4

	
5

	
Is it 5?

YOU WIN

	 	
	
6

	
Is it 5?

TOO LOW

	
Is it 8?

TOO HIGH

	
Is it 6?

YOU WIN

	
7

	
Is it 5?

TOO LOW

	
Is it 8?

TOO HIGH

	
Is it 6?

TOO LOW, so it must be 7

	
8

	
Is it 5?

TOO LOW

	
Is it 8?

YOU WIN

	
	
9

	
Is it 5?

TOO LOW

	
Is it 8?

TOO LOW

	
Is it 9?

YOU WIN

	
10

	
Is it 5?

TOO LOW

	
Is it 8?

TOO LOW

	
Is it 9?

TOO LOW, so it must be 10

In each turn, depending upon the specific answers from the bartender, the size of the potential range containing the hidden number is cut in about half each time. Eventually, the range of the hidden number will be limited to just one possible number; this happens after ⌈log (n)⌉ turns. The ceiling function ⌈x⌉ rounds the number x up to the smallest integer greater than or equal to x. For example, if the bartender chooses a number between 1 and 10, you could guess it in ⌈log (10)⌉ = ⌈3.32⌉, or four guesses, as shown in the table.
This same approach works equally well for 1,000,000 numbers. In fact, the Guessing algorithm shown in Example 2-1 works for any range [low, high] and determines the value of n in ⌈log (high-low+1)⌉ turns. If there are 1,000,000 numbers, this algorithm will locate the number in at most ⌈log (1,000,000)⌉ = ⌈19.93⌉, or 20 guesses (the worst case).
Example 2-1. Java code to guess number in range [low,high]
// Compute number of turns when n is guaranteed to be in range [low,high].
public static int turns(int n, int low, int high) {
 int turns = 0;
// While more than two potential numbers remain to be checked, continue.
 while (high - low ≤2) {
 // Prepare midpoint of [low,high] as the guess.
 turns++;
 int mid = (low + high)/2;
 if (mid == n) {
 return turns;
 } else if (mid < n) {
 low = mid + 1;
 } else {
 high = mid - 1;
}
 }
 // At this point, only two numbers remain. We guess one, and if it is
 // wrong then the other one is the target. Thus only one more turn remains.
 return 1 + turns;
}

Logarithmic algorithms are extremely efficient because they rapidly converge on a solution. In general, these algorithms succeed because they reduce the size of the problem by about half each time. The Guessing algorithm reaches a solution after at most k=⌈log (n)⌉ iterations, and at the ith iteration (i>0), the algorithm computes a guess that is known to be within ±ϵ=2k-i from the actual hidden number. The quantity ϵ is considered the error, or uncertainty. After each iteration of the loop, ϵ is cut in half.
Another example showing efficient behavior is Newton's method for computing the roots of equations in one variable (in other words, for what values of x does f(x) = 0?). To find when x*sin(x)-5*x=cos(x), set f(x)=x*sin(x)-5*x-cos(x) and its derivative f'(x)=x*cos(x)+sin(x)-5-sin(x)=x*cos(x)-5. The Newton iteration computes xn+1=xn-f(xn)/f'(xn). Starting with a "guess" that x is zero, this algorithm quickly determines an appropriate solution of x=−0.189302759, as shown in Table 2-2. The binary and decimal digits enclosed in brackets, [], are the accurate digits.
Table 2-2. Newton's method
	
n

	
xn in decimal

	
xn in bits (binary digits)

	
0

	
0.0

	
	
1

	
−0.2

	
[1011111111001]0011001100110011001100110...

	
2

	
−[0.18]8516717588...

	
[1011111111001000001]0000101010000110110...

	
3

	
−[0.1893]59749489...

	
[101111111100100000111]10011110000101101...

	
4

	
−[0.189]298621848...

	
[10111111110010000011101]011101111111011...

	
5

	
−[0.18930]3058226...

	
[1011111111001000001110110001]0101001001...

	
6

	
−[0.1893027]36274...

	
[1011111111001000001110110001001]0011100...

	
7

	
−[0.189302759]639...

	
[101111111100100000111011000100101]01001...

Discussion 2: Sublinear O(nd) Behavior for d<1

In some cases, the behavior of an algorithm is better than linear, yet not as efficient as logarithmic. As discussed in Chapter 9, the kd-tree in multiple dimensions can partition a set of n d-dimensional points efficiently. If the tree is balanced, the search time for range queries that conform to the axes of the points is O(n1-1/d).

Discussion 3: Linear Performance

Some problems clearly seem to require more effort to solve than others. Any eight-year-old can evaluate 7+5 to get 12. How much harder is the problem 37+45?
In general, how hard is it to add two n-digit numbers an... a1+bn... b1 to result in a cn+1... c1 digit value? The primitive operations used in this ADDITION algorithm are as follows:
[image: image with no caption]

A sample Java implementation of ADDITION is shown in example 2-2, where an n-digit number is representedl as an array of int values; for the examples in this section, it is assumed that each of these values is a decimal digit d such that 0≤d≤9.
Example 2-2. Java implementation of add
public static void add (int[] n1, int[] n2, int[] sum) {
 int position = n1.length-1;
 int carry = 0;
 while (position >= 0) {
 int total = n1[position] + n2[position] + carry;
 sum[position+1] = total % 10;
 if (total > 9) { carry = 1; } else { carry = 0; }
 position--;
 }
 sum[0] = carry;
}

As long as the input problem can be stored in memory, add computes the addition of the two numbers as represented by the input integer arrays n1 and n2. Would this implementation be as efficient as the following last alternative, listed in Example 2-3?
Example 2-3. Java implementation of last
public static void last(int[] n1, int[] n2, int[] sum) {
 int position = n1.length;
 int carry = 0;
 while (--position >= 0) {
 int total = n1[position] + n2[position] + carry;
 if (total > 9) {
 sum[position+1] = total-10;
 carry = 1;
 } else {
 sum[position+1] = total;
 carry = 0;
 }
 }
 sum[0] = carry;
}

Do these seemingly small implementation details affect the performance of an algorithm? Let's consider two other potential factors that can impact the algorithm's performance:
	Programming language is one factor. add and last can trivially be converted into C programs. How does the choice of language affect the algorithm's performance?

	The programs can be executed on different computers. How does the choice of computer hardware affect the algorithm's performance?

The implementations were executed 10,000 times on numbers ranging from 256 digits to 32,768 digits. For each digit size a random number of that size was generated; thereafter, for each of the 10,000 trials, these two numbers were circular shifted (one left and one right) to create two different numbers to be added. Two machines were used: a desktop PC and a high-end computer, as discussed in Chapter 10. Two different programming languages were used (C and Java). We start with the hypothesis that as the problem size doubles, the execution time for the algorithm doubles as well. We would like to also be reassured that this overall behavior occurs regardless of the machine, programming language, or implementation variation used.
Figure 2-5 contains a graph plotting problem size (shown on the X axis) against the execution time (in milliseconds) to compute 10,000 executions (shown on the Y axis). Each variation was executed on a set of configurations:
	
g

	C version was compiled with debugging information included.

	
none

	C version was compiled without any specific optimization.

	
O1, O2, O3

	C version was compiled under these different optimization levels. In general, increasing numbers imply better optimization and thus better expected performance.

	
Java

	Java version of algorithms.

	
PC-Java

	This is the only configuration executed on a PC; the previous ones were all executed on the high-end computer.

[image: Comparing add and last in different scenarios]

Figure 2-5. Comparing add and last in different scenarios

Note how each of the computed lines for the graphs on the left side of Figure 2-5 (labeled "Desktop PC") can be approximated by a fixed linear slope, thus supporting the view that there is a linear relationship between the X and Y values. The computations using optimized code on the high-end computer cannot so simply be classified as linear, suggesting that the advanced processor has a significant impact.
Table 2-3 contains a subset of the charted data in numeric form. The code provided with this book generates this information as needed. The seventh and final column in Table 2-3 directly compares the performance times of the HighEnd-C-Last-O3 implementation,[5] as listed in the sixth column. The ratio of the performance times is nearly two, as expected. Define t(n) to be the actual running time of the ADDITION algorithm on an input of size n. This growth pattern provides empirical evidence that the time in milliseconds to compute last for two n-digit numbers on the high-end computer using the C implementation with optimization level -O3 will be between n/11 and n/29.
Table 2-3. Time (in milliseconds) to execute 10,000 add/last invocations on random digits of size n
	
n

	
PC-Java-Add

	
HighEnd-Java-Add

	
HighEnd-C-Add-none

	
HighEnd-C-Add-O3

	
HighEnd-C-Last-O3

	
Ratio of last column by size

	
256

	
60

	
174

	
34

	
11

	
9

	
	
512

	
110

	
36

	
70

	
22

	
22

	
2.44

	
1,024

	
220

	
124

	
139

	
43

	
43

	
1.95

	
2,048

	
450

	
250

	
275

	
87

	
88

	
2.05

	
4,096

	
921

	
500

	
550

	
174

	
180

	
2.05

	
8,192

	
1,861

	
667

	
1,611

	
696

	
688

	
3.82

	
16,384

	
3,704

	
1,268

	
3,230

	
1,411

	
1,390

	
2.02

	
32,768

	
7,430

	
2,227

	
4,790

	
1,555

	
1,722

	
1.24

	
65,536

	
17,453

	
2,902

	
9,798

	
3,101

	
3,508

	
2.04

	
131,072

	
35,860

	
12,870

	
20,302

	
7,173

	
7,899

	
2.25

	
262,144

	
68,531

	
22,768

	
41,800

	
14,787

	
16,479

	
2.09

	
524,288

	
175,015

	
31,148

	
82,454

	
29,012

	
32,876

	
2

	
1,048,576

	
505,531

	
64,192

	
162,955

	
55,173

	
63,569

	
1.93

Computer scientists would classify the ADDITION algorithm as being linear with respect to its input size n. That is, there is some constant c>0 such that t(n)≤c*n for all n>n0. We don't actually need to know the full details of the c or n0 value, just that they exist. An argument can be made to establish a linear-time lower bound on the complexity of addition by showing that every digit must be examined (consider the consequences of not probing one of the digits).
For the last implementation of ADDITION, we can set c to 1/11 and choose n0 to be 256. Other implementations of ADDITION would have different constants, yet their overall behavior would still be linear. This result may seem surprising given that most programmers assume that integer arithmetic is a constant time operation; however, constant time addition is achievable only when the integer representation (such as 16-bit or 64-bit) uses a fixed integer size n.
When considering differences in algorithms, the constant c is not as important as knowing the order of the algorithm. Seemingly inconsequential differences resulted in different performance. The last implementation of ADDITION is markedly more efficient after eliminating the modulo operator (%), which is notoriously slow when used with values that are not powers of 2. In this case, "% 10" is just not efficient since a division by 10 must occur, which is a costly operation on binary computers. This is not to say that we ignore the value of c. Certainly if we execute ADDITION a large number of times, even small changes to the actual value of c can have a large impact on the performance of a program.

Discussion 4: n log n Performance

A common behavior in efficient algorithms is best described by this performance family. To explain how this behavior occurs in practice, let's define t(n) to represent the time that an algorithm takes to solve an input problem instance of size n. An efficient way to solve a problem is the "divide and conquer" method, in which a problem of size n is divided into (roughly equal) subproblems of size n/2, which are solved recursively, and their solutions merged together in some form to result in the solution to the original problem of size n. Mathematically, this can be stated as:
t(n)=2*t(n/2)+O(n)
That is, t(n) includes the cost of the two subproblems together with no more than a linear time cost to merge the results. Now, on the right side of the equation, t(n/2) is the time to solve a problem of size n/2; using the same logic, this can be represented as:
	t(n/2)=2*t(n/4)+O(n/2)

and so the original equation is now:
	t(n)=2*[2*t(n/4)+O(n/2)]+O(n)

If we expand this out once more, we see that:
	t(n)=2*[2*[2*t(n/8)+O(n/4)]+O(n/2)]+O(n)

This last equation reduces to t(n)=8*t(n/8)+O(3*n). In general, then, we can say that t(n)=2k*t(n/2k)+O(k*n). This expansion ends when 2k=n, that is, when k=log(n). In the final base case when the problem size is 1, the performance t(1) is a constant c. Thus we can see that the closed-form formula for t(n)=n*c+O(n*log(n)). Since n*log(n) is asymptotically greater than c*n for any fixed constant c, t(n) can be simply written as O(n log n).

Discussion 5a: Quadratic Performance

Now consider a similar problem where two integers of size n are multiplied together. Example 2-4 shows an implementation of MULTIPLICATION, an elementary school algorithm.
Example 2-4. mult implementation of Multiplication in Java
public static void mult(int[] n1, int[] n2, int[] result) {
 int pos = result.length-1;

 // clear all values....
 for (int i = 0; i < result.length; i++) { result[i] = 0; }
 for (int m = n1.length-1; m>=0; m--) {
 int off = n1.length-1 - m;
 for (int n = n2.length-1; n>=0; n--,off++) {
 int prod = n1[m]*n2[n];
// compute partial total by carrying previous digit's position
 result[pos-off] += prod % 10;
 result[pos-off-1] += result[pos-off]/10 + prod/10;
 result[pos-off] %= 10;
 }
 }
}

Once again, an alternative program is written, alt, which eliminates the need for the costly modulo operator, and skips the innermost computations when n1[m] is zero (note that alt is not shown here, but can be found in the provided code repository). The alt variation contains 203 lines of generated Java code to remove the two modulo operators. Does this variation show cost savings that validate the extra maintenance and development cost in managing this generated code?
Table 2-4 shows the behavior of these implementations of MULTIPLICATION using the same random input set used when demonstrating ADDITION. Figure 2-6 graphically depicts the performance, showing the parabolic growth curve that is the trademark of quadratic behavior.
[image: Comparison of mult versus alt]

Figure 2-6. Comparison of mult versus alt

Table 2-4. Time (in milliseconds) to execute 10,000 multiplications
	
n

	
Multn(ms)

	
altn(ms)

	
mult2n/multn

	
2

	
15

	
0

	
	
4

	
15

	
15

	
1

	
8

	
62

	
15

	
4.13

	
16

	
297

	
218

	
4.80

	
32

	
1,187

	
734

	
4.00

	
64

	
4,516

	
3,953

	
3.80

	
128

	
19,530

	
11,765

	
4.32

	
256

	
69,828

	
42,844

	
3.58

	
512

	
273,874

	
176,203

	
3.92

Even though the alt variation is roughly 40% faster, both alt and mult exhibit the same asymptotic performance. The ratio of mult2n/multn is roughly 4, which demonstrates that the performance of MULTIPLICATION is quadratic. Let's define t(n) to be the actual running time of the MULTIPLICATION algorithm on an input of size n. By this definition, there must be some constant c>0 such that t(n)≤c*n2 for all n>n0. We don't actually need to know the full details of the c and n0 values, just that they exist. For the mult implementation of MULTIPLICATION on our platform, we can set c to 1.2 and choose n0 to be 64.
Once again, individual variations in implementation are unable to "break" the inherent quadratic performance behavior of an algorithm. However, other algorithms exist (Zuras, 1994) to multiply a pair of n-digit numbers that are significantly faster than quadratic. These algorithms are important for applications such as data encryption, in which one frequently multiplies large integers.

Discussion 5b: Less Obvious Performance Computations

In most cases, reading the description of an algorithm (as shown in ADDITION and MULTIPLICATION) is sufficient to classify an algorithm as being linear or quadratic. The primary indicator for quadratic, for example, is a nested loop structure. Some algorithms defy such straightforward analysis, however. Consider the GCD algorithm in Example 2-5, designed by Euclid to compute the greatest common divisor between two integers stored using arrays of digits.
Example 2-5. Euclid's GCD algorithm
public static void gcd (int a[], int b[], int gcd[]) {
 if (isZero(a)) { assign (gcd, a); return; }
 if (isZero(b)) { assign (gcd, b); return; }

 // ensure a and b are not modified
 a = copy (a);
 b = copy (b);

 while (!isZero(b)) {
 // last argument to subtract represents sign of result which
 // we can ignore since we only subtract smaller from larger.
 if (compareTo(a, b) > 0) {
 subtract (a, b, gcd, new int[1]);
 assign (a, gcd);
 } else {
 subtract (b, a, gcd, new int[1]);
 assign (b, gcd);
}
 }

 // value held in a is the computed gcd of original (a,b)
 assign (gcd, a);
}

This algorithm repeatedly compares two numbers (a and b) and subtracts the smaller number from the larger until zero is reached. The implementations of the helper methods (isZero, assign, compareTo, subtract) are not shown here, but can be found in the accompanying code repository.
This algorithm produces the greatest common divisor of two numbers, but there is no clear answer as to how many iterations will be required based on the size of the input. During each pass through the loop, either a or b is reduced and never becomes negative, so we can guarantee that the algorithm will terminate, but some GCD requests take longer than others; for example, using this algorithm, gcd(1000,1) takes 999 steps! Clearly the performance of this algorithm is more sensitive to its inputs than ADDITION or MULTIPLICATION, in that there are different input instances of the same size that require very different computation times. This GCD algorithm exhibits its worst-case performance when asked to compute the GCD of (10n−1, 1); it needs to process the while loop 10n−1 times! Since we have already shown that addition and subtraction are O(n) in terms of the input size n, GCD requires n*(10n−1) operations of its loop. Converting this equation to base 2, we have n*(23.3219*n)-n, which exhibits exponential performance. We classify this algorithm as O(n*2n).
The gcd implementation in Example 2-5 will be outperformed handily by the ModGCD algorithm described in Example 2-6, which relies on the modulo operator to compute the integer remainder of a divided by b.
Example 2-6. ModGCD algorithm for GCD computation
public static void modgcd (int a[], int b[], int gcd[]) {
 if (isZero(a)) { assign (gcd, a); return; }
 if (isZero(b)) { assign (gcd, b); return; }

 // align a and b to have same number of digits and work on copies
 a = copy(normalize(a, b.length));
 b = copy(normalize(b, a.length));

 // ensure that a is greater than b. Also return trivial gcd
 int rc = compareTo(a,b);
 if (rc == 0) { assign (gcd, a); return; }
 if (rc < 0) {
 int [] t = b;
 b = a;
 a = t;
 }

 int [] quot = new int[a.length];
 int [] remainder = new int[a.length];
while (!isZero(b)) {
 int [] t = copy (b);
 divide (a, b, quot, remainder);
 assign (b, remainder);
 assign (a, t);
 }

 // value held in a is the computed gcd of (a,b).
 assign (gcd, a);
}

ModGCD will arrive at a solution more rapidly because it won't waste time subtracting really small numbers from large numbers within the while loop. This difference is not simply an implementation detail; it reflects a fundamental shift in how the algorithm approaches the problem.
The computations shown in Figure 2-7 (and enumerated in Table 2-5) show the result of generating 142 random n-digit numbers and computing the greatest common divisor of all 10,011 pairs of these numbers.
[image: Comparison of gcd versus modgcd]

Figure 2-7. Comparison of gcd versus modgcd

Table 2-5. Time (in milliseconds) to execute 10,011 gcd computations
	
n

	
modgcd

	
gcd

	
n2/modgcd

	
n2/gcd

	
modgcd2n/modgcdn

	
gcd2n/gcdn

	
2

	
234

	
62

	
0.017

	
0.065

	 	
	
4

	
391

	
250

	
0.041

	
0.064

	
1.67

	
4.03

	
8

	
1,046

	
1,984

	
0.061

	
0.032

	
2.68

	
7.94

	
16

	
2,953

	
6,406

	
0.087

	
0.040

	
2.82

	
3.23

	
32

	
8,812

	
18,609

	
0.116

	
0.055

	
2.98

	
2.90

	
64

	
29,891

	
83,921

	
0.137

	
0.049

	
3.39

	
4.51

	
128

	
106,516

	
321,891

	
0.154

	
0.051

	
3.56

	
3.84

Even though the ModGCD implementation outperforms the corresponding GCD implementation by nearly 60%, the performance of ModGCD is quadratic, or O(n2), whereas GCD is exponential. That is, the worst-case performance of GCD (not exhibited in this small input set) is orders of magnitude slower than the worst-case performance of ModGCD.
More sophisticated algorithms for computing GCD have been designed—though most are impractical except for extremely large integers—and analysis suggests that the problem allows for more efficient algorithms.

[5] That is, the C implementation of last when compiled using -O3 optimization level and executed on the high-end computer, as described in the appendix, which covers benchmarking.

End of sample

 To search for additional titles please go to

 http://search.overdrive.com.

OEBPS/httpatomoreillycomsourceoreillyimages595823.png
Shipping Info
Hou; BOS;
cHiy 200 | 200
@7 | @6
o, 280 | 350
@4 | @6
Maximum Flow
<5,1,3,t> 200->(3)
teration oct- 1400
1 flow: 200
200
eration <s,1,4,t> (D———3
2 cost: 2000 100
flow: 300
200
teration <s,2,3,> (——20)
cost: 2400 100
flow: 400 60
100
<s2,4,t> ®
teration octtSe00 100
4 "
flow: 600 100
@—20->0)
teration
5

Flow Network

B
SEEC

Minimum Cost Flow
<5,2,3,t>
cost: 1120
flow: 280 B

@T—O

<5,2,4,t>

cost: 2000

flow: 300 280
@2 >0

<14 Q—30

cost: 2400 200

flow: 500 280
G50

st Q=220

cost: 2580 20

flow: 520

280
@ e O
<51,3,2,4Q= 103G

cost:3300 200
flow:600 509

100

OEBPS/httpatomoreillycomsourceoreillyimages595743.png
Destination

Buffalo
Atlanta
Baltimore
Atlanta
Atlanta
Boston
Baltimore
Austin
Albany
Boston
Baltimore
Atlanta

Destination

Albany
Atlanta
Atlanta
Atlanta
Atlanta
Austin
Baltimore
Baltimore
Baltimore
Boston
Boston
Buffalo

Airline
AirTran
Delta
Southwest
Air Tran
Delta
Delta
Southwest
Southwest
Southwest
Air Tran
Southwest
Alitalia

Airline

Southwest
Delta

Air Tran
Delta
Alitalia
Southwest
Southwest
Southwest
Southwest
Delta

Air Tran
Air Tran

Sched
10:42 AM
11:00 AM
11:05 AM
11:15 AM
12:00 PM
12:05 PM
12:20 PM
1:05PM
1:220PM
1:221PM
1:40 PM
1:50 PM

Sched

1:20PM
11:00 AM
11:15 AM
12:00 PM
1:50 PM
1:05PM
11:05 AM

OEBPS/httpatomoreillycomsourceoreillyimages595860.png

OEBPS/httpatomoreillycomsourceoreillyimages595767.png

OEBPS/httpatomoreillycomsourceoreillyimages595812.png
NecMax Recursion
Best Average Worst
0P) 0w | [T} sedaackng g Prterore

bestMove (s, player, opponent)
1. [move, score] = negmax s, ply, player, opponent)
2. return move

end

negmax (s, ply, player, opponent)

1. best=1[2,2]

2. if(ply = 0 ornovalid moves) then

3. score = evaluates for player Gametreels recursively

4. return [, score] explored, to afixed ply depth.

5. foreach valid move m for player in state s do Leaf nodes simply evaluate .

6 execute move mons game state from that player’s
perspective.

7. [move, score] = negmax (s, ply-1, opponent, player)

8. undomovemons Parents of a node maximize the
negative values of children

9. if(-score > bestscore) then best = [m, ~score] 7

10. return best
end

OEBPS/httpatomoreillycomsourceoreillyimages595813.png

OEBPS/httpatomoreillycomsourceoreillyimages595798.png
[

||

—[~]e

OEBPS/httpatomoreillycomsourceoreillyimages595799.png
35,000

30,000

25,000

search tree size
N
8
3
8

35,000

30,000

25,000

N
S
3
8

search tree size
o
g
8

‘Comparing search tree size from three initial positions (N1, N2, N3)

N1 ——
N2 --
N3 --% -

10

15
d=depth bound

20

Comparing search tree size from three initial positions (N1, N2, N3)

30

trend-N1
[~ | trend-N2
trend-N3

OEBPS/httpatomoreillycomsourceoreillyimages595821.png
Search

#int sourcelndex

#int sinkindex

#int numVertices
#FlowNetwork network

-Fboolean findAugmentingPath(Vertexinfo[)
+Search(FlowNetwork)

‘BFS,Seauhmmy‘ ‘DFS,Sea.chAuay‘ ‘ BFS_SearchList ‘ | DFS_SearchList ‘

OEBPS/httpatomoreillycomsourceoreillyimages595731.png
subip jo jaquinu =u
000'0€ 000'SZ_000'0Z 000'SL 000'0L 000’
T T T T T T

0

Subip jo s;equinu =u

uonndaxg

000'0€ 000'SZ_0000Z 000'SL 000'0L 000'S 0
T T T T T T

SUBIP Jo saquinu = u

= —enelppe
- - X topee Hooov 3 [> -suouppedH 00001 &
g - -zoPppe Fol —x —eaefppedd | ggry |
—+—1oppe ' K)) | L=exoeeead [l gogen
o0 pus-yBiH U6 ppe bupieduios 000s 5d dopsaq Uo ppe bupedwiod

SuBIp Jo Joquinu =u

TnduI03 PUSUBI 00 158 Buedwos

S domsag 4o 581 Buneduios

000'0€ 000'5Z_000'0Z 000'SL 000'0L 000'S 000'0€ 000'sZ 0000 000SL 00001 000's 0
T T T T T
- 000'L
0007
‘o
000'L & 000
2 000
0007 § 000's
Pl i
| 5 [e
- --B--auouse| 3 000 3
e - % -g0se| [10007 & - — - auouise[>d | 00001 £
—% —707s! F - m>m3mm_wa H000LL
—— Qe —— xQise .
) LORsEL [e E . . xo1sey 000'ZL

OEBPS/httpatomoreillycomsourceoreillyimages595826.png
IMultiPoint IHypercube IMultiLineSegment
-+int dimensionality() +int dimensionality() +int dimensionality(
+double getCoordinate(int) | |+double getLeft(int) +IMultiPoint getStartPoint()
+double distance(IMultiPoint) | | +double getRight(int) +MultiPoint getEndPoint()

+ double(] raw()

+boolean intersects(IMultiPoint)
+hoolean contains(IHypercube)
+boolean intersects(doublel)

OEBPS/httpatomoreillycomsourceoreillyimages595808.png

OEBPS/httpatomoreillycomsourceoreillyimages595861.png

OEBPS/httpatomoreillycomsourceoreillyimages595784.png
Aonvuw

OEBPS/httpatomoreillycomsourceoreillyimages595791.png
IGameState IPlayer
“+boolean isDraw() +int eval(IGameState)
+boolean isWin() +void score(lGameScore)
+IGameState copy() +Collection<iGameMove> validMoves(IGameState)
“+boolean equivalent(IGameState)
IGameMove
IGameScore +boolean isValid(IGameState)

+boolean execute(IGameState)

+int score(IGameState, PI
int score((GameState, Player) +boolean undo(IGameState)

OEBPS/httpatomoreillycomsourceoreillyimages595824.png
(a) Transshipment problem instance

Demand needs for d,

dy dy dy dy ds dg w,
Suppliers,
capacity | 403525206030 oo [~{Warehouse
limits.

s, [60 128(131(144|155[138(143 114

Production and

transportation
s, |70 132[156|145[134[128[150| [113| |ansportato

h 3
sy |80 [14a[156(124]152]136 128\ [115] LEEEEM
Perunit
w |7 7 9f1n]|s|6|9 shipping costs
1 from s to .
Shipping costs from
Warehouse cost warehouse w, to
per unit processing demand stations d,

(b) Minimum Cost Flow problem instance

OEBPS/httpatomoreillycomsourceoreillyimages595830.png

OEBPS/httpatomoreillycomsourceoreillyimages595851.png
-

€3ep nduj uj SUOJSUAWIP JO JAqUINN

L€ O€ 6 8 LT 9T ST ¥T €T TT LT OT 6L 8L LL 9L SL ¥L €L TL LLOL
T i

Ho

x /
¢

Fx

~3 - [p1eas 22104 aINig
—x — D1eas-py

d 897°76—1 JOAD SOUDIRES GZ L 10§ 10CUBIEN 15210BN 82104 21N1g 03 98.3-pY 10 souiLIakad aiedwod

00T

0o

009

008

0001

(SPUO23SI[IW UI) SWI UOIINIAXT

OEBPS/httpatomoreillycomsourceoreillyimages595786.png
BeLLman-Forp

23,8 Weighted

. Directed
Best Average Worst ¥#* Graph
OWv*E) o) ov*E) oo Array Overflow

singleSourceShortestPath (G,)
1. foreachveVdo

Initialize distl] array with available
edges from source vertex s = 0

2 distv == 2 2 B

3. predvl= © 0"0

4. distlsl=0 O
01234

5. fori=itondo [[=[=[]7]

6. foreach edge (uv)EE do distiv]

7. | newLen=distful+weight of edge (iv) |

8. | if (newLen<dist(v]) then !

9. I if(=n) then report Negative Cycier” |

10. | distivl=newlen |

. I__pr_ed[v !

end

In first pass, five edges are processed

In second pass, two edges are processed

6

©@ -

OEBPS/httpatomoreillycomsourceoreillyimages595737.png
g

i

Graph

Array

Stack

Queue

Priority
Queue

Double Ended
Queue

Weighted
Graph

3D Array

Divide and
Conquer

Brute Force

Dynamic
Programming

Greedy

Binary Tree

Binary Heap

Weighted
Directed
Graph

2D Array

[Em]
=

E

BERE]

Recursion

Backtracking

Heuristics

Overflow

KD tree

Set

Directed
Graph

Hash

OEBPS/httpatomoreillycomsourceoreillyimages595807.png
Minmax Recursion
Best Average Worst
o | o | oo | [T s P swerocs

bestMove (s, player, opponent)
1. original = player

2. [movescore] = minimax (s, ply, player, opponent)
3. returnmove

end

minimax (s, ply, player, opponent)

1. best=[J,2]
2. if(ply = 0 or no valid moves) then
3. score = evaluate s for original player Game tre s recursivel explored,
d 'ginal play toafixed ply depth.
4, return [score]
MIN nodes select the smallest
5. foreach valid move m for player in state s do of their child states.
6. executemovemons MAX nodes select the largest
7. [move, score] = minimax(s, ply-1, opponent, player) of their chi states.
8 undomovemons
9. if(playeris original) then L?"'fl'j"’df; W{”f’“‘f ')":"'
10. if (score > best score) then best = [m,score] P00 OO PYEr
1. else
12. if (score < best.score) then best = [m, score]

13. return best
end

OEBPS/httpatomoreillycomsourceoreillyimages595843.png
()suswBagbundasIRIUI<IURLIBASRUNTI>ISIT +
(uawBasaUNIUAWB3SAUNBUNS3SIAUIPPE PIOA +
(51UaWBaSILI0dPUIIMO|<1UBLIBASAUITI>1S|
(1uU3WB3SAUIT|)IUBWBASBUITIBMOTPPE PIOA +
(swawBasiuodpuziaddn<iuawBasaUNI>IstT +
(<wawWBasAU>IsI)sIUWBaSAUIIRAANPPE PIOA +
(uawBagaUrIUBWGaSaUrTIaddNPpe PIoA +

(UI0GIUIAINIUAS JUIOGIUAAT + (d1U10g)uI0gIang +
(3UI0IUBAT)SUIBIUOD UBB|0O] +

Ul UIOQIUaAT + J3LIOSIUIOIURAI<IUIO4IUBAT> I0tesedWO) +

GUIOAIBATIISUI PIOA + 13U0SWI0d<1Ul0d>I0Nesedwi0) +

" 0adurzs uealooq + SIUBWBASBUNASIAIIUBWBASAUT|>IST ~|

(onoNDIUBAT + SIUBWBSIAMO|<IUBWIBASAUN>ISIT ~

swawBasseddn<yuawibasau>IsIT ~

SIUBAI<IUIOJIUBAT IUIOJIUSAT >34 padueleg ~ utod Jutog] ~|
ananpiusag Uj0dIuaAg

(U1041U3A3 10d1uaAZ)21edWOD U1 +

<iuj0diuang>ojeredwiod

OEBPS/httpatomoreillycomsourceoreillyimages595837.png

OEBPS/httpatomoreillycomsourceoreillyimages595719.png
desls.

AU

el ungr

000 005t 000'L 00 % 0zl 00108 09 ov 0Ot
T T T T T T T
o000z
doooy &
000y §
o =
Hoo0e 2
s
o082
-ooooL 2 [009
Ei
Hoooz 3
2} R——— Joos
L ———pomesn 001 ———pemwT
+ fmogeay + oges
b \ , e 00051 B | . L e 000t
Wab1e] 10} U 5Z]5 Jo SYUNLP 33230][EaP 03 WL UJIEWS 10} U715 JO S{UNY> 2120[[23p 03 3
sz yuny uazs yunyp
000 005t 000't 005 0, ozL_00L 08 09 oy oz
F Hoooz
w 2T ooz
Hooov &
o &
qoos § L {oov
Hooos
3 . 4
-ooo'oL B 009
5
Hoooz 3
S +oos
F o001
L . HooooL . . L . L dooot

b .
'@ 9528] 403 U 5215 JO SHuUN

U> 960't 21820]|2 03 dWIL

IS JO SHUNYD 960y 2180||e 0} 3N

(*SWJ Uf) SWI UORNIXT

(s ul) SWIL UoRN>IXT

OEBPS/httpatomoreillycomsourceoreillyimages595755.png
Ln/21-1

01

02

03

05

06

07

16

09

"

15

08

01

02

03

05

06

15

09

1

07

08

01

02

03

05

09

1

06

07

08

01

02

03

09

05

06

07

08

01

02

03

08

09

05

06

07

01

02

15

08

09

05

06

03

07

01

15

08

02

05

06

03

07

08

02

o1

05

06

03

07

OEBPS/httpatomoreillycomsourceoreillyimages595805.png

OEBPS/httpatomoreillycomsourceoreillyimages595712.jpg
ALGORITHMS

IN A NUTSHELL

A Desktop Quick Reference

George T. Heineman,
O’REILLY® Gary Pollice & Stanley Selkow

OEBPS/httpatomoreillycomsourceoreillyimages595730.png
¢ (ag+ b+ carry;) mod10

(Lif a;+ by + carry, 2 10
carry;,, —
| 0 otherwise

OEBPS/httpatomoreillycomsourceoreillyimages595806.png
Comparing average search tree size from 1,000 random initial positions after n moves

search tree size

14,000
13,000
12,000
11,000
10,000

9,000

8,000 —

7,000
6,000
5,000
4,000
3,000
2,000
1,000

solution size

- A*Search —+—
L Breadth-First — - —
Depth-First(n) - - X -
Depth-First(2n) &

[~ | trend-Breadth-First —-—-—
f- | trend-Depth-First-n —- - -
trend-Depth-First-2n - -

01 2 3 4 5 6 7

8 9 10 11 12 13 14 15

n=plydepth

Comparing average number of moves in computed solutions

A*Search —+—

Breadth-First — % —

Depth-First(n) - - X- -
Depth-First(2n) -

a

I T T N B

n=

7 8 9 10 11 12 13 14
ply depth

OEBPS/httpatomoreillycomsourceoreillyimages595771.png
(a)

(b)

o roncn

(<)

Henry VI
(1457 -1509)
[I [1
Arthur Tudor |[Henry VIIl_|[Margaret Tudor |[Mary Tudor
(1486 -1502)((1491 - 1547) || (1489—1541) ||(1496-1533)
=
e -
—
Fr=s o2
- -
s R%
Work stations
S|
Wirsless “ el
Touter B
=~ 0y
‘ =7
| -~
=7

OEBPS/httpatomoreillycomsourceoreillyimages595817.png
Source nodes are to be matched
with sink nodes. Edge capacity s 1.

taximize number of pairs

Assignment

Supply nodes produce a single unit while
‘demand nodes consume a single unit.

—~——
—

Units flow from supply nodes to demand nodes.

Transportation
Units flow only from supply nodes to either
demand or transshipment nodes.

s Goal: Meet al demands and minimize total

=2 costof all edges plus transshipment costs.

Single source node (s) ships
units over distribution nodes (w)
toarive at sink node (). ach
edge has an associated capacity
and actual flow.

‘Goal: Maximize network flow :
flow(e)

e

[Transshipment

Maximum
Flow

i

Minimum Cost

Supply nodes s)produce units shipped over a
network of distribution nodes (w) to be
consumed at demand nodes (t). Each edge
has (low, high) capacity, an actual flow, and
associted cost per unit lowing over the edge.

Goal: Meet al demands and minimize total
cost ofall edges: Sflow(e) *costle)

e

Flow M
General General purpose solution using
smplexalgorithm.
L Goal: Minimuze 3¢, *x,
Programming ‘Where Ax = band x =0

OEBPS/httpatomoreillycomsourceoreillyimages595759.png

OEBPS/httpatomoreillycomsourceoreillyimages595859.png
o]
o]

o]
Io]

1]
I
o]

OEBPS/httpatomoreillycomsourceoreillyimages595785.png
DuxsTra’s ALGORITHM DG

Weighted
%' Directed

Best Average Worst

¢ Graph

ON2+E) | ON2+E) | OW2+E | T Amay [EEEE Overfiow

singleSourceShortest (G, s)
foreachv € Vdo
distlv] =
pred(v]
visited[v] = false
dist[s] =
while (true) do
determine u whose dist[u] is

NowawN

smallest of unvisited vertices

8 if(distlu] = =) then return
9. visited[ul = true
10 foreach neighborv of udo

1. w = weight of edge (u,v)
12. newLen = dist[u] +w
13. if (newLen < dist[v]) then
14. dist[v] = newlLen

15. previvl =u

end

On 5% iteration: u = vertex 3 causes no
change to dist, but changes visited.

LS

Initialize dist[v] and visited[v] with s = 0
distlv]

"

visited[v]

If total length of the path from (s,u)
followed by (uv) is shorter than the
best distance from (s,v) adjust dist{v].

1%t iteration: u = vertex 0

(0,0) + (04) < (04)
0,0+ (0.1) < (01

o[2[=[=[4
ed |V

2" iteration: u = vertex 1
©N+(12) <02

dist [0]2[5[=[4
visited |/ [v

34 teratio
0,4) +(43) < (03)
dist [0]2]5[11[4
visited || v

4™ iteration: u = vertex 2
02 +(23)<(03)

dist [0]2]5]10/4
visited |V |V |V v

OEBPS/httpatomoreillycomsourceoreillyimages595789.png
Pruim’s ALGORITHM
Best Average Worst
O((V+E*logV))| same same

Priority ;147 Weighted
J Queue Q’ Graph

N‘/\“ Greedy ™™ Array

computeMST (G)
1. foreach vEVdo
2 keyM=c=

3. prediv]
4. keyl0] =
5
6.
7

. PQ=new Priority Queue
. foreach vEV do

insert (v, key{v]) into PQ

8. while (PQis not empty) do
9. u=getMin(PQ)
10. foreach edge (uy) € Edo

1. if (PQ contains v) then
12. w = weight of edge (u)
13. if (W < keylV)) then
14. prediv] = u
15. keylv] =
16. decreaseKey (PQ, v, w)
end
A

----Final MST

Initialize with randomly selected s=0.

Vertices with key[l=x are not shown in PQ.

When minimum vertex u is removed from PQ and

“added” to the visited set S, use existing edges
__between S and growing spanning tree T to reorder PQ

01234

key [0]] [en] 0]
pred-11R1 1]

s OF

iprocessl]
@ 01234
o 4 @ key [0]2]~[8]4]
pred-1[0] 1 [0]0]
LR 0OOM
§ process 1

01234
o (2[5 [4]

pred[-1[0[7]0]0]
@ P QA0

| process 2
v

| process 4
Vprocess 3

OEBPS/httpatomoreillycomsourceoreillyimages595774.png
va
0

va
0

v3
0

ve
0

vi
0

18

vi

0
(@—AaIs
0

v2
v3
v4

12

Vs

OEBPS/httpatomoreillycomsourceoreillyimages595736.png
Algorithm Performance
(best, average, and worst)

Name of the
Algorithm Concepts
#EQUENTIAL SEARCH OO Array
| Best Average Worst
o(1) O(n) O(n)

search (A1)
1. fori=1tondo
2. if (Ali] = t) then

search (A, 15)

3. return true

4. return \false explored elements

end
Pseudocode Small
description Example

OEBPS/httpatomoreillycomsourceoreillyimages595783.png
DuksTRA’s ALGoRTHM PQ 3 g Weighted 27, .
28" Directed Priority
Best Average [Worst | $4% Grpn me dueve
O((V +E)rlogV) | same same | @ pray EEEE Overflow
singleSourceShortest (G, 5) Create PQ from neighbors v of
1. PQ = new Priority Queue vertexs = Obasedondistlvl pq
2. foreachv € Vdo I ON] <)
3. dist[v] @2 @2 01234
. prediv = [o[=[=[=]=]
5. distls] =0 ©] distiv]
6. foreachv € Vdo
7. insert (v, distlv]) into PQ Remove vertex u from PQ with least

8. while (PQis not empty) do
9. u=getMin(PQ)
10 foreach neighbor v of u do

1. w=weightof edge (uy)
12 newlen = distlu] + w

13, if (newLen < distiv)) then

14, decreaseKey (PQ, v, newLen)
15, distlv] = newLen

16. prediv] = u

end

5t iteration: remove 3 and done

distance from s. If path from (s,u) and
(u,v) is shorter than best computed
distance (s,v), adjust dist[v] and PQ.
1% iteration: remove 0 and adjust
PQ 01234
<O@0 DLEEFE
00) + (1) <01
(00) + (04) < (04)

2" teration: remove 1and adjust

rQ 01234
«<@@ [o[2[5]~[4]

1) +(1,2)<(02)

3 iteration: remove 4 and adjust

PQ 01234 PQ 01234
0[2[5]10[4 -« o[2[5[m[4

«

(04) + (4,3) < (0,3)

4t jteration: remove 2 and adjust
PQ 01
@ [o[2]

0.2) +(2,3) < (0,3)

OEBPS/httpatomoreillycomsourceoreillyimages595793.png
INode IMove INodeSet
+DoubleLinkedList<IMove> validMoves() | |+boolean isValid(INode) +boolean isEmpty0
+void score(int) +boolean execute(INode) +intsize)

“+int score() +boolean undo(INode) +INode contains(iNode)
+INode copy(+INode remove(INode)
+boolean equivalent(iNode) Solution +insert(INode)

“+Object key(- +Hterator<INode> ierator(
~+Object storedDatalObject) “+final INodeinitial

+Object storedData) -+final INode goal

+DoubleLinkedList<IMove>moves()
+boolean succeeded()
+String toString()

OEBPS/httpatomoreillycomsourceoreillyimages595836.png
1 Li-1x Ly
1 Lix Liy

1 px py

OEBPS/httpatomoreillycomsourceoreillyimages595788.png
3 » Weighted
Fuovo-WansuaLs z?‘j Directed EEEE Overfiow
Best Average Worst | ' Graph
[BEE .
o) oW o Bps| Dynamic [20 array
il Programming

Initialize dist[J[] matrix with existing edges
allPairsShortestPath (G)

01234
1. foreach uevdo ool 2]w]=]2
2. foreach vEV do 1|®[0f3|x|x
3. dist[u][v] = 2|o|w|0|5[1
a. prediullv] = 318 == f0]e
5. distlullul =0 4le|e]]7]0
6. foreach neighborvof udo dist{ullv]
7 distullv] = weight of edge (UV) o each vertex t € V, reduce
8. predullv] = u paths between each pair of (u,v)
vertices through t when possible
9. foreachtEVdo - _ 01234
10 foreachueVdo 20 of0]2[=[=x[4
1. foreachv e Vdo Glhy ' @ =03
12 newlen = distlulld + distldlv] g lemebe
13. if (newLen < dist[u][v]) then ©)] , " ;H;;E
14, dist[u][v] = newLen o
15. prediullv] = predit]v] 01234
ofo]2 H~[4
1|0|0]3|x|e
2|w|®|0]|5]1
3[8]10 012}
4| WP 7(0
01234
0f0[2]5
1|=[0]3 K]
2| |0]5
3(8110/13/012]
4 ||| 7|0

This is the final result since
processing vertex 4 has no impact

OEBPS/httpatomoreillycomsourceoreillyimages595829.png

OEBPS/httpatomoreillycomsourceoreillyimages595846.png
b) Voronoi Diagram

a) Bins

OEBPS/httpatomoreillycomsourceoreillyimages595762.png
Option: store elements

eI

P E T

wn oo
LI =

[}
2
&

ion: store keys

| >Rl
>R

L= g LA

computed key computed
clements values, some h=hash(e)
duplicate index into A

w0
LI =

with b=4
distinctbins |[Option: store elements, no lists|

Conflicts overwrite
earlier values that may
have been storedin A

A
es|
el

W= o

OEBPS/httpatomoreillycomsourceoreillyimages595854.png
SULBUalIp L leqiuni=p

or 13 3 st oz st oL
T T T T T T T
e RRT
x*x*x.x*x*x‘xka\x*x.xvxwx.x\x.xwxm.MMMM***
KKK KKK KKK KKK KKK KKK KX i 5o
FeNce
g8a8 -
pe-a-a8
88880888 L g
o-oee-06E8aE808 - o

WRHOBIE (o1.,U)0 0 SUCULIOLIed PEYIOfoId

00002

00007

00009

000'08

000'00L

000'0ZL

(papafoid) awiy uoNdaXE

OEBPS/httpatomoreillycomsourceoreillyimages595782.png
red

dist

v

" o

“w ©

~

0

f

12
13
14

OEBPS/httpatomoreillycomsourceoreillyimages595750.png
QUICKSORT ecursion JJg Divide and
Best Average Worst
@ Array
O(nlogn) | O(nlog n) 0o(n?)
sort (A)
1. quickSort (A,0,n~1)
end

quicksSort (A, left, right)
1. if (left <right) then

2. pi= partition (A left,right)
3. quickSort (A left,pi—1) -
4. quickSort (A, pi + 1, right) -
end

e sortsmaller
-~ sub-array

partition (A, left, right)

p = select pivot in Alleft, right]

swap Alp] and Alright]

store = left ==~ -

fori = left to right - 1 do

if (Ali] = Alright]) then

swap Ali] and Alstore] ~
store++

swap Alstore] and Alright]

return store

NSO, EWN =

Recursively
sort smaller
sub-array

OEBPS/httpatomoreillycomsourceoreillyimages595803.png
2[4 5| score:3s Arsearch [GoodEvaluato]Processed:11,open10
7]e
s[1]3 s[1]3
5 | scorer36 | [2] 4[5 | scoreao
2]7]6 7] e
3 s[1]s 8 13 s[1]3
5 scoredl | [a]| |5 |scoedo| 2 5 scoreds| [2] a5 | scoezn
6 2[7]6 746 7]s
3 s |3 8[1]3 8[1]3
5 | scoreaa [[a] 1[5 | scoreas [[a] 5| | scoeaa| [2]a| |scoren2
6 2]7]6 2]7]6 7]e]s
s[1]3 8 1
2| [4|soe22| (2 4 3 score3s
7[e[s 765
8 13 s[1]3 8] |3
2 6 4 scoren 2[4 score18 | |2 1 4 score26
7 [s 7s[s 765
e[1]s 13
7 2 4 score19 [s]2]a
6 s 7]els
e
8 [2 4] scoret0
7]s]s
1[2]s 13
8| |4|scoe0|GOAL| 8 2 4 score17
7165 76 5

OEBPS/httpatomoreillycomsourceoreillyimages595747.png
MEDIAN SorT
Recursion T Amay
Best Average Worst
BE oivide and
O(nlogn) O(nlogn) O(n? = Conquer
sort (A)
] A | 06|05|08|02|04 010703
1. medianSort (A,0,n~1)
end
mid Alme] = median
left { right
medianSort (A, left, right) 06 | 05 | 08 04 |01 |07 |03
1. if (left < right) then
g)) Exchange median to
2. find median value Alme] in Alleft, right] be in midpoint
3. mid=Lright+eft)/2]
4. swap Almid] and Alme]
5. for left=0to mid — 1 do
6. if (Ali] > Almid)) then 05| €3]| 0] 04 |@2 |1 Ul 05
2 find ATk < Almid] where k> mid T~
i Exchange larger for
8 swap Alil and AlK] s ot
9. medianSort (A left, mid - 1)
10. medianSort (A, mid + 1, right)
end
02| 01|03 06| 05|07 | 08
Recursively Recursively
sort smaller sort smaller

sub-array sub-array

OEBPS/httpatomoreillycomsourceoreillyimages595768.png
43

OEBPS/httpatomoreillycomsourceoreillyimages595758.png
SEQUENTIAL SEARCH

cm Aray
Best Average Worst)
Brute Force
o O(n) O (n)
search (A t) search (A, 15) found element

1. fori=0ton-1do
2. if (Ali] = t) then
3. return true

4. returnfalse

search (G, 1)
1. iter = Cbegin()

2. while (iter # Cend() do

3. e=nextelementfromiter
4. if (e = t) then

5. return true

6. returnfalse

end

s o as 17 [22 12326

exploredelements unexplored elements

search (C, 15) found element

iter
explored elements

OEBPS/httpatomoreillycomsourceoreillyimages595748.png
2a

2b

2c

15[of 8] 1f af11] 7)e13[6| 5[3[16] 2[10]14

15[s[i2] 1] 4[] 7.13\ 6] 5[3[16[2[10[14]

EEEEREE 7.13\15| s[12[1e[11]r0]14]

— S

| DEEEEE G|

|
| EEEEEE - G|

GIE|

| |
IEE EEERNEDE GEE)

OEBPS/httpatomoreillycomsourceoreillyimages595727.png

OEBPS/httpatomoreillycomsourceoreillyimages595857.png

OEBPS/httpatomoreillycomsourceoreillyimages595772.png
2
O O ONONO = O

OEBPS/httpatomoreillycomsourceoreillyimages595844.png
(yBu<iuawIBasaur|>apoNpPaILBWIBNY ‘o] <IUBWBASUITI>aPONPaIUBIBNY)aBURYRIAIDP +
(<IBWIBRSRUN|>15[)51UBIBASLASUI PIOA +
(<aUaWBaSaU|>3PONPaIUBWNY)paId<iuBIBASaUIT[>aPONPaILBWIBNY +
(<IUBWIB3S3UNTI>3PONPaIUBWIBNY)I05533oNS <IUBLIBASAUTI>IPONPRILSWIBNY +
(14Bu<1UaIB3S3UN|>aPONPRIUBIBNY ‘3| <IUSWB3SAUIT|>3PONPIIUBIBNY AUI0JIUaAT)BUIIIISIAUIRUILLIRIEP PIOA +
(3U1043u3A3)10GyBIINIYBL<IUBWIBASAUT>aPONPAILBWBNY +
(U10dIU3AZ)I0gUBIANYI<IUBLIBASAUN>3PONPaIUSWIBNY +

(w104daams136 1ui0d] +

ajeIs<yuawWBasaur|>aa1 padue|egpaluawWBny ~
JapioBas<uawBasaurT|>I0Mesedwio) +
1ddaams 1ujog) ~

awsour

OEBPS/httpatomoreillycomsourceoreillyimages595777.png

OEBPS/httpatomoreillycomsourceoreillyimages595781.png
BREADTH-FIRST SEARCH

Q’) Graph

Best Average Worst
oD Amay ~IOE> Queue

ov+p | OV+H | OV+BH
breadthFirstsearch (G,) startwith all white O >-6
1. foreachve Vdo vertices except . ® | ®
2 predvi=-1 o= 5 06 O
3. dist[v] =
4. colorlv] = White

M After firsttime ®
5. colorls] = Gray thvough oop ®
6. dist[s]=0
7. Q= empty Queve o= _[HlEl @
8 enqueue(,s) .

'S

9. while (Qis not empty) do
10. u=head(Q

1. foreach neighbor v of udo
12 if (color[v] is White) then
13, distlv] = distlu] + 1
14, predivl = u

15. colorlv] = Gray

16. enqueue (Q,v)

17. dequeue Q)
18 colorlu] = Black

After second time
through loop

o= _[2[8]

After third time
through loop

o= [3[4]5]

After fourth time
through loop

o= [4]s]6]

pred(] information ultimately records the
breadth-first tree discovered.
Unreachable vertices have pred(] = -1

©)

SC)

CHC)

Q

@@;@@

OEBPS/httpatomoreillycomsourceoreillyimages595835.png

OEBPS/httpatomoreillycomsourceoreillyimages595796.png
m|in e

=]~

OEBPS/httpatomoreillycomsourceoreillyimages595732.png
300,000

250,000

200,000

150,000

100,000

Execution Time (in ms)

50,000

Multiplication performance

mult —
alt -

OEBPS/httpatomoreillycomsourceoreillyimages595845.png

OEBPS/httpatomoreillycomsourceoreillyimages595819.png
Forp-FuLKERSON

Best Average Worst

O(E*mf) O(E*mf) O(E*mf)

]

T

Weighted

Iq W
48" Directea MJ\‘ Greedy
Graph

O Array

compute (G)
1. while (find augmenting path in G) do
2. processPath (path)

end

processPath (path)
v =sink
delta =
while (v # source) do
u = vertex previous to v in path
if (edge (u,v) is forward) then
t = (u,v).capacity - (uv).flow
elset = (v,u).flow
if (t < delta) then delta = t

@ NS M A wN

v=u

10. v = sink

11. while (v # source) do

12, u=vertex previoustov in path
13, if (edge (u) is forward) then
14. (uV)flow += delta

15, else (v,u).flow = delta

16 v=u

Augment path <s,2,4,t> with 2
units.

Augment <s,1,3,t> with 2 units.
See how edge (3,1) s under-used

Augment <s,1,4,2,3,£> with 1 unit.
Flow from (2,4) is redirected over
23).

OEBPS/httpatomoreillycomsourceoreillyimages595749.png
pivotindex

right

left
(15 [09 08 [o1 [oa [11 [o7 JREX

13 06 [o5 [o3 |

16 [02 [10 [14]

location

09 1314 [05|03|16|02]| 10| 06
09 13 (14 (05| 03|16|02]| 10| 06
@ 13 (14 05| 03| 16| 02| 10| 06
01 | 04 13 (14|08 | 03| 16| 02|10 | 06
01 | 04 1314 |08 |15| 16| 02| 10 | 06
01 | 04 13|14 |08 15|16 09 10| 06
01 | 04 13|14 |08 |15]| 16|09 10|11
median

OEBPS/httpatomoreillycomsourceoreillyimages595831.png
BRruTE FORCE INTERSECTION
Brute Force

Best Average | Worst

o) on?) o)

intersections (S)

1. foreachs,ESdo

2. foreachs,ES—{s,}do

3. p = intersection point of s, and s,
4, if (p exists) then record (p, 5, 5;)
end

OEBPS/httpatomoreillycomsourceoreillyimages595716.png
Ford-Fulkerson Algorithm:
Input Graph G with flow capacity ¢, a source node s, and a sink node t
Output A flow ffrom s to t which is a maximum

1. fluv) € Oforall edges (u,v)

2. while (there is a path p from s to t in G, such that ¢;(u,v)>0 for all edges (u,v)ep) do
3, Find ¢;(p) = min { c/(uV) | (uv)ep}

4. foreach edge c(uviep do

5 fluy) € fluv)+cp) // Send flow along the path

6. flvu) € fivu) - c/(p) //The flow might be “returned” later

end

OEBPS/httpatomoreillycomsourceoreillyimages595717.png
0S Services

Memory
Allocation
Records

malloc()
free()
exit()

Memory
Leak
Report

OEBPS/httpatomoreillycomsourceoreillyimages595794.png
DEepTH-FIRST SEARCH M sk [sckuckng
Best Average Worst
obrd) o) oy |k =
search (initial, goal) oy e 3 apen £
1. if (initial = goal) then return “Solution” -
2. initialdepth =0 P (1) afterfirst time through loop.
3. open = new Stack -
4. closed = new Set g w0 dosed o
5. insert (open, copy (initial)
6. while (open is not empty) do 2) ofte second tine through oop.
7. n=pop(open) apen @ dosedt 7
8 insert(closed,n)
9. foreach valid move mat n do)t thirdtimethrough oop
10. next = state when playing matn
om m
" if (closed doesn't contain next) then o [iE] cosed o
12 nextdepth = n.depth + 1
13. if (next = goal) then return “Solution” 4 ourth time through oop, goalfound
1. if (next.depth < maxDepth) then om
open doset
1. insert (open, next) s fom
16. return “No Solution”
end

closed
explored
open
unexplored

omo

OEBPS/httpatomoreillycomsourceoreillyimages595833.png
O(afr + 1)

OEBPS/httpatomoreillycomsourceoreillyimages595842.png
LineSweep (Pagr Il) ﬂﬁl Priorty Queve

Best Average Worst min

Binary Tree
O((n + K logn) | O(n + Klogn) | O E{}h

handleEventPoint (EQ, state, ep)
1. left = segment in state to left of ep
2. right = segment in state to right of ep

3. compute intersections in state from
(left to right)

4. report intersections (if any) at ep

5. remove segments in state between (but not
including) Teft and right. Left and right are . -
now guaranteed to be neighbors Before handling point 4

. advance the state sweep point down to ep EQ=<428537>
state = < 51,5255 >
. update = false

6.

7.

8. if (new segments start at ep) then After handling point 4

9. insertinto state new segments EQ=<928537>
10. update = true state = {51,52,53,54,55}
Report (4) as intersection.

11.if (intersections associated with ep) then
12 insertinto state intersections After handling point 9
13. update = true EQ=<10,28537>
14.if (update) then state = {51,53,52,54,55}
15. updateQueue (EQ, left, left's successor) Report (9)as intersection.
16. updateQueue (EQ, right, right’s predecessor)

17.else

18. update (EQ, left, right)

end

updateQueue (EQ, left, right)

1. if (neighboring left and right segments intersect below sweep point) then
2. insert their intersection point into EQ

end

OEBPS/httpatomoreillycomsourceoreillyimages595718.png
(b)

(a)

OEBPS/httpatomoreillycomsourceoreillyimages595856.png

OEBPS/httpatomoreillycomsourceoreillyimages595800.png
BREADTH-FIRST SEARCH

Best Average Worst

oY) o(b?) o(b?)

~IE- Queue

search (initial, goal)
i (initial = goal) then return “Solution”
open = new Queue

_gedl G moepth=3 open <GB

(1) afer st ime throughoop.

2
3. closed = new Set y e ST ot
4. insert (open, copy (initial)) ~
5. while (open is not empty)do -~ @)aftersecond ime ihroughioop
6. n=head (open) open 000 0 010 0 e
7 insert (closed, n))afterthirdtime trough loop osed
8. foreachvalid movematndo -
) oen ST TG 99 0w
9. next = state when playing matn am
10. if (closed doesn't contain next) then W infeutime oo gt found
n if (next = goal) then return “Solution” dosed:
; < mmE Wm
12 insert (open, next) open €I [0 ol 5ol 90 B0
13. return “No Solution”
end
O dosed
u egiored
O open

unexplored.

OEBPS/httpatomoreillycomsourceoreillyimages595850.png
‘number of double recursions

number of double recursions

80000

70000

60000

50000

40000

30000

20000

10000

300000

250000

200000

150000

100000

50000

of single recursions as d increases for fixed n

n = 131,072 single—+—
n = 262,14 single- %
n = 524,288 single-

% -

12 16 20 24 28 32
d = number of dimensions

of double recursions as d increases for fixed n

T

T

T T T T T

n = 131,072 double—+—
n = 262,144 double- > —
n = 524,288 double- - ¥- -

KIKHKHKHHHKHKHK
XK b

4 B

12 16 20 24 28 32
d = number of dimensions

OEBPS/httpatomoreillycomsourceoreillyimages595729.png

OEBPS/httpatomoreillycomsourceoreillyimages595721.png

OEBPS/httpatomoreillycomsourceoreillyimages595810.png

OEBPS/httpatomoreillycomsourceoreillyimages595814.png
ALPHABETA

recwsion T3 eurstis
Best Average Worst

ObPY2) O(bP¥2) 0(bPY) E Backtracking

bestMove (s, ply, player, opponent)

1. [move;score] = abls, ply, player, opponent, =, =)
2. return move

end

ab (s, ply, player, opponent, low, high)

1. best=[J,2]
2. if (ply = 0 or no valid moves) then
3. score = evaluate s for player
4. retum (g, score] Afterevaluating the sub game tree
5. foreach valid move m for player in state s do rooted at @, AlphaBeta knows that if
this move s mae, the opponent
6. executemovemons cannot force a worse position than—3
7. [move, score] = ab (s, ply-1, opponent, player, (;;mth;rmsmmnhwmwm
isa3).
8 —high, low)
When AlphaBeta getsto the game
9. undomovemons state ®, thefrstchild gome state ©
10. if (-score > best.score) then evaluates to 2. This means that i the
1 Jow = —score movefor @ isselected,the opponent
. can force the player into a gamestate
12. best = [m, low] that s fess than the best move found
o sofarie, 3. Thereis no needto
13 if(low = high) then return best checksibling subtree rooted at @ so
14, return best itispruned away.

OEBPS/httpatomoreillycomsourceoreillyimages595816.png

OEBPS/httpatomoreillycomsourceoreillyimages595726.png
16
15
14
13
12
1

10

o LN WsLaN®

Nearly sorted data where n/4 entries are randomly
shifted to be 4 away from thelr proper position

orT1—— B
Somr-2- -
Somr-3- x-

Sonr-4 -a-

0 5,000 70,000 75,000
Size of input set n

OEBPS/httpatomoreillycomsourceoreillyimages595818.png

OEBPS/httpatomoreillycomsourceoreillyimages595847.png
a) kd-tree Partition b) kd-tree Structure

OEBPS/httpatomoreillycomsourceoreillyimages595828.png
n—-1)n-2)
6

OEBPS/httpatomoreillycomsourceoreillyimages595832.png

OEBPS/httpatomoreillycomsourceoreillyimages595820.png
FlowNetwork<E>

VertexStructure

Vertexinfo

+ final int sourcelndex

-+ final int sinkindex

+ final int num Vertices

~ final Vertexinfol] vertices

+ List<Edgelnfo>forward
+ List<Edgelnfo>backward

+ final int previous
-+ final boolean forward

+ E getEdgeStructure()

+ Edgelnfo edge (int start, int end)
getFlow()

+ int getCost)

+ lerator<Edgelnfo>forward()
+ Iterator<Edgelnfo>backward)
+ void addForward(Edgelnfo ei)
+ void addBackward(Edgelnfo ei)

i

FlowNetworkArray

FlowNetworkAdjacencyList

Edgeinfo

[+ final int start

+ final int end

-+ final int capacity.
+ final int cost

[int flow

~ Edgelnfo[][] info

~VertexStructure(] info

+ int getFlow()

OEBPS/httpatomoreillycomsourceoreillyimages595852.png
O(af1 + 1)

OEBPS/httpatomoreillycomsourceoreillyimages595735.png
Execution Time (in ms)

0
0

Average execution of 10,000 invocations of 3.14159*2"

10 20 30 40 50 60 70 80 90

100 110 120 130 140

OEBPS/httpatomoreillycomsourceoreillyimages595804.png
Wil KR
45 wer [a[a]s] s
a7l 7] e
3 s sows [3]a]s]sones
7[ale [
OEE O
R OED ONE
i 2
Tih
FIE]
70 4 s

OEBPS/httpatomoreillycomsourceoreillyimages595849.png
KDTree

DimensionalNode

- DimensionalNode root
+final int maxDimension

+KDTree(int)

+void removeAll)

+void insert(IMultiPoint)
+DimensionalNode parent(IMultiPoint)
+DimensionalNode getRoot()

+void setRoot(DimensionalNode)
+IMultiPoint nearest(IMultiPoint)
+ArrayList<IMultiPoint>search(Hypercube)

+final IMuttiPoint point
+final int dimension

+final int max

+final double coord

Hypercube region
#DimensionalNode below
DimensionalNode above
- doublef] cached

+DimensionalNode(int, IMultiPoint)
+DimensionalNode getBelow()
“+void setBelow(DimensionalNode)
+DimensionalNode getAbove()
+void setAbove(DimensionalNode)
“HHypercube region(

+boolean isBelow(IMultiPoint)
+void search(IHypercube, ArrayList<IMultiPoint>)
-+boolean isBoundless()

“+boolean isLeaf()
#shorter(doublel], double)

OEBPS/httpatomoreillycomsourceoreillyimages595802.png
B

A*SEARCH Priority Queve m Heurstes

Best Average Worst
ob*d) oY oY {} =

search (initial, goal) iniial flg] target 2Ty open €0l

1. initial depth = 0
2. open = new PriorityQueue (1) after first time through loop

- i doset
3. closed = new Set e T ps
4. insert (open, copy(initial)

N (2) after second time through loop
5. while (open s not empty) do ot
6. n = minimum (open) open < 20 00 G ook
7. insert (closed, n) (3) after third time through loop Closed:
8. if(n=goal then return “Solution” T e
9. foreach valid move matn do oo SIWIOIDS GG
10. next = state when playing m atn Wi fourth e throughloop, g ourd
1. nextdepth = ndepth + 1 doset
12. if (closed contains next) then oo SWEIBE 0T
13, prior = state in closed matching next
14, if (next:score < prior.score) then
15, remove (closed, prior)
16. insert (open, next)
17. else
18. insert (open, next) O doset
19, return “No Solution” B omeed
open

end unexplored

OEBPS/httpatomoreillycomsourceoreillyimages595841.png
LINESwEEP (PART)

f1
Priority Queue

Best Average Worst min
Oin +Klogn) | O(n +Klogn) | O(m) g{}é Binary Tree
intersections (S) s2 -
1. EQ = new EventQueue
2. foreachsESdo s1
3. ep=finds.startin EQor create new
one and insert into EQ sa
4. addsto ep.upperLineSegments s6
5. ep = find s.end in EQ or create new
one and insert into EQ brocess S1
6. addsto ep.lowerLineSegments U‘\ TL
7. state = new LineState s s
8. while (EQ s not empty) do Pprocess S2
9. handleEventPoint(EQ, state, getMin (EQ)) U“ ?L 3“-
end v
process S5 s stos2
Tlelal2]5]3]7 process$3
UL ool C[OTL[OTL[OTe[oTL 1747273
v vy v U[CIUIC[OTL[OTE
SIS2 S5 s34 SIS3 sS4 2 ss v Vv vV
s 8 98 %2
Pprocess 54
116428537 142573
:fll \\i/\ \Lllll UIL[OTL ‘\i/ T[0T u] \lizl \\i/ l\i' [L
SIS2 S5 s34 1S3 6 s4 s2 S5 s152 s354 S1S3 sS4 s2

OEBPS/httpatomoreillycomsourceoreillyimages595764.png
[

__.{ k

U
(universe of keys)

k]

HE R

B[fE]/]
o/
| m=

NN NN

OEBPS/httpatomoreillycomsourceoreillyimages595822.png
2 pairs: (a,2),(b,y)

(@) Bipartite Matching (b) Maximum Flow
problem Instance problem instance

OEBPS/httpatomoreillycomsourceoreillyimages595761.png
HAasH-BASED SEARCH

@m Armay

Best Average
o) o

Worst
O(n)

B s

loadTable (size, C)

1. A=newarray of given size
2. fori=0ton-1do

3. h=hash(cli)

4. if(Alhlisempty) then

s. ATh] = new Linked List
6. addCliltoAlh]

7. return A

end

search (A, 1)

1. h=hash ()

2. list=Afh]

3. if (listis empty) then
4. returnfalse

5. if (listcontains t) then
6. return true

7. returnfalse

end

A = loadTable (3, C)
C[OT4T8ToTm[15117]

A handles collisions with lists
hash (e) = remainder ofe + 3

search (A, 11)
Note that remainder of 1

+3is2

c[OTaT8ToT1Ti5T17]

explored
elements

OEBPS/httpatomoreillycomsourceoreillyimages595862.png
v—
s—

—

S—

Isomorphism:

OEBPS/httpatomoreillycomsourceoreillyimages595752.png
15/9|8|1]4[11]7[12/13]16/ 5|3 16 2 [10[14
|
114716532 B3[15[9 [11]16[14]10[12)
~ ~
1]a]7]6[5[3[2] [3[1s[9[11[16[14[10[12

| |
1[al2[6[5[3 K0 [2[o[11[1ofE4[1516
| /N
[1T4]2]6]5][3] [12[9[11]10] [14[15[16]
| | |
| AEEEEN ° REEN Bl
| | |

[4]2T6]5]3] [ofi]i2] [15]1¢]
| | |

> HOE0 150
I

EIGEL)
|
Es[504]
|

OEBPS/httpatomoreillycomsourceoreillyimages595769.png
Step 1 Step2

26
@ @
15 25
Insert new Update colors of
Leafnode ancestor nodes
Step 3 Step 4

Rotate right to Update colors of
maintain red-black affected nodes

tree property

OEBPS/httpatomoreillycomsourceoreillyimages595770.png
rotateLeft(a)
-

-—
rotateRight(b)

OEBPS/httpatomoreillycomsourceoreillyimages595757.png
BUCKET SORT o Array

Best Average Worst EE Hash
O(n) O(n) O(n)
sort (A) A [IsD3[2[14 1 Te]
T createnbucketsB b e ion ovecutes use hash(x) =1x/3]
2. fori=0ton-1do ~~~~=~"""-o0 B NozaRN
3. k = hash(Ali}) o 3 4 56
U m
4. add Ali] to the k™ bucket B[k] NRERZEG
5. extract(B,A) Aftrforloop.
end wini=o | 8 [N[EZAN0314NN]
extract (B,

idx =0

fori

for

end

1
2
3. insertionSort (B)
4,
5

A asertorioop | A [1[2]5]2[14 1T 6]
h

8 [02[E]zaN 314NN
Oton—1do

>

m = 1to size(8lil) do [T2]sTe]7 6]
Alidx++] = mt" element of B[] | 8 [A.2A[GEEAN] (314NN

OEBPS/httpatomoreillycomsourceoreillyimages595724.png
Average of 48 trials of sorting small data sets

~ - N
3 o 8
8 3 8

Execution Time (in microseconds)
«
g

| SORT-:
SORT-:

1,200 H

,000

Execution Time (in microseconds)
& 8 8
8 8 8

N
8
3

Size of input set n

Average of 48 trials of sorting small data sets
T T T T T T T T T T T T

| SoRT-4:

cnsiaka 2]

0
0 32 64 96 128 160 192 224 256 288 320 352 384 416 448 480 512

Sorting larger data sets

OEBPS/httpatomoreillycomsourceoreillyimages595754.png
level 0 level 1 level 2 level 3 level 4
o

[16]11]15] o[10] 13[14] o8] 02[01] 05[12] 06[03] 07[04]
(c)

OEBPS/httpatomoreillycomsourceoreillyimages595773.png
Vi

v2

v3

va

V5

18| v2

OEBPS/httpatomoreillycomsourceoreillyimages595722.png
=30+

OEBPS/httpatomoreillycomsourceoreillyimages595797.png
m|in e

]

OEBPS/httpatomoreillycomsourceoreillyimages595787.png
[]v
[v|e
[e|e
o]t
o
[Alpaad
v
hm
[e|z
h_.
hu
[AJpa:d
=2
=k
e
[t
=

zJjJBJSJﬂl

[

®
0}) £ N_ - ® ©
9 Ho [o]o °
[Alpaid [apsip

ss0d puo2as ayy

[Alpaad [Apstp

OEBPS/httpatomoreillycomsourceoreillyimages595825.png
IPoint

ILineSegment

+Comparator<IPoint> xy_sorter

+double getX()
+double getY(

IRectangle

“+double getLeft(
“+double getBottom()
“+double getRight(

“+double getTop()

“+boolean intersects((Point)
+boolean contains(IRectangle)

“+IPoint getStart()

“+IPoint getEnd()

“+boolean isPoint()

“+double slope()

“+double yIntercept()

“+int sign()

“+boolean isHorizontal()
“+boolean isVertical()

“+IPoint intersection(lLineSegment)
“+boolean intersection(IPoint)
“+boolean pointOnRight(IPoint)
“+boolean pointOnLeft(IPoint)

OEBPS/httpatomoreillycomsourceoreillyimages595838.png
PartialHull

ArrayList<IPoint>points

+ PartialHull(IPoint one, IPoint two)

+ void add(IPoint p)

+ boolean removeMiddleOfLastThree()
+ boolean hasThree()

+ boolean areLastThreeNonRight()

+ int size()

+ IPoint(] getPoints()

+ Iterator<lIPoint>points()

OEBPS/httpatomoreillycomsourceoreillyimages595811.png

OEBPS/httpatomoreillycomsourceoreillyimages595745.png
INSERTION SORT

Best Average | Worst
oo Array
on | om | omy Y
sort (A) insert (A, 6, “7)
1. fori=1ton-1do
2. insert(A, i, Ali)
end
insert (A, pos, value) Already sorted
1. i=pos—1
2. while (i = 0and Ali] > value) do ':;;’;'““f/ Elements compared
3. Ali + 11 = Alil cpot a_and bumped up
a, i=i-1 (XN
5. Ali+1] = value 1«17 INENRRIREY 2] 3] ¢ |
end

Sorted region extended by one

OEBPS/httpatomoreillycomsourceoreillyimages595775.png

OEBPS/httpatomoreillycomsourceoreillyimages595751.png
15[9]8[1]4]11]7]12[13[165 |3 [16] 2 [10]14
|

("B 8T15[4117 [12[13[16] 5 [3]16[14[10[0|
|

[8T1s[a[11[7]12[13] 6 [5]316]14]10[9]
|
[8T4Tn[7 9 653 [1ofBY16[14[13]15]
~ N
8[an[7][9[6[5[3[10] [16[1a[13[15]
| |

N+ [11[7]o[6]5[10]8] i s
| |

[4]11][7 96510 8] [14[13]

I
(4I7[sTe s [s 1]
|
[4I7[o]6]5]e]
|

7
EHEH : B
|
[4[76]5]

OEBPS/httpatomoreillycomsourceoreillyimages595778.png
12

14

OEBPS/httpatomoreillycomsourceoreillyimages595779.png
DepTH-FiRsT SEARCH

Best Average | Worst

O(V+6) O(V+E) O(V+5)

HH

r\ur Backtracking

Recursion

17 oo

OO0 Array

depthFirstSearch (G, s)
1. foreachv €Vdo

2 dvl=fiv] = prediv] = -1
3. colorfv] = White

4. counter =0

5. dfsvisit(s) ¢

6. foreachv € Vdo
7. if (color[v] = White) then
8. dfs_visit (v) %

1. colorul = Gray
2. dlu] = ++counter
3. for each neighbor v of u do

4, if (colorfv] = White) then
5. predivl = u
13 dfs_visit (v)

7. color[u] = Black
8. flu] = ++counter
end

@ 2@—®

dfs_visit recursively visits the vertices
(1-5) marking each one Gray until it finds
one with no White neighbor vertex (i.e, 5)

@ @@,
:
©&@0 @

As each dfs_visit completes, unvisited
vertices initially passed over are explored
(i, 6 was a White neighbor of 2).
Completed vertices are colored Black.

Ll

Ifthe graph is unconnected then some
vertex will be colored White. Continue
toexplore these unvisited vertices.

bt

pred(l information records depth-first
forest discovered, shown as arrows

O @733 0-®

OEBPS/httpatomoreillycomsourceoreillyimages595815.png
E N S e ,M.,,.i:i_,,”{ :; , T _. i “, , T

OEBPS/httpatomoreillycomsourceoreillyimages595753.png
Heap Sort

am Aray
Best Average Worst

Recursion

g

O(nlogn) | O(nlogn) | O(nlogn) |du’ Binary Heap

sort(A) [os[oa] 1602 10 14]

1. buildHeap(A) K
2. fori=n-1 downto1do y bulldHesp

3. swapAOlwith Alll . [16[10140203 05]
16
o a

10 14

o

02 03 05

4. heapify (A0,
end

buildHeap (A)
1. fori= Ln/ZJfIdowntoodo .
2. heapify (A i,n)
end

Mightno longer g5 Sorted
bea hea sub-array
T Y

'Y

heapify (A, idx, max) 02 03

1 left = 2¥%dx + 1 N
2. right = 2%idx +2 [14] 10 050203 K
N . —
3. if(left < maxand Alleft] > Alidx]) then B
\. Aheap agaln 0f

4. largest = left 3 gub-armay

5. elselargest = idx

6. if (right < maxand Alright] > Allargest]) then

7. largest = right [10 03] os [o2 |RENIES

8. if(largest # idx) then — ——
. Sorted

9. swap Ali] and A[largest] Aheap again /\ sub-array

10. heapify (A, largest, max) 05

end 02

OEBPS/httpatomoreillycomsourceoreillyimages595738.png
linterval

+ int getLeft(
+ int getRight
+ booleanto

eLeft(int)
+ boolean toTheRight(init)
+ boolean intersects(int)
+ boolean equals(Object)

1Binary TreeNode<T>

+TgetleftSon()
+TgetRightSon()

)

4

SegmentTreeNode

~intleft
~int right
~intcount

~ SegmentTreeNode Ison
~ SegmentTreeNode rson

+SegmentTreeNode(int, int)
+ int getLeft()

+int getRight()

+ booleanintersects(int)

+ boolean toTheLeft(int)
+boolean toTheRight(int)

+int getCount()

+ SegmentTreeNode getleftSon()
+SegmentTreeNode getRightSon(
+boolean e‘guals(ob ject)

+void checkinterval(linterval)
+void checkinterval(int, int)

+ SegmentTreeNode getNode(int)
+boolean insert(lnterval)
+booleanremove(linterval)

void update(linterval)

disy

se(linterval)
+ String toString()

DefaultSegmentTreeNode

+ DefaultSegmentTreeNode(int, int)
+SegmentTreeNode construct(int, int)

StoredintervalsNode

ArrayList < linterval > intervals

+ StoredIntervalsNode(int, int)
update(linterval)

+ boolean equals(Object)

+ Collection<Interval>gather(linterval)
dis&oselllmewal)

+ Collection<linterval>intervals()

+ String toString()

OEBPS/httpatomoreillycomsourceoreillyimages595733.png
Execution Time

350,000

300,000

250,000

200,000

150,000

100,000

50,000

GCD performance

n = number of di

OEBPS/httpatomoreillycomsourceoreillyimages595848.png
NEeAResT NEIGHBOR %o WO tree
Best Average Worst EEl
Recurson
O(log n) Oflog n) O(n)
nearest (T, x)

1. n = find parent node where x would have been inserted
2. min = distance from x to n.point

3. better = nearest (T.root, min, x)

4. if (better found) then return better

5. return n.point

nearest (node, min, x)
d = distance from xto node point

1.
2.
3.
4. min=d

5. dp = perpendicular distance from x to node
6.

7.

8.

if (dp < min) then
pt = nearest (node.above, min, x)
If (distance from pt to x < min) then

9 result = pt

0. min = distance from pttox

1. pt=nearest (node.below, min, x)
12, if (distance from pttox < min) then
1B result=pt

4. min = distance from pttox

15. else

16 If(nodeisabovex) then

17. pt=nearest (nodeabove, min,x)
18 else

19 pt= nearest (nodebelow, min, x)

20 if (ptexists) then return pt
21, return result

(1)First recursion (point 1)
) «dnot loser than min
«dp ot closer than min
o wrecurseP3.
5/min
2)Second recursion (point 3)
. ~dcloserthan min!
I result = point3
min
dp_ «dp closer than min!
° recurse P7
recurse P8
(3) Deeperrecursions not shown...

OEBPS/httpatomoreillycomsourceoreillyimages595734.png
n Time (in ms)

]
]

300

250

200

150

Average time to compute 2%

20 30 a0

50

OEBPS/httpatomoreillycomsourceoreillyimages595780.png
s -1 1 32
1 s 2 31
2 1 3 8
n 2 4 5
10 2 6 7
3 1 9 30
12 3 0 n
4 3 12 29
13 4 13 14
5 4 15 28
6 5 6 27
7 6 17 26
14 19 20
9

OEBPS/httpatomoreillycomsourceoreillyimages595740.png
Alabama
Florida
Alaska
Rhode Island
Delaware
Maine
Wyoming
Texas
Kansas
Vermont

OEBPS/httpatomoreillycomsourceoreillyimages595795.png

OEBPS/httpatomoreillycomsourceoreillyimages595858.png
o]

Iof

1o]

1o]

[
o]

OEBPS/httpatomoreillycomsourceoreillyimages595765.png

OEBPS/httpatomoreillycomsourceoreillyimages595809.png
Comparator<Integer>

+int compare(Integer, Integer)
+boolean equals(Object)

IComparator

“final IComparator MIN
+final IComparator MAX

+int initialValue()
“+IComparator opposite()

OEBPS/httpatomoreillycomsourceoreillyimages595744.png
e‘ete’e le"e‘ete 'ete‘e’e l'e"ete‘e ‘efe*e’e Ce"elete Cetele’e Cevete'e
* Meetorece Aretetee Arererete Aetetele

VOV e ceteie

este et tesle ezt

tesfe tesle ‘esle

w \A w efelele \ \ >€€.m_m Precetete
4 %

qmv le te ’mv le res

OEBPS/httpatomoreillycomsourceoreillyimages595853.png
RANGE QUERIES

Lo o

Best Average Worst
Recursion
O(n'-/d4r) O(n'-1/d4r) O(n) EE
search (space)

1. results = new Set
2. search (space, root, results)
3. returnresults

search (space, node, results)

1. if (space contains node.region) then
2. add node.point to results

3. foreach descendant d of node do
a add d.point to results

5. return

6. if (space contains node.point) then
7. addnode point to esuts

8. if (space extends below node.coord) then
9. search (space, node below, results)
10. if (space extends above node.coord) then
1. search (space, node.above, results)

addiional recursions
not shown

(1)Invocation on root point 1)

space does ot contain region
space contains point

(3)Second recursion (point 3)

space does not contains region
space does not contain point

(@) Third recursion (point 7)

Space does not contains region
space contains point

results

24,56

OEBPS/httpatomoreillycomsourceoreillyimages595863.png
> =)

OEBPS/httpatomoreillycomsourceoreillyimages595855.png
KD-tree performance: Ratio=.23 Brute-Force performance: Ratio=.23

5,000 — -] s.000F

4,000~ - 4,000~

3,000~ 3,000~

2,000~ 2,000~

1,000~ 1,000~
0 o

=
8
S

TTTTT

=
8
8

TTTTT

] W B 2

= =l st :
2 4 6 8 10 12 14 o 2 4 6 8 10 12 14
Number of dimensions in input data Number of dimensions in input data

n=4,096 ——

°
o

OEBPS/httpatomoreillycomsourceoreillyimages595801.png

OEBPS/httpatomoreillycomsourceoreillyimages595790.png
o[x

=[o
o[x

o[x

o[x]

o[x

o[x

o[x

o[x
=[o

=[o
o[x

=[o
o[x

=[o
o[x

BEE

x[o[x

O[x[x
o[x

o]

=[o[x

O[]

O[]

o[x]

OEBPS/httpatomoreillycomsourceoreillyimages595834.png
Convex HulL Scan -
et veage Worst
Gree
ofn) Ofnlogn) | Ofnlogn) s e
convexHull () compute upper partal hull

1.

Nowaw

14.
end

sort P ascending by x — coordinate. Ties are
broken by sorting y - coordinate

if (n < 3) then return P

upper = <pg, p;> -
fori=2ton-1do
append p; to upper -7
while (last three in upper make left turn) do
remove middle of last three in upper ‘compute lower partial hull

lower = <p, ., Py2™> S
fori=n-3 downto0do—~"
append p; to lower
while (last three in lower make left turn) do
remove middle of last three in lower

remove duplicate end points and join upper
and lower

return computed hull

OEBPS/httpatomoreillycomsourceoreillyimages595756.png
COUNTING SORT wm Array

\after for
loop withi = 3

@ >
] B
ol -
Bl -
[~] =
[~]
[~]
L]

o

Best Average Worst
O(n) QO(n) O(n)
sort) » GLo[2[o[o2]2]
1. create k buckets B T .
> fori=0ton 1do ® [olo[o]o]
3. BIAIT++ After for loop, B has following counts
rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr s GLo[o[1]
4. idx=0 ide
5. fori=0tok—1do _ afterfor a [of oo ofo]2]2]
6. while (B[] >0)do © foopuwithi=0 | g
7. Alidx++] =i . -
PR i1 [& [olo] o[oo 2] 2]
en B] an
idx
| ,:,p""h{»x [o[oo]2]2 2]]

OEBPS/httpatomoreillycomsourceoreillyimages595728.png
z ((s)Pr{s;}

OEBPS/oreilly_large.gif
O’REILLY

OEBPS/httpatomoreillycomsourceoreillyimages595840.png
©o€‘0zL)

(©'€'001)
(0°€ "0'0) Moday
(57 '5'01) uoday
(€€'9'99'9) Uoday
(0°£'0'8) woday

(0°€L ‘0°0) Moday

{vs'sS ‘2595 ‘€S 1S}
{¥5's5'25 €S 1S}
{SS'¥S ‘TS ‘€S 'LS}
{SS'¥S €S ‘TS 1S}

{ss'zs 1S}

{zs'Ls}

(€21)

(£0):95

(06)-(621)SS

Z'cs1)

(/'8)$S

(€0 -(£'8)
Lz -(eL'o)
(€0)-(€10)

OEBPS/httpatomoreillycomsourceoreillyimages595723.png

OEBPS/httpatomoreillycomsourceoreillyimages595839.png
‘sod fenyut jo saquinu = u

edipue squnu=u
0000ZL 000001 00008 00009 0000Y 000'0Z
T

» ‘ " — Augbunios
B png

2% paoueieg

% — deay

—+— uogdeay

T T

UORNGIISIQ 3PIID UO SUOREHEA [INH XPAUOD JO 33UBULIO}DY

Siujod jepyut o saquinu = u

0000ZL 000001 00008 00009 0000Y 000'0Z 0007 008'L 009'L 00¥'L 00Z'L 000'L 008 009 0Ov 00T
T T T s = 1 e =)
e 2 05 .
g 4o
oo &
o5tz - oz
3
oz o
El
oz =
= — Ao bunios m “w— Auobunios | o
3 B woong oo § BT oo
TR pobuaen & TR poueren
L 5% Gean ose - e
X sogdeon X bosdeon
\ . . \ T T o0 e

UORNGLISI WU UO SUONELIEA (INH XBAUOS JO 92USWIIONDd

R

(spuoDasyju up awp uonsexa

OEBPS/httpatomoreillycomsourceoreillyimages595742.png
ela|g|l|e|c|alt|=|-|a|n|t]|=|=]d|o|g|-]|-|b]a]l
B[o] BIs] B10] B[15] B[20]

Ta[g[1]e]

OEBPS/httpatomoreillycomsourceoreillyimages595763.png
S

OEBPS/httpatomoreillycomsourceoreillyimages595760.png
BINARY SEARCH

Best Average Worst
Divide and Conquer
o) 0(logn) 0(logn)

search (A t) search M 1)
1. low=0 fow high
2. high=n-1 -- first pass n-“‘lm
3. while(low =high)do low i high
4. ix = (low + high)/2 ~secondpass[1 [4 [8 [9[11[15117]
5. if(t=Alix) then low
6. return true ix
7. elseif (t<Alix) then high

thirdpass{ 71 4 8 [9 [[15117]
8 high = ix—1 S —;
9. elselow=ix+1 explored
10. return false elements

end

OEBPS/httpatomoreillycomsourceoreillyimages595739.png
Stack

Heap

OEBPS/httpatomoreillycomsourceoreillyimages595746.png
09 | 08 | 01 1|07 |12 06 | 05 16 [02 10 |14
09| 15408 |01 |04]|11|07|12[13[06|05)|03]| 16|02 10|14
08 |09 | 15401 |04 [11 |07 |12]13|06|05[03]|16]|02]|10]| 14
01|08 |09|15 04|11 |07|12]|13|06|05]|03[16|02]10]14
01|04 |08|09|15f11]|07|12]|13]|06|05]|03|[16]02]|10]14
01|04 (08 [09 |11 | 15§07 |12 (13|06 |05|03|16|02(10|14
01|04 |07 |08 09|11 [15012]|13|06|05[03|16]|02]|10| 14
01|04]|07|08 09|11 |12]|15]13|06|05]|03|16|02]10]14
01|04|07|08|09]|11|12]|13]|15]06|05]|03[16|02]10]14
01|04)|06|07|08[09|11 [12]13|15]05([03(16)|02]|10] 14
01|04 (0506 |07 |08 |09|11 (12|13 [15§03|16| 021014
01 |03|04|05|06[07|08|09|11|12|13[15016|02]| 10| 14
01|03|04|05|06]|07 |08 |09|11|12]|13]|15[16]02]10]14
01|02]|03|04|05]|06|07 |08 |09|11]|12]13[15[16]10]14
01 |02|03|04|05[06f07|08|09|10/|11[12[13]|15]|16] 14
01|02(03[04|05|06|07|08(f09|10|11]|12|13[14[15 |16

OEBPS/httpatomoreillycomsourceoreillyimages595720.png
Consider the following classic 17th century haiku by Matsuo Basho:
B PEFRALKOE
This poem can represented by:
Encoding 1: 30-byte Unicode sequence:
E547A91CCB1A071A0908E89B4CBAS469BEBSF2F1C68280732(168E381573A53EB3
Encoding 2: 40-byte Kanji string:
“furu ike ya kawazu tobikomu mizu no oto”

Encoding 3: a3 x 18 array of characters, in translated English:

1

+ o o
> o
"
"o o
> m o

OEBPS/httpatomoreillycomsourceoreillyimages595741.png

OEBPS/httpatomoreillycomsourceoreillyimages595792.png
6

7

+

2
6

8

7

7

7

7

4| GoaL

3

OEBPS/httpatomoreillycomsourceoreillyimages595827.png
linterval

+ int getleft)

+ int getRight()

+ boolean toTheLeft(int)
+ boolean toTheRight(int)
+ boolean intersects(int)

OEBPS/httpatomoreillycomsourceoreillyimages595725.png
Sorted data

T T T
o
E
=
<
S
5
H
%
3
1k
N . e
0 10,000 15,000
Size of input setn
o __ Sorted data with 16 elements out of position
T T T
-1
7 L[
= | |Som-3-
£ 6| Sora
s
N
= 4f
<
231
g
Ps
i}
1k
o

0 5,000 10,000 15,000
Size of input setn

OEBPS/httpatomoreillycomsourceoreillyimages595766.png

OEBPS/httpatomoreillycomsourceoreillyimages595776.png
using namespace std;
enum vertexColor { White, Gray, Black };

enum edgeType { Tree, Backward, Forward, Cross

1/ For vertex u, stores information about (v, w) where edge (u, v) has
// the designated edge weight w

typedef pair <int,int> IntegerPair;

//Adjacency list for a vertex
typedef list<IntegerPair> VertexList;

Graph

#VertexList *vertices_
#intn_
#bool directed_

+Graph()

+Graph(int n, bool directed)
+Graph(int n)

~Graph()

~+void load(char *file)

+bool directed()

+int numVertices()

“+bool isEdge(int u, int v)

+bool isEdge(int u, int v, int &weight)
+int edgeWeight(int u, int v)

+void addEdge(int u, int v)

“+void addEdge(int u, int v, int weight)
+bool removeEdge(int u, int v)
const_iterator begin (int u)
const_iterator end(int u)

