

 [image: First Edition]

 Application Security for the Android Platform

Jeff Six

Editor
Mike Hendrickson

Editor
Andy Oram

Copyright © 2011 Jeff Six

O’Reilly books may be purchased for educational, business, or sales
 promotional use. Online editions are also available for most titles
 (http://my.safaribooksonline.com).
 For more information, contact our corporate/institutional sales
 department: (800) 998-9938 or corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo
 are registered trademarks of O’Reilly Media, Inc., Application
 Security for the Android Platform, the image of a red gunard,
 and related trade dress are trademarks of O’Reilly Media, Inc.
Many of the designations used by manufacturers and sellers to
 distinguish their products are claimed as trademarks. Where those
 designations appear in this book, and O’Reilly Media, Inc. was aware of a
 trademark claim, the designations have been printed in caps or initial
 caps.

While every precaution has been taken in the preparation of this
 book, the publisher and authors assume no responsibility for errors or
 omissions, or for damages resulting from the use of the information
 contained herein.

[image:]

O'Reilly Media

SPECIAL OFFER: Upgrade this ebook with O’Reilly

Click here for more information on this offer!
Please note that upgrade offers are not available from sample content.

Preface

The purpose of this book is to convey vital knowledge about
 application security to developers working on the Android platform, to
 enable the development of robust, rugged, and more secure
 applications.
While application security knowledge and skills have matured rapidly
 over the past couple of years, that knowledge is still scattered in a huge
 number of diverse locations. As of now, no single resource has existed that
 a developer with some experience in developing Android applications could
 turn to in order to understand the more important topics within the
 application security space and to find guidance on how to make their
 applications more secure. If you are such a developer, you’ll find the key
 points of application security that you need to know to develop secure
 applications laid out in a succinct and actionable manner. If you are an
 experienced security engineer or practitioner, you’ll find a summary of the
 unique characteristics of Android that you need to know to work within this
 environment. In short, this book enables the development of secure
 applications for the Android platform, whatever your background.
Organization of the Book

Although the chapters cover different topics, they have been
 arranged so that the concepts and techniques in earlier chapters form a
 foundation for the others.
	Chapter 1, Introduction
	Lays out the importance of this topic, and perhaps scares you
 a bit, so as to motivate you to read the book.

	Chapter 2, Android Architecture
	Describes the way Android differs from other common systems,
 notably desktop systems, and how its architecture both enables
 security and requires you to work with its unique structure.

	Chapter 3, Application Permissions
	Looks behind the familiar list of permissions that users see
 when adding applications to their devices, and shows how to use the
 system robustly without overwhelming the user.

	Chapter 4, Component Security and Permissions
	Takes the permissions system to a finer granularity by showing
 how components such as Content Providers and Services can grant
 limited access to their data and functions.

	Chapter 5, Protecting Stored Data
	Treats the critical topic of encrypting data so that it is
 secure even if the user or a thief can bypass other application
 security controls provided by Android (or when such controls do not
 apply).

	Chapter 6, Securing Server Interactions
	Shows how you can protect the interactions between your
 application and the servers it communicates with.

	Chapter 7, Summary
	Focuses on the key take-aways from the book.

Conventions Used in This Book

The following typographical conventions are used in this
 book:
	Italic
	Indicates new terms, URLs, email addresses, filenames, and
 file extensions.

	Constant width
	Used for program listings, as well as within paragraphs to
 refer to program elements such as variable or function names,
 databases, data types, and environment variables.

	Constant width
 bold
	Shows commands or other text that should be typed literally by
 the user.

	Constant width italic
	Shows text that should be replaced with user-supplied values
 or by values determined by context.

Tip
This icon signifies a tip, suggestion, or general note.

Caution
This icon indicates a warning or caution.

Using Code Examples

This book is here to help you get your job done. In general, you may
 use the code in this book in your programs and documentation. You do not
 need to contact us for permission unless you’re reproducing a significant
 portion of the code. For example, writing a program that uses several
 chunks of code from this book does not require permission. Selling or
 distributing a CD-ROM of examples from O’Reilly books does require
 permission. Answering a question by citing this book and quoting example
 code does not require permission. Incorporating a significant amount of
 example code from this book into your product’s documentation does require
 permission.
We appreciate, but do not require, attribution. An attribution
 usually includes the title, author, publisher, and ISBN. For example:
 “Application Security for the Android Platform by
 Jeff Six (O’Reilly). Copyright 2012 Jeff Six, 978-1-449315-078.”
If you feel your use of code examples falls outside fair use or the
 permission given above, feel free to contact us at
 permissions@oreilly.com.

Safari® Books Online

Note
Safari Books Online is an on-demand digital library that lets you
 easily search over 7,500 technology and creative reference books and
 videos to find the answers you need quickly.

With a subscription, you can read any page and watch any video from
 our library online. Read books on your cell phone and mobile devices.
 Access new titles before they are available for print, and get exclusive
 access to manuscripts in development and post feedback for the authors.
 Copy and paste code samples, organize your favorites, download chapters,
 bookmark key sections, create notes, print out pages, and benefit from
 tons of other time-saving features.
O’Reilly Media has uploaded this book to the Safari Books Online
 service. To have full digital access to this book and others on similar
 topics from O’Reilly and other publishers, sign up for free at http://my.safaribooksonline.com.

How to Contact Us

Please address comments and questions concerning this book to the
 publisher:
	O’Reilly Media, Inc.
	1005 Gravenstein Highway North
	Sebastopol, CA 95472
	800-998-9938 (in the United States or Canada)
	707-829-0515 (international or local)
	707-829-0104 (fax)

We have a web page for this book, where we list errata, examples,
 and any additional information. You can access this page at:
	http://www.oreilly.com/catalog/9781449315078

To comment or ask technical questions about this book, send email
 to:
	bookquestions@oreilly.com

For more information about our books, courses, conferences, and
 news, see our website at http://www.oreilly.com.
Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia
Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments

Many thanks to the technical reviewers, who provided valuable
 comments on early drafts of the book.
	Miguel Azevedo

	Drew Hintz

	Masumi Nakamura

	Members of the Android team at Google

The author would like to thank his wife, Cindy, for keeping him
 grounded and sane during the development of this book.

Chapter 1. Introduction

Welcome, developer! This book is for you: software developers that
 write for the Android mobile platform. Here you will learn what you need to
 know about the world of application security, and the interaction between
 software development and information security. In today’s world, application
 security knowledge is one thing that can differentiate developers.
Like it or not, you will be releasing applications into a high-threat
 environment. Although the Android platform is still pretty new and offers
 lots of great opportunities, it is also routinely targeted by malicious
 hackers who want to compromise mobile applications—your mobile
 applications—for their own gain (note that this is not to say that Android
 is targeted any more than other systems, such as web browsers, document
 formats, and so on; any platform with a decent number of users is a target
 nowadays, and Android sure has that). This book will teach you the basics of
 how to design and implement secure, robust, and rugged applications on the
 Android platform. It will also teach you how malicious hackers may view your
 application and how they may choose to attack it, information you can put to
 good use when designing and implementing your app.
As noted, this book is targeted to developers who are already
 developing for the Android mobile platform, or plan to. It assumes you have
 a decent knowledge of the Android environment, including how to design,
 build, and deploy applications. It does not, however, assume any background
 in application security, cryptography, or secure software development. What
 you, as a developer, need to know about these topics is exactly what this
 book aims to provide. This book exists to give you the information you
 need—no more, no less—to effectively develop in this environment.
Finally, before we get started—thanks. Thank you for taking an
 interest in application security and making the effort to increase your
 knowledge of how to create secure, robust, and rugged applications. The only
 way the current state of vulnerable, constantly exploited applications will
 change is for developers to see the need for more secure development
 practices and knowledge, and by their gaining that knowledge. Welcome to
 that journey.
Application Security: Why You Should Care

Security…why should you, as a developer, care? Security, in the
 context of information technology, refers to things like firewalls,
 intrusion detection systems, antivirus programs, and things like that.
 Surely someone who writes general purpose applications like games,
 calendaring apps, and photo manipulation tools does not need to worry
 about security, right? Wrong!
Imagine that you write apps to help busy people manage their
 schedules, and that you take advantage of cloud services to make that
 information available to your customers on their Android smartphones and
 tablets anywhere they go. This is a very useful service and many of the
 people who take advantage of it will be those who are very busy: financial
 services executives, for example. Your app takes off and sees widespread
 adoption. Then a busy executive is chatting with a friend from another
 firm at a conference and lets it slip that his firm has been reading the
 executive’s calendar. They have been able to see whom this executive was
 meeting with, what potential deals the firm was working on, and other
 confidential information! After some investigation, the executive learns
 that your calendaring app is vulnerable to what the application security
 field calls a command injection vulnerability, and that an unscrupulous
 engineer at his firm’s competitor has discovered this and was using it to
 target the competition’s mobile devices to grab sensitive
 information.
Let’s consider another situation: you write a really cool app that
 allows people to access many of their social media accounts all from one
 place. Users are able to see updates from their connections on Facebook,
 Google+, Twitter, and whatever other networks and services will emerge in
 the near future, all in one place. Users love this tool and use it all the
 time. Things are going great until you get an email one morning from a
 user who complains that all of her social media account details, including
 her passwords, have been published on a site hosted in eastern Europe. You
 check out the site and sure enough, details for thousands of users are
 posted. Looking through your accounting records, they are all users of
 your integration app. The next email you receive confirms your fears. It
 is from the hacker who stole this data. He reveals that he snuck a bit of
 code into an Android app that he released that looked, for unsecured
 database instances, like the one your app used, and grabbed all that data.
 Now, if you do not want him to release all of that information publicly, a
 large “protection fee” will be required.
Whose fault are these situations? Yours! You did not fully
 appreciate the environment that mobile applications run in. Gone are the
 days when you could deploy insecure, poorly developed code and no one
 cared. Now you are releasing your code to what we call a high-threat
 environment, more commonly known as the Internet. Your software is running
 on a device that has an always-on Internet connection and runs your code
 along with hundreds of other apps, all of which are from different
 authors, some of whom are anonymous. You failed to account for unexpected
 data to arrive over the network in the first example, and you failed to
 properly secure the sensitive data you were storing from other apps on the
 device in the second.
Note
Pure developer anonymity is not entirely possible, as anyone
 uploading applications into the Android Market is required to supply a
 valid credit card and corresponding identity information as part of the
 registration process. So there is some degree of assurance there.
 However, since it is possible—pretty easy in fact—to allow installation
 of applications from other sources (and there are a lot of third-party
 applications stores out there) on Android devices, this identity
 property only applies to applications obtained from the official source,
 the Android Market.

So, who needs to worry about properly coding their applications to
 resist such threats? Easy: anyone who is coding any application at all.
 Every single developer needs to have a basic understanding of application
 security. You need to understand why it is important to restrict access to
 certain components of your application, such as your database. You need to
 understand what cryptography is and how you can use different
 cryptographic functions to provide appropriate protections to the data
 your app is storing and processing. You need to understand how the Android
 environment works and how apps can be written that are secure, robust, and
 rugged. Luckily for you, all of these topics will be discussed in this
 book. We will get you up to speed with what you need to know as a
 developer. Your code, and the protection you are offering to your
 customers’ data, will be much better off for it.

The Current State of Mobile Application Security on Android

As of late 2011, the Android ecosystem has an awful lot going for
 it. Android phones are extremely popular and new models seem to come out
 every couple of days. There are thousands upon thousands of apps in the
 Android Market and the Java-based development model is appealing to lots
 of developers. Google continues to innovate on this platform at a rapid
 pace; indeed, Android 4.0, Ice Cream Sandwich, should be available by the
 time this book is published. This should resolve the current
 incompatibilities between phone and tablet versions.
However, all is not well in the world of Android. Recent analysis by
 outside firms has found multiple types of malware embedded in apps
 released on the Android Market. A lot more malware has been found in
 other, non-Google application stores. Tricking the user into installing
 the app by posing as a useful tool or game, the software then steals data
 from the phone and sends it out to unknown people with unknown
 motivations.
Some examples of malicious Android apps, discovered and removed from
 the Market, are:
	Super Guitar Solo

	Photo Editor

	Advanced Currency Converter

	Spider Man

	Hot Sexy Videos

People will try all sorts of things, making their malicious code
 look like all varieties of legitimate apps, in order to get unsuspecting
 users to install and run them. All of these examples were available on the
 Android Market and downloaded by many users before they were pulled.
 Indeed, this spoofing of legitimate applications and legitimate functions
 is not unique to Android Market either; it is a trait of any large scale
 system.
Android was designed from the ground up with a strong security
 model, so has that model been effective in mitigating this type of threat?
 The fact that this malware exists indicates that it has not, nor could
 anything really ever be, a panacea for platform security. And while this
 threat does continue to exist, the sandbox/permissions approach has
 provided some key wins. First, it does reduce the scope of functionality
 for most applications (reducing the attack surface for the malware if it
 does get to run on a device). The permissions model also provides users
 with better information about the real behavior of the applications they
 are installing, and combined with user reviews and feedback through the
 Android Market (and other sources), users can research to detect malicious
 applications. Finally, the malware that has been seen is more limited in
 its scope than that which exists for other platforms (although some
 malware actually exploits vulnerabilities in the Android system itself to
 obtain root-level access and do really nasty things). So, while the threat
 of malware on Android is real and will continue to be so, the security
 model, composed of the permissions capability and other constructs, does
 provide some real benefits and protection for the users.
In addition to these Android platform-specific troubles, it seems
 that every day brings news of a compromise of private data, with hacker
 groups releasing stolen files and large security firms announcing that
 they have discovered massive penetrations of huge numbers of corporations
 with industrial espionage (the stealing of corporate secrets) as the goal.
 Now, let’s note that these actions have occurred against computer systems
 in general; large-scale compromise of data like this has not been seen
 from Android platforms. Though the computer security industry has come a
 very long way in its short lifetime, things are clearly not working very
 well and the need for developers to release software that is less
 vulnerable is easily apparent.

Security: Risk = Vulnerability + Threat + Consequences

Security is all about managing risk. You will never ever have a
 perfectly secure system. The most honest statements ever made about being
 100% sure that your information is secure is known as Richards’ Law of
 Computer Security, which dates from 1992[1]. The first law: don’t buy a computer. The second law: if you
 do buy a computer, don’t turn it on. That is very useful and practical
 advice, no? Seriously, application security is all about tradeoffs. Think
 back to the example discussed in the previous section, centered on a
 social media integration app. If we need perfect assurance, a 100%
 guarantee, that the user’s usernames and passwords would not be
 compromised, the only way to accomplish this would be to not store them at
 all. However, this would make the entire concept of our application
 infeasible. We need to take on some risk in order to provide any useful
 services.
Compare this to a real-world example. Credit cards can be stolen,
 and if your card is stolen and used by the thief, you may need to go
 through some time-consuming and annoying processes to recover. When you
 hand your credit card to your waiter at a restaurant to settle your bill,
 there is a chance that he will run that card through a skimming device
 back in the kitchen that would allow him to clone that card and use it
 fraudulently. The only way to prevent this attack from occurring, with
 100% certainty, is to not ever use your credit cards in any manner where
 they leave your sight (indeed, this is how things are handled in Europe,
 where waiters bring the card processing machine to your table…but could
 you spot a card skimmer attached to such a machine?). You incur some risk
 when you hand that card over. However, you also incur a benefit in that
 you do not need to carry cash to pay for your meal, you obtain some
 rewards points from your card company, and you obtain a useful itemized
 statement of all your purchases every month. In modern society, most
 people have decided that these rewards outweigh the risk and are willing
 to hand over their credit card.
How is this decision made? How do we know whether the reward is
 worth the risk? The first thing we need to understand is what risk is.
 There are three primary components of risk:
 vulnerability, threat, and
 consequences. Let’s look at each of these three to
 see where risk comes from.
A vulnerability is something that allows an
 unintended and undesirable action to take place. In our credit card
 example, the vulnerability is that our credit card leaves our sight and we
 have no control over what happens to it at that point (one may also note
 that having a universally authenticated identification method, like a
 credit card number, is also a vulnerability in this scenario; why is the
 knowledge of a credit card number accepted as sufficient proof that you
 are whomever that card number belongs to?). The widespread availability of
 card skimmers is also a component of the vulnerability; if the card could
 not be duplicated in so quick and easy of a manner, the situation would be
 less concerning.
A threat is the second component of risk. A
 threat is something, or someone, that can take advantage of a
 vulnerability. In this case, the threat is a waiter who does take the card
 and clone it, using it to make fraudulent purchases. Here, we can judge
 that the threat is probably somewhat low. Most waiters are honest,
 hardworking people, so the threat in this case is much lower than what it
 may be if we were using that card to pay for stolen electronics instead of
 a meal, as an individual selling stolen goods is much more likely to steal
 our card information as well. So while the vulnerability in this situation
 may be severe, the threat is not particularly high.
The third component of risk is consequence.
 This refers to what would happen if whatever bad things we are considering
 were to actually happen. If we hand over our credit card to the waiter and
 he skims it and clones the card, what are the consequences? If no
 mitigations were in place (more about that in a second), the attacker
 could quickly purchase thousands of dollars worth of goods that we could
 then be charged for, potentially ruining our credit and requiring many
 hours of painful work to get resolved. The consequences of having our
 credit card cloned, through a successful exploitation of the vulnerability
 by the threat, could be severe.
What do we have here with regard to risk? The current system has a
 pretty serious vulnerability in it, as the card leaves our sight and can
 be easily cloned with the right device (which is widely available to
 anyone that wants one). The threat is probably pretty low, as most waiters
 are not out to steal our card information. The consequences of such a
 successful exploitation, however, could be pretty high. Consider all of
 these factors together and we can get a decent idea of what the risk of
 paying for our meal with a credit card is, and it is not a particularly
 positive outcome. This is basic definition of risk; it is a function of
 vulnerability, threat, and consequences.
So why are people are willing to hand over their cards on a regular
 basis? The risk is not at the level we have just calculated. The parties
 that are involved have implemented mitigations to reduce that risk. As we
 have seen, risk is a function of vulnerability, threat, and consequences.
 If the severity of any of these three can be reduced, the overall risk
 will go down. In our example, credit card companies have done a lot to
 mitigate the consequences to the consumer. In the United States, liability
 (what you are responsible for paying) for charges made on a compromised
 card is capped at $50 and many card companies set that value to zero. So
 if a customer were to charge their meal and the card were cloned and used
 fraudulently, the customer would not be responsible for the charge and
 such occurrences would not negatively impact the customer’s credit rating.
 The credit card companies take on that risk themselves because they need
 to reduce the consequences of credit card compromise in order to bring the
 risk (to the consumer) associated with using the cards down to an
 acceptable level. Because the actual consequences of a compromise are very
 slight, customers do not hesitate to use their cards, as the level of risk
 is greatly reduced due to this mitigation.
Think about the credit card example a bit—what other mitigations
 could be applied to this example to reduce the vulnerability, threat, or
 consequences? You can probably come up with quite a few.
A Short Bit on Device and User Account Security
It is possible, and in some cases very desirable, for your
 application to learn about the security status of the device it is
 running on. Using the Device Management API, introduced in Android 2.2,
 applications can determine password policies on devices, determine if
 device encryption capabilities are enabled, and other similar functions.
 These capabilities are useful in some situations, but are somewhat
 outside the scope of this book. Nevertheless, should you have a need to
 determine or influence the state of some of the device’s security
 features, it is good to know this API exists, so consider yourself so
 informed.
One other important and related topic is the security of a Google
 account. Android devices are almost always tied to a Google account and
 the Google services provided by Android applications typically use that
 account. It is, therefore, very important to keep your Google account
 safe and inaccessible by anyone else. Google provides a number of
 security features that can, and should, be enabled. These include the
 ability to require two-factor authentication to access your account (you
 need to know your password and also type in a code sent to your mobile
 phone when you attempt to log in), configuring a secondary email address
 to enable account recovery, and so on. So much within Android is tied to
 this Google account that its security should be a top priority.

[1] Source: http://virusbusters.itcs.umich.edu/um-
 resources/vb-interview.html

End of sample

 To search for additional titles please go to

 http://search.overdrive.com.

OEBPS/orm_front_cover.jpg
Processes, Permissions, and Other Safeguards

Apphcann
Security

Jfor the Android Platform

O’REILLY*

Jelf Six

OEBPS/oreilly_large.gif
O’REILLY

