

 [image: First Edition.]

 Database Design and Relational Theory

C.J. Date

Editor
Andy Oram

Copyright © 2012 Chris Date

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are also available for most titles (http://my.safaribooksonline.com). For more information, contact our corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of O’Reilly Media, Inc. Database Design and Relational Theory: Normal Forms and All That Jazz and related trade dress are trademarks of O’Reilly Media, Inc.
Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume no responsibility for errors or omissions, or for damages resulting from the use of the information contained herein.

[image:]

O'Reilly Media

Dedication

In computing, elegance is not a dispensable luxury but a quality that decides between success and failure.
—Edsger W. Dijkstra
The ill design is most ill for the designer.
—Hesiod
It is to be noted that when any part of this paper is dull there is design in it.
—Sir Richard Steele
The idea of a formal design discipline is often rejected on account of vague cultural / philosophical condemnations such as “stifling creativity”; this is more pronounced ... where a romantic vision of “the humanities” in fact idealizes technical incompetence ...
[We] know that for the sake of reliability and intellectual control we have to keep the design simple and disentangled.
—Edsger W. Dijkstra
My designs are strictly honorable.
—Anon.
To my wife Lindy and my daughters Sarah and Jennie with all my love

SPECIAL OFFER: Upgrade this ebook with O’Reilly

Click here for more information on this offer!
Please note that upgrade offers are not available from sample content.

Preface

This book began life as a comparatively short chapter in a book called Database in Depth: Relational Theory for Practitioners (O’Reilly, 2005). That book was superseded by SQL and Relational Theory: How to Write Accurate SQL Code (O’Reilly, 2009), where the design material, since it was somewhat tangential to the main theme of the book, ceased to be a chapter as such and became a (somewhat longer) appendix instead. I subsequently began work on a second edition of this latter book.[1] During the course of that work, I found there was so much that needed to be said on the subject of design that the appendix threatened to grow out of all proportion to the rest of the book. Since the topic was, as I’ve indicated, rather out of line with the major emphasis of that book anyway, I decided to cut the Gordian knot and separate the material out into a book of its own: the one you’re looking at right now.
Three points arise immediately from the foregoing:
	First, the present book does assume you’re familiar with material covered in the SQL and Relational Theory book (in particular, it assumes you know exactly what relations, attributes, and tuples are). I make no apology for this state of affairs, however, since the present book is aimed at database professionals and database professionals ought really to be familiar with most of what’s in that earlier book, anyway.

	Second, the previous point notwithstanding, there’s unavoidably a small amount of overlap between this book and that earlier book. I’ve done my best to keep that overlap to a minimum, however.

	Third, there are, again unavoidably, many references in this book to that earlier one. Now, most references in this book to other publications are given in full, as in this example:
Ronald Fagin: “Normal Forms and Relational Database Operators,” Proc. 1979 ACM SIGMOD Int. Conf. on Management of Data, Boston, Mass. (May/June 1979).
In the case of references to the earlier book in particular, however, from this point forward I’ll give them in the form of the abbreviated title SQL and Relational Theory alone. What’s more, I’ll take that abbreviated title to mean the second edition specifically (where it makes any difference).

Actually I’ve published several short pieces over the years, in one place or another, on various aspects of design theory, and the present book is intended among other things to preserve the good parts of those earlier writings. But it’s not just a cobbling together of previously published material, and I sincerely hope it won’t be seen as such. For one thing, it contains much new material. For another, it presents a more coherent, and I think much better, perspective on the subject as a whole (I’ve learned a lot myself over the years!). Indeed, even when some portion of the text is based on some earlier publication, the material in question has been totally rewritten and, I trust, improved.
Now, there’s no shortage of books on database design; so what makes this one different? In fact I don’t think there’s a book quite like this one on the market. There are many books (of considerably varying quality, in my opinion) on design practice, but those books (again, in my not unbiased opinion) usually don’t do a very good job of explaining the underlying theory. And there are a few books on design theory, too, but they tend to be aimed at theoreticians, not practitioners, and to be rather academic in tone. What I want to do is bridge the gap; in other words, I want to explain the theory in a way that practitioners should be able to understand, and I want to show why that theory is of considerable practical importance. What I’m not trying to do is be exhaustive; I don’t want to discuss the theory in every last detail, I want to concentrate on what seem to me the important parts (though, naturally, my treatment of the parts I do cover is meant to be precise and accurate, as far as it goes). Also, I’m aiming at a judicious blend of the formal and the informal; in other words, I’m trying to provide a gentle introduction to the theory, so that:
	You can use important theoretical results to help you actually do design, and

	You’ll be able, if you’re so inclined, to go to the more academic texts and understand them.

In the interest of readability, I’ve deliberately written a fairly short book, and I’ve deliberately made each chapter fairly short, too. (I’m a great believer in doling out information in digestible chunks.) Also, every chapter includes a set of exercises (answers to most of which are given in Appendix D at the back of the book), and I do recommend that you have a go at some of those exercises if not all. Some of them are intended to show how to apply the theoretical ideas in practice; others provide (in the answers if not in the exercises as such) additional information on the subject matter, over and above what’s covered in the main body of the text; and still others are meant—for example, by asking you to prove some simple theoretical result—to get you to gain some understanding as to what’s involved in “thinking like a theoretician.” Overall, I’ve tried to give some insight into what design theory is and why it is the way it is.

Prerequisites

My target audience is database professionals: more specifically, database professionals with a more than passing interest in database design. In particular, therefore, I assume you’re reasonably familiar with the relational model, or at least with certain aspects of that model (Chapter 2 goes into more detail on these matters). As already indicated, familiarity with the SQL and Relational Theory book would be a big help. Note: I'd like to mention that I also have a live seminar available based on this book. See www.justsql.co.uk/chris_date/chris_date.htm for further details.

Logical vs. Physical Design

This book is about design theory; by definition, therefore, it’s about logical design, not physical database design. Of course, I’m not saying physical design is unimportant (of course not); but I am saying it’s a distinct activity, separate from and subsequent to logical design. To spell the point out, the “right” way to do design is as follows:
	Do a clean logical design first. Then, as a separate and subsequent step:

	Map that logical design into whatever physical structures the target DBMS happens to support.[2]

Note, therefore, that the physical design should be derived from the logical design and not the other way around. (Ideally, in fact, the system should be able to derive the physical design “automatically” from the logical design, without the need for human involvement in the process at all.)
To repeat, the book is about design theory. So another thing it’s not about is the various ad hoc design methodologies—entity/relationship modeling and the like—that have been proposed over the years, at one time or another. Of course, I realize that certain of those methodologies are fairly widely used in practice, but the fact remains that they enjoy comparatively little by way of a solid theoretical basis. As a result, they’re mostly beyond the scope of a book like this one. However, I do have a few remarks here and there on such methodologies (especially in Chapter 8 and Chapter 15 and Appendix A).

Acknowledgments

I’d like to thank Hugh Darwen, Ron Fagin, David McGoveran, and Andy Oram for their meticulous reviews of earlier drafts of this book. Each of these reviewers helped correct a number of misconceptions on my part (rather more such, in fact, than I like to think). Of course, it goes without saying that any remaining errors are my responsibility. I’d also like to thank Chris Adamson for help with certain technical questions, and my wife Lindy for her support throughout the production of this book, as well as all of its predecessors.
C. J. Date
Healdsburg, California
2012

[1] Now (2012) available from O’Reilly.

[2] DBMS = database management system. Note that there’s a logical difference between a DBMS and a database! Unfortunately, the industry very commonly uses the term database when it means either some DBMS product, such as Oracle, or the particular copy of such a product that happens to be installed on a particular computer. I do not follow that usage in this book. The problem is, if you call the DBMS a database, what do you call the database?

Part I. SETTING THE SCENE

This part of the book consists of two chapters, the titles of which (“Preliminaries” and “Prerequisites,” respectively) are more or less self-explanatory.

Chapter 1. Preliminaries

(On being asked what jazz is:)
Man, if you gotta ask, you’ll never know
—Louis Armstrong (attrib.)

This book has as subtitle Normal Forms and All That Jazz. Clearly some explanation is needed! First of all, of course, I’m talking about design theory, and everybody knows normal forms are a major component of that theory; hence the first part of my subtitle. But there’s more to the theory than just normal forms, and that fact accounts for that subtitle’s second part. Third, it’s unfortunately the case that—from the practitioner’s point of view, at any rate—design theory is riddled with terms and concepts that seem to be difficult to understand and don’t seem to have much to do with design as actually done in practice. That’s why I framed the latter part of my subtitle in colloquial (not to say slangy) terms; I wanted to convey the idea, or impression, that although we’d necessarily be dealing with “difficult” material on occasion, the treatment of that material would be as undaunting and unintimidating as I could make it. But whether I’ve succeeded in that aim is for you to judge, of course.
I’d also like to say a little more on the question of whether design theory has anything to do with design as done in practice. Let me be clear: Nobody could, or should, claim that designing databases is easy. But a sound knowledge of theory can only help. In fact, if you want to do design properly—if you want to build databases that are as robust, flexible, and accurate as they’re supposed to be—then you simply have to come to grips with design theory. There’s just no alternative: at least, not if you want to claim to be a professional. Design theory is the scientific foundation for database design, just as the relational model is the scientific foundation for database technology in general. And just as anyone professionally involved in database technology in general needs to be familiar with the relational model, so anyone involved in database design in particular needs to be familiar with design theory. Proper design is so important! After all, the database lies at the heart of so much of what we do in the computing world; so if it’s badly designed, the negative impacts can be extraordinarily widespread.
SOME QUOTES FROM THE LITERATURE

Since we’re going to be talking quite a lot about normal forms, I thought it might be—well, not enlightening, perhaps, but entertaining (?)—to begin with a few quotes from the literature. The starting point for the whole concept of normal forms is, of course, first normal form (1NF), and so an obvious question is: Do you know what 1NF is? As the following quotes demonstrate (sources omitted to protect the guilty), a lot of people don’t:
	To achieve first normal form, each field in a table must convey unique information.

	An entity is said to be in the first normal form (1NF) when all attributes are single valued.

	A relation is in 1NF if and only if all underlying domains contain atomic values only.

	If there are no repeating groups of attributes, then [the table] is in 1NF.

Now, it might be argued that some if not all of these quotes are at least vaguely correct—but they’re all hopelessly sloppy, even when they’re generally on the right lines. (In case you’re wondering, I’ll be giving a precise and accurate definition of 1NF in Chapter 4.)
Let’s take a closer look at what’s going on here. Here again is the first of the foregoing quotes, now given in full:
	To achieve first normal form, each field in a table must convey unique information. For example, if you had a Customer table with two columns for the telephone number, your design would violate first normal form. First normal form is fairly easy to achieve, since few folks would see a need for duplicate information in a table.

OK, so apparently we’re talking about a design that looks something like this:
[image: image with no caption]

Now, I can’t say whether this is a good design or not, but it certainly doesn’t violate 1NF. (I can’t say whether it’s a good design because I don’t know exactly what “two columns for the telephone number” means. The phrase “duplicate information in a table” suggests we’re recording the same phone number twice, but such an interpretation is absurd on its face. But even if that interpretation is correct, it still wouldn’t constitute a violation of 1NF as such.)
Here’s another one:
	First Normal Form ... means the table should have no “repeating groups” of fields ... A repeating group is when you repeat the same basic attribute (field) over and over again. A good example of this is when you wish to store the items you buy at a grocery store ... [and the writer goes on to give an example, presumably meant to illustrate the concept of a repeating group, of a table called Item Table with columns called Customer, Item1, Item2, Item3, and Item4]:
[image: image with no caption]

Well, this design is almost certainly bad—what happens if the customer doesn’t purchase exactly four items?—but the reason it’s bad isn’t that it violates 1NF; like the previous example, in fact, it’s a 1NF design. And while it’s true that 1NF does mean, loosely, “no repeating groups,” a repeating group is not “when you repeat the same basic attribute over and over again.” (What it really is I’ll explain in Chapter 4, when I explain what 1NF really is.)
How about this one (a cry for help found on the Internet)? I’m quoting it absolutely verbatim, except that I’ve added some boldface:
	I have been trying to find the correct way of normalizing tables in Access. From what I understand, it goes from the 1st normal form to 2nd, then 3rd. Usually, that’s as far as it goes, but sometimes to the 5th and 6th. Then, there’s also the Cobb 3rd. This all makes sense to me. I am supposed to teach a class in this starting next week, and I just got the textbook. It says something entirely different. It says 2nd normal form is only for tables with a multiple-field primary key, 3rd normal form is only for tables with a single-field key. 4th normal form can go from 1st to 4th, where there are no independent one-to-many relationships between primary key and non-key fields. Can someone clear this up for me please?

And one more (this time with a “helpful” response):
	> It’s not clear to me what “normalized” means. Can you be specific about what normalization rules you are
> referring to? In what way is my schema not normalized?

Normalization: The process of replacing duplicate things with a reference to the original thing.
For example, given “john is-a person” and “john obeys army,” one observes that the “john” in the second sentence is a duplicate of “john” in the first sentence. Using the means provided by your system, the second sentence should be stored as “–>john obeys army.”

A NOTE ON TERMINOLOGY

As I’m sure you noticed, the quotes in the previous section were expressed for the most part in the familiar “user friendly” terminology of tables, rows, and columns (or fields). In this book, by contrast, I’ll tend to favor the more formal terms relation, tuple (usually pronounced to rhyme with couple), and attribute. I apologize if this decision on my part makes the text a little harder to follow, but I do have my reasons. As I said in SQL and Relational Theory:[3]
I’m generally sympathetic to the idea of using more user friendly terms, if they can help make the ideas more palatable. In the case at hand, however, it seems to me that, regrettably, they don’t make the ideas more palatable; instead, they distort them, and in fact do the cause of genuine understanding a grave disservice. The truth is, a relation is not a table, a tuple is not a row, and an attribute is not a column. And while it might be acceptable to pretend otherwise in informal contexts—indeed, I often do exactly that myself—I would argue that it’s acceptable only if we all understand that the more user friendly terms are just an approximation to the truth and fail overall to capture the essence of what’s really going on. To put it another way, if you do understand the true state of affairs, then judicious use of the user friendly terms can be a good idea; but in order to learn and appreciate that true state of affairs in the first place, you really do need to come to grips with the formal terms.

To the foregoing, let me add that (as I said in the preface) I do assume you know exactly what relations, attributes, and tuples are!—though in fact formal definitions of these constructs can be found in Chapter 5.
There’s another terminological matter I need to get out of the way, too. The relational model is, of course, a data model. Unfortunately, however, this latter term has two quite distinct meanings in the database world.[4] The first and more fundamental one is this:
	Definition: A data model (first sense) is an abstract, self-contained, logical definition of the data structures, data operators, and so forth, that together make up the abstract machine with which users interact.

This is the meaning we have in mind when we talk about the relational model in particular: The data structures in the relational model are relations, of course, and the data operators are the relational operators projection, join, and the rest. (As for that “and so forth” in the definition, it covers such matters as keys, foreign keys, and various related concepts.)
The second meaning of the term data model is as follows:
	Definition: A data model (second sense) is a model of the data—especially the persistent data—of some particular enterprise.

In other words, a data model in the second sense is just a (logical, and possibly somewhat abstract) database design. For example, we might speak of the data model for some bank, or some hospital, or some government department.
Having explained these two different meanings, I’d like to draw your attention to an analogy that I think nicely illuminates the relationship between them:
	A data model in the first sense is like a programming language, whose constructs can be used to solve many specific problems but in and of themselves have no direct connection with any such specific problem.

	A data model in the second sense is like a specific program written in that language—it uses the facilities provided by the model, in the first sense of that term, to solve some specific problem.

It follows from all of the above that if we’re talking about data models in the second sense, then we might reasonably speak of “relational models” in the plural, or “a” relational model (with an indefinite article). But if we’re talking about data models in the first sense, then there’s only one relational model, and it’s the relational model (with the definite article).
Now, as you probably know, most writings on database design, especially if their focus is on pragma rather than the underlying theory, use the term “model,” or “data model,” exclusively in the second sense. But—please note carefully!—I don’t follow this practice in the present book; in fact, I don’t use the term “model” at all, except occasionally to refer to the relational model as such.

[3] I remind you from the preface that throughout this book I use SQL and Relational Theory as an abbreviated form of reference to my book SQL and Relational Theory: How to Write Accurate SQL Code (2nd edition, O’Reilly, 2012).

[4] This observation is undeniably correct. However, one reviewer wanted me to add that the two meanings can be thought of as essentially the same concept at different levels of abstraction.

THE RUNNING EXAMPLE

Now let me introduce the example I’ll be using as a basis for most of the discussions in the rest of the book: the familiar—not to say hackneyed—suppliers-and-parts database. (I apologize for dragging out this old warhorse yet one more time, but I believe that using essentially the same example in a variety of different books and publications can help, not hinder, learning.) Sample values are shown in Figure 1-1.[5] To elaborate:
	Suppliers: Relvar S denotes suppliers.[6] Each supplier has one supplier number (SNO), unique to that supplier; one name (SNAME), not necessarily unique (though the SNAME values in Figure 1-1 do happen to be unique); one status value (STATUS), representing some kind of ranking or preference level among suppliers; and one location (CITY).

	Parts: Relvar P denotes parts (more accurately, kinds of parts). Each kind of part has one part number (PNO), which is unique; one name (PNAME), not necessarily unique; one color (COLOR); one weight (WEIGHT); and one location where parts of that kind are stored (CITY).

	Shipments: Relvar SP denotes shipments (it shows which parts are supplied, or shipped, by which suppliers). Each shipment has one supplier number (SNO), one part number (PNO), and one quantity (QTY). Also, I assume for the sake of the example that there’s at most one shipment at any one time for a given supplier and a given part, and so each shipment has a supplier-number/part-number combination that’s unique.

[image: The suppliers-and-parts database—sample values]

Figure 1-1. The suppliers-and-parts database—sample values

[5] For reasons that will become clear later, the values shown in Figure 1-1 differ in two small respects from those in other books of mine: The status for supplier S2 is shown as 30 instead of 10, and the city for part P3 is shown as Paris instead of Oslo.

[6] If you don’t know what a relvar is, for now you can just take it to be a table in the usual database sense. See Chapter 2 for further explanation.

KEYS

Before going any further, I need to review the familiar concept of keys, in the relational sense of that term. First of all, as I’m sure you know, every relvar has at least one candidate key. A candidate key is basically just a unique identifier; in other words, it’s a combination of attributes—often but not always a “combination” consisting of just a single attribute—such that every tuple in the relvar has a unique value for the combination in question. For example, with respect to the database of Figure 1-1:
	Every supplier has a unique supplier number and every part has a unique part number, so {SNO} is a candidate key for S and {PNO} is a candidate key for P.

	As for shipments, given the assumption that there’s at most one shipment at any one time for a given supplier and a given part, {SNO,PNO} is a candidate key for SP.

Note the braces, by the way; to repeat, candidate keys are always combinations, or sets, of attributes (even when the set in question contains just one attribute), and the conventional representation of a set on paper is as a commalist of elements enclosed in braces. Note: The useful term commalist can be defined as follows: Let xyz be some syntactic construct (for example, “attribute name”). Then the term xyz commalist denotes a sequence of zero or more xyz’s in which each pair of adjacent xyz’s is separated by a comma (as well as, optionally, one or more spaces before or after the comma or both).
Next, as I’m sure you also know, a primary key is a candidate key that’s been singled out in some way for some kind of special treatment. Now, if the relvar in question has just one candidate key, then it doesn’t make any real difference if we call that key primary. But if the relvar has two or more candidate keys, then it’s usual to choose one of them to be primary, meaning it’s somehow “more equal than the others.” Suppose, for example, that suppliers always have both a unique supplier number and a unique supplier name, so that {SNO} and {SNAME} are both candidate keys. Then we might choose {SNO}, say, to be the primary key.
Observe now that I said it’s usual to choose a primary key. Indeed it is usual—but it’s not 100 percent necessary. If there’s just one candidate key, then there’s no choice and no problem; but if there are two or more, then having to choose one and make it primary smacks a little bit of arbitrariness, at least to me. (Certainly there are situations where there don’t seem to be any good reasons for making such a choice. There might even be good reasons for not doing so. Appendix A elaborates on such matters.) For reasons of familiarity, I’ll usually follow the primary key discipline myself in this book—and in pictures like Figure 1-1 I’ll indicate primary key attributes by double underlining—but I want to stress the fact that it’s really candidate keys, not primary keys, that are significant from a relational point of view, and indeed from a design theory point of view as well. Partly for such reasons, from this point forward I’ll use the term key, unqualified, to mean any candidate key, regardless of whether the candidate key in question has additionally been designated as primary. (In case you were wondering, the special treatment enjoyed by primary keys over other candidate keys is mainly syntactic in nature, anyway; it isn’t fundamental, and it isn’t very important.)
More terminology: First, a key involving two or more attributes is said to be composite (and a noncomposite key is sometimes said to be simple). Second, if a given relvar has two or more keys and one is chosen as primary, then the others are sometimes said to be alternate keys (see Appendix A). Third, a foreign key is a combination, or set, of attributes FK in some relvar R2 such that each FK value is required to be equal to some value of some key K in some relvar R1 (R1and R2 not necessarily distinct).[7] With reference to Figure 1-1, for example, {SNO} and {PNO} are both foreign keys in relvar SP, corresponding to keys {SNO} and {PNO} in relvars S and P, respectively.

[7] This definition is deliberately a little simplified (though it’s good enough for present purposes). A better one can be found in SQL and Relational Theory.

THE PLACE OF DESIGN THEORY

To repeat something I said in the preface, by the term design I mean logical design, not physical design. Logical design is concerned with what the database looks like to the user (which means, loosely, what relvars exist and what constraints apply to those relvars); physical design, by contrast, is concerned with how a given logical design maps to physical storage.[8] And the term design theory refers specifically to logical design, not physical design—the point being that physical design is necessarily dependent on aspects (performance aspects in particular) of the target DBMS, whereas logical design is, or should be, DBMS independent. Throughout this book, then, the unqualified term design should be understood to mean logical design specifically, barring explicit statements to the contrary.
Now, design theory as such isn’t part of the relational model; rather, it’s a separate theory that builds on top of that model. (It’s appropriate to think of it as part of relational theory in general, but it’s not, to repeat, part of the relational model per se.) Thus, design concepts such as further normalization are themselves based on more fundamental notions—e.g., the projection and join operators of the relational algebra—that are part of the relational model. (All of that being said, it could certainly be argued that design theory is a logical consequence of the relational model, at least in part. In other words, it would be inconsistent to agree with the relational model in general but not to agree with the design theory that’s based on it.)
The overall objective of logical design is to achieve a design that’s (a) hardware independent, for obvious reasons; (b) operating system and DBMS independent, again for obvious reasons; and finally, and perhaps a little controversially, (c) application independent (in other words, we’re concerned primarily with what the data is, rather than with how it’s going to be used). Application independence in this sense is desirable for the very good reason that it’s normally—perhaps always—the case that not all uses to which the data will be put are known at design time; thus, we want a design that’ll be robust, in the sense that it won’t be invalidated by the advent of application requirements that weren’t foreseen at the time of the original design. Observe that one important consequence of this state of affairs is that we aren’t (or at least shouldn’t be) interested in making design compromises for physical performance reasons. Design theory should never be driven by performance considerations.
Back to design theory as such. As we’ll see, that theory includes a number of formal theorems, theorems that provide practical guidelines for designers to follow. So if you’re a designer, you need to be familiar with those theorems. Let me quickly add that I don’t mean you have to know how to prove those theorems (though in fact the proofs are often quite simple); what I mean is, you have to know what the theorems say—i.e., you have to know the results—and you have to be prepared to apply those results. That’s the nice thing about theorems: Once somebody’s proved them, their results become available for anybody to use whenever they need to.
Now, it’s sometimes claimed, not entirely unreasonably, that all design theory really does is bolster up your intuition. What do I mean by this remark? Well, consider the suppliers-and-parts database. The obvious design for that database is the one illustrated in Figure 1-1; I mean, it’s “obvious” that three relvars are necessary, that attribute STATUS belongs in relvar S, that attribute COLOR belongs in relvar P, that attribute QTY belongs in relvar SP, and so on. But why exactly are these things obvious? Well, suppose we try a different design; suppose we move the STATUS attribute out of relvar S, for example, and into relvar SP (intuitively the wrong place for it, since status is a property of suppliers, not shipments). Figure 1-2 below shows a sample value for this revised shipments relvar, which I’ll call STP to avoid confusion:[9]
[image: Relvar STP—sample value]

Figure 1-2. Relvar STP—sample value

A glance at the figure is sufficient to show what’s wrong with this design: It’s redundant, in the sense that every tuple for supplier S1 tells us S1 has status 20, every tuple for supplier S2 tells us S2 has status 30, and so on.[10] And design theory tells us that not designing the database in the obvious way will lead to such redundancy, and tells us also (albeit implicitly) what the consequences of such redundancy will be. In other words, design theory is largely about reducing redundancy, as we’ll see. (As an aside, I remark that—partly for such reasons—the theory has been described, perhaps a little unkindly, as a good source of bad examples.)
Now, if design theory really does just bolster up your intuition, then it might be (and indeed has been) criticized on the grounds that it’s really all just common sense anyway. By way of example, consider relvar STP again. As I’ve said, that relvar is obviously badly designed; the redundancies are obvious, the consequences are obvious too, and any competent human designer would “naturally” avoid such a design, even if that designer had no explicit knowledge of design theory at all. But what does “naturally” mean here? What principles are being applied by that human designer in opting for a more “natural” (and better) design?
The answer is: They’re exactly the principles that design theory talks about (the principles of normalization, for example). In other words, competent designers already have those principles in their brain, as it were, even if they’ve never studied them formally and can’t put a name to them or articulate them precisely. So yes, the principles are common sense—but they’re formalized common sense. (Common sense might be common, but it’s not always easy to say exactly what it is!) What design theory does is state in a precise way what certain aspects of common sense consist of. In my opinion, that’s the real achievement—or one of the real achievements, anyway—of the theory: It formalizes certain commonsense principles, thereby opening the door to the possibility of mechanizing those principles (that is, incorporating them into computerized design tools). Critics of the theory often miss this point; they claim, quite rightly, that the ideas are mostly just common sense, but they don’t seem to realize it’s a significant achievement to state what common sense means in a precise and formal way.
As a kind of postscript to the foregoing, I note that common sense might not always be that common anyway. The following lightly edited extract from a paper by Robert R. Brown of Hughes Aircraft[11] illustrates the point. The author begins by giving “a simplified real example”—his words—involving an employee file (with fields for employee number, employee name, phone number, department number, and manager name) and a department file (with fields for department number, department name, manager name, and manager’s phone number), all with the intuitively obvious meanings. Then he continues:
The actual database on which this example is based had many more files and fields and much more redundancy. When the designer was asked his reasons for such a design, he cited performance and the difficulty of doing joins. Even though the redundancy should be clear to you in my example, it was not that evident in the design documentation. In large databases with many more files and fields, it is impossible to find the duplications without doing extensive information analysis and without having extended discussions with the experts in the user organizations.

Incidentally, there’s another quote I like a lot—in fact, I used it as an epigraph in SQL and Relational Theory—that supports my contention that practitioners really do need to know the theoretical foundations of their field. It’s from Leonardo da Vinci (and is thus some 500 years old!), and it goes like this (I’ve added the boldface):
Those who are enamored of practice without theory are like a pilot who goes into a ship without rudder or compass and never has any certainty where he is going. Practice should always be based upon a sound knowledge of theory.

[8] Be warned, however, that other writers (a) use the terms logical design and physical design to mean something else and (b) use other terms to mean what I mean by them. Caveat lector.

[9] For obvious reasons I use T, not S, as an abbreviation for STATUS, here and throughout this book.

[10] You might notice another problem, too: The design can’t properly represent suppliers like supplier S5 who currently supply no parts at all. Such “update anomalies” are discussed in Chapter 3.

[11] Robert R. Brown: “Database Systems in Engineering: Key Problems, and Potential Solutions,” in the proceedings of a database symposium held in Sydney, Australia (November 15th-17th, 1984).

AIMS OF THIS BOOK

If you’re like me, you’ll have encountered lots of design theory terms in the literature and live presentations and the like—terms such as projection-join normal form, the chase, join dependency, FD preservation, and many others—and I’m sure you’ve wondered from time to time exactly what they all mean. Thus, it’s one of my aims in this book to explain such terms: to define them carefully and accurately, to explain their relevance and applicability, and generally to remove any air of mystery that might seem to surround them. And if I’m successful in that aim, I’ll have gone a good way to explaining what design theory is and why it’s important (indeed, a possible alternative title for the book would be Database Design Theory: What It Is and Why You Should Care). Overall, it’s my goal to provide a painless introduction to design theory for database professionals. More specifically, what I want to do is:
	Review, though from a possibly unfamiliar perspective, aspects of design you should already be familiar with

	Explore in depth aspects you’re probably not already familiar with

	Provide clear and accurate explanations and definitions (with plenty of examples) of all pertinent concepts

	Not spend a lot of time on material that’s widely understood already, such as 2NF and 3NF[12]

All of that being said, I should say too that database design is not my favorite subject. The reason it’s not is that much of that subject is still somewhat ... well, subjective. As I said earlier, design theory is the scientific foundation for database design. Sadly, however, there are numerous design issues that the theory simply doesn’t address at all (yet). Thus, while the formal principles I’ll be describing in this book do represent the scientific part of design, there are other parts that, as I’ve put it elsewhere, are still more in the nature of an artistic endeavor. Indeed, one message of the book is precisely that we need more science in this field.
To put a more positive spin on matters, I’d like to draw your attention to the following. Design theory is (at least in part) about capturing the meaning of data, and as Codd himself once said in connection with that notion:[13]
[The] task of capturing (in a reasonably formal way) more of ... the meaning of data is a never-ending one ... The goal is nevertheless an extremely important one, because even small successes can bring understanding and order into the field of database design.

In fact, I’ll go further: If your design violates any of the known science, then, as I’ve written elsewhere (in a slightly different context), the one thing you can be sure of is that things will go wrong. And though it might be hard to say exactly what will go wrong, and it might be hard to say whether things will go wrong in a major or minor way, you know—it’s guaranteed—that they will go wrong. Theory is important.

[12] However, I will at least give precise definitions of those familiar concepts for reasons of completeness. Since I’m sure they really are familiar, however, I’ll take the liberty of appealing to them from time to time even before we get to the definitions.

[13] The quote is from Codd’s paper “Extending the Database Relational Model to Capture More Meaning,” ACM TODS 4, No. 4, 1979 (the italics are mine). Ted Codd was, of course, the inventor of the relational model; he was also the person who first defined the concept of normalization in general, as well as the first three normal forms (1NF, 2NF, 3NF) in particular.

CONCLUDING REMARKS

This book grew in the writing; it turns out that, despite the slightly negative tone of some of the remarks in the previous section, there’s really quite a lot of good material to cover. What’s more, the material builds. Thus, while the first few chapters might seem to be going rather slowly, I think you’ll find the pace picks up later on. Part of the point is the number of terms and concepts that need to be introduced; the ideas aren’t really difficult, but they can seem a little overwhelming, at least until you’re comfortable with the terminology. For that reason, at least in some parts of the book, I’ll be presenting the material twice—first from an informal perspective, and then again from a more formal one. (As Bertrand Russell once memorably said: Writing can be either readable or precise, but not at the same time. I’m trying to have my cake and eat it too.)
It seems appropriate to close this chapter with another quote from Bertrand Russell:[14]
I have been accused of a habit of changing my opinions ... I am not myself in any degree ashamed of [that habit]. What physicist who was already active in 1900 would dream of boasting that his opinions had not changed during the last half century? ... The kind of philosophy that I value and have endeavoured to pursue is scientific, in the sense that there is some definite knowledge to be obtained and that new discoveries can make the admission of former error inevitable to any candid mind. For what I have said, whether early or late, I do not claim the kind of truth which theologians claim for their creeds. I claim only, at best, that the opinion expressed was a sensible one to hold at the time ... I should be much surprised if subsequent research did not show that it needed to be modified. [Such opinions were not] intended as pontifical pronouncements, but only as the best I could do at the time towards the promotion of clear and accurate thinking. Clarity, above all, has been my aim.

I’ve quoted this extract elsewhere: in the preface to my book An Introduction to Database Systems (8th edition, Addison-Wesley, 2004) in particular. The reason I mention this latter book is that it includes among other things a tutorial treatment of some of the material covered in more depth in the present book. But the world has moved on; my own understanding of the theory is, I hope, better than it was when I wrote that earlier book, and there are aspects of the treatment in that book that I would frankly now like to revise. One problem with that earlier treatment was that I attempted to make the material more palatable by adopting the fiction that any given relvar has just one key, which could then harmlessly be regarded as the primary key. But a consequence of that simplifying assumption was that several of the definitions I gave (e.g., of 2NF and 3NF) were less than fully accurate. This fact has led to a certain amount of confusion—partly my fault, I freely admit, but partly also the fault of people who took the definitions out of context.

[14] The quote is from the preface to The Bertrand Russell Dictionary of Mind, Matter and Morals (ed., Lester E. Denonn; Citadel Press, 1993). I’ve edited it just slightly here.

EXERCISES

The purpose of these exercises is to give some idea of the scope of the chapters to come, and also perhaps to test the extent of your existing knowledge. They can’t be answered from material in the present chapter alone.
1.1 Is it true that the relational model doesn’t require relvars to be in any particular normal form?
1.2 Should data redundancy always be eliminated? Can it be?
1.3 What’s the difference between 3NF and BCNF?
1.4 Is it true that every “all key” relvar is in BCNF?
1.5 Is it true that every binary relvar is in 4NF?
1.6 Is it true that every “all key” relvar is in 5NF?
1.7 Is it true that every binary relvar is in 5NF?
1.8 Is it true that if a relvar has just one key and just one other attribute, then it’s in 5NF?
1.9 Is it true that if a relvar is in BCNF but not 5NF, then it must be all key?
1.10 Can you give a precise definition of 5NF?
1.11 Is it true that if a relvar is in 5NF, then it’s redundancy free?
1.12 What precisely is denormalization?
1.13 What’s Heath’s Theorem, and why is it important?
1.14 What’s The Principle of Orthogonal Design?
1.15 What makes some JDs irreducible and others not?
1.16 What’s dependency preservation, and why is it important?
1.17 What’s the chase?
1.18 How many normal forms can you name?

Chapter 2. Prerequisites

The world is everything that is the case
—Ludwig Wittgenstein: Tractatus Logico-Philosophicus

You’re supposed to be a database professional, by which I mean someone who (a) is a database practitioner and (b) has a reasonable degree of familiarity with relational theory. Please note that—I’m sorry to have to say this, but it’s true—a knowledge of SQL, no matter how deep, is not sufficient to satisfy part (b) of this requirement. As I said in SQL and Relational Theory:
I’m sure you know something about SQL; but—and I apologize for the possibly offensive tone here—if your knowledge of the relational model derives only from your knowledge of SQL, then I’m afraid you won’t know the relational model as well as you should, and you’ll probably know some things that ain’t so. I can’t say it too strongly: SQL and the relational model aren’t the same thing.

The purpose of this chapter, then, is to tell you some things I hope you already know. If you do, then the chapter will serve as a refresher; if you don’t, then I hope it’ll serve as an adequate tutorial. More specifically, what I want to do is spell out in some detail certain fundamental aspects of relational theory that I’ll be relying on heavily in the pages ahead. The aspects in question are ones that, in my experience, database practitioners often aren’t aware of (at least, not explicitly). Of course, there are other aspects of relational theory I’ll be relying on as well, but I’ll elaborate on those, if I think it necessary, when I come to make use of them.
OVERVIEW

Let me begin by giving a quick summary (mainly for purposes of subsequent reference) of those fundamental aspects of relational theory just mentioned:
	Any given database consists of relation variables (relvars for short).

	The value of any given relvar at any given time is a relation value (relation for short).

	Every relvar represents a certain predicate.

	Within any given relvar, every tuple represents a certain proposition.

	In accordance with The Closed World Assumption, relvar R at time T contains all and only those tuples that represent instantiations of the predicate corresponding to relvar R that evaluate to TRUE at time T.

The next two sections (which are heavily based on material from SQL and Relational Theory) elaborate on these ideas.

RELATIONS AND RELVARS

Take another look at Figure 1-1, the suppliers-and-parts database, in Chapter 1. That figure shows three relations: namely, the relations that happen to exist in the database at some particular time. But if we were to look at the database at some different time, we would probably see three different relations appearing in their place. In other words, S, P, and SP are really variables—relation variables, to be precise—and just like variables in general, they have different values at different times. And since they’re relation variables specifically, their values at any given time are, of course, relation values.
As a basis for examining these ideas further, consider Figure 2-1 below. That figure shows (a) on the left, a very much reduced version of the shipments relation from Figure 1-1; (b) on the right, the relation that results after a certain update has been performed. Using the terminology of the previous paragraph, then, we can say, that (a) on the left of the figure we see the relation value that’s the value of relation variable SP at some particular time T1; (b) on the right, we see the relation value that’s the value of that same relation variable at some presumably later time T2, after an additional tuple has been inserted.
[image: Relation values and variables–an example]

Figure 2-1. Relation values and variables–an example

So there’s a logical difference between relation values and relation variables. The trouble is, the database community has historically used the same term, relation, to stand for both concepts, and that practice has certainly led to confusion (not least in contexts that are the subject of the present book, such as further normalization). In this book, therefore, I’ll distinguish very carefully between the two from this point forward—I’ll talk in terms of relation values when I mean relation values and relation variables when I mean relation variables. However, I’ll also abbreviate relation value, most of the time, to just relation (exactly as we abbreviate integer value most of the time to just integer). And I’ll abbreviate relation variable most of the time to relvar; for example, I’ll say the suppliers-and-parts database contains three relvars (more precisely, three base relvars; views are relvars too, but I have little to say about views as such in this book).
Aside: Actually, there’s one thing I do want to say about views. The Principle of Interchangeability (of views and base relvars) says, in effect, that—at least as far as the user is concerned—views are supposed to look and feel just like base relvars. (I don’t mean views that are defined as mere shorthands, I mean views that are intended to insulate the user from the “real” database in some way. See Chapter 15 for an elaboration of this point.) In general, in fact, the user interacts not with a database that contains base relvars only (the “real” database), but rather with what might be called a user database that contains some mixture of base relvars and views. But that user database is supposed to look and feel just like the real database as far as the user is concerned; thus, all of the design principles to be discussed in this book—e.g., the principles of normalization—apply equally well to such user databases, not just to the real database. For this reason, I’ll feel free to use the unqualified term relvar throughout this book, relying on context to indicate whether the term refers equally to base relvars and views or just to base relvars (or just to views) specifically. End of aside.

Let’s get back to Figure 2-1. As that figure indicates, relations have two parts, a heading and a body. Basically, the heading is a set of attributes, and the body is a set of tuples that conform to that heading. For example, the two relations shown in Figure 2-1 both have a heading consisting of three attributes; also, the relation on the left of that figure has a body consisting of two tuples and the one on the right has a body consisting of three. Note, therefore, that a relation doesn’t really contain tuples, at least not directly (it contains a body, and that body in turn contains the tuples). In practice, however, we do usually talk as if relations contained tuples directly, for simplicity. Points arising:
	The terminology of headings and bodies extends in the obvious way to relvars too. Of course, the heading of a relvar (like that of a relation) never changes—it’s identical to the heading of all possible relations that might ever be assigned to the relvar in question. By contrast, the body does change; to be specific, it changes as updates are performed on the relvar in question.

	When I get to the more formal treatment in Part II of this book, I’m going to (re)define a heading as a set of attribute names. The difference between the two definitions isn’t important for present purposes, however.

	In fact, it would be still more correct to define a heading as a set of attribute-name/type-name pairs (and to require the attribute names in question all to be distinct). For example, I’m going to assume in examples throughout this book that attributes SNO and PNO are each of type CHAR (character strings of arbitrary length) and attribute QTY is of type INTEGER (integers).[15] And when I talk about tuples conforming to some heading, I mean each attribute value within the tuple in question must be a value of the pertinent type. For example, in order for a tuple to conform to the heading of relvar SP, it must have attributes SNO, PNO, and QTY (and no others), and the values of those attributes must be of types CHAR, CHAR, and INTEGER, respectively. (All of that being said, I must now say too that types aren’t very important for the purposes of relational design theory. That’s why I feel free in this book to simplify my definition of what a heading is. What’s more, I’ll also feel free, in many of my sample relvar definitions, to give the attribute names only and not even mention the types.)

	The number of attributes in a given heading is the degree of that heading. It’s also the degree of any relation or relvar with that heading. Likewise, the number of tuples in a given body is the cardinality of that body, and it’s also the cardinality of any relation or relvar with that body.[16] Note: The term degree is also used in connection with both tuples and keys (including foreign keys). For example, the tuples of relvar SP are all, like that relvar itself, of degree three, the sole key of that relvar is of degree two, and the two foreign keys in that relvar, {SNO} and {PNO}, are each of degree one.

	The degree (of a heading or relation or ...) can be any nonnegative integer. Degree 1 is said to be unary; degree 2, binary; degree 3, ternary; ... and, more generally, degree n is said to be n-ary.

[15] It would be more appropriate to define QTY to be of type NONNEGATIVE_INTEGER (with the obvious semantics), but few DBMSs if any support such a type. Of course, we could introduce it as a user defined type, but I don’t want to get into details of user defined types in this book.

[16] I say “any” relation with that body, but actually two distinct relations can have the same body if and only if the body in question is empty. If it isn’t, then there’s exactly one relation having that body (see the formal definition of relation in Chapter 5).

PREDICATES AND PROPOSITIONS

Again consider the shipments relvar SP. Like all relvars, that relvar is supposed to represent some portion of the real world. In fact, I can be more precise: The heading of that relvar represents a certain predicate, meaning it’s a kind of generic statement about some portion of the real world (it’s generic because it’s parameterized, as I’ll explain in a moment). The predicate in question is quite simple:
Supplier SNO supplies part PNO in quantity QTY.

This predicate is the intended interpretation—in other words, the meaning—for relvar SP.
Aside: Perhaps I should say a little more about the way I use the term predicate in this book. First of all, you’re probably familiar with the term already, since SQL uses it extensively to refer to boolean or truth valued expressions (it talks about comparison predicates, IN predicates, EXISTS predicates, and so on). However, while this usage on SQL’s part isn’t exactly incorrect, it does usurp a very general term—one that’s extremely important in database contexts—and give it a rather specialized meaning, which is why I prefer not to follow that usage myself.
Second, I should explain in the interest of accuracy that a predicate isn’t really a statement as such; rather, it’s the assertion made by that statement. For example, the predicate for relvar S is what it is, regardless of whether it’s expressed in English or Spanish or whatever. For simplicity, however, I’ll assume in what follows that a predicate is indeed just a statement per se, typically expressed in natural language. Note: Analogous remarks apply to propositions also (see below).
Finally, I’ve now explained what I mean by the term, but you should be aware that—the previous paragraph notwithstanding—there seems to be little consensus, even among logicians, as to exactly what a predicate is. In particular, some writers regard a predicate as a purely formal construct that has no meaning in itself, and regard what I’ve called the intended interpretation as something distinct from the predicate as such. I don’t want to get into arguments about such matters here; for further discussion, I refer you to the article “What’s a Predicate?” in Database Explorations: Essays on The Third Manifesto and Related Topics, by C. J. Date and Hugh Darwen (Trafford, 2010). End of aside.

You can think of a predicate, a trifle loosely, as a truth valued function. Like all functions, it has a set of parameters; it returns a result when it’s invoked; and (because it’s truth valued) that result is either TRUE or FALSE. In the case of the predicate just shown, for example, the parameters are SNO, PNO, and QTY (corresponding of course to the attributes of the relvar), and they stand for values of the applicable types (CHAR, CHAR, and INTEGER, respectively, in this simple example). And when we invoke the function—when we instantiate the predicate, as the logicians say—we substitute arguments for the parameters. Suppose we substitute the arguments S1, P1, and 300, respectively. Then we obtain the following statement:
Supplier S1 supplies part P1 in quantity 300.

This statement is in fact a proposition, which in logic is something that evaluates to either TRUE or FALSE, unconditionally. Here are a couple of examples:
	Edward Abbey wrote The Monkey Wrench Gang.

	William Shakespeare wrote The Monkey Wrench Gang.

The first of these is true and the second false. Don’t fall into the common trap of thinking that propositions must always be true! However, the ones I’m talking about at the moment are supposed to be true ones, as I now explain:
	First of all, every relvar has an associated predicate, called the relvar predicate for the relvar in question. (So the predicate shown above—Supplier SNO supplies part PNO in quantity QTY—is the relvar predicate for relvar SP.)

	Let relvar R have predicate P. Then every tuple t appearing in R at some given time T can be regarded as representing a certain proposition p, derived by invoking (or instantiating) P at that time T with the attribute values from t as arguments.

	And (very important!) we assume by convention that each proposition p obtained in this manner evaluates to TRUE.

Given the sample value shown for relvar SP on the left of Figure 2-1, for example, we assume the following propositions both evaluate to TRUE at time T1:
Supplier S1 supplies part P1 in quantity 300.
Supplier S2 supplies part P1 in quantity 300.

What’s more, we go further: If at some given time T a certain tuple plausibly could appear in some relvar but doesn’t, then we’re entitled to assume the corresponding proposition is false at that time T. For example, the tuple
 ('S1' , 'P2' , 200)
(to adopt an obvious shorthand notation) is certainly a plausible SP tuple; but it doesn’t appear in relvar SP at time T1—I’m referring to Figure 2-1 again—and so we’re entitled to assume it’s not the case that the following proposition is true at time T1:
Supplier S1 supplies part P2 in quantity 200.

(On the other hand, this proposition is true at time T2.)
To sum up: A given relvar R contains, at any given time, all and only the tuples that represent true propositions (true instantiations of the relvar predicate for R) at the time in question—or, at least, that’s what we always assume in practice. In other words, in practice we adopt what’s called The Closed World Assumption. And since that assumption is so crucial—it underlies just about everything we do when we use a database, even though it’s seldom acknowledged explicitly—I’d like to spell it out here for the record:
	Definition: Let relvar R have predicate P. Then The Closed World Assumption (CWA) says (a) if tuple t appears in R at time T, then the instantiation p of P corresponding to t is assumed to be true at time T; conversely, (b) if tuple t plausibly could appear in R at time T but doesn’t, then the instantiation p of P corresponding to t is assumed to be false at time T. In other words (albeit a trifle loosely): Tuple t appears in relvar R at a given time if and only if it satisfies the predicate for R at that time.

MORE ON SUPPLIERS AND PARTS

Now let’s get back to the suppliers-and-parts database as such, with sample values as shown in Figure 1-1 in the previous chapter. Here now are definitions of the three relvars in that database, expressed in a language called Tutorial D (see further explanation following the definitions):
 VAR S BASE RELATION
 { SNO CHAR , SNAME CHAR , STATUS INTEGER , CITY CHAR }
 KEY { SNO } ;

 VAR P BASE RELATION
 { PNO CHAR , PNAME CHAR , COLOR CHAR , WEIGHT RATIONAL , CITY CHAR }
 KEY { PNO } ;

 VAR SP BASE RELATION
 { SNO CHAR , PNO CHAR , QTY INTEGER }
 KEY { SNO , PNO }
 FOREIGN KEY { SNO } REFERENCES S
 FOREIGN KEY { PNO } REFERENCES P ;
As I said, these definitions are expressed in a language called Tutorial D. Now, I believe that language is pretty much self-explanatory; however, a comprehensive description can be found if needed in the book Databases, Types, and the Relational Model: The Third Manifesto (3rd edition), by C. J. Date and Hugh Darwen (Addison-Wesley, 2006).[17] Note: As its title suggests, that book also introduces and explains The Third Manifesto, a precise though somewhat formal definition of the relational model and a supporting type theory (including, incidentally, a comprehensive model of type inheritance). In particular, it uses the name D as a generic name for any language that conforms to the principles laid down by The Third Manifesto. Any number of distinct languages could qualify as a valid D; sadly, however, SQL isn’t one of them, which is why examples in this book are expressed (where it makes any difference) in Tutorial D and not SQL. (Of course, Tutorial D is a valid D; in fact, it was explicitly designed to be suitable as a vehicle for illustrating and teaching the ideas of The Third Manifesto.)
Aside: This is as good a point as any to mention that the terminology used in the present book is based on that of the Manifesto. As a consequence, it does differ on occasion from that found in some of the design theory literature. For example, that literature typically doesn’t talk about relational headings; instead, it uses the term relation schema.[18] Nor does it talk about relation variables (relvars); instead, what this book refers to as a (relation) value that’s assigned to some relation variable it calls an instance of the corresponding schema. End of aside.

Back to the relvar definitions. As you can see, each of those definitions includes a KEY specification, which means that every relation that might ever be assigned to any of those relvars is required to satisfy the corresponding key constraint. (Recall from Chapter 1 that every relvar does have at least one key.) For example, every relation that might ever be assigned to relvar S is required to satisfy the constraint that no two distinct tuples in that relation have the same SNO value. What’s more, I’m going to assume throughout this book, barring explicit statements to the contrary, that the following functional dependency (FD) also holds in relvar S:
 { CITY }→ { STATUS }
You can read this FD, informally, as STATUS is functionally dependent on CITY, or as CITY functionally determines STATUS, or more simply as just CITY arrow STATUS. What it means is that every relation that might ever be assigned to relvar S is required to satisfy the constraint that if two tuples in that relation have the same CITY value, then they must also have the same STATUS value.[19] Observe that the sample value of relvar S given in Figure 1-1 does indeed satisfy this constraint. Note: I’ll have a great deal more to say about FDs later in Parts II and III of this book, but I’m sure you’re already familiar with the basic idea anyway.
Now, just as KEY specifications are used to declare key constraints, so we need some kind of syntax in order to be able to declare FD constraints. Tutorial D provides no specific syntax for that purpose, however[20] (nor does SQL, come to that). It does allow them to be expressed in a somewhat roundabout fashion—for example:
 CONSTRAINT XCT
 COUNT (S { CITY }) = COUNT (S { CITY , STATUS }) ;
Explanation: In Tutorial D, an expression of the form r{A1,...,An} denotes the projection of relation r on attributes A1, ..., An. If the current value of relvar S is s (a relation), therefore, (a) the expression S{CITY} denotes the projection of s on CITY; (b) the expression S{CITY,STATUS} denotes the projection of s on CITY and STATUS; and (c) the constraint overall—which I’ve named, arbitrarily, XCT—requires the cardinalities (COUNT) of those two projections to be equal. (If it’s not obvious that requiring these two counts to be equal is equivalent to requiring the desired FD constraint to hold, try interpreting it in terms of the sample data in Figure 1-1.)
Aside: In case you feel those appeals to COUNT in the formulation of constraint XCT are somehow a little inelegant, here’s an alternative formulation that avoids them:
 CONSTRAINT XCT
 WITH (CT := S { CITY , STATUS }) :
 AND (JOIN { CT , CT RENAME { STATUS AS X } } , STATUS = X) ;
Explanation: First, the WITH specification (“WITH (...):”) serves merely to introduce a name, CT, that can be used repeatedly later in the overall expression to avoid having to write out several times the expression it stands for. Second, the Tutorial D RENAME operator is more or less self-explanatory (but is defined anyway, in the answer to Exercise 2.15 in Appendix D). Third, the Tutorial D expression AND(rx,bx), where rx is a relational expression and bx is a boolean expression, returns TRUE if and only if the condition denoted by bx evaluates to TRUE for every tuple in the relation denoted by rx. End of aside.

The foregoing state of affairs notwithstanding, I’ll assume throughout this book that FDs can be stated using the simpler arrow notation illustrated earlier. Analogous remarks apply to other kinds of dependencies also (in particular, to join dependencies and multivalued dependencies, which are introduced in Chapter 9 and Chapter 12, respectively).
I’ll close this chapter with a little teaser. Assuming the only constraints that apply to the suppliers-and-parts database are the foregoing FD and the specified key (and foreign key) constraints, then we can say that relvars S, P, and SP are in second, fifth, and sixth normal form, respectively. To understand the significance of these observations, please read on!

[17] Actually Tutorial D has been revised and extended somewhat since that book was first published. A description of the revised version (which is the version I’ll be using throughout the present book) can be found both in Database Explorations: Essays on The Third Manifesto and Related Topics, by C. J. Date and Hugh Darwen (Trafford, 2010) and on the website www.thethirdmanifesto.com (which, as its name suggests, also contains much current information regarding The Third Manifesto as such).

[18] I mustn’t give the impression that headings and (relational) schemas are exactly the same thing. Rather, a schema is the combination of a heading and certain dependencies (including but not necessarily limited to functional and join dependencies in particular, which are discussed in detail later in this book).

[19] This example of what FDs mean also serves to show why such dependencies are called functional. To elaborate: A function in mathematics is a mapping from one set A to some set B, not necessarily distinct from A, with the property that each element in A maps to just one element in B (but any number of distinct elements in A can map to the same element in B). In the example, therefore, we could say there’s a mapping from the set of CITY values in S to the set of STATUS values in S, and that mapping is indeed a mathematical function.

[20] One reason it doesn’t is that if the design recommendations discussed in the present book are followed, there should rarely be a need to declare FDs explicitly anyway.

EXERCISES

The purpose of these exercises is to test your knowledge of relational theory. Most of them can’t be answered from material in the present chapter alone. However, everything mentioned here, and in the answers to these exercises in Appendix D, is discussed in detail in SQL and Relational Theory.
2.1 What’s The Information Principle?
2.2 Which of the following statements are true?
	Relations (and hence relvars) have no ordering to their tuples.

	Relations (and hence relvars) have no ordering to their attributes.

	Relations (and hence relvars) never have any unnamed attributes.

	Relations (and hence relvars) never have two or more attributes with the same name.

	Relations (and hence relvars) never contain duplicate tuples.

	Relations (and hence relvars) never contain nulls.

	Relations (and hence relvars) are always in 1NF.

	The types over which relational attributes are defined can be arbitrarily complex.

	Relations (and hence relvars) themselves have types.

2.3 Which of the following statements are true?
	Every subset of a heading is a heading.

	Every subset of a body is a body.

	Every subset of a tuple is a tuple.

2.4 The term domain is usually found in texts on relational theory, but it wasn’t mentioned in the body of the chapter. What do you make of this fact?
2.5 Define the terms proposition and predicate. Give examples.
2.6 State the predicates for relvars S, P, and SP from the suppliers-and-parts database.
2.7 Let DB be any database you happen to be familiar with and let R be any relvar in DB. What’s the predicate for R? Note: The point of this exercise is to get you to apply some of the ideas discussed in the body of this chapter to your own data, in an attempt to get you thinking about data in general in such terms. Obviously the exercise has no unique right answer.
2.8 Explain The Closed World Assumption in your own terms. Could there be such a thing as The Open World Assumption?
2.9 Give definitions, as precise as you can make them, of the terms tuple and relation.
2.10 State as precisely as you can what it means for (a) two tuples to be equal; (b) two relations to be equal.
2.11 A tuple is a set (a set of components); so do you think it might make sense to define versions of the usual set operators (union, intersection, etc.) that apply to tuples?
2.12 To repeat, a tuple is a set of components. But the empty set is a legitimate set; thus, we could define an empty tuple to be a tuple where the pertinent set of components is empty. What are the implications? Can you think of any uses for such a tuple?
2.13 A key is a set of attributes and the empty set is a legitimate set; thus, we could define an empty key to be a key where the pertinent set of attributes is empty. What are the implications? Can you think of any uses for such a key?
2.14 A predicate has a set of parameters and the empty set is a legitimate set; thus, a predicate could have an empty set of parameters. What are the implications?
2.15 The normalization discipline makes heavy use of the relational operators projection and join. Give definitions, as precise as you can make them, of these two operators. Also, have a go at defining the attribute renaming operator (RENAME in Tutorial D).
2.16 The operators of the relational algebra form a closed system. What do you understand by this remark?

Part II. FUNCTIONAL DEPENDENCIES, BOYCE/CODD NORMAL FORM, AND RELATED MATTERS

Although normal forms as such aren’t the whole of design theory, it’s undeniable that they’re a very large part of that theory, and they form the principal topic of Parts II and III of this book. The present part takes the story as far as Boyce/Codd normal form (BCNF), which is “the” normal form with respect to functional dependencies (FDs).

Chapter 3. Normalization: Some Generalities

Normal: see abnormal
—from an early IBM PL/I reference manual

In this chapter, I want to clarify certain general aspects of further normalization before we start getting into specifics (which we’ll do in the next chapter). I’ll begin by taking a closer look at the sample value of relvar S from Figure 1-1 (repeated for convenience in Figure 3-1 below).
[image: The suppliers relvar—sample value]

Figure 3-1. The suppliers relvar—sample value

Recall now that the functional dependency (FD)
 { CITY } → { STATUS }
holds in this relvar (I’ve included an arrow in the figure to suggest this fact). Because that FD holds,[21] it turns out that the relvar is in second normal form (2NF) but not third (3NF). As a consequence, the relvar suffers from redundancy; to be specific, the fact that a given city has a given status appears many times, in general. And the discipline of further normalization—which from this point on I’ll abbreviate most of the time to just normalization, unqualified—would therefore suggest that we decompose the relvar into two relvars SNC and CT of lesser degree, as indicated in Figure 3-2 (which shows, of course, values for those relvars corresponding to the sample value shown for relvar S in Figure 3-1).
[image: Relvars SNC and CT—sample values]

Figure 3-2. Relvars SNC and CT—sample values

Points arising from this example:
	First, the decomposition certainly eliminates the redundancy—the fact that a given city has a given status now appears exactly once.

	Second, the decomposition process is basically a process of taking projections—the relations shown in Figure 3-2 are each projections of the relation shown in Figure 3-1.[22] In fact, we can write a couple of equations:
 SNC = S { SNO , SNAME , CITY }
 CT = S { CITY , STATUS }
(Recall from Chapter 2 that the Tutorial D syntax for projection takes the form r{A1,...,An}, where r is some relational expression and A1, ..., An are attribute names.)[23]

	Third, the decomposition process is nonloss (also called lossless)—no information is lost in the process, because the relation shown in Figure 3-1 can be reconstructed by taking the join of the relations shown in Figure 3-2:
 S = JOIN { SNC , CT }
(Tutorial D syntax again.) Thus, we can say the relation in Figure 3-1 and the pair of relations in Figure 3-2 are information equivalent—or, to state the matter more precisely, for any query that can be performed against the relation of Figure 3-1, there’s a corresponding query that can be performed against the relations of Figure 3-2 (and vice versa) that produces the same result. Clearly, such “losslessness” of decompositions is an important property; whatever we do by way of normalization, we certainly mustn’t lose any information when we do it.

	It follows from the foregoing that just as projection is the decomposition operator (with respect to normalization as conventionally understood), so join is the corresponding recomposition operator.

NORMALIZATION SERVES TWO PURPOSES

So far, so good; this is all very familiar stuff. But now I want to point out that if you’ve been paying careful attention, you might reasonably accuse me of practicing a tiny (?) deception ... To be specific, I’ve considered what it means for a decomposition of relations to be nonloss; but normalization, which is what we’re supposed to be talking about, isn’t a matter of decomposing relations, it’s a matter of decomposing relvars.
Suppose we do decide to perform the suggested decomposition of relvar S into relvars SNC and CT. Observe now that I really am talking about relvars and not relations; for definiteness, however, let’s assume those relvars have the sample values shown in Figure 3-1 and Figure 3-2, respectively. For definiteness again, let’s focus on relvar CT specifically. Well, that relvar is indeed a relvar—I mean, it’s a variable—and so we can update it. For example (using the shorthand notation for tuples introduced in Chapter 2), we might insert the tuple:
 ('Rome' , 10)
But after that update, relvar CT contains a tuple that had no counterpart in relvar S (it doesn’t have a counterpart in relvar SNC either, come to that). Now, such a possibility is often used—indeed, Codd used it himself in his very first papers on normalization (see Appendix C)—as an argument in favor of doing the normalization in the first place: The normalized, two-relvar design is capable of representing certain information that the original one-relvar design isn’t. (In the case at hand, it can represent status information for cities that currently have no supplier located in them.) But that same fact also means that the two designs aren’t really information equivalent after all, and moreover that relvar CT isn’t exactly a “projection” of relvar S after all[24]—it contains a tuple that isn’t a projection of, or otherwise derived from, any tuple in relvar S.[25] Or rather (and perhaps more to the point), CT isn’t a projection of the join of SNC and CT, either, and so that join “loses information,” in a sense; to be specific, it loses the information that the status for Rome is 10.[26]
A similar situation arises if we delete the tuple
 ('S5' , 'Adams' , 'Athens')
from relvar SNC. After that update, we could say, a trifle loosely,[27] that relvar S contains a tuple that has no counterpart in relvar SNC (though it does have one in relvar CT). So again the two designs aren’t really information equivalent; and this time relvar S isn’t exactly a “join” of relvars SNC and CT, since it contains a tuple that doesn’t correspond to any tuple in relvar SNC.
The two designs are thus not information equivalent after all. But didn’t I say earlier that “losslessness” of decompositions is an important property? Don’t we generally assume that if Design B is produced by normalizing Design A, then Design B and Design A are supposed to be information equivalent? What exactly is going on here?
In order to answer these questions, it’s helpful to look at the relvar predicates. The predicate for SNC is:
Supplier SNO is named SNAME and is located in city CITY.

And the predicate for CT is:
City CITY has status STATUS.

Now suppose it’s possible for a city to have a status even if no supplier is located in that city; in other words, suppose it’s possible for relvar CT to contain a tuple such as (Rome,10) that has no counterpart in relvar SNC.[28] Then the design consisting of just relvar S is simply incorrect. That is, if it’s possible for a true instantiation to exist of the predicate City CITY has status STATUS without there existing—at the same time and with the same CITY value—a true instantiation of the predicate Supplier SNO is named SNAME and is located in city CITY, then a design consisting just of relvar S doesn’t faithfully reflect the state of affairs in the real world (because that design is incapable of representing the status for a city in which no supplier is located).
Similarly, suppose it’s possible for a supplier to be located in a city even if that city has no status; in other words, suppose it’s possible for relvar SNC to contain a tuple, say (S6,Lopez,Madrid), that has no counterpart in relvar CT. Then, again, the design consisting just of relvar S is simply incorrect, because it requires every city in which a supplier is located to have some status.
Here’s another way to look at the foregoing argument. Suppose the design consisting just of relvar S did faithfully reflect the state of affairs in the real world after all. Then relvars SNC and CT would be subject to the following integrity constraint (“Every city in SNC appears in CT and vice versa”):
 CONSTRAINT ... SNC { CITY } = CT { CITY } ;
But this constraint—which is an example of what I’m later going to be calling an equality dependency or EQD—manifestly isn’t satisfied in the example under discussion. Note: For simplicity, I haven’t bothered to give this constraint a name, as you can see. Indeed, I’ll omit such names from all of my examples in this book from this point forward, except where there’s some compelling reason to do otherwise.
To sum up, we see that normalization can be (and is) used to address two rather different problems:
	It can be used to fix a logically incorrect design, as in the example discussed earlier in this section. Exercise: Do issues analogous to those raised in that example apply to the STP example from the section THE PLACE OF DESIGN THEORY in Chapter 1? (Answer: Yes, they do.)

	It can be used to reduce redundancy in an otherwise logically correct design. (Obviously a design doesn’t have to be logically incorrect in the foregoing sense in order to display redundancy.)

Much confusion arises in practice because these two cases are often not clearly distinguished. Indeed, most of the literature focuses on Case 2—and for definiteness I’ll assume Case 2 myself in what follows, where it makes any difference—but please don’t lose sight of Case 1, which in practice is at least as important, if not more so.
I should point out further that, strictly speaking, the terminology of projections and joins applies only to Case 2. That’s because in Case 1, as we’ve seen, the “new” relvars aren’t necessarily projections of the “old” one, nor is the “old” one necessarily the join of the “new” ones (if you see what I mean). In fact, what does it mean to talk about projections and joins of relvars (as opposed to relations) anyway? Well, as I’ve written elsewhere:[29]
By definition, the operators projection, join, and so on apply to relation values specifically. In particular, of course, they apply to the values that happen to be the current values of relvars. It thus clearly makes sense to talk about, e.g., the projection of relvar S on attributes {CITY,STATUS}, meaning the relation that results from taking the projection on those attributes of the relation that’s the current value of that relvar S. In some contexts, however (normalization, for example), it turns out to be convenient to use expressions like “the projection of relvar S on attributes {CITY,STATUS}” in a slightly different sense. To be specific, we might say, loosely but very conveniently, that some relvar, CT, is the projection of relvar S on attributes {CITY,STATUS}—meaning, more precisely, that the value of relvar CT at all times is the projection on those attributes of the value of relvar S at the time in question. In a sense, therefore, we can talk in terms of projections of relvars per se, rather than just in terms of projections of current values of relvars. Analogous remarks apply to all of the relational operations.

In other words, we do still use the projection/join terminology, even in Case 1. Such talk is somewhat inappropriate—not to say sloppy—but it is at least succinct. But it would really be more accurate to say, not that decomposition is a process of taking projections as such, but rather that it’s a process that’s reminiscent of, but not quite the same as, what we do when we take projections (and similarly for recomposition and join).

[21] And, to be precise about the matter, because no other FDs hold apart from ones implied by the sole key {SNO}. See Chapter 4.

[22] Other kinds of decomposition are possible, but I’ll assume until further notice that “decomposition,” unqualified, means decomposition via projection specifically.

[23] Tutorial D also supports syntax of the form R{ALL BUT B1,...,Bm}, which denotes the projection of r on all of its attributes except B1, ..., Bm. For example, the projection corresponding to SNC in the example could alternatively be expressed thus: S {ALL BUT STATUS}.

[24] See later in this section for an explanation of why I place the term “projection” in quotation marks here.

[25] Regarding the idea that one tuple might be a projection of another, see the answer to Exercise 2.11 in Appendix D.

[26] Joins such as that of SNC and CT are sometimes called lossy joins for this very reason. However, this term is probably best avoided, because it could also be used to refer to joins such as the join of the projections of S on{SNO,SNAME,STATUS} and {CITY,STATUS}, which lose information for a different reason. See the discussion of this latter example in Chapter 5; see also Exercise 3.2.

[27] In effect, by pretending relvars S, SNC, and CT all coexist (living alongside one another, as it were).

[28] Here I’m adopting a sloppy convention by which the single quotes that ought really to enclose character string values are omitted in regular text, thereby writing (Rome,10) instead of ('Rome’,10). What’s more, I’ll adhere to this convention from this point forward.

[29] E.g., in The Relational Database Dictionary, Extended Edition (Apress, 2008).

End of sample

 To search for additional titles please go to

 http://search.overdrive.com.

OEBPS/oreilly_large.gif
O’REILLY

OEBPS/httpatomoreillycomsourceoreillyimages1137310.png

OEBPS/httpatomoreillycomsourceoreillyimages1137296.png

OEBPS/httpatomoreillycomsourceoreillyimages1137248.png
1 | PHONENOZ2 | ...
+ +

OEBPS/httpatomoreillycomsourceoreillyimages1137334.png

OEBPS/httpatomoreillycomsourceoreillyimages1137308.png
NA

DR

NAME | ADDR

OEBPS/httpatomoreillycomsourceoreillyimages1137314.png.jpg
e kel
sNo sNO | snaME sNo | sTATUS sno | erty
s1 s1 | smith 51 20 s1 | London
52 52 | Jomes 2 30 52 | Paris
53 53 | Blake 53 30 53 | Paris
s4 s¢ | clark A 20 s¢ | London
s5 55 | Adams s5 30 s5 | athens

OEBPS/httpatomoreillycomsourceoreillyimages1137330.png

OEBPS/httpatomoreillycomsourceoreillyimages1137262.png
BCNF and SNF are the important ones
(at least until further notice)

OEBPS/httpatomoreillycomsourceoreillyimages1137286.png.jpg
sNo | eNo B o | sno
s1 | el 32 32 | s1
s1 | p2 a1 a1 | s1
s2 | Pl 31 1 | s2
Ls join
SN0 | BNO | oNO [— join on +—
{3N0, SNO}

L» original value of SPJ

OEBPS/httpatomoreillycomsourceoreillyimages1137290.png

OEBPS/httpatomoreillycomsourceoreillyimages1137282.png

OEBPS/httpatomoreillycomsourceoreillyimages1137274.png
SNEME | CITY SNO

OEBPS/httpatomoreillycomsourceoreillyimages1137302.png
1

OEBPS/httpatomoreillycomsourceoreillyimages1137266.png

OEBPS/orm_front_cover.jpg
///////////////////

Database Design &
Relational Theory &'I

Normal Forms & All That Jazz

< mwllom

I 1 100110 j
I ,,a

.J. Date

OEBPS/httpatomoreillycomsourceoreillyimages1137276.png

OEBPS/httpatomoreillycomsourceoreillyimages1137278.png

OEBPS/httpatomoreillycomsourceoreillyimages1137268.png

OEBPS/httpatomoreillycomsourceoreillyimages1137250.png

OEBPS/httpatomoreillycomsourceoreillyimages1137256.png
relvar SP at tume I7

relvar SP at tume 72

<«— heading

body

SNO PNO QTY SNO PNO
s1 Pl s1 Pl
s2 | et | 300 s2 | eL
s1 P2
T—l
relations
Predicate: Supplier SNO supplies part PNO in quantity OTY

positions: Supplier SI supplies part Pl in quantity 300 (etc.)

OEBPS/httpatomoreillycomsourceoreillyimages1137292.png

OEBPS/httpatomoreillycomsourceoreillyimages1137306.png
ENO

SALZRY

85,000

UNoALARIED

OEBPS/httpatomoreillycomsourceoreillyimages1137312.png
e =
sNo | snaME sno | status sno | crTy
s1 | smith 51 20 s1

2| Jones 2 30 52
53 | Blake 53 | paris
s¢ | clark

OEBPS/httpatomoreillycomsourceoreillyimages1137318.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages1137304.png
aas
o

OEBPS/httpatomoreillycomsourceoreillyimages1137320.png

OEBPS/httpatomoreillycomsourceoreillyimages1137280.png
sNo | sNaME | sTaTUs | cITy T1 | TINO | FROM | TO

® | ENO | PNAME | COLOR | WEIGHT

OEBPS/httpatomoreillycomsourceoreillyimages1137284.png

OEBPS/httpatomoreillycomsourceoreillyimages1137288.png

OEBPS/httpatomoreillycomsourceoreillyimages1137294.png

OEBPS/httpatomoreillycomsourceoreillyimages1137264.png

OEBPS/httpatomoreillycomsourceoreillyimages1137300.png
Paris
London
Athens

sNO | SNAME | cITY sNO | STATUS | cITY
sl | smith | London s1 20 |.London
52 | Jones | Paris

OEBPS/httpatomoreillycomsourceoreillyimages1137260.png
SNEME | CITY STATUS

OEBPS/httpatomoreillycomsourceoreillyimages1137252.png.jpg
SNO | SNAME | STATUS | cITY
s1 | smith 20 | London

52 | Jones 30 | pari

53 | Blake 30 | paris

54 | clark 20 | London

55 | Adams 30 | Athens

B

ENO | ENAME | COLOR | WEIGHT | CITY
Pl | Nut Red 12.0 | London
P2 | Bolt | Green 17.0 | paris
P3| screw | Blue 17.0 | paris..
B¢ | screw | Red 14.0 | London
B5 | cam Blue 12.0 | paris
Pé | Cog Red 19.0 | London

B

5
22
23
X
S
2
Pl
B2
22
22
E
ES

300
200
100
200
100
100
300
100
200
200
300
100

OEBPS/httpatomoreillycomsourceoreillyimages1137258.png

OEBPS/httpatomoreillycomsourceoreillyimages1137322.png
KSC | % sNO | cNo

1 51 c1
x2 52 c1
x3 51 c2
x4 s2 c2

OEBPS/httpatomoreillycomsourceoreillyimages1137326.png

OEBPS/httpatomoreillycomsourceoreillyimages1137332.png

OEBPS/httpatomoreillycomsourceoreillyimages1137254.png
STP

EREOBOEEEEER

ST.

U

11010 W W W 1111

OEBPS/httpatomoreillycomsourceoreillyimages1137298.png
6NF

OEBPS/httpatomoreillycomsourceoreillyimages1137272.png
SNO | SNEME | STATUS STATUS
s1 20
s2 3
s3 3
s4 2
3

OEBPS/httpatomoreillycomsourceoreillyimages1137270.png

OEBPS/httpatomoreillycomsourceoreillyimages1137324.png

OEBPS/httpatomoreillycomsourceoreillyimages1137328.png
LHNVOLLE

SR1FMENT

INVNO

OEBPS/httpatomoreillycomsourceoreillyimages1137316.png
BMPDRET

