

 [image: Practical Unix & Internet Security, 3rd Edition]

 Practical Unix & Internet Security, 3rd Edition

Simson Garfinkel

Gene Spafford

Alan Schwartz

Editor
Debby Russell

Copyright © 2011 O'Reilly Media, Inc.

[image:]

A Note Regarding Supplemental Files

Supplemental files and examples for this book can be found at http://examples.oreilly.com/9780596003234/. Please use a standard desktop web browser to access these files, as they may not be accessible from all ereader devices.
All code files or examples referenced in the book will be available online. For physical books that ship with an accompanying disc, whenever possible, we’ve posted all CD/DVD content. Note that while we provide as much of the media content as we are able via free download, we are sometimes limited by licensing restrictions. Please direct any questions or concerns to booktech@oreilly.com.

Preface

 It’s
been 11 years since the publication of Practical Unix
Security—and 6 years since Practical Unix
and Internet Security was published—and oh, what a
difference that time has
made!

 In 1991, the only thing that most Americans
knew about Unix and the Internet was that they were some sort of
massive computer network that had been besieged by a
“computer virus” in 1988. By 1996,
when our second edition was published, the Internet revolution was
just beginning to take hold, with more than 10 million Americans
using the Internet on a regular basis to send electronic mail, cruise
the World Wide Web, and sometimes even shop.
Today it is increasingly difficult for people in much of the world to
remember the pre-Internet era. Perhaps 500 million people around the
world now use the Internet, with several billion more touched by it
in some manner. In the United States more than half the population
uses the Internet on a daily basis. We have watched an Internet
revolution become a dot-com craze, which then became a bust. And
nobody remembers that 1988 Internet worm anymore—these days,
most Internet users are bombarded by network worms on a daily basis.
Despite our greater reliance on network computing, the Internet
isn’t a safer place today than it was in 1991 or in
1996. If anything, the Internet is considerably less secure. Security
mishaps on the Internet continue to be front-page stories in
newspapers throughout the world. Sadly, these flaws continue to be
accommodated rather than corrected.[1]
The results are increasingly disastrous. The second edition of this
book, for example, noted a security incident in which 20,000 people
had their credit card numbers stolen from an Internet service
provider; a few months before this third edition went to print,
attackers broke into a system operated for the State of California
and downloaded personal information on 262,000 state employees.
Included in the haul were names, addresses, Social Security
numbers—everything needed for identity theft.[2]

Computer crime and the threat of cyberterrorism continue to be
growing problems. Every year the Computer Security Institute (CSI)
and the San Francisco Federal Bureau of Investigation (FBI) Computer
Intrusion Squad survey organizations to find their current level of
computer crime and intrusions. The 2002 survey had 503 responses from
security practitioners in U.S. corporations, government agencies,
financial institutions, medical institutions, and universities. Some
of the results of the survey include:
	Ninety percent of respondents (primarily large corporations and
government agencies) detected computer security breaches within the
last 12 months.[3]

	Eighty percent acknowledged financial losses as a result of system
security breaches.

	The combined loss of the 223 respondents who gave dollar values for
their annual loss was more than $456 million, of which $171 million
was the theft of proprietary information, and $116 million was
financial fraud.

	Contrary to conventional wisdom that insiders are a bigger threat
than outsiders, 74% of respondents cited their Internet connection as
a frequent point of attack, versus 33% who cited their internal
systems as a frequent point of attack. (Of course, insiders could be
attacking through the Internet to make themselves look like
outsiders.)

	Slightly more than one-third (34%) reported the intrusions to law
enforcement—up from 16% reporting in 1996.

Incidents reported included:
	Computer viruses (85%)

	Employees abusing their Internet connection, such as downloading
pornography or pirated software, or sending inappropriate email (78%)

	Penetration from outside the organization (40%)

	Denial of service (DOS) attacks (40%)

	Unauthorized access or misuse of the company’s web
sites (38%)

One quarter of the respondents who suffered attacks said that they
had experienced between 2 and 5 incidents; 39% said that they had
experienced 10 or more incidents. The average reported financial loss
per company per year was in excess of $2 million.
What do all of these numbers mean for Unix? To be sure, most of the
systems in use today are based on Microsoft’s
Windows operating system. Unix and Unix variants are certainly more
secure than Windows, for reasons that we’ll discuss
in this book. Nevertheless, experience tells us that a
poorly-administered Unix computer can be just as vulnerable as a
typical Windows system: if you have a vulnerability that is known, an
attacker can find it, exploit it, and take over your computer. It is
our goal in this book to show you how to prevent yourself from ever
experiencing this fate—and if you do, it is our goal to tell
you what to do about it.

Unix “Security”?

When the first version of this book appeared in 1991, many people
thought that the words “Unix
security” were an oxymoron—two words that
appeared to contradict each other, much like the words
“jumbo shrimp” or
“Congressional action.” After all,
the ease with which a Unix guru could break into a system, seize
control, and wreak havoc was legendary in the computer community.
Some people couldn’t even imagine that a computer
running Unix could ever be made secure.
Since then, the whole world of computers has changed. These days,
many people regard Unix as a relatively secure operating system.
While Unix was not originally designed with military-level security
in mind, it was built both to withstand limited external attacks and
to protect users from the accidental or malicious actions of other
users on the system. Years of constant use and study have made the
operating system even more secure, because most of the Unix security
faults have been publicized and fixed. Today, Unix is used by
millions of people and many thousands of organizations around the
world, all without obvious major mishaps.
But the truth is, Unix really hasn’t become
significantly more secure with its increased popularity.
That’s because fundamental flaws still remain in the
operating system’s design. The Unix

 superuser
remains a single point of attack: any intruder or insider
who can become the Unix superuser can take over the system,
booby-trap its programs, and hold the computer’s
users hostage—sometimes even without their knowledge.
One thing that has improved is our understanding of how to keep a
computer relatively secure. In recent years, a wide variety of tools
and techniques have been developed with the goal of helping system
administrators secure their Unix computers. Another thing that has
changed is the level of understanding of Unix by system
administrators: now it is relatively easy for companies and other
organizations to hire a professional system administrator who will
have the expertise to run their computers securely.
The difference between a properly secured Unix system and a poorly
secured Unix system is vast, and the difference between a system
administrator with the knowledge and motivation to secure a system
and one without that knowledge or motivation can be equally vast.
This book can help.

What This Book Is

This book is a practical guide to security for
Unix and Unix-like (e.g., Linux) systems. For users, we explain what
computer security is, describe some of the dangers that you may face,
and tell you how to keep your data safe and sound. For
administrators, we explain in greater detail how Unix security
mechanisms work and how to configure and administer your computer for
maximum protection. For those who are new to Unix, we also discuss
Unix’s internals, its history, and how to keep
yourself from getting burned.
Is this book for you? If you administer a Unix system, you will find
many tips for running your computer more securely. If you are new to
the Unix system, this book will teach you the underlying concepts on
which Unix security is based. If you are a developer, this book will
give you valuable details that are rarely found together in one
place—it might even give you an idea for a new security
product.
We’ve collected helpful information concerning how
to secure your Unix system against threats, both internal and
external. In most cases, we’ve presented material
and commands without explaining in any detail how they work, and in
several cases we’ve simply pointed out the nature of
the commands and files that need to be examined;
we’ve assumed that a typical system administrator is
familiar with the commands and files of his system, or at least has
the manuals available to study.
A Note About Your Manuals

 Some people may think
that it is a cop-out for a book on computer security to advise the
reader to read her system manuals. But it’s not. The
fact is, computer vendors change their software much faster (and with
less notice) than publishers bring out new editions of books. If you
are concerned about running your computer
securely, then you should take the extra time to read your manuals to
verify what we say. You should also experiment with your running
system to make sure that the programs behave the way they are
documented.
Thus, we recommend that you go back and read through the manuals
every few months to stay familiar with your system. Sometimes
rereading the manuals after gaining new experience gives you added
insight. Other times it reminds you of useful features that you
haven’t used yet. Many successful system
administrators have told us that they make it a point to reread all
their manuals every 6 to 12 months!

Certain key parts of this book were written with the novice user in
mind. We have done this for two reasons: to be sure that important
Unix security concepts are presented to the fullest and to make
important sections (such as those on file permissions and passwords)
readable on their own. That way, this book can be passed around with
a note saying, “Read Chapter 4 to
learn about how to set passwords.”[4]

What This Book Is Not

This book is not intended to be a Unix tutorial, nor is it a system
administration tutorial—there are better books for that (see
Appendix C), and good system administrators need to
know about much more than security. Use this book as an adjunct to
tutorials and administration guides.
This book is also not a general text on computer
security—we’ve tried to keep the formalisms to
a minimum. Thus, this is not a book that is likely to help you design
new security mechanisms for Unix, although we have included a chapter
on how to write more secure programs.
We’ve also tried to minimize the amount of
information in this book that would be useful to people trying to
break into computer systems. If that is your goal, then this book
probably isn’t for you.
We have also tried to resist the temptation to suggest:
	Replacements for your standard commands

	Modifications to your kernel

	Other significant programming exercises to protect your system

The reason has to do with our definition of
practical. For security measures to be
effective, they need to be generally applicable. Most users of
Solaris and other
commercial versions of Unix do not have access to the source code:
they depend upon their vendors to fix bugs. Even most users of
so-called “open source” systems
such as
 Linux and
FreeBSD rely on others to
fix bugs—there are simply too many flaws and not enough time.
Even if we were to suggest changes, they might not be applicable to
every platform of interest. Experience has shown that making changes
often introduces new flaws unless the changes are extremely simple
and well-understood.
There is also a problem associated with managing wide-scale changes.
Not only can changes make the system more difficult to maintain, but
changes can be impossible to manage across many architectures,
locations, and configurations. They also will make vendor maintenance
more difficult—how can vendors respond to bug reports for
software that they didn’t provide?
Last of all, we have seen programs and suggested fixes posted on the
Internet that are incorrect or even dangerous. Many administrators of
commercial and academic systems do not have the necessary expertise
to evaluate the overall security impact of changes to their
system’s kernel, architecture, or commands. If you
routinely download and install third-party patches and programs to
improve your system’s security, your overall
security may well be worse in the long term.
For all of these reasons, our emphasis is on using tools provided
with your operating systems. Where there are exceptions to this rule,
we will explain our reasoning.

Third-Party Security Tools

 There
are many programs, systems, and other kinds of software tools that
you can use to improve the security of your computer system. Many of
these tools come not from your own organization or from the vendor,
but instead from a third party. In recent years, third-party tools
have been provided by corporations, universities, individuals, and
even the computer underground.
When we published the first version of this book, there were precious
few third-party security tools. Because the tools that did exist were
important and provided functionality that was not otherwise
available, we took an inclusive view and described every one that we
thought significant. We tried that same approach when the second
edition of this book was published and we suffered the consequences.
There were simply too many tools, and our printed descriptions soon
were out of date.
With this third edition of Practical Unix and Internet
Security, we have taken a fundamentally different
approach. Today, tools are both being developed and being abandoned
at such a furious rate that it is no longer practical to mention them
all in a printed volume. Furthermore, many of the better tools have
been incorporated into the operating system. Therefore, in this
edition of the book we will, for the most part, discuss only tools
that have been integrated into operating system distributions and
releases. We will not devote time (and precious pages) to explaining
how to download and install third-party tools or
modifications.[5]

[1] We do note,
however, that the vast majority of viruses, worms, security flaws,
and incidents tend to occur in non-Unix systems.

[2]
 http://www.gocsi.com/press/20020407.html

[3] This may mean the others had
incidents too, but were unable to detect them or declined to report
them.

[4] Remember to pass around the book itself or get another copy to
share. If you were to make a photocopy of the pages to circulate, it
could be a significant violation of the copyright. This sets a bad
example about respect for laws and rules, and conveys a message
contrary to good security policy.

[5] Articles about current security tools,
with detailed configuration information, appear regularly on the
O’Reilly web site and the O’Reilly
Network, as well as on a variety of security-related sites. In
addition, see Appendix D for some
suggestions.

Scope of This Book

This book is divided into six parts; it includes 26 chapters and 5
appendixes.

 Part I, provides a basic introduction to
computer security, the Unix operating system, and security policy.
The chapters in this book are designed to be accessible to both users
and administrators.
	
 Chapter 1, takes a very basic look at several
basic questions: What is computer security? What is an operating
system? What is a deployment environment? It also introduces basic
terms we use throughout the book.

	
 Chapter 2, explores the history of the Unix
operating system, and discusses the way that Unix history has
affected Unix security.

	
 Chapter 3, examines the role of setting good
policies to guide the protection of your systems. It also describes
the trade-offs you will need to make to account for cost, risk, and
corresponding benefits.

 Part II, provides a basic introduction to Unix
host security. The chapters in this part of the book are also
designed to be accessible to both users and administrators.
	
 Chapter 4, is about Unix user accounts. It
discusses the purpose of passwords, explains what makes good and bad
passwords, and describes how the crypt()
password encryption system works.

	
 Chapter 5, describes how Unix groups can be used
to control access to files and devices. It discusses the Unix
superuser and the role that special users play. This chapter also
introduces the Pluggable Authentication Module (PAM) system.

	
 Chapter 6, discusses the security provisions of
the Unix filesystem and tells how to restrict access to files and
directories to the file’s owner, to a group of
people, or to everybody using the computer system.

	
 Chapter 7, discusses the role of encryption and
message digests in protecting your security.

	
 Chapter 8. What if somebody gets frustrated by
your super-secure system and decides to smash your computer with a
sledgehammer? This chapter describes physical perils that face your
computer and its data and discusses ways of protecting against them.

	
 Chapter 9, explores who you employ and how they
fit into your overall security scheme.

 Part III, describes the ways in which individual
Unix computers communicate with one another and the outside world,
and the ways in which these systems can be subverted by attackers who
are trying to break into your computer system. Because many attacks
come from the outside, this part of the book is vital reading for
anyone whose computer has outside connections.
	
 Chapter 10, describes how modems work and provides
step-by-step instructions for testing your
computer’s modems to see if they harbor potential
security problems.

	
 Chapter 11, provides background on how TCP/IP
networking programs work and describes the security problems they
pose.

	
 Chapter 12, the longest chapter in this book,
explores the most common TCP and UDP services and how you can secure
them.

	
 Chapter 13, one of the shortest chapters in the
book, looks at the Remote Procedure Call system developed in the
1980s by Sun Microsystems. This RPC system is the basis of NFS and a
number of other network-based services.

	
 Chapter 14, discusses services for authenticating
individuals over a network: NIS, NIS+, Kerberos, and LDAP. It
continues the discussion of the PAM system.

	
 Chapter 15, describes both Sun
Microsystems’ Network Filesystem (NFS) and the
Windows-compatible Server Message Block (SMB)—in particular,
the Samba system.

	
 Chapter 16, describes common pitfalls you might
encounter when writing your own software. It gives tips on how to
write robust software that will resist attack from malicious users.
This information is particularly important when developing network
servers.

 Part IV, is directed primarily towards Unix
system administrators. It describes how to configure Unix on your
computer to minimize the chances of a break-in, as well as to limit
the opportunities for a nonprivileged user to gain superuser access.
	
 Chapter 17, discusses strategies for downloading
security patches and keeping your operating system up to date.

	
 Chapter 18, discusses why and how to make archival
backups of your storage. It includes discussions of backup strategies
for different types of organizations.

	
 Chapter 19, describes ways that an attacker might
try to initially break into your computer system. By finding these
“doors” and closing them, you
increase the security of your system.

	
 Chapter 20, discusses how to monitor your
filesystem for unauthorized changes. This chapter includes coverage
of the use of message digests and read-only disks, and the
configuration and use of the Tripwire utility.

	
 Chapter 21, discusses the logging mechanisms that
Unix provides to help you audit the usage and behavior of your
system.

 Part V, contains instructions for what to do
if your computer’s security is compromised. This
part of the book will also help system administrators protect their
systems from authorized users who are misusing their privileges.
	
 Chapter 22, contains step-by-step directions to
follow if you discover that an unauthorized person is using your
computer.

	
 Chapter 23, discusses approaches for handling
computer worms, viruses, Trojan Horses, and other programmed threats.

	
 Chapter 24, describes ways that both authorized
users and attackers can make your system inoperable. We also explore
ways that you can find out who is doing what, and what to do about
it.

	
 Chapter 25. Occasionally, the only thing you can do
is sue or try to have your attackers thrown in jail. This chapter
describes legal recourse you may have after a security breach and
discusses why legal approaches are often not helpful. It also covers
some emerging concerns about running server sites connected to a wide
area network such as the Internet.

	
 Chapter 26, makes the point that somewhere along
the line, you need to trust a few things, and people. We hope you are
trusting the right ones.

 Part VI, contains a number of useful lists and
references.
	
 Appendix A, contains a point-by-point list of many
of the suggestions made in the text of the book.

	
 Appendix B, is a technical discussion of how the
Unix system manages processes. It also describes some of the special
attributes of processes, including the UID, GID, and SUID.

	
 Appendix C, lists books, articles, and magazines
about computer security.

	
 Appendix D, is a brief listing of some significant
security tools to use with Unix, including descriptions of where to
find them on the Internet.

	
 Appendix E, contains the names, telephone numbers,
and addresses of organizations that are devoted to ensuring that
computers become more secure.

Which Unix System?

 An unfortunate side effect of
Unix’s popularity is that there are many different
versions of Unix; today, nearly every computer manufacturer has its
own.

 When we wrote the first edition of this
book, there were two main families of Unix:
AT&T System V and
Berkeley’s BSD. There was a sharp division between
these systems. System V was largely favored by industry and
government because of its status as a well-supported,
“official” version of Unix. BSD,
meanwhile, was largely favored by academic sites and developers
because of its flexibility, scope, and additional features.
When we wrote the first edition of this book, only Unix operating
systems sold by AT&T could be called
“Unix” because of licensing
restrictions. Other manufacturers adopted names such as SunOS (Sun
Microsystems), Solaris (also Sun Microsystems), Xenix (Microsoft),
HP-UX (Hewlett-Packard), A/UX (Apple), Dynix (Sequent), OSF/1 (Open
Software Foundation), Linux (Linus Torvalds), Ultrix (Digital
Equipment Corporation), and AIX (IBM)—to name a few.
Practically every supplier of a Unix or Unix-like operating system
made its own changes to the operating system. Some of these changes
were small, while others were significant. Some of these changes had
dramatic security implications and, unfortunately, many of these
implications are usually not evident. Not every vendor considers the
security implications of its changes before making them.
In recent years, Unix has undergone a rapid evolution. Most of the
commercial versions of the operating system have died off, while
there has simultaneously been an explosion of
“free” Unix systems. Security has
grown more important in recent years, and now all companies,
organizations, and individuals distributing Unix claim to take the
subject of security quite seriously. However, it is clear that some
take the subject far more seriously than others.
Versions Covered in This Book

The third edition of this book covers
Unix security as it relates to the four
most common versions of Unix today:

 Solaris, Linux,
FreeBSD, and MacOS X. Solaris and Linux are generally thought of as

 System V-based operating systems, while
FreeBSD and MacOS X are generally seen as

 BSD-based systems. However, there has been
so much mingling of concepts and code in recent years that these
distinctions may no longer be relevant. In many cases, the underlying
theory and commands on these systems are similar enough that we can
simply use the word “Unix” to stand
for all of these systems. In cases where we cannot, we note
individual operating system differences.
Particular details in this book concerning specific Unix commands,
options, and side effects are based upon the
authors’ experience with AT&T System V Release
3.2 and 4.0, Berkeley Unix Release 4.3 and 4.4, Digital Unix, FreeBSD
3.0 through 4.5, Linux (various versions), MacOS X, NeXTSTEP 0.9
through 4.0, Solaris 2.3 through 8, SunOS 4.0 and 4.1, and Ultrix
4.0. We’ve also had the benefit of our technical
reviewers’ long experience with other systems, such
as AIX and HP-UX. As these systems are representative of the majority
of Unix machines in use, it is likely that these descriptions will
suffice for most machines to which readers will have access.
Note
Throughout this book, we generally refer to
System V Release 4 as
SVR4. When we refer to
SunOS without a version number, assume that
we are referring to SunOS 4.1.x. When we refer to
Solaris without a version number, assume
that we are referring to Solaris 7 and above.
We also refer to operating systems that run on top of the
Linux kernel as Linux, even though many
Linux systems contain significant components that were developed by
readily identifiable third parties. (For example, the Free Software
Foundation was responsible for the creation of the GNU development
tools, without which the Linux system could not have been built,
while MIT and the X Windows Consortium were responsible for the
creation and initial development of the X Window system.)

Many Unix vendors have modified the basic behavior of some of their
system commands, and there are dozens upon dozens of Unix vendors. As
a result, we don’t attempt to describe every
specific feature offered in every version issued by every
manufacturer—that would only make the book longer, as well as
more difficult to read. It would also make this book inaccurate, as
some vendors change their systems frequently. Furthermore, we are
reluctant to describe special-case features on systems we have not
been able to test thoroughly ourselves. Whether
you’re a system administrator or an ordinary user,
it’s vital that you read the reference pages of your
own particular Unix system to understand the differences between what
is presented in this volume and the actual syntax of the commands
that you’re using. This is especially true in
situations in which you depend upon the specific output or behavior
of a program to verify or enhance the security of your system.
The Many Faces of “Open Source” Unix

 One of the difficulties in writing this
book is that there are many, many versions of Unix. All of them have
differences: some minor, some significant. Our problem, as you shall
see, is that even apparently minor differences between two operating
systems can lead to dramatic differences in overall security. Simply
changing the protection settings on a single file can turn a secure
operating system into an unsecure one.

 The Linux operating system makes things
even more complicated. That’s because Linux is a
moving target. There are many different distributions of Linux. Some
have minor differences, such as the installation of a patch or two.
Others are drastically different, with different kernels, different
driver software, and radically different security models.
Furthermore, Linux is not the only free form of Unix. After the
release of Berkeley 4.3, the Berkeley Computer Systems Research Group
(CSRG) (and a team of volunteers across the Internet) worked to
develop a system that was devoid of all AT&T code; this release
was known as Berkeley 4.4. Somewhere along the line the project split
into several factions, eventually producing four operating systems:

 BSD 4.4 Lite,
NetBSD,
FreeBSD, and
OpenBSD. Today there
are several versions of each of these operating systems. There are
also systems based on the Mach kernel and systems that employ
Unix-like utilities from a number of sources. (Chapter 2 covers this history.)
The world of free Unix is less of a maelstrom today than it was when
the second edition of this book was published. However, it remains
true that if you want to run Linux, NetBSD, FreeBSD, or any other
such system securely, it is vitally important that you know exactly
which version of which distribution of which operating system with
which software you are running on your computer. Merely
reading your manual may not be enough! You may have to
read the source code. You may also have to verify that the source
code you are reading actually compiles to produce the binaries you
are running!
Also, please note that we cannot possibly
describe (or even know) all the possible variations and implications,
so don’t assume that we have covered all the nuances
of your particular system. When in doubt, check it out.

By writing this book, we hope to provide information that will help
users and system administrators improve the security of their
systems. We have tried to ensure the accuracy and completeness of
everything within this book. However, as we noted previously, we
can’t be sure that we have covered
everything, and we can’t know
about all the quirks and modifications made to every version and
installation of Unix-derived systems. Thus, we can’t
promise that your system security will never be compromised if you
follow all our advice, but we can promise that successful attacks
will be less likely. We encourage readers to tell us of significant
differences between their own experiences and the examples presented
in this book; those differences may be noted in future editions.

“Secure” Versions of Unix

 Over time,
several vendors have developed
“secure” versions of Unix,
sometimes known as “trusted Unix.”
These systems embody mechanisms, enhancements, and restraints
described in various government standards documents. These enhanced
versions of Unix are designed to work in

 Multilevel Security (MLS) and
Compartmented-Mode Workstation (CMW) environments—where there
are severe constraints designed to prevent the mixing of data and
code with different security classifications, such as Secret and Top
Secret. In 2001,
 Chris I. Dalton and Tse Huong Choo at HP
Labs released a system called

 Trusted Linux. The National Security
Agency has also released a Linux variant called

 Security Enhanced Linux (SE
Linux).[6]

Secure Unix systems generally have extra features added to them,
including access control lists, data labeling, enhanced auditing, and
mutual authentication between separate components. They also remove
some traditional features of Unix, such as the
superuser’s
special access privileges and access to some device files. Despite
these changes, the systems still bear a resemblance to standard Unix.

 Trusted Solaris still functions
basically like Solaris.
These systems are not in widespread use outside of selected
government agencies, their contractors, and the financial industry.
It seems doubtful to us that they will ever enjoy widely popular
acceptance because many of the features make sense only within the
context of a military security policy. On the other hand, some of
these enhancements are useful in the commercial environment as well,
and C2 security features are already common in many modern versions
of Unix.
Today, trusted Unix systems are often more difficult to use in a wide
variety of environments, more difficult to port programs to, and more
expensive to obtain and maintain. Thus, we haven’t
bothered to describe the quirks and special features of these systems
in this book. If you have such a system, we recommend that you read
the vendor documentation carefully and repeatedly.

[6] Security Enhanced Linux is a misleading name,
however, as the release does not address all of the underlying
architectural and implementation flaws. Instead, SE Linux adds a form
of mandatory access control to a vanilla Linux. Assuming that there
are no major bugs and that you configure it correctly, you can
achieve better security—but it doesn’t come
automatically, nor does it provide a comprehensive security
solution.

Conventions Used in This Book

 The following conventions are used in this
book:
	Italic
	Used for Unix file, directory, command, user, and group names. It is
also used for URLs and to emphasize new terms and concepts when they
are introduced.

	
 Constant Width

	Used for code examples, system output, and passwords.

	
 Constant Width Italic

	Used in examples for variable input or output (e.g., a filename).

	
 Constant Width Bold

	Used in examples for user input.

	
 Strike-through

	Used in examples to show input typed by the user that is not echoed
by the computer. This is mainly used for passwords and passphrases
that are typed.

	call()
	

 Used to
indicate a system call, in contrast to a command. In the original
edition of the book, we referred to commands in the form
command(1) and to calls in the form
call(2) or call(3), in
which the number indicates the section of the Unix
programmer’s manual in which the command or call is
described. Because different vendors now have diverged in their
documentation section numbering, we try to avoid this convention in
this edition of the book. (Consult your own documentation index for
the right section.) The call() convention is
helpful in differentiating, for example, between the
crypt command and the crypt() library function.

	
 %

	

 The
Unix C shell prompt.

	
 $

	

 T

 he Unix Bourne shell or Korn
shell prompt.

	
 #

	

 The Unix superuser prompt (Korn,
Bourne, or C shell). We usually use this symbol for examples that
should be executed by root.
Normally, we will use the Bourne or Korn shell in our examples unless
we are showing something that is unique to the C shell.

	
 []

	

 Surrounds optional values in a
description of program syntax. (The brackets themselves should never
be typed.)

 Ctrl-X or ^X indicate the use of control
characters. They mean “Hold down the Control key
while typing the character
`X’.”
All command examples are followed by Return unless otherwise
indicated.
Tip
This icon designates a note, which is an important aside to the
nearby text.

Warning
This icon designates a warning relating to the nearby text.

Comments and Questions

 We have tested and verified the information
in this book to the best of our ability, but you may find that
features have changed (or even that we have made mistakes!). Please
let us know about any errors you find, as well as your suggestions
for future editions, by writing to:
	O’Reilly & Associates, Inc.
	1005 Gravenstein Highway North
	Sebastopol, CA 95472
	(800) 998-9938 (U.S. and Canada)
	(707) 827-7000 (international/local)
	(707) 829-0104 (fax)

You can also contact O’Reilly by email. To be put on
the mailing list or request a catalog, send a message to:
	
 info@oreilly.com

 We have a web page for this book, which
lists errata, examples, and any additional information. You can
access this page at:
	
 http://www.oreilly.com/catalog/puis3/

To comment or ask technical questions about this book, send email to:
	
 bookquestions@oreilly.com

For more information about O’Reilly books,
conferences, Resource Centers, and the O’Reilly
Network, see the O’Reilly web site at:
	
 http://www.oreilly.com/

Acknowledgments

We have many people to thank for their help on the various editions
of this book. In the following sections, we’ve
included the acknowledgments for previous editions as well as the
current one.
Third Edition

We would like to express our deepest thanks to the many people who
worked with us in getting out the third version of this book. In
particular, Paco Hope answered questions about the Unix
“jail” now present on some
versions, Casey Schaufler answered questions about POSIX 1003.1e; Ed
Finkler helped with testing and expansion of the random number script
in Chapter 16; students associated with the MIT
Student Information Processing Board answered questions on Kerberos,
and Wietse Venema answered questions about TCP Wrappers.
Many individuals reviewed some or all of the chapters in this book
and provided us with helpful feedback that made the book better than
it otherwise would have been. In particular, we would like to express
our thanks to Brian Carrier, Dorothy Curtis, Linda McCarthy, Clifford
Neuman, Gregory D. Rosenberg (N9NNO), Danny Smith, Kevin Unrue,
Wietse Venema, and Keith Watson. Special thanks to Gregg Rosenberg of
Ricis, Inc., for the speed and thoroughness of his review of all
chapters. Any errors that remain are ours alone.
Untold thanks go to Debby Russell, our editor at
O’Reilly & Associates, without whom this book
would not have happened.

Second Edition

We are grateful to everyone who helped us develop the second edition
of this book. The book, and the amount of work required to complete
it, ended up being much larger than we originally envisioned. We
started the rewrite of this book in January 1995; we finished it in
March 1996, many months later than we had intended.
Our thanks to the people at Purdue University in the Computer
Sciences Department and the COAST Laboratory who read and reviewed
early drafts of this book: Mark Crosbie, Bryn Dole, Adam Hammer, Ivan
Krsul, Steve Lodin, Dan Trinkle, and Keith A. Watson; Sam Wagstaff
also commented on individual chapters.
Thanks to our technical reviewers: Fred Blonder (NASA), Brent Chapman
(Great Circle Associates), Michele Crabb (NASA), James Ellis
(CERT/CC), Dan Farmer (Sun), Eric Halil (AUSCERT), Doug Hosking
(Systems Solutions Group), Tom Longstaff (CERT/CC), Danny Smith
(AUSCERT), Jan Wortelboer (University of Amsterdam), David Waitzman
(BBN), and Kevin Ziese (USAF). We would also like to thank our
product-specific reviewers, who carefully read the text to identify
problems and add content applicable to particular Unix versions and
products. They are C.S. Lin (HP), Carolyn Godfrey (HP), Casper Dik
(Sun), Andreas Siegert (IBM/AIX), and Grant Taylor (Linux),
Several people reviewed particular chapters. Peter Salus reviewed the
introductory chapter, Ed Ravin (NASA Goddard Institute for Space
Studies) reviewed the UUCP chapter, Adam Stein and Matthew Howard
(Cisco) reviewed the networking chapters, Lincoln Stein (MIT
Whitehead Institute) reviewed the World Wide Web chapter, and Wietse
Venema reviewed the chapter on wrappers.
Æleen Frisch, author of Essential System
Administration (O’Reilly &
Associates, 1995) kindly allowed us to excerpt the section on access
control lists from her book.
Thanks to the many people from O’Reilly &
Associates who turned our manuscript into a finished product. Debby
Russell did another command performance in editing this book and
coordinating the review process. Mike Sierra and Norman Walsh
provided invaluable assistance in moving Practical Unix
Security
 ’s
original troff files into FrameMaker format and in managing an
increasingly large and complex set of Frame and SGML tools. Nicole
Gipson Arigo did a wonderful job as production manager for this book.
Clairemarie Fisher O’Leary assisted with the
production process and managed the work of contractors. Kismet
McDonough-Chan performed a quality assurance review, and Cory Willing
proofread the manuscript. Nancy Priest created our interior design,
Chris Reilley developed the new figures, Edie Freedman redesigned the
cover, and Seth Maislin gave us a wonderfully usable index.
Thanks to Gene’s wife Kathy and daughter Elizabeth
for tolerating continuing mentions of “The
Book” and for many nights and weekends spent
editing. Kathy also helped with the proofreading.
Between the first and second editions of this book, Simson was
married to Elisabeth C. Rosenberg. Special thanks are due to her for
understanding the amount of time that this project has taken.

First Edition

The first edition of this book originally began as a suggestion by
Victor Oppenheimer, Deborah Russell, and Tim
O’Reilly at O’Reilly &
Associates.
Our heartfelt thanks to those people who reviewed the manuscript of
the first edition in depth: Matt Bishop (UC Davis); Bill Cheswick,
Andrew Odlyzko, and Jim Reeds (AT&T Bell Labs) (thanks also to
Andrew and to Brian LaMacchia for criticizing the section on network
security in an earlier draft as well); Paul Clark (Trusted
Information Systems); Tom Christiansen (Convex Computer Corporation);
Brian Kantor (UC San Diego); Laurie Sefton (Apple); Daniel Trinkle
(Purdue’s Department of Computer Sciences); Beverly
Ulbrich (Sun Microsystems); and Tim O’Reilly and
Jerry Peek (O’Reilly & Associates). Thanks also
to Chuck McManis and Hal Stern (Sun Microsystems), who reviewed the
chapters on NFS and NIS. We are grateful for the comments by
Assistant U.S. Attorney William Cook and by Mike Godwin (Electronic
Frontier Foundation) who both reviewed the chapter on the law. Fnz
Jntfgnss (Purdue) provided very helpful feedback on the chapter on
encryption—gunaxf! Steve Bellovin (AT&T), Cliff Stoll
(Smithsonian), Bill Cook, and Dan Farmer (CERT) all provided moral
support and helpful comments. Thanks to Jan Wortelboer, Mike
Sullivan, John Kinyon, Nelson Fernandez, Mark Eichin, Belden Menkus,
and Mark Hanson for finding so many typos! Thanks as well to Barry Z.
Shein (Software Tool and Die) for being such an icon and Unix
historian. Steven Wadlow provided the pointer to Lazlo Hollyfeld. The
quotations from Dennis Ritchie are from an interview with Simson
Garfinkel that occurred during the summer of 1990.
Many people at O’Reilly & Associates helped with
the production of the first edition of the book. Debby Russell edited
the book. Rosanne Wagger and Kismet McDonough did the copyediting and
production. Chris Reilley developed the figures. Edie Freedman
designed the cover and the interior design. Ellie Cutler produced the
index.
Special thanks to Kathy Heaphy, Gene Spafford’s
long-suffering and supportive wife, and to Georgia Conarroe, his
secretary at Purdue University’s Department of
Computer Science, for their support while we wrote the first edition.

A Note to Would-Be Attackers

We’ve tried to write this book in such a way that it
can’t be used easily as a
“how-to” manual for potential
system attackers. Don’t buy this book if you are
looking for hints on how to break into systems. If you think that
breaking into systems is a fun pastime, consider applying your energy
and creativity to solving some of the more pressing problems facing
us all, rather than creating new problems for overworked computer
users and administrators.
The days have long passed when breaking into computers required
special skills or intelligence. Now all it requires is downloading
scripts from a few web sites and clicking a button. What really takes
cleverness is fixing systems so that they are resistant to external
attacks. Breaking into someone else’s machine to
demonstrate a security problem is nasty and destructive, even if all
you do is “look around.”
The names of systems and accounts in this book are for example
purposes only. They are not meant to represent any particular machine
or user. We explicitly state that there is no invitation for people
to try to break into the authors’ or
publisher’s computers or the systems mentioned in
this text. Any such attempts will be prosecuted to the fullest extent
of the law, whenever possible. We realize that most of our readers
would never even think of behaving this way, so our apologies to you
for having to make this point.

Part I. Computer Security Basics

This part of the book provides a basic introduction to computer
security, the Unix operating system, and security policy. The
chapters in this part are designed to be accessible to both users and
administrators.

 Chapter 1, takes a very basic look at several
basic questions: What is computer security? What is an operating
system? What is a deployment environment? It also introduces basic
terms we use throughout the book.

 Chapter 2, explores the history of the Unix
operating system, and discusses the way that Unix history has
affected Unix security.

 Chapter 3, examines the role of setting good
policies to guide protection of your systems. It also describes the
trade-offs you will need to make to account for cost, risk, and
corresponding benefits.

Chapter 1. Introduction: Some Fundamental Questions

In today’s world of international networks and
electronic commerce, every computer system is a potential target.
Rarely does a month go by without news of some major network or
organization having its computers penetrated by unknown computer
criminals. These intrusions have become especially sinister in recent
years: computers have been turned into attack platforms for launching
massive denial of service attacks, credit-card numbers have been
plundered from databases and then used for fraud or extortion,
hospital medical records have been accessed by children who then used
the information to play malicious practical jokes on former patients,
business records have been surreptitiously altered, software has been
replaced with secret “back doors”
in place, and millions of passwords have been captured from
unsuspecting users. There are also reports of organized crime, agents
of hostile nation states, and terrorists all gaining access to
government and private computer systems, using those systems for
nefarious purposes.
All attacks on computer systems are potentially damaging and costly.
Even if nothing is removed or altered, system administrators must
often spend hours or days analyzing the penetration and possibly
reloading or reconfiguring a compromised system to regain some level
of confidence in the system’s integrity. As there is
no way to know the motives of an intruder, and the worst must always
be assumed.

 People who break into systems simply to
“look around” do real damage, even
if they do not access confidential information or delete files.

 Many
different kinds of people break into computer systems. Some people
are the equivalent of reckless teenagers out on electronic joy rides.
Similar to youths who “borrow” fast
cars, their main goal isn’t necessarily to do
damage, but to have what they consider to be a good time. Others are
far more dangerous: some people who compromise system security are
sociopaths—their goal is to break into as many systems as
possible for the mere challenge of doing so. Others see themselves as
being at “war” with rival hackers;
woe to innocent users and systems who happen to get in the way of
cyberspace “drive-by shootings!”
Still others are out for valuable corporate information, which they
hope to resell for profit or use for blackmail. There are also
elements of organized crime, spies, saboteurs, terrorists, and
anarchists.
Who Is a Computer Hacker?

 HACKER noun 1. A person who enjoys
learning the details of computer systems and how to stretch their
capabilities—as opposed to most users of computers, who prefer
to learn only the minimum amount necessary. 2. One who programs
enthusiastically or who enjoys programming rather than just
theorizing about programming.
—Eric S. Raymond, et al., The Hacker’s Dictionary

There was a time when computer security professionals argued over the
term

 hacker. Some
thought that hackers were excellent and somewhat compulsive computer
programmers, such as Richard Stallman, founder of the Free
Software Foundation. Others thought that hackers were criminals, like
the celebrity hacker Kevin Mitnick. Complicating this discussion was
the fact that many computer security professionals had formerly been
hackers themselves—of both persuasions. Some were anxious to
get rid of the word, while others wished to preserve it.
Today the confusion over the term hacker has largely been resolved.
While some computer professionals continue to call themselves
hackers, most don’t. In the mind of the public, the
word hacker has been firmly defined as a person exceptionally
talented with computers who often misuses that skill. Use of the term
by members of the news media, law enforcement, and the entertainment
industry has only served to reinforce this definition.
In this book we will generally refrain from using the word
hacker—not out of honor or respect, but because the term is now
so widely used to describe so many different things that it has
virtually ceased to be informative. So instead of the word

 hacker

 ,
we’ll try to use descriptive terms such as
attacker, code breaker,
saboteur, intruder,
vandal, and thief, as
appropriate. Occasionally, we’ll use more generic
terms such as bad guy or, simply,
criminal.

The most dangerous computer criminals are usually insiders (or former
insiders), because they know many of the codes and security measures
that are already in place. Consider the case of a former employee who
is out for revenge. The employee probably knows which computers to
attack, which files will cripple the company the most if deleted,
what the defenses are, and where the backup tapes are stored.
Nevertheless, when these people attack, they may well come in from
the Internet—perhaps from a compromised computer system in
Eastern Europe or South America—to obscure their true
identities.

 Despite the risks, having an Internet
presence has become all but a fundamental requirement for doing
business in the United States, Western Europe, and, increasingly, the
rest of the world. Every day, the number of Internet-connected
computers increases. What’s more, our concept of
what is a computer continues to broaden as well.
It is now common for handheld devices weighing 8 ounces or less to
have wireless Internet connections; some of these systems even run an
embedded Unix operating system. By all indications, we are likely to
see both more computers and more kinds
of computers attached to the Internet in the years to
come, and they are likely to be always on and always connected. All
of these systems demand protection so that they can be run securely.

 Interest in Unix has grown hand-in-hand
with the deployment of the Internet. For many years, Unix ran the
Internet; the majority of web servers on the Internet are still
Unix-based. Unix systems likewise make great firewalls, mail servers,
domain name servers, and more. What’s more, you can
download and install a fully functional, up-to-date free Unix system
with only a floppy disk and a high-speed Internet connection.
What Is Computer Security?

Terms like security,
protection, and privacy
often have more than one meaning. Even professionals who work in
information security do not agree on exactly what these terms mean.
The focus of this book is not on formal definitions and theoretical
models so much as it is on practical, useful information. Therefore,
we’ll use an operational definition of security and
go from there.

 COMPUTER
SECURITY.
 A computer is
secure if you can depend on it and its software to behave as you
expect.

If you expect the data entered into your machine today to be there in
a few weeks, and to remain unread by anyone who is not supposed to
read it, then the machine is secure. This concept is often called
trust
 :
you trust the system to preserve and protect your data.
By this definition, natural disasters and
buggy software are as
much threats to security as unauthorized users are. This definition
is obviously true from a practical standpoint. Whether your data is
erased by a vengeful employee, a random virus, an unexpected bug, or
a lightning strike—the data is still gone.
That’s why the word
“practical” is in the title of this
book—and why we won’t try to be more specific
about defining what “security” is,
exactly. A formal definition wouldn’t necessarily
help you any more than our working definition, and would require
detailed explanations of risk assessment, asset valuation, policy
formation, and a number of other topics beyond what we are able to
present here.
Our practical definition also implies that security is also concerned
with issues of testing, quality assurance, hardware reliability, and
even human factors. And in fact, these issues are increasingly of
interest to security professionals. This book, however, does not
address these topics in detail, as there are other books that cover
these topics better than we could given the amount of space that we
have available.
Instead, this book emphasizes techniques to help keep your system
safe from other people—including both insiders and outsiders,
those bent on destruction, and those who are simply ignorant or
untrained. The text does not detail every specific security-related
feature that is available only on certain versions of Unix from
specific manufacturers: such information changes quite quickly, and
reading a compilation of bugs, patches, and workarounds does not
noticeably improve one’s understanding of this
field. Instead, this text attempts to teach the principles necessary
to evaluate the data that you will get from more technical sources.
Throughout this book, we will be presenting mechanisms and methods of
using them. To decide which mechanisms are right for you, take a look
at Chapter 3. Remember: each organization must
develop its own enforceable overall security policies, and those
policies will determine which mechanisms are appropriate to use. End
users should also read Chapter 3—users
should be aware of policy considerations, too.
Years ago, Unix was generally regarded as an operating system that
was difficult to secure. This is no longer the case. Today, Unix is
widely regarded as the most secure operating system that is generally
available. But despite the increasing awareness and the improvements
in defenses, the typical Unix system is still exposed to many
dangers. The purpose of this book is to give readers a fundamental
understanding of the principles of computer security and to show how
they apply to the Unix operating system. We hope to show you
practical techniques and tools for making your system as secure as
possible, especially if it is running some version of Unix. Whether
you are a user or an administrator, we hope that you will find value
in these pages.

What Is an Operating System?

 For most
people, a computer is a tool for solving problems. When running a
word processor, a computer becomes a machine for arranging words and
ideas. With a spreadsheet, the computer is a financial-planning
machine, one that is vastly more powerful than a pocket calculator.
Connected to an electronic network, a computer becomes part of a
powerful communications system.
At the heart of every computer is a master set of programs called the
operating system. This is the software that
communicates with the system hardware to control the
computer’s input/output systems, such as keyboards
and disk drives, and that loads and runs other programs. The
operating system is also a set of mechanisms and policies that help
define controlled sharing of system resources.
Along with the operating system is (usually) a large set of standard
utility programs for performing common functions such as copying
files and listing the contents of directories. Although these
programs are not technically part of the operating system according
to some formal definitions, the popular notion of an operating system
includes them. Whether they are part of the definition or not, they
can have a dramatic impact on a computer system’s
security.

 All of Unix can be divided into four parts:
	The
 kernel
	The kernel, or heart of the Unix system, is the operating system. The
kernel is a special program that is loaded into the computer when it
is first started. It controls all of the computer’s
input and output systems, allows multiple programs to run at the same
time, and allocates the system’s time and memory
among them. The kernel includes the filesystem, which controls how
files and directories are stored on the computer’s
storage devices (e.g., disks). The filesystem is one main mechanism
by which security is enforced. Some modern versions of the Unix
system allow user programs to load additional modules, such as device
drivers, into the kernel after the system starts running.

	Standard

 utility programs
	These programs are run by users and by the system. Some programs are
small and serve a single function—for example,
/bin/rm deletes files and
/bin/cp copies them. Other programs are large
and perform many functions—for example,
/bin/sh and /bin/csh are
Unix shells that process user commands, and are themselves
programming languages.

	

 System database files
	Most of the database files are relatively small and are used by a
variety of programs on the system. One file,
/etc/passwd, contains the master list of every
user on the system. Another file, /etc/group,
describes groups of users with similar access rights.

	System

 startup and configuration files
	Most of the startup and configuration files are relatively small and
are used by a variety of programs on the system. These include files
describing which server to start, and the network name and address of
the machine. For example, most systems store information about how to
look up Internet hostnames in /etc/resolv.conf.

From the point of view of Unix security, these four parts interact
with a fifth entity:
	

 Security policy
	This policy determines how the computer is run with respect to the
users and system administration. Policy plays as important a role in
determining your computer’s security as the
operating system software. A computer that is operated without regard
to security cannot be trusted, even if it is equipped with the most
sophisticated and security-conscious software. For this reason,
establishing and codifying policy plays a very important role in the
overall process of operating a secure system. This is discussed
further in Chapter 3.

One of the things that makes Unix security so challenging is that all
of these items are moving targets. Today’s Unix
systems contain many more utility programs, database files, and
configuration files than they did a few years ago.
Today’s Unix kernel has dramatically more
functionality than the simple kernel on which the underlying Unix
design was based. Even the security policies in organizations that
use Unix systems have changed substantially in recent years. As a
result, operating a Unix system in a secure manner today is a very
different task from ever before.

What Is a Deployment Environment?

 Unix was developed in the
1970s to be an operating system for minicomputers that were being
used simultaneously by several different people. Many of the features
of the Unix environment can be traced back to this intended
deployment environment.
In the three decades that have followed, Unix has been repurposed to
many different kinds of deployment environments. One of the reasons
for the operating system’s success is that the
design necessary to satisfy the original deployment requirements
provided the operating system with great flexibility.
Today Unix is widely used in at least five different deployment
environments:
	Multiuser, shared systems
	

 This is the
original Unix deployment environment—a single computer that is
simultaneously shared by several people. Shared systems are still
common in universities, in some businesses, and among some Internet
service providers. Thin-client

 Unix systems such as Sun
Microsystems’ SunRay systems make use of a shared
system driving multiple client displays.
The key difference between the shared systems of the 1970s and the
shared systems of today is merely size. In the 1970s, the typical
shared Unix system had 32 or 64 KB of RAM, had a disk pack of perhaps
5 MB of storage, and comfortably supported between 3 and 5
simultaneous users. Today’s typical multiuser
systems have between 64 MB and 4 GB of RAM, hundreds of GBs of disk
storage, and multiple cooperating CPUs, and can comfortably support
between 3 and 500 simultaneous users. Larger servers may have more
than 40 GB of RAM, disk storage in terabytes, and over 100
processors.

	One-user Unix workstations
	
 Unix
workstations for the individual user were popularized in the 1980s by
Sun Microsystems and Digital Equipment Corporation (now part of
Hewlett-Packard). These workstations typically had large bitmapped
displays running the X Window system, allowing a single person to
open several windows for shell sessions or other processes. A
one-user system could be entirely self-contained, or it can access
resources such as disks and printers over the network.
Today, the vast majority of Unix and Unix-like systems are one-user
workstations. These include most of the computers running the Mac OS
X operating system, as well as numerous Intel-based laptop and
desktop systems running the Linux and FreeBSD operating systems. HP,
Sun, IBM, and SGI are all vendors making one-user Unix workstations
of various kinds.

	Unix servers
	

 Unix
servers are typically powerful computers on the Internet that provide
information services to other computers. Unix servers can provide
many kinds of service, including email service, web service, domain
name service, file service, and so on. In contrast to other operating
systems, in Unix it is common to use a single Unix server to provide
many different services simultaneously.
The Unix heritage of multiuser design makes it well-suited to
providing Internet services in a secure and reliable fashion. Unlike
other operating systems, which may run all network servers from a
single privileged account, it is common on Unix systems to configure
a virtual user for each service that will be provided. Because Unix
was designed to prevent individual users from interfering with other
users or disrupting the operating system, if one of these virtual
users is compromised or fails, the extent of damage can be limited.
Although there are fewer Unix servers than Unix workstations, many
more people use Unix servers on a daily basis than they do Unix
workstations. This is because many of the Internet’s
most popular sites are run on Unix systems.

	Mobile Unix systems
	

 Although laptops and even some desktops
frequently move around, today the term “mobile
Unix” is generally reserved for handheld systems
with occasional wireless connectivity that are designed to run a
small number of applications. A typical mobile Unix system of 2003 is
a handheld computer with 64 MB of RAM and a StrongARM microprocessor
running a stripped-down Linux distribution.
Although mobile Unix systems seem puny by today’s
standards, it is important to realize that these computers are more
powerful than most workstations and multiuser servers were in the
early 1990s. Mobile Unix systems can have a GB or more of storage and
support network connections of 11 Mbps or faster, potentially making
them formidable attack platforms as well as useful personal systems.

	Embedded Unix systems
	
 The
term “embedded Unix” is typically
used to describe a Unix system that is deployed on a single-purpose
computer or “appliance.” Although
the appliance application itself might be managed, the embedded Unix
operating system is designed to be management-free. Typical embedded
Unix systems are firewall appliances, home routers, and computers
designed for automobiles.

The key differences between these deployment environments are the
policies and the amount of auditing that is provided. The underlying
principles of Unix security are largely the same for all of these
systems.

Summary

In this chapter, we looked briefly at the questions that underlie
computer security. What is computer security, and what are the
threats to it? What is an operating system? What is a deployment
environment? In the rest of the book, we’ll explore all of these
questions and your role in trying to answer them.

Chapter 2. Unix History and Lineage

This is a book about Unix security. But before we can really plunge
into the topic of our book—security—we need to explore
what we mean by this word “Unix.”
After that, we’ll discuss how notions of computer
security play out in the Unix world. Figure 2-1
shows the many Unix variants, and their relationships, that
we’ll describe in this chapter.
[image: Unix variants]

Figure 2-1. Unix variants

History of Unix

 The roots of Unix[7] go
back to the mid-1960s, when American Telephone and Telegraph,
Honeywell, General Electric, and the Massachusetts Institute of
Technology embarked on a massive project to develop an information
utility. The goal was to provide computer service 24 hours a day, 365
days a year—a computer that could be made faster by adding more
parts, much in the same way that a power plant can be made bigger by
adding more furnaces, boilers, and turbines. The project, heavily
funded by the Department of Defense Advanced Research Projects Agency
(
 ARPA, also known as
DARPA),
was called Multics.
Multics: The Unix Prototype

 Multics (which stands for
Multiplexed Information and Computing Service) was designed to be a modular system
built from banks of high-speed processors, memory, and communications
equipment. By design, parts of the computer could be shut down for
service without affecting other parts or the users. Although this
level of processing is assumed for many systems today, such a
capability was not available when Multics was begun.
Multics was also designed with military security in mind, both to be
resistant to external attacks and to protect the users on the system
from each other. By design, Top Secret,
Secret, Confidential, and Unclassified information could all coexist
on the same computer: the Multics system was designed to prevent
information that had been classified at one level from finding its
way into the hands of someone who had not been cleared to see that
information. Multics eventually provided a level of security and
service that is still unequaled by many of today’s
computer systems—including, perhaps, Unix.
Great plans, but in 1969 the Multics project was far behind schedule.
Its creators had promised far more than they could deliver within
their projected time frame. Already at a disadvantage because of the
distance between its New Jersey laboratories and MIT, AT&T
decided to pull out of the Multics Project.
That year, Ken Thompson, an AT&T researcher who had
worked on Multics, took over an unused PDP-7 computer to pursue some
of the ideas on his own. Thompson was soon joined by
Dennis Ritchie, who had also
worked on Multics. Peter Neumann suggested the name
Unix for the new system. The name was a pun on
the name Multics and a backhanded slap at the project that was
continuing in Cambridge (which was indeed continued for another
decade and a half). Whereas Multics tried to do many things, Unix
tried to do one thing well: run programs. Strong security was not
part of this goal.

The Birth of Unix

The smaller scope was all the impetus that the researchers needed; an
early version of Unix was operational several months before Multics.
Within a year, Thompson, Ritchie, and others rewrote Unix for
Digital’s new PDP-11 computer.
As AT&T’s scientists added features to their
system throughout the 1970s, Unix evolved into a
programmer’s dream. The system was based on compact
programs, called

 tools,
each of which performed a single function. By putting tools together,
programmers could do complicated things. Unix mimicked the way
programmers thought. To get the full functionality of the system,
users needed access to all of these tools—and in many cases, to
the source code for the tools as well. Thus, as the system evolved,
nearly everyone with access to the machines aided in the creation of
new tools and in the debugging of existing ones.
In 1973, Thompson rewrote most of Unix in Ritchie’s
newly invented C programming language. C was designed to be a
simple, portable language. Programs written in C could be moved
easily from one kind of computer to another—as was the case
with programs written in other high-level languages like
FORTRAN—yet they ran nearly as fast as programs coded directly
in a computer’s native machine language.
At least, that was the theory. In practice, every different kind of
computer at Bell Labs had its own operating system. C programs
written on the PDP-11 could be recompiled on the
lab’s other machines, but they
didn’t always run properly, because every operating
system performed input and output in slightly different ways. Mike
Lesk developed a
"

 portable I/O library” to
overcome some of the incompatibilities, but many remained. Then, in
1977, the group realized that it might be easier to port the entire
Unix operating system itself rather than trying to port all of the
libraries.
The first Unix port was to AT&T’s Interdata
8/32, a microcomputer similar to the PDP-11. In 1978, the operating
system was ported to Digital’s new VAX minicomputer.
Unix still remained very much an experimental operating system.
Nevertheless, Unix had become a popular operating system in many
universities and was already being marketed by several companies.
Unix was suddenly more than just a research curiosity.
Unix escapes AT&T

Indeed, as early as 1973, there were more than 16 different AT&T
or Western Electric sites outside Bell Labs running the operating
system. Unix soon spread even further. Thompson and Ritchie presented
a paper on the operating system at the ACM Symposium on Operating
System Principles (SOSP) at Purdue University in November 1973.
Within a matter of months, sites around the world had obtained and
installed copies of the system. Even though AT&T was forbidden
under the terms of its 1956 Consent Decree with the U.S. federal
government from advertising, marketing, or supporting computer
software, demand for Unix steadily rose. By 1977, more than 500 sites
were running the operating system; 125 of them were at universities
in the U.S. and more than 10 foreign countries. 1977 also saw the
first commercial support for Unix, then at Version 6.
At most sites, and especially at universities, the typical Unix
environment was much like that inside Bell Labs: the machines were in
well-equipped labs with restricted physical access. The people who
made extensive use of the machines typically had long-term access and
usually made significant modifications to the operating system and
its utilities to provide additional functionality. They did not need
to worry about security on the system because only authorized
individuals had access to the machines. In fact, implementing
security mechanisms often hindered the development of utilities and
customization of the software. One of the authors worked in two such
labs in the early 1980s, and one location viewed having a password on
the root account as an annoyance because
everyone who could get to the machine was authorized to use it as the
superuser!
This environment was perhaps best typified by the development at the
University of California at Berkeley. Like other schools, Berkeley
had paid $400 for a tape that included the complete source code to
the operating system. Instead of merely running Unix, two of
Berkeley’s bright graduate students, Bill

 Joy and Chuck
Haley, started making significant modifications. In 1978, Joy sent
out 30 copies of the "Berkeley
Software Distribution (BSD),” a collection of
programs and modifications to the Unix system. The charge: $50 for
media and postage.[8]

Over the next six years, in an effort funded by ARPA, the so-called
BSD Unix grew into an operating system of its own that offered
significant improvements over AT&T’s. For
example, a programmer using BSD Unix could switch between multiple
programs running at the same time. AT&T’s Unix
allowed the names of files to be only 14 letters long, but
Berkeley’s allowed names of up to 255 characters.
But perhaps the most important of the Berkeley improvements was in
the area of networking software, which made it easy to connect Unix
computers to local area networks (LANs). For all of these reasons,
the Berkeley version of Unix became very popular with the research
and academic communities.

Unix goes commercial

At about the same time, AT&T had been freed from its restrictions
on developing and marketing source code as a result of the enforced
divestiture of the phone company. Executives realized that they had a
strong potential product in Unix, and they set about developing it
into a more polished commercial product. This led to an interesting
change in the numbering of the BSD releases.
The version of Berkeley Unix that followed the 4.1 release had so
many changes from the original AT&T operating system that it
should have been numbered 5.0. However, by the time that the next
Berkeley Software Distribution was ready to be released, friction was
growing between the developers at Berkeley and the management of
AT&T—the company that owned the Unix trademark and rights
to the operating system. As Unix grew in popularity, AT&T
executives became increasingly concerned that the popularity of
Berkeley Unix would soon result in AT&T’s losing
control of a valuable property right. To retain control of Unix,
AT&T formed the
 Unix Support Group (USG) to continue
development and marketing of the Unix operating system. USG proceeded
to christen a new version of Unix as AT&T System V,
and declare it the new “standard”;
AT&T representatives referred to BSD Unix as nonstandard and
incompatible.
Under Berkeley’s license with AT&T, the
university was free to release updates to existing AT&T Unix
customers. But if Berkeley had decided to call its new version of
Unix “5.0,” it would have needed to
renegotiate its licensing agreement to distribute the software to
other universities and companies. Thus, Berkeley released
BSD 4.2. By calling
the new release of the operating system
“4.2,” they pretended that the
system was simply a minor update.

The Unix Wars: Why Berkeley 4.2 over System V

As interest in Unix grew, the industry was beset by two competing
versions of Unix: AT&T’s
“standard” System V and the
technically superior Berkeley 4.2. The biggest non-university
proponent of Berkeley Unix was Sun Microsystems. Founded in part by
graduates from Berkeley’s computer science program,
Sun’s
SunOS operating system was, for all
practical purposes, a patched-up version of BSD 4.1c. Many people
believe that Sun’s adoption of Berkeley Unix was one
of the factors responsible for the early success of the company.
Two other companies that based their version of Unix on BSD 4.2 were
Digital Equipment Corporation, which sold a Unix variant called
Ultrix, and NeXT
Computer, which developed and sold a Unix workstation based on the
BSD 4.2 utilities and the “Mach”
kernel developed at Carnegie-Mellon University.[9]

As other companies entered the Unix marketplace, they faced the
question of which version of Unix to adopt. On the one hand, there
was Berkeley Unix, which was preferred by academics and developers,
but which was “unsupported” and was
frighteningly similar to the operating system used by Sun, soon to
become the market leader. On the other hand, there was AT&T
System V Unix, which AT&T, the owner of Unix, was proclaiming as
the operating system “standard.” As
a result, most computer manufacturers that developed Unix in the mid-
to late-1980s—including Data General, IBM, Hewlett-Packard, and
Silicon Graphics—adopted System V as their standard.[10] A
few tried to do both, coming out with systems that had dual
“universes.” A third version of
Unix, called Xenix, was developed by Microsoft in the
early 1980s and licensed to the Santa Cruz Operation (SCO). Xenix was
based on AT&T’s older System III operating
system, although Microsoft and SCO had updated it throughout the
1980s, adding some new features, but not others.

As Unix started to move from the technical to the commercial markets
in the late 1980s, this conflict of operating system versions was
beginning to cause problems for all vendors. Commercial customers
wanted a standard version of Unix, hoping that it could cut training
costs and guarantee software portability across computers made by
different vendors. And the nascent Unix applications market wanted a
standard version, believing that this would make it easier for them
to support multiple platforms, as well as compete with the growing
PC-based market.
The first two versions of Unix to merge were Xenix and
AT&T’s System V. The resulting version, Unix
System V/386, Release 3.12, incorporated all the functionality of
traditional Unix System V and Xenix. It was released in August 1988
for 80386-based computers.

Unix Wars 2: SVR4 versus OSF/1

In the spring of 1988, AT&T and Sun Microsystems signed a joint
development agreement to merge the two versions of Unix. The new
version of Unix, System V
Release 4 (SVR4), was to have the best features of System V and
Berkeley Unix and be compatible with programs written for both. Sun
proclaimed that it would abandon its SunOS operating system and move
its entire user base over to its own version of the new operating
system, which it would call
Solaris.[11]

The rest of the Unix industry felt left out and threatened by the
Sun/AT&T announcement. Companies including IBM and
Hewlett-Packard worried that because they were not a part of the SVR4
development effort, they would be at a disadvantage when the new
operating system was finally released. In May 1988, seven of the
industry’s Unix leaders—Apollo Computer,
Digital Equipment Corporation, Hewlett-Packard, IBM, and three major
European computer manufacturers—announced the formation of the

 Open Software Foundation (OSF).
The goal of OSF was to wrest control of Unix away from AT&T and
put it in the hands of a not-for-profit industry coalition, which
would be chartered with shepherding the future development of Unix
and making it available to all under uniform licensing terms. OSF
decided to base its version of Unix on IBM’s
implementation, then moved to the Mach kernel from Carnegie Mellon
University, and an assortment of Unix libraries and utilities from
HP, IBM, and Digital. The result of that effort was not widely
adopted or embraced by all the participants. The
OSF operating system
(OSF/1) was late in coming, so some companies built their own (e.g.,
IBM’s
AIX). Others adopted SVR4 after it was
released, in part because it was available, and in part because
AT&T and Sun went their separate ways—thus ending the
threat against which OSF had rallied. Eventually, after producing the

 Distributed
Computing Environment (DCE) standard, OSF merged with a standards
group named X/Open to form “The
Open Group”—an industry standards organization
that includes Sun and HP as members.
As the result of the large number of Unix operating systems, many
organizations took part in a standardization process to create a
unified Unix standard. This set of standards was named
POSIX,
originally initiated by IEEE, but also adopted as ISO/IEC 9945. POSIX
created a standard interface for Unix programmers and users.
Eventually, the same interface was adopted for the VMS and Windows
operating systems, which made it easier to port programs among these
three systems.
As of 1996, when the second edition of this book was published, the
Unix wars were far from settled, but they were much less important
than they seemed in the early 1990s. In 1993, AT&T sold Unix
Systems Laboratories (USL) to Novell, having succeeded in making SVR4
an industry standard, but having failed to make significant inroads
against Microsoft’s Windows operating system on the
corporate desktop. Novell then transferred the Unix trademark to the
X/Open Consortium, which grants use of the name to systems that meet
its 1170 test suite. Novell subsequently sold ownership of the Unix
source code to SCO in 1995, effectively disbanding USL.

Free Unix

 Although Unix was a powerful force
in academia in the 1980s, there was a catch: the underlying operating
system belonged to AT&T, and AT&T did not want the source
code to be freely distributed. Access to the source code had to be
controlled. Universities that wished to use the operating system as a
“textbook example” for their
operating system courses needed to have their students sign
Non-Disclosure Agreements. Many universities were unable to
distribute the results of their research to other institutions
because they did not own the copyright on their underlying system.
FSF and GNU

 Richard
Stallman was a master programmer who had come to MIT in the early
1970s and never left. He had been a programmer with the MIT
Artificial Intelligence Laboratory’s Lisp Machine
Project and had been tremendously upset when the companies that were
founded to commercialize the research adopted rules prohibiting the
free sharing of software. Stallman devoted the better part of five
years to “punishing” one of the
companies by re-implementing their code and giving it to the other.
In 1983 he decided to give up on that project and instead create a
new community of people who shared software.
Stallman realized that if he wanted to have a large community of
people sharing software, he couldn’t base it on
speciality hardware manufactured by only a few companies that runs
only LISP. So instead, he decided to base his new software community
on Unix, a powerful operating system that looked like it had a
future. He called his project GNU, a recursive acronym meaning
“GNU’s Not Unix!”
The first program that Stallman wrote for GNU was

 Emacs,
a powerful programmer’s text editor. Stallman had
written the first version of Emacs in the early 1970s. Back then, it
was a set of Editing MACroS that ran on the Incompatible Timesharing
System (ITS) at the MIT AI Lab. When Stallman started work on GNU
Emacs, there were already several versions of Emacs available for
Unix, but all of them were commercial products—none of them
were “free.” To Stallman, being
“free” wasn’t
simply a measure of price, it was also a measure of freedom. Being
free meant that he was free to inspect and make changes to the source
code, and that he was free to share copies of the program with his
friends. He wanted free software—as in free speech, not free
beer.
By 1985 GNU Emacs had grown to the point that it could be used
readily by people other than Stallman. Stallman next started working
on a free C compiler, gcc
 .
Both of these programs were distributed under
Stallman’s GNU General Public License (GPL). This
license gave developers the right to distribute the source code and
to make their own modifications, provided that all future
modifications were released in source code form and under the same
license restrictions. That same year, Stallman founded the

 Free Software Foundation, a
non-profit foundation that solicited donations, and used them to hire
programmers who would write freely redistributable software.

Minix

At roughly the same time that Stallman started the GNU project,
professor Andrew S. Tanenbaum decided to create his own
implementation of the Unix operating system to be used in teaching
and research. As all of the code would be original; he would be free
to publish the source code in his textbook and distribute working
operating systems without paying royalties to AT&T. The system,
Minix, ran on IBM PC AT clones equipped
with Intel-based processors and was designed around them. The project
resulted in a stable, well-documented software platform and an
excellent operating system textbook. However, efficiency was not a
design criterion for Minix, and coupled with the copyright issues
associated with the textbook, Minix did not turn out to be a good
choice for widespread, everyday use.

Xinu

Another free operating system, Xinu, was developed by Purdue professor
Douglas E. Comer while at Bell
Labs in 1978. Xinu was specifically designed for embedded systems and
was not intended to be similar to Unix. Instead, it was intended for
research and teaching, goals similar to those of Minix (although it
predated Minix by several years).
Xinu doesn’t have the same system call interface as
Unix, nor does it have the same internal structure or even the same
abstractions (e.g., the notion of process). Professor Comer had not
read Unix source code before writing Xinu. The only thing he used
from Unix was a C compiler and a few names (e.g., Xinu has
read, write,
putc, and getc calls, but
the semantics and implementations differ from the Unix counterparts).
Xinu resulted in a well-documented code base and a series of
operating system textbooks that have been widely used in academia.
Xinu itself has been used in a number of research projects, and
several commercial products (e.g., Lexmark) have adopted Xinu as the
embedded system for their printers.
However, Xinu Is Not Unix.

Linux

 In 1991, a Finnish computer science student
named Linus
Torvalds decided to create a free version of the Unix operating
system that would be better suited to everyday use. Starting with the
Minix code set, Torvalds solely re-implemented the kernel and
filesystem piece-by-piece until he had a new system that had none of
Tanenbaum’s original code in it. Torvalds named the
resulting system “Linux” and
decided to license and distribute it under
Stallman’s GPL. By combining his system with other
freely available tools, notably the C compiler and editor developed
by the Free Software Foundation’s GNU project and
the X Consortium’s window server, Torvalds was able
to create an entire working operating system. Work on Linux continues
to this day by a multitude of contributors.

NetBSD, FreeBSD, and OpenBSD

 The Berkeley programmers were not unaware
of the problems caused by the AT&T code within their operating
system. For years they had been in the position of only being able to
share the results of their research with companies and universities
that had AT&T source code licenses. In the early 1980s such
licenses were fairly easy to get, but as the 1980s progressed the
cost of the licenses became prohibitive.
In 1988 the Berkeley
 Computer Systems
Research Group (CSRG) started on a project to eliminate all AT&T
code from their operating system. The first result of their effort
was called Networking Release 1. First available in June 1989, the
release consisted of Berkeley’s TCP/IP
implementation and the related utilities. It was distributed on tape
for a cost of $1,000, although anyone who purchased it could do
anything that he wanted with the code, provided that the original
copyright notice was preserved. Several large sites put the code up
for anonymous FTP; the Berkeley code rapidly became the base of many
TCP/IP implementations throughout the industry.
Work at CSRG continued on the creation of an entire operating system
that was free of AT&T code. The group asked for volunteers who
would reimplement existing Unix utilities by referencing only the
manual pages. An interim release named 4.3BSD-Reno occurred in early
1990; a second interim release, Networking Release 2, occurred in
June 1991. This system was a complete operating system except for six
remaining files in the kernel that contained AT&T code and had
thus not been included in the operating system. In the fall of 1991,
Bill Jolitz
wrote those files for the Intel processor and created a working
operating system. Jolitz called the system 386/BSD. Within a few
months a group of volunteers committed to maintaining and expanding
the system formed and christened their effort
“NetBSD.”
The NetBSD project soon splintered. Some of the members decided that
the project’s primary goal should be to support as
many different platforms as possible and should continue to do
operating system research. But another group of developers thought
that they should devote their resources to making the system run as
well as possible on the Intel 386 platform and making the system
easier to use. This second group split off from the first and started
the FreeBSD project.
A few years later, a second splinter group broke off from the NetBSD
project. This group decided that security and reliability were not
getting the attention they should. The focus of this group was on
careful review of the source code to identify potential problems.
They restricted adoption of new code and drivers until they had been
thoroughly vetted for quality. This third group adopted the name
“OpenBSD.”

Businesses adopt Unix

As a result of monopolistic pricing on the part of Microsoft and the
security and elegance of the Unix operating systems, many businesses
developed an interest in adopting a Unix base for some commercial
products. A number of network appliance vendors found the stability
and security of the OpenBSD platform to be appealing, and they
adopted it for their projects. Other commercial users, especially
many early web-hosting firms, found the stability and support options
offered by BSDI (described in the next section) to be attractive, and
they adopted BSD/OS.
Several universities also adopted BSD/OS because of favorable
licensing terms for students and faculty when coupled with the
support options.
Meanwhile, individual hobbyists and students were coming onto the
scene. For a variety of reasons (not all of which we pretend to
understand), Linux became extremely popular among
individuals seeking an alternative OS for their PCs. Perhaps the GPL
was appealing, or perhaps it was the vast array of supported
platforms. The personae of Linus Torvalds and
“Tux,” Linux’s
emblematic penguin, may also have had something to do with it.
Interestingly, OpenBSD and BSD/OS were both more secure and more
stable, all of the BSDs were better documented than Linux at the
time, and most of the BSD implementations performed better under
heavy loads.[12]

One key influence in the mid to late 1990s occurred when researchers
at various national laboratories, universities, and NASA began to
experiment with cluster computing. High-end supercomputers were
getting more and more expensive to produce and run, so an alternative
was needed. With cluster computing, scores (or hundreds) of commodity
PCs were purchased, placed in racks, and connected with high-speed
networks. Instead of running one program really fast on one computer,
big problems were broken into manageable chunks that were run in
parallel on the racked PCs. This approach, although not appropriate
for all problems, often worked better than using high-end
supercomputers. Furthermore, it was often several orders of magnitude
less costly. One of the first working systems of this type, named
Beowulf, was based on Linux. Because of the code sharing and mutual
development of the supercomputing community, Linux quickly spread to
other groups around the world wishing to do similar work.
All of this interest, coupled with growing unease with
Microsoft’s de facto monopoly of the desktop OS
market, caught the attention of two companies—IBM and
Dell—both of which announced commercial support for Linux.
Around the same time, two companies devoted to the Linux operating
system—

 Red Hat and VA Linux—had two of the most
successful Initial Public Offerings in the history of the U.S. stock
market. Shortly thereafter, HP announced a supported version of Linux
for their systems.
Today, many businesses and research laboratories run on Linux. They
use Linux to run web servers, mail servers, and, to a lesser extent,
as a general desktop computing platform. Instead of purchasing
supercomputers, businesses create large Linux clusters that can solve
large computing problems via parallel execution. FreeBSD, NetBSD, and
OpenBSD are similarly well-suited to these applications, and are also
widely used. However, based on anecdotal evidence, Linux appears to
have (as of early 2003) a larger installed base of users than any of
the other systems. Based on announced commercial support, including
ventures by Sun Microsystems, Linux seems better poised to grow in
the marketplace. Nonetheless, because of issues of security and
performance (at least), we do not expect the *BSD variants to fade
from the scene; as long as the *BSD camps continue in their separate
existences, however, it does seem unlikely that they will gain on
Linux’s market share.

Second-Generation Commercial Unix Systems

Shortly after the release of Networking Release 2, a number of highly
regarded Unix developers, including some of the members of CSRG,
formed a company named
 Berkeley Software
Design, Inc. (BSDI). Following the lead of Jolitz, they took the
Networking Release 2 tape, wrote their own version of the
“six missing files,” and started to
sell a commercial version of the BSD system they called
BSD/OS. They, and the
University of California, were soon sued by Unix System Laboratories
for theft of trade secrets (the inclusion or derivation of AT&T
Unix code). The legal proceedings dragged on, in various forms, until
January 1994, when the court dismissed the lawsuit, finding that the
wide availability of Unix meant that AT&T could no longer claim
it was a trade secret.
Following the settlement of the lawsuit, the University of California
at Berkeley released two new operating systems: 4.4BSD-Encumbered, a
version of the Unix operating system that required the recipient to
have a full USL source-code license, and 4.4BSD-Lite, a version that
was free of all AT&T code. Many parts of 4.4BSD-Lite were incorporated into
BSD/OS,
NetBSD, and
FreeBSD (OpenBSD had not yet split from the
NetBSD project when 4.4BSD was released). This release was in June
1994, and a final bug fix edition, 4.4BSD-Lite Release 2, was
released in June 1995. Following Release 2, the CSRG was disbanded.
BSD/OS was widely used by organizations that wanted a
high-performance version of the BSD operating system that was
commercially supported. The system ended up at many ISPs and in a
significant number of network firewall systems, VAR systems, and
academic research labs. But BSDI was never able to achieve the growth
that its business model required. Following an abortive attempt to
sell bundled hardware and software systems, the company was sold to
Wind River Systems.
In 1996 Apple Computer Corporation bought the remains of NeXT
Computer, since renamed NeXT Software, for $400 million. Apple
purchased NeXT to achieve ownership of the NeXTSTEP Operating System,
which Apple decided to use as a replacement for the
company’s aging “System
7” Macintosh operating system. In 2001 Apple
completed its integration of NeXTSTEP and introduced
Mac OS X. This operating system was based
on a combination of NeXT’s Mach implementation, BSD
4.3, and Apple’s MacOS 9. The result was a stable OS
for PowerPC platforms with all of the advantages of Unix and a
beautiful Apple-designed interface. Because of the installed base of
Apple machines, and the success of Apple’s new
products such as the iMac and the Titanium PowerBook,
Apple’s Mac OS X was probably the most widely
installed version of Unix in the world by the middle of 2002.

What the Future Holds

 Despite the lack of unification, the
number of Unix systems continues to grow. As of early 2003, Unix runs
on tens of millions of computers throughout the world. Versions of
Unix run on nearly every computer in existence, from handheld
computers to large supercomputers and superclusters. Because it is
easily adapted to new kinds of computers, Unix is an operating system
of choice for many of today’s high-performance
microprocessors. Because a set of versions of the operating
system’s source code is readily available to
educational institutions, Unix has also become an operating system of
choice for high-end educational computing at many universities and
colleges. It is also popular in the computer science research
community because computer scientists like the ability to modify the
tools they use to suit their own needs.
Unix is also being rapidly adopted on new kinds of computing
platforms. Versions of

 Linux are
available for handheld computers such as the Compaq iPaq, and
Sharp’s Zaurus uses Linux as its only operating
system.
There are several versions of the Linux and BSD operating systems
that will boot off a single floppy. These versions, including Trinix,
PicoBSD, and ClosedBSD, are designed for applications in which tight
security is required; they incorporate forensics, recovery, and
network appliances.
Finally, a growing number of countries seem to be adopting the Linux
operating system. These countries, including China and Germany, see
Linux as a potentially lower-cost and more secure alternative to
software sold by Microsoft Corporation.
Now that you’ve seen a snapshot of the history of
these systems, we’d like to standardize some
terminology. In the rest of the book, we’ll use
“Unix” to mean
“the extended family of Unix and Unix-like systems
including Linux.” We’ll also use
the term “vendors” as a shorthand
for “all the commercial firms providing some version
of Unix, plus all the groups and organizations providing coordinated
releases of some version of *BSD or
Linux.”

[7] A more
comprehensive history of Unix, from which some of this chapter is
derived, is Peter Salus’s book, A Quarter
Century of UNIX (Addison-Wesley).

[8] For more information about the
history of Berkeley Unix, see “Twenty Years of
Berkeley Unix: From AT&T-Owned to Freely
Redistributable,” by Marshall Kirk McKusick, in
Open Sources: Voices from the Open Source
Revolution (O’Reilly & Associates,
January 1999). McKusick’s essay is also available
online at http://www.oreilly.com/catalog/opensources/book/kirkmck.html.

[9] Mach
was a Department of Defense-funded project that developed a
message-passing microkernel that could support various higher-level
operating systems. It was a success in that regard; NeXT used it as
one of the most visible applications (but it wasn’t
the only one).

[10] It has been speculated that the adoption of System V as a base
had more to do with these companies’ attempts to
differentiate their products from Sun Microsystems’
offerings than anything to do with technical superiority. The
resulting confusion of different versions of Unix is arguably one of
the major reasons that Windows was able to gain such a large market
share in the late 1980s and early 1990s: there was only one version
of Windows, while the world of Unix was a mess.

[11] Some documentation
labeled the combined versions of SunOS and AT&T System V as SunOS
5.0, and used the name Solaris to designate SunOS 5.0 with the
addition of OpenWindows and other applications.

[12] As of mid-2002, there was still some
truth to these statements, although by virtue of its larger user
base, Linux has generated considerably more user-contributed
documentation, particularly of the
“HOWTO” variety. The earlier
adoption of Linux has also led to much greater availability of
drivers for both common and arcane hardware.

Security and Unix

 Many years ago,
Dennis Ritchie said this about
the security of Unix: “It was not designed from the
start to be secure. It was designed with the necessary
characteristics to make security serviceable.” In
other words, Unix can be secured, but any
particular Unix system may not be secure when it is distributed.
Unix is a multiuser,
 multitasking
operating system. Multiuser means that the
operating system allows many different people to use the same
computer at the same time. Multitasking means
that each user can run many different programs simultaneously.
One of the natural functions of such operating systems is to prevent
different people (or programs) using the same computer from
interfering with each other. Without such protection, a wayward
program (perhaps written by a student in an introductory computer
science course) could affect other programs or other users, could
accidentally delete files, or could even crash (halt) the entire
computer system. To keep such disasters from happening, some form of
computer security has always had a place in the Unix design
philosophy.
But Unix security provides more than mere memory protection. Unix has
a sophisticated security system that controls the ways users access
files, modify system databases, and use system resources.
Unfortunately, those mechanisms don’t help much when
the systems are misconfigured, are used carelessly, or contain buggy
software. Nearly all of the security holes that have been found in
Unix over the years have resulted from these kinds of problems rather
than from shortcomings in the intrinsic design of the system. Thus,
nearly all Unix vendors believe that they can (and perhaps do)
provide a reasonably secure Unix operating system. We believe that
Unix systems can be fundamentally more secure than other common
operating systems. However, there are influences that work against
better security in the Unix environment.
Expectations

The biggest problem with improving Unix security is arguably one of
expectations. Many users have grown to expect Unix to be configured
in a particular way. Their experience with Unix in academic,
hobbyist, and research settings has always been that they have access
to most of the directories on the system and that they have access to
most commands. Users are accustomed to making their files
world-readable by default. Users are also often accustomed to being
able to build and install their own software, frequently requiring
system privileges to do so. The trend in
“free” versions of Unix for
personal computer systems has amplified these expectations.
Unfortunately, all of these expectations are contrary to good
security practice in the business world. To have stronger security,
system administrators must often curtail access to files and commands
that are not required for users to do their jobs. Thus, someone who
needs email and a text processor for his work should not also expect
to be able to run the network diagnostic programs and the C compiler.
Likewise, to heighten security, users should not be able to install
software that has not been examined and approved by a trained and
authorized individual.
The tradition of
 open
access is strong, and is one of the reasons that Unix has been
attractive to so many people. Some users argue that to restrict these
kinds of access would make the systems something other than Unix.
Although these arguments may be valid, restrictive measures are
needed in instances where strong security is required.

 At the same time, administrators can
strengthen security by applying some general security principles, in
moderation. For instance, rather than removing all compilers and
libraries from each machine, these tools can be protected so that
only users in a certain user group can access them. Users with a need
for such access, and who can be trusted to take due care, can be
added to this group. Similar methods can be used with other classes
of tools, too, such as network monitoring software.
The most critical aspect of enhancing Unix security is to get users
themselves to participate in the alteration of their expectations.
The best way to meet this goal is not by decree, but through
education and motivation. Technical security measures are crucial,
but experience has proven repeatedly that people problems are not
amenable to technological solutions.
Many users started using Unix in an environment that was less
threatening than the one they face today. By educating users about
the dangers of lax security, and how their cooperation can help to
thwart those dangers, the security of the system is increased. By
properly motivating users to participate in good security practice,
you make them part of the security mechanism. Better education and
motivation work well only when applied together, however; education
without motivation may mean that security measures are not actually
applied, and motivation without education leaves gaping holes in what
is done.

Software Quality

 Large portions of the Unix operating system
and utilities that people take for granted were written as student
projects, or as quick “hacks” by
software developers inside research labs or by home hobbyists
experimenting with Linux. These programs were not formally designed
and tested: they were put together and
debugged on the fly.[13] The result is a
large collection of tools and OS code that usually works, but
sometimes fails in unexpected and spectacular ways. Utilities were
not the only things written by non-experts. Much of BSD Unix,
including the networking code, was written by students as research
projects of one sort or another—and these efforts sometimes
ignored existing standards and conventions. Many of the drivers and
extensions to Linux have also been written and
tested under varying levels of rigor, and often by programmers with
less training and experience than Berkeley graduate students.

 This
analysis is not intended to cast aspersions on the abilities of those
who wrote all this code; we wish only to point out that most of
today’s versions of Unix were not created as
carefully designed and tested systems. Indeed, a considerable amount
of the development of Unix and its utilities occurred at a time when
good software engineering tools and techniques were not yet developed
or readily available.[14] The fact that occasional bugs are
discovered that result in compromises of the security of some systems
should be no surprise! (However, we do note that there is a very
large range between, for example, the frequency of security flaws
announced for OpenBSD and Red Hat Linux.)
Unfortunately, two things are not occurring as a result of the
discovery of faults in the existing code. The first is that software
designers do not seem to be learning from past mistakes. Consider
that
buffer
overruns (mostly resulting from fixed-length buffers and functions
that do not check their arguments) have been recognized as a major
problem area for over four decades, yet critical software containing
such bugs continues to be written—and exposed. For instance, a
fixed-length buffer overrun in the gets()
library call was one of the major propagation modes of the Internet
worm of 1988, yet, as we were working on the second edition of this
book in late 1995, news of yet another buffer overrun security flaw
surfaced—this time in the BSD-derived syslog() library call. During preparation of the third edition in
2002, a series of security advisories were being issued for the
Apache web server, the
ssh secure login server, and various Microsoft
programs, all because of buffer overflows. It is inexcusable that
software continues to be formally released with these kinds of
problems in place.
A more serious problem than any particular flaw is the fact that few,
if any, vendors are performing an organized, well-designed program of
design and testing on the software they provide. Although many
vendors test their software for compliance with industry
“standards,” few apparently test
their software to see what it does when presented with unexpected
data or conditions. According to one study, as much as 40% of the
utilities on some machines may have significant problems.[15] One might think that vendors
would be eager to test their new versions of the software to correct
lurking bugs. However, as more than one vendor’s
software engineer has told us, “The customers want
their Unix—including the flaws—exactly like every other
implementation. Furthermore, it’s not good business:
customers will pay extra for performance, but not for better
testing.”
As long as users demand strict conformance of behavior to existing
versions of the programs, and as long as software quality is not made
a fundamental acquisition criterion by those same users, vendors and
producers will most likely do very little to systematically test and
fix their software. Formal standards, such as the

 ANSI C standard and POSIX
standard help perpetuate and formalize these weaknesses, too. For
instance, the ANSI C standard[16] perpetuates the gets() library
call, forcing Unix vendors to support the call, or to issue systems
at a competitive disadvantage because they are not in compliance with
the standard.
We should note that these problems are not confined to the commercial
versions of Unix. Many of the open software versions of Unix also
incorporate shoddy software. In part, this is because contributors
have variable levels of skill and training. Furthermore, these
contributors are generally more interested in providing new
functionality than they are in testing and fixing flaws in existing
code. There are some exceptions, such as the careful code review
conducted on OpenBSD, but, paradoxically, the
code that is more carefully tested and developed in the open software
community also seems to be the code that is least used.

Add-on Functionality Breeds Problems

 One final influence on Unix
security involves the way that new functionality has been added over
the years. Unix is often cited for its flexibility and reuse
characteristics; therefore, new functions are constantly built on top
of Unix platforms and are eventually integrated into released
versions. Unfortunately, the addition of new features is often done
without understanding the assumptions that were made with the
underlying mechanisms and without concern for the added complexity
presented to the system operators and maintainers. Applying the same
features and code in a heterogeneous computing environment can also
lead to problems.

 As a special case, consider how
large-scale computer networks such as the Internet have dramatically
changed the security ground rules from those under which Unix was
developed. Unix was originally developed in an environment where
computers did not connect to each other outside of the confines of a
small room or research lab. Networks today interconnect hundreds of
thousands of machines, and millions of users, on every continent in
the world. For this reason, each of us confronts issues of computer
security directly: a doctor in a major hospital might never imagine
that a postal clerk on the other side of the world could pick the
lock on her desk drawer to rummage around her files, yet this sort of
thing happens on a regular basis to “virtual desk
drawers” on the Internet.
Most colleges and many high schools now grant network access to all
of their students as a matter of course. The number of primary
schools with network access is also increasing, with initiatives in
many U.S. states to put a networked computer in every classroom.
Granting telephone network access to a larger number of people
increases the chances of telephone abuse and fraud, just as granting
widespread computer network access increases the chances that the
access will be used for illegitimate purposes. Unfortunately, the
alternative of withholding access is equally unappealing. Imagine
operating without a telephone because of the risk of receiving prank
calls!
The foundations and traditions of Unix network security were
profoundly shaped by the earlier, more restricted view of networks,
and not by our more recent experiences. For instance, the concept of
user IDs and group IDs controlling access to files was developed at a
time when the typical Unix machine was in a physically secure
environment. On top of this was added remote manipulation commands
such as rlogin and rcp that
were designed to reuse the

 user-ID/group-ID paradigm
with the concept of “trusted ports”
for network connections. Within a local network in a closed lab,
using only relatively slow computers, this design (usually) worked
well. But now, with the proliferation of workstations and non-Unix
machines on international networks, this design, with its implicit
assumptions about restricted access to the network, leads to major
weaknesses in security.[17]

Not all of these unsecure foundations were laid by Unix developers.
The IP protocol suite on which the Internet is based was developed
outside of Unix initially, and it was developed without a sufficient
concern for authentication and confidentiality. This lack of concern
has enabled cases of

 password sniffing
and IP sequence
spoofing to occur, and these make news as
“sophisticated” attacks.[18] (These attacks are discussed in Chapter 11.)
Another facet of the problem has to do with the
“improvements” made by each vendor.
Rather than attempting to provide a unified, simple interface to
system administration across platforms, each vendor has created a new
set of commands and functions. In many cases, improvements to the
command set have been available to the administrator. However, there
are also now hundreds (perhaps thousands) of new commands, options,
shells, permissions, and settings that the administrator of a
heterogeneous computing environment must understand and remember.
Additionally, many of the commands and options are similar to each
other, but have different meanings depending on the environment in
which they are used. The result can often be disaster when the poor
administrator suffers momentary confusion about the system or has a
small lapse in memory. This complexity further complicates the
development of tools that are intended to provide cross-platform
support and control. For a
“standard” operating system, Unix
is one of the most nonstandard systems to administer.
That such difficulties arise is both a tribute to Unix and a
condemnation. The robust nature of Unix enables it to accept and
support new applications by building on the old. However, existing
mechanisms are sometimes completely inappropriate for the tasks
assigned to them. Rather than being a condemnation of Unix itself,
such shortcomings are actually an indictment of the developers for
failing to give more consideration to the human and functional
ramifications of building on the existing foundation.
Here, then, is a conundrum: to rewrite large portions of Unix and the
protocols underlying its environment, or to fundamentally change its
structure, would be to attack the very reasons that Unix has become
so widely used. Furthermore, such restructuring would be contrary to
the spirit of standardization that has been a major factor in the
wide acceptance of Unix. At the same time, without re-evaluation and
some restructuring, there is serious doubt about the level of trust
that can be placed in the system. Ironically, the same spirit of
development and change is what has led Unix to its current

 niche.

The Failed P1003.1e/2c Unix Security Standard

 In 1994, work was started within the
Unix community on develoing a set of security extensions to the Unix
POSIX standard. This standardization effort was known as POSIX
P1003.1e/2c.
The ambitious project hoped to create a single Unix security standard
comprised of the key security building blocks missing from the
underlying Unix design. These included:
	
 Access control lists (ACLs), so that
specific individuals or groups of individuals could be given (or
denied) access to specific files

	Data labeling, allowing classified and confidential data to be
labeled as such

	Mandatory access control, so that individuals would be unable to
override certain security decisions made by the system management

	Capabilities that could be used to place restrictions on processes
running as the
superuser

	Standardized auditing and logging

Work on this project continued until October 1997 when, despite good
intentions on the part of the participants and the sponsoring
vendors, the draft standard was officially withdrawn and the P1003.1e
and P1003.2c committees were disbanded. The final drafts of the
documents can be downloaded from http://wt.xpilot.org/publications/posix.1e/.
Many factors were responsible for the failure of the P1003.1e/2c
standards efforts. Because the standards group sought to create a
single standard, areas of disagreement prevented the committee from
publishing and adopting smaller standards that represented the areas
of consensus. Then a year’s worth of work was lost
when the “source document” for the
standard was lost.
Today, most vendors that sell trusted versions of Unix implement some
aspects of the P1003.1e/2c draft standard. Furthermore, the draft has
been used as the basis of the Linux capabilities system and the BSD
filesystem ACLs. So even though the standards effort was not adopted,
it has had a lasting impact.

[13] As
one of this book’s technical reviewers suggests,
developers today may be even less likely to spend time in the careful
design of code than in the past. In the days when computers ran
slowly and compile time was a scarce and valuable resource, time
spent ensuring that the program would behave properly when compiled
was a good investment. Today, software compilation is so fast that
the temptation to repeatedly compile, test, debug, and recompile may
lead to a greater reliance on discovering bugs in testing, rather
than preventing them in design.

[14] Some would argue that they are
still not available. Few academic environments currently have access
to modern software engineering tools because of their cost, and few
vendors are willing to provide copies at prices that academic
institutions can afford. It is certainly the case that typical home
contributors to a *BSD or Linux system code base do not have access
to advanced software engineering tools (even if they know how to use
them).

[15] See the reference to the papers by Barton Miller, et al., given
in Appendix C. Note that they found similar
problems in Windows, so the problems are clearly not limited to
Unix-like systems.

[16] ANSI X3J11.

[17] Internet pioneer
Bob Metcalf
warned of these dangers in 1973, in RFC 602. That warning, and others
like it, went largely unheeded.

[18] To be fair, the designers of TCP/IP were aware of many of the
problems. However, they were more concerned about making everything
work so they did not address many of the problems in their design.
The problems are really more the fault of people trying to build
critical applications on an experimental set of protocols before the
protocols were properly refined—a familiar problem.

Role of This Book

If we can’t change Unix and the environment in which
it runs, the next best thing is to learn how to protect the system as
best we can. That’s the goal of this book. If we can
provide information to users and administrators in a way that helps
them understand the way things work, and how they can use safeguards
within the Unix environment, then we should be moving in the right
direction. After all, these areas seem to be where many of the
problems originate.
Unfortunately, knowing how things work on the system is not enough.
Because of the Unix design, a single flaw in a Unix system program
can compromise the security of the operating system as a whole. This
is why vigilance and attention are needed to keep a system running
securely: after a hole is discovered, it must be fixed. Furthermore,
in this age of networked computing, that fix must be made widely
available, lest some users who have not updated their software fall
victim to more up-to-date attackers.
Tip
Although this book includes numerous examples of past security holes
in the Unix operating system, we have intentionally not provided the
reader with an exhaustive list of the means by which a machine can be
penetrated. Not only would such information not necessarily help to
improve the security of your system, but it might place a number of
systems running older versions of Unix at additional risk.

Be aware that even properly configured Unix systems are still very
susceptible to denial of service attacks, in which one
user can make the system unusable for everyone else by
“hogging” a resource or degrading
system performance. In most circumstances, however, administrators
can track down any local person who is causing the interruption of
service and deal with that person directly. We’ll
talk about denial of service attacks in Chapter 24.
In the early chapters of this book, we’ll discuss
basic issues of policy and risk. Before you start setting permissions
and changing passwords, make sure you understand what you are
protecting and why. You should also understand what you are
protecting against. Although we can’t tell you all
of that, we can outline some of the questions you need to answer
before you design your overall security plan.
Throughout the rest of the book, we’ll explain Unix
structures and mechanisms that can affect your overall security. We
concentrate on the fundamentals of the way the system behaves so you
can understand the basic principles and apply them in your own
environment. We have specifically not presented
examples and suggestions of where changes in the source code can fix
problems or add security. Although we know of many such fixes, most
Unix sites do not have access to source code, and most system
administrators do not have the necessary expertise to make the
required changes. Furthermore, source code changes, as do
configurations. A fix that is appropriate in early 2003 may not be
desirable on a version of the operating system shipped the following
September. Instead, we present principles, with the hope that they
will give you better long-term results than one-time custom
modifications.
We suggest that you keep in mind that even if you take everything to
heart that we explain in the following chapters, and even if you keep
a vigilant watch over your systems, you may still not fully protect
your assets. You need to educate every one of your users about good
security and convince them to practice what they learn. Computer
security is a lonely, frustrating occupation if it is practiced as a
case of “us” (information security
personnel) versus “them” (the rest
of the users). If you can practice security as “all
of us” (everyone in the organization) versus
“them” (people who would breach our
security), the process will be much easier. You also need to help
convince vendors and developers to produce safer code. If we all put
our efforts behind our stated concerns, maybe they will finally catch
on.

Summary

In this chapter, we looked at how the history of Unix evolved from
Multics to the system that it is today. With Unix, unlike with other
operating systems, security was not added as an afterthought: secure
multiuser operation has been a requirement since Unix was created.
But our notion of what “secure
operations” means has changed over time, and with
those changes Unix developers have tried to keep pace.
Today, when the majority of Unix systems are effectively single-user
workstations, Unix security depends far more often on code quality
and administrative practices. That’s good news, as
it means that Unix is fundamentally securable. However, keeping a
Unix system secure can be a lot of work.

Chapter 3. Policies and Guidelines

Fundamentally,
 computer security is a series of technical
solutions to nontechnical problems. You can spend an unlimited amount
of time, money, and effort on computer security, but you will never
solve the problem of accidental data loss or intentional disruption
of your activities. Given the right set of circumstances—e.g.,
software bugs, accidents, mistakes, bad luck, bad weather, or a
sufficiently motivated and well-equipped attacker—any computer
can be compromised, rendered useless, or even totally destroyed.
The job of the security professional is to help organizations decide
how much time and money need to be spent on security. Another part of
that job is to make sure that organizations have policies,
guidelines, and procedures in place so that the money spent is spent
well. And finally, the professional needs to audit the system to
ensure that the appropriate controls are implemented correctly to
achieve the policy’s goals. Thus, practical security
is often a question of management and administration more than it is
one of technical skill. Consequently, security must be a priority of
your organization’s management.
This book divides the process of security planning into five discrete
steps:
	Planning to address your security needs

	Conducting a risk assessment or adopting best practices

	Creating policies to reflect your needs

	Implementing security

	Performing audit and incident response

This chapter covers security planning, risk assessment, cost-benefit
analysis, and policy-making. Implementation is covered by many of the
chapters of this book. Audits are described in Chapter 21, and incident response in Chapter 22-Chapter 25.
There are two critical principles implicit in effective policy and
security planning:
	

 Policy and security awareness must be
driven from the top down in the organization. Security concerns and
awareness by the users are important, but they cannot build or
sustain an effective culture of security. Instead, the head(s) of the
organization must treat security as important, and abide by all the
same rules and regulations as everyone else.

	Effective computer security means protecting
information. Although protecting resources is
also critical, resource losses are more easily identified and
remedied than information losses. All plans, policies and procedures
should reflect the need to protect information in whatever form it
takes. Proprietary data does not become worthless when it is on a
printout or is faxed to another site instead of contained in a disk
file. Customer confidential information does not suddenly lose its
value because it is recited on the phone between two users instead of
contained within an email message. The information should be
protected no matter what its form.

Planning Your Security Needs

There are many different kinds of computer security, and many
different definitions. Rather than present a formal definition, this
book takes a practical approach and discusses the categories of
protection you should consider. Basically, we know a computer is secure if
it behaves the way you expect it to. We believe that secure computers
are usable computers and, likewise, that computers that cannot be
used, for whatever the reason, are not very secure.
Types of Security

 Within our broad definition of computer
security, there are many different types of security that both users
and administrators of computer systems need to be concerned about:
	Confidentiality
	

 Protecting
information from being read or copied by anyone who has not been
explicitly authorized by the owner of that information. This type of
security includes not only protecting the information in
toto, but also protecting individual pieces of information
that may seem harmless by themselves but can be used to infer other
confidential information.

	Data integrity
	

 Protecting information
(including programs) from being deleted or altered in any way without
the permission of the owner of that information. Information to be
protected also includes items such as accounting records, backup
tapes, file creation times, and documentation.

	Availability
	

 Protecting your services so
they’re not degraded or made unavailable (crashed)
without authorization. If the systems or data are unavailable when an
authorized user needs them, the result can be as bad as having the
information that resides on the system deleted.

	Consistency
	

 Making sure that the system behaves as
expected by the authorized users. If software or hardware suddenly
starts behaving radically different from the way it used to behave,
especially after an upgrade or a bug fix, a disaster could occur.
Imagine if your ls command occasionally deleted
files instead of listing them! This type of security can also be
considered as ensuring the correctness of the
data and software you use.

	Control
	

 Regulating access to your system. If
unknown and unauthorized individuals (or software) are found on your
system, they can create a big problem. You must worry about how they
got in, what they might have done, and who or what else has also
accessed your system. Recovering from such episodes can require
considerable time and expense in rebuilding and reinstalling your
system, and verifying that nothing important has been changed or
disclosed—even if nothing actually happened.

	Audit
	

 As well as worrying about
unauthorized users, you need to realize that authorized users
sometimes make mistakes, or even commit malicious acts. In such
cases, you need to determine what was done, by whom, and what was
affected. The only sure way to achieve these results is by having
some incorruptible record of activity on your system that positively
identifies the actors and actions involved. In some critical
applications, the audit trail may be extensive enough to allow
“undo” operations to help restore
the system to a correct state.

Although all of these aspects of security are important, different
organizations will view each with a different amount of importance.
This variance is because different organizations have different
security concerns, and must set their priorities and policies
accordingly. For example:
	A banking environment
	In such an environment, integrity, control, and auditability are
usually the most critical concerns, while confidentiality and
availability are less important.

	A national defense-related system that processes classified information
	In such an environment, confidentiality may come first, and
availability last. In some highly classified environments, officials
may prefer to blow up a building rather than allow an attacker to
access the information contained within that
building’s walls.

	A university
	In such an environment, integrity and availability may be the most
important requirements. It is more important to ensure that students
can work on their papers, than that administrators can track the
precise times their students accessed their accounts.

If you are a security administrator, you need to thoroughly
understand the needs of your operational environment and users. You
then need to define your procedures accordingly. Not everything we
describe in this book will be appropriate in every
environment.

Trust

 Security professionals generally
don’t refer to a computer system as being
“secure” or
“unsecure.”[19] Instead, we use the word trust to
describe our level of confidence that a computer system will behave
as expected. This acknowledges that absolute security can never be
present. We can only try to approach it by developing enough trust in
the overall configuration to warrant using it for the applications we
have in mind.
Developing adequate trust in your computer systems requires careful
thought and planning. Operational decisions should be based on sound
policy and risk analysis. In the remainder of this chapter,
we’ll discuss the general procedures for creating
workable security plans and policies. The topic is too big, however,
for us to provide an in-depth treatment:
	If you are at a company, university, or government agency, we suggest
that you contact your internal audit and/or risk management
department for additional help (they may already have some plans and
policies in place that you should know about). You can also learn
more about this topic by consulting some of the works referenced in
Appendix C. You may also wish to enlist a
consulting firm. For example, many large accounting and audit firms
now have teams of professionals that can evaluate the security of
computer installations.

	If you are with a smaller institution or are dealing with a personal
machine, you may decide that we cover these issues in greater detail
than you actually need. Nevertheless, the information contained in
this chapter should help guide you in setting your priorities.

[19] We use
the term

 unsecure
to mean having weak security, and insecure to
describe the state of mind of people running unsecure systems.

Risk Assessment

 The first step in improving the
security of your system is to answer these basic questions:
	What am I trying to protect and how much is it worth to me?

	What do I need to protect against?

	How much time, effort, and money am I willing to expend to obtain
adequate protection?

These questions form the basis of the process known as
risk assessment. Risk assessment is a very
important part of the computer security process. You cannot formulate
protections if you do not know what you are protecting and what you
are protecting those things against! After you know your risks, you
can then plan the policies and techniques that you need to implement
to reduce those risks.
For example, if there is a risk of a power failure and if
availability of your equipment is important to you, you can reduce
this risk by installing an uninterruptable power supply
(UPS).
Steps in Risk Assessment

Risk assessment involves three key steps:
	Identifying assets and their value

	Identifying threats

	Calculating risks

There are many ways to go about this process. One method with which
we have had great success is a series of in-house workshops. Invite a
broad cross-section of knowledgeable

 users, managers, and
executives from throughout your organization. Over the course of a
series of meetings, compose your lists of assets and threats. Not
only does this process help to build a more complete set of lists, it
also helps to increase awareness of security in everyone who attends.
An actuarial approach is more complex than necessary for protecting a
home computer system or very small company. Likewise, the procedures
that we present here are insufficient for a large company, a
government agency, or a major university. In cases such as these,
many companies turn to outside consulting firms with expertise in
risk assessment, some of which use specialized software to do
assessments.
Identifying assets

 Draw up a list of
items you need to protect. This list should be based on your business
plan and common sense. The process may require knowledge of
applicable law, a complete understanding of your facilities, and
knowledge of your
insurance coverage.
Items to protect include tangibles (disk drives, monitors, network
cables, backup media, manuals, etc.) and intangibles (ability to
continue processing, your customer list, public image, reputation in
your industry, access to your computer, your
system’s root password, etc.).
The list should include everything that you consider to be of value.
To determine if something is valuable, consider what the loss or
damage of the item might cost in terms of lost revenue, lost time, or
the cost of repair or replacement.
Some of the items that should probably be in your asset list include:
	Tangibles
		Computers

	Proprietary data

	Backups and archives

	Manuals, guides, books

	Printouts

	Commercial software distribution media

	Communications equipment and wiring

	Personnel records

	Audit records

	Intangibles
		Safety and health of personnel

	Privacy of users

	Personnel passwords

	Public image and reputation

	Customer/client goodwill

	Processing availability

	Configuration information

You should take a larger view of these and related items rather than
simply considering the computer aspects. If you are concerned about
someone reading your internal financial reports, you should be
concerned regardless of whether they read them from a discarded
printout or snoop on your email.

Identifying threats

 The next step is to determine a
list of threats to your assets. Some of these threats will be
environmental, and include fire, earthquake, explosion, and flood.
They should also include very rare but possible events such as
structural failure in your building, or the discovery of asbestos in
your computer room that requires you to vacate the building for a
prolonged time. Other threats come from

 personnel and from outsiders.
We list some examples here:
	Illness of key people

	Simultaneous illness of many personnel (e.g., flu epidemic)

	Loss (resignation/termination/death) of key personnel

	Loss of phone/network services

	Loss of utilities (phone, water, electricity) for a short time

	Loss of utilities (phone, water, electricity) for a prolonged time

	Lightning strike

	Flood

	Theft of disks or tapes

	Theft of key person’s laptop computer

	Theft of key person’s home computer

	Introduction of a virus

	Bankruptcy of a key vendor or service provider

	Hardware failure

	Bugs in software

	Subverted employees

	Subverted third-party personnel (e.g., vendor maintenance)

	Labor unrest

	Political terrorism

	Random “hackers” getting into your
machines

	Users posting inflammatory or proprietary information on the Web

Review Your Risks

Risk assessment should not be done only once and then forgotten.
Instead, you should update your assessment periodically. In addition,
the threat assessment portion should be redone whenever you have a
significant change in operation or structure. Thus, if you
reorganize, move to a new building, switch vendors, or undergo other
major changes, you should reassess the threats and potential
losses.

Cost-Benefit Analysis and Best Practices

 Time

 and money are finite. After you complete your
risk assessment, you will have a long list of risks—far more
than you can possibly address or defend against. You now need a way
of ranking these risks to decide which you need to mitigate through
technical means, which you will insure against, and which you will
simply accept. Traditionally, the decision of which risks to address
and which to accept was done using a cost-benefit
analysis, a process of assigning cost to each possible
loss, determining the cost of defending against it, determining the
probability that the loss will occur, and then determining if the
cost of defending against the risk outweighs the benefit. (See
Cost-Benefit Examples
sidebar for some examples.)
Risk assessment and cost-benefit analyses generate a lot of numbers,
making the process seem quite scientific and mathematical. In
practice, however, putting together these numbers can be a
time-consuming and expensive process, and the result is numbers that
are frequently soft or inaccurate. That’s why the
approach of defining best practices has become
increasingly popular, as we’ll discuss in a later
section.
The Cost of Loss

 Determining the cost of loss can be very
difficult. A simple cost calculation considers the cost of repairing
or replacing a particular item. A more sophisticated cost calculation
can consider the cost of out-of-service equipment, the cost of added
training, the cost of additional procedures resulting from a loss,
the cost to a company’s reputation, and even the
cost to a company’s clients. Generally speaking,
including more factors in your cost calculation will increase your
effort, but will also increase the accuracy of your calculations.
For most purposes, you do not need to assign an exact value to each
possible risk. Normally, assigning a cost range to each item is
sufficient. For instance, the loss of a dozen blank diskettes may be
classed as “under $500,” while a
destructive fire in your computer room might be classed as
“over $1,000,000.” Some items may
actually fall into the category
“irreparable/irreplaceable”; these
could include loss of your entire accounts-due database or the death
of a key employee.
You may want to assign these costs based on a finer scale of loss
than simply “lost/not lost.” For
instance, you might want to assign separate costs for each of the
following categories (these are not in any order):
	Non-availability over a short term (< 7-10 days)

	Non-availability over a medium term (1-2 weeks)

	Non-availability over a long term (more than 2 weeks)

	Permanent loss or destruction

	Accidental partial loss or damage

	Deliberate partial loss or damage

	Unauthorized disclosure within the organization

	Unauthorized disclosure to some outsiders

	Unauthorized full disclosure to outsiders, competitors, and the press

	Replacement or recovery cost

The Probability of a Loss

 After you have identified the
threats, you need to estimate the likelihood of each occurring. These
threats may be easiest to estimate on a year-by-year basis.
Quantifying the threat of a risk is hard work. You can obtain some
estimates from third parties, such as
insurance companies. If the event
happens on a regular basis, you can estimate it based on your
records. Industry organizations may have collected statistics or
published reports. You can also base your estimates on educated
guesses extrapolated from past experience. For instance:
	Your power company can provide an official estimate of the likelihood
that your building would suffer a power outage during the next year.
They may also be able to quantify the risk of an outage lasting a few
seconds versus the risk of an outage lasting minutes or hours.

	Your insurance carrier can
provide you with actuarial data on the probability of death of key
personnel based on age, health, smoker/nonsmoker status, weight,
height, and other issues.

	
 Your personnel records can be used to
estimate the probability of key computing employees quitting.

	Past experience and best guess can be used to estimate the
probability of a serious bug being discovered in your software during
the next year (100% for some software platforms).

If you expect something to happen more than once per year, then
record the number of times that you expect it to happen. Thus, you
may expect a serious earthquake only once every 100 years (for a
per-year probability of 1% in your list), but you may expect three
serious bugs in Microsoft’s Internet Information
Server (IIS) to be discovered during the next month (for an adjusted
probability of 3,600%).

The Cost of Prevention

 Finally, you need to calculate the
cost of preventing each kind of loss.
For instance, the cost to recover from a momentary power failure is
probably only that of personnel
“downtime” and the time necessary
to reboot. However, the cost of prevention may be that of buying and
installing a UPS system.
Costs need to be amortized over the expected lifetime of your
approaches, as appropriate. Deriving these costs may reveal secondary
costs and credits that should also be factored in. For instance,
installing a better fire-suppression system may result in a yearly
decrease in your fire insurance premiums and give you a tax benefit
for capital depreciation. But spending money on a fire-suppression
system means that the money is not available for other purposes, such
as increased employee training or even investments.
Cost-Benefit Examples
Suppose you have a 0.5% chance of a single power outage lasting more
than a few seconds in any given year. The expected loss as a result
of personnel not being able to work is $25,000, and the cost of
recovery (handling reboots and disk checks) is expected to be another
$10,000 in downtime and personnel costs. Thus, the expected loss and
recovery cost per year is (25,000 + 10,000) × .005 = $175.
If the cost of a UPS system that can handle all your needs is
$150,000, and it has an expected lifetime of 10 years, then the cost
of avoidance is $15,000 per year. Clearly, investing in a UPS system
at this location is not cost-effective. On the other hand, reducing
the time required for disk checking by switching to a journaling
filesystem might well be worth the time required to make the change.
As another example, suppose that the compromise of a password by any
employee could result in an
outsider gaining access to trade secret information worth $1,000,000.
There is no recovery possible, because the trade secret status would
be compromised, and once lost, it cannot be regained. You have 50
employees who access your network while traveling, and the
probability of any one of them accidentally disclosing the password
(for example, having it “sniffed”
over the Internet; see Chapter 11) is 2%. Thus, the
probability of at least one password being disclosed during the year
is 63.6%.[20] The expected loss is (1,000,000
+ 0) × .636 = $636,000. If the cost of avoidance is buying
a $75 one-time password card for each user (see Chapter 8), plus a
$20,000 software cost, and the system is good for five years, then
the avoidance cost is (50 × 75 + 20,000) / 5 = $4,750 per
year. Buying such a system would clearly be cost-effective.

Adding Up the Numbers

 At the conclusion
of this exercise, you should have a multidimensional matrix
consisting of assets, risks, and possible losses. For each loss, you
should know its probability, the predicted loss, and the amount of
money required to defend against the loss. If you are very precise,
you will also have a probability that your defense will prove
inadequate.
The process of determining if each defense should or should not be
employed is now straightforward. You do this by multiplying each
expected loss by the probability of its occurring as a result of each
threat. Sort these in descending order, and compare each cost of
occurrence to its cost of defense.
This comparison results in a prioritized list of things you should
address. The list may be surprising. Your goal should be to avoid
expensive, probable losses before worrying about less likely,
low-damage threats. In many environments, fire and loss of
key personnel are much more likely to occur, and are more damaging
than a break-in over the network. Surprisingly, however,
it is break-ins that seem to occupy the attention and budget of most
managers. This practice is simply not cost-effective, nor does it
provide the highest levels of trust in your overall system.
To figure out what you should do, take the figures that you have
gathered for avoidance and recovery to determine how best to address
your high-priority items. The way to do this is to add the cost of
recovery to the expected average loss, and multiply that by the
probability of occurrence. Then, compare the final product with the
yearly cost of avoidance. If the cost of avoidance is lower than the
risk you are defending against, you would be advised to invest in the
avoidance strategy if you have sufficient financial resources. If the
cost of avoidance is higher than the risk that you are defending
against, then consider doing nothing until after other threats have
been dealt with.[21]

Risk Cannot Be Eliminated

 You can identify and reduce risks,
but you can never eliminate risk entirely.
For example, you may purchase a UPS to reduce the risk of a power
failure damaging your data. But the UPS may fail when you need it.
The power interruption may outlast your battery capacity. The
cleaning crew may have unplugged it last week to use the outlet for
their floor polisher.
A careful risk assessment will identify these

 secondary
risks and help you plan for them as well. You might, for
instance, purchase a second UPS. But, of course, both units could
fail at the same time. There might even be an interaction between the
two units that you did not foresee when you installed them. The
likelihood of a power failure gets smaller and smaller as you buy
more backup power supplies and test the system, but it never becomes
zero.
Risk assessment can help you protect yourself and your organization
against human risks as well as natural ones. For example, you can use
risk assessment to help protect yourself against computer break-ins,
by identifying the risks and planning accordingly. But, as with power
failures, you cannot completely eliminate the chance of someone
breaking in to your computer.
This fact is fundamental to computer security: no matter how secure
you make a computer, it can always be broken into given sufficient
resources, time, motivation, and money, especially when coupled with
random chance.
Even systems that are certified according to the
Common
Criteria (successor to the Department of Defense’s
"Orange Book,” the
Trusted Computer Systems Evaluation Criteria)
are vulnerable to break-ins. One reason is that these systems are
sometimes not administered correctly. Another reason is that some
people using them may be willing to take bribes to violate security.
Computer access controls do no good if they’re not
administered properly, exactly as the lock on a building will do no
good if it is the night watchman who is stealing office equipment at
2:00 a.m.
People are often the weakest link in a security system. The most
secure computer system in the world is wide open if the
system administrator cooperates with
those who wish to break into the machine. People can be compromised
with money, threats, or ideological appeals. People can also make
mistakes—such as accidentally sending email containing account
passwords to the wrong person.
Indeed, people are usually cheaper and easier to compromise than
advanced technological safeguards.

Best Practices

 Risk
analysis has a long and successful history
in the fields of public safety and civil engineering. Consider the
construction of a suspension bridge. It’s a
relatively straightforward matter to determine how much stress cars,
trucks, and severe weather will place on the
bridge’s cables. Knowing the anticipated stress, an
engineer can compute the chance that the bridge will collapse over
the course of its life given certain design and construction choices.
Given the bridge’s width, length, height,
anticipated traffic, and other factors, an engineer can compute the
projected destruction to life, property, and commuting patterns that
would result from the bridge’s failure. All of this
information can be used to calculate cost-effective design decisions
and a reasonable maintenance schedule for the
bridge’s owners to follow.
The application of risk analysis to the field of computer security
has been less successful. Risk analysis depends on the ability to
gauge the expected use of an asset, assess the likelihood of each
risk to the asset, identify the factors that enable those risks, and
calculate the potential impact of various choices—figures that
are devilishly hard to pin down. How do you calculate the risk that
an attacker will be able to obtain system administrator privileges on
your web server? Does this risk increase over time, as new security
vulnerabilities are discovered, or does it decrease over time, as the
vulnerabilities are publicized and corrected? Does a well-maintained
system become less secure or more secure over time? And how do you
calculate the likely damages of a successful penetration? Few
statistical, scientific studies have been performed on these
questions. Many people think they know the answers to these
questions, but research has shown that most people badly estimate
risk based on personal experience.
Because of the difficulty inherent in risk analysis, another approach
for securing computers called best practices
or
 due
care, has emerged in recent years. This approach consists
of a series of recommendations, procedures, and policies that are
generally accepted within the community of security practitioners to
give organizations a reasonable level of overall security and risk
mitigation at a reasonable cost. Best practices can be thought of as
“rules of thumb” for implementing
sound security measures.
The best practices approach is not without its problems. The biggest
problem is that there really is no one set of “best
practices” that is applicable to all sites and
users. The best practices for a site that manages financial
information might have similarities to the best practices for a site
that publishes a community newsletter, but the financial site would
likely have additional security measures.
Following best practices does not assure that your system will not
suffer a security-related incident. Most best practices require that
an organization’s security office monitor the
Internet for news of new attacks and download patches from vendors
when they are made available.[22] But even if you follow this regimen, an attacker might
still be able to use a novel, unpublished attack to compromise your
computer system. And if the person monitoring security announcements
goes on vacation, then the attackers will have a lead on your process
of installing needed patches.
The very idea that tens of thousands of organizations could or even
should implement the “best”
techniques available to secure their computers is problematical. The
“best” techniques available are
simply not appropriate or cost-effective for all organizations. Many
organizations that claim to be following best practices are actually
adopting the minimum standards commonly used for securing systems. In
practice, most best practices really aren’t.
We recommend a combination of risk analysis and best practices.
Starting from a body of best practices, an educated designer should
evaluate risks and trade-offs, and pick reasonable solutions for a
particular configuration and management. For instance, servers should
be hosted on isolated machines, and configured with an operating
system and software providing the minimally required functionality.
The operators should be vigilant for changes, keep up to date on
patches, and prepare for the unexpected. Doing this well takes a
solid understanding of how the system works, and what happens when it
doesn’t work. This is the approach that we will
explain in the chapters that follow.

Convincing Management

 Security is not free. The more elaborate
your security measures become, the more expensive they become.
Systems that are more secure may also be more difficult to use,
although this need not always be the case.[23] Security can
also get in the way of
 “power
users” who wish to exercise many difficult and
sometimes dangerous operations without authentication or
accountability. Some of these power users can be politically powerful
within your organization.
After you have completed your risk assessment and cost-benefit
analysis, you will need to convince your
organization’s management of the need to act upon
the information. Normally, you would formulate a policy that is then
officially adopted. Frequently, this process is an uphill battle.
Fortunately, it does not have to be.
The goal of risk assessment and cost-benefit analysis is to
prioritize your actions and spending on security. If your business
plan is such that you should not have an uninsured risk of more than
$10,000 per year, you can use your risk analysis to determine what
needs to be spent to achieve this goal. Your analysis can also be a
guide as to what to do first, then second, and can identify which
things you should relegate to later years.
Another benefit of risk assessment is that it helps to justify to
management that you need additional resources for security. Most
managers and directors know little about computers, but they do
understand risk and cost/benefit analysis.[24] If you can show that your
organization is currently facing an exposure to risk that could total
$20,000,000 per year (add up all the expected losses plus recovery
costs for what is currently in place), then this estimate might help
convince management to fund some additional personnel and resources.
On the other hand, going to management with a vague
“We’re really likely to see several
break-ins on the Internet after the next CERT/CC
announcement” is unlikely to produce anything other
than mild concern (if that).

[20] That is, 1 - (1.0 - 0.02)50.

[21] Alternatively,
you may wish to reconsider your costs.

[22] We are appalled at the
number of patches issued for some systems, especially patches for
problem classes that have long been known. You should strongly
consider risk abatement strategies based on use of software that does
not require frequent patches to fix security flaws.

[23] The
converse is also not true. PC operating systems are not secure, even
though some are difficult to use.

[24] In like
manner, few computer security personnel seem to understand risk
analysis techniques.

Policy

 Policy
helps to define what you consider to be valuable, and it specifies
which steps should be taken to safeguard those assets.
Policy can be formulated in a number of different ways. You could
write a very simple, general policy of a few pages that covers most
possibilities. You could also craft a policy for different sets of
assets: for example, a policy for email, a policy for personnel data,
and a policy on accounting information. A third approach, taken by
many large corporations, is to have a small, simple policy augmented
with standards and guidelines for appropriate behavior.
We’ll briefly outline this latter approach, with the
reader’s understanding that simpler policies can be
crafted; more information is given in a number of books cited in
Appendix C.
The Role of Policy

 Policy plays three major roles. First, it
makes clear what is being protected and why. Second, it clearly
states the responsibility for that protection. Third, it provides a
ground on which to interpret and resolve any later conflicts that
might arise. What the policy should not do is
list specific threats, machines, or individuals by name—the
policy should be general and change little over time. For example:
Information and information-processing facilities are a critical
resource for the Big Whammix Corporation. Information should be
protected commensurate with its value to Big Whammix, and consistent
with applicable law. All
employees share in the responsibility
for the protection and supervision of information that is produced,
manipulated, received, or transmitted in their departments. All
employees likewise share in the responsibility for the maintenance,
proper operation, and protection of all information-processing
resources of Big Whammix.
Information to be protected is any information discovered, learned,
derived, or handled during the course of business that is not
generally known outside of Big Whammix. This includes trade secret
information (ours, and that of other organizations and companies),
patent disclosure information, personnel data, financial information,
information about any business opportunities, and anything else that
conveys an advantage to Big Whammix so long as it is not disclosed.
Personal information about employees, customers, and vendors is also
considered to be confidential and worth protecting.
In the course of their work, Big Whammix employees will acquire
confidential information, and are responsible for protecting their
own knowledge. All information stored in a tangible form at Big
Whammix—on computer media, on printouts, in microfilm, on
CD-ROM, on audio or videotape, on photographic media, or in any other
stored, tangible form—is the responsibility of the Chief
Information Honcho (CIH). Thus, Big Whammix facilities should be used
only for functions related to the business of Big Whammix, as
determined by the President. The CIH shall be responsible for the
protection of all information and information-processing capabilities
belonging to Big Whammix, whether located on company property or not.
He will have authority to act commensurate with this responsibility,
with the approval of the President of Big Whammix. The CIH shall
formulate appropriate standards and guidelines, according to good
business practice, to ensure the protection and continued operation
of information processing.

In this example policy, note particularly the definition of what will
be protected, who is responsible for protecting it, and who is
charged with creating additional guidelines. This policy can be shown
to all employees, and to outsiders to explain company policy. It
should remain current no matter which operating system is in use, or
who the CIH may happen to be.

Standards

 Standards are intended to codify the
successful practice of security in an organization. They are
generally phrased in terms of
“shall.” Standards are generally
platform-independent, and imply at least a metric to determine if
they have been met. They are developed in support of policy, and
change slowly over time. Standards might cover such issues as how to
screen new hires, how long to keep backups, and how to test UPS
systems.

 For example, consider a standard for
backups. It might state:
Backups shall be made of all online data and software on a regular
basis. In no case will backups be done any less often than once every
72 hours of normal business operation. All backups should be kept for
a period of at least six months; the first backup in January and July
of each year will be kept indefinitely at an off-site, secured
storage location. At least one full backup of the entire system shall
be taken every other week. All backup media will meet accepted
industry standards for its type, to be readable after a minimum of
five years in unattended storage.

This standard does not name a particular backup mechanism or software
package. It clearly states, however, what will be stored, how long it
will be stored, and how often it will be made.

 Consider a possible standard for
authentication:
Every user account on each multiuser machine shall have only one
person authorized to use it. That user will be required to
authenticate his or her identity to the system using some positive
proof of identity. This proof of identity can be through the use of
an approved authentication token or smart card, an approved one-time
password mechanism, or an approved biometric unit. Reusable passwords
will not be used for primary authentication on any machine that is
ever connected to a network or modem, that is portable and carried
off company property, or that is used outside of a private office.

Guidelines

 Guidelines are the
“should” statements in policies.
The intent of guidelines is to interpret standards for a particular
environment—whether it is a software environment or a physical
environment. Unlike standards, guidelines may be violated, if
necessary. As the name suggests, guidelines are not usually used as
standards of performance, but as ways to help guide behavior.

 Here is a typical guideline for backups:
Backups on Unix-based machines should be done with the
dump program. Backups should be done nightly, in
single-user mode, for systems that are not in 24-hour production use.
Backups for systems in 24-hour production mode should be made at the
shift change closest to midnight, when the system is less loaded. All
backups will be read and verified immediately after being written.
Level 0 dumps will be done for the first backup in January and July.
Level 3 backups should be done on the 1st and 15th of every month.
Level 5 backups should be done every Monday and Thursday night,
unless a level 0 or level 3 backup is done on that day. Level 7
backups should be done every other night except on holidays.
Once per week, the administrator will pick a file at random from a
backup made that week. The operator will be required to recover that
file as a test of the backup procedures.

Guidelines tend to be very specific to particular architectures and
even to specific machines. They also tend to change more often than
do standards, to reflect changing conditions.

Some Key Ideas in Developing a Workable Policy

 The role of policy (and associated
standards and guidelines) is to help protect those items you
(collectively) view as important. They do not need to be overly
specific and complicated in most instances. Sometimes, a simple
policy statement is sufficient for your environment, as in the
following example:
The use and protection of this system is everyone’s
responsibility. Only do things you would want everyone else to do,
too. Respect the privacy of other users. If you find a problem, fix
it yourself or report it right away. Abide by all applicable laws
concerning use of the system. Be responsible for what you do and
always identify yourself. Have fun!

Other times, a more formal policy, reviewed by a law firm and various
security consultants, is the way you need to go to protect your
assets. Each organization will be different. We know of some
organizations that have volumes of policies, standards, and
guidelines for their Unix systems.
There are some key ideas to your policy formation, though, that need
to be mentioned more explicitly. These are in addition to the two we
mentioned at the beginning of this chapter.
Assign an owner

 Every
piece of information and equipment to be protected should have an
assigned “owner.” The owner is the
person who is responsible for the information, including its copying,
destruction, backups, and other aspects of protection. This is also
the person who has some authority with respect to granting access to
the information.
The problem with security in many environments is that there is
important information that has no clear owner. As a result, users are
never sure who makes decisions about the storage of the information,
or who regulates access to the information. Information (and even
equipment!) sometimes disappears without anyone noticing for a long
period of time because there is no
“owner” to contact or monitor the
situation.

Be positive

 People respond better to
positive statements than to negative ones. Instead of building long
lists of “don’t do
this” statements, think how to phrase the same
information positively. The abbreviated policy statement above could
have been written as a set of
“don’ts” as
follows, but consider how much better it read originally:
It’s your responsibility not to allow misuse of the
system. Don’t do things you
wouldn’t want others to do, too.
Don’t violate the privacy of others. If you find a
problem, don’t keep it a secret if you
can’t fix it yourself. Don’t
violate any laws concerning use of the system. Don’t
try to shift responsibility for what you do to someone else and
don’t hide your identity. Don’t
have a bad time!

Remember that employees are people too

 When writing policies, keep users in mind.
They will make mistakes, and they will misunderstand. The policy
should not suggest that users will be thrown to the wolves if an
error occurs.

 Furthermore, consider that
information systems may contain information about users that they
would like to keep somewhat private. This may include some email,
personnel records, and job evaluations. This material should be
protected, too, although you may not be able to guarantee absolute
privacy. Be considerate of users’ needs and
feelings.

Concentrate on education

 You would be wise to include standards
for training and retraining of all users. Every user should have
basic security awareness education, with some form of periodic
refresher material (even if the refresher involves only being given a
copy of this book!). Trained and educated users are less likely to
fall for scams and social-engineering attacks. They are also more
likely to be happy about security measures if they understand why
these measures are in place.
A crucial part of any security system is giving staff time and
support for additional training and education. There are always new
tools, new threats, new techniques, and new information to be
learned. If staff members are spending 60 hours each week chasing
down phantom PC viruses and doing backups, they will not be as
effective as a staff given a few weeks of training time each year.
Furthermore, they are more likely to be happy with their work if they
are given a chance to grow and learn on the job, and are allowed to
spend evenings and weekends with their families instead of trying to
catch up on installing software and making backups.

Have authority commensurate with responsibility

	
 Spaf’s first principle of security administration:

	
 If you have responsibility for security, but have no
authority to set rules or punish violators, your own role in the
organization is to take the blame when something big goes
wrong.

Consider the case we heard about in which a system administrator
caught one of the programmers trying to break into the
root account of the payroll system. Further
investigation revealed that the account of the user was filled with
password files taken from machines around the Net, many with cracked
passwords. The administrator immediately shut down the account and
made an appointment with the programmer’s
supervisor.
The supervisor was not supportive. She phoned the vice president of
the company and demanded that the programmer get his account
back—she needed his help to meet her group deadline. The system
administrator was admonished for shutting down the account and was
told not to do it again.
Three months later, the administrator was fired when someone broke
into the payroll system he was charged with protecting. The
programmer allegedly received a promotion and raise, despite an
apparent ready excess of cash.
If you find yourself in a similar situation, polish up your
resumé and start hunting for a new job before
you’re forced into a job search by circumstances you
can’t control.

Be sure you know your security perimeter

When you write your policy, you want to be certain to include all of
the various systems, networks, personnel, and information storage
within your security perimeter. The perimeter
defines what is “within” your
control and concern. When formulating your policies, you need to be
certain you include coverage of everything that is within your
perimeter or that could enter your perimeter and interact with your
information resources.
In earlier years, many organizations defined their IT security
perimeter to be their walls and fences. Nowadays, the perimeter is
less concrete.[25]

For example, consider the following when developing your policies:
	Portable computers and PDAs can be used to access information while
away from your physical location. Furthermore, they may store
sensitive information, including IP addresses, phone numbers, and
passwords. These systems should have minimum levels of protection,
including passwords, encryption, and physical security markings.
Users should have additional training and awareness about dangers of
theft and eavesdropping.

	Wireless networks used on the premises or otherwise connected to site
resources may be connected to by outsiders using directional antennas
or simply parked in a car outside the building with a laptop.
Wireless networks should be configured and protected to prevent
sensitive material from being observed outside, and to prevent
insertion of malicious code by attackers.

	Computers used at home by the organization’s
personnel are subject to penetration, theft, and the accidental
insertion of malicious code. They may also be used contrary to
organizational policy (e.g., to run a business, or host a web server
with questionable content). The policy needs to make clear how these
machines are to be used, protected, and audited.

	Media is dense and portable. If someone makes a CD or DVD of the
company financial records to use at a remote site, what happens if
the media is stolen or misplaced? Policies should govern who is
allowed to take media off-site, how it should be protected (including
encryption), and what will happen if it is lost or stolen. They
should also detail how and when previously used media will be
destroyed to limit its potential exposure.

	What are the policies governing people who bring their own PDAs or
laptops on site for meetings or simply while visiting? What are the
rules governing their connection to site networks, phone lines,
printers, or other devices?

	What concerns are there about shipping computers or storage devices
offsite for maintenance. What if there is sensitive material on disk?
What about leased equipment that is returned to the owner?

	If business partners or contractors have access to your equipment, at
your site or at theirs, who guards the material? How is it kept from
unwanted contamination or commingling with their own sensitive data?

	What policies will be in place to govern the handling of information
provided to your organization under trade secret protection or
license? Who is responsible for protecting the information, and where
can it be kept and stored?

	What policies govern non-computer information-processing equipment?
For instance, what policies govern use of the printers, copiers, and
fax machines? (Sensitive information on paper is no less sensitive
than online information.)

Thinking about all these issues before a problem occurs helps keep
the problems from occurring. Building sensible statements into your
security policy helps everyone understand the concerns and to take
the proper precautions.

Pick a basic philosophy

Decide if you are going to build around the model of
“Everything that is not specifically denied is
permitted” or “Everything that is
not specifically permitted is denied.” Then be
consistent in how you define everything else.

Defend in depth

 When you
plan your defenses and policy, don’t stop at one
layer. Institute multiple, redundant, independent levels of
protection. Then include auditing and monitoring to ensure that those
protections are working. The chance of an attacker’s
evading one set of defenses is far greater than the chance of his
evading three layers plus an alarm system.
Four Easy Steps to a More Secure Computer

 Running a secure computer is a lot of
work. If you don’t have time for the full
risk-assessment and cost-benefit analysis described in this chapter,
we recommend that you at least follow these four easy steps:
	Decide how important security is for your site. If you think security
is very important and that your organization will suffer significant
loss in the case of a security breach, then response must be given
sufficient priority. Assigning an overworked programmer who has no
formal security training to handle security on a part-time basis is a
sure invitation to problems.

	

 Involve and educate your user
community. Do the users of your site understand the dangers and risks
involved with poor security practices (and what those practices are)?
Your users should know what to do and who to call if they observe
something suspicious or inappropriate. Educating your user population
helps make them a part of your security system. Keeping users
ignorant of system limitations and operation will not increase the
system security—there are always other sources of information
for determined attackers.

	Devise a plan for making and storing backups of your system data. You
should have off-site backups so that even in the event of a major
disaster, you can reconstruct your systems. We discuss this more in
Chapter 8 and Chapter 18.

	Stay inquisitive and suspicious. If something happens that appears
unusual, suspect that there is an intruder and investigate.
You’ll usually find that the problem is only a bug
or a mistake in the way a system resource is being used. But
occasionally, you may discover something more serious. For this
reason, each time something happens that you can’t
definitively explain, you should suspect that there is a security
problem and investigate accordingly.

Risk Management Means Common Sense

 The key to successful risk
assessment is to identify all of the possible threats to your system,
and to defend against those attacks which you think are realistic
threats.
Simply because people are the weak link doesn’t mean
we should ignore other safeguards. People are unpredictable, but
breaking into a dial-in modem that does not have a password is still
cheaper than a bribe. So, we use technological defenses where we can,
and we improve our personnel security by educating our staff and
users.
We also rely on
 defense in depth: we
apply multiple levels of defenses as backups in case some fail. For
instance, we buy that second UPS system, or we put a separate lock on
the computer room door even though we have a lock on the building
door. These combinations can be defeated too, but we increase the
effort and cost for an enemy to do that...and maybe we can convince
them that doing so isn’t worth the trouble. At the
very least, you can hope to slow them down enough so that your
monitoring and alarms will bring help before anything significant is
lost or damaged.
With these limits in mind, you need to approach computer security
with a thoughtfully developed set of priorities. You
can’t protect against every possible threat.
Sometimes you should allow a problem to occur rather than prevent it,
and then clean up afterwards. For instance, your efforts might be
cheaper and less trouble if you let the systems go down in a power
failure and then reboot than if you bought a UPS system. And some
things you simply don’t bother to defend against,
either because they are too unlikely (e.g., an alien invasion from
space), too difficult to defend against (e.g., a nuclear blast within
500 yards of your data center), or simply too catastrophic and
horrible to contemplate (e.g., your management decides to switch all
your Unix machines to some well-known PC operating system). The key
to good management is knowing what things you will worry about, and
to what degree.
Decide what you want to protect and what the costs might be to
prevent certain losses versus the cost of recovering from those
losses. Then make your decisions for action and security measures
based on a prioritized list of the most critical needs. Be sure you
include more than your computers in this analysis:
don’t forget that your backup tapes, your network
connections, your terminals, and your documentation are all part of
the system and represent potential loss. The safety of your
personnel, your corporate site, and your reputation are also very
important and should be included in your plans.

[25] And may not have any concrete at
all!

Compliance Audits

 Formulating policy is not enough by
itself. It is important to determine regularly if the policy is being
applied correctly, and if the policy is correct and sufficient. This
is normally done with a compliance audit. The
term “audit” is overloaded; it is
often used to mean (at least), a financial audit, an audit trail
(log), a security audit of a system, and a compliance audit for
policy.
A compliance audit is a set of actions carried out to measure whether
standards set by policies are being met
and, if not, why. Standards normally imply metrics and evaluation
criteria that can be used by an auditor to measure this compliance.
When standards are not met, it can be because of any of the
following:[26]

	Personnel shortcomings
		Insufficient training or lack of appropriate skills

	Overwork

	Malfeasance

	Lack of motivation

	Material shortcomings
		Insufficient or inadequate resources

	Inadequate maintenance

	Overload/overuse

	Organizational shortcomings
		Lack of authority/responsibility

	Conflicting responsibilities

	Unclear/inconsistent/confusing tasking

	Policy shortcomings
		Unforseen risks

	Missing or incomplete policies

	Conflicting policies

	Mismatch between policy and environment

What is key to note about this list is that the vast majority of
causes of policy problems cannot be blamed on the operator or
administrator. Even inadequate training and overwork are generally
not the administrator’s choice. Thus, a compliance
audit should not be viewed (nor conducted) as an adversarial process.
Instead, it should be conducted as a collaborative effort to identify
problems, obtain and reallocate resources, refine policies and
standards, and raise awareness of security needs. As with all
security, a team approach is almost always the most effective.
One of the authors conducted a compliance and discovery audit at a
major computing site. Identifying information was purposely omitted
from the report when possible. The resulting report identified a
number of problems that management addressed with new resources,
classes, and a revision of a number of outmoded standards. The
results were so well-accepted that the staff
requested another audit a year later! When
managed properly, your personnel can embrace good security. The key
is to help them do their tasks rather than being “on
the other side.”

[26] This is not an exhaustive list.

Outsourcing Options

 After

 reading
through all the material in this chapter, you may have realized that
your policies and plans are in good shape, or you may have identified
some things to do, or you may be daunted by the whole task. If you
are in that last category, don’t decide that the
situation is beyond your ability to cope! There are other approaches
to formulating your policies and plans, and in providing security at
your site: for example, through outsourcing, consultants, and
contractors. Even if you are an individual with a small business at
home, you can take advantage of shared expertise—security firms
that are able to employ a group of highly trained and experienced
personnel who would not be fully utilized at any one site, and share
their talents with a collection of clients whose aggregate needs
match their capabilities.

 There are not enough
information security experts available to meet all the needs of
industry and government.[27] Thus, there
has been a boom in the deployment of consultants and outsourced
services to help organizations of all sizes meet their information
security needs. As with many other outsourced services, some are
first-rate and comprehensive, others are overspecialized, and some
are downright deficient. Sadly, the state of the field is such that
some poor offerings are not recognized as such either by the
customers or by the well-intentioned people offering them!
If you have not yet formulated your policies and built up your
disaster recovery and incident response plans, we recommend that you
get outside assistance in formulating them. What follows, then, is
our set of recommendations of organizations that seek to employ
outside security professionals for formulating and implementing
security policies.
Formulating Your Plan of Action

 The first thing to do is
decide what services you need:
	Will you provide your own in-house security staff?
	If so, you may only need consultants to review your operations to
ensure that you haven’t missed anything important.

	Perhaps you have some in-house expertise but are worried about demands on their time or their ability to respond to a crisis?
	Then you may be in the market for an outside firm to place one or
more contractors on site with you, full- or part-time. Or you might
simply want to engage the services of a remote-monitoring and
response firm to watch your security and assist in the event of an
incident.

	Or perhaps you can’t afford a full-time staff, or you aren’t likely to need such assistance?
	In this case, having a contract with a full-service consulting and
monitoring firm may be more cost-effective and provide you with what
you need.

The key in each of these cases is to understand what your needs are
and what the services provide. This is not always simple, because
unless you have some experience with security and know your
environment well, you may not really understand your needs.

Choosing a Vendor

 Your experience with outsourcing policy
decisions will depend, to a great extent, on the individuals or
organizations that you choose for the job.
Get a referral and insist on references

 Because of the tremendous
variation among consulting firms, one of the best ways to find a firm
that you like is to ask for a referral from a friendly organization
that is similar to yours. Sadly, it is not always possible to get a
referral. Many organizations engage consulting firms that they first
meet at a trade show, read about in a news article, or even engage
after receiving a “cold call” from
a salesperson.
Clearly, an outsourcing firm is in a position to do a tremendous
amount of damage to your organization. Even if the outsourcing firm
is completely honest and reasonably competent, if you trust them to
perform a function and that function is performed inadequately, you
may not discover that anything is wrong until months later when you
suffer the consequences—and after your relationship with the
firm is long over.
For this reason, when you are considering a firm, you should:
	Check references
	Ask for professional references that have engaged the firm or
individual to perform services that are similar to those that you are
considering.

	Check people
	If specific individuals are being proposed for your job, evaluate
them using the techniques that we outline in Section 3.6.2.4. Be wary of large
consulting firms that will not give you the names of specific
individuals who would work on your account until after you sign a
retainer with them.

	Be concerned about corporate stability
	
 If you are engaging an
organization for a long-term project, you need to be sure that the
organization will be there in the long term. This is not to say that
you should avoid hiring young firms and startups; you should simply
be sure that the organization has both the management and the
financial backing to fulfill all of its commitments. Beware of
consulting firms whose prices seem too low—if the organization
can’t make money selling you the services that you
are buying, then they need to be making the money somewhere else.

Beware of soup-to-nuts

 Be cautions about
“all-in-one” contracts in which a
single firm provides you with policies and then sells you services
and hardware to implement the policies. We have heard stories of such
services in which the policy and plan needs for every client are
suspiciously alike, and all involve the same basic hardware and
consulting solutions. If you pick a firm that does not lock you into
a long-term exclusive relationship, then there may be a better chance
that the policies they formulate for you will actually match your
needs, rather than the equipment that they are selling.

Insist on breadth of background

 You should be equally cautious of firms in
which the bulk of their experience is with a specific kind of
customer or software platform—unless your organization
precisely matches the other organizations that the firm has had as
clients. For example, a consulting firm that primarily offers
outsourced security services to medium-sized police departments
running Microsoft Windows may not be the best choice for a
pharmaceutical firm with a mixed Windows and Unix environment. The
consulting firm may simply lack the breadth to offer truly
comprehensive policy services for your
environment. That isn’t to say that people with
diverse backgrounds can’t provide you with an
appropriate perspective, but you need to be cautious if there is no
obvious evidence of that “big
picture” view.
At a minimum, their personnel should be familiar with:
	Employment law and management issues that may predict conditions
under which insiders may harbor a grudge against their employer

	Federal and state computer crime laws

	Encryption products, technologies, and limitations

	Issues of viruses, worms, and other malicious software, as well as
scanning software

	TCP/IP fundamentals and issues of virtual private networks (VPNs) and
firewalls

	Awareness and educational issues, materials, and services

	Issues of incident response and forensic investigation

	Security issues peculiar to your hardware and software

	Best practices, formal risk assessment methodologies, and insurance
issues

Any good security policy-consulting service should have personnel who
are willing to talk about (without prompting) the various issues we
have discussed in this part of the book, and this chapter in
particular. If they are not prepared or able to discuss these topics,
they may not be the right service for you.
If you have any concerns, ask to see a policy and procedures document
prepared for another customer. Some firms may be willing to show you
such documentation after it has been sanitized to remove the other
customer’s name and other identifying aspects. Other
firms may have clients who have offered to be
“reference clients,” although some
firms may insist that you sign a non-disclosure agreement with them
before specific documents will be revealed. Avoid any consulting firm
that shares with you the names and documents of other clients without
those clients’ permissions.

People

 Most importantly, you need to be
concerned about the actual people who are delivering your security
policy and implementation services. In contrast to other consulting
services, you need to be especially cautious of consultants who are
hired for security engagements—because hiring outsiders almost
always means that you are granting them some level of privileged
access to your systems and your information.
As we noted earlier, there aren’t enough real
experts to go around. This means that sometimes you have to go with
personnel whose expertise isn’t quite as
comprehensive as you would like, but who have as much as you can
afford. Be careful of false claims of expertise, or of the wrong kind
of expertise. It is better to hire an individual or firm that admits
they are “learning on the job”
(and, presumably, lowering their consulting fee as a result), than to
hire one that is attempting to hide employee deficiencies.
Today’s security market is filled with people who
have varying amounts of expertise in securing Windows platforms.
Expertise in other platforms, including Unix, is more limited. A
great deal can be learned from books, but that is not enough. Look
for qualifications by the personnel in areas that are of concern. In
particular:
	Certification
	Look for certifications. In addition, make sure that those
certifications are actually meaningful. Some certifications can
essentially be purchased: one need only attend a series of classes or
online seminars, memorize the material, and take a test. These are
not particularly valuable. Other certifications require more in-depth
expertise.
Certification is an evolving field, so we hesitate to cite current
examples. Although it’s not everything we would like
it to be, the CISSP certification is one valid measure of a certain
level of experience and expertise in security.

	Education
	Check educational backgrounds. Someone with a degree from a
well-known college or university program in computing sciences or
computer engineering is likely to have a broadly-based background.
The National Security Agency has designated a limited number of
educational institutes as “Centers of Educational
Excellence” in the field of information security. In
July 2002, that list included pioneering infosec programs at George
Mason University, James Madison University, Idaho State, Iowa State,
the Naval Postgraduate School, Purdue University, the University of
California at Davis, and the University of Idaho.

	Reputation
	If someone has written a widely used piece of software or authored a
well-known book on a security topic such as viruses or cryptography,
that does not mean that she knows the security field as a whole. Some
authors really do have a far-ranging and deep background in security.
Others are simply good writers or programmers. Be aware that having a
reputation doesn’t necessarily imply competency at
consulting.

	Bonding and insurance
	Ask if the personnel you want to hire are bonded or insured. This
indicates that an outside agency is willing to back their competency
and behavior. This may not ensure that the consultant is qualified,
but it does provide some assurance that they are not criminals.

	Affiliations
	Ask what professional organizations they belong to and are in good
standing with. ACM, ASIS, CSI, IEEE, ISSA, and USENIX are all worthy
of note. These organizations provide members with educational
materials and professional development opportunities. Many of them
also promote standards of professional behavior. If your subject
claims membership only in groups like “The 133t
Hax0r Guild” or something similar, you may wish to
look elsewhere for expertise.

“Reformed” hackers

 We recommend against hiring individuals and
organizations who boast that they employ “reformed
hackers” as security consultants. Although it is
true that some people who once engaged in computer misdeeds (either
“black hat” or
“grey hat”) can turn their lives
around and become productive members of society, you should be
immediately suspicious of individuals who tout previous criminal
activity as a job qualification and badge of honor. Specifically:
	Individuals with a record of flaunting laws, property ownership, and
privacy rights do not seem to be good prospects for protecting
property, enforcing privacy, and safeguarding your resources. Would
you hire a convicted arsonist to design your fire alarm system? Would
you hire a convicted (but
“reformed”) pedophile to run your
company’s day-care center? Not only are these bad
ideas, but they potentially open you up to civil liability should a
problem occur—after all, you knew the history and hired them
anyway. The same is true for hiring “darkside but
reformed” hackers.

	Likewise, we believe that you should be concerned about individuals
who refuse to provide you with their legal names, but instead use
consulting handles such as “Fluffy
Bunny” and “Demon
Dialer.” Mr. Dialer may in fact be an expert in how
to penetrate an organization using a telephone system. But one of the
primary reasons that people use pseudonyms is so that they cannot be
held responsible for their actions. It is much easier (and a lot more
common) to change a handle if you soil its reputation than it is to
change your legal name.

	Finally, many of today’s
“hackers” really
aren’t that good, anyway—they are closer in
both their manner and their modus operandi to
today’s street thugs than they are to
today’s computer programmers and system architects.
It’s the poor quality of today’s
operating systems, the lack of security procedures, and the
widespread availability of automated penetration tools that make it
possible for attackers to compromise systems. Exactly as somebody
with a record of carjackings is probably not a skilled race car
driver and engine designer, somebody who knows how to scam
“warez” and launch denial of
service attacks probably lacks a fundamental understanding of the
security needed to keep systems safe.

Monitoring Services

 Monitoring services can be a good
investment if your overall situation warrants it. Common services
provided on an ongoing basis include on-site administration via
contractors, both on-site and off-site monitoring of security,
on-call incident response and forensics, and maintenance of a
hot-spare/fallback site to be used in the event of a site disaster.
But in addition to being concerned about the individuals who provide
consulting services, you also need to be cautious about what hardware
and software they intend to use.
Many of the monitoring and response firms have hardware and software
they will want to install on your network. They use this to collect
audit data and manipulate security settings. You need to be cautious
about this technology because it is placed in a privileged position
inside your security perimeter. In particular, you should:
	Ensure that you are given complete descriptions, in writing, of the
functionality of every item to be placed on your network or
equipment. Be certain you understand how it works and what it does.

	Get a written statement of responsibility for failures. If the
inserted hardware or software exposes your data to the outside world
or unexpectedly crashes your systems during peak business hours, you
should not then discover that you have agreed that the vendor has no
liability.

	Ensure that due care has been taken in developing, testing, and
deploying the technology being added to your systems, especially if
it is proprietary in design. In particular, given
Microsoft’s record of software quality and security
issues, we would suggest that you give very careful thought to using
any company that has decided to base its security technology on
Microsoft products.

	Understand whether its technology actually helps to prevent problems
from occurring, or only detects problems after they have happened
(e.g., intrusion prevention versus intrusion detection).

Final Words on Outsourcing

 Using
outside experts can be a smart move to protect yourself. The skills
needed to write policies, monitor your intrusion detection systems
and firewalls, and prepare and execute a disaster recovery plan are
specialized and uncommon. They may not be available among your
current staff. Performing these tasks correctly can be the difference
between staying in business or having some flashy and exciting
failures.
At the same time, the field of security consulting is fraught with
danger because it is new and not well understood. Charlatans, frauds,
naifs, and novices are present and sometimes difficult to distinguish
from the many reliable professionals who are working diligently in
the field. Time will help sort out the issues, but in the meantime it
pays to invest some time and effort in making the right selection.
We suggest that one way to help protect yourself and take advantage
of the growth of the field is to avoid entering into long-term
contracts unless you are very confident in your supplier. The
security-consulting landscape is likely to change a great deal over
the next few years, and having the ability to explore other options
as those changes occur will likely be to your benefit.
Last of all, simply because you contract for services to monitor your
systems for misuse, don’t lose sight of the need to
be vigilant to the extent possible, and to build your systems to be
stronger. As the threats become more sophisticated, so do the
defenders . . . and potential victims.

[27] The lack of trained security
experts is a result, in part, of the lack of personnel and resources
to support information security education at colleges and
universities. Government and industry claim that this is an area of
importance, but they have largely failed to put any real resources
into play to help build up the field.

The Problem with Security Through Obscurity

 We’d like to close this
chapter on policy formation with a few words about knowledge. In
traditional security, derived largely from military intelligence,
there is the concept of “need to
know.” Information is partitioned, and you are given
only as much as you need to do your job. In environments where
specific items of information are sensitive or where inferential
security is a concern, this policy makes considerable sense. If three
pieces of information together can form a damaging conclusion and no
one has access to more than two, you can ensure confidentiality.
In a computer operations environment, applying the same need-to-know
concept is usually not appropriate. This is especially true if you
find yourself basing your security on the fact that something
technical is unknown to your attackers. This concept can even hurt
your security.

 Consider
an environment where management decides to keep the manuals away from
the users to prevent them from
learning about commands and options that might be used to crack the
system. Under such circumstances, the managers might believe they
have increased their security, but they probably have not. A
determined attacker will find the same documentation
elsewhere—from other users or from other sites. Extensive
amounts of Unix documentation are as close as the nearest bookstore!
Management cannot close down all possible avenues for learning about
the system.
In the meantime, the local users are likely to make less efficient
use of the machine because they are unable to view the documentation
and learn about more efficient options. They are also likely to have
a poorer attitude because the implicit message from management is
“We don’t completely trust you to
be a responsible user.” Furthermore, if someone does
start abusing commands and features of the system, management may not
have a pool of talent to recognize or deal with the problem. And if
something should happen to the one or two users authorized to access
the documentation, there is no one with the requisite experience or
knowledge to step in or help out.
Keeping Secrets

 Keeping bugs or features secret to
protect them is also a poor approach to security. System developers
often insert

 back doors in
their programs to let them gain privileges without supplying
passwords (see Chapter 19). Other times, system
bugs with profound security implications are allowed to persist
because management assumes that nobody knows of them. The problem
with these approaches is that features and problems in the code have
a tendency to be discovered by accident or by determined attackers.
The fact that the bugs and features are kept secret means that they
are unwatched, and probably unpatched. After being discovered, the
existence of the problem will make all similar systems vulnerable to
attack by the persons who discover the problem.

 Keeping
algorithms, such as a locally developed encryption algorithm, secret
is also of questionable value. Unless you are an expert in
cryptography, you most likely can’t analyze the
strength of your algorithm. The result may be a mechanism that has a
serious flaw in it. An algorithm that is kept secret
isn’t scrutinized by others, and thus someone who
does discover the hole may have free access to your data without your
knowledge.

 Likewise, keeping the source code of
your operating system or application secret is no guarantee of
security. Those who are determined to break into your system will
occasionally find security holes, with or without source
code.[28] But without the source code, users
cannot carry out a systematic examination of a program for problems.
Thus, there may be some small benefit to keeping the code hidden, but
it shouldn’t be depended on.
The key is attitude. Defensive measures that are based primarily on
secrecy lose their value if their secrecy is breached. Even worse,
when maintaining secrecy restricts or prevents auditing and
monitoring, it can be impossible to determine whether secrecy has
been breached. You are better served by algorithms and mechanisms
that are inherently strong, even if they’re known to
an attacker. The very fact that you are using strong, known
mechanisms may discourage an attacker and cause the idly curious to
seek excitement elsewhere. Putting your money in a wall safe is
better protection than depending on the fact that no one knows that
you hide your money in a mayonnaise jar in your refrigerator.

Responsible Disclosure

 Despite
our objection to “security through
obscurity,” we do not advocate that you widely
publicize new security holes the moment that you find them. There is
a difference between secrecy and prudence! If you discover a security
hole in distributed or widely available software, you should
quietly report it to the vendor as soon as
possible. We also recommend that you report it to one of the FIRST
teams (described in Appendix E). These
organizations can take action to help vendors develop patches and see
that they are distributed in an appropriate manner.
If you “go public” with a security
hole, you endanger all of the people who are running that software
but who don’t have the ability to apply fixes. In
the Unix environment, many users are accustomed to having the source
code available to make local modifications to correct flaws.
Unfortunately, not everyone is so lucky, and many people have to wait
weeks or months for updated software from their vendors. Some sites
may not even be able to upgrade their software because
they’re running a turn-key application, or one that
has been certified in some way based on the current configuration.
Other systems are being run by individuals who don’t
have the necessary expertise to apply patches. Still others are no
longer in production, or are at least out of maintenance. Always act
responsibly. It may be preferable to circulate a patch without
explaining or implying the underlying vulnerability than to give
attackers details on how to break into unpatched systems.
We have seen many instances in which a well-intentioned person
reported a significant security problem in a very public forum.
Although the person’s intention was to elicit a
rapid fix from the affected vendors, the result was a wave of
break-ins to systems where the administrators did not have access to
the same public forum, or were unable to apply a fix appropriate for
their environment.

 Posting details of the latest
security vulnerability in your system to a mailing list if there is
no patch available will not only endanger many other sites, it may
also open you to civil action for damages if that flaw is used to
break into those sites.[29] If you are concerned with your security,
realize that you’re a part of a community. Seek to
reinforce the security of everyone else in that community as
well—and remember that you may need the assistance of others
one day.

Confidential Information

 Some
security-related information is rightfully confidential. For
instance, keeping your passwords from becoming public knowledge makes
sense. This is not an example of security through obscurity. Unlike a
bug or a back door in an operating system that gives an attacker
superuser powers, passwords are designed to be kept secret and should
be routinely changed to remain so.

[28] Unless you’re developing the
software by yourself on your own workstation, several people may have
access to the source code, and, intentionally or accidentally, code
gets leaked.

[29] Although we are unaware of
any cases having been filed yet on these grounds, several lawyers
have told us that they are waiting for their clients to request such
an action. Several believe this to be a viable course of
action.

Summary

You need to understand what you mean by
“security” before you can go about
the task of securing a computer system. Traditionally, information
security has meant ensuring confidentiality, data integrity,
availability, consistency, control, and audit. But the relative
importance of these items will be different for different
organizations.
One way to grapple with these differences is to perform a detailed
assessment of the risks that your organization faces, the impact that
each risk could have, and the cost of defending against each risk.
This is a long and involved process that few organizations are
prepared to execute properly. For this reason, many organizations
outsource their computer security work—the policy formation,
the monitoring, or even the implementation. Other organizations adopt
industry “best practices” and hope
for the best.
No matter what you do, it’s best if your decisions
are informed by conscious policy choices, rather than by inertia,
inattention, or incompetence.

Part II. Security Building Blocks

This part of the book provides a basic introduction to Unix host
security. The chapters in this part are designed to be accessible to
both users and administrators.

 Chapter 4, is about Unix user accounts. It
discusses the purpose of passwords, explains what makes good and bad
passwords, and describes how the crypt()
password encryption system works.

 Chapter 5, describes how Unix groups can be used
to control access to files and devices. It also discusses the Unix
superuser and the role that special users play. This chapter also
introduces the Pluggable Authentication Module (PAM) system.

 Chapter 6, discusses the security provisions of
the Unix filesystem and tells how to restrict access to files and
directories to the file’s owner, to a group of
people, or to everybody using the computer system.

 Chapter 7, discusses the role of encryption and
message digests in protecting your security.

 Chapter 8. What if somebody gets frustrated by
your super-secure system and decides to smash your computer with a
sledgehammer? This chapter describes physical perils that face your
computer and its data and discusses ways of protecting against them.

 Chapter 9, explores who you employ and how they
fit into your overall security scheme.

Chapter 4. Users, Passwords, and Authentication

Good account security is part of your first line of defense against
system abuse. People trying to gain unauthorized access to your
system often try to acquire the usernames and passwords of legitimate
users. After an attacker gains initial access, he is free to snoop
around, looking for other security holes to exploit to attain
successively higher privileges. It’s much easier to
compromise a system from a local account than from outside.[30]

Because most internal users are not malicious, many systems have
better defenses against outsiders than against authorized users.
Accordingly, the best way to keep your system secure is to keep
unauthorized users out of the system in the first place. This means
teaching your users what good account security means and making sure
they adhere to good security practices.
This chapter explains the Unix user account and password systems.
We’ll explain these basic concepts, discuss the
mechanics for picking and maintaining a good password, and finally
show you how passwords are implemented in the Unix environment. In
Chapter 19, we’ll describe in
detail how to protect your accounts from many different types of
attacks.
Unfortunately, sometimes even good passwords aren’t
sufficient. This is especially true in cases where passwords travel
across a network from one computer to another. Many passwords sent
over the network can be
sniffed

 —captured
as they cross over a network. Although there are many ways to protect
against sniffing, the best is to assume that it is going to happen
and make sure that the information sniffed is useless. You can do
that by assuring that all passwords sent over the network are
encrypted, by using nonreusable passwords, or by eliminating the need
to transmit passwords altogether through the use of public key
encryption.
Logging in with Usernames and Passwords

 Every
person who uses a Unix computer should have her own
account. An account is identified by a
user
ID number (UID) that is associated with one or more
usernames (also known as account
names
).
Traditionally, each account also has a secret password
associated with it to prevent unauthorized use. You need
to know both your username and your password to log into a Unix
system.
Unix Usernames

The username is an identifier:

 it tells the computer who you are. In
contrast, a password is an authenticator: you
use it to prove to the operating system that you are who you claim to
be. A single person can have more than one Unix account on the same
computer. In this case, each account would have its own username.
Standard Unix usernames may be between one and eight characters long,
although many Unix systems today allow usernames that are longer.
Within a single Unix computer, usernames must be unique: no two users
can have the same one. (If two people did have the same username on a
single system, then they would really be sharing the same account.)
Traditionally, Unix passwords were also between one and eight
characters long, although most Unix systems now allow longer
passwords as well. Longer passwords are generally more secure because
they are harder to guess. More than one user can theoretically have
the same password, although if they do, that usually indicates that
both users have picked a bad password.
A username can be any sequence of characters you want (with some
exceptions), and does not necessarily correspond to a real
person’s name.
Tip
Some versions of Unix have problems with usernames that do not start
with a lowercase letter or that contain special characters such as
punctuation or
 control
characters. Usernames containing certain unusual characters will also
cause problems for various application programs, including some
network mail programs. For this reason, many sites allow only
usernames that contain lowercase letters and numbers and further
require that all usernames start with a letter.

Your username identifies you to Unix in the same way that your first
name identifies you to your friends. When you log into the Unix
system, you tell it your username in the same way that you might say,
“Hello, this is Sabrina,” when you
pick up the telephone.[31] Most systems use the
same identifier for both usernames and email addresses. For this
reason, organizations that have more than one computer often require
people to use the same username on every machine to minimize
confusion.
There is considerable flexibility in choosing a username. For
example, John Q. Random might have any of the following usernames;
they are all potentially valid:
	
 john

	
 johnqr

	
 johnr

	
 jqr

	
 jqrandom

	
 jrandom

	
 random

	
 randomjq

Alternatively, John might have a username that appears totally
unrelated to his real name, like avocado or
t42. Having a username similar to your own name
is merely a matter of convenience.
Tip
In some cases, having an unrelated name may be a desired feature
because it either masks your identity in email and online chat rooms,
or projects an image different from your usual one:
tall62, fungirl,
anonymus, svelte19, and
richguy. Of course, as we noted in the last
chapter, “handles” that
don’t match one’s real name can
also be used to hide the true identity of someone doing something
unethical or illegal. Be cautious about drawing conclusions about
someone based on the email name or account name that they present.

Most organizations require that usernames be at least three
characters long. Single-character usernames are simply too confusing
for most people to deal with, no matter how easy you might think it
would be to be user i or x.
Usernames that are two characters long are also confusing for some
people, because they usually don’t provide enough
information to match a name in memory: who was
zt@ex.com, anyway? In general, names with little
intrinsic meaning, such as t42xp96wl, can also
cause confusion because they are more difficult for correspondents to
remember.
Some organizations assign usernames using standardized rules, such as
the first initial of a person’s first name and then
the first six letters of their last name, optionally followed by a
number. Other organizations let users pick their own names. Some
organizations and online services assign an apparently random string
of characters as the usernames; although this is generally not
popular, it can improve security—especially if these usernames
are not used for electronic mail. Although some randomly generated
strings can be hard to remember, there are several algorithms that
generate easy-to-remember random strings by using a small number of
mnemonic rules; typical usernames generated by these systems are
xxp44 and acactt. If you
design a system that gives users randomly generated usernames, it is
a good idea to let people reject a username and ask for another, lest
somebody gets stuck with a hard-to-remember username like
xp9uu6wi.
Unix also has special accounts that are used for administrative
purposes and special system functions. These accounts are not
normally used by individual users.

Authenticating Users

 After
you tell Unix who you are, you must prove your identity to a certain
degree of confidence (trust). This process is called
authentication. Classically, there are three
different ways that you can authenticate yourself to a computer
system, and you use one or more of them each time:
	You can tell the computer something that you know (for example, a
password).

	You can present the computer with something you have (for example, a
card key).

	You can let the computer measure something about you (for example,
your fingerprint).

None of these systems is foolproof. For example, by eavesdropping on
your terminal line, somebody can learn your password. By attacking
you at gunpoint, somebody can steal your card key. And if your
attacker has a knife, you might even lose your finger! In general,
the more trustworthy the form of authentication, the more aggressive
an attacker must be to compromise it. In the past, the most
trustworthy authentication techniques have also been the most
difficult to use, although this is slowly changing.

Authenticating with Passwords

 Passwords are the simplest form of
authentication: they are a secret that you share with the computer.
When you log in, you type your password to prove to the computer that
you are who you claim to be. The computer ensures that the password
you type matches the account that you have specified. If it matches,
you are allowed to proceed.
Unix does not display your password as you type it. This gives you
extra protection if the transcript of your session is being logged or
if somebody is watching over your shoulder as you type—a
technique that is sometimes referred to as shoulder
surfing

 .
Why Authenticate?
Traditionally desktop personal computers running the Windows or
Macintosh operating systems, handheld computers, and personal
organizers did not require that users authenticate themselves before
the computer provided the requested information. The fact that these
computers employed no passwords or other authentication techniques
made them easier to use.
Likewise, many of the research groups that originally developed the
Unix operating system did not have passwords for individual
users—often for the same reason that they shied away from locks
on desks and office doors. In these environments, trust, respect, and
social convention were very powerful deterrents to information theft
and destruction. When computer systems required passwords, often
times many people shared the same
password—password, for example.
Unfortunately, the lack of authentication made these computers easier
for many people to use—this included both the
machine’s primary user and anybody else who happened
to be in the area. As these systems were connected to modems or
external networks, the poor authentication practices that had grown
up in the closed environment became a point of vulnerability,
especially when other systems based their trust on the authenticity
of the identity determined locally. Vulnerabilities frequently led to
successful attacks. There have been many cases in which a single
easily compromised account has endangered the security of an entire
installation or network.
In today’s highly networked world, proper
authentication of authorized users is a core requirement of any
computer that is trusted with confidential information. The challenge
that computer developers now face is to produce systems that provide
strong authentication while simultaneously providing ease of use.

Conventional passwords have been part of Unix since its early years.
The advantage of this system is that it runs without any special
equipment, such as smartcard readers or fingerprint scanners.
The disadvantage of conventional passwords is that they are easily
captured and reused—especially in a network-based environment.
Although passwords can be used securely and
effectively, doing so requires constant vigilance to make sure that
an unencrypted password is not inadvertently sent over the network,
allowing it to be captured with a

 password
sniffer. Passwords can also be stolen if they are typed on a computer
that has been compromised with a

 keystroke recorder. Today, even
unsophisticated attackers can use such tools to capture passwords.
Indeed, the only way to safely use a Unix computer remotely over a
network such as the Internet is to use one-time passwords,
encryption, or both (see Section 4.3.3 later in this chapter and
also see Chapter 7).[32]

Unfortunately, we live in an imperfect world, and most Unix systems
continue to depend upon reusable passwords for user authentication.
Be careful!
Entering your password

 When
you log in, you tell the computer who you are by typing your username
at the login prompt (the identification step).
You then type your password (in response to the password prompt) to
authenticate that you are who you claim to be.
For example:
login: rachel
password: luV2-fred
Unix does not display your password when you type it.
If the password that you supply with your username corresponds to the
password that is on file for the provided username, Unix logs you in
and gives you full access to the user’s files,
commands, and devices. If the username and the password do not match,
Unix does not log you in.

 On some versions of Unix, if somebody
tries to log into an account and supplies an invalid password several
times in succession, that account will become locked. A locked
account can be unlocked only by the system administrator. Locking has
three functions:
	It protects the system from attackers who persist in trying to guess
a password; before they can guess the correct password, the account
is shut down.

	It lets you know that someone has been trying to break into your
account.

	It lets your system administrator know that someone has been trying
to break into the computer.

If you find yourself locked out of your account, you should contact
your system administrator and get your password changed to something
new. Don’t change your password back to what it was
before you were locked out.

The automatic lockout feature can prevent unauthorized use, but it
can also be used to conduct
 denial of service attacks, or by an
attacker to lock selected users out of the system so as to prevent
discovery of his actions. A practical joker can use it to annoy
fellow employees or students. And you can accidentally lock yourself
out if you try to log in too many times before
you’ve had your morning coffee.
In our experience, the disadvantages of indefinite automatic lockouts
outweigh the benefits. A much better method is to employ an
increasing delay mechanism in the login. After a fixed number of
unsuccessful logins, an increasing delay can be inserted between each
successive prompt. Implementing such delays in a network environment
requires maintaining a record of failed login attempts, so that the
delay cannot be circumvented by an attacker who merely disconnects
from the target machine and reconnects.

Changing your password

 You
can change your password with the Unix
passwd
 command. You will first be asked to
type your old password, then a new one. By asking you to type your
old password first, passwd prevents somebody
from walking up to a terminal that you left yourself logged into and
then changing your password without your knowledge.
Unix makes you type the new password twice:
% passwd
Changing password for sarah.
Old password:tuna4fis

New password: nosSMi32

Retype new password: nosSMi32

%
If the two passwords you type don’t match, your
password remains unchanged. This is a safety precaution: if you made
a mistake typing the new password and Unix only asked you once, then
your password could be changed to some new value and you would have
no way of knowing that value.
Note
On systems that use Sun Microsystems
 NIS or NIS+, you may need to use the
command yppasswd

 or nispasswd to
change your password. Except for having different names, these
programs work in the same way as passwd.
However, when they run, they update your password in the network
database with NIS or NIS+. When this happens, your password will be
immediately available on other clients on the network. With NIS, your
password will be distributed during the next regular update.
The -r option to the passwd
command can also be used under
Solaris. To change NIS or
NIS+ passwords, the format would be passwd -r
nis or passwd -r nisplus,
respectively. It is possible to have a local machine password that is
different from the one in the network database, and that would be
changed with passwd -r files.

Even though passwords are not echoed when they are printed, the
Backspace or Delete key (or whatever key you have bound to the
“erase” function) will still delete
the last character typed, so if you make a mistake, you can correct
it.
Once you have changed your password, your old password will no longer
work. Do not forget your new password! If you
forget your new password, you will need to have the system
administrator set it to something you can use to log in and try
again.[33]

If your system administrator gives you a new password, immediately
change it to something else that only you know! Otherwise, if your
system administrator is in the habit of setting the same password for
forgetful users, your account may be compromised by someone else who
has had a temporary lapse of memory; see Password: ChangeMe for an example.
Warning
If you are a system manager and you need to change a
user’s password, do not change the
user’s password to something like
changeme or password, and then
rely on the user to change their password to something else. Many
users will not take the time to change their passwords but will,
instead, continue to use the password that you have inadvertently
“assigned” to them. Give the user a
good password, and give that user a different password from every
other user whose password you have reset.

Verifying your new password

 After you have changed your password, try
logging into your account with the new password to make sure that
you’ve entered the new password properly. Ideally,
you should do this without logging out, so you will have some
recourse if you did not change your password properly. This is
especially crucial if you are logged in as root
and you have just changed the root password!
Password: ChangeMe
At one major university we know about, it was commonplace for
students to change their passwords and then be unable to log into
their accounts. Most often this happened when students tried to put
control characters into their passwords.[34]
Other times, students mistyped the password and were unable to retype
it again later. More than a few got so carried away making up a fancy
password that they couldn’t remember their passwords
later.
Well, once a Unix password is entered, there is no way to decrypt it
and recover it. The only recourse is to have someone change the
password to another known value. Thus, the students would bring a
picture ID to the computing center office, where a staff member would
change the password to ChangeMe and instruct them
to immediately go down the hall to a terminal room to do exactly
that.
Late one semester shortly after the Internet worm incident (which
occurred in November of 1988), one of the staff decided to try
running a password cracker (see Chapter 19) to see
how many student account passwords were weak. Much to the surprise of
the staff member, dozens of the student accounts had a password of
ChangeMe. Furthermore, at least one of the other
staff members also had that as a password! The policy soon changed to
one in which forgetful students were forced to enter a new password
on the spot.
Some versions of the
passwd
 command support a special
-f flag. If this flag is provided when the
superuser changes a person’s password, that user is
forced to change his or her password the very next time he logs into
the system. It’s a good option for system
administrators to remember.

One way to try out your new password is to use the

 su command.
Normally, the su command is used to switch to
another account. But as the command requires that you type the
password of the account to which you are switching, you can
effectively use the su command to test the
password of your own account.
% /bin/su nosmis
password: mypassword

%
(Of course, instead of typing nosmis and
mypassword , use your own account name and
password.)

 If you’re using a
machine that is on a network, you can use the
telnet, rlogin, or
ssh programs to loop back through the network to
log in a second time by typing:
% ssh -l dawn
 localhost

dawn@loaclhost's password: w3kfsc!

Last login: Sun Feb 3 11:48:45 on ttyb
%
You can replace localhost in the above example
with the name of your computer. This method is also useful when
testing a change in the root password, as the
su command does not prompt for a password when
run by root.
If you try one of the earlier methods and discover that your password
is not what you thought it was, you have a definite problem. To
change the password to something you do know, you will need the
current password. However, you don’t know that
password! You will need the help of the system administrator to fix
the situation. (That’s why you
shouldn’t log out—if the time is 2:00 a.m. on
Saturday, you might not be able to reach the administrator until
Monday morning, and you might want to get some work done before
then.)
The superuser (user
root) can’t decode the password
of any user. However, the system administrator can help you when you
don’t know what you’ve set your
password to by using the superuser account to set your password to
something known.
Warning

 If
you get email from your system manager advising you that there are
system problems and that you should immediately change your password
to tunafish (or some other value),
disregard the message and report it to your system
management. These kinds of email messages are frequently
sent by computer criminals to novice users. The hope is that the
novice user will comply with the request and change his password to
the one that is suggested—often with devastating results.

Changing another user’s password

 If you are running as the
superuser (or the network
administrator, in the case of NIS+), you can set the password of any
user, including yourself, without supplying the old password. You do
this by supplying the username to the
passwd

 command when you invoke it:

passwd cindy
New password: NewR-pas

Retype new password: NewR-pas

#

[30] Another part of your first line of defense is physical
security, which may prevent an attacker from simply carting your
server through the lobby without being questioned. See Chapter 8 for details.

[31] Even if you
aren’t Sabrina, saying that you are Sabrina
identifies you as Sabrina. Of course, if you are not Sabrina, your
voice will probably not authenticate you as
Sabrina, provided that the person you are speaking with knows what
Sabrina actually sounds like.

[32] Well-chosen
passwords are still quite effective for most standalone systems with
hardwired terminals, and when used in cryptographic protocols with
mechanisms to prevent replay attacks.

[33] And if you are the
 system
administrator, you’ll have to log in as the
superuser to change your password. If you’ve
forgotten the superuser password, you may need to take drastic
measures to recover.

[34] The
 control characters ^@, ^C, ^G, ^H, ^J, ^M, ^Q, ^S, and ^[should not be put in passwords, because they can be interpreted by the system. If your users will log in using xdm, users should avoid all control characters, as xdm often filters them out. You should also beware of control characters that may interact with your terminal programs, terminal concentrator monitors, and other intermediate systems you may use; for instance, the ~ character is often used as an escape character in ssh and rsh sessions. Finally, you may wish to avoid the # and @ characters, as some Unix systems still interpret these characters with their ancient use as erase and kill characters.

The Care and Feeding of Passwords

 Although passwords are an important
element of computer security, users often receive only cursory
instructions about selecting them.
If you are a user, be aware that by picking a bad password—or
by revealing your password to an untrustworthy individual—you
are potentially compromising your entire computer’s
security. If you are a system administrator, you should make sure
that all of your users are familiar with the issues raised in this
section.
Bad Passwords: Open Doors

 A bad password is any password
that is easily guessed.
Bad Passwords

 When picking passwords, avoid the
following:
	Your name, spouse’s name, or
partner’s name

	Your pet’s name or your child’s
name

	Names of close friends or coworkers

	The name of your company, school, department, or group

	Names of your favorite fantasy characters

	Your boss’s name

	Anybody’s name

	The name of the operating system you’re using

	Information in the GECOS field of your passwd
file entry (discussed later in this chapter)

	The hostname of your computer

	Your phone number or your license plate number

	Any part of your Social Security number

	Anybody’s birth date

	Other information easily obtained about you (e.g., address, alma
mater)

	Words such as wizard, guru,
gandalf, and so on

	Any username on the computer in any form (as is, capitalized,
doubled, etc.)

	A word in the English dictionary or in a foreign dictionary

	Place names or any proper
nouns

	Passwords of all the same letter

	Simple patterns of letters on the keyboard, like
qwerty

	Any of the above spelled backwards

	Any of the above followed or prepended by a single digit

[image: image with no caption]

In the movie Real Genius, a computer recluse
named Laszlo Hollyfeld breaks into a top-secret military computer
over the telephone by guessing passwords. Laszlo starts by typing the
password AAAAAA, then trying
AAAAAB, then AAAAAC, and so on,
until he finally finds the password that matches.

 Real-life
computer crackers are far more sophisticated. Instead of typing each
password by hand, attackers use their computers to open network
connections (or make phone calls) then try the passwords,
automatically retrying when they are disconnected. Instead of trying
every combination of letters, starting with AAAAAA
(or whatever), attackers use
 hit lists of common passwords such as
wizard or demo. Even a modest
home computer with a good password-guessing program can try many
thousands of passwords in less than a day’s time.
Some hit lists used by crackers are several hundred thousand words in
length, and include words in many different languages.[35]
Therefore, a password that anybody on the
planet
 [36]
might use for a password is probably a bad password choice for you.
What’s a popular and bad password? Some examples are

your name, your partner’s name, or your
parents’ names. Other bad passwords are these names
backwards or followed by a single digit. Short passwords are also
bad, because there are fewer of them: they are, therefore, more
easily guessed. Especially bad are “magic
words” from computer games, such as
xyzzy. Magic words look secret and unguessable,
but in fact they are widely known. Other bad choices include phone
numbers, characters from your favorite movies or books, local
landmark names, favorite drinks, or famous computer scientists (see
the sidebar Bad Passwords for still more bad choices).
These words backwards or capitalized are also weak. Replacing the
letter “l” (lowercase
“L”) with
“1” (numeral one), the letter
“o” with
“0” (numeral zero), or
“E” with
“3,” adding a digit to either end,
or other simple modifications of common words are also weak. Words in
other languages are no better. Dictionaries for dozens of languages
are available for download on the Internet, including Klingon! There
are also dictionaries available that consist solely of words
frequently chosen as passwords.
Many versions of Unix make a minimal attempt to prevent users from
picking bad passwords. For example, under some versions of Unix, if
you attempt to pick a password with fewer than six letters or letters
that are all the same case, the
 passwd program
will ask the user to “Please pick a different
password” followed by some explanation of the local
requirements for a password. After three tries, however, some
versions of the passwd program relent and let
the user pick a short one. Better versions allow the administrator to
require a minimum number of letters, a requirement for nonalphabetic
characters, and other restrictions. However, some administrators turn
these requirements off because users complain about them! Users will
likely complain more loudly if their computers are broken into.

Smoking Joes

 Surprisingly, a significant
percentage of all computers that do not explicitly check for bad
passwords contain at least one account in which the username and the
password are the same or extremely similar. Such accounts are often
called “Joes.” Joe accounts are
easy for crackers to find and trivial to penetrate. Attackers can
find an entry point into far too many systems simply by checking
every account to see whether it is a Joe account. This is one reason
why it is dangerous for your computer to make a list of all of the
valid usernames available to the outside world.

Good Passwords: Locked Doors

 Good passwords are passwords that are
difficult to guess. The best passwords are difficult to guess because
they include some subset of the following characteristics:
	Have both uppercase and lowercase letters

	Have digits and/or punctuation characters as well as letters

	May include some control characters and/or spaces[37]

	Are easy to remember, so they do not have to be written down

	Are seven or eight characters long.

	Can be typed quickly, so somebody cannot determine what you type by
watching over your shoulder

It’s easy to pick a good password. Here are some
suggestions:
	Take two short words and combine them with a special character or a
number, like robot4my or
eye-con.

	Put together an acronym that’s special to you, like
Anotfsw (Ack, none of this fancy stuff works),
aUpegcbm (All Unix programmers eat green cheese
but me), or Ttl*Hiww (Twinkle, twinkle, little
star. How I wonder what . . .).

	Create a nonsense word by alternating consonant and vowel sounds,
like huroMork. These words are usually easy to
pronounce and remember.

Of course, robot4my, eye-con,
Anotfsw, Ttl*Hiww,
huroMork, and aUpegcbm are now
all bad passwords because they’ve been printed here.
Number of Passwords

 If you exclude a few of the

 Control characters that should not be used
in a password, it is still possible to create more than
5,000,000,000,000,000 unique 8-character passwords in standard Unix.
Combining dictionaries from 10 different major languages, plus those
words reversed, capitalized, with a trailing digit appended, and
otherwise slightly modified results in less than 5,000,000 words.
Adding a few thousand names and words from popular culture hardly
changes that.
From this, we can see that users who pick weak passwords are making
it easy for attackers—they reduce the search space to less than
.000000001% of the possible passwords!
One study of passwords chosen in an unconstrained environment
revealed that users chose passwords with Control characters only 1.4%
of the time, and punctuation and space characters less than 6% of the
time. All of the characters !@#$%^&*(
)_-+=[]|\;:”?/,.< >'~' can be used in
passwords too; although, some systems may treat the
“\”,
“#”, and
“@” symbols as escape (literal),
erase, and kill, respectively. (See the footnote to the earlier
sidebar entitled “Password:
ChangeMe” for a list of the control characters that
should not be included in a password.)
Next time one of your users complains because of the password
selection restrictions you have in place and proclaims,
“I can’t think of any password that
isn’t rejected by the program!”,
you might want to show him this page.

Password Synchronization: Using the Same Password on Many Machines

 If you have several computer
accounts, you may wish to have the same password on every machine, so
you have less you need to remember. This is called
password synchronization.
Password synchronization can increase security if the synchronization
allows you to use a good password that is hard to guess. Systems that
provide for automated password synchronization make it easy to change
your password and have that change reflected everywhere.
On the other hand, password synchronization can decrease security if
the password is compromised—suddenly all of your accounts will
be vulnerable! Even worse, with password synchronization you may not
even know that your password has been compromised!
Password synchronization is also problematic for usernames and
passwords that are used for web sites. Many people will use the same
username and password at many web sites—even web sites that are
potentially being run by untrustworthy individuals or organizations.
A simple way to capture usernames and passwords is to set up a web
site that offers “a chance of winning
$10,000” to anybody who registers with an email
address and sets up a password upon entry.
If you are thinking of using the same password on many machines, here
are some points to consider:
	One common approach used by people with accounts on many machines is
to have a base password that can be modified for each different
machine. For example, your base password might be
kxyzzy followed by the first letter of the name of
the computer you’re using. On a computer named
athena your password would be
kxyzzya, while on a computer named
ems your password would be
kxyzzye. (Don’t, of course, use
this exact method of varying your passwords.)

	Another common approach is to create a different, random password for
each machine. Store these passwords in a file that is

 encrypted—either manually
encrypted with a program such as PGP, or automatically encrypted
using a “password keeper” program.

	To simplify access to remote systems, configure your remote accounts
for ssh-based access using your
ssh

 key. Make sure that this
key is kept encrypted using an ssh passphrase.
For day-to-day use, the ssh passphrase is all
that needs to be remembered. However, for special cases or when
changing the password, you can refer to your encrypted file of all
the passwords. See the manual page for
ssh-keygen for specific instructions.

Writing Down Passwords

 In the movie War
Games, there is the canonical story about a high school
student who breaks into his school’s academic
computer and changes his grades; he does this by walking into the
school’s office, looking at the academic
officer’s terminal, and noting that the telephone
number, username, and password are written on a Post-It note.
Unfortunately, the fictional story has actually happened—in
fact, it has happened hundreds of times over.
Users are admonished to “never write down your
password.” The reason is simple enough: if you write
down your password, somebody else can find it and use it to break
into your computer. A password that is memorized is more secure than
the same password written down, simply because there is less
opportunity for other people to learn it. On the other hand, a
password that must be written down to be
remembered is quite likely a password that is not going to be guessed
easily.[38] If you write your
password on something kept in your wallet, the chances of somebody
who steals your wallet using the password to break into your computer
account are remote indeed.[39]

If you must write down your password, then at least follow a few
precautions:
	When you write it down, don’t identify your password
as being a password.

	Don’t include the name of the account, network name,
or phone number of the computer on the same piece of paper as your
password.

	Don’t attach the password to your terminal,
keyboard, or any part of your computer.

	Don’t write your actual password. Instead, disguise
it by mixing in other characters or by scrambling the written version
of the password in a way that you can remember. For example, if your
password is Iluvfred, you might write
fredIluv or vfredxyIu or
perhaps Last
 week,
I
 lost
 Uncle
 Vernon's
 `fried
 rice
 &
 eggplant delight'
 recipe--remember
 to
 call
 him
 after
 3:00
 p.m.—to throw off a potential
wallet-snatcher.[40]

 Of course, you
can always encrypt your passwords in a handy file on a machine where
you remember the password. Many people store their passwords in an
encrypted form on a PDA (handheld computer). The only drawback to
this approach is when you can’t get to your file, or
your PDA has gone missing (or its batteries die)—how do you log
on to report the problem?
Here are some other things to avoid:
	Don’t record a password online (in a file, database,
or email message), unless the password is encrypted.

	Likewise, never send a password to another user via
electronic mail. In The
Cuckoo’s Egg, Cliff Stoll tells of how a
single intruder broke into system after system by searching for the
word password in text files and electronic mail
messages. With this simple trick, the intruder learned of the
passwords of many accounts on many different computers across the
country.

	Don’t use your login password as the password of
application programs. For instance, don’t use your
login password as your password to an online MUD (multiuser dungeon)
game or for a web server account. The passwords in those applications
are controlled by others and may be visible to the wrong people.

	Don’t use the same password for different computers
managed by different organizations. If you do, and an attacker learns
the password for one of your accounts, all will be compromised.
This last “don’t”
is very difficult to follow in practice.

[35] In contrast, if you were to program a home computer to try all
6-letter combinations from AAAAAA to
ZZZZZZ, it would have to try 308,915,776 different
passwords. Guessing one password per second, that would require
nearly 10 years. Many Unix systems make this process even slower by
introducing delays between login attempts.

[36] If you believe that beings from
other planets have access to your computer account, then you should
not pick a password that they can guess, either,
although this may be the least of your problems.

[37] In
some cases, using
 spaces may be problematic. An attacker who
is in a position to listen carefully can distinguish the sound of the
space bar from the sound of other keys. Similarly, Shift or Control
key combinations have a distinctive sound, but there are many shifted
characters and only one space.

[38] We should note that in the 12 years since we
originally wrote this, we have added lots more accounts and passwords
and have more frequent “senior
moments.” Thus, we perhaps should be a little less
emphatic about this point.

[39] Unless, of course, you
happen to be an important person, and your wallet is stolen or rifled
as part of an elaborate plot. In their book
Cyberpunks, authors John Markoff and Katie
Hafner describe a woman named “Susan
Thunder” who broke into military computers by doing
just that: she would pick up an officer at a bar and go home with
him. Later that night, while the officer was sleeping, Thunder would
get up, go through the man’s wallet, and look for
telephone numbers, usernames, and passwords.

[40] We hope that last one required some
thought. The 3:00 p.m. means to start with the third word and take
the first letter of every word. With some thought, you can come up
with something equally obscure that you will remember.

How Unix Implements Passwords

This section describes how passwords are implemented inside the Unix
operating system for both locally administered and network-based
systems.
The /etc/passwd File

 Traditionally,
 Unix uses the
/etc/passwd file to keep track of every user on
the system. The /etc/passwd file contains the
username, real name, identification information, and basic account
information for each user. Each line in the file contains a database
record; the record fields are separated by a colon (:).
You can use the cat
 command to display your
system’s /etc/passwd file. Here
are a few sample lines from a typical file:
root:x:0:1:System Operator:/:/bin/ksh
daemon:x:1:1::/tmp:
uucp:x:4:4::/var/spool/uucppublic:/usr/lib/uucp/uucico
rachel:x:181:100:Rachel Cohen:/u/rachel:/bin/ksh
arlin:x.:182:100:Arlin Steinberg:/u/arlin:/bin/csh
The first three accounts, root,
daemon, and uucp, are
system accounts, while rachel and
arlin are accounts for individual users.
The individual fields of the /etc/passwd file
have fairly straightforward meanings. Table 4-1
explains a sample line from the file shown above.
Table 4-1. Example /etc/passwd fields
	
 Field

 	
 Contents

	
 rachel

 	
 Username.

	
 x

 	
 Holding place for the user’s
“encrypted password.”
Traditionally, this field actually stored the user’s
encrypted password. Modern Unix systems store encrypted passwords in
a separate file (the shadow password file)
that can be accessed only by privileged users.

	
 181

 	
 User’s user identification number (UID).

	
 100

 	
 User’s group identification number (GID).

	
 Rachel Cohen

 	
 User’s full name (also known as the GECOS or GCOS
field).[a]

	
 /u/rachel

 	
 User’s home directory.

	
 /bin/ksh

 	

 User’s shell.[b]

	[a] When Unix was first written, it ran on a
small minicomputer. Many users at Bell Labs used their Unix accounts
to create batch jobs to be run via
 Remote Job Entry (RJE) on the bigger GECOS
computer in the Labs. The user identification information for the RJE
was kept in the /etc/passwd file as part of the
standard user identification.
 GECOS stood for General Electric
Computer Operating System; GE was one of several major companies that
made computers around that time.

[b] An empty field for the shell name does not mean that the user
has no shell; instead, it means that a default shell—usually
the Korn shell (/bin/ksh) or Bourne shell
(/bin/sh)—should be used. To prevent a
user from logging in, the program /bin/false is
often used as the “shell.”

Passwords were traditionally stored in the
/etc/passwd file in an encrypted format (hence
the file’s name). However, because of advances in
processor speed, encrypted passwords are now almost universally
stored in separate shadow password
file
 s, which are described later.
The meanings of the UID and GID fields are described in Chapter 5.

The Unix Encrypted Password System

 When Unix
requests your password, it needs some way of determining that the
password you type is the correct one. Many early computer systems
(and quite a few still around today!) kept the passwords for all of
their accounts plainly visible in a so-called
“password file” that contained
exactly that—passwords. Under normal circumstances, the system
protected the passwords so that they could be accessed only by
privileged users and operating system utilities. But through
accident, programming error, or deliberate act, the contents of the
password file could occasionally become available to unprivileged
users. This scenario is illustrated in the following remembrance:
Perhaps the most memorable such occasion occurred in the early 1960s
when a system administrator on the CTSS system at MIT was editing the
password file and another system administrator was editing the daily
message that is printed on everyone’s terminal on
login. Due to a software design error, the temporary editor files of
the two users were interchanged and thus, for a time, the password
file was printed on every terminal when it was logged in.
—Robert Morris and Ken Thompson, “Password Security: A Case
History”
 Communications of the ACM, November
1979.

The real danger posed by such systems, explained
Morris and Thompson, is not that software problems might someday
cause a recurrence of this event, but that people can make copies of
the password file and purloin them without the knowledge of the
system administrator. For example, if the password file is saved on
backup tapes, then those backups must be kept in a physically secure
place. If a backup tape is stolen, then
everybody’s password needs to
be changed.
Unix avoids this problem by not keeping
actual passwords anywhere on the system. Instead, Unix stores a value
that is generated by using the password to encrypt a block of zero
bits with a one-way function called crypt()
 ; the result of the calculation was
traditionally stored in the
/etc/passwd

 file.[41]
When you try to log in, the program
/bin/login
 does not decrypt the stored password.
Instead, /bin/login takes the password that you
typed, uses it to transform another block of zeros, and compares the
newly transformed block with the block stored in the
/etc/passwd file. If the two encrypted results
match, the system lets you in.
The security of this
approach rests upon the strength of the encryption algorithm and the
difficulty of guessing the user’s password. To date,
the crypt () algorithm and its successors have
proven highly resistant to attacks. Unfortunately, users have a habit
of picking easy-to-guess passwords, which creates the need for shadow
password files.
The traditional crypt () algorithm

The algorithm that traditional crypt() uses is
based on the
 Data Encryption Standard
(DES) of the National Institute of Standards and Technology (NIST).
In normal operation, DES uses a 56-bit key (8 7-bit ASCII characters,
for instance) to encrypt blocks of original text, or
cleartext
 ,
that are 64 bits in length. The resulting 64-bit blocks of encrypted
text, or
ciphertext
 ,
cannot easily be decrypted to the original cleartext without knowing
the original 56-bit key.
The Unix crypt() function takes the
user’s password as the encryption key and uses it to
encrypt a 64-bit block of zeros. The resulting 64-bit block of
ciphertext is then encrypted again with the user’s
password; the process is repeated a total of 25 times. The final 64
bits are unpacked into a string of 11 printable characters that are
stored in the shadow password file.[42]

Tip
Don’t confuse the crypt()
algorithm with the
crypt
 encryption program. The
crypt program uses a different encryption system
from crypt() and is very easy to break. See
Chapter 7 for more details.

Although the source code to crypt() is readily
available, no technique has been discovered (or publicized) to
translate the encrypted password back into the original password.
Such reverse translation may not even be possible. As a result, the
only known way to defeat
Unix
password security is via a brute-force attack (see the next note), or
by a dictionary
attack
 . A dictionary attack is conducted by
choosing likely passwords—as from a dictionary—encrypting
them, and comparing the results with the value stored in
/etc/passwd. This approach to breaking a
cryptographic cipher is also called a key
search

or password cracking. It is made easier by the
fact that DE uses only the first eight characters of the password as
its key; dictionaries need only contain passwords of eight characters
or fewer.

 Robert Morris and Ken Thompson
designed crypt() to make a key search
computationally expensive. The idea was to make a dictionary attack
take too long to be practical. At the time, software implementations
of DES were quite slow; iterating the encryption process 25 times
made the process of encrypting a single password 25 times slower
still. On the original PDP-11 processors upon which Unix was
designed, nearly a full second of computer time was required to
encrypt a single password. To eliminate the possibility of using DES
hardware encryption chips, which were a thousand times faster than
software running on a PDP-11, Morris and Thompson modified the DES
tables used by their software implementation, rendering the two
incompatible. The same modification also served to prevent a bad guy
from simply pre-encrypting an entire dictionary and storing it.
What was the modification? Morris and Thompson added a bit of
salt, as we’ll describe in
the next section.
Note
There is no published or known method to easily decrypt DES-encrypted
text without knowing the key. Of course,
“easily” has a different meaning
for cryptographers than for mere mortals. To decrypt something
encrypted with DES is computationally expensive; using the fastest
current, general-purpose computers might take hundreds of years.
However, computers have grown so much faster in the past 25 years
that it is now possible to test millions of passwords in a relatively
short amount of time.

Unix salt

 As table salt adds zest to popcorn, the
salt that Morris and Thompson sprinkled into the DES algorithm added
a little more spice and variety. The DES salt is a 12-bit number,
between 0 and 4,095, which slightly changes the result of the DES
function. Each of the 4,096 different salts makes a password encrypt
a different way.
When you change your password, the /bin/passwd

 program selects a salt based on the time of
day. The salt is converted into a two-character string and is stored
in the /etc/passwd file along with the encrypted
“password.”[43] In this manner, when you
type your password at login time, the same salt is used again. Unix
stores the salt as the first two characters of the encrypted
password.

 Table 4-2 shows how a few different words encrypt
with different salts.
Table 4-2. Passwords and salts
	
 Password

 	
 Salt

 	
 Encrypted password

	

 nutmeg

 	
 Mi

 	
 MiqkFWCm1fNJI

	

 ellen1

 	
 ri

 	
 ri79KNd7V6.Sk

	

 Sharon

 	
 ./

 	
 ./2aN7ysff3qM

	

 norahs

 	
 am

 	
 amfIADT2iqjAf

	

 norahs

 	
 7a

 	
 7azfT5tIdyh0I

Notice that the last password, norahs, was
encrypted two different ways with two different salts. As a side
effect, the salt makes it possible for a user to have the same
password on a number of different computers and to keep this fact a
secret (usually), even from somebody who has access to the
/etc/passwd files on all of those computers; two
systems would not likely assign the same salt to the user, thus
ensuring that the encrypted password field is different.[44]

On the Importance of Encrypted Passwords

 Alec Muffett,
the author of the Crack program (discussed in
Table 19-1), related an entertaining story to us
about the reuse of passwords in more than one place, which we
paraphrase here.
A student friend of Alec’s (call him Bob) spent a
co-op year at a major computer company site. During his vacations and
on holidays, he’d come back to school and play
AberMUD (a network-based game) on Alec’s computer.
One of Bob’s responsibilities at the company
involved system management. The company was concerned about security,
so all passwords were random strings of letters with no sensible
pattern or order.
One day, Alec fed the AberMUD passwords into his development version
of the Crack program as a dictionary, because
they were stored on his machine as plaintext. He then ran this file
against his system user-password file, and found a few student
account passwords. He had the students change their passwords, and he
then forgot about the matter.
Some time later, Alec posted a revised version of the
Crack program and associated files to the
Usenet. They ended up in one of the Usenet sources newsgroups and
were distributed quite widely. Eventually, after a trip of thousands
of miles around the world, they came to Bob’s
company. Bob, being a concerned administrator, decided to download
the files and check them against his company’s
passwords. Imagine Bob’s shock and horror when the
widely distributed Crack promptly churned out a
match for his randomly chosen, super-secret root
password!
The moral of the story is that you should teach your users
never to use their account passwords for other
purposes—such as games or web sites. They never know when those
passwords might come back to haunt them! For developers, the moral is
that all programs—even games—should store passwords
encrypted with one-way hash functions.

In recent years the security provided by the salt has diminished
significantly. Having a salt means that the same password can encrypt
in 4,096 different ways. This makes it much harder for an attacker to
build a reverse dictionary for translated encrypted passwords back
into her unencrypted form: to build a reverse dictionary of 100,000
words, an attacker would need to have 409,600,000 entries. But with
8-character passwords and 13-character encrypted passwords,
409,600,000 entries fit in roughly 8 GBs of storage.
Another problem with the salt was an error in implementation: many
systems selected which salt to use based on the time of day, which
made some salts more likely than others.

crypt16(), DES Extended, and Modular Crypt Format

Modern Unix systems have improved the security of the
crypt() function by changing the underlying
encryption algorithm. Instead of a modified DES, a variety of other
algorithms have been adopted, including Blowfish and MD5. The
advantage of these new algorithms is that more characters of the
password are significant, and there are many more possible values for
the salt; both of these changes significantly improve the strength of
the underlying encrypted password system. The disadvantage is that
the encrypted passwords on these systems will not be compatible with
the encrypted passwords on other systems.
Because of the widespread use of the original Unix password
encryption algorithm, Unix vendors have gone to great lengths to
ensure compatibility. Thus, the crypt()
function called with a traditional salt will always use the original
DES-based algorithm. To use one of the newer algorithms you must use
either a different function call (some vendors use
bigcrypt()

 or crypt16())
or a different salt value. Consult your documentation to find out
what is appropriate for your system.
The DES
Extended format is a technique for increasing the number of DES
rounds and extending the salt from 212 to
224 possible values. This format has
limited use on modern Unix systems but is included on many to provide
backwards compatibility.
The
 Modular Crypt Format (MCF)
specifies an extensible scheme for formatting encrypted passwords.
MCF is one of the most popular formats for encrypted passwords around
today. Here is an example of an MCF-encrypted password:
1EqkVUoQ2$4VLpJuZ.Q2wm6TAiyYt75.
Dollar signs are used to delimit the MCF fields, as described in
Table 4-3.

Table 4-3. The modular crypt format
	
 Field

 	
 Purpose

 	
 Notes

	
 #1

 	
 Specifies encryption algorithm to use

 	
 1 specifies MD5.2 specifies Blowfish.

	
 #2

 	
 Salt

 	
 Limited to 16 characters.

	
 #3

 	
 Encrypted password

 	
 Does not include salt, unlike traditional Unix crypt() function.

The shadow password and master password files

 Although changes to the encrypted
password system (as described in the previous section) have improved
the security of encrypted passwords, they have failed to
fundamentally address the weakness exploited by password crackers:
people pick passwords that are easy to guess. If an attacker can
obtain a copy of the password file, it is a simple matter to guess
passwords, perform the encryption transform, and compare against the
file.
Ultimately, the best way to deal with the problem of poorly-chosen
passwords is to eliminate reusable passwords entirely by using
one-time passwords, some form of biometrics, or a token-based
authentication system. Because such systems can be awkward or
expensive, modern Unix systems have adopted a second approach called
shadow password files or master
password files.
As the name implies, a shadow password file is a secondary password
file that shadows the primary password file. On

 Solaris and Linux systems, the shadow
password is usually stored in the file

 /etc/shadow and
contains the encrypted password and a password expiration date. The
/etc/shadow file is protected so that it can be
read only by the superuser. Thus, an attacker cannot obtain a copy to
use in verifying guesses of passwords.
Instead of a shadow password file,
FreeBSD uses a master password file. This
file,

 /etc/master.passwd, is
a complete password file that includes usernames, passwords, and
other account information. The /etc/passwd file
is identical to the /etc/master.passwd file,
except that all encrypted passwords have been changed to the letter
“x”.
Mac OS X stores all account information in the NetInfo network-based
account management system. Mac OS X does this for all computers, even
for standalone computers that are never placed on a network. The
version of NetInfo that is supplied in Mac OS 10.0 and 10.1 does not
provide for shadow passwords, although the
/etc/master.passwd file is present and is used
during boot-up.

One-Time Passwords

 The
most effective way to minimize the danger of bad passwords is not to
use conventional passwords at all. Instead, your site can install
software and/or hardware to allow one-time
passwords. A one-time password is exactly that—a
password that is used only once.
There are two popular techniques for implementing one-time passwords:
	Hardware tokens
	
 An example
is the RSA SecureID card, which displays a new PIN or password for
each login. Some token-based systems display a different code every
minute. Other token-based systems look like little calculators. When
you attempt to log in you are presented with a challenge. You type
this challenge into your calculator, type in your personal
identification number, and then type the resulting number that is
displayed into the computer.

	Codebooks
	
 These list valid
passwords. Each password is crossed off the list after it is used.
S/Key is a popular codebook system.[45]

One-time passwords can be implemented as a replacement for
conventional passwords or in addition to them. In a typical S/Key
environment, you enter the S/Key password instead of your standard
Unix password. For example:
login: darrel
Password: says rusk wag hut gwen loge

Last login: Wed Jul 5 08:11:33 from r2.nitroba.com
You have new mail.
%
All of these one-time password systems provide an astounding
improvement in security over the conventional system. Unfortunately,
because they require either the installation of special software or
the purchase of additional hardware, they are not as widespread at
this time in the Unix marketplace as they should be. However, many
major companies and government agencies have moved to using these
one-time methods. (See Table 19-1 for additional
details.)

Public Key Authentication

 Another
approach to solving the problem of passwords is to do away with them
entirely and use an alternative authentication system. One popular
authentication system that has been used is recent years is based on
public key cryptography (described in Chapter 7).
In a public key authentication system, each user generates a pair of
“keys”—two long numbers with
the interesting property that a message encoded with one of the keys
can be decoded only using the other key. The user keeps one of the
keys private on his local computer (and often protects its privacy by
encrypting the key itself with a password), and provides the other,
public key to the remote server. When the user wants to log into the
server, the server selects a random number, encodes it with the
user’s public key, and sends it to the user. By
decrypting the random number using his private key and returning it
to the server (possibly re-encrypted with the
server’s public key), the user proves that he is in
possession of the private key and is therefore authentic. In a
similar fashion, the server can authenticate itself to the user, so
that the user is sure that he’s logging into the
correct machine.
Public key authentication systems have two fundamental problems. The
first problem is the management of private keys. Private keys must be
kept secure at all costs. Typically, private keys are encrypted with
a passphrase to protect them, but all of the caveats about choosing a
good password (and not transmitting it where others can eavesdrop)
apply.
The second problem is the certification of public keys. If an
attacker can substitute his public key for someone
else’s (or for that of a server to which you wish to
connect) all your communication will be visible to the attacker. One
solution to this problem is to use a secure channel to exchange
public keys. With the Secure Shell (ssh), the
public key is merely copied to the remote system (after logging in
with a password or another non-public key method) and put into a file
in the user’s home directory called
~/.ssh/authorized_keys.
A more sophisticated technique for distributing public keys involves
the creation of a
 public key
infrastructure (PKI). A group of users and system administrators
could all certify their keys to one another in person, or each could
have his own key certified by a common person or organization that
everyone trusts to verify the identities associated with the keys.
SSL, the Secure Socket Layer, provides transparent support for PKI.

[41] These days, the encrypted password is stored either in the
shadow password file or on a network-based server, as
we’ll see in a later section.

[42] Each of the 11
characters holds six bits of the result, represented as one of 64
characters in the set “.”,
“/”, 0-9, A-Z, a-z, in that order.
Thus, the value 0 is represented as
“.”, and 32 is the letter
“U”.

[43] By now,
you know that what is stored in the /etc/passwd
file is not really the encrypted password. However, everyone calls it
that, and we will do the same from here on. Otherwise,
we’ll need to keep typing “the
superencrypted block of zeros that is used to verify the
user’s password” everywhere in the
book, filling many extra pages and contributing to the premature
demise of yet more trees.

[44] This case occurs only when the user actually types in his
password on the second computer. Unfortunately, in practice, system
administrators commonly cut and paste
/etc/passwd entries from one computer to another
when they build accounts for users on new computers. As a result,
others can easily tell when a user has the same password on more than
one system.

[45] More correctly,
it is a
 one-time
pad and not a codebook.

Network Account and Authorization Systems

These days, many organizations have moved away from large
time-sharing computers and invested in large client/server networks
containing many servers and dozens or hundreds of workstations. These
systems are usually set up so that any user can make use of any
workstation in a group or in the entire organization. When these
systems are in use, every user effectively has an account on every
workstation. These systems provide for automatic account creation and
password synchronization between some or many computer systems.
When you are working with a large, distributed system, it is not
practical to ensure that every computer has the same

 /etc/passwd file. For
this reason, there are now several different commercial systems
available that make the information traditionally stored in the
/etc/passwd file available over a network.
Using Network Authorization Systems

 Five
network authorization systems in use today are:
	Sun Microsystems’
 Network
Information System (NIS) and NIS+.

	

 MIT Kerberos, which is now part of the OSF
Distributed Computing Environment (DCE) and
Microsoft’s Windows XP. Kerberos clients are also
included with

 Solaris, Linux, and several other Unix
versions.

	

 NetInfo,
originally developed by NeXT Computer, now part of Mac OS X.

	

 RADIUS, the Remote
Authentication Dial-In User Service. Traditionally, RADIUS has been
used by many ISPs to provide for authentication of dialup users. It
has been extended to provide authentication for other devices (e.g.,
routers) and for password synchronization in a Unix environment.

	Authentication systems that store account information in a

 Lightweight Directory
Access Protocol (LDAP) server.

These systems all take the information that is usually stored in each
workstation’s /etc/passwd file
and store it in one or more network servers. Some systems use the
network-based account to supersede the accounts on the local system;
others augment the local accounts with network-based accounts.
Some of these systems provide for multiple servers or backup caching,
should the primary server be unavailable. Others do not, and instead
create a single point of failure for the entire network.
At some sites, administrators prefer not to use network database
management systems. Instead, each computer might have its own
accounts. Alternatively, one computer might be regarded as the
“master computer,” and that
computer’s /etc/passwd and
/etc/shadow files are then distributed to other
computers using scp, rdist,
or a similar system. There are several reasons that an administrator
might make such a decision.
	Managing a network-based authentication system is often considerably
more complex than managing accounts on a single system.

	Unless redundant servers are provided, a crashed authentication
server or failed network segment can negatively impact a
disproportionately large number of users.

	The administrator might be fearful that the central authentication
server could be compromised, which would allow an attacker to create
an account on any computer that the attacker wished.

The drawback to this approach is that it often requires the
administrator to intervene to change a user password or shell entry.
In most cases, the energy spent developing and fielding custom
solutions would be better spent mastering systems that are already in
existence and, in many cases, preinstalled on most Unix systems.
Tip
Because there are so many different ways to access the information
that has traditionally been stored in the
/etc/passwd file, throughout this book we will
simply use the phrase “password
file” or
"/etc/passwd "
as a shorthand for the multitude of different systems.

Viewing Accounts in the Network Database

 If you are using one of
these systems and wish to retrieve the contents of the password
database, you cannot simply cat the
/etc/passwd file. Instead, you must use a
command that is specific to your system to view the account database.
Sun’s
 NIS service
supplements the information stored in the
workstations’ own files. If you are using NIS and
you wish to get a list of every user account, you would use the
following command:
% cat /etc/passwd;ypcat passwd
NIS and NIS+

Sun’s
 NIS+ service
can be configured to supplement or substitute its user account
entries for those entries in the /etc/passwd
file, depending on the contents of the
/etc/nsswitch.conf file. If you are using a
system that runs NIS+, you should use the
niscat
 command and specify your NIS+ domain.
For example:
% niscat -o passwd.bigco

Kerboros DCE

 Computers that are using DCE use an
encrypted network database system as an alternative to encrypted
passwords and /etc/passwd files. However, to
maintain compatibility, some of them have programs that run on a
regular basis to create a local /etc/passwd
file. You should check your manuals for information about your
specific system.

NetInfo

On Mac OS X systems running NetInfo, you can view the account
database using the command:
% nidump passwd .
Warning
Note again that Mac OS X’s system exposes the
encrypted password field when the
nidump
 command is used. Thus, although
Mac OS X uses the FreeBSD
master.passwd file, it still exposes the entire
password database to anyone who wants it. This happens whether or not
a network server is in use.

RADIUS

Systems that are configured for RADIUS generally do not make it
possible to access the entire account database at once.

LDAP

LDAP is used to build a true network authentication system; rather
than create local /etc/passwd entries, systems
that use LDAP for authentication are configured to check logins
against the network’s LDAP server each time (though
some configurations do include a name service-caching
daemon[46]
[nscd] that caches LDAP responses locally to
reduce the number of network authentications required). LDAP is
covered in detail in Chapter 14.

[46] Don’t confuse this
“name service” with Domain Name
Service (DNS). Although nscd can cache DNS
lookups of hostnames, its primary strength is its ability to cache
lookups of users, groups, and passwords made through local files,
NIS, NIS+, LDAP, and other authentication systems.

Pluggable Authentication Modules (PAM)

 Because there are so many
ways to authenticate users, it’s convenient to have
a unified approach to authentication that can handle multiple
authentication systems for different needs. The Pluggable
Authentication Modules (PAM) system is one such approach.
PAM was originally developed by Sun, and implementations are
available for

 Solaris, FreeBSD, and especially Linux,
where most PAM development is now centered. PAM provides a library
and API that any application can use to authenticate users against a
myriad of authentication systems. Each authentication system that PAM
knows about is implemented as a PAM module, which in turn is
implemented as a dynamically-loaded shared library. PAM modules are
available to authenticate users through:
	
 /etc/passwd or /etc/shadow

	NIS or NIS+

	LDAP

	Kerberos 4 or 5

	An arbitrary Berkeley DB file[47]

Each PAM-aware service is configured either in the

 /etc/pam.conf file or,
more commonly, in its own file in the /etc/pam.d
directory. For example, the PAM configuration file for the
/bin/su command in Linux distributions is
/etc/pam.d/su. A service named
other is used to provide defaults for PAM-aware
services that are not explicitly configured.
Here is an excerpt from /etc/pam.conf for the
OpenSSH server:
sshd auth required /lib/security/pam_env.so
sshd auth sufficient /lib/security/pam_unix.so likeauth nullok
sshd auth required /lib/security/pam_deny.so
sshd account required /lib/security/pam_unix.so

sshd password required /lib/security/pam_cracklib.so retry=3
sshd password sufficient /lib/security/pam_unix.so nullok use_authtok md5 shadow
sshd password required /lib/security/pam_deny.so

sshd session required /lib/security/pam_limits.so
sshd session required /lib/security/pam_unix.so
Here’s how the same excerpt looks in
/etc/pam.d/sshd:
auth required /lib/security/pam_env.so
auth sufficient /lib/security/pam_unix.so
auth required /lib/security/pam_deny.so

account required /lib/security/pam_unix.so

password required /lib/security/pam_cracklib.so retry=3
password sufficient /lib/security/pam_unix.so nullok use_authtok md5 shadow
password required /lib/security/pam_deny.so

session required /lib/security/pam_limits.so
session required /lib/security/pam_unix.so
The auth lines describe the authentication process
for this service, which proceeds in the order specified. Modules
marked required must run successfully for
authentication to progress—if they fail, the user is considered
unauthenticated and generally will be denied access. Multiple
required modules can be specified; in these cases, all of the modules
must run successfully. Modules marked sufficient,
if run successfully, are sufficient to authenticate the user and end
the authentication process.
Note the modules in this example:
	pam_env
	The first module run, pam_env, optionally sets
or clears environment variables specified in
/etc/security/pam_env.conf. This module is
required—it must run successfully for authentication to
proceed.

	pam_unix
	The next module run, pam_unix, performs
authentication with the usual Unix password files,
/etc/passwd and
/etc/shadow. If this succeeds, it is sufficient
to authenticate the user, and the process is complete.

	pam_deny
	The final authentication module, pam_deny,
simply fails, ending the process with authentication unsuccessful.

This particular configuration file will also enforce any account
aging or expiration rules of the system, and set resources limits on
the user’s sshd session. If
sshd provided a password-changing function, this
configuration file would also prevent the user from changing his
password to an easily guessable one, and store passwords in
/etc/shadow encrypted by the MD5 cryptographic
hash function.
The PAM subsystem can be configured in a number of different ways.
For instance, it is possible to require two or three separate
passwords for some accounts[48] to combine a biometric method along with a
passphrase, or to pick a different mechanism depending on the time of
day. It is also possible to remove the requirement of a password for
hardwired lines in highly secured physical locations. PAM allows the
administrator to pick a policy that best matches the risk and
technology at hand.

PAM can do a lot more than authentication, as these examples suggest.
One of its strengths is that it clearly delineates four phases of the
access process.
	Verifying that the account is viable for the desired service at the
desired time and from the desired location (the account phase)

	Authenticating the user (the auth phase)

	Updating passwords and other authentication tokens when necessary
(the password phase)

	Setting up and closing down the user’s session (the
session phase), which can include limiting resource access and
establishing audit trails

[47] If
that’s not enough layers for you, some applications,
such as SMTP authentication in sendmail or
access to mailboxes managed by the Cyrus imapd
server, use the Cyrus

 SASL
(Simple Authentication and Security Layer) authentication library,
which can authenticate users with a separate database or through PAM!
It is not inconceivable that you might find SASL using PAM using LDAP
to authenticate a user’s IMAP connection.

[48] This is highly annoying
and of questionable value when the same user holds all of the
passwords. This approach can be valuable when the passwords are
assigned to different users, so that any login requires two or more
people and creates a “witness”
trail.

Summary

In this chapter we discussed how Unix identifies users and
authenticates their identity at login. We presented some details on
how passwords are represented and used. We’ll
present more detailed technical information in later chapters on how
to protect access to your password files and passwords, but the basic
and most important advice for protecting your system can be
summarized as follows:

	Use one-time passwords if possible.

Otherwise:
	Ensure that every account has a password.

	Ensure that every user chooses a strong password.

	Educate users not to tell their passwords to other users, type them
in at an unsecure terminal, or transmit them in cleartext over a
network.

Remember: even if the world’s greatest computer
hacker should happen to dial up your machine, if that person is stuck
at the login: prompt, the only thing that she can
do is guess usernames and passwords, hoping to hit one combination
that is correct. Unless the criminal has specifically targeted your
computer out of revenge or because of special information
that’s on your system, the perpetrator is likely to
give up and try to break into another machine.

 Making sure that users pick good passwords remains one of
the most important parts of running a secure computer
system.

Chapter 5. Users, Groups, and the Superuser

 In Chapter 4,
we explained that every Unix user has a username to define an
account. In this chapter, we’ll describe how the
operating system views users and how accounts and groups are used to
define access privileges for users. We’ll also
discuss how one can assume the identity of another user to
temporarily use his access rights.
Users and Groups

 Although
every Unix user has a username consisting of one or more characters,
inside the computer Unix represents the identity of each user by a
single number: the user identifier (UID). Under most circumstances,
each user is assigned his own unique ID.
Unix also uses special usernames for a variety of system functions.
As with usernames associated with human users, system usernames
usually have their own UIDs as well. Here are some common

 “users”
on various versions of Unix:
	

 root
	Superuser account. Performs accounting and low-level system
functions.

	
 bin
	Binary owner. Has ownership of system files on some systems but
doesn’t typically execute programs.

	
 daemon
	Handles some aspects of the network. This username is also associated
with other utility systems, such as the print spoolers, on some
versions of Unix.

	
 mail
	Handles aspects of electronic mail. On many systems there is no
mail user, and daemon is
used instead.

	
 guest
	Used (infrequently) for site visitors to access the system.

	

 ftp
	Used for anonymous FTP access.

	

 uucp
	Controls ownership of the Unix serial ports.
(uucp traditionally managed the UUCP system,
which is now deprecated.)

	

 news
	Used for Usenet news.

	
 lp

	Used for the printer system.[49]

	

 nobody
	Owns no files and is sometimes used as a default user for
unprivileged operations.

	

 www or http
	Runs the web server.

	

 named
	Runs the BIND name server.

	

 sshd
	Performs unprivileged operations for the OpenSSH Secure Shell daemon.

	
 operator
	Used for creating backups and (sometimes) for printer operation.

	
 games

	Allowed to access high-score files.

	

 amanda
	Used for the Amanda remote backup system.

The /etc/passwd File

 On most Unix systems the user accounts are
listed in the database file /etc/passwd; the
corresponding passwords for these accounts are kept in a file named
/etc/shadow,
/etc/security/passwd, or
/etc/master.passwd. To improve lookup speed,
some systems compile the password file into a compact index file
named something like /etc/pwd.db, which is used
instead.
Here is an example of an /etc/passwd file from a
Linux system containing a variety of system and ordinary users:
$ more /etc/passwd
root:x:0:0:Mr. Root:/root:/bin/bash
bin:x:1:1:Binary Installation User:/bin:/sbin/nologin
daemon:x:2:2:daemon:/sbin:/sbin/nologin
adm:x:3:4:adm:/var/adm:/sbin/nologin
lp:x:4:7:lp:/var/spool/lpd:/sbin/nologin
sync:x:5:0:sync:/sbin:/bin/sync
shutdown:x:6:0:shutdown:/sbin:/sbin/shutdown
halt:x:7:0:halt:/sbin:/sbin/halt
mail:x:8:12:mail:/var/spool/mail:/sbin/nologin
news:x:9:13:news:/var/spool/news:
uucp:x:10:14:uucp:/var/spool/uucp:/sbin/nologin
operator:x:11:0:operator:/root:/sbin/nologin
games:x:12:100:games:/usr/games:/sbin/nologin
gopher:x:13:30:gopher:/var/gopher:/sbin/nologin
ftp:x:14:50:FTP User:/var/ftp:/sbin/nologin
nobody:x:99:99:Nobody:/:/sbin/nologin
mailnull:x:47:47::/var/spool/mqueue:/dev/null
rpm:x:37:37::/var/lib/rpm:/bin/bash
xfs:x:43:43:X Font Server:/etc/X11/fs:/bin/false
ntp:x:38:38::/etc/ntp:/sbin/nologin
rpc:x:32:32:Portmapper RPC user:/:/bin/false
gdm:x:42:42::/var/gdm:/sbin/nologin
rpcuser:x:29:29:RPC Service User:/var/lib/nfs:/sbin/nologin
nfsnobody:x:65534:65534:Anonymous NFS User:/var/lib/nfs:/sbin/nologin
nscd:x:28:28:NSCD Daemon:/:/bin/false
ident:x:98:98:pident user:/:/sbin/nologin
rachel:x:181:181:Rachel Cohen:/u/rachel:/bin/ksh
ralph:x:182:182:Ralph Knox:/u/ralph:/bin/tcsh
mortimer:x:183:183:Mortimer Merkle:/u/mortimer:/bin/sh
Notice that most of these accounts do not have
“people names,” and that all have a
password field of “x”. In the old
days of Unix, the second field was used to hold the
user’s encrypted password. This information is now
stored in a second file, the shadow password file.
The /etc/passwd file can be thought of as a
directory[50] that lists all of the users on the
system. As we saw in the last chapter, it is possible to configure a
Unix system to use other directory services, such as NIS, NIS+, LDAP,
and Kerberos. (We’ll discuss directory services in
detail in Chapter 14.) When these systems are used,
the Unix operating system is often modified so that the utility
programs still respond as if all of the accounts actually reside in a
single /etc/passwd file.

User Identifiers (UIDs)

 UIDs
are historically unsigned 16-bit integers, which means they can range
from 0 to 65535. UIDs between 0 and 99 are typically used for system
functions; UIDs for humans usually begin at 100 or 1000. Many
versions of Unix now support 32-bit UIDs. A few older versions of
Unix have UIDs that are signed 16-bit integers, ranging from -32768
to 32767.

 There is one special UID, which is
UID 0. This is the UID that is reserved for the Unix superuser. The
Unix kernel disables most security checks when a process is being run
by a user with the UID of 0.
Note
There is generally nothing special about any Unix account name. All
Unix privileges are determined by the UID (and sometimes the group
ID, or GID), and not directly by the account name. Thus, an account
with name root and UID 1005 would have no
special privileges, but an account named
mortimer with UID 0 would be a superuser.
In general, you should avoid creating users with a UID of 0 other
than root, and you should avoid using the name
root for a regular user account. In this book,
we will use the terms “root” and
“superuser” interchangeably to mean
a UID of 0.

Unix keeps the mapping between usernames and UIDs in the file
/etc/passwd. Each user’s UID is
stored in the field after the one containing the
user’s encrypted password. For example, consider the
sample /etc/passwd entry presented in Chapter 4:
rachel:x:181:181:Rachel Cohen:/u/rachel:/bin/ksh
In this example, Rachel’s username is
rachel and her UID is 181.
The UID is the actual information that the operating system uses to
identify the user; usernames are provided merely as a convenience for
humans. If two users are assigned the same UID, Unix views them as
the same user, even if they have different usernames and passwords.
Two users with the same UID can freely read and delete each
other’s files and can kill each
other’s running programs. Giving two users the same
UID is almost always a bad idea; it is better to create multiple
users and put them in the same group, as we will see later.
Conversely, files can be owned by a UID that is not listed in
/etc/passwd as having an associated username.
This is also a bad idea. If a user is added to
/etc/passwd in the future with that UID, that
user will suddenly become the owner of the files.

Groups and Group Identifiers (GIDs)

 Every Unix user belongs to
one or more groups. As with user accounts,
groups have both a group name and a group identification number
(GID). GID values are also historically 16-bit integers, but many
systems now use 32-bit integers for these, too.
As the name implies, Unix groups are used to group users together. As
with usernames, group names and numbers are assigned by the system
administrator when each user’s account is created.
Groups can be used by the system administrator to designate sets of
users who are allowed to read, write, and/or execute specific files,
directories, or devices.
Each user belongs to a primary
group
 that is stored in the
/etc/passwd file. The GID of the
user’s primary group follows the
user’s UID. Historically, every Unix user was placed
in the group users, which had a GID of 100.
These days, however, most Unix sites place each account in its own
group. This results in decreased sharing but somewhat greater
security.[51]

Consider, again, our /etc/passwd example:
rachel:x:181:181:Rachel Cohen:/u/rachel:/bin/ksh
In this example, Rachel’s primary GID is 181.
Groups provide a handy mechanism for treating a number of users in a
certain way. For example, you might want to set up a group for a team
of students working on a project so that students in the group, but
nobody else, can read and modify the team’s files.
Groups can also be used to restrict access to sensitive information
or specially licensed applications to a particular set of users: for
example, many Unix computers are set up so that only users who belong
to the kmem group can examine the operating
system’s kernel memory. The
operator group is commonly used to allow only
specific users to run the tape backup system, which may have
“read” access to the
system’s raw disk devices. And a
sources group might be limited to people who
have signed nondisclosure forms so they can view the source code for
particular software.
Tip
Some special versions of Unix support
 mandatory access controls
(MAC), which have controls based on data labeling instead of, or in
addition to, the traditional
 Unix discretionary access controls (DAC).
MAC-based systems do not use traditional Unix groups. Instead, the
GID values and the /etc/group file may be used
to specify security access control labeling or to point to capability
lists. If you are using one of these systems, you should consult the
vendor documentation to ascertain what the actual format and use of
these values might be.

The /etc/group file

The /etc/group

 file contains
the database that lists every group on your computer and its
corresponding GID. Its format is similar to the format used by the
/etc/passwd file.[52]

Here is a sample /etc/group file that defines
six groups: wheel, http,
vision, startrek,
rachel, and users:
wheel:*:0:root,rachel
http:*:10:http
users:*:100:
vision:*:101:keith,arlin,janice
startrek:*:102:janice,karen,arlin
rachel:*:181:
The first line of this file defines the
wheel
 group. The fields are explained in Table 5-1.
Table 5-1. The first line of the example /etc/group file
	
 Field contents

 	
 Description

	

 wheel

 	
 Group name

	
 *

 	
 Group’s “password”
(described later)

	
 0

 	
 Group’s GID

	

 root, rachel

 	
 List of the users who are in the group

Most versions of Unix use the wheel group as the
list of all of the computer’s
system administrators (in this
case, rachel and the root
user are the only members). On some systems, the group has a GID of
0; on other systems, the group has a GID of 10. Unlike a UID of 0, a
GID of 0 is usually not significant. However, the name
wheel is very significant: on many systems the
use of the su command to invoke
superuser privileges is restricted to
users who are members of a group named wheel.
The second line of this file defines the
 http group. There is
one member in the http group—the
http user.
The third line defines the users group. The
users group does not explicitly list any users;
on some systems, each user is placed into this group by default
through his individual entry in the /etc/passwd
file.
The fourth and fifth lines define two groups of users. The
vision group includes the users
keith, arlin, and
janice. The startrek group
contains the users janice,
karen, and arlin. Notice
that the order in which the usernames are listed on each line is not
important. (This group is depicted graphically in Figure 5-1.)
Finally, the sixth line defines a group for the user
rachel.
Remember that the users mentioned in the
/etc/group file are in these groups in
addition to the groups mentioned as their primary groups
in the file /etc/passwd. For example, Rachel is
in the rachel group even though she does not
appear in that group in the file /etc/group
because her primary group number is 181. On most versions of Unix,
you can use the groups
 command to list which groups that you
are currently in:
% groups
rachel wheel
%
The groups command can also take a username as
an argument:
% groups arlin
vision, startrek
%
When a user logs into the Unix system, the
/bin/login program scans the
/etc/passwd and /etc/group files,
determines which groups the user is a member of, and adds them to the
user’s user structure using the setgroups() system call.[53]

Some versions of Unix are equipped with an
id
 command that offers more detailed UIDs,
GIDs, and group lists:
% id
uid=181(rachel) gid=181(rachel) groups=181(rachel), 0(wheel)
% id root
uid=0(root) gid=0(wheel) groups=0(wheel),1(bin),15(shadow),65534(nogroup)

 Figure 5-1 illustrates how users can be included in
multiple groups.
[image: Users and groups]

Figure 5-1. Users and groups

Group Passwords
The newgrp

command is used to change the user’s active group.
This is useful when a user wants to create files owned by a group
other than his default group.
$ id
uid=1001(alansz) gid=20(users)
$ newgrp project
$ id
uid=1001(alansz) gid=100(project)

 Solaris and other versions of Unix derived
from AT&T SVR4 allow users to use newgrp to
switch to a group that they are not a member of if the group is
equipped with a group password:
$ newgrp fiction
password: rates34
$
The user is now free to exercise all of the rights and privileges of
the fiction group instead of his default group.
The password in the /etc/group file is
interpreted exactly like the passwords in the
/etc/passwd file, including salts (described in Chapter 4 and Chapter 19). However, most systems do not have a program
to install or change the passwords in this file. To set a group
password, you must first assign it to a user with the
passwd command, then use a text editor to copy
the encrypted password out of the /etc/passwd
file into the /etc/group file. Alternatively,
you can encode the password using the
/usr/lib/makekey program (if present) and edit
the result into the /etc/group file in the
appropriate place.
Group passwords are rarely used and can represent a security
vulnerability, as an attacker can put a password on a critical group
as a way of creating a back door for future access.

Tip
It is not necessary for there to be an entry in the
/etc/group file for a group to exist! As with
UIDs and account names, Unix actually uses only the integer part of
the GID for all settings and permissions. The name in the
/etc/group file is simply a convenience for the
users—a means of associating a mnemonic with the GID value.

[49]
 lp
stands for line printer, although these days most people seem to be
using laser printers.

[50] Technically, it is a simple relational
database.

[51] The advantage of assigning each user his
own group is that it allows users to have a unified umask of 007 in
all instances. When users wish to restrict access of a file or
directory to themselves, they leave the group set to their individual
group. When they wish to open the file or directory to members of
their workgroup or project, all they need to do is to change the
file’s or directory’s group
accordingly.

[52] As with the
password file, if your site is running NIS, NIS+, or DCE, the
/etc/group file may be incomplete or missing.
See the discussion in Section 4.3.1 in Chapter 4.

[53] If you are on a system that
uses NIS, NIS+, or some other system for managing user accounts
throughout a network, these network databases will be referenced as
well. For more information, see Chapter 19.

The Superuser (root)

 Almost
every Unix system comes with a special user in the
/etc/passwd file with a UID of 0. This user is
known as the superuser and is normally given
the username root. The password for the
root account is usually called simply the
"root
password.”
The root account is the identity used by the
operating system itself to accomplish its basic functions, such as
logging users in and out of the system, recording accounting
information, and managing input/output devices. For this reason, the
superuser exerts nearly complete control over the operating system:
nearly all security restrictions are bypassed for any program that is
run by the root user, and most of the checks and
warnings are turned off.[54]

What the Superuser Can Do

 Any process that has an
effective UID of 0 (see
Section 5.3.1
later in this chapter) runs as the superuser—that is, any
process with a UID of 0 runs without security checks and is allowed
to do almost anything. Normal security checks and constraints are
ignored for the superuser, although most systems do audit and log
some of the superuser’s actions.
Some of the things that the superuser can do include:
	
 Process control
		Change the nice value of any process (see Section B.1.3.3).

	Send any signal to any process (see
Signals).

	Alter “hard limits” for maximum CPU
time as well as maximum file, data segment, stack segment, and core
file sizes (see Chapter 23).

	Turn accounting and auditing on and off (see Chapter 21).

	Bypass login restrictions prior to shutdown. (Note that this may not
be possible if you have configured your system so that the superuser
cannot log into terminals.)

	Change his process UID to that of any other user on the system.

	Log out all users and prevent new logins.

	
 Device control
		Access any working device.

	Shut down or reboot the computer.

	Set the date and time.

	Read or modify any memory location.

	Create new devices (anywhere in the filesystem) with the
mknod
 command.

	
 Network control
		Run network services on “trusted”
ports (see Chapter 17).

	Reconfigure the network.

	Put the network interface into “promiscuous
mode” and examine all packets on the network
(possible only with certain kinds of networks and network
interfaces).

	
 Filesystem control
		Read, modify, or delete any file or program on the system (see Chapter 6).

	Run any program.[55]

	Change a disk’s electronic label.[56]

	Mount and unmount filesystems.

	Add, remove, or change user accounts.

	Enable or disable quotas and accounting.

	Use the
 chroot() system call,
which changes a process’s view of the filesystem
root directory.

	Write to the disk after it is “100
percent” full. The Berkeley Fast Filesystem and the
Linux ext2 File System both allow the
reservation of some minfree amount of the disk.
Normally, a report that a disk is 100% full implies that there is
still 10% left. Although this space can be used by the superuser, it
shouldn’t be: filesystems run faster when their
disks are not completely filled.

What the Superuser Can’t Do

 Despite all of the powers listed in the
previous section, there are some things that the superuser
can’t do, including:
	Make a change to a filesystem that is mounted read-only. (However,
the superuser can make changes directly to the raw device, or can
unmount a read-only filesystem and remount it read/write, provided
that the media is not physically write-protected.)

	Unmount a filesystem that contains open files, or one in which some
running process has set its current directory.[57]

	Write directly to a directory, or create a hard link to a directory
(although these operations are allowed on some Unix systems).

	Decrypt the passwords stored in the shadow password file, although
the superuser can modify the /bin/login and
su system programs to record passwords when they
are typed. The superuser can also use the passwd
command to change the password of any account.

	Terminate a process that has entered a wait state inside the kernel,
although the superuser can shut down the computer, effectively
killing all processes.

Any Username Can Be a Superuser

 As we noted
in Section 5.1,
any account that has a UID of 0 has superuser
privileges. The username root is merely a
convention. Thus, in the following sample
/etc/passwd
file, both root and
beth can execute commands without any security
checks:
root:x:0:1:Operator:/:/bin/ksh
beth:x:0:101:Beth Cousineau:/u/beth:/bin/csh
rachel:x:181:181:Rachel Cohen:/u/rachel:/bin/ksh
You should immediately be suspicious of accounts on your system that
have a UID of 0 that you did not install; accounts such as these are
frequently added by people who break into computers so that they will
have a simple way of obtaining superuser access in the future.

The Problem with the Superuser

 The superuser is the main security
weakness in the Unix operating system. Because the superuser can do
anything, after a person gains superuser privileges—for
example, by learning the root password and
logging in as root—that person can do
virtually anything to the system. This explains why most attackers
who break into Unix systems try to become the superuser.
Most Unix security holes that have been discovered are of the kind
that allow regular users to obtain superuser privileges. Thus, most
Unix security holes result in a catastrophic bypass of the operating
system’s security mechanisms. After a flaw is
discovered and exploited, the entire computer is compromised.
There are a number of techniques for minimizing the impact of such
system compromises, including:
	Storing sensitive files on removable media, and mounting the media
only when you need to access the files. An attacker who gains
superuser privileges while the media are unmounted will not have
access to critical files.

	Encrypting your files. Being the superuser grants privileges only on
the Unix system; it does not magically grant the mathematical prowess
necessary to decrypt a well-coded file or the necessary clairvoyance
to divine encryption keys. (Encryption is discussed in Chapter 7.) Best practice is to encrypt with a
passphrase other than your login password, which an attacker might
capture.

	Mounting disks read-only when possible.

	Taking advantage of filesystem features like immutable and
append-only files if your system supports them.

	Keeping your backups of the system current. This practice is
discussed further in Chapter 16.

There are many other defenses, too, and we’ll
continue to present them in this chapter and throughout this
book.

[54] On a few systems,
it’s possible to restrict
root’s capabilities as part of
the kernel boot process, so that even if the superuser account is
compromised, some kinds of damage are not possible unless the
attacker is physically at the console and has an additional password.
Systems that use

 MAC often do not
have a superuser at all, so the discussion in this section does not
apply to such systems.

[55] If a program has a file mode of 000,
root must set the execute bit of the program
with the chmod() system call before the program
can be run, although shell scripts can be run by feeding their input
directly into /bin/sh.

[56] Usually stored on the first 16 blocks of a hard disk or floppy
disk formatted with the Unix filesystem.

[57]
 Many BSD variants (including
NetBSD and FreeBSD) provide an -f option to
umount, which forcibly unmounts a busy
filesystem.

End of sample

 To search for additional titles please go to

 http://search.overdrive.com.

OEBPS/httpatomoreillycomsourceoreillyimages78092.png

OEBPS/httpatomoreillycomsourceoreillyimages78070.png
Terminator

- T T T T T =

okt Seer Wotsuton [3 Woksatn i

Deenctu s et sen onges s
a lnear configuration. e

OEBPS/httpatomoreillycomsourceoreillyimages78044.png
“IWXI-X---

s gmedto o e o g
s gamedto g membes
[y ———

Filetype fife directory,device, etc)

OEBPS/httpatomoreillycomsourceoreillyimages78082.png
HostA HostB

It packtsnt does v A e,

- g,

o

"
o, ACK(5
s

OEBPS/httpatomoreillycomsourceoreillyimages78086.png
=z

o
PR i = i =

© Lk Encyption

fnapt

evaypes
INTERNET o

@ Application-level Encryption.

OEBPS/httpatomoreillycomsourceoreillyimages78116.png

OEBPS/httpatomoreillycomsourceoreillyimages78090.png
@ Clent apens conmond homel
i e

P —
° channel ol hent port umber.

© Gt apes data el o
seandpan

© s et

k) 7

W oo
T
251

W

3

ot

.

s s

OEBPS/httpatomoreillycomsourceoreillyimages78098.png
Worstation

Worstation

eserce et gt Ko

(e seni s

Ticket

Ganin
Sevice”

Tt

Ganin
Sevice”

OEBPS/httpatomoreillycomsourceoreillyimages78088.png
i~
o
o i s s
.]
LY
Gortspr i
s s s
s - —
-1 w—
PR—— —.,
g
v achmt s —_
i o

Gitodnamitys

OEBPS/httpatomoreillycomsourceoreillyimages78064.png
StartBit st i)

DBt

DBtz

DaaBits

DaaBits
DataBits
DaBits

DBty

DataBitSarParty

StopBitsentlas)

et

81 Cracer (8

10-8it rame

OEBPS/httpatomoreillycomsourceoreillyimages78096.png
Worstation

Worstation

[T—

Ketbess
Sorver

Ketbeos

OEBPS/httpatomoreillycomsourceoreillyimages78060.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages78108.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages78062.png

OEBPS/httpatomoreillycomsourceoreillyimages78040.png
vsion Group
faoon

root

wheelGroup
@00

hitp Group
(6010

OEBPS/httpatomoreillycomsourceoreillyimages78048.png
Encryption algorithm

Encryption
Encyptionisaprocestha s eyttt bockofplinttinto an

Drepto eprocesthat ke
prietndsecyponseyanipssne v el
Decryption

OEBPS/httpatomoreillycomsourceoreillyimages78074.png
Ld
| ol L
e | W | et s
. Ve[o | reaimotn
o man | vwea e
s Source e
) i
. o i

Daaagishen

OEBPS/httpatomoreillycomsourceoreillyimages78046.png
-TWSTr-sr-t

et heprgam sy
s bt hepogon’s G0
s bere indicates the pogram s SUID.

OEBPS/httpatomoreillycomsourceoreillyimages78114.png
Internal Network

AstndloneC s ety
ooy s
sasearog s

_

o
s
| i

= __ n Loy

OEBPS/httpatomoreillycomsourceoreillyimages533153.jpg
Practical Unix &
Internet Security

O REILLY Simson Garfinkel, Gene Spafford & Alan Schwartz

OEBPS/httpatomoreillycomsourceoreillyimages78100.png
s -
Network Informaion ystem Network iesystem

RPC-Remote Procedure Cll
XOR-External DataRepresentation
- ntemet Protocol

Network Transport e, Eheret)

OEBPS/httpatomoreillycomsourceoreillyimages78050.png
Recipient's
publickey

Encyption algorithm

Enaypted
message

Withencypted mssogingamesagesencypted
withtheredpientspublc ey, themessagecan then
bedecyptedonlyby theepent prvat eyt
intheny o neate thn theecpientposeses.

Redpient’s
sectet key

Senders
private key

Withdigital sgnatures,the uthrof e mesageuses
aptivatekeytodigtalysig themesage. Oncesiged,
thesignaurecan beverfedby anyone pssessin the
orspondingpublicey.

Senders
publickey
el
Yes! e
3 o
Not (e dgial
Snanedoes ot

mahosag)

OEBPS/httpatomoreillycomsourceoreillyimages78102.png
ws Moo oo B a0 20
[[Q2 (5] “

20 200 x
o Nov DEC

OEBPS/httpatomoreillycomsourceoreillyimages78112.png
e e
meseeARE T ST
—oremr ATV

B0
650
1
2
s
e
655
&6
67
656
=
o0
et
2.
&5
Bt
pos

NAG SKEW SNAG KAY HURL MUST
HERD RAY BITS TONG ACME NAP
GASKBOIL VEIN RID CITY DIAL

MUD JUNK DOLE SONG SALLOLA
ATE TOO NEED LOSE TANK WINO
BEN HOLM IDLE BADE LEE JANE
GANG BAIM CUAL GIRD ROOD OUCH
BLAT LOG LUSHTILL LIAR SNOW.
AND BASE GASH GO BELL BUNK
KILLAVID CAB IRK IRON HUE

ROLL DELL CASH SLOW GEE AUBE
518 BAN PAY PASIRE ABED

GALL MANA SOCK BASE EVE JOKE
EDNA FUND SLAM LESS SING VET.
‘GUP REB REID JERK ANNAALTO
(GUBE RISE GUM THE KATE HA

SAVE TACT NAP SOW WALT FONT

Exhseaet by anceandtien
auserat

OEBPS/httpatomoreillycomsourceoreillyimages78104.png
Ii) st fegse, rmice
eyste o e s e
Stk g ked
hechoat semca.

eflesyston i el s asubstof -
ot g o .

st e o
i et s e oo
eanthesen.

OEBPS/httpatomoreillycomsourceoreillyimages78080.png
P22
ron22
ron22

Fosen
™

o0y
Sdence

st
Engineering

OEBPS/httpatomoreillycomsourceoreillyimages78094.png
rmcdrmcdrmcdrmcd =

Zaear

=Gesto
nobody owner goup word ”

Em ----rmedre-or---

. owneranvead mody ceate o desty.
« groupand worldcn ead.
~ nobody candonothing.

OEBPS/httpatomoreillycomsourceoreillyimages78066.png
i
illl

= e T

Teminal Wodem Modem Server

OEBPS/httpatomoreillycomsourceoreillyimages78110.png.jpg
Thecadeswihorenot

mapneaspartof
dalegeegomesysen.

OEBPS/httpatomoreillycomsourceoreillyimages78084.png
o

roddesor
g

roddesor

Ere——

iy s of
siigingbmpagonau

nivationsl Authoritative Name Server
[T

_

OEBPS/httpatomoreillycomsourceoreillyimages78036.png

OEBPS/httpatomoreillycomsourceoreillyimages78056.png
‘Sending a message
Mesage Mesage

E -

Validating a message

Message,

)

Yes, message 0, message
sauthentic has been altered.

OEBPS/httpatomoreillycomsourceoreillyimages78038.png
4

Apersons Name Alicense late Number APlace
"jasong" "7GL-ME4" Sausalito"

OEBPS/httpatomoreillycomsourceoreillyimages78072.png
i

108 Tt etors aange
nputas n s o,

OEBPS/httpatomoreillycomsourceoreillyimages78106.png

OEBPS/httpatomoreillycomsourceoreillyimages78042.png
inode 2002

e
sl
e
R
G
A e
W
COE A
VRN
A

(A

OEBPS/httpatomoreillycomsourceoreillyimages78068.png
Femole Mate
SIS S
fame

L] o

P docarides
P 2ecehe g5

P s cos
ottt

P sl st

6 dosereaty

o eestosend
Pnsdertsens
D r—

OEBPS/oreilly_large.gif
O’REILLY

OEBPS/httpatomoreillycomsourceoreillyimages78052.png
——v 3679410 Ao

v 32679411

-«

32679412 A

-«

T, <o

OEBPS/httpatomoreillycomsourceoreillyimages78058.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages78078.png
un i
e =

T TT RS s
o o
[-
L
K sem b K

OEBPS/httpatomoreillycomsourceoreillyimages78054.png
Message digest function

128 bit msage digest
Message digestunction
areates aunique digestfor
eachunigue document,

128 bit msage digest

OEBPS/httpatomoreillycomsourceoreillyimages78076.png
swparp
Wstatin ametn

L

™

