

 [image: Fifth Edition]

 C# 5.0 in a Nutshell

Joseph Albahari

Ben Albahari

Published by O’Reilly Media

[image:]
Beijing ⋅ Cambridge ⋅ Farnham ⋅ Köln ⋅ Sebastopol ⋅ Tokyo

SPECIAL OFFER: Upgrade this ebook with O’Reilly

Click here for more information on this offer!
Please note that upgrade offers are not available from sample content.

Preface

C# 5.0 represents the fourth major update to Microsoft’s flagship
 programming language, positioning C# as a language with unusual flexibility
 and breadth. At one end, it offers high-level abstractions such as query
 expressions and asynchronous continuations, while at the other end, it
 provides low-level power through constructs such as custom value types and
 the optional use of pointers.
The price of this growth is that there’s more than ever to learn.
 Although tools such as Microsoft’s IntelliSense—and online references—are
 excellent in helping you on the job, they presume an existing map of
 conceptual knowledge. This book provides exactly that map of knowledge in a
 concise and unified style—free of clutter and long introductions.
Like the past two editions, C# 5.0 in a Nutshell
 is organized entirely around concepts and use cases, making it friendly both
 to sequential reading and to random browsing. It also plumbs significant
 depths while assuming only basic background knowledge—making it accessible
 to intermediate as well as advanced readers.
This book covers C#, the CLR, and the core Framework assemblies. We’ve
 chosen this focus to allow space for difficult topics such as concurrency,
 security, and application
 domains—without compromising depth or readability. Features new to C# 5.0
 and the associated Framework are flagged so that you can also use this book
 as a C# 4.0 reference.
Intended Audience

This book targets intermediate to advanced audiences. No prior
 knowledge of C# is required, but some general programming experience is
 necessary. For the beginner, this book complements, rather than replaces,
 a tutorial-style introduction to programming.
If you’re already familiar with C# 4.0, you’ll find a reorganized
 section on concurrency, including thorough coverage of C# 5.0’s asynchronous functions and its associated types. We also describe the
 principles of asynchronous programming and how it helps with efficiency
 and thread-safety.
This book is an ideal companion to any of the vast array of books
 that focus on an applied technology such as WPF, ASP.NET, or WCF. The
 areas of the language and .NET Framework that such books omit,
 C# 5.0 in a Nutshell covers in detail—and vice
 versa.
If you’re looking for a book that skims every .NET Framework
 technology, this is not for you. This book is also unsuitable if you want
 to learn about APIs specific to tablet or Windows Phone
 development.

How This Book Is Organized

The first three chapters after the introduction concentrate purely
 on C#, starting with the basics of syntax, types, and variables, and
 finishing with advanced topics such as unsafe code and preprocessor
 directives. If you’re new to the language, you should read these chapters
 sequentially.
The remaining chapters cover the core .NET Framework, including such
 topics as LINQ, XML, collections, code contracts, concurrency, I/O and
 networking, memory management, reflection, dynamic programming,
 attributes, security, application domains, and native interoperability.
 You can read most of these chapters randomly, except for Chapters 6 and
 7, which
 lay a foundation for subsequent topics. The three chapters on LINQ are
 also best read in sequence, and some chapters assume some knowledge of
 concurrency, which we cover in Chapter 14.

What You Need to Use This Book

The examples in this book require a C# 5.0 compiler and Microsoft
 .NET Framework 4.5. You will also find Microsoft’s .NET documentation
 useful to look up individual types and members (which is available
 online).
While it’s possible to write source code in Notepad and invoke the
 compiler from the command line, you’ll be much more productive with a
 code scratchpad for instantly testing code snippets, plus an
 Integrated Development Environment (IDE) for
 producing executables and libraries.
For a code scratchpad, download LINQPad 4.40 or later from www.linqpad.net (free). LINQPad fully
 supports C# 5.0 and is maintained by one of the authors.
For an IDE, download Microsoft Visual Studio 2012: any edition is
 suitable for what’s taught in this book, except the free express
 edition.
Note
All code listings for Chapter 2 through Chapter 10, plus the chapters on concurrency, parallel
 programming, and dynamic programming are available as interactive
 (editable) LINQPad samples. You can download the whole lot in a single
 click: go to LINQPad’s Samples tab at the bottom left, click “Download
 more samples,” and choose “C# 5.0 in a Nutshell.”

Conventions Used in This Book

The book uses basic UML notation to illustrate relationships between
 types, as shown in Figure 1. A slanted rectangle
 means an abstract class; a circle means an interface. A line with a hollow
 triangle denotes inheritance, with the triangle pointing to the base type.
 A line with an arrow denotes a one-way association; a line without an
 arrow denotes a two-way association.
[image: Sample diagram]

Figure 1. Sample diagram

The following typographical conventions are used in this
 book:
	Italic
	Indicates new terms, URIs, filenames, and directories

	Constant width
	Indicates C# code, keywords and identifiers, and program
 output

	Constant width
 bold
	Shows a highlighted section of code

	Constant width italic
	Shows text that should be replaced with user-supplied
 values

Tip
This icon signifies a tip, suggestion, or general note.

Caution
This icon indicates a warning or caution.

Using Code Examples

This book is here to help you get your job done. In general, you may
 use the code in this book in your programs and documentation. You do not
 need to contact us for permission unless you’re reproducing a significant
 portion of the code. For example,
 writing a program that uses several chunks of code from this book does not
 require permission. Selling or distributing a CD-ROM of examples from
 O’Reilly books does require permission. Answering a
 question by citing this book and quoting example code does not require
 permission. Incorporating a significant amount of example code from this
 book into your product’s documentation does require
 permission.
We appreciate, but do not require, attribution. For example:
 “C# 5.0 in a Nutshell by Joseph Albahari and Ben
 Albahari. Copyright 2012 Joseph Albahari and Ben Albahari,
 978-1-449-32010-2.”
If you feel your use of code examples falls outside fair use or the
 permission given here, feel free to contact us at
 permissions@oreilly.com.

Safari® Books Online

Note
Safari Books Online (www.safaribooksonline.com)
 is an on-demand digital library that delivers expert content in both
 book and video form from the world’s leading authors in technology and
 business.

Technology professionals, software developers, web designers, and
 business and creative professionals use Safari Books Online as their
 primary resource for research, problem solving, learning, and
 certification training.
Safari Books Online offers a range of product mixes
 and pricing programs for organizations,
 government
 agencies, and individuals.
 Subscribers have access to thousands
 of books, training videos, and prepublication manuscripts in one
 fully searchable database from publishers like O’Reilly Media, Prentice
 Hall Professional, Addison-Wesley Professional, Microsoft Press, Sams,
 Que, Peachpit Press, Focal Press, Cisco Press, John Wiley & Sons,
 Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT Press,
 Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course
 Technology, and dozens more. For more
 information about Safari Books Online, please visit us online.

How to Contact Us

Please address comments and questions concerning this book to the
 publisher:
	O’Reilly Media, Inc.
	1005 Gravenstein Highway North
	Sebastopol, CA 95472
	800-998-9938 (in the United States or Canada)
	707-829-0515 (international or local)
	707-829-0104 (fax)

We have a web page for this book, where we list errata, examples,
 and any additional information. You can access this page at:
	http://oreil.ly/csharp5_IAN

To comment or ask technical questions about this book, send email
 to:
	bookquestions@oreilly.com

For more information about our books, courses, conferences, and
 news, see our website at http://www.oreilly.com.
Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia
Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments

Joseph Albahari

First, I want to thank my brother, Ben Albahari, for persuading me
 to take on C# 3.0 in a Nutshell, whose success has
 spawned two subsequent editions. Ben shares my willingness to question
 conventional wisdom, and the tenacity to pull things apart until it
 becomes clear how they really work.
It’s been an honor to have superb technical reviewers on the team.
 This edition owes much to two legendary individuals at Microsoft: Eric
 Lippert (C# compiler team) and Stephen Toub (Parallel Programming team).
 I can’t thank you enough for your extensive and useful feedback—and for
 answering all my questions. I’m also immensely grateful to C# MVP Nicholas
 Paldino, whose keen eye and ability to pick up things that others miss,
 shaped this book and two previous editions.
This book was built on C# 4.0 in a Nutshell,
 whose technical reviewers I owe a similar honor. Chris Burrows (C#
 compiler team) significantly polished the chapters on concurrency,
 dynamic programming, and the C# language. From the CLR team, I received
 invaluable input on security and memory management from Shawn Farkas, Brian Grunkemeyer, Maoni Stephens,
 and David DeWinter. And on Code Contracts, the feedback from Brian
 Grunkemeyer, Mike Barnett, and Melitta Andersen raised the chapter to
 the next quality bar.
I have the highest praise for Jon Skeet (author of C# in
 Depth and Stack Overflow extraordinaire), whose perceptive
 suggestions shaped the previous edition, C# MVPs Mitch Wheat and Brian
 Peek, and reviewers of the 3.0 edition, including Krzysztof Cwalina,
 Matt Warren, Joel Pobar, Glyn Griffiths, Ion Vasilian, Brad Abrams, Sam
 Gentile, and Adam Nathan.
Finally, I want to thank the O’Reilly team, including my editor,
 Rachel Roumeliotis (a joy to work with), my excellent copy editor, Nancy
 Reinhardt, and members of my family, Miri and Sonia.

Ben Albahari

Because my brother wrote his acknowledgments first, you can infer
 most of what I want to say. :) We’ve actually both been programming
 since we were kids (we shared an Apple IIe; he was writing his own
 operating system while I was writing Hangman), so it’s cool that we’re
 now writing books together. I hope the enriching experience we had
 writing the book will translate into an enriching experience for you
 reading the book.
I’d also like to thank my former colleagues at Microsoft. Many
 smart people work there, not just in terms of intellect but also in a
 broader emotional sense, and I miss working with them. In particular, I
 learned a lot from Brian Beckman, to whom I am indebted.

Chapter 1. Introducing C# and the .NET
 Framework

C# is a general-purpose, type-safe, object-oriented programming language. The goal of the
 language is programmer productivity. To this end, the language balances
 simplicity, expressiveness, and performance. The chief architect of the
 language since its first version is Anders Hejlsberg (creator of Turbo Pascal and architect of
 Delphi). The C# language is platform-neutral, but it was written to work
 well with the Microsoft .NET Framework.
Object Orientation

C# is a rich implementation of the object-orientation paradigm, which includes encapsulation,
 inheritance, and
 polymorphism. Encapsulation means
 creating a boundary around an object,
 to separate its external (public) behavior from its internal (private)
 implementation details. The distinctive features of C# from an object-oriented perspective are:
	Unified type system
	The fundamental building block in C# is an encapsulated unit
 of data and functions called a type. C# has a unified type
 system, where all types ultimately share a common base
 type. This means that all types, whether they represent business
 objects or are primitive types such as numbers, share the same basic
 set of functionality. For example, an instance of any type can be
 converted to a string by calling its ToString method.

	Classes and interfaces
	In a traditional object-oriented paradigm, the only kind of
 type is a class. In C#, there are several other kinds of types,
 one of which is an interface.
 An interface is like a class, except that it only
 describes members. The implementation for those
 members comes from types that implement the
 interface. Interfaces are particularly useful in scenarios where
 multiple inheritance is required (unlike languages
 such as C++ and Eiffel, C# does not support multiple inheritance of
 classes).

	Properties, methods, and events
	In the pure object-oriented paradigm, all functions are
 methods (this is
 the case in Smalltalk). In C#, methods are only one kind of
 function member,
 which also includes properties
 and events (there are
 others, too). Properties are function members that encapsulate a
 piece of an object’s state, such as a button’s color or a label’s
 text. Events are function members that simplify acting on object
 state changes.

Type Safety

C# is primarily a type-safe language, meaning that instances of
 types can interact only through protocols they define, thereby ensuring
 each type’s internal consistency. For instance, C# prevents you from
 interacting with a string type as
 though it were an integer
 type.
More specifically, C# supports static typing, meaning
 that the language enforces type safety at compile time. This is in addition to
 type safety being enforced at runtime.
Static typing eliminates a large class of errors before a program is
 even run. It shifts the burden away from runtime unit tests onto the
 compiler to verify that all the types in a program fit together correctly.
 This makes large programs much easier to manage, more predictable, and
 more robust. Furthermore, static typing allows tools such as IntelliSense
 in Visual Studio to help you write a program, since it knows for a given
 variable what type it is, and hence what methods you can call on that
 variable.
Note
C# also allows parts of your code to be dynamically typed via the
 dynamic keyword (introduced in C# 4).
 However, C# remains a predominantly statically typed language.

C# is also called a strongly typed language
 because its type rules (whether enforced statically or at runtime) are
 very strict. For instance, you cannot call a function that’s designed to
 accept an integer with a floating-point number, unless you first
 explicitly convert the floating-point number to an
 integer. This helps prevent mistakes.
Strong typing also plays a role in enabling C# code to run in a
 sandbox—an environment where every aspect of security is
 controlled by the host. In a sandbox, it is important that you cannot
 arbitrarily corrupt the state of an object by bypassing its type
 rules.

Memory Management

C# relies on the runtime to perform automatic memory management. The
 Common Language Runtime has a garbage collector that executes as part of your program,
 reclaiming memory for objects that are no longer referenced. This frees
 programmers from explicitly deallocating the memory for an object,
 eliminating the problem of incorrect pointers encountered in languages such as C++.
C# does not eliminate pointers: it merely makes them unnecessary for
 most programming tasks. For performance-critical hotspots and
 interoperability, pointers may be used, but they are permitted only in
 blocks that are explicitly marked unsafe.

Platform Support

C# is typically used for writing code that runs on Windows
 platforms. Although Microsoft standardized the C# language through ECMA,
 the total amount of resources (both inside and outside of Microsoft)
 dedicated to supporting C# on non-Windows platforms is relatively small.
 This means that languages such as Java are sensible choices when
 multiplatform support is of primary concern. Having said this, C# can be
 used to write cross-platform code in the following scenarios:
	C# code may run on the server and dish up HTML that can run on any platform. This is precisely the
 case for ASP.NET.

	C# code may run on a runtime other than the Microsoft Common
 Language Runtime. The most notable example is the Mono project, which has its own C# compiler and runtime,
 running on Linux, Solaris, Mac OS X, and Windows.

	C# code may run on a host that supports Microsoft Silverlight (supported for Windows and Mac OS
 X). This technology is analogous to Adobe’s Flash Player.

C#’s Relationship with the CLR

C# depends on a runtime equipped with a host of features such as
 automatic memory management and exception handling. The design of C#
 closely maps to the design of Microsoft’s Common Language
 Runtime (CLR), which provides these runtime features (although
 C# is technically independent of the CLR). Furthermore, the C# type system
 maps closely to the CLR type system (e.g., both share the same definitions
 for predefined types).

The CLR and .NET Framework

The .NET Framework consists of the CLR plus a vast set of
 libraries. The libraries consist of core libraries (which this book is
 concerned with) and applied libraries, which depend on the core libraries.
 Figure 1-1
 is a visual overview of those libraries (and also serves as a navigational
 aid to the book).
[image: Topics covered in this book and the chapters in which they are found. Topics not covered are shown outside the large circle.]

Figure 1-1. Topics covered in this book and the chapters in which they are
 found. Topics not covered are shown outside the large circle.

The CLR is the runtime for executing managed code. C# is one
 of several managed languages that get
 compiled into managed code. Managed code is packaged into an assembly, in the form
 of either an executable file (an .exe) or a library (a .dll), along with type information, or
 metadata.
Managed code is represented in Intermediate Language
 or IL. When the CLR loads an
 assembly, it converts the IL into the native code of the machine, such as
 x86. This conversion is done by the CLR’s JIT (Just-In-Time) compiler. An assembly retains almost all
 of the original source language constructs, which makes it easy to inspect
 and even generate code dynamically.
Note
Red Gate’s .NET Reflector application is an invaluable
 tool for examining the contents of an assembly. You can also use it as a
 decompiler.

The CLR performs as a host for numerous runtime services. Examples
 of these services include memory management, the loading of libraries, and
 security services. The CLR is language-neutral, allowing developers to
 build applications in multiple languages (e.g., C#, Visual Basic .NET,
 Managed C++, Delphi.NET, Chrome .NET, and J#).
The .NET Framework contains libraries for writing just about any
 Windows- or web-based application.
 Chapter 5 gives an overview of the .NET
 Framework libraries.

C# and Windows Runtime

C# 5.0 also interoperates with Windows Runtime (WinRT) libraries.
 WinRT is an execution interface and runtime environment for accessing
 libraries in a language-neutral and object-oriented fashion. It ships with
 Windows 8 and is (in part) an enhanced version of Microsoft’s Component Object Model
 or COM (see Chapter 25).
Windows 8 ships with a set of unmanaged WinRT libraries which serve
 as a framework for touch-enabled Metro-style applications delivered through Microsoft’s
 application store. (The term
 WinRT also refers to these libraries.) Being WinRT,
 the libraries can easily be consumed not only from C# and VB, but C++ and
 JavaScript.
Warning
Some WinRT libraries can also be consumed in normal non-tablet
 applications. However, taking a dependency on WinRT gives your
 application a minimum OS requirement of Windows 8.
 (And into the future, taking a dependency on the
 next version of WinRT would give your program a
 minimum OS requirement of Windows 9.)

The WinRT libraries support the new Metro user interface (for
 writing immersive touch-first applications), mobile device-specific
 features (sensors, text messaging and so on), and a range of core
 functionality that overlaps with parts of the .NET Framework. Because of
 this overlap, Visual Studio includes a reference
 profile (a set of .NET reference assemblies) for Metro
 projects that hides the portions of the .NET Framework that overlap with
 WinRT. This profile also hides large portions of the .NET Framework
 considered unnecessary for tablet apps (such as accessing a database).
 Microsoft’s application store, which controls the distribution of software
 to consumer devices, rejects any program that attempts to access a hidden
 type.
Note
A reference assembly exists purely to compile
 against and may have a restricted set of types and members. This allows
 developers to install the full .NET Framework on their machines while
 coding certain projects as though they had only a subset. The actual
 functionality comes at runtime from assemblies in the Global
 Assembly Cache (see Chapter 18) which may
 superset the reference assemblies.

Hiding most of the .NET Framework eases the learning curve for
 developers new to the Microsoft platform, although there are two more
 important goals:
	It sandboxes applications (restricts
 functionality to reduce the impact of malware). For instance,
 arbitrary file access is forbidden, and there the ability to start or
 communicate with other programs on the computer is extremely restricted.

	It allows low-powered Metro-only tablets to ship with a reduced
 .NET Framework (Metro profile), lowering the OS footprint.

What distinguishes WinRT from ordinary COM is that WinRT
 projects its libraries into a multitude of languages,
 namely C#, VB, C++ and JavaScript, so that each language sees WinRT types
 (almost) as though they were written especially for it. For example, WinRT
 will adapt capitalization rules to suit the standards of the target
 language, and will even remap some functions and interfaces. WinRT
 assemblies also ship with rich metadata in .winmd files which have the same format as .NET
 assembly files, allowing transparent consumption without special ritual.
 In fact, you might even be unaware that you’re using WinRT rather than
 .NET types, aside of namespace differences. (Another clue is that WinRT
 types are subject to COM-style restrictions; for instance, they offer
 limited support for inheritance and generics.)
Note
WinRT/Metro does not supersede the full .NET Framework. The latter
 is still recommended (and necessary) for standard desktop and
 server-side development, and has the following advantages:
	Programs are not restricted to running in a sandbox.

	Programs can use the entire .NET Framework and any third-party
 library.

	Application distribution does not rely on the Windows
 Store.

	Applications can target the latest Framework version without
 requiring users to have the latest OS version.

What’s New in C# 5.0

C# 5.0’s big new feature is support for
 asynchronous functions via two new keywords, async and await. Asynchronous
 functions enable asynchronous continuations, which
 make it easier to write responsive and thread-safe rich-client
 applications. They also make it easy to write highly concurrent and
 efficient I/O-bound applications that don’t tie up a thread resource per
 operation.
We cover asynchronous functions in detail in Chapter 14.

What’s New in C# 4.0

The features new to C# 4.0 were:
	Dynamic binding

	Optional parameters and named arguments

	Type variance with generic interfaces and delegates

	COM interoperability improvements

Dynamic binding (Chapters 4 and
 20)
 defers binding—the process of resolving types and
 members—from compile time to runtime and is useful in scenarios that would
 otherwise require complicated reflection code. Dynamic binding is also
 useful when interoperating with dynamic languages and COM
 components.
Optional parameters (Chapter 2) allow functions to specify
 default parameter values so that callers can omit arguments and
 named arguments allow a function caller to identify
 an argument by name rather than position.
Type variance rules were relaxed in C# 4.0
 (Chapters 3 and 4),
 such that type parameters in generic
 interfaces and generic delegates can be marked as
 covariant or contravariant,
 allowing more natural type conversions.
COM interoperability (Chapter 25) was enhanced in C# 4.0
 in three ways. First, arguments can be passed by reference without the
 ref keyword (particularly useful in
 conjunction with optional parameters). Second, assemblies that contain COM
 interop types can be linked rather than
 referenced. Linked interop types support type
 equivalence, avoiding the need for Primary Interop
 Assemblies and putting an end to versioning and deployment
 headaches. Third, functions that return COM-Variant types from linked
 interop types are mapped to dynamic
 rather than object, eliminating the
 need for casting.

What’s New in C# 3.0

The features added to C# 3.0 were mostly centered on Language Integrated Query capabilities or
 LINQ for short. LINQ enables queries
 to be written directly within a C# program and checked
 statically for correctness, and query both local
 collections (such as lists or XML documents) or remote data sources (such
 as a database). The C# 3.0 features added to support LINQ comprised
 implicitly typed local variables, anonymous types, object initializers,
 lambda expressions, extension methods, query expressions and expression
 trees.
Implicitly typed local variables (var keyword, Chapter 2) let you omit the variable
 type in a declaration statement, allowing the compiler to infer it. This
 reduces clutter as well as allowing anonymous types
 (Chapter 4), which are simple classes
 created on the fly that are commonly used in the final output of LINQ
 queries. Arrays can also be implicitly typed (Chapter 2).
Object initializers (Chapter 3) simplify object
 construction by allowing properties to be set inline after the constructor
 call. Object initializers work with both named and anonymous types.
Lambda expressions (Chapter 4) are miniature functions created by
 the compiler on the fly, and are particularly useful in “fluent” LINQ
 queries (Chapter 8).
Extension methods (Chapter 4) extend an existing type with new
 methods (without altering the type’s definition), making static methods
 feel like instance methods. LINQ’s query operators are implemented as
 extension methods.
Query expressions (Chapter 8) provide a higher-level syntax for writing LINQ
 queries that can be substantially simpler when working with multiple
 sequences or range variables.
Expression trees (Chapter 8) are miniature code DOMs (Document Object
 Models) that describe lambda expressions assigned to the special type
 Expression<TDelegate>. Expression
 trees make it possible for LINQ queries to execute remotely (e.g., on a
 database server) because they can be introspected and translated at
 runtime (e.g., into a SQL statement).
C# 3.0 also added automatic properties and partial methods.
Automatic properties (Chapter 3) cut the work in writing
 properties that simply get/set a private backing field by having the
 compiler do that work automatically. Partial methods
 (Chapter 3) let an
 auto-generated partial class provide customizable hooks for manual
 authoring which “melt away” if unused.

Chapter 2. C# Language Basics

In this chapter, we introduce the basics of the C# language.
Note
All programs and code snippets in this and the following two
 chapters are available as interactive samples in LINQPad. Working through these samples in conjunction with
 the book accelerates learning in that you can edit the samples and
 instantly see the results without needing to set up projects and solutions
 in Visual Studio.
To download the samples, click the Samples tab in LINQPad and then
 click “Download more samples.” LINQPad is free—go to http://www.linqpad.net.

A First C# Program

Here is a program that multiplies 12 by 30 and prints the result,
 360, to the screen. The double forward slash indicates that the remainder
 of a line is a comment.
using System; // Importing namespace

class Test // Class declaration
{
 static void Main() // Method declaration
 {
 int x = 12 * 30; // Statement 1
 Console.WriteLine (x); // Statement 2
 } // End of method
} // End of class
At the heart of this program lie two statements:
 int x = 12 * 30;
 Console.WriteLine (x);
Statements in C# execute sequentially and are terminated by a
 semicolon (or a code block, as we’ll see later). The
 first statement computes the expression 12 * 30 and stores the result in a local variable, named x, which is an integer type. The second
 statement calls the Console class’s
 WriteLine
 method, to print the variable x to a text window on the screen.
A method performs an action in a series
 of statements, called a statement block—a pair of braces
 containing zero or more statements. We defined a single method named
 Main:
 static void Main()
 {
 ...
 }
Writing higher-level functions that call upon lower-level functions
 simplifies a program. We can refactor our program with a reusable
 method that multiplies an integer by 12 as follows:
using System;

class Test
{
 static void Main()
 {
 Console.WriteLine (FeetToInches (30)); // 360
 Console.WriteLine (FeetToInches (100)); // 1200
 }

 static int FeetToInches (int feet)
 {
 int inches = feet * 12;
 return inches;
 }
}
A method can receive input data from the caller
 by specifying parameters and
 output data back to the caller by specifying a
 return type. We defined a method called
 FeetToInches that has a parameter for
 inputting feet, and a return type for outputting inches:
static int FeetToInches (int feet) {...}
The literals 30 and 100
 are the arguments passed to the FeetToInches method. The Main method in our example has empty parentheses
 because it has no parameters, and is void because it doesn’t return any value to its
 caller:
static void Main()
C# recognizes a method called Main as signaling the default entry point of
 execution. The Main method may
 optionally return an integer (rather than void) in order to return a value to the
 execution environment (where a non-zero value typically indicates an
 error). The Main method can also
 optionally accept an array of strings as a parameter (that will be
 populated with any arguments passed to the executable).
For example:
static int Main (string[] args) {...}
Note
An array (such as string[])
 represents a fixed number of elements of a particular type. Arrays are
 specified by placing square brackets after the element type and are
 described in Arrays.

Methods are one of several kinds of functions in C#. Another kind of
 function we used was the *
 operator, used to perform multiplication. There are
 also constructors, properties,
 events, indexers, and
 finalizers.
In our example, the two methods are grouped into a class. A
 class groups function members and data
 members to form an object-oriented building block. The Console class groups members that handle
 command-line input/output functionality, such as the WriteLine method. Our Test class groups two methods—the Main method and the FeetToInches method. A class is a kind of
 type, which we will examine in Type Basics.
At the outermost level of a program, types are organized into
 namespaces. The using directive was used to make the System namespace available to our application,
 to use the Console class. We could
 define all our classes within the TestPrograms namespace, as follows:
using System;

namespace TestPrograms
{
 class Test {...}
 class Test2 {...}
}
The .NET Framework is organized into nested namespaces. For example,
 this is the namespace that contains types for handling text:
using System.Text;
The using directive is there for
 convenience; you can also refer to a type by its fully qualified name,
 which is the type name prefixed with its namespace, such as System.Text.StringBuilder.
Compilation

The C# compiler compiles source code, specified as a set
 of files with the .cs extension,
 into an assembly. An assembly is the unit of
 packaging and deployment in .NET. An assembly can be either an
 application or a library. A normal console or Windows
 application has a Main method and is
 an .exe file. A library is a
 .dll and is equivalent to an
 .exe without an entry point. Its
 purpose is to be called upon (referenced) by an application or by
 other libraries. The .NET Framework is a set of libraries.
The name of the C# compiler is csc.exe. You can either use an IDE such as
 Visual Studio to compile, or call csc
 manually from the command line. To compile manually, first save a program to a file
 such as MyFirstProgram.cs, and then
 go to the command line and invoke csc
 (located under %SystemRoot%\Microsoft.NET\Framework\<framework-version>
 where %SystemRoot% is your Windows
 directory) as follows:
csc MyFirstProgram.cs
This produces an application named MyFirstProgram.exe.
To produce a library (.dll),
 do the following:
csc /target:library MyFirstProgram.cs
Note
We explain assemblies in detail in Chapter 18.

Syntax

C# syntax is inspired by C and C++ syntax. In this section,
 we will describe C#’s elements of syntax, using the following
 program:
using System;

class Test
{
 static void Main()
 {
 int x = 12 * 30;
 Console.WriteLine (x);
 }
}
Identifiers and Keywords

Identifiers are names that
 programmers choose for their classes, methods, variables, and so on.
 These are the identifiers in our example program, in the order they
 appear:
System Test Main x Console WriteLine
An identifier must be a whole word, essentially made up of Unicode
 characters starting with a letter or underscore. C# identifiers are
 case-sensitive. By convention, parameters, local variables, and private
 fields should be in camel case (e.g., myVariable), and all other identifiers should
 be in Pascal case (e.g., MyMethod).
Keywords are names reserved by the
 compiler that you can’t use as identifiers. These are the keywords in
 our example program:
using class static void int
Here is the full list of C# keywords:
	abstract
 as
 base
 bool
 break
 byte
 case
 catch
 char
 checked
 class
 const
 continue
 decimal
 default
 delegate
	do
 double
 else
 enum
 event
 explicit
 extern
 false
 finally
 fixed
 float
 for
 foreach
 goto
 if
 implicit
	in
 int
 interface
 internal
 is
 lock
 long
 namespace
 new
 null
 object
 operator
 out
 override
 params
 private
	protected
 public
 readonly
 ref
 return
 sbyte
 sealed
 short
 sizeof
 stackalloc
 static
 string
 struct
 switch
 this
 throw
	true
 try
 typeof
 uint
 ulong
 unchecked
 unsafe
 ushort
 using
 virtual
 void
 volatile
 while

Avoiding conflicts

If you really want to use an identifier that clashes with a
 keyword, you can do so by qualifying it with the @ prefix. For
 instance:
class class {...} // Illegal
class @class {...} // Legal
The @ symbol doesn’t form
 part of the identifier itself. So @myVariable is the same as myVariable.
Note
The @ prefix can be useful
 when consuming libraries written in other .NET languages that have
 different keywords.

Contextual keywords

Some keywords are contextual, meaning
 they can also be used as identifiers—without an @ symbol. These are:
	add
 ascending
 async
 await
 by
 descending
	dynamic
 equals
 from
 get
 global
 group
	in
 into
 join
 let
 on
 orderby
	partial
 remove
 select
 set
 value
 var
	where
 yield

With contextual keywords, ambiguity cannot arise within the
 context in which they are used.

Literals, Punctuators, and Operators

Literals are primitive pieces of data
 lexically embedded into the program. The literals we used in our example
 program are 12 and 30.
Punctuators help demarcate the
 structure of the program. These are the punctuators we used in our
 example program:
{ } ;
The braces group multiple statements into a statement block.
The semicolon terminates a statement. (Statement blocks, however,
 do not require a semicolon.) Statements can wrap multiple lines:
Console.WriteLine
 (1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10);
An operator transforms and combines
 expressions. Most operators in C# are denoted with a symbol, such as the
 multiplication operator, *. We will
 discuss operators in more detail later in the chapter. These are the
 operators we used in our example program:
. () * =
A period denotes a member of something (or a decimal point
 with numeric literals). Parentheses are used when declaring or calling a method;
 empty parentheses are used when the method accepts no arguments. An
 equals sign performs assignment. (The double equals sign,
 ==, performs equality comparison, as
 we’ll see later.)

Comments

C# offers two different styles of source-code
 documentation: single-line comments and multiline comments. A single-line
 comment begins with a double forward slash and continues until the end
 of the line. For example:
int x = 3; // Comment about assigning 3 to x
A multiline comment begins with /* and ends with */. For example:
int x = 3; /* This is a comment that
 spans two lines */
Comments may embed XML documentation tags, explained in XML Documentation in Chapter 4.

Type Basics

A type defines the blueprint for a value.
 In our example, we used two literals of type int with values 12 and 30. We also declared a
 variable of type int whose name was
 x:
static void Main()
{
 int x = 12 * 30;
 Console.WriteLine (x);
}
A variable denotes a storage location that can
 contain different values over time. In contrast, a constant always represents the same
 value (more on this later):
const int y = 360;
All values in C# are instances of a type. The meaning of a
 value, and the set of possible values a variable can have, is determined
 by its type.
Predefined Type Examples

Predefined types are types that are specially supported by
 the compiler. The int type is a
 predefined type for representing the set of integers that fit into 32
 bits of memory, from −231 to
 231−1. We can perform functions such as
 arithmetic with instances of the int
 type as follows:
int x = 12 * 30;
Another predefined C# type is string. The string type represents a sequence of
 characters, such as “.NET” or “http://oreilly.com”. We can work with strings by calling
 functions on them as follows:
string message = "Hello world";
string upperMessage = message.ToUpper();
Console.WriteLine (upperMessage); // HELLO WORLD

int x = 2012;
message = message + x.ToString();
Console.WriteLine (message); // Hello world2012
The predefined bool type has exactly
 two possible values: true and
 false. The bool type is commonly used to conditionally
 branch execution flow based with an if statement. For example:
bool simpleVar = false;
if (simpleVar)
 Console.WriteLine ("This will not print");

int x = 5000;
bool lessThanAMile = x < 5280;
if (lessThanAMile)
 Console.WriteLine ("This will print");
Note
In C#, predefined types (also referred to as built-in types) are recognized with a C# keyword. The
 System namespace in the .NET
 Framework contains many important types that are not predefined by C#
 (e.g., DateTime).

Custom Type Examples

Just as we can build complex functions from simple
 functions, we can build complex types from primitive types. In this
 example, we will define a custom type named UnitConverter—a class that serves as a
 blueprint for unit conversions:
using System;

public class UnitConverter
{
 int ratio; // Field
 public UnitConverter (int unitRatio) {ratio = unitRatio; } // Constructor
 public int Convert (int unit) {return unit * ratio; } // Method
}

class Test
{
 static void Main()
 {
 UnitConverter feetToInchesConverter = new UnitConverter (12);
 UnitConverter milesToFeetConverter = new UnitConverter (5280);

 Console.WriteLine (feetToInchesConverter.Convert(30)); // 360
 Console.WriteLine (feetToInchesConverter.Convert(100)); // 1200
 Console.WriteLine (feetToInchesConverter.Convert(
 milesToFeetConverter.Convert(1))); // 63360
 }
}
Members of a type

A type contains data members and function members. The data member
 of UnitConverter is the
 field called ratio. The function members of UnitConverter are the Convert method and the UnitConverter’s
 constructor.

Symmetry of predefined types and custom types

A beautiful aspect of C# is that predefined types and custom
 types have few differences. The predefined int type serves as a blueprint for integers.
 It holds data—32 bits—and provides function members that use that
 data, such as ToString. Similarly,
 our custom UnitConverter type acts
 as a blueprint for unit conversions. It holds data—the ratio—and
 provides function members to use that data.

Constructors and instantiation

Data is created by instantiating a
 type. Predefined types can be instantiated simply by using a literal
 such as 12 or "Hello, world". The new operator creates instances of a custom
 type. We created and declared an instance of the UnitConverter type with this
 statement:
UnitConverter feetToInchesConverter = new UnitConverter (12);
Immediately after the new
 operator instantiates an object, the object’s
 constructor is called to perform initialization.
 A constructor is defined like a method, except that the method name
 and return type are reduced to the name of the enclosing type:
public class UnitConverter
{
 ...
 public UnitConverter (int unitRatio) { ratio = unitRatio; }
 ...
}

Instance versus static members

The data members and function members that operate on
 the instance of the type are called
 instance members. The UnitConverter’s Convert method and the int’s ToString method are examples of instance
 members. By default, members are instance members.
Data members and function members that don’t operate on the
 instance of the type, but rather on the type itself, must be marked as
 static. The Test.Main and Console.WriteLine methods are static
 methods. The Console class is
 actually a static class, which means
 all its members are static. You never actually
 create instances of a Console—one
 console is shared across the whole application.
To contrast instance from static members, in the following code
 the instance field Name pertains to
 an instance of a particular Panda,
 whereas Population pertains to the
 set of all Panda instances:
public class Panda
{
 public string Name; // Instance field
 public static int Population; // Static field

 public Panda (string n) // Constructor
 {
 Name = n; // Assign the instance field
 Population = Population + 1; // Increment the static Population field
 }
}
The following code creates two instances of the Panda, prints their names, and then prints
 the total population:
using System;

class Test
{
 static void Main()
 {
 Panda p1 = new Panda ("Pan Dee");
 Panda p2 = new Panda ("Pan Dah");

 Console.WriteLine (p1.Name); // Pan Dee
 Console.WriteLine (p2.Name); // Pan Dah

 Console.WriteLine (Panda.Population); // 2
 }
}

The public keyword

The public keyword
 exposes members to other classes. In this example, if the Name field in Panda was not public, the Test class could not access it. Marking a
 member public is how a type
 communicates: “Here is what I want other types to see—everything else is my own private
 implementation details.” In object-oriented terms, we say that the
 public members encapsulate the private members of
 the class.

Conversions

C# can convert between instances of compatible types. A
 conversion always creates a new value from an existing one. Conversions
 can be either implicit or explicit: implicit conversions happen
 automatically, and explicit conversions require a cast. In the following example, we
 implicitly convert an int to a long type (which has twice the bitwise
 capacity of an int) and
 explicitly cast an int to a short type (which has half the capacity of an
 int):
int x = 12345; // int is a 32-bit integer
long y = x; // Implicit conversion to 64-bit integer
short z = (short)x; // Explicit conversion to 16-bit integer
Implicit conversions are allowed when both of the following are
 true:
	The compiler can guarantee they will always succeed.

	No information is lost in conversion.[1]

Conversely, explicit conversions are required
 when one of the following is true:
	The compiler cannot guarantee they will always succeed.

	Information may be lost during conversion.

(If the compiler can determine that a conversion will
 always fail, both kinds of conversion are
 prohibited. Conversions that involve generics can also fail in certain
 conditions—see Type Parameters and Conversions in
 Chapter 3.)
Note
The numeric conversions that we just
 saw are built into the language. C# also supports reference conversions and
 boxing conversions (see Chapter 3) as well as custom conversions (see Operator Overloading in Chapter 4). The compiler doesn’t enforce
 the aforementioned rules with custom conversions, so it’s possible for
 badly designed types to behave otherwise.

Value Types Versus Reference Types

All C# types fall into the following categories:
	Value types

	Reference types

	Generic type parameters

	Pointer types

Note
In this section, we’ll describe value types and reference types.
 We’ll cover generic type parameters in Generics in
 Chapter 3, and pointer
 types in Unsafe Code and Pointers in Chapter 4.

Value types comprise most built-in
 types (specifically, all numeric types, the char type, and the bool type) as well as custom struct and enum types.
Reference types comprise all class,
 array, delegate, and interface types. (This includes the predefined
 string type.)
The fundamental difference between value types and reference types
 is how they are handled in memory.
Value types

The content of a value type variable or
 constant is simply a value. For example, the content of the built-in
 value type, int, is 32 bits of
 data.
You can define a custom value type with the struct keyword (see
 Figure 2-1):
public struct Point { public int X, Y; }
[image: A value-type instance in memory]

Figure 2-1. A value-type instance in memory

The assignment of a value-type instance always
 copies the instance.
For example:
static void Main()
{
 Point p1 = new Point();
 p1.X = 7;

 Point p2 = p1; // Assignment causes copy

 Console.WriteLine (p1.X); // 7
 Console.WriteLine (p2.X); // 7

 p1.X = 9; // Change p1.X

 Console.WriteLine (p1.X); // 9
 Console.WriteLine (p2.X); // 7
}
Figure 2-2 shows
 that p1 and p2 have independent storage.
[image: Assignment copies a value-type instance]

Figure 2-2. Assignment copies a value-type instance

Reference types

A reference type is more complex than a value type, having
 two parts: an object and the
 reference to that object. The content of a
 reference-type variable or constant is a reference to an object that
 contains the value. Here is the Point type from our previous example
 rewritten as a class, rather than a struct (shown in Figure 2-3):
public class Point { public int X, Y; }
[image: A reference-type instance in memory]

Figure 2-3. A reference-type instance in memory

Assigning a reference-type variable copies the reference, not
 the object instance. This allows multiple variables to refer to the
 same object—something not ordinarily possible with value types. If we repeat
 the previous example, but with Point now a class, an operation to p1 affects p2:
static void Main()
{
 Point p1 = new Point();
 p1.X = 7;

 Point p2 = p1; // Copies p1 reference

 Console.WriteLine (p1.X); // 7
 Console.WriteLine (p2.X); // 7

 p1.X = 9; // Change p1.X

 Console.WriteLine (p1.X); // 9
 Console.WriteLine (p2.X); // 9
}
Figure 2-4 shows that
 p1 and p2 are two references that point to the same
 object.
[image: Assignment copies a reference]

Figure 2-4. Assignment copies a reference

Null

A reference can be assigned the literal null, indicating that
 the reference points to no object:
class Point {...}
...

Point p = null;
Console.WriteLine (p == null); // True

// The following line generates a runtime error
// (a NullReferenceException is thrown):
Console.WriteLine (p.X);
In contrast, a value type cannot ordinarily have a null
 value:
struct Point {...}
...

Point p = null; // Compile-time error
int x = null; // Compile-time error
Note
C# also has a construct called nullable
 types for representing value-type nulls (see Nullable Types in Chapter 4).

Storage overhead

Value-type instances occupy precisely the memory
 required to store their fields. In this example, Point takes eight bytes of memory:
struct Point
{
 int x; // 4 bytes
 int y; // 4 bytes
}
Note
Technically, the CLR positions fields within the type at an address
 that’s a multiple of the fields’ size (up to a maximum of eight
 bytes). Thus, the following actually consumes 16 bytes of memory
 (with the seven bytes following the first field “wasted”):
struct A { byte b; long l; }

Reference types require separate allocations of memory
 for the reference and object. The object consumes as many bytes as its
 fields, plus additional administrative overhead. The precise overhead
 is intrinsically private to the implementation of the .NET runtime,
 but at minimum the overhead is eight bytes, used to store a key to the
 object’s type, as well as temporary information such as its lock state
 for multithreading and a flag to indicate whether it has been fixed
 from movement by the garbage collector. Each reference to an object
 requires an extra four or eight bytes, depending on whether the .NET
 runtime is running on a 32- or 64-bit platform.

Predefined Type Taxonomy

The predefined types in C# are:
	Value types
		Numeric
	Signed integer (sbyte, short, int, long)

	Unsigned integer (byte, ushort, uint, ulong)

	Real number (float, double, decimal)

	Logical (bool)

	Character (char)

	Reference types
		String (string)

	Object (object)

Predefined types in C# alias Framework types in the System namespace. There is only a syntactic
 difference between these two statements:
int i = 5;
System.Int32 i = 5;
The set of predefined value types excluding
 decimal are known as primitive types in the CLR. Primitive
 types are so called because they are supported directly via instructions
 in compiled code, and this usually translates to direct support on the
 underlying processor. For example:
 // Underlying hexadecimal representation
int i = 7; // 0x7
bool b = true; // 0x1
char c = 'A'; // 0x41
float f = 0.5f; // uses IEEE floating-point encoding
The System.IntPtr and System.UIntPtr types are also primitive (see
 Chapter 25).

Numeric Types

C# has the predefined numeric types shown in Table 2-1.
Table 2-1. Predefined numeric types in C#
	C# type
	System
 type
	Suffix
	Size
	Range

	Integral—signed

	sbyte
	SByte
	 	8 bits
	−27 to
 27−1

	short
	Int16
	 	16 bits
	−215 to
 215−1

	int
	Int32
	 	32 bits
	−231 to
 231−1

	long
	Int64
	L
	64 bits
	−263 to
 263−1

	Integral—unsigned

	byte
	Byte
	 	8 bits
	0 to
 28−1

	ushort
	UInt16
	 	16 bits
	0 to
 216−1

	uint
	UInt32
	U
	32 bits
	0 to
 232−1

	ulong
	UInt64
	UL
	64 bits
	0 to
 264−1

	Real

	float
	Single
	F
	32 bits
	±
 (~10−45 to
 1038)

	double
	Double
	D
	64 bits
	±
 (~10−324 to
 10308)

	decimal
	Decimal
	M
	128 bits
	±
 (~10−28 to
 1028)

Of the integral types, int and long are first-class
 citizens and are favored by both C# and the runtime. The other integral
 types are typically used for interoperability or when space efficiency is
 paramount.
Of the real number types, float and double are called
 floating-point types[2] and are typically used for scientific calculations. The
 decimal type is typically used for
 financial calculations, where
 base-10–accurate arithmetic and high precision are required.
Numeric Literals

Integral literals can use decimal or
 hexadecimal notation; hexadecimal is denoted with the 0x prefix. For example:
int x = 127;
long y = 0x7F;
Real literals can use decimal and/or
 exponential notation. For example:
double d = 1.5;
double million = 1E06;
Numeric literal type inference

By default, the compiler infers a numeric literal to be
 either double or an integral
 type:
	If the literal contains a decimal point or the exponential
 symbol (E), it is a double.

	Otherwise, the literal’s type is the first type in this list
 that can fit the literal’s value: int, uint, long, and ulong.

For example:
Console.WriteLine (1.0.GetType()); // Double (double)
Console.WriteLine (1E06.GetType()); // Double (double)
Console.WriteLine (1.GetType()); // Int32 (int)
Console.WriteLine (0xF0000000.GetType()); // UInt32 (uint)

Numeric suffixes

Numeric suffixes explicitly define
 the type of a literal. Suffixes can be either lower- or uppercase, and
 are as follows:
	Category
	C#
 type
	Example

	F
	float
	float f = 1.0F;

	D
	double
	double d = 1D;

	M
	decimal
	decimal d = 1.0M;

	U
	uint
	uint i = 1U;

	L
	long
	long i = 1L;

	UL
	ulong
	ulong i = 1UL;

The suffixes U and L
 are rarely necessary, because the uint, long, and ulong types can nearly always be either
 inferred or implicitly converted from int:
long i = 5; // Implicit lossless conversion from int literal to long
The D suffix is technically
 redundant, in that all literals with a decimal point are inferred to
 be double. And you can always add a
 decimal point to a numeric literal:
double x = 4.0;
The F and M suffixes are the most useful and should
 always be applied when specifying float or decimal literals. Without the F suffix, the following line would not
 compile, because 4.5 would be inferred to be of type double, which has no implicit conversion to
 float:
float f = 4.5F;
The same principle is true for a decimal literal:
decimal d = −1.23M; // Will not compile without the M suffix.
We describe the semantics of numeric conversions in detail in
 the following section.

Numeric Conversions

Integral to integral conversions

Integral conversions are implicit
 when the destination type can represent every possible value of the
 source type. Otherwise, an explicit conversion is
 required. For example:
int x = 12345; // int is a 32-bit integral
long y = x; // Implicit conversion to 64-bit integral
short z = (short)x; // Explicit conversion to 16-bit integral

Floating-point to floating-point conversions

A float can be implicitly
 converted to a double, since a
 double can represent every possible
 value of a float. The reverse
 conversion must be explicit.

Floating-point to integral conversions

All integral types may be implicitly converted to all
 floating-point types:
int i = 1;
float f = i;
The reverse conversion must be explicit:
int i2 = (int)f;
Note
When you cast from a floating-point number to an integral, any
 fractional portion is truncated; no rounding is performed. The
 static class System.Convert
 provides methods that round while converting between various numeric
 types (see Chapter 6).

Implicitly converting a large integral type to a floating-point
 type preserves magnitude but may occasionally
 lose precision. This is because floating-point
 types always have more magnitude than integral types, but may have
 less precision. Rewriting our example with a larger number
 demonstrates this:
int i1 = 100000001;
float f = i1; // Magnitude preserved, precision lost
int i2 = (int)f; // 100000000

Decimal conversions

All integral types can be implicitly converted to the decimal
 type, since a decimal can represent every possible C# integral value.
 All other numeric conversions to and from a decimal type must be
 explicit.

Arithmetic Operators

The arithmetic operators (+, -, *, /, %) are defined for all
 numeric types except the 8- and 16-bit integral types:
+ Addition
- Subtraction
* Multiplication
/ Division
% Remainder after division

Increment and Decrement Operators

The increment and decrement operators (++, −−) increment and
 decrement numeric types by 1. The operator can either follow or precede
 the variable, depending on whether you want its value
 before or after the
 increment/decrement. For example:
int x = 0, y = 0;
Console.WriteLine (x++); // Outputs 0; x is now 1
Console.WriteLine (++y); // Outputs 1; y is now 1

Specialized Integral Operations

Integral division

Division operations on integral types always truncate
 remainders (round towards zero). Dividing by a variable whose value is
 zero generates a runtime error (a DivideByZeroException):
int a = 2 / 3; // 0

int b = 0;
int c = 5 / b; // throws DivideByZeroException
Dividing by the literal or
 constant 0 generates a compile-time error.

Integral overflow

At runtime, arithmetic operations on integral types can
 overflow. By default, this happens silently—no exception is thrown and
 the result exhibits “wraparound” behavior, as though the computation was
 done on a larger integer type and the extra significant bits
 discarded. For example, decrementing the minimum possible int value results in the maximum possible
 int value:
int a = int.MinValue;
a--;
Console.WriteLine (a == int.MaxValue); // True

Integral arithmetic overflow check operators

The checked operator
 tells the runtime to generate an OverflowException
 rather than overflowing silently when an integral expression or
 statement exceeds the arithmetic limits of that type. The checked operator affects expressions with
 the ++, −−, +,
 − (binary and unary), *, /, and
 explicit conversion operators between integral types.
Note
The checked operator has no
 effect on the double and float types (which overflow to special
 “infinite” values, as we’ll see soon) and no effect on the decimal type (which is always
 checked).

checked can be used around
 either an expression or a statement block. For example:
int a = 1000000;
int b = 1000000;

int c = checked (a * b); // Checks just the expression.

checked // Checks all expressions
{ // in statement block.
 ...
 c = a * b;
 ...
}
You can make arithmetic overflow checking the default for all
 expressions in a program by
 compiling with the /checked+
 command-line switch (in Visual Studio, go to Advanced Build Settings).
 If you then need to disable overflow checking just for specific
 expressions or statements, you can do so with the unchecked operator.
 For example, the following code will not throw exceptions—even if
 compiled with /checked+:
int x = int.MaxValue;
int y = unchecked (x + 1);
unchecked { int z = x + 1; }

Overflow checking for constant expressions

Regardless of the /checked compiler switch, expressions
 evaluated at compile time are always overflow-checked—unless you apply
 the unchecked operator:
int x = int.MaxValue + 1; // Compile-time error
int y = unchecked (int.MaxValue + 1); // No errors

Bitwise operators

C# supports the following bitwise operators:
	Operator
	Meaning
	Sample
 expression
	Result

	~
	Complement
	~0xfU
	0xfffffff0U

	&
	And
	0xf0 & 0x33
	0x30

	|
	Or
	0xf0 | 0x33
	0xf3

	^
	Exclusive Or
	0xff00 ^ 0x0ff0
	0xf0f0

	<<
	Shift left
	0x20 << 2
	0x80

	>>
	Shift right
	0x20 >> 1
	0x10

8- and 16-Bit Integrals

The 8- and 16-bit integral types are byte, sbyte, short, and ushort. These types
 lack their own arithmetic operators, so C# implicitly converts them to
 larger types as required. This can cause a compile-time error when
 trying to assign the result back to a small integral type:
short x = 1, y = 1;
short z = x + y; // Compile-time error
In this case, x and y are implicitly converted to int so that the addition can be performed.
 This means the result is also an int,
 which cannot be implicitly cast back to a short (because it could cause loss of data).
 To make this compile, we must add an explicit cast:
short z = (short) (x + y); // OK

Special Float and Double Values

Unlike integral types, floating-point types have values
 that certain operations treat specially. These special values are
 NaN (Not a Number), +∞, −∞, and −0. The float and
 double classes have constants for
 NaN, +∞, and −∞, as well as other
 values (MaxValue, MinValue, and Epsilon). For
 example:
Console.WriteLine (double.NegativeInfinity); // -Infinity
The constants that represent special
 values for double and float are as follows:
	Special
 value
	Double
 constant
	Float
 constant

	NaN
	double.NaN
	float.NaN

	+∞
	double.PositiveInfinity
	float.PositiveInfinity

	−∞
	double.NegativeInfinity
	float.NegativeInfinity

	−0
	−0.0
	−0.0f

Dividing a nonzero number by zero results in an infinite
 value. For example:
Console.WriteLine (1.0 / 0.0); // Infinity
Console.WriteLine (−1.0 / 0.0); // -Infinity
Console.WriteLine (1.0 / −0.0); // -Infinity
Console.WriteLine (−1.0 / −0.0); // Infinity
Dividing zero by zero, or subtracting infinity from infinity,
 results in a NaN. For example:
Console.WriteLine (0.0 / 0.0); // NaN
Console.WriteLine ((1.0 / 0.0) − (1.0 / 0.0)); // NaN
When using ==, a NaN value is
 never equal to another value, even another NaN value:
Console.WriteLine (0.0 / 0.0 == double.NaN); // False
To test whether a value is NaN, you must use the float.IsNaN or
 double.IsNaN
 method:
Console.WriteLine (double.IsNaN (0.0 / 0.0)); // True
When using object.Equals,
 however, two NaN values are equal:
Console.WriteLine (object.Equals (0.0 / 0.0, double.NaN)); // True
Note
NaNs are sometimes useful in representing special values. In
 WPF, double.NaN represents a
 measurement whose value is “Automatic”. Another way to represent such
 a value is with a nullable type (Chapter 4); another is with a custom
 struct that wraps a numeric type and adds an additional field (Chapter 3).

float and double follow the specification of the IEEE
 754 format types, supported natively by almost all processors. You can
 find detailed information on the behavior of these types at http://www.ieee.org.

double Versus decimal

double is useful for
 scientific computations (such as computing spatial coordinates).
 decimal is useful for
 financial computations and values that are “man-made” rather than the
 result of real-world measurements. Here’s a summary of the
 differences.
	Category
	Double
	decimal

	Internal
 representation
	Base 2
	Base 10

	Decimal
 precision
	15–16 significant
 figures
	28–29 significant
 figures

	Range
	±(~10−324 to
 ~10308)
	±(~10−28 to
 ~1028)

	Special
 values
	+0, −0, +∞, −∞, and
 NaN
	None

	Speed
	Native to
 processor
	Non-native to processor
 (about 10 times slower than double)

Real Number Rounding Errors

float and double internally represent numbers in base 2.
 For this reason, only numbers expressible in base 2 are represented
 precisely. Practically, this means most literals with a fractional
 component (which are in base 10) will not be represented precisely. For
 example:
float tenth = 0.1f; // Not quite 0.1
float one = 1f;
Console.WriteLine (one - tenth * 10f); // −1.490116E-08
This is why float and double are bad for financial calculations. In
 contrast, decimal works in base 10
 and so can precisely represent numbers expressible in base 10 (as well
 as its factors, base 2 and base 5). Since real literals are in base 10,
 decimal can precisely represent
 numbers such as 0.1. However, neither double nor decimal can precisely represent a fractional
 number whose base 10 representation is recurring:
decimal m = 1M / 6M; // 0.1666666666666666666666666667M
double d = 1.0 / 6.0; // 0.16666666666666666
This leads to accumulated rounding errors:
decimal notQuiteWholeM = m+m+m+m+m+m; // 1.0000000000000000000000000002M
double notQuiteWholeD = d+d+d+d+d+d; // 0.99999999999999989
which breaks equality and comparison operations:
Console.WriteLine (notQuiteWholeM == 1M); // False
Console.WriteLine (notQuiteWholeD < 1.0); // True

Boolean Type and Operators

C#’s bool type (aliasing the
 System.Boolean type) is a logical value
 that can be assigned the literal true
 or false.
Although a Boolean value requires only one bit of storage, the
 runtime will use one byte of memory, since this is the minimum chunk that
 the runtime and processor can efficiently work with. To avoid space
 inefficiency in the case of arrays, the Framework provides a BitArray class in the System.Collections namespace that is designed to
 use just one bit per Boolean value.
Bool Conversions

No conversions can be made from the bool type to numeric types or vice
 versa.

Equality and Comparison Operators

== and != test for equality
 and inequality of any type, but always return a bool value.[3] Value types typically have a very simple notion of
 equality:
int x = 1;
int y = 2;
int z = 1;
Console.WriteLine (x == y); // False
Console.WriteLine (x == z); // True
For reference types, equality, by default, is based on
 reference, as opposed to the actual
 value of the underlying object (more on this in
 Chapter 6):
public class Dude
{
 public string Name;
 public Dude (string n) { Name = n; }
}
...
Dude d1 = new Dude ("John");
Dude d2 = new Dude ("John");
Console.WriteLine (d1 == d2); // False
Dude d3 = d1;
Console.WriteLine (d1 == d3); // True
The equality and comparison operators, ==, !=,
 <, >, >=, and <=, work for all numeric types, but should
 be used with caution with real numbers (as we saw in Real Number Rounding Errors). The comparison operators also
 work on enum type members, by
 comparing their underlying integral values. We describe this in Enums in Chapter 3.
We explain the equality and comparison operators in greater detail
 in Operator Overloading in Chapter 4, and in Equality Comparison and Order Comparison
 in Chapter 6.

Conditional Operators

The && and
 || operators test for
 and and or conditions. They are frequently
 used in conjunction with the ! operator, which
 expresses not. In this example, the UseUmbrella method returns true if it’s rainy or sunny (to protect us
 from the rain or the sun), as long as it’s not also windy (since
 umbrellas are useless in the wind):
static bool UseUmbrella (bool rainy, bool sunny, bool windy)
{
 return !windy && (rainy || sunny);
}
The && and || operators
 short-circuit evaluation when possible. In the
 preceding example, if it is windy, the expression (rainy || sunny) is not even evaluated.
 Short-circuiting is essential in allowing expressions such as the
 following to run without throwing a NullReferenceException:
if (sb != null && sb.Length > 0) ...
The & and | operators also test for
 and and or conditions:
return !windy & (rainy | sunny);
The difference is that they do not
 short-circuit. For this reason, they are rarely used in place
 of conditional operators.
Note
Unlike in C and C++, the & and | operators perform (non-short-circuiting)
 Boolean comparisons when applied to bool expressions. The & and | operators perform bitwise operations only when
 applied to numbers.

The conditional operator (more commonly
 called the ternary operator, as it’s the only
 operator that takes three operands) has the form q ? a : b, where if condition q is true, a is evaluated, else b is evaluated. For example:
static int Max (int a, int b)
{
 return (a > b) ? a : b;
}
The conditional operator is particularly useful in LINQ queries
 (Chapter 8).

Strings and Characters

C#’s char type (aliasing the
 System.Char type) represents a Unicode
 character and occupies 2 bytes. A char literal is specified
 inside single quotes:
char c = 'A'; // Simple character
Escape sequences express characters
 that cannot be expressed or interpreted literally. An escape sequence is a
 backslash followed by a character with a special meaning.
 For example:
char newLine = '\n';
char backSlash = '\\';
The escape sequence characters are shown in Table 2-2.
Table 2-2. Escape sequence characters
	Char
	Meaning
	Value

	\'
	Single quote
	0x0027

	\"
	Double quote
	0x0022

	\\
	Backslash
	0x005C

	\0
	Null
	0x0000

	\a
	Alert
	0x0007

	\b
	Backspace
	0x0008

	\f
	Form feed
	0x000C

	\n
	New line
	0x000A

	\r
	Carriage return
	0x000D

	\t
	Horizontal tab
	0x0009

	\v
	Vertical tab
	0x000B

The \u (or \x) escape sequence lets you specify any
 Unicode character via its four-digit hexadecimal
 code:
char copyrightSymbol = '\u00A9';
char omegaSymbol = '\u03A9';
char newLine = '\u000A';
Char Conversions

An implicit conversion from a char to a numeric type
 works for the numeric types that can accommodate an unsigned short. For other numeric types, an explicit
 conversion is required.

String Type

C#’s string type (aliasing the System.String type, covered in depth in Chapter 6) represents an immutable sequence of
 Unicode characters. A string literal is specified inside double
 quotes:
string a = "Heat";
Note
string is a reference type,
 rather than a value type. Its equality operators, however, follow
 value-type semantics:
string a = "test";
string b = "test";
Console.Write (a == b); // True

The escape sequences that are valid for char literals also work inside strings:
string a = "Here's a tab:\t";
The cost of this is that whenever you need a literal backslash,
 you must write it twice:
string a1 = "\\\\server\\fileshare\\helloworld.cs";
To avoid this problem, C# allows verbatim string literals. A verbatim
 string literal is prefixed with @ and does not support
 escape sequences.
The following verbatim string is
 identical to the preceding one:
string a2 = @ "\\server\fileshare\helloworld.cs";
A verbatim string literal can also span multiple lines:
string escaped = "First Line\r\nSecond Line";
string verbatim = @"First Line
Second Line";

// Assuming your IDE uses CR-LF line separators:
Console.WriteLine (escaped == verbatim); // True
You can include the double-quote character in a verbatim literal
 by writing it twice:
string xml = @"<customer id=""123""></customer>";
String concatenation

The + operator
 concatenates two strings:
string s = "a" + "b";
One of the operands may be a nonstring value, in which case
 ToString is called on that value.
 For example:
string s = "a" + 5; // a5
Using the + operator
 repeatedly to build up a string is inefficient; a better solution is
 to use the System.Text.StringBuilder type (described in
 Chapter 6).

String comparisons

string does not support
 < and > operators for comparisons. You must use
 the string’s CompareTo method,
 described in Chapter 6.

Arrays

An array represents a fixed number of variables (called
 elements) of a particular type. The elements in an
 array are always stored in a contiguous block of memory, providing highly
 efficient access.
An array is denoted with square brackets after the element
 type. For example:
char[] vowels = new char[5]; // Declare an array of 5 characters
Square brackets also index the array, accessing
 a particular element by position:
vowels[0] = 'a';
vowels[1] = 'e';
vowels[2] = 'i';
vowels[3] = 'o';
vowels[4] = 'u';
Console.WriteLine (vowels[1]); // e
This prints “e” because array indexes start at 0. We can use a
 for loop statement to iterate through
 each element in the array.
The for
 loop in this example cycles the integer i from 0 to
 4:
for (int i = 0; i < vowels.Length; i++)
 Console.Write (vowels[i]); // aeiou
The Length property of an array
 returns the number of elements in the array. Once an array has been
 created, its length cannot be changed. The System.Collection namespace and subnamespaces
 provide higher-level data structures, such as dynamically sized arrays and
 dictionaries.
An array initialization expression lets
 you declare and populate an array in a single step:
char[] vowels = new char[] {'a','e','i','o','u'};
or simply:
char[] vowels = {'a','e','i','o','u'};
All arrays inherit from the System.Array class, providing common services
 for all arrays. These members include methods to get and set elements
 regardless of the array type, and are described in The Array Class in Chapter 7.
Default Element Initialization

Creating an array always preinitializes the elements with
 default values. The default value for a type is the result of a bitwise
 zeroing of memory. For example, consider creating an array of integers.
 Since int is a value type, this
 allocates 1,000 integers in one contiguous block of memory. The default
 value for each element will be 0:
int[] a = new int[1000];
Console.Write (a[123]); // 0
Value types versus reference types

Whether an array element type is a value type or a
 reference type has important performance implications. When the
 element type is a value type, each element value is allocated as part
 of the array. For example:
public struct Point { public int X, Y; }
...

Point[] a = new Point[1000];
int x = a[500].X; // 0
Had Point been a class,
 creating the array would have merely allocated 1,000 null
 references:
public class Point { public int X, Y; }

...
Point[] a = new Point[1000];
int x = a[500].X; // Runtime error, NullReferenceException
To avoid this error, we must
 explicitly instantiate 1,000 Points
 after instantiating the array:
Point[] a = new Point[1000];
for (int i = 0; i < a.Length; i++) // Iterate i from 0 to 999
 a[i] = new Point(); // Set array element i with new point
An array itself is always a reference type
 object, regardless of the element type. For instance, the following is
 legal:
int[] a = null;

Multidimensional Arrays

Multidimensional arrays come in two varieties:
 rectangular and jagged.
 Rectangular arrays represent an n-dimensional block
 of memory, and jagged arrays are arrays of arrays.
Rectangular arrays

Rectangular arrays are declared using commas to separate
 each dimension. The following declares a rectangular two-dimensional
 array, where the dimensions are 3 by
 3:
int[,] matrix = new int[3,3];
The GetLength method of
 an array returns the length for a given dimension (starting at
 0):
for (int i = 0; i < matrix.GetLength(0); i++)
 for (int j = 0; j < matrix.GetLength(1); j++)
 matrix[i,j] = i * 3 + j;
A rectangular array can be initialized as follows (to create an
 array identical to the previous example):
int[,] matrix = new int[,]
{
 {0,1,2},
 {3,4,5},
 {6,7,8}
};

Jagged arrays

Jagged arrays are declared using successive square
 brackets to represent each dimension. Here is an example of declaring
 a jagged two-dimensional array, where the outermost dimension is
 3:
int[][] matrix = new int[3][];
Note
Interestingly, this is new
 int[3][] and not new
 int[][3]. Eric Lippert has written an excellent article on why
 this is so: see http://albahari.com/jagged.

The inner dimensions aren’t specified in the declaration
 because, unlike a rectangular array, each inner array can be an
 arbitrary length. Each inner array is implicitly initialized to null
 rather than an empty array. Each inner array must be created
 manually:
for (int i = 0; i < matrix.Length; i++)
{
 matrix[i] = new int[3]; // Create inner array
 for (int j = 0; j < matrix[i].Length; j++)
 matrix[i][j] = i * 3 + j;
}
A jagged array can be initialized as follows (to create an array
 identical to the previous example with an additional element at the
 end):
int[][] matrix = new int[][]
{
 new int[] {0,1,2},
 new int[] {3,4,5},
 new int[] {6,7,8,9}
};

Simplified Array Initialization Expressions

There are two ways to shorten array initialization
 expressions. The first is to omit the new operator and type qualifications:
char[] vowels = {'a','e','i','o','u'};

int[,] rectangularMatrix =
{
 {0,1,2},
 {3,4,5},
 {6,7,8}
};

int[][] jaggedMatrix =
{
 new int[] {0,1,2},
 new int[] {3,4,5},
 new int[] {6,7,8}
};
The second approach is to use the var keyword, which
 tells the compiler to implicitly type a local variable:
var i = 3; // i is implicitly of type int
var s = "sausage"; // s is implicitly of type string

// Therefore:

var rectMatrix = new int[,] // rectMatrix is implicitly of type int[,]
{
 {0,1,2},
 {3,4,5},
 {6,7,8}
};

var jaggedMat = new int[][] // jaggedMat is implicitly of type int[][]
{
 new int[] {0,1,2},
 new int[] {3,4,5},
 new int[] {6,7,8}
};
Implicit typing can be taken one stage further with
 arrays: you can omit the type qualifier after the new keyword and have the compiler
 infer the array type:
var vowels = new[] {'a','e','i','o','u'}; // Compiler infers char[]
For this to work, the elements must all be implicitly convertible
 to a single type (and at least one of the elements must be of that type,
 and there must be exactly one best type). For example:
var x = new[] {1,10000000000}; // all convertible to long

Bounds Checking

All array indexing is bounds-checked by the runtime. An
 IndexOutOfRangeException is thrown if you use
 an invalid index:
int[] arr = new int[3];
arr[3] = 1; // IndexOutOfRangeException thrown
As with Java, array bounds checking is necessary for type safety and
 simplifies debugging.
Note
Generally, the performance hit from bounds checking is minor,
 and the JIT (Just-in-Time) compiler can perform optimizations, such as
 determining in advance whether all indexes will be safe before
 entering a loop, thus avoiding a check on each iteration. In addition,
 C# provides “unsafe” code that can explicitly bypass bounds checking
 (see Unsafe Code and Pointers in Chapter 4).

Variables and Parameters

A variable represents a storage location that has a
 modifiable value. A variable can be a local variable,
 parameter (value,
 ref, or out),
 field (instance or
 static), or array
 element.
The Stack and the Heap

The stack and the heap are the places where variables and
 constants reside. Each has very different lifetime semantics.
Stack

The stack is a block of memory for storing local
 variables and parameters. The stack logically grows and shrinks as a
 function is entered and exited. Consider the following method (to
 avoid distraction, input argument checking is ignored):
static int Factorial (int x)
{
 if (x == 0) return 1;
 return x * Factorial (x-1);
}
This method is recursive, meaning that it calls itself. Each
 time the method is entered, a new int is allocated on the stack, and each time
 the method exits, the int is
 deallocated.

Heap

The heap is a block of memory in which objects (i.e., reference-type
 instances) reside. Whenever a new object is created, it is allocated
 on the heap, and a reference to that object is returned. During a
 program’s execution, the heap starts filling up as new objects are
 created. The runtime has a garbage collector that periodically
 deallocates objects from the heap, so your computer does not run out
 of memory. An object is eligible for deallocation as soon as it’s not
 referenced by anything that’s itself “alive.”
In the following example, we start by creating a StringBuilder object referenced by the
 variable ref1, and then write out
 its content. That StringBuilder
 object is then immediately eligible for garbage collection, because
 nothing subsequently uses it.
Then, we create another StringBuilder referenced by variable
 ref2, and copy that reference to
 ref3. Even though ref2 is not used after that point, ref3 keeps the same StringBuilder object alive—ensuring that it
 doesn’t become eligible for collection until we’ve finished using
 ref3.
using System;
using System.Text;

class Test
{
 static void Main()
 {
 StringBuilder ref1 = new StringBuilder ("object1");
 Console.WriteLine (ref1);
 // The StringBuilder referenced by ref1 is now eligible for GC.

 StringBuilder ref2 = new StringBuilder ("object2");
 StringBuilder ref3 = ref2;
 // The StringBuilder referenced by ref2 is NOT yet eligible for GC.

 Console.WriteLine (ref3); // object2
 }
}
Value-type instances (and object references) live wherever the
 variable was declared. If the instance was declared as a field within
 an object, or as an array element, that instance lives on the
 heap.
Note
You can’t explicitly delete objects in C#, as you can in C++.
 An unreferenced object is eventually collected by the garbage
 collector.

The heap also stores static fields and constants. Unlike objects
 allocated on the heap (which can get garbage-collected), these live
 until the application domain is torn down.

Definite Assignment

C# enforces a definite assignment policy. In practice,
 this means that outside of an unsafe
 context, it’s impossible to access uninitialized memory. Definite
 assignment has three implications:
	Local variables must be assigned a value before they can be
 read.

	Function arguments must be supplied when a method is called
 (unless marked as optional—see Optional parameters).

	All other variables (such as fields and array elements) are
 automatically initialized by the runtime.

For example, the following code results in a compile-time
 error:
static void Main()
{
 int x;
 Console.WriteLine (x); // Compile-time error
}
Fields and array elements are automatically initialized with the
 default values for their type. The following code outputs 0, because array elements are implicitly
 assigned to their default
 values:
static void Main()
{
 int[] ints = new int[2];
 Console.WriteLine (ints[0]); // 0
}
The following code outputs 0,
 because fields are implicitly assigned a default value:
class Test
{
 static int x;
 static void Main() { Console.WriteLine (x); } // 0
}

Default Values

All type instances have a default value. The default value
 for the predefined types is the result of a bitwise zeroing of
 memory:
	Type
	Default
 value

	All reference
 types
	null

	All numeric and enum
 types
	0

	char type
	'\0'

	bool type
	false

You can obtain the default value for any type using the default keyword (in
 practice, this is useful with generics which we’ll cover in Chapter 3):
decimal d = default (decimal);
The default value in a custom value type (i.e., struct) is the same as the default value for
 each field defined by the custom type.

Parameters

A method has a sequence of parameters. Parameters define
 the set of arguments that must be provided for that method. In this
 example, the method Foo has a single
 parameter named p, of type int:
static void Foo (int p)
{
 p = p + 1; // Increment p by 1
 Console.WriteLine(p); // Write p to screen
}
static void Main() { Foo (8); }
You can control how parameters are passed with the ref and out
 modifiers:
	Parameter
 modifier
	Passed
 by
	Variable must be
 definitely assigned

	(None)
	Value
	Going
 in

	ref
	Reference
	Going
 in

	out
	Reference
	Going
 out

Passing arguments by value

By default, arguments in C# are passed by
 value, which is by far the most common case. This means a
 copy of the value is created when passed to the method:
class Test
{
 static void Foo (int p)
 {
 p = p + 1; // Increment p by 1
 Console.WriteLine (p); // Write p to screen
 }

 static void Main()
 {
 int x = 8;
 Foo (x); // Make a copy of x
 Console.WriteLine (x); // x will still be 8
 }
}
Assigning p a new value does
 not change the contents of x, since
 p and x reside in different memory
 locations.
Passing a reference-type argument by value copies the
 reference, but not the object. In the following
 example, Foo sees the same StringBuilder object that Main instantiated, but has an independent
 reference to it. In other words, sb and fooSB are separate variables that reference
 the same StringBuilder
 object:
class Test
{
 static void Foo (StringBuilder fooSB)
 {
 fooSB.Append ("test");
 fooSB = null;
 }

 static void Main()
 {
 StringBuilder sb = new StringBuilder();
 Foo (sb);
 Console.WriteLine (sb.ToString()); // test
 }
}
Because fooSB is a
 copy of a reference, setting it to null doesn’t make sb null. (If, however, fooSB was declared and called with the
 ref modifier, sb would become
 null.)

The ref modifier

To pass by reference, C# provides the
 ref parameter
 modifier. In the following example, p and x
 refer to the same memory locations:
class Test
{
 static void Foo (ref int p)
 {
 p = p + 1; // Increment p by 1
 Console.WriteLine (p); // Write p to screen
 }

 static void Main()
 {
 int x = 8;
 Foo (ref x); // Ask Foo to deal directly with x
 Console.WriteLine (x); // x is now 9
 }
}
Now assigning p a new value
 changes the contents of x. Notice
 how the ref modifier is required
 both when writing and when calling the method.[4] This makes it very clear what’s going on.
The ref modifier is essential
 in implementing a swap method (later, in Generics in
 Chapter 3, we will show how
 to write a swap method that works with any type):
class Test
{
 static void Swap (ref string a, ref string b)
 {
 string temp = a;
 a = b;
 b = temp;
 }

 static void Main()
 {
 string x = "Penn";
 string y = "Teller";
 Swap (ref x, ref y);
 Console.WriteLine (x); // Teller
 Console.WriteLine (y); // Penn
 }
}
Note
A parameter can be passed by reference or by value, regardless
 of whether the parameter type is a reference type or a value
 type.

The out modifier

An out argument is like
 a ref argument, except it:
	Need not be assigned before going into the function

	Must be assigned before it comes out of
 the function

The out modifier is most
 commonly used to get multiple return values back from a method. For
 example:
class Test
{
 static void Split (string name, out string firstNames,
 out string lastName)
 {
 int i = name.LastIndexOf (' ');
 firstNames = name.Substring (0, i);
 lastName = name.Substring (i + 1);
 }

 static void Main()
 {
 string a, b;
 Split ("Stevie Ray Vaughan", out a, out b);
 Console.WriteLine (a); // Stevie Ray
 Console.WriteLine (b); // Vaughan
 }
}
Like a ref parameter, an
 out parameter is passed by
 reference.

Implications of passing by reference

When you pass an argument by reference, you alias the storage
 location of an existing variable rather than create a new storage
 location. In the following example, the variables x and y
 represent the same instance:
class Test
{
 static int x;

 static void Main() { Foo (out x); }

 static void Foo (out int y)
 {
 Console.WriteLine (x); // x is 0
 y = 1; // Mutate y
 Console.WriteLine (x); // x is 1
 }
}

The params modifier

The params parameter
 modifier may be specified on the last parameter of a method so that the method accepts any
 number of parameters of a particular type. The parameter type must be
 declared as an array. For example:
class Test
{
 static int Sum (params int[] ints)
 {
 int sum = 0;
 for (int i = 0; i < ints.Length; i++)
 sum += ints[i]; // Increase sum by ints[i]
 return sum;
 }

 static void Main()
 {
 int total = Sum (1, 2, 3, 4);
 Console.WriteLine (total); // 10
 }
}
You can also supply a params
 argument as an ordinary array. The first line in Main is semantically equivalent to
 this:
int total = Sum (new int[] { 1, 2, 3, 4 });

Optional parameters

From C# 4.0, methods, constructors, and indexers (Chapter 3) can declare optional parameters. A parameter is
 optional if it specifies a default value in its
 declaration:
void Foo (int x = 23) { Console.WriteLine (x); }
Optional parameters may be omitted when calling the
 method:
Foo(); // 23
The default argument of 23 is actually passed
 to the optional parameter x—the
 compiler bakes the value 23 into the compiled code at the
 calling side. The preceding call to Foo is semantically identical to:
Foo (23);
because the compiler simply substitutes the default value of an
 optional parameter wherever it is used.
Warning
Adding an optional parameter to a public method that’s called
 from another assembly requires recompilation of both assemblies—just as though the
 parameter were mandatory.

The default value of an optional parameter must be specified by
 a constant expression, or a parameterless constructor of a value type.
 Optional parameters cannot be marked with ref or out.
Mandatory parameters must occur before
 optional parameters in both the method declaration and the method call
 (the exception is with params
 arguments, which still always come last). In the following example,
 the explicit value of 1 is passed
 to x, and the default value of
 0 is passed to y:
void Foo (int x = 0, int y = 0) { Console.WriteLine (x + ", " + y); }

void Test()
{
 Foo(1); // 1, 0
}
To do the converse (pass a default value to x and an explicit value to y) you must combine optional parameters with
 named arguments.

Named arguments

Rather than identifying an argument by position, you can
 identify an argument by name. For example:
void Foo (int x, int y) { Console.WriteLine (x + ", " + y); }

void Test()
{
 Foo (x:1, y:2); // 1, 2
}
Named arguments can occur in any order. The following calls to
 Foo are semantically
 identical:
Foo (x:1, y:2);
Foo (y:2, x:1);
Note
A subtle difference is that argument expressions are evaluated
 in the order in which they appear at the
 calling site. In general, this makes a
 difference only with interdependent side-effecting expressions such
 as the following, which writes 0,
 1:
int a = 0;
Foo (y: ++a, x: --a); // ++a is evaluated first
Of course, you would almost certainly avoid writing such code
 in practice!

You can mix named and positional parameters:
Foo (1, y:2);
However, there is a restriction: positional parameters must come
 before named arguments. So we
 couldn’t call Foo like this:
Foo (x:1, 2); // Compile-time error
Named arguments are particularly useful in conjunction with
 optional parameters. For instance, consider the following
 method:
void Bar (int a = 0, int b = 0, int c = 0, int d = 0) { ... }
We can call this supplying only a value for d as follows:
Bar (d:3);
This is particularly useful when calling COM APIs, and is
 discussed in detail in Chapter 25.

var—Implicitly Typed Local Variables

It is often the case that you declare and initialize a variable in
 one step. If the compiler is able to infer the type from the
 initialization expression, you can use the keyword var (introduced in C#
 3.0) in place of the type declaration. For example:
var x = "hello";
var y = new System.Text.StringBuilder();
var z = (float)Math.PI;
This is precisely equivalent to:
string x = "hello";
System.Text.StringBuilder y = new System.Text.StringBuilder();
float z = (float)Math.PI;
Because of this direct equivalence, implicitly typed variables are
 statically typed. For example, the following generates a compile-time
 error:
var x = 5;
x = "hello"; // Compile-time error; x is of type int
Note
var can decrease code
 readability in the case when you can’t deduce the type
 purely by looking at the variable declaration. For
 example:
Random r = new Random();
var x = r.Next();
What type is x?

In Anonymous Types in Chapter 4, we will describe a scenario where
 the use of var is mandatory.

Expressions and Operators

An expression essentially denotes a value.
 The simplest kinds of expressions are constants and variables. Expressions
 can be transformed and combined using operators. An operator takes one or more input
 operands to output a new
 expression.
Here is an example of a constant expression:
12
We can use the * operator to
 combine two operands (the literal expressions 12 and 30),
 as follows:
12 * 30
Complex expressions can be built because an operand may itself be an
 expression, such as the operand (12 *
 30) in the following example:
1 + (12 * 30)
Operators in C# can be classed as unary, binary, or ternary—depending on the number of
 operands they work on (one, two, or three). The binary operators always
 use infix notation, where the operator is placed
 between the two operands.
Primary Expressions

Primary expressions include expressions composed of
 operators that are intrinsic to the basic plumbing of the language. Here
 is an example:
Math.Log (1)
This expression is composed of two primary expressions. The first
 expression performs a member-lookup (with the . operator), and the
 second expression performs a method call (with the () operator).

Void Expressions

A void expression is an expression that has no value. For
 example:
Console.WriteLine (1)
A void expression, since it has no value, cannot be used as an
 operand to build more complex expressions:
1 + Console.WriteLine (1) // Compile-time error

Assignment Expressions

An assignment expression uses the = operator to assign the result of another
 expression to a variable. For example:
x = x * 5
An assignment expression is not a void expression—it has a value
 of whatever was assigned, and so can be incorporated into another
 expression. In the following example, the expression assigns 2 to
 x and 10 to y:
y = 5 * (x = 2)
This style of expression can be used to initialize multiple
 values:
a = b = c = d = 0
The compound assignment operators are
 syntactic shortcuts that combine assignment with another operator. For
 example:
x *= 2 // equivalent to x = x * 2
x <<= 1 // equivalent to x = x << 1
(A subtle exception to this rule is with
 events, which we describe in Chapter 4: the += and −=
 operators here are treated specially and map to the event’s add and remove accessors.)

Operator Precedence and Associativity

When an expression contains multiple operators, precedence and associativity determine the order of their evaluation.
 Operators with higher precedence execute before operators of lower
 precedence. If the operators have the same precedence, the operator’s
 associativity determines the order of evaluation.
Precedence

The following expression:
1 + 2 * 3
is evaluated as follows because * has a higher precedence than +:
1 + (2 * 3)

Left-associative operators

Binary operators (except for assignment, lambda, and
 null coalescing operators) are left-associative;
 in other words, they are evaluated from left to right. For example,
 the following expression:
8 / 4 / 2
is evaluated as follows due to left associativity:
(8 / 4) / 2 // 1
You can insert parentheses to change the actual order of
 evaluation:
8 / (4 / 2) // 4

Right-associative operators

The assignment operators, lambda,
 null coalescing, and conditional operator are
 right-associative; in other words, they are
 evaluated from right to left. Right associativity allows multiple
 assignments such as the following to compile:
x = y = 3;
This first assigns 3 to
 y, and then assigns the result of
 that expression (3) to x.

Operator Table

Table 2-3 lists
 C#’s operators in order of precedence. Operators in the same category
 have the same precedence. We explain user-overloadable operators in
 Operator Overloading in Chapter 4.
Table 2-3. C# operators (categories in order of precedence)
	Category
	Operator
 symbol
	Operator
 name
	Example
	User-overloadable

	Primary
	.
	Member
 access
	x.y
	No

	 	-> (unsafe)
	Pointer to
 struct
	x->y
	No

	 	()
	Function
 call
	x()
	No

	 	[]
	Array/index
	a[x]
	Via
 indexer

	 	++
	Post-increment
	x++
	Yes

	 	−−
	Post-decrement
	x−−
	Yes

	 	new
	Create
 instance
	new Foo()
	No

	 	stackalloc
	Unsafe stack
 allocation
	stackalloc(10)
	No

	 	typeof
	Get type from
 identifier
	typeof(int)
	No

	 	checked
	Integral overflow check
 on
	checked(x)
	No

	 	unchecked
	Integral overflow check
 off
	unchecked(x)
	No

	 	default
	Default
 value
	default(char)
	No

	 	await
	Await
	await myTask
	No

	Unary
	sizeof
	Get size of
 struct
	sizeof(int)w
	No

	 	+
	Positive value
 of
	+x
	Yes

	 	−
	Negative value
 of
	−x
	Yes

	 	!
	Not
	!x
	Yes

	 	-
	Bitwise
 complement
	-x
	Yes

	 	++
	Pre-increment
	++x
	Yes

	 	−−
	Pre-decrement
	−−x
	Yes

	 	()
	Cast
	(int)x
	No

	 	* (unsafe)
	Value at
 address
	*x
	No

	 	& (unsafe)
	Address of
 value
	&x
	No

	Multiplicative
	*
	Multiply
	x * y
	Yes

	 	/
	Divide
	x / y
	Yes

	 	%
	Remainder
	x % y
	Yes

	Additive
	+
	Add
	x + y
	Yes

	 	−
	Subtract
	x − y
	Yes

	Shift
	<<
	Shift left
	x >> 1
	Yes

	 	>>
	Shift
 right
	x << 1
	Yes

	Relational
	<
	Less than
	x < y
	Yes

	 	>
	Greater
 than
	x > y
	Yes

	 	<=
	Less than or equal
 to
	x <= y
	Yes

	 	>=
	Greater than or equal
 to
	x >= y
	Yes

	 	is
	Type is or is subclass
 of
	x is y
	No

	 	as
	Type
 conversion
	x as y
	No

	Equality
	==
	Equals
	x == y
	Yes

	 	!=
	Not equals
	x != y
	Yes

	Logical
 And
	&
	And
	x & y
	Yes

	Logical
 Xor
	^
	Exclusive
 Or
	x ^ y
	Yes

	Logical Or
	|
	Or
	x | y
	Yes

	Conditional
 And
	&&
	Conditional
 And
	x && y
	Via &

	Conditional
 Or
	||
	Conditional
 Or
	x || y
	Via |

	Null
 coalescing
	??
	Null
 coalescing
	x ?? y
	No

	Conditional
	?:
	Conditional
	isTrue ? thenThisValue :
 elseThisValue
	No

	Assignment &
 Lambda
	=
	Assign
	x = y
	No

	 	*=
	Multiply self
 by
	x *= 2
	Via *

	 	/=
	Divide self
 by
	x /= 2
	Via /

	 	+=
	Add to
 self
	x += 2
	Via +

	 	−=
	Subtract from
 self
	x −= 2
	Via −

	 	<<=
	Shift self left
 by
	x <<= 2
	Via <<

	 	>>=
	Shift self right
 by
	x >>= 2
	Via >>

	 	&=
	And self
 by
	x &= 2
	Via &

	 	^=
	Exclusive-Or self
 by
	x ^= 2
	Via ^

	 	|=
	Or self by
	x |= 2
	Via |

	 	=>
	Lambda
	x => x + 1
	No

Statements

Functions comprise statements that execute sequentially in the
 textual order in which they appear. A statement block is a series of
 statements appearing between braces (the {} tokens).
Declaration Statements

A declaration statement declares a new variable,
 optionally initializing the variable with an expression. A declaration
 statement ends in a semicolon. You may declare multiple variables of the
 same type in a comma-separated list. For example:
string someWord = "rosebud";
int someNumber = 42;
bool rich = true, famous = false;
A constant declaration is like a variable declaration, except that
 it cannot be changed after it has been declared, and the initialization
 must occur with the declaration (see Constants in
 Chapter 3):
const double c = 2.99792458E08;
c += 10; // Compile-time Error
Local variables

The scope of a local variable or local constant extends
 throughout the current block. You cannot declare another local
 variable with the same name in the current block or in any nested
 blocks. For example:
static void Main()
{
 int x;
 {
 int y;
 int x; // Error - x already defined
 }
 {
 int y; // OK - y not in scope
 }
 Console.Write (y); // Error - y is out of scope
}
Note
A variable’s scope extends in both directions
 throughout its code block. This means that if we moved the initial
 declaration of x in this example
 to the bottom of the method, we’d get the same error. This is in
 contrast to C++ and is somewhat peculiar, given that it’s not legal
 to refer to a variable or constant before it’s declared.

Expression Statements

Expression statements are expressions that are also valid
 statements. An expression statement must either change state or call
 something that might change state. Changing state essentially means
 changing a variable. The possible expression statements are:
	Assignment expressions (including increment and
 decrement expressions)

	Method call expressions (both void and nonvoid)

	Object instantiation expressions

Here are some examples:
// Declare variables with declaration statements:
string s;
int x, y;
System.Text.StringBuilder sb;

// Expression statements
x = 1 + 2; // Assignment expression
x++; // Increment expression
y = Math.Max (x, 5); // Assignment expression
Console.WriteLine (y); // Method call expression
sb = new StringBuilder(); // Assignment expression
new StringBuilder(); // Object instantiation expression
When you call a constructor or a method that returns a value,
 you’re not obliged to use the result. However, unless the constructor or
 method changes state, the statement is completely useless:
new StringBuilder(); // Legal, but useless
new string ('c', 3); // Legal, but useless
x.Equals (y); // Legal, but useless

Selection Statements

C# has the following mechanisms to conditionally control
 the flow of program execution:
	Selection statements (if,
 switch)

	Conditional operator (?:)

	Loop statements (while,
 do..while, for, foreach)

This section covers the simplest two constructs: the if-else statement and the switch statement.
The if statement

An if statement executes
 a statement if a bool expression is
 true. For example:
if (5 < 2 * 3)
 Console.WriteLine ("true"); // true
The statement can be a code block:
if (5 < 2 * 3)
{
 Console.WriteLine ("true");
 Console.WriteLine ("Let's move on!");
}

The else clause

An if statement can
 optionally feature an else clause:
if (2 + 2 == 5)
 Console.WriteLine ("Does not compute");
else
 Console.WriteLine ("False"); // False
Within an else clause, you
 can nest another if
 statement:
if (2 + 2 == 5)
 Console.WriteLine ("Does not compute");
else
 if (2 + 2 == 4)
 Console.WriteLine ("Computes"); // Computes

Changing the flow of execution with braces

An else clause always
 applies to the immediately preceding if statement in the statement block. For
 example:
if (true)
 if (false)
 Console.WriteLine();
 else
 Console.WriteLine ("executes");
This is semantically identical to:
if (true)
{
 if (false)
 Console.WriteLine();
 else
 Console.WriteLine ("executes");
}
We can change the execution flow by
 moving the braces:
if (true)
{
 if (false)
 Console.WriteLine();
}
else
 Console.WriteLine ("does not execute");
With braces, you explicitly state your intention. This can
 improve the readability of nested if statements—even when not required by the
 compiler. A notable exception is with the following pattern:
static void TellMeWhatICanDo (int age)
{
 if (age >= 35)
 Console.WriteLine ("You can be president!");
 else if (age >= 21)
 Console.WriteLine ("You can drink!");
 else if (age >= 18)
 Console.WriteLine ("You can vote!");
 else
 Console.WriteLine ("You can wait!");
}
Here, we’ve arranged the if
 and else statements to mimic the
 “elsif” construct of other languages (and C#’s
 #elif preprocessor
 directive). Visual Studio’s auto-formatting recognizes this pattern and
 preserves the indentation. Semantically, though, each if statement following an else statement is functionally nested within
 the else clause.

The switch statement

switch statements let
 you branch program execution based on a selection of possible values
 that a variable may have. switch
 statements may result in cleaner code than multiple if statements, since switch statements require an expression to
 be evaluated only once. For instance:
static void ShowCard(int cardNumber)
{
 switch (cardNumber)
 {
 case 13:
 Console.WriteLine ("King");
 break;
 case 12:
 Console.WriteLine ("Queen");
 break;
 case 11:
 Console.WriteLine ("Jack");
 break;
 case −1: // Joker is −1
 goto case 12; // In this game joker counts as queen
 default: // Executes for any other cardNumber
 Console.WriteLine (cardNumber);
 break;
 }
}
You can only switch on an expression of a type that can be
 statically evaluated, which restricts it to the built-in integral
 types, bool, and enum types (and
 nullable versions of these—see Chapter 4), and string type.
At the end of each case clause, you must
 say explicitly where execution is to go next, with some kind of jump
 statement. Here are the options:
	break (jumps to the end
 of the switch statement)

	goto case
 x (jumps to another case clause)

	goto default (jumps to
 the default clause)

	Any other jump statement—namely, return, throw, continue, or goto
 label

When more than one value should execute the same code, you can
 list the common cases
 sequentially:
switch (cardNumber)
{
 case 13:
 case 12:
 case 11:
 Console.WriteLine ("Face card");
 break;
 default:
 Console.WriteLine ("Plain card");
 break;
}
This feature of a switch
 statement can be pivotal in terms of producing cleaner code than
 multiple if-else statements.

Iteration Statements

C# enables a sequence of statements to execute repeatedly
 with the while, do-while, for, and foreach statements.
while and do-while loops

while loops
 repeatedly execute a body of code while a bool expression is true. The expression is
 tested before the body of the loop is executed.
 For example:
int i = 0;
while (i < 3)
{
 Console.WriteLine (i);
 i++;
}

OUTPUT:
0
1
2
do-while loops differ
 in functionality from while loops
 only in that they test the expression after the
 statement block has executed (ensuring that the block is always
 executed at least once). Here’s the preceding example rewritten with a
 do-while loop:
int i = 0;
do
{
 Console.WriteLine (i);
 i++;
}
while (i < 3);

for loops

for loops are like
 while loops with special clauses
 for initialization and
 iteration of a loop variable. A for loop contains three clauses as
 follows:
for (initialization-clause; condition-clause; iteration-clause)
 statement-or-statement-block
	Initialization clause
	Executed before the loop begins; used to initialize one or
 more iteration variables

	Condition clause
	The bool expression
 that, while true, will execute the body

	Iteration clause
	Executed after each iteration of the
 statement block; used typically to update the iteration
 variable

For example, the following prints the numbers 0 through
 2:
for (int i = 0; i < 3; i++)
 Console.WriteLine (i);
The following prints the first 10 Fibonacci numbers (where each
 number is the sum of the previous two):
for (int i = 0, prevFib = 1, curFib = 1; i < 10; i++)
{
 Console.WriteLine (prevFib);
 int newFib = prevFib + curFib;
 prevFib = curFib; curFib = newFib;
}
Any of the three parts of the for statement may be omitted. One can
 implement an infinite loop such as the following (though while(true) may be used instead):
for (;;)
 Console.WriteLine ("interrupt me");

foreach loops

The foreach statement
 iterates over each element in an enumerable object. Most of the types
 in C# and the .NET Framework that represent a set or list of elements
 are enumerable. For example, both an array and a string are
 enumerable.
Here is an example of enumerating over the characters in a
 string, from the first character through to the last:
foreach (char c in "beer") // c is the iteration variable
 Console.WriteLine (c);

OUTPUT:
b
e
e
r
We define enumerable objects in Enumeration and Iterators in Chapter 4.

Jump Statements

The C# jump statements are break, continue, goto, return, and throw.
Note
Jump statements obey the reliability rules of try statements (see
 try Statements and Exceptions in Chapter 4). This means that:
	A jump out of a try block
 always executes the try’s
 finally block before reaching
 the target of the jump.

	A jump cannot be made from the inside to the outside of a
 finally block (except via
 throw).

The break statement

The break statement
 ends the execution of the body of an iteration or switch statement:
int x = 0;
while (true)
{
 if (x++ > 5)
 break ; // break from the loop
}
// execution continues here after break
...

The continue statement

The continue
 statement forgoes the remaining statements in a loop and makes an
 early start on the next iteration. The following loop skips even
 numbers:
for (int i = 0; i < 10; i++)
{
 if ((i % 2) == 0) // If i is even,
 continue; // continue with next iteration

 Console.Write (i + " ");
}

OUTPUT: 1 3 5 7 9

The goto statement

The goto statement
 transfers execution to another label within a statement block. The
 form is as follows:
goto statement-label;
Or, when used within a switch
 statement:
goto case case-constant;
A label is a placeholder in a code block that precedes a
 statement, denoted with a colon suffix. The following iterates the
 numbers 1 through 5, mimicking a for loop:
int i = 1;
startLoop:
if (i <= 5)
{
 Console.Write (i + " ");
 i++;
 goto startLoop;
}

OUTPUT: 1 2 3 4 5
The goto case
 case-constant transfers execution to
 another case in a switch block (see
 The switch statement).

The return statement

The return statement
 exits the method and must return an expression of the method’s return
 type if the method is nonvoid:
static decimal AsPercentage (decimal d)
{
 decimal p = d * 100m;
 return p; // Return to the calling method with value
}
A return statement can appear
 anywhere in a method (except in a finally block).

The throw statement

The throw statement
 throws an exception to indicate an error has occurred (see try Statements and Exceptions in Chapter 4):
if (w == null)
 throw new ArgumentNullException (...);

Miscellaneous Statements

The using statement provides an
 elegant syntax for calling Dispose on
 objects that implement IDisposable, within a finally block (see try Statements and Exceptions in Chapter 4 and IDisposable, Dispose, and Close in Chapter 12).
Note
C# overloads the using
 keyword to have independent meanings in different contexts.
 Specifically, the using
 directive is different from the using statement.

The lock statement is a
 shortcut for calling the Enter and
 Exit methods of the Monitor class (see Chapters 14 and
 23).

Namespaces

A namespace is a domain for type names. Types are typically
 organized into hierarchical namespaces, making them easier to find and
 avoiding conflicts. For example, the RSA type that handles public key encryption is
 defined within the following namespace:
System.Security.Cryptography
A namespace forms an integral part of a type’s name. The following
 code calls RSA’s Create method:
System.Security.Cryptography.RSA rsa =
 System.Security.Cryptography.RSA.Create();
Note
Namespaces are independent of assemblies, which are units of
 deployment such as an .exe or
 .dll (described in Chapter 18).
Namespaces also have no impact on member visibility—public, internal, private, and so on.

The namespace keyword defines
 a namespace for types within that block. For example:
namespace Outer.Middle.Inner
{
 class Class1 {}
 class Class2 {}
}
The dots in the namespace indicate a hierarchy of nested namespaces.
 The code that follows is semantically identical to the preceding
 example:
namespace Outer
{
 namespace Middle
 {
 namespace Inner
 {
 class Class1 {}
 class Class2 {}
 }
 }
}
You can refer to a type with its fully qualified name, which includes
 all namespaces from the outermost to the innermost. For example, we could
 refer to Class1 in the preceding
 example as Outer.Middle.Inner.Class1.
Types not defined in any namespace are said to reside in the
 global namespace. The global namespace
 also includes top-level namespaces, such as Outer in our example.
The using Directive

The using directive
 imports a namespace, allowing you to refer to types
 without their fully qualified names. The following imports the previous
 example’s Outer.Middle.Inner
 namespace:
using Outer.Middle.Inner;

class Test
{
 static void Main()
 {
 Class1 c; // Don't need fully qualified name
 }
}
Note
It’s legal (and often desirable) to define the same type name in
 different namespaces. However, you’d typically do so only if it was
 unlikely for a consumer to want to import both namespaces at once. A
 good example, from the .NET Framework, is the TextBox class which is defined both in
 System.Windows.Controls (WPF) and
 System.Web.UI.WebControls
 (ASP.NET).

Rules Within a Namespace

Name scoping

Names declared in outer namespaces can be used
 unqualified within inner namespaces. In this example, the names
 Middle and Class1 are implicitly imported into Inner:
namespace Outer
{
 namespace Middle
 {
 class Class1 {}

 namespace Inner
 {
 class Class2 : Class1 {}
 }
 }
}
If you want to refer to a type in a different branch of your
 namespace hierarchy, you can use a partially qualified name. In the
 following example, we base SalesReport on Common.ReportBase:
namespace MyTradingCompany
{
 namespace Common
 {
 class ReportBase {}
 }
 namespace ManagementReporting
 {
 class SalesReport : Common.ReportBase {}
 }
}

Name hiding

If the same type name appears in both an inner and an
 outer namespace, the inner name wins. To refer to the type in the
 outer namespace, you must qualify its name. For example:
namespace Outer
{
 class Foo { }

 namespace Inner
 {
 class Foo { }

 class Test
 {
 Foo f1; // = Outer.Inner.Foo
 Outer.Foo f2; // = Outer.Foo
 }
 }
}
Note
All type names are converted to fully qualified names at
 compile time. Intermediate Language (IL) code contains no
 unqualified or partially qualified names.

Repeated namespaces

You can repeat a namespace declaration, as long as the
 type names within the namespaces don’t conflict:
namespace Outer.Middle.Inner
{
 class Class1 {}
}

namespace Outer.Middle.Inner
{
 class Class2 {}
}
We can even break the example into two source files such that we
 could compile each class into a different assembly.
Source file 1:
namespace Outer.Middle.Inner
{
 class Class1 {}
}
Source file 2:
namespace Outer.Middle.Inner
{
 class Class2 {}
}

Nested using directive

You can nest a using
 directive within a namespace. This allows you to scope the using directive within a namespace
 declaration. In the following example, Class1 is visible in one scope, but not in
 another:
namespace N1
{
 class Class1 {}
}

namespace N2
{
 using N1;

 class Class2 : Class1 {}
}

namespace N2
{
 class Class3 : Class1 {} // Compile-time error
}

Aliasing Types and Namespaces

Importing a namespace can result in type-name collision. Rather than importing the whole
 namespace, you can import just the specific types you need, giving each
 type an alias. For example:
using PropertyInfo2 = System.Reflection.PropertyInfo;
class Program { PropertyInfo2 p; }
An entire namespace can be aliased, as follows:
using R = System.Reflection;
class Program { R.PropertyInfo p; }

Advanced Namespace Features

Extern

Extern aliases allow your program to reference two types
 with the same fully qualified name (i.e., the namespace and type name
 are identical). This is an unusual scenario and can occur only when
 the two types come from different assemblies. Consider the following
 example.
Library 1:
// csc target:library /out:Widgets1.dll widgetsv1.cs

namespace Widgets
{
 public class Widget {}
}
Library 2:
// csc target:library /out:Widgets2.dll widgetsv2.cs

namespace Widgets
{
 public class Widget {}
}
Application:
// csc /r:Widgets1.dll /r:Widgets2.dll application.cs

using Widgets;

class Test
{
 static void Main()
 {
 Widget w = new Widget();
 }
}
The application cannot compile, because Widget is ambiguous. Extern aliases can
 resolve the ambiguity in our application:
// csc /r:W1=Widgets1.dll /r:W2=Widgets2.dll application.cs

extern alias W1;
extern alias W2;

class Test
{
 static void Main()
 {
 W1.Widgets.Widget w1 = new W1.Widgets.Widget();
 W2.Widgets.Widget w2 = new W2.Widgets.Widget();
 }
}

Namespace alias qualifiers

As we mentioned earlier, names in inner namespaces hide names in
 outer namespaces. However, sometimes even the use of a fully qualified
 type name does not resolve the conflict. Consider the following
 example:
namespace N
{
 class A
 {
 public class B {} // Nested type
 static void Main() { new A.B(); } // Instantiate class B
 }
}

namespace A
{
 class B {}
}
The Main method could be
 instantiating either the nested class B, or the class B within the namespace A. The compiler always gives higher
 precedence to identifiers in the current namespace; in this case, the
 nested B class.
To resolve such conflicts, a namespace name can be qualified,
 relative to one of the following:
	The global namespace—the root of all namespaces (identified
 with the contextual keyword global)

	The set of extern aliases

The :: token is used for
 namespace alias qualification. In this example, we qualify using the
 global namespace (this is most commonly seen in auto-generated code to
 avoid name conflicts).
namespace N
{
 class A
 {
 static void Main()
 {
 System.Console.WriteLine (new A.B());
 System.Console.WriteLine (new global::A.B());
 }

 public class B {}
 }
}

namespace A
{
 class B {}
}
Here is an example of qualifying with
 an alias (adapted from the example in Extern):
extern alias W1;
extern alias W2;

class Test
{
 static void Main()
 {
 W1::Widgets.Widget w1 = new W1::Widgets.Widget();
 W2::Widgets.Widget w2 = new W2::Widgets.Widget();
 }
}

[1] A minor caveat is that very large long values lose some precision when
 converted to double.

[2] Technically, decimal is a
 floating-point type too, although it’s not referred to as such in the
 C# language specification.

[3] It’s possible to overload these operators
 (Chapter 4) such that they return
 a non-bool type, but this is
 almost never done in practice.

[4] An exception to this rule is when calling COM methods. We
 discuss this in Chapter 25.

Chapter 3. Creating Types in
 C#

In this chapter, we will delve into types and type members.
Classes

A class is the most common kind of reference type. The
 simplest possible class declaration is as follows:
class YourClassName
{
}
A more complex class optionally has the following:
	Preceding the keyword class
	Attributes and
 class modifiers. The non-nested class
 modifiers are public, internal, abstract, sealed, static, unsafe, and partial

	Following YourClassName
	Generic type
 parameters, a base class, and
 interfaces

	Within the
 braces
	Class
 members (these are methods,
 properties, indexers,
 events, fields,
 constructors, overloaded
 operators, nested types, and a
 finalizer)

This chapter covers all of these constructs except attributes,
 operator functions, and the unsafe
 keyword, which are covered in Chapter 4.
 The following sections enumerate each of the class members.
Fields

A field is a variable that is a member
 of a class or struct. For example:
class Octopus
{
 string name;
 public int Age = 10;
}
Fields allow the following modifiers:
	Static
 modifier
	static

	Access
 modifiers
	public internal private
 protected

	Inheritance
 modifier
	new

	Unsafe code
 modifier
	unsafe

	Read-only
 modifier
	readonly

	Threading
 modifier
	volatile

The readonly modifier

The readonly modifier
 prevents a field from being modified after construction. A read-only
 field can be assigned only in its declaration or within the enclosing
 type’s constructor.

Field initialization

Field initialization is optional. An uninitialized field has a
 default value (0, \0, null,
 false). Field initializers run
 before constructors:
public int Age = 10;

Declaring multiple fields together

For convenience, you may declare multiple fields of the
 same type in a comma-separated list. This is a convenient way for all
 the fields to share the same attributes and field modifiers. For
 example:
static readonly int legs = 8,
 eyes = 2;

Methods

A method performs an action in a series of statements. A
 method can receive input data from the caller by
 specifying parameters and
 output data back to the caller by specifying a
 return type. A method can specify a
 void return type, indicating that it
 doesn’t return any value to its caller. A method can also output data
 back to the caller via ref/out parameters.
A method’s signature must be unique within the
 type. A method’s signature comprises its name and parameter types (but
 not the parameter names, nor the return type).
 Methods allow the following modifiers:
	Static modifier
	static

	Access modifiers
	public internal private
 protected

	Inheritance modifiers
	new virtual abstract override
 sealed

	Partial method
 modifier
	partial

	Unmanaged code modifiers
	unsafe extern

Overloading methods

A type may overload methods (have multiple methods with
 the same name), as long as the signatures are different. For example,
 the following methods can all coexist in the same type:
void Foo (int x) {...}
void Foo (double x) {...}
void Foo (int x, float y) {...}
void Foo (float x, int y) {...}
However, the following pairs of methods cannot coexist in the
 same type, since the return type and the params modifier are not part of a method’s
 signature:
void Foo (int x) {...}
float Foo (int x) {...} // Compile-time error

void Goo (int[] x) {...}
void Goo (params int[] x) {...} // Compile-time error

Pass-by-value versus pass-by-reference

Whether a parameter is pass-by-value or pass-by-reference is also part of the signature. For
 example, Foo(int) can coexist with
 either Foo(ref int) or Foo(out int). However, Foo(ref int) and Foo(out int) cannot coexist:
void Foo (int x) {...}
void Foo (ref int x) {...} // OK so far
void Foo (out int x) {...} // Compile-time error

Instance Constructors

Constructors run initialization code on a class or struct.
 A constructor is defined like a method, except that the method name and
 return type are reduced to the name of the enclosing type:
public class Panda
{
 string name; // Define field
 public Panda (string n) // Define constructor
 {
 name = n; // Initialization code (set up field)
 }
}
...

Panda p = new Panda ("Petey"); // Call constructor
Instance constructors allow the following modifiers:
	Access
 modifiers
	public internal private
 protected

	Unmanaged code
 modifiers
	unsafe extern

Overloading constructors

A class or struct may overload constructors. To avoid
 code duplication, one constructor may call another, using the
 this keyword:
using System;

public class Wine
{
 public decimal Price;
 public int Year;
 public Wine (decimal price) { Price = price; }
 public Wine (decimal price, int year) : this (price) { Year = year; }
}
When one constructor calls another, the called
 constructor executes first.
You can pass an expression into another constructor
 as follows:
public Wine (decimal price, DateTime year) : this (price, year.Year) { }
The expression itself cannot make use of the this reference, for example, to call an
 instance method. (This is enforced because the object has not been
 initialized by the constructor at this stage, so any methods that you
 call on it are likely to fail.) It can, however, call static methods.

Implicit parameterless constructors

For classes, the C# compiler automatically generates a
 parameterless public constructor if and only if you do not define any
 constructors. However, as soon as you define at least one constructor,
 the parameterless constructor is no longer automatically
 generated.
For structs, a parameterless constructor is intrinsic to the
 struct; therefore, you cannot define your own. The role of a struct’s
 implicit parameterless constructor is to initialize each field with
 default values.

Constructor and field initialization order

We saw previously that fields can be initialized with default
 values in their declaration:
class Player
{
 int shields = 50; // Initialized first
 int health = 100; // Initialized second
}
Field initializations occur before the
 constructor is executed, and in the declaration order of the
 fields.

Nonpublic constructors

Constructors do not need to be public. A common reason
 to have a nonpublic constructor is to control instance creation via a
 static method call. The static method could be used to return an
 object from a pool rather than necessarily creating a new object, or
 return various subclasses based on input arguments:
public class Class1
{
 Class1() {} // Private constructor
 public static Class1 Create (...)
 {
 // Perform custom logic here to return an instance of Class1
 ...
 }
}

Object Initializers

To simplify object initialization, any accessible fields
 or properties of an object can be set via an object
 initializer directly after construction. For example,
 consider the following class:
public class Bunny
{
 public string Name;
 public bool LikesCarrots;
 public bool LikesHumans;

 public Bunny () {}
 public Bunny (string n) { Name = n; }
}
Using object initializers, you can instantiate Bunny objects as follows:
// Note parameterless constructors can omit empty parentheses
Bunny b1 = new Bunny { Name="Bo", LikesCarrots=true, LikesHumans=false };
Bunny b2 = new Bunny ("Bo") { LikesCarrots=true, LikesHumans=false };
The code to construct b1 and
 b2 is precisely equivalent to:
Bunny temp1 = new Bunny(); // temp1 is a compiler-generated name
temp1.Name = "Bo";
temp1.LikesCarrots = true;
temp1.LikesHumans = false;
Bunny b1 = temp1;

Bunny temp2 = new Bunny ("Bo");
temp2.LikesCarrots = true;
temp2.LikesHumans = false;
Bunny b2 = temp2;
The temporary variables are to ensure that if an exception is
 thrown during initialization, you can’t end up with a half-initialized
 object.
Object initializers were introduced in C# 3.0.
Object Initializers Versus Optional Parameters
Instead of using object initializers, we could make Bunny’s constructor accept optional parameters:
public Bunny (string name,
 bool likesCarrots = false,
 bool likesHumans = false)
{
 Name = name;
 LikesCarrots = likesCarrots;
 LikesHumans = likesHumans;
}
This would allow us to construct a Bunny as follows:
Bunny b1 = new Bunny (name: "Bo",
 likesCarrots: true);
An advantage of this approach is that we could make Bunny’s fields (or
 properties, as we’ll explain shortly) read-only
 if we choose. Making fields or properties read-only is good practice
 when there’s no valid reason for them to change throughout the life of
 the object.
The disadvantage in this approach is that each optional
 parameter value is baked into the calling site.
 In other words, C# translates our constructor call into this:
Bunny b1 = new Bunny ("Bo", true, false);
This can be problematic if we instantiate the Bunny class from another assembly, and later
 modify Bunny by adding another
 optional parameter—such as likesCats. Unless the referencing assembly
 is also recompiled, it will continue to call the (now nonexistent)
 constructor with three parameters and fail at runtime. (A subtler
 problem is that if we changed the value of one of the optional
 parameters, callers in other assemblies would continue to use the old
 optional value until they were recompiled.)
Hence, optional parameters are best avoided in public functions
 if you want to offer binary compatibility between assembly
 versions.

The this Reference

The this reference refers
 to the instance itself. In the following example, the Marry method uses this to set the partner’s mate field:
public class Panda
{
 public Panda Mate;

 public void Marry (Panda partner)
 {
 Mate = partner;
 partner.Mate = this;
 }
}
The this reference also
 disambiguates a local variable or parameter from a field. For
 example:
public class Test
{
 string name;
 public Test (string name) { this.name = name; }
}
The this reference is valid
 only within nonstatic members of a class or struct.

Properties

Properties look like fields from the outside, but
 internally they contain logic, like methods do. For example, you can’t
 tell by looking at the following code whether CurrentPrice is a field or a property:
Stock msft = new Stock();
msft.CurrentPrice = 30;
msft.CurrentPrice -= 3;
Console.WriteLine (msft.CurrentPrice);
A property is declared like a field, but with a get/set
 block added. Here’s how to implement CurrentPrice as a property:
public class Stock
{
 decimal currentPrice; // The private "backing" field

 public decimal CurrentPrice // The public property
 {
 get { return currentPrice; } set { currentPrice = value; }
 }
}
get and set denote property accessors. The get accessor runs when the property is read.
 It must return a value of the property’s type. The set accessor runs when the property is
 assigned. It has an implicit parameter named value of the property’s type that you
 typically assign to a private field (in this case, currentPrice).
Although properties are accessed in the same way as fields, they
 differ in that they give the implementer complete control over getting
 and setting its value. This control enables the implementer to choose
 whatever internal representation is needed, without exposing the
 internal details to the user of the property. In this example, the
 set method could throw an exception
 if value was outside a valid range of
 values.
Note
Throughout this book, we use public fields extensively to keep
 the examples free of distraction. In a real application, you would
 typically favor public properties over public fields, in order to
 promote encapsulation.

Properties allow the following modifiers:
	Static modifier
	static

	Access modifiers
	public internal private
 protected

	Inheritance modifiers
	new virtual abstract override
 sealed

	Unmanaged code modifiers
	unsafe extern

Read-only and calculated properties

A property is read-only if it specifies only a get accessor, and it is write-only if it
 specifies only a set accessor.
 Write-only properties are rarely used.
A property typically has a dedicated backing field to store the
 underlying data. However, a property can also be computed from other
 data. For example:
decimal currentPrice, sharesOwned;

public decimal Worth
{
 get { return currentPrice * sharesOwned; }
}

Automatic properties

The most common implementation for a property is a
 getter and/or setter that simply reads and writes to a private field
 of the same type as the property. An automatic
 property declaration instructs the compiler to provide this
 implementation. We can redeclare the first example in this section as
 follows:
public class Stock
{
 ...
 public decimal CurrentPrice { get; set; }
}
The compiler automatically generates a private backing field of
 a compiler-generated name that cannot be referred to. The set accessor can be marked private if you want to expose the property
 as read-only to other types. Automatic properties were introduced in
 C# 3.0.

get and set accessibility

The get and set accessors can
 have different access levels. The typical use case for this is to have
 a public property with an
 internal or
 private access
 modifier on the setter:
public class Foo
{
 private decimal x;
 public decimal X
 {
 get { return x; }
 private set { x = Math.Round (value, 2); }
 }
}
Notice that you declare the property itself with the more
 permissive access level (public, in
 this case), and add the modifier to the accessor you want to be
 less accessible.

CLR property implementation

C# property accessors internally compile to methods
 called get_XXX and
 set_XXX:
public decimal get_CurrentPrice {...}
public void set_CurrentPrice (decimal value) {...}
Simple nonvirtual property accessors are inlined by the JIT (Just-In-Time) compiler, eliminating any performance
 difference between accessing a property and a field. Inlining is an optimization in which a method call is
 replaced with the body of that method.
With WinRT properties, the compiler assumes the put_XXX naming
 convention rather than set_XXX.

Indexers

Indexers provide a natural syntax for accessing elements
 in a class or struct that encapsulate a list or dictionary of values.
 Indexers are similar to properties, but are accessed via an index
 argument rather than a property name. The string class has an indexer that lets you
 access each of its char values via an
 int index:
string s = "hello";
Console.WriteLine (s[0]); // 'h'
Console.WriteLine (s[3]); // 'l'
The syntax for using indexers is like that for using
 arrays, except that the index argument(s) can be of any type(s).
Note
Indexers have the same modifiers as properties (see Properties).

Implementing an indexer

To write an indexer, define a property called this, specifying the arguments in square
 brackets. For instance:
class Sentence
{
 string[] words = "The quick brown fox".Split();

 public string this [int wordNum] // indexer
 {
 get { return words [wordNum]; }
 set { words [wordNum] = value; }
 }
}
Here’s how we could use this indexer:
Sentence s = new Sentence();
Console.WriteLine (s[3]); // fox
s[3] = "kangaroo";
Console.WriteLine (s[3]); // kangaroo
A type may declare multiple indexers, each with parameters of
 different types. An indexer can also take more than one
 parameter:
public string this [int arg1, string arg2]
{
 get { ... } set { ... }
}
If you omit the set accessor,
 an indexer becomes read-only.

CLR indexer implementation

Indexers internally compile to methods called get_Item and set_Item, as follows:
public string get_Item (int wordNum) {...}
public void set_Item (int wordNum, string value) {...}

Constants

A constant is a static field whose
 value can never change. A constant is evaluated statically at compile
 time and the compiler literally substitutes its value whenever used
 (rather like a macro in C++). A constant can be any of the built-in
 numeric types, bool, char, string, or an enum type.
A constant is declared with the const keyword and must
 be initialized with a value. For example:
public class Test
{
 public const string Message = "Hello World";
}
A constant is much more restrictive than a static readonly
 field—both in the types you can use and in field initialization
 semantics. A constant also differs from a static readonly field in that the evaluation
 of the constant occurs at compile time. For example:
public static double Circumference (double radius)
{
 return 2 * System.Math.PI * radius;
}
is compiled to:
public static double Circumference (double radius)
{
 return 6.2831853071795862 * radius;
}
It makes sense for PI to be a
 constant, since it can never change. In contrast, a static readonly field can have a different
 value per application.
Note
A static readonly field is
 also advantageous when exposing to other assemblies a value that might
 change in a later version. For instance, suppose assembly X exposes a constant as follows:
public const decimal ProgramVersion = 2.3;
If assembly Y references
 X and uses this constant, the value
 2.3 will be baked into assembly
 Y when compiled. This means that if
 X is later recompiled with the
 constant set to 2.4, Y will still
 use the old value of 2.3 until Y is recompiled. A
 static readonly field avoids this
 problem.
Another way of looking at this is that any value that might
 change in the future is not constant by definition, and so should not
 be represented as one.

Constants can also be declared local to a method. For
 example:
static void Main()
{
 const double twoPI = 2 * System.Math.PI;
 ...
}
Non-local constants allow the following modifiers:
	Access
 modifiers
	public internal private
 protected

	Inheritance
 modifier
	new

Static Constructors

A static constructor executes once per
 type, rather than once per
 instance. A type can define only one static
 constructor, and it must be parameterless and have the same name as the
 type:
class Test
{
 static Test() { Console.WriteLine ("Type Initialized"); }
}
The runtime automatically invokes a static constructor just prior
 to the type being used. Two things trigger this:
	Instantiating the type

	Accessing a static member in the type

The only modifiers allowed by static constructors are unsafe and extern.
Warning
If a static constructor throws an unhandled exception (Chapter 4), that type becomes
 unusable for the life of the application.

Static constructors and field initialization order

Static field initializers run just before
 the static constructor is called. If a type has no static constructor,
 field initializers will execute just prior to the type being used—or
 anytime earlier at the whim of the runtime. (This
 means that the presence of a static constructor may cause field
 initializers to execute later in the program than they would
 otherwise.)
Static field initializers run in the order in which the fields
 are declared. The following example illustrates this: X is initialized to 0 and Y is initialized to 3.
class Foo
{
 public static int X = Y; // 0
 public static int Y = 3; // 3
}
If we swap the two field initializers around, both fields are
 initialized to 3. The next example prints 0 followed by 3 because the
 field initializer that instantiates a Foo executes before X is initialized to 3:
class Program
{
 static void Main() { Console.WriteLine (Foo.X); } // 3
}

class Foo
{
 public static Foo Instance = new Foo();
 public static int X = 3;

 Foo() { Console.WriteLine (X); } // 0
}
If we swap the two lines in boldface, the example prints 3
 followed by 3.

Static Classes

A class can be marked static, indicating that it must be composed
 solely of static members and cannot be subclassed. The System.Console and System.Math classes are good examples of
 static classes.

Finalizers

Finalizers are class-only methods that execute before the
 garbage collector reclaims the memory for an unreferenced object. The
 syntax for a finalizer is the name of the class prefixed with the
 ~ symbol:
class Class1
{
 ~Class1()
 {
 ...
 }
}
This is actually C# syntax for overriding Object’s Finalize method, and the compiler expands it
 into the following method declaration:
protected override void Finalize()
{
 ...
 base.Finalize();
}
We discuss garbage collection and finalizers fully in Chapter 12.
Finalizers allow the following modifier:
	Unmanaged code
 modifier
	unsafe

Partial Types and Methods

Partial types allow a type definition to be
 split—typically across multiple files. A common scenario is for a
 partial class to be auto-generated from some other source (such as a
 Visual Studio template or designer), and for that class to be augmented
 with additional hand-authored methods. For example:
// PaymentFormGen.cs - auto-generated
partial class PaymentForm { ... }

// PaymentForm.cs - hand-authored
partial class PaymentForm { ... }
Each participant must have the partial declaration; the following is
 illegal:
partial class PaymentForm {}
class PaymentForm {}
Participants cannot have conflicting members. A constructor with
 the same parameters, for instance, cannot be repeated. Partial types are
 resolved entirely by the compiler, which means that each participant
 must be available at compile time and must reside in the same
 assembly.
There are two ways to specify a base class with partial
 classes:
	Specify the (same) base class on each participant. For
 example:
partial class PaymentForm : ModalForm {}
partial class PaymentForm : ModalForm {}

	Specify the base class on just one participant. For
 example:
partial class PaymentForm : ModalForm {}
partial class PaymentForm {}

In addition, each participant can independently specify interfaces
 to implement. We cover base classes and interfaces in Inheritance and Interfaces.
Partial methods

A partial type may contain partial methods. These let an
 auto-generated partial type provide customizable hooks for manual
 authoring. For example:
partial class PaymentForm // In auto-generated file
{
 ...
 partial void ValidatePayment (decimal amount);
}

partial class PaymentForm // In hand-authored file
{
 ...
 partial void ValidatePayment (decimal amount)
 {
 if (amount > 100)
 ...
 }
}
A partial method consists of two parts: a
 definition and an
 implementation. The definition is typically
 written by a code generator, and the implementation is typically
 manually authored. If an implementation is not provided, the
 definition of the partial method is compiled away (as is the code that
 calls it). This allows auto-generated code to be liberal in providing
 hooks, without having to worry about bloat. Partial methods must be
 void and are implicitly private.
Partial methods were introduced in C# 3.0.

Inheritance

A class can inherit
 from another class to extend or customize the original class. Inheriting
 from a class lets you reuse the functionality in that class instead of
 building it from scratch. A class can inherit from only a single class,
 but can itself be inherited by many classes, thus forming a class
 hierarchy. In this example, we start by defining a class called Asset:
public class Asset
{
 public string Name;
}
Next, we define classes called Stock and House, which will inherit from Asset. Stock
 and House get everything an Asset has, plus any additional members that they
 define:
public class Stock : Asset // inherits from Asset
{
 public long SharesOwned;
}

public class House : Asset // inherits from Asset
{
 public decimal Mortgage;
}
Here’s how we can use these classes:
Stock msft = new Stock { Name="MSFT",
 SharesOwned=1000 };

Console.WriteLine (msft.Name); // MSFT
Console.WriteLine (msft.SharesOwned); // 1000

House mansion = new House { Name="Mansion",
 Mortgage=250000 };

Console.WriteLine (mansion.Name); // Mansion
Console.WriteLine (mansion.Mortgage); // 250000
The derived classes, Stock and House, inherit the Name property from the base class, Asset.
Note
A derived class is also called a
 subclass.
A base class is also called a
 superclass.

Polymorphism

References are polymorphic. This means a variable of type
 x can refer to an object that subclasses x. For instance, consider
 the following method:
public static void Display (Asset asset)
{
 System.Console.WriteLine (asset.Name);
}
This method can display both a Stock and a House, since they are both Assets:
Stock msft = new Stock ... ;
House mansion = new House ... ;

Display (msft);
Display (mansion);
Polymorphism works on the basis that subclasses (Stock and House) have all the features of their base
 class (Asset). The converse, however,
 is not true. If Display was modified
 to accept a House, you could not pass
 in an Asset:
static void Main() { Display (new Asset()); } // Compile-time error

public static void Display (House house) // Will not accept Asset
{
 System.Console.WriteLine (house.Mortgage);
}

Casting and Reference Conversions

An object reference can be:
	Implicitly upcast to a base class
 reference

	Explicitly downcast to a subclass
 reference

Upcasting and downcasting between compatible reference types
 performs reference conversions: a new reference is
 (logically) created that points to the same object.
 An upcast always succeeds; a downcast succeeds only if the object is
 suitably typed.
Upcasting

An upcast operation creates a base class reference from
 a subclass reference. For example:
Stock msft = new Stock();
Asset a = msft; // Upcast
After the upcast, variable a
 still references the same Stock
 object as variable msft. The object
 being referenced is not itself altered or converted:
Console.WriteLine (a == msft); // True
Although a and msft refer to the identical object, a has a more restrictive view on that
 object:
Console.WriteLine (a.Name); // OK
Console.WriteLine (a.SharesOwned); // Error: SharesOwned undefined
The last line generates a compile-time error because the
 variable a is of type Asset, even though it refers to an object of
 type Stock. To get to its SharesOwned field, you must
 downcast the Asset to a Stock.

Downcasting

A downcast operation creates a subclass reference from a
 base class reference. For example:
Stock msft = new Stock();
Asset a = msft; // Upcast
Stock s = (Stock)a; // Downcast
Console.WriteLine (s.SharesOwned); // <No error>
Console.WriteLine (s == a); // True
Console.WriteLine (s == msft); // True
As with an upcast, only references are affected—not the
 underlying object. A downcast requires an explicit cast because it can
 potentially fail at runtime:
House h = new House();
Asset a = h; // Upcast always succeeds
Stock s = (Stock)a; // Downcast fails: a is not a Stock
If a downcast fails, an InvalidCastException is thrown. This is an
 example of runtime type checking (we will
 elaborate on this concept in Static and Runtime Type Checking).

The as operator

The as operator
 performs a downcast that evaluates to null (rather than throwing an exception) if
 the downcast fails:
Asset a = new Asset();
Stock s = a as Stock; // s is null; no exception thrown
This is useful when you’re going to subsequently test whether
 the result is null:
if (s != null) Console.WriteLine (s.SharesOwned);
Note
Without such a test, a cast is advantageous, because if it
 fails, a more helpful exception is thrown. We can illustrate by
 comparing the following two lines of code:
int shares = ((Stock)a).SharesOwned; // Approach #1
int shares = (a as Stock).SharesOwned; // Approach #2
If a is not a Stock, the first line throws an InvalidCastException, which is an accurate
 description of what went wrong. The second line throws a NullReferenceException, which is
 ambiguous. Was a not a Stock or was a null?
Another way of looking at it is that with the cast operator,
 you’re saying to the compiler: “I’m certain of
 a value’s type; if I’m wrong, there’s a bug in my code, so throw an
 exception!” Whereas with the as
 operator, you’re uncertain of its type and want to branch according
 to the outcome at runtime.

The as operator cannot
 perform custom conversions (see Operator Overloading in Chapter 4) and it cannot do numeric
 conversions:
long x = 3 as long; // Compile-time error
Note
The as and cast operators
 will also perform upcasts, although this is not terribly useful
 because an implicit conversion will do the job.

The is operator

The is operator tests
 whether a reference conversion would succeed; in other words, whether
 an object derives from a specified class (or implements an interface).
 It is often used to test before downcasting.
if (a is Stock)
 Console.WriteLine (((Stock)a).SharesOwned);
The is operator does not
 consider custom or numeric conversions, but it does consider
 unboxing conversions (see The object Type).

Virtual Function Members

A function marked as virtual can be overridden
 by subclasses wanting to provide a specialized implementation. Methods,
 properties, indexers, and events can all be declared virtual:
public class Asset
{
 public string Name;
 public virtual decimal Liability { get { return 0; } }
}
A subclass overrides a virtual method by applying the override modifier:
public class Stock : Asset
{
 public long SharesOwned;
}

public class House : Asset
{
 public decimal Mortgage;
 public override decimal Liability { get { return Mortgage; } }
}
By default, the Liability of an
 Asset is 0. A Stock
 does not need to specialize this behavior. However, the House specializes the Liability property to return the value of the
 Mortgage:
House mansion = new House { Name="McMansion", Mortgage=250000 };
Asset a = mansion;
Console.WriteLine (mansion.Liability); // 250000
Console.WriteLine (a.Liability); // 250000
The signatures, return types, and accessibility of the virtual and
 overridden methods must be identical. An overridden method can call its
 base class implementation via the base keyword (we will
 cover this in The base Keyword).
Warning
Calling virtual methods from a constructor is potentially
 dangerous because authors of subclasses are unlikely to know, when
 overriding the method, that they are working with a partially
 initialized object. In other words, the overriding method may end up
 accessing methods or properties which rely on fields not yet
 initialized by the constructor.

Abstract Classes and Abstract Members

A class declared as abstract can never be
 instantiated. Instead, only its concrete subclasses
 can be instantiated.
Abstract classes are able to define abstract members. Abstract members
 are like virtual members, except they don’t provide a default
 implementation.
That implementation must be provided by
 the subclass, unless that subclass is also declared abstract:
public abstract class Asset
{
 // Note empty implementation
 public abstract decimal NetValue { get; }
}

public class Stock : Asset
{
 public long SharesOwned;
 public decimal CurrentPrice;

 // Override like a virtual method.
 public override decimal NetValue
 {
 get { return CurrentPrice * SharesOwned; }
 }
}

Hiding Inherited Members

A base class and a subclass may define identical members.
 For example:
public class A { public int Counter = 1; }
public class B : A { public int Counter = 2; }
The Counter field in class
 B is said to
 hide the Counter
 field in class A. Usually, this
 happens by accident, when a member is added to the base type
 after an identical member was added to the subtype.
 For this reason, the compiler generates a warning, and then resolves the
 ambiguity as follows:
	References to A (at compile
 time) bind to A.Counter.

	References to B (at compile
 time) bind to B.Counter.

Occasionally, you want to hide a member deliberately, in which
 case you can apply the new modifier
 to the member in the subclass. The new modifier does nothing more than
 suppress the compiler warning that would otherwise
 result:
public class A { public int Counter = 1; }
public class B : A { public new int Counter = 2; }
The new modifier communicates
 your intent to the compiler—and other programmers—that the duplicate member is
 not an accident.
Note
C# overloads the new keyword to have
 independent meanings in different contexts. Specifically, the new operator is
 different from the new
 member modifier.

new versus override

Consider the following class hierarchy:
public class BaseClass
{
 public virtual void Foo() { Console.WriteLine ("BaseClass.Foo"); }
}

public class Overrider : BaseClass
{
 public override void Foo() { Console.WriteLine ("Overrider.Foo"); }
}

public class Hider : BaseClass
{
 public new void Foo() { Console.WriteLine ("Hider.Foo"); }
}
The differences in behavior between Overrider and Hider are demonstrated in the following
 code:
Overrider over = new Overrider();
BaseClass b1 = over;
over.Foo(); // Overrider.Foo
b1.Foo(); // Overrider.Foo

Hider h = new Hider();
BaseClass b2 = h;
h.Foo(); // Hider.Foo
b2.Foo(); // BaseClass.Foo

Sealing Functions and Classes

An overridden function member may
 seal its implementation with the sealed keyword to
 prevent it from being overridden by further subclasses. In our earlier
 virtual function member example, we could have sealed House’s implementation of Liability, preventing a class that derives
 from House from overriding Liability, as follows:
public sealed override decimal Liability { get { return Mortgage; } }
You can also seal the class itself, implicitly sealing all the
 virtual functions, by applying the sealed modifier to the class itself. Sealing a
 class is more common than sealing a function member.
Although you can seal against overriding, you can’t seal a member
 against being hidden.

The base Keyword

The base keyword is similar
 to the this keyword. It serves two
 essential purposes:
	Accessing an overridden function member from the
 subclass

	Calling a base-class constructor (see the next section)

In this example, House uses the
 base keyword to access Asset’s implementation of Liability:
public class House : Asset
{
 ...
 public override decimal Liability
 {
 get { return base.Liability + Mortgage; }
 }
}
With the base keyword, we
 access Asset’s Liability property
 nonvirtually. This means we will always access
 Asset’s version of this
 property—regardless of the instance’s actual runtime type.
The same approach works if Liability is hidden
 rather than overridden. (You can also access hidden
 members by casting to the base class before invoking the function.)

Constructors and Inheritance

A subclass must declare its own constructors. The base
 class’s constructors are accessible to the derived
 class, but are never automatically inherited. For
 example, if we define Baseclass and
 Subclass as follows:
public class Baseclass
{
 public int X;
 public Baseclass () { }
 public Baseclass (int x) { this.X = x; }
}

public class Subclass : Baseclass { }
the following is illegal:
Subclass s = new Subclass (123);
Subclass must hence “redefine”
 any constructors it wants to expose. In doing so, however, it can call
 any of the base class’s constructors with the base keyword:
public class Subclass : Baseclass
{
 public Subclass (int x) : base (x) { }
}
The base keyword works rather
 like the this keyword, except that it
 calls a constructor in the base class.
Base-class constructors always execute first; this ensures that
 base initialization occurs before
 specialized initialization.
Implicit calling of the parameterless base-class
 constructor

If a constructor in a subclass omits the base keyword, the base type’s parameterless constructor is
 implicitly called:
public class BaseClass
{
 public int X;
 public BaseClass() { X = 1; }
}

public class Subclass : BaseClass
{
 public Subclass() { Console.WriteLine (X); } // 1
}
If the base class has no accessible parameterless constructor,
 subclasses are forced to use the base keyword in their constructors.

Constructor and field initialization order

When an object is instantiated, initialization takes place in
 the following order:
	From subclass to base class:
	Fields are initialized.

	Arguments to base-class constructor calls are
 evaluated.

	From base class to subclass:
	Constructor bodies execute.

The following code demonstrates:
public class B
{
 int x = 1; // Executes 3rd
 public B (int x)
 {
 ... // Executes 4th
 }
}
public class D : B
{
 int y = 1; // Executes 1st
 public D (int x)
 : base (x + 1) // Executes 2nd
 {
 ... // Executes 5th
 }
}

Overloading and Resolution

Inheritance has an interesting impact on method
 overloading. Consider the following two overloads:
static void Foo (Asset a) { }
static void Foo (House h) { }
When an overload is called, the most specific type has
 precedence:
House h = new House (...);
Foo(h); // Calls Foo(House)
The particular overload to call is determined statically (at
 compile time) rather than at runtime.
The following code calls Foo(Asset), even though the runtime type of
 a is House:
Asset a = new House (...);
Foo(a); // Calls Foo(Asset)
Note
If you cast Asset to dynamic (Chapter 4), the decision as to which
 overload to call is deferred until runtime, and is then based on the
 object’s actual type:
Asset a = new House (...);
Foo ((dynamic)a); // Calls Foo(House)

The object Type

object (System.Object) is the ultimate base class for
 all types. Any type can be upcast to object.
To illustrate how this is useful, consider a general-purpose
 stack. A stack is a data structure based on the
 principle of LIFO—“Last-In First-Out.” A stack has two operations:
 push an object on the stack, and
 pop an object off the stack. Here is a simple
 implementation that can hold up to 10 objects:
public class Stack
{
 int position;
 object[] data = new object[10];
 public void Push (object obj) { data[position++] = obj; }
 public object Pop() { return data[--position]; }
}
Because Stack works with the
 object type, we can Push and Pop instances of any type
 to and from the Stack:
Stack stack = new Stack();
stack.Push ("sausage");
string s = (string) stack.Pop(); // Downcast, so explicit cast is needed

Console.WriteLine (s); // sausage
object is a reference type, by
 virtue of being a class. Despite this, value types, such as int, can also be cast to and from object, and so be added to our stack. This
 feature of C# is called type unification and is demonstrated
 here:
stack.Push (3);
int three = (int) stack.Pop();
When you cast between a value type and object, the CLR must perform some special work
 to bridge the difference in semantics between value and reference types.
 This process is called boxing and
 unboxing.
Note
In Generics, we’ll describe how to improve our
 Stack class to better handle stacks
 with same-typed elements.

Boxing and Unboxing

Boxing is the act of converting a value-type instance to a
 reference-type instance. The reference type may be either the object class or an interface (which we will
 visit later in the chapter).[5] In this example, we box an int into an object:
int x = 9;
object obj = x; // Box the int
Unboxing reverses the operation, by casting the object
 back to the original value type:
int y = (int)obj; // Unbox the int
Unboxing requires an explicit cast. The runtime checks that the
 stated value type matches the actual object type, and throws an InvalidCastException if the check fails. For
 instance, the following throws an exception, because long does not exactly match int:
object obj = 9; // 9 is inferred to be of type int
long x = (long) obj; // InvalidCastException
The following succeeds, however:
object obj = 9;
long x = (int) obj;
As does this:
object obj = 3.5; // 3.5 is inferred to be of type double
int x = (int) (double) obj; // x is now 3
In the last example, (double)
 performs an unboxing and then (int) performs a numeric
 conversion.
Note
Boxing conversions are crucial in providing a unified
 type system. The system is not perfect, however: we’ll see in Generics that variance with arrays and generics supports
 only reference conversions and not
 boxing conversions:
object[] a1 = new string[3]; // Legal
object[] a2 = new int[3]; // Error

Copying semantics of boxing and unboxing

Boxing copies the value-type
 instance into the new object, and unboxing copies
 the contents of the object back into a value-type instance. In the
 following example, changing the value of i doesn’t change its previously boxed
 copy:
int i = 3;
object boxed = i;
i = 5;
Console.WriteLine (boxed); // 3

Static and Runtime Type Checking

C# programs are type-checked both statically (at compile time) and
 at runtime (by the CLR).
Static type checking enables the compiler to verify the
 correctness of your program without running it. The following code will
 fail because the compiler enforces static typing:
int x = "5";
Runtime type checking is performed by the CLR when you
 downcast via a reference conversion or unboxing. For example:
object y = "5";
int z = (int) y; // Runtime error, downcast failed
Runtime type checking is possible because each object on the heap
 internally stores a little type token. This token can be retrieved by
 calling the GetType method of
 object.

The GetType Method and typeof Operator

All types in C# are represented at runtime with an instance of
 System.Type. There are two basic ways
 to get a System.Type object:
	Call GetType on the
 instance.

	Use the typeof operator on
 a type name.

GetType is evaluated at
 runtime; typeof is evaluated
 statically at compile time (when generic type parameters are involved,
 it’s resolved by the just-in-time compiler).
System.Type has properties for
 such things as the type’s name, assembly, base type, and so on.
For example:
using System;

public class Point { public int X, Y; }

class Test
{
 static void Main()
 {
 Point p = new Point();
 Console.WriteLine (p.GetType().Name); // Point
 Console.WriteLine (typeof (Point).Name); // Point
 Console.WriteLine (p.GetType() == typeof(Point)); // True
 Console.WriteLine (p.X.GetType().Name); // Int32
 Console.WriteLine (p.Y.GetType().FullName); // System.Int32
 }
}
System.Type also has methods
 that act as a gateway to the runtime’s reflection model, described in
 Chapter 19.

The ToString Method

The ToString method returns
 the default textual representation of a type instance. This method is
 overridden by all built-in types. Here is an example of using the
 int type’s ToString method:
int x = 1;
string s = x.ToString(); // s is "1"
You can override the ToString
 method on custom types as follows:
public class Panda
{
 public string Name;
 public override string ToString() { return Name; }
}
...

Panda p = new Panda { Name = "Petey" };
Console.WriteLine (p); // Petey
If you don’t override ToString,
 the method returns the type name.
Note
When you call an overridden object member such as ToString directly on a value type, boxing
 doesn’t occur. Boxing then occurs only if you cast:
int x = 1;
string s1 = x.ToString(); // Calling on nonboxed value
object box = x;
string s2 = box.ToString(); // Calling on boxed value

Object Member Listing

Here are all the members of object:
public class Object
{
 public Object();

 public extern Type GetType();

 public virtual bool Equals (object obj);
 public static bool Equals (object objA, object objB);
 public static bool ReferenceEquals (object objA, object objB);

 public virtual int GetHashCode();

 public virtual string ToString();

 protected virtual void Finalize();
 protected extern object MemberwiseClone();
}
We describe the Equals,
 ReferenceEquals, and GetHashCode methods in Equality Comparison in Chapter 6.

Structs

A struct is similar to a class, with the
 following key differences:
	A struct is a value type, whereas a class is a reference
 type.

	A struct does not support inheritance (other than implicitly
 deriving from object, or more
 precisely, System.ValueType).

A struct can have all the members a class can, except the
 following:
	A parameterless constructor

	A finalizer

	Virtual members

A struct is used instead of a class when value-type semantics are
 desirable. Good examples of structs are numeric types, where it is more
 natural for assignment to copy a value rather than a reference. Because a
 struct is a value type, each instance does not require instantiation of an
 object on the heap; this incurs a useful savings when creating many
 instances of a type. For instance, creating an array of value type
 requires only a single heap allocation.
Struct Construction Semantics

The construction semantics of a struct are as follows:
	A parameterless constructor that you can’t override implicitly
 exists. This performs a bitwise-zeroing of its fields.

	When you define a struct constructor, you must explicitly
 assign every field.

	You can’t have field initializers in a struct.

Here is an example of declaring and calling struct
 constructors:
public struct Point
{
 int x, y;
 public Point (int x, int y) { this.x = x; this.y = y; }
}

...
Point p1 = new Point (); // p1.x and p1.y will be 0
Point p2 = new Point (1, 1); // p1.x and p1.y will be 1
The next example generates three compile-time errors:
public struct Point
{
 int x = 1; // Illegal: cannot initialize field
 int y;
 public Point() {} // Illegal: cannot have
 // parameterless constructor

 public Point (int x) {this.x = x;} // Illegal: must assign field y
}
Changing struct to class makes this example legal.

Access Modifiers

To promote encapsulation, a type or type member may limit
 its accessibility to other types and other assemblies
 by adding one of five access modifiers to the
 declaration:
	public
	Fully accessible. This is the implicit accessibility for
 members of an enum or interface.

	internal
	Accessible only within containing assembly or friend
 assemblies. This is the default accessibility for non-nested
 types.

	private
	Accessible only within containing type. This is the default
 accessibility for members of a class or struct.

	protected
	Accessible only within containing type or subclasses.

	protected internal
	The union of protected and internal accessibility. Eric Lippert explains it as follows: Everything is as
 private as possible by default, and each modifier makes the thing
 more accessible. So something that is protected internal is made more accessible
 in two ways.

Note
The CLR has the concept of the intersection
 of protected and internal accessibility, but C# does not support
 this.

Examples

Class2 is accessible from
 outside its assembly; Class1 is
 not:
class Class1 {} // Class1 is internal (default)
public class Class2 {}
ClassB exposes field x to other types in the same assembly;
 ClassA does not:
class ClassA { int x; } // x is private (default)
class ClassB { internal int x; }
Functions within Subclass can
 call Bar but not Foo:
class BaseClass
{
 void Foo() {} // Foo is private (default)
 protected void Bar() {}
}

class Subclass : BaseClass
{
 void Test1() { Foo(); } // Error - cannot access Foo
 void Test2() { Bar(); } // OK
}

Friend Assemblies

In advanced scenarios, you can expose internal members to other
 friend assemblies by adding the System.Runtime.CompilerServices.InternalsVisibleTo
 assembly attribute, specifying the name of the friend assembly as
 follows:
[assembly: InternalsVisibleTo ("Friend")]
If the friend assembly has a strong name (see Chapter 18), you must specify its full
 160-byte public key:
[assembly: InternalsVisibleTo ("StrongFriend, PublicKey=0024f000048c...")]
You can extract the full public key from a strongly named assembly
 with a LINQ query (we explain LINQ in detail in Chapter 8):
string key = string.Join ("",
 Assembly.GetExecutingAssembly().GetName().GetPublicKey()
 .Select (b => b.ToString ("x2"))
 .ToArray());
Note
The companion sample in LINQPad invites you to browse to an
 assembly and then copies the assembly’s full public key to the
 clipboard.

Accessibility Capping

A type caps the accessibility of its declared members. The
 most common example of capping is when you have an internal type with public members. For example:
class C { public void Foo() {} }
C’s (default) internal accessibility caps Foo’s accessibility, effectively making
 Foo internal. A common reason
 Foo would be marked public is to make for easier refactoring, should C later be changed to public.

Restrictions on Access Modifiers

When overriding a base class function, accessibility must be
 identical on the overridden function. For example:
class BaseClass { protected virtual void Foo() {} }
class Subclass1 : BaseClass { protected override void Foo() {} } // OK
class Subclass2 : BaseClass { public override void Foo() {} } // Error
(An exception is when overriding a protected
 internal method in another assembly, in which case the
 override must simply be protected.)
The compiler prevents any inconsistent use of access modifiers.
 For example, a subclass itself can be less accessible than a base class,
 but not more:
internal class A {}
public class B : A {} // Error

Interfaces

An interface is similar to a class, but it provides a
 specification rather than an implementation for its members. An interface
 is special in the following ways:
	Interface members are all implicitly
 abstract. In contrast, a class can provide both abstract
 members and concrete members with implementations.

	A class (or struct) can implement multiple
 interfaces. In contrast, a class can inherit from only a
 single class, and a struct cannot inherit at all
 (aside from deriving from System.ValueType).

An interface declaration is like a class declaration, but it
 provides no implementation for its members, since all its members are
 implicitly abstract. These members will be implemented by the classes and
 structs that implement the interface. An interface can contain only
 methods, properties, events, and indexers, which noncoincidentally are
 precisely the members of a class that can be abstract.
Here is the definition of the IEnumerator interface, defined in System.Collections:
public interface IEnumerator
{
 bool MoveNext();
 object Current { get; }
 void Reset();
}
Interface members are always implicitly public and cannot declare an
 access modifier. Implementing an interface means providing a public implementation for all its
 members:
internal class Countdown : IEnumerator
{
 int count = 11;
 public bool MoveNext () { return count-- > 0 ; }
 public object Current { get { return count; } }
 public void Reset() { throw new NotSupportedException(); }
}
You can implicitly cast an object to any interface that it
 implements. For example:
IEnumerator e = new Countdown();
while (e.MoveNext())
 Console.Write (e.Current); // 109876543210
Note
Even though Countdown is an
 internal class, its members that implement IEnumerator can be called publicly by casting
 an instance of Countdown to IEnumerator. For instance, if a public type in
 the same assembly defined a method as follows:
public static class Util
{
 public static object GetCountDown()
 {
 return new CountDown();
 }
}
a caller from another assembly could do this:
IEnumerator e = (IEnumerator) Util.GetCountDown();
e.MoveNext();
If IEnumerator was itself
 defined as internal, this wouldn’t be
 possible.

Extending an Interface

Interfaces may derive from other interfaces. For instance:
public interface IUndoable { void Undo(); }
public interface IRedoable : IUndoable { void Redo(); }
IRedoable “inherits” all the
 members of IUndoable. In other words,
 types that implement IRedoable must
 also implement the members of IUndoable.

Explicit Interface Implementation

Implementing multiple interfaces can sometimes result in a
 collision between member signatures. You can resolve such collisions by
 explicitly implementing an interface member.
Consider the following example:
interface I1 { void Foo(); }
interface I2 { int Foo(); }

public class Widget : I1, I2
{
 public void Foo ()
 {
 Console.WriteLine ("Widget's implementation of I1.Foo");
 }

 int I2.Foo()
 {
 Console.WriteLine ("Widget's implementation of I2.Foo");
 return 42;
 }
}
Because both I1 and I2 have conflicting Foo signatures, Widget explicitly implements I2’s Foo
 method. This lets the two methods coexist in one class. The only way to
 call an explicitly implemented member is to cast to its
 interface:
Widget w = new Widget();
w.Foo(); // Widget's implementation of I1.Foo
((I1)w).Foo(); // Widget's implementation of I1.Foo
((I2)w).Foo(); // Widget's implementation of I2.Foo
Another reason to explicitly implement interface members is to
 hide members that are highly specialized and distracting to a type’s
 normal use case. For example, a type that implements ISerializable would typically want to avoid
 flaunting its ISerializable members
 unless explicitly cast to that interface.

Implementing Interface Members Virtually

An implicitly implemented interface member is, by default, sealed.
 It must be marked virtual or abstract in the base class in order to be
 overridden. For example:
public interface IUndoable { void Undo(); }

public class TextBox : IUndoable
{
 public virtual void Undo()
 {
 Console.WriteLine ("TextBox.Undo");
 }
}

public class RichTextBox : TextBox
{
 public override void Undo()
 {
 Console.WriteLine ("RichTextBox.Undo");
 }
}
Calling the interface member through
 either the base class or the interface calls the subclass’s
 implementation:
RichTextBox r = new RichTextBox();
r.Undo(); // RichTextBox.Undo
((IUndoable)r).Undo(); // RichTextBox.Undo
((TextBox)r).Undo(); // RichTextBox.Undo
An explicitly implemented interface member cannot be marked
 virtual, nor can it be overridden in
 the usual manner. It can, however, be
 reimplemented.

Reimplementing an Interface in a Subclass

A subclass can reimplement any interface member already
 implemented by a base class. Reimplementation hijacks a member
 implementation (when called through the interface) and works whether or
 not the member is virtual in the base
 class. It also works whether a member is implemented implicitly or
 explicitly—although it works best in the latter case, as we will
 demonstrate.
In the following example, TextBox implements IUndoable.Undo explicitly, and so it cannot be
 marked as virtual. In order to
 “override” it, RichTextBox must
 reimplement IUndoable’s Undo method:
public interface IUndoable { void Undo(); }

public class TextBox : IUndoable
{
 void IUndoable.Undo() { Console.WriteLine ("TextBox.Undo"); }
}

public class RichTextBox : TextBox, IUndoable
{
 public new void Undo() { Console.WriteLine ("RichTextBox.Undo"); }
}
Calling the reimplemented member through the interface calls the
 subclass’s implementation:
RichTextBox r = new RichTextBox();
r.Undo(); // RichTextBox.Undo Case 1
((IUndoable)r).Undo(); // RichTextBox.Undo Case 2
Assuming the same RichTextBox definition, suppose that TextBox implemented Undo implicitly:
public class TextBox : IUndoable
{
 public void Undo() { Console.WriteLine ("TextBox.Undo"); }
}
This would give us another way to call Undo, which would “break” the system, as shown
 in Case 3:
RichTextBox r = new RichTextBox();
r.Undo(); // RichTextBox.Undo Case 1
((IUndoable)r).Undo(); // RichTextBox.Undo Case 2
((TextBox)r).Undo(); // TextBox.Undo
 Case 3
Case 3 demonstrates that reimplementation hijacking is effective
 only when a member is called
 through the interface and not through the base class. This is usually
 undesirable as it can mean inconsistent semantics. This makes
 reimplementation most appropriate as a strategy for overriding
 explicitly implemented interface members.
Alternatives to interface reimplementation

Even with explicit member implementation, interface
 reimplementation is problematic for a couple of reasons:
	The subclass has no way to call the base class
 method.

	The base class author may not anticipate that a method be
 reimplemented and may not allow for the potential
 consequences.

Reimplementation can be a good last resort when subclassing
 hasn’t been anticipated. A better option, however, is to design a base
 class such that reimplementation will never be required. There are two
 ways to achieve this:
	When implicitly implementing a member, mark it virtual if appropriate.

	When explicitly implementing a member, use the following
 pattern if you anticipate
 that subclasses might need to override any logic:
public class TextBox : IUndoable
{
 void IUndoable.Undo() { Undo(); } // Calls method below
 protected virtual void Undo() { Console.WriteLine ("TextBox.Undo"); }
}

public class RichTextBox : TextBox
{
 protected override void Undo() { Console.WriteLine("RichTextBox.Undo"); }
}

If you don’t anticipate any subclassing, you can mark the class
 as sealed to preempt interface
 reimplementation.

Interfaces and Boxing

Converting a struct to an interface causes boxing. Calling an
 implicitly implemented member on a struct does not cause boxing:
interface I { void Foo(); }
struct S : I { public void Foo() {} }

...
S s = new S();
s.Foo(); // No boxing.

I i = s; // Box occurs when casting to interface.
i.Foo();
Writing a Class Versus an Interface
As a guideline:
	Use classes and subclasses for types that naturally share an
 implementation.

	Use interfaces for types that have independent
 implementations.

Consider the following classes:
abstract class Animal {}
abstract class Bird : Animal {}
abstract class Insect : Animal {}
abstract class FlyingCreature : Animal {}
abstract class Carnivore : Animal {}

// Concrete classes:

class Ostrich : Bird {}
class Eagle : Bird, FlyingCreature, Carnivore {} // Illegal
class Bee : Insect, FlyingCreature {} // Illegal
class Flea : Insect, Carnivore {} // Illegal
The Eagle, Bee, and Flea classes do not compile because
 inheriting from multiple classes is prohibited. To resolve this, we
 must convert some of the types to interfaces. The question then
 arises, which types? Following our general rule, we could say that
 insects share an implementation, and birds share an implementation, so
 they remain classes. In contrast, flying creatures have independent
 mechanisms for flying, and carnivores have independent strategies for
 eating animals, so we would convert FlyingCreature and Carnivore to interfaces:
interface IFlyingCreature {}
interface ICarnivore {}
In a typical scenario, Bird
 and Insect might correspond to a
 Windows control and a web control; FlyingCreature and Carnivore might correspond to IPrintable and IUndoable.

Enums

An enum is a special value type that lets you specify a
 group of named numeric constants. For example:
public enum BorderSide { Left, Right, Top, Bottom }
We can use this enum type as follows:
BorderSide topSide = BorderSide.Top;
bool isTop = (topSide == BorderSide.Top); // true
Each enum member has an underlying integral value. By
 default:
	Underlying values are of type int.

	The constants 0, 1, 2...
 are automatically assigned, in the declaration order of the enum
 members.

You may specify an alternative integral type, as follows:
public enum BorderSide : byte { Left, Right, Top, Bottom }
You may also specify an explicit underlying value for each enum
 member:
public enum BorderSide : byte { Left=1, Right=2, Top=10, Bottom=11 }
Note
The compiler also lets you explicitly assign
 some of the enum members. The unassigned enum
 members keep incrementing from the last explicit value. The preceding
 example is equivalent to the following:
public enum BorderSide : byte
 { Left=1, Right, Top=10, Bottom }

Enum Conversions

You can convert an enum
 instance to and from its underlying integral value with an explicit
 cast:
int i = (int) BorderSide.Left;
BorderSide side = (BorderSide) i;
bool leftOrRight = (int) side <= 2;
You can also explicitly cast one enum type to another. Suppose
 HorizontalAlignment is defined as
 follows:
public enum HorizontalAlignment
{
 Left = BorderSide.Left,
 Right = BorderSide.Right,
 Center
}
A translation between the enum types
 uses the underlying integral values:
HorizontalAlignment h = (HorizontalAlignment) BorderSide.Right;
// same as:
HorizontalAlignment h = (HorizontalAlignment) (int) BorderSide.Right;
The numeric literal 0 is
 treated specially by the compiler in an enum expression and does not require an
 explicit cast:
BorderSide b = 0; // No cast required
if (b == 0) ...
There are two reasons for the special treatment of 0:
	The first member of an enum is often used as the “default”
 value.

	For combined enum types, 0 means “no flags.”

Flags Enums

You can combine enum members. To prevent ambiguities,
 members of a combinable enum require explicitly assigned values,
 typically in powers of two. For example:
[Flags]
public enum BorderSides { None=0, Left=1, Right=2, Top=4, Bottom=8 }
To work with combined enum values, you use bitwise operators, such
 as | and &. These operate on the underlying
 integral values:
BorderSides leftRight = BorderSides.Left | BorderSides.Right;

if ((leftRight & BorderSides.Left) != 0)
 Console.WriteLine ("Includes Left"); // Includes Left

string formatted = leftRight.ToString(); // "Left, Right"

BorderSides s = BorderSides.Left;
s |= BorderSides.Right;
Console.WriteLine (s == leftRight); // True

s ^= BorderSides.Right; // Toggles BorderSides.Right
Console.WriteLine (s); // Left
By convention, the Flags
 attribute should always be applied to an enum type when its members are
 combinable. If you declare such an enum without the Flags attribute, you can still combine
 members, but calling ToString on an
 enum instance will emit a number
 rather than a series of names.
By convention, a combinable enum type is given a plural rather
 than singular name.
For convenience, you can include combination members within an
 enum declaration itself:
[Flags]
public enum BorderSides
{
 None=0,
 Left=1, Right=2, Top=4, Bottom=8,
 LeftRight = Left | Right,
 TopBottom = Top | Bottom,
 All = LeftRight | TopBottom
}

Enum Operators

The operators that work with enums are:
= == != < > <= >= + - ^ & | ˜
+= -= ++ -- sizeof
The bitwise, arithmetic, and comparison operators return the
 result of processing the underlying integral values. Addition is
 permitted between an enum and an integral type, but not between two
 enums.

Type-Safety Issues

Consider the following enum:
public enum BorderSide { Left, Right, Top, Bottom }
Since an enum can be cast to and from its underlying integral
 type, the actual value it may have may fall outside the bounds of a
 legal enum member. For example:
BorderSide b = (BorderSide) 12345;
Console.WriteLine (b); // 12345
The bitwise and arithmetic operators can produce similarly invalid
 values:
BorderSide b = BorderSide.Bottom;
b++; // No errors
An invalid BorderSide would
 break the following code:
void Draw (BorderSide side)
{
 if (side == BorderSide.Left) {...}
 else if (side == BorderSide.Right) {...}
 else if (side == BorderSide.Top) {...}
 else {...} // Assume BorderSide.Bottom
}
One solution is to add another else clause:
 ...
 else if (side == BorderSide.Bottom) ...
 else throw new ArgumentException ("Invalid BorderSide: " + side, "side");
Another workaround is to explicitly check an enum value for
 validity. The static Enum.IsDefined method
 does this job:
BorderSide side = (BorderSide) 12345;
Console.WriteLine (Enum.IsDefined (typeof (BorderSide), side)); // False
Unfortunately, Enum.IsDefined does not work for flagged
 enums. However, the following helper method (a trick dependent on the
 behavior of Enum.ToString()) returns true if a given flagged enum is
 valid:
static bool IsFlagDefined (Enum e)
{
 decimal d;
 return !decimal.TryParse(e.ToString(), out d);
}

[Flags]
public enum BorderSides { Left=1, Right=2, Top=4, Bottom=8 }

static void Main()
{
 for (int i = 0; i <= 16; i++)
 {
 BorderSides side = (BorderSides)i;
 Console.WriteLine (IsFlagDefined (side) + " " + side);
 }
}

Nested Types

A nested type is declared within the
 scope of another type. For example:
public class TopLevel
{
 public class Nested { } // Nested class
 public enum Color { Red, Blue, Tan } // Nested enum
}
A nested type has the following features:
	It can access the enclosing type’s private members and
 everything else the enclosing
 type can access.

	It can be declared with the full range of access modifiers,
 rather than just public and
 internal.

	The default accessibility for a nested type is private rather than internal.

	Accessing a nested type from outside the enclosing type requires
 qualification with the enclosing type’s name (like when accessing
 static members).

For example, to access Color.Red
 from outside our TopLevel class, we’d
 have to do this:
TopLevel.Color color = TopLevel.Color.Red;
All types (classes, structs, interfaces, delegates and enums) can be
 nested inside either a class or a
 struct.
Here is an example of accessing a private member of a type from a
 nested type:
public class TopLevel
{
 static int x;
 class Nested
 {
 static void Foo() { Console.WriteLine (TopLevel.x); }
 }
}
Here is an example of applying the protected access modifier to a nested
 type:
public class TopLevel
{
 protected class Nested { }
}

public class SubTopLevel : TopLevel
{
 static void Foo() { new TopLevel.Nested(); }
}
Here is an example of referring to a
 nested type from outside the enclosing type:
public class TopLevel
{
 public class Nested { }
}

class Test
{
 TopLevel.Nested n;
}
Nested types are used heavily by the compiler itself when it
 generates private classes that capture state for constructs such as
 iterators and anonymous methods.
Note
If the sole reason for using a nested type is to avoid cluttering
 a namespace with too many types, consider using a nested namespace
 instead. A nested type should be used because of its stronger access
 control restrictions, or when the nested class must access private
 members of the containing class.

Generics

C# has two separate mechanisms for writing code that is
 reusable across different types: inheritance and
 generics. Whereas inheritance expresses reusability
 with a base type, generics express reusability with a “template” that
 contains “placeholder” types. Generics, when compared to inheritance, can
 increase type safety and reduce casting and boxing.
Note
C# generics and C++ templates are similar concepts, but they work
 differently. We explain this difference in C# Generics Versus C++ Templates.

Generic Types

A generic type declares type parameters—placeholder types to
 be filled in by the consumer of the generic type, which supplies the
 type arguments. Here is a generic type Stack<T>, designed to stack instances of
 type T. Stack<T> declares a single type
 parameter T:
public class Stack<T>
{
 int position;
 T[] data = new T[100];
 public void Push (T obj) { data[position++] = obj; }
 public T Pop() { return data[--position]; }
}
We can use Stack<T> as
 follows:
Stack<int> stack = new Stack<int>();
stack.Push(5);
stack.Push(10);
int x = stack.Pop(); // x is 10
int y = stack.Pop(); // y is 5
Stack<int> fills in the
 type parameter T with the type
 argument int, implicitly creating a
 type on the fly (the synthesis occurs at runtime). Stack<int> effectively has the following
 definition (substitutions appear in bold, with the class name hashed out
 to avoid confusion):
public class ###
{
 int position;
 int[] data;
 public void Push (int obj) { data[position++] = obj; }
 public int Pop() { return data[--position]; }
}
Technically, we say that Stack<T> is an open type, whereas Stack<int> is a closed type. At runtime, all generic
 type instances are closed—with the placeholder types filled in. This
 means that the following statement is illegal:
var stack = new Stack<T>(); // Illegal: What is T?
unless inside a class or method which itself defines T as a type parameter:
public class Stack<T>
{
 ...
 public Stack<T> Clone()
 {
 Stack<T> clone = new Stack<T>(); // Legal
 ...
 }
}

Why Generics Exist

Generics exist to write code that is reusable across
 different types. Suppose we needed a stack of integers, but we didn’t
 have generic types. One solution would be to hardcode a separate version
 of the class for every required element type (e.g., IntStack, StringStack, etc.). Clearly, this would cause
 considerable code duplication. Another solution would be to write a
 stack that is generalized by using object as the element type:
public class ObjectStack
{
 int position;
 object[] data = new object[10];
 public void Push (object obj) { data[position++] = obj; }
 public object Pop() { return data[--position]; }
}
An ObjectStack, however, wouldn’t work as well as
 a hardcoded IntStack for specifically
 stacking integers. Specifically, an ObjectStack would require boxing and
 downcasting that could not be checked at compile time:
// Suppose we just want to store integers here:
ObjectStack stack = new ObjectStack();

stack.Push ("s"); // Wrong type, but no error!
int i = (int)stack.Pop(); // Downcast - runtime error
What we need is both a general implementation of a stack that
 works for all element types, and a way to easily specialize that stack
 to a specific element type for increased type safety and reduced casting
 and boxing. Generics give us precisely this, by allowing us to
 parameterize the element type. Stack<T> has the benefits of both
 ObjectStack and IntStack. Like ObjectStack, Stack<T> is written once to work
 generally across all types. Like IntStack, Stack<T> is
 specialized for a particular type—the beauty is
 that this type is T, which we
 substitute on the fly.
Note
ObjectStack is functionally
 equivalent to Stack<object>.

Generic Methods

A generic method declares type parameters within the
 signature of a method.
With generic methods, many fundamental algorithms can be
 implemented in a general-purpose
 way only. Here is a generic method that swaps the contents of two
 variables of any type T:
static void Swap<T> (ref T a, ref T b)
{
 T temp = a;
 a = b;
 b = temp;
}
Swap<T> can be used as
 follows:
int x = 5;
int y = 10;
Swap (ref x, ref y);
Generally, there is no need to supply type arguments to a generic
 method, because the compiler can implicitly infer the type. If there is
 ambiguity, generic methods can be called with the type arguments as
 follows:
Swap<int> (ref x, ref y);
Within a generic type, a method is not
 classed as generic unless it introduces type
 parameters (with the angle bracket syntax). The Pop method in our generic stack merely uses
 the type’s existing type parameter, T, and is not classed as a generic
 method.
Methods and types are the only constructs that can introduce type
 parameters. Properties, indexers, events, fields, constructors,
 operators, and so on cannot declare type parameters, although they can
 partake in any type parameters already declared by their enclosing type.
 In our generic stack example, for instance, we could write an indexer
 that returns a generic item:
public T this [int index] { get { return data [index]; } }
Similarly, constructors can partake in existing type parameters,
 but not introduce them:
public Stack<T>() { } // Illegal

Declaring Type Parameters

Type parameters can be introduced in the declaration of
 classes, structs, interfaces, delegates (covered in Chapter 4), and methods. Other constructs,
 such as properties, cannot introduce a type
 parameter, but can use one. For example, the
 property Value uses T:
public struct Nullable<T>
{
 public T Value { get; }
}
A generic type or method can have multiple parameters. For
 example:
class Dictionary<TKey, TValue> {...}
To instantiate:
Dictionary<int,string> myDic = new Dictionary<int,string>();
Or:
var myDic = new Dictionary<int,string>();
Generic type names and method names can be overloaded as long as
 the number of type parameters is different. For example, the following
 two type names do not conflict:
class A<T> {}
class A<T1,T2> {}
Note
By convention, generic types and methods with a
 single type parameter typically name their
 parameter T, as long as the intent
 of the parameter is clear. When using multiple
 type parameters, each parameter is prefixed with T, but has a more descriptive name.

typeof and Unbound Generic Types

Open generic types do not exist at runtime: open generic
 types are closed as part of compilation. However, it is possible for an
 unbound generic type to exist at
 runtime—purely as a Type object. The
 only way to specify an unbound generic type in C# is with the typeof operator:
class A<T> {}
class A<T1,T2> {}
...

Type a1 = typeof (A<>); // Unbound type (notice no type arguments).
Type a2 = typeof (A<,>); // Use commas to indicate multiple type args.
Open generic types are used in conjunction with the Reflection API
 (Chapter 19).
You can also use the typeof
 operator to specify a closed type:
Type a3 = typeof (A<int,int>);
or an open type (which is closed at runtime):
class B<T> { void X() { Type t = typeof (T); } }

The default Generic Value

The default keyword can be
 used to get the default value given a generic type parameter. The
 default value for a reference type is null, and the default value for a value type
 is the result of bitwise-zeroing the value type’s fields:
static void Zap<T> (T[] array)
{
 for (int i = 0; i < array.Length; i++)
 array[i] = default(T);
}

Generic Constraints

By default, a type parameter can be substituted with any
 type whatsoever. Constraints can be applied to a
 type parameter to require more specific type arguments.
These are the possible
 constraints:
where T : base-class // Base-class constraint
where T : interface // Interface constraint
where T : class // Reference-type constraint
where T : struct // Value-type constraint (excludes Nullable types)
where T : new() // Parameterless constructor constraint
where U : T // Naked type constraint
In the following example, GenericClass<T,U> requires T to derive from (or be identical to) SomeClass and implement Interface1, and requires U to provide a parameterless
 constructor:
class SomeClass {}
interface Interface1 {}

class GenericClass<T,U> where T : SomeClass, Interface1
 where U : new()
{...}
Constraints can be applied wherever type parameters are defined,
 in both methods and type definitions.
A base-class constraint specifies that
 the type parameter must subclass (or match) a particular class; an
 interface constraint specifies that
 the type parameter must implement that interface. These constraints
 allow instances of the type parameter to be implicitly converted to that
 class or interface. For example, suppose we want to write a generic
 Max method, which returns the maximum
 of two values. We can take advantage of the generic interface defined in
 the framework called IComparable<T>:
public interface IComparable<T> // Simplified version of interface
{
 int CompareTo (T other);
}
CompareTo returns a positive
 number if this is greater than
 other. Using this interface as a
 constraint, we can write a Max method
 as follows (to avoid distraction, null checking is omitted):
static T Max <T> (T a, T b) where T : IComparable<T>
{
 return a.CompareTo (b) > 0 ? a : b;
}
The Max method can accept
 arguments of any type implementing IComparable<T> (which includes most
 built-in types such as int and
 string):
int z = Max (5, 10); // 10
string last = Max ("ant", "zoo"); // zoo
The class constraint and struct constraint specify that
 T must be a reference type or (non-nullable) value type. A great
 example of the struct constraint is the System.Nullable<T> struct (we will
 discuss this class in depth in Nullable Types in
 Chapter 4):
struct Nullable<T> where T : struct {...}
The parameterless constructor constraint
 requires T to have a public
 parameterless constructor. If this constraint is defined, you can call
 new() on T:
static void Initialize<T> (T[] array) where T : new()
{
 for (int i = 0; i < array.Length; i++)
 array[i] = new T();
}
The naked type constraint requires one
 type parameter to derive from (or match) another type parameter. In this
 example, the method FilteredStack
 returns another Stack, containing
 only the subset of elements where the type parameter U is of the type parameter T:
class Stack<T>
{
 Stack<U> FilteredStack<U>() where U : T {...}
}

Subclassing Generic Types

A generic class can be subclassed just like a nongeneric
 class. The subclass can leave the base class’s type parameters open, as
 in the following example:
class Stack<T> {...}
class SpecialStack<T> : Stack<T> {...}
Or the subclass can close the generic type parameters with a
 concrete type:
class IntStack : Stack<int> {...}
A subtype can also introduce fresh type arguments:
class List<T> {...}
class KeyedList<T,TKey> : List<T> {...}
Note
Technically, all type arguments on a
 subtype are fresh: you could say that a subtype closes and then
 reopens the base type arguments. This means that a subclass can give
 new (and potentially more
 meaningful) names to the type arguments it reopens:
class List<T> {...}
class KeyedList<TElement,TKey> : List<TElement> {...}

Self-Referencing Generic Declarations

A type can name itself as the
 concrete type when closing a type argument:
public interface IEquatable<T> { bool Equals (T obj); }

public class Balloon : IEquatable<Balloon>
{
 public string Color { get; set; }
 public int CC { get; set; }

 public bool Equals (Balloon b)
 {
 if (b == null) return false;
 return b.Color == Color && b.CC == CC;
 }
}
The following are also legal:
class Foo<T> where T : IComparable<T> { ... }
class Bar<T> where T : Bar<T> { ... }

Static Data

Static data is unique for each closed type:
class Bob<T> { public static int Count; }

class Test
{
 static void Main()
 {
 Console.WriteLine (++Bob<int>.Count); // 1
 Console.WriteLine (++Bob<int>.Count); // 2
 Console.WriteLine (++Bob<string>.Count); // 1
 Console.WriteLine (++Bob<object>.Count); // 1
 }
}

Type Parameters and Conversions

C#’s cast operator can perform several kinds of conversion, including:
	Numeric conversion

	Reference conversion

	Boxing/unboxing conversion

	Custom conversion (via operator overloading; see Chapter 4)

The decision as to which kind of conversion will take place
 happens at compile time, based on the known types
 of the operands. This creates an interesting scenario with generic type
 parameters, because the precise operand types are unknown at compile
 time. If this leads to ambiguity, the compiler generates an
 error.
The most common scenario is when you want to perform a reference
 conversion:
StringBuilder Foo<T> (T arg)
{
 if (arg is StringBuilder)
 return (StringBuilder) arg; // Will not compile
 ...
}
Without knowledge of T’s actual
 type, the compiler is concerned that you might have intended this to be
 a custom conversion. The simplest
 solution is to instead use the as
 operator, which is unambiguous because it cannot perform custom conversions:
StringBuilder Foo<T> (T arg)
{
 StringBuilder sb = arg as StringBuilder;
 if (sb != null) return sb;
 ...
}
A more general solution is to first cast to object. This works because conversions to/from
 object are assumed not to be custom
 conversions, but reference or boxing/unboxing conversions. In this case,
 StringBuilder is a reference type, so
 it has to be a reference conversion:
 return (StringBuilder) (object) arg;
Unboxing conversions can also introduce ambiguities. The following
 could be an unboxing, numeric, or custom conversion:
int Foo<T> (T x) { return (int) x; } // Compile-time error
The solution, again, is to first cast to object and then to int (which then unambiguously signals an
 unboxing conversion in this case):
int Foo<T> (T x) { return (int) (object) x; }

Covariance

Assuming A is
 convertible to B, X is covariant if X<A> is convertible to X.
Note
With C#’s notion of covariance (and contravariance),
 “convertible” means convertible via an implicit reference conversion—such
 as A
 subclassing B,
 or A
 implementing B. Numeric conversions, boxing conversions, and
 custom conversions are not included.

For instance, type IFoo<T> is covariant for T if the following is legal:
IFoo<string> s = ...;
IFoo<object> b = s;
From C# 4.0, generic interfaces permit covariance for (as do
 generic delegates—see Chapter 4), but
 generic classes do not. Arrays also support covariance (A[] can be converted to B[] if A
 has an implicit reference conversion to B), and are discussed here for
 comparison.
Note
Covariance and contravariance (or simply “variance”) are advanced concepts. The motivation behind
 introducing and enhancing variance in C# was to allow generic
 interface and generic types (in particular, those defined in the
 Framework, such as IEnumerable<T>) to work more
 as you’d expect. You can benefit from this without
 understanding the details behind covariance and contravariance.

Classes

Generic classes are not covariant, to ensure static type
 safety. Consider the following:
class Animal {}
class Bear : Animal {}
class Camel : Animal {}

public class Stack<T> // A simple Stack implementation
{
 int position;
 T[] data = new T[100];
 public void Push (T obj) { data[position++] = obj; }
 public T Pop() { return data[--position]; }
}
The following fails to compile:
Stack<Bear> bears = new Stack<Bear>();
Stack<Animal> animals = bears; // Compile-time error
That restriction prevents the possibility of runtime failure
 with the following code:
animals.Push (new Camel()); // Trying to add Camel to bears
Lack of covariance, however, can hinder reusability. Suppose,
 for instance, we wanted to write a method to Wash a stack of animals:
public class ZooCleaner
{
 public static void Wash (Stack<Animal> animals) {...}
}
Calling Wash with a stack of
 bears would generate a compile-time error. One workaround is to
 redefine the Wash method with a
 constraint:
class ZooCleaner
{
 public static void Wash<T> (Stack<T> animals) where T : Animal { ... }
}
We can now call Wash as
 follows:
Stack<Bear> bears = new Stack<Bear>();
ZooCleaner.Wash (bears);
Another solution is to have Stack<T> implement a covariant generic
 interface, as we’ll see shortly.

Arrays

For historical reasons, array types are covariant. This
 means that B[] can be cast to
 A[] if B subclasses A (and both are reference types). For
 example:
Bear[] bears = new Bear[3];
Animal[] animals = bears; // OK
The downside of this reusability is that element assignments can
 fail at runtime:
animals[0] = new Camel(); // Runtime error

Interfaces

As of C# 4.0, generic interfaces support covariance for
 type parameters marked with the out
 modifier. This modifier ensures that, unlike with arrays, covariance
 with interfaces is fully type-safe. To illustrate, suppose that our
 Stack class implements the
 following interface:
public interface IPoppable<out T> { T Pop(); }
The out modifier on
 T indicates that T is used only in output
 positions (e.g., return types for methods). The out modifier flags the interface as
 covariant and allows us to do this:
var bears = new Stack<Bear>();
bears.Push (new Bear());
// Bears implements IPoppable<Bear>. We can convert to IPoppable<Animal>:
IPoppable<Animal> animals = bears; // Legal
Animal a = animals.Pop();
The cast from bears to
 animals is permitted by the
 compiler—by virtue of the interface being covariant. This is
 type-safe because the case the compiler is trying to avoid—pushing a
 Camel onto the stack—can’t occur as
 there’s no way to feed a Camel
 into an interface where T can appear only in
 output positions.
Note
Covariance (and contravariance) in interfaces is
 something that you typically consume: it’s less
 common that you need to write variant
 interfaces. Curiously, method parameters marked as out are not eligible for covariance, due
 to a limitation in the CLR.

We can leverage the ability to cast covariantly to solve the
 reusability problem described
 earlier:
public class ZooCleaner
{
 public static void Wash (IPoppable<Animal> animals) { ... }
}
Note
The IEnumerator<T>
 and IEnumerable<T>
 interfaces described in Chapter 7 are
 marked as covariant. This allows you to cast IEnumerable<string> to IEnumerable<object>, for
 instance.

The compiler will generate an error if you use a covariant type
 parameter in an input position (e.g., a parameter
 to a method or a writable property).
Note
With both generic types and arrays, covariance (and
 contravariance) is valid only for elements with reference
 conversions—not boxing conversions. So, if you
 wrote a method that accepted a parameter of type IPoppable<object>, you could call it
 with IPoppable<string>, but
 not IPoppable<int>.

Contravariance

We previously saw that, assuming that A allows an implicit reference conversion to
 B, a type X is covariant if X<A> allows a reference conversion to
 X. A type is
 contravariant when you can convert in the reverse
 direction—from X to X<A>. This is supported with generic
 interfaces—when the generic type parameter only appears in
 input positions, designated with the in modifier. Extending
 our previous example, if the Stack<T> class implements the following
 interface:
public interface IPushable<in T> { void Push (T obj); }
we can legally do this:
IPushable<Animal> animals = new Stack<Animal>();
IPushable<Bear> bears = animals; // Legal
bears.Push (new Bear());
No member in IPushable
 outputs a T, so
 we can’t get into trouble by casting animals to bears (there’s no way to Pop, for instance, through that
 interface).
Note
Our Stack<T> class can
 implement both IPushable<T>
 and IPoppable<T>—despite
 T having opposing variance
 annotations in the two interfaces! This works because you can exercise
 variance only through an interface; therefore, you must commit to the
 lens of either IPoppable or
 IPushable before performing a
 variant conversion. This lens then restricts you to the operations
 that are legal under the appropriate variance rules.
This also illustrates why it would usually make no sense for
 classes (such as Stack<T>) to be variant: concrete
 implementations typically require data to flow in both
 directions.

To give another example, consider the following interface, defined
 as part of the .NET Framework:
public interface IComparer<in T>
{
 // Returns a value indicating the relative ordering of a and b
 int Compare (T a, T b);
}
Because the interface is contravariant, we can use an IComparer<object> to compare two
 strings:
var objectComparer = Comparer<object>.Default;
// objectComparer implements IComparer<object>
IComparer<string> stringComparer = objectComparer;
int result = stringComparer.Compare ("Brett", "Jemaine");
Mirroring covariance, the compiler will report an error if you try
 to use a contravariant parameter in an output position (e.g., as a
 return value, or in a readable property).

C# Generics Versus C++ Templates

C# generics are similar in application to C++ templates,
 but they work very differently. In both cases, a synthesis between the
 producer and consumer must take place, where the placeholder types of
 the producer are filled in by the consumer. However, with C# generics,
 producer types (i.e., open types such as List<T>) can be compiled into a library
 (such as mscorlib.dll). This works
 because the synthesis between the producer and the consumer that
 produces closed types doesn’t actually happen until runtime. With C++
 templates, this synthesis is performed at compile time. This means that
 in C++ you don’t deploy template libraries as .dlls—they exist only as source code. It also
 makes it difficult to dynamically inspect, let alone create,
 parameterized types on the fly.
To dig deeper into why this is the case, consider the Max method in C#, once more:
static T Max <T> (T a, T b) where T : IComparable<T>
{
 return a.CompareTo (b) > 0 ? a : b;
}
Why couldn’t we have implemented it like this?
static T Max <T> (T a, T b)
{
 return a > b ? a : b; // Compile error
}
The reason is that Max needs to
 be compiled once and work for all possible values of T. Compilation cannot succeed, because there
 is no single meaning for > across
 all values of T—in fact, not every
 T even has a > operator. In contrast, the following code
 shows the same Max method written
 with C++ templates. This code will be compiled separately for each value
 of T, taking on whatever semantics
 > has for a particular T, failing to compile if a particular T does not support the > operator:
template <class T> T Max (T a, T b)
{
 return a > b ? a : b;
}

[5] The reference type may also be System.ValueType or System.Enum (Chapter 6).

End of sample

 To search for additional titles please go to

 http://search.overdrive.com.

OEBPS/httpatomoreillycomsourceoreillyimages1233194.png
- Stream
adapters

| StreamReader

StreamWriter

BinaryReader

Decorator
treams

Deflate
Stream

GTip
Stream

acking store
streams

FileStream

IsolatedStorage
Stream

Binary Wiiter

XmiReader

Gypto
Stieam

Memarystream [++-[Z23

XmiWriter

Buffered
Stream

NetworkStream

OEBPS/httpatomoreillycomsourceoreillyimages1233210.png
Assembly

Manifest

(mandatory)

ILCode +
Resources

Type Metadata

(optional) (optional)

MyApp.exe

Module

OEBPS/httpatomoreillycomsourceoreillyimages1233150.png
Heap

3201 64bits
nullfnull
builders
() (¢
ol I
3|3 ||e
S|z ||=
=R
=R IR 1
HIEIE
12345 54321
—

numbers

OEBPS/httpatomoreillycomsourceoreillyimages1233198.png
Requirement

ReadMiite Read Only
Does e FileNode.Open
already exist? =File.OpenRead()
Yest
Tunate Unsure
esting fe? Nor
Yes No Whatltthereis
aneising ie?
FileMode.Truncate | | FileMode.Open | | FileMode CreateNew Appendtot
«an excepton s thrown fyoute wrong Needtoread s
Truncate it Letitbe,
Yes No
FieMode Create | [FileMode OpendrCreate) [-
—file Ceate() fileOpenWrte() | | Fileode.Append

OEBPS/httpatomoreillycomsourceoreillyimages1233154.png
LinkedList

First

Last

null| Previous Previous Previous Previous
Next |« Next Next Next
Value Value Value Value

null

LinkedListNode LinkedListNode LinkedListNode LinkedListNode

OEBPS/httpatomoreillycomsourceoreillyimages1233176.png
LambdaExpression
Type=Func<string, bool>

Parameters Body
ParameterColletion BinaryExpression
Parametesl] Nodelype = LesThan
Left Right
Memberbxpression Gonstantbxpression
MenbecName ="Length” Vaue=5
Type=System.nt32
Eression
Parameterbpression
Name="s"

Tppe=System.Sting

OEBPS/httpatomoreillycomsourceoreillyimages1233142.png
uomag —»

Consumer

next

2
next

Even enumerator

— Yielding data —p

< Pulling data —

Fibonacia enumerator

OEBPS/httpatomoreillycomsourceoreillyimages1233184.png
XElement
Name = "customer”
Aetributes Nodes |—]
XElement
Name="frstname"
Nodes H
t XText Value = "Joe"
Name="id" XElement
Vit 133" Namement Enumerable<XNode>
Nodes H
JEnumerable<XNode> XText Value = Bloggs"
Value = "archived" Xomment
Value ="hice name"
IEnumerable<YAttribute> I

OEBPS/httpatomoreillycomsourceoreillyimages1233234.png
ParallelEnumerable.Select

[ale}>[AT5]

Thread 1

I [
|‘“’|‘|d|e|"Aspa,auem\"'d'_"cl” [aTBTETFICID]

Thread 2

[eTr}—>[eTF]

Thread 3

"abcdef" .AsParallel().Select (c => char.ToUpper(c)).ToArray()

OEBPS/httpatomoreillycomsourceoreillyimages1233202.png
L

7aY

| StreamReader “ StringReader | I StreamWriter || StringWriter |

Stream

BinaryReader

XmiReader

BinaryWriter

OEBPS/httpatomoreillycomsourceoreillyimages1233144.png
v
v

vIiv| VIV

viviviviv] |V

viviviviviviv

Integer
Float

Number

HexNumber|

Currency
Any

OEBPS/oreilly_large.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages1233148.png
IEnumerator O——————0 [|Enumerator<T>

IEnumerable % |Enumerable<T> Enumeration only

ICollection Q ICollection<T> Countable*

Non-generic ; Generic

*ICollection<T> has added functionality

OEBPS/httpatomoreillycomsourceoreillyimages1233232.png
Structured data parallelism

Parallel class

PLINQ

- Slim Lazy
Task parallelism Eg“;g{lr::: Sﬁ;‘ﬂ:;'egs signaling | | initialization
P constructs types
CLR thread pool

Threads

OEBPS/httpatomoreillycomsourceoreillyimages1233136.png
Point Struct

OEBPS/httpatomoreillycomsourceoreillyimages1233134.png
Point Struct

- }-Value /Instance

OEBPS/httpatomoreillycomsourceoreillyimages1233124.png

OEBPS/httpatomoreillycomsourceoreillyimages1233222.png
Transparent

code
Security (neither security safe critical
safe nor security critical)
aitical
Transparent code cannot

call security critical code

OEBPS/httpatomoreillycomsourceoreillyimages1233132.png
system.d11 [/
System.xnl.d1l
System.Core.d11
Windows
Presentation
Foundation

ADONET .
mscorlibll

Framework Fundamentals

Vindows Regular
Communication
Foundation Workfow
" Foundatio
Web
Senices:
e tiae
ASNET », [Steamsand /0
et Foms [sersztion
N rkD Managed
etworking Brtensibilty
e ot

Managed

The Nutshell Addhn Framework

OEBPS/httpatomoreillycomsourceoreillyimages1233182.png
Parent

Xattribute /

XNode
Parent

lr

pAY
[[[A B
Xlext x"",‘;‘;:"" XContainer XProcessing || Xcomment

Hode
0 rmerable <Xode>

XElement
Attributes

XDocument

Root Declaration [XDedlaration

[Enumerable<XAttribute> ,

OEBPS/httpatomoreillycomsourceoreillyimages1233242.png
il

No fault

3

OEBPS/httpatomoreillycomsourceoreillyimages1233204.png
Assembly Assembly & domain

Local user Assembly | User Assembly | Domain | User

Roaminguser | Assembly | User|Roaming | Assembly | Domain | User | Roaming

Machine Assembly | Machine Assembly | Domain | Machine

OEBPS/httpatomoreillycomsourceoreillyimages1233238.png
Thread 1

al b Jefdfe)f .AsParaIIeI(]<

Thread 2

»| o
o

Chunk Partitioning
(with a chunk size of 1)

Thread 1

H_}.AsParallel() d| f|e |Thread2

Range Partitioning

OEBPS/httpatomoreillycomsourceoreillyimages1233244.png
Default Default
Applcaton Application
Domain Domain
New
Application
Domain
EXE Process) L EXE Process)
Single-Application-Domain Program Multi-Application-Domain Program
(|) [hoes)
Rich Clent
App Domain
Server code runming in TPor U J
default Appliation Dorain g P .
Rich Clent
App Domain
L Service Process) P
Non-IS based WCF or Clents
Remoting Server Host
('\’/’ WebBrowser |
Wb ite 1 Domain h
[Webbowser)
HITP h
L webbowser |
Web ite 2 Domain h
[Webbowsr)
HITP ~ ~
WCF Server App Domain App Domain
[IS Hosting Process _ RihClent |

IS Server

OEBPS/orm_front_cover.jpg
The Definitive Reference

Joseph Albabari

O’REILLY* & Ben Albabari

OEBPS/httpatomoreillycomsourceoreillyimages1233146.png
VIVIV

4

viv| VIV

Integer

AllowThousands

Float |

Number

Integral types

doubleand float

decimal

OEBPS/httpatomoreillycomsourceoreillyimages1233186.png
Managed heap

class x

object
4

static void _x = new Foo();
static void Test()

{ Foo x
) .

} root (while x is in use)

object

Unreachable objects subject
to collecti

OEBPS/httpatomoreillycomsourceoreillyimages1233196.png
System.Net.Sockef

System.l0.Pipes

Al

A}

MemoryStream
Seekable

FileStream
Seekable

NetworkStream
Nonseekable

PipeStream
Nonseekable

il

IsolatedStorageFileStream

Seekable

OEBPS/httpatomoreillycomsourceoreillyimages1233164.png
elect decorator | R glVISY

OrderBy decorator source

Numbers Where decorator source selector
armay

5 < source keySelector
12 "
3 predicate

Lambda — — —
Xpressions

ompiledto [N => n < 10 n=>n n=>n* 10
delegates

OEBPS/httpatomoreillycomsourceoreillyimages1233174.png
ya)

Conditonal || nvocation] | [Listnit || [Membertnit}| [NewArray || [Parameter}| [Unary
Expression || Expression ||| Expression||| Expresion ||| Expression| || Expresion| || Expression

Binary | [Constant | [Lambda | [Member | [MethodGall] [New | [TypeBinany
Expression | | Expression| | Expression | | Expression| | Expression | | Exression| | Expression

T

Expression< Thelegate>

OEBPS/httpatomoreillycomsourceoreillyimages1233172.png
Expressions

DataQuery<string>

‘Select" expression A Expression

(Customer cj=>

IQueryable<string>
O ey d cName.ToUpper)

Empty
shells

“OrderBy” expression

A Expression

(Customer cj=>
cNamelength

A Expression

(Customer =>
cName Contains (*A")

Table<Customer>

O lQueryable<Customer> i Lambda expressions

OEBPS/httpatomoreillycomsourceoreillyimages1233224.png
Cryptographers le| [CryptoTransform
(encryptor)

Stream chain

StreamWriter I I DeflateStream I I CryptoStream I I FileStream

A references B

Data flow

|(ryploStream I-ﬂ——}l FileStream }-f}-
T

Backing store
t

OEBPS/httpatomoreillycomsourceoreillyimages1233162.png
Requests for data

Array decorator

Where OrderBy Select
decorator decorator
— Lambda
g - g opreson
n=> 0= ompiled to
n< 10 WD n* 10 delegates
predicate keySelector selector

Data

OEBPS/httpatomoreillycomsourceoreillyimages1233160.png
Where
decorator

—

n =>
n < 10

predicate

lessThanTen

OEBPS/httpatomoreillycomsourceoreillyimages1233180.png
Customer CustomerEntity
Purchase PurchaseEntity
Purchase PurchaseEntity
Customer CustomerEntity
Purchase PurchaseEntity
Purchase PurchaseEntity
LINQ to SQL types Custom types

OEBPS/httpatomoreillycomsourceoreillyimages1233192.png
Main thread

XHHXXCK XXX KK KX XXX KKK XK XXX KKXXKKXXXK. + » XXXKKX.
New thread Thread ends
Time—>»
Start() Thread ends

Worker YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY- - « -YYYYYYYY
thread

Application
ends

OEBPS/httpatomoreillycomsourceoreillyimages1233178.png
$ Y %
& %, o

& %, %,

NS N
< %,
%

Relational

Select-subquery or Grouploin —— Hierarchical

Select-subquery

OEBPS/httpatomoreillycomsourceoreillyimages1233140.png
Point Class
pl

Reference

p2

Reference

OEBPS/httpatomoreillycomsourceoreillyimages1233156.png
Kep
Ky
furey

»ia

n=>
n.Contains
s

woj

Q_fitr O
.Where()

n=>
("a") n.length
s

Q__Sater O
.OrderBy

n=>
n.ToUpper()
4

.Select

GUYH
YW

NI

OEBPS/httpatomoreillycomsourceoreillyimages1233206.png
Application layer

Ping

WebClient -
/ WebRequest /4— (fcadeclas) —b/ WebResponse / SmtpClient | Dns
T S,

P
HttpClient
E HttpMessageHandler
FtpWeb HttpWeb HttpListener HttpWeb FtpWeb
Request Request (server) Response Response
Transport TepListener Ports TepClient UdpClient
layer (fagade class)) ‘ (facade class) (fagade dlas)
Socket
IP address
Network and
link layers

Physical MAC address

OEBPS/httpatomoreillycomsourceoreillyimages1233230.png
SignalAndWait

Thread 1 Thread 1

Thread 2 Thread 2

Thread 3 Y Thread 3
Barrier

SignalAndWait

Time

OEBPS/httpatomoreillycomsourceoreillyimages1233168.png
n2 => n2 =>

n2.Length n2.Length Subquery
4 s

First()

OEBPS/httpatomoreillycomsourceoreillyimages1233212.png
Assembly

Manifest

(mandatory)

ILCode +

Type Metadata
(optional)

Resources

(optional)

MyApp.exe

ILCode +

Type Metadata
(optional)

and/or

Resources

(optional)

ExtraStuft.netmodule

Main
module

Additional
module

OEBPS/httpatomoreillycomsourceoreillyimages1233240.png
ContinueWhenAll
Simple continuation

Antecedent Continuation Continuation 1
[ecdent | Contruation | [| [ontmaton

Multiple continuations ContinueWhenAny
Continuation 1 | [Antecedent 1 T continuation |
Antecedent
Continuation 2 | [Antecedent2 |

Continuation with child tasks

[Parenttask o

[Cildtask i
> hildask

> Continuation on parent |

Time

OEBPS/httpatomoreillycomsourceoreillyimages1233138.png
Point Class

Reference Object

Reference

Object
Metadat

}-Value/lnstance

OEBPS/httpatomoreillycomsourceoreillyimages1233220.png
sy etctin

nssemoly| [Modue) [Tpe } [Fielinto | [Propertyinfo } [Methodsase | [LocaVaribleino |

Lol

Assembly | [Module Field Constrctor| [Method | [Dynaic|
Builder

Type Property
Buider | | Buider | | Buider | | Bulder [| Bulder | | Bulder | | Buider | | Method

- System.Reflection.Emit

OEBPS/httpatomoreillycomsourceoreillyimages1233158.png
in (Cenmeie-opr)

ascending

descending

query continuation

2 orderby- g

] dause 2

] S

g

X 2
where select S

expr

from-
dause

. ‘boolean-expr .
' let identifier '

=expr

group-
dause

Join-clause

v

P inner | 5 [inner outer inner
JOIN ientifier | 1" r)| ke }equals ke K
o) Y] Uinto

OEBPS/httpatomoreillycomsourceoreillyimages1233130.png
T Interface

Base type
i
Subtype
Referencing type (Um'dr'r?crtg'on)a!
association)
Property| Referenced type
Referencing type (Bidirectional Referencing type
Property association) Property

OEBPS/httpatomoreillycomsourceoreillyimages1233208.png
AbsoluteUri

Authority

PathAndQuery

Host Port

http|: //waw. domain. com 999
http|://192.25.12.4
filel://josephcomputer

Scheme

AbsolutePath Query | Fragment
info/page. html?queryitop

shared/pic. jp

OEBPS/httpatomoreillycomsourceoreillyimages1233216.png
de\MyApp.resources.dil

MyApp.exe

bannerjpg

%— Non-localized resources

f\MyApp.resources.dll

Welcome resources

Welcome resources

[Greon L oams

Welcome resources

German satellite

Main assembly

French satellite

OEBPS/httpatomoreillycomsourceoreillyimages1233218.png
o

([1 |

/ Fieldinfo / / Propertyinfo / / MethodBase / / Eventinfo / / Type /

Methodinfo

OEBPS/httpatomoreillycomsourceoreillyimages1233200.png
System.I0

Stream
A

BufferedStream
Scckable*
*Subjectto the

capabiltesofthe
‘source stream

System.I0.Compression

System.Net.Security

1

1

A

DeflateStream
Nonseekable

GipStream
Nonseekable

CryptoStream
Nonseekable

/

AuthenticatedStream
Nonseekable

/

OEBPS/httpatomoreillycomsourceoreillyimages1233152.png
null{null

builder:

builder1
builder2
builder3

null null

shallowClone

OEBPS/httpatomoreillycomsourceoreillyimages1233228.png
Main thread

New
thread

T

readySet

OEBPS/httpatomoreillycomsourceoreillyimages1233214.png
Open File - Security Warning @

The publisher could not be verified. Are you sure you want to run this
software?

. 1 Name: C:\Users\user\Desktop\LINQPad.exe
Publisher: Unknown Publisher
Type: Application
From: C:\Users\user\Desktop\LINQPad.exe

Run ‘ [

| Always ask before opening this file

| This file does not have a valid digital signature that verifies its
a publisher. You should only run software from publishers you trust.
w7/ How can | decide what software to run?

OEBPS/httpatomoreillycomsourceoreillyimages1233190.png
Add Counters

(O Use local computer counters
(@) Select counters from computer:

JNIcE

Performance object:

‘Nutshell Monitoring

(O All counters All instances

(®) Select counters from list Select instances from list:
Macadamias deemed too hard

Macadamias eaten so far

Explain Text - WICE\Nutshell Monitoring\Macadamias eaten so far

Number of macadamias consumed, including shelling time

OEBPS/httpatomoreillycomsourceoreillyimages1233166.png
4— next —|
| €— next—{
[4— next —
|€— next—
L 5—»
L—5—»
= = |4—next— E o
5 |€—next— 5 4 Iy o
S s = 2
2 [e—net— 2 = T 3
= : :
E shH—3—|2 5
= .) SN |-
—30—>|
«— next —|
| €—next —
L5
— 50— |
Data —» «—— Requests for data

——uonmaxg

OEBPS/httpatomoreillycomsourceoreillyimages1233188.png
Gen2 Gen1 Gen0
Iy e x

]

Is als N
Before
GC

t t

Dead Gen2 Genl
object pointer pointer

Gen2 Genl Gen(
- - N - ~

Space for new After
objectallocations | fyll GC

T

Gen2 Genl
pointer pointer

OEBPS/httpatomoreillycomsourceoreillyimages1233226.png
Main thread

— New Sleep (10
thread

Set()

BLOCKED

OEBPS/httpatomoreillycomsourceoreillyimages1233170.png
R

OrderBy decorator source

source selector
keySelector
. Lambda
n2 => n2 => e'xpre%xeigns
compiledto
n2.Length n2.length | GRS

Quter query

Tom

Hamy4———— souree selector
Mary -
Jone preIcale

—

n=>
n. Length= Ll_" First()

Lambda
expressions
compiled to
delegates

OEBPS/httpatomoreillycomsourceoreillyimages1233236.png
ParallelEnumerable.Select

[A]B] Console.Write
Thread 1

[afbTcTde]f}- Aspa’a"elo\m—» Console.Write

Thread 2

[E] Console.Write

Thread 3

bcdef” .AsParallel().Select (c => char.ToUpper(c)).ForAll (Console.Write)

