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Preface



C# 5.0 represents the fourth major update to Microsoft’s flagship
  programming language, positioning C# as a language with unusual flexibility
  and breadth. At one end, it offers high-level abstractions such as query
  expressions and asynchronous continuations, while at the other end, it
  provides low-level power through constructs such as custom value types and
  the optional use of pointers.
The price of this growth is that there’s more than ever to learn.
  Although tools such as Microsoft’s IntelliSense—and online references—are
  excellent in helping you on the job, they presume an existing map of
  conceptual knowledge. This book provides exactly that map of knowledge in a
  concise and unified style—free of clutter and long introductions.
Like the past two editions, C# 5.0 in a Nutshell
  is organized entirely around concepts and use cases, making it friendly both
  to sequential reading and to random browsing. It also plumbs significant
  depths while assuming only basic background knowledge—making it accessible
  to intermediate as well as advanced readers.
This book covers C#, the CLR, and the core Framework assemblies. We’ve
  chosen this focus to allow space for difficult topics such as concurrency,
  security, and application
  domains—without compromising depth or readability. Features new to C# 5.0
  and the associated Framework are flagged so that you can also use this book
  as a C# 4.0 reference.
Intended Audience



This book targets intermediate to advanced audiences. No prior
    knowledge of C# is required, but some general programming experience is
    necessary. For the beginner, this book complements, rather than replaces,
    a tutorial-style introduction to programming.
If you’re already familiar with C# 4.0, you’ll find a reorganized
    section on concurrency, including thorough coverage of C# 5.0’s asynchronous functions and its associated types. We also describe the
    principles of asynchronous programming and how it helps with efficiency
    and thread-safety.
This book is an ideal companion to any of the vast array of books
    that focus on an applied technology such as WPF, ASP.NET, or WCF. The
    areas of the language and .NET Framework that such books omit,
    C# 5.0 in a Nutshell covers in detail—and vice
    versa.
If you’re looking for a book that skims every .NET Framework
    technology, this is not for you. This book is also unsuitable if you want
    to learn about APIs specific to tablet or Windows Phone
    development.

How This Book Is Organized



The first three chapters after the introduction concentrate purely
    on C#, starting with the basics of syntax, types, and variables, and
    finishing with advanced topics such as unsafe code and preprocessor
    directives. If you’re new to the language, you should read these chapters
    sequentially.
The remaining chapters cover the core .NET Framework, including such
    topics as LINQ, XML, collections, code contracts, concurrency, I/O and
    networking, memory management, reflection, dynamic programming,
    attributes, security, application domains, and native interoperability.
    You can read most of these chapters randomly, except for Chapters 6 and
    7, which
    lay a foundation for subsequent topics. The three chapters on LINQ are
    also best read in sequence, and some chapters assume some knowledge of
    concurrency, which we cover in Chapter 14.

What You Need to Use This Book



The examples in this book require a C# 5.0 compiler and Microsoft
    .NET Framework 4.5. You will also find Microsoft’s .NET documentation
    useful to look up individual types and members (which is available
    online).
While it’s possible to write source code in Notepad and invoke the
    compiler from the command line, you’ll be much more productive with a
    code scratchpad for instantly testing code snippets, plus an
    Integrated Development Environment (IDE) for
    producing executables and libraries.
For a code scratchpad, download LINQPad 4.40 or later from www.linqpad.net (free). LINQPad fully
    supports C# 5.0 and is maintained by one of the authors.
For an IDE, download Microsoft Visual Studio 2012: any edition is
    suitable for what’s taught in this book, except the free express
    edition.
Note
All code listings for Chapter 2 through Chapter 10, plus the chapters on concurrency, parallel
      programming, and dynamic programming are available as interactive
      (editable) LINQPad samples. You can download the whole lot in a single
      click: go to LINQPad’s Samples tab at the bottom left, click “Download
      more samples,” and choose “C# 5.0 in a Nutshell.”


Conventions Used in This Book



The book uses basic UML notation to illustrate relationships between
    types, as shown in Figure 1. A slanted rectangle
    means an abstract class; a circle means an interface. A line with a hollow
    triangle denotes inheritance, with the triangle pointing to the base type.
    A line with an arrow denotes a one-way association; a line without an
    arrow denotes a two-way association.
[image: Sample diagram]

Figure 1. Sample diagram

The following typographical conventions are used in this
    book:
	Italic
	Indicates new terms, URIs, filenames, and directories

	Constant width
	Indicates C# code, keywords and identifiers, and program
          output

	Constant width
        bold
	Shows a highlighted section of code

	Constant width italic
	Shows text that should be replaced with user-supplied
          values



Tip
This icon signifies a tip, suggestion, or general note.

Caution
This icon indicates a warning or caution.


Using Code Examples



This book is here to help you get your job done. In general, you may
    use the code in this book in your programs and documentation. You do not
    need to contact us for permission unless you’re reproducing a significant
    portion of the code. For example,
    writing a program that uses several chunks of code from this book does not
    require permission. Selling or distributing a CD-ROM of examples from
    O’Reilly books does require permission. Answering a
    question by citing this book and quoting example code does not require
    permission. Incorporating a significant amount of example code from this
    book into your product’s documentation does require
    permission.
We appreciate, but do not require, attribution. For example:
    “C# 5.0 in a Nutshell by Joseph Albahari and Ben
    Albahari. Copyright 2012 Joseph Albahari and Ben Albahari,
    978-1-449-32010-2.”
If you feel your use of code examples falls outside fair use or the
    permission given here, feel free to contact us at
    permissions@oreilly.com.

Safari® Books Online



Note
Safari Books Online (www.safaribooksonline.com)
      is an on-demand digital library that delivers expert content in both
      book and video form from the world’s leading authors in technology and
      business.

Technology professionals, software developers, web designers, and
    business and creative professionals use Safari Books Online as their
    primary resource for research, problem solving, learning, and
    certification training.
Safari Books Online offers a range of product mixes
    and pricing programs for organizations,
    government
    agencies, and individuals.
    Subscribers have access to thousands
    of books, training videos, and prepublication manuscripts in one
    fully searchable database from publishers like O’Reilly Media, Prentice
    Hall Professional, Addison-Wesley Professional, Microsoft Press, Sams,
    Que, Peachpit Press, Focal Press, Cisco Press, John Wiley & Sons,
    Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT Press,
    Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course
    Technology, and dozens more. For more
    information about Safari Books Online, please visit us online.

How to Contact Us



Please address comments and questions concerning this book to the
    publisher:
	O’Reilly Media, Inc.
	1005 Gravenstein Highway North
	Sebastopol, CA 95472
	800-998-9938 (in the United States or Canada)
	707-829-0515 (international or local)
	707-829-0104 (fax)

We have a web page for this book, where we list errata, examples,
    and any additional information. You can access this page at:
	http://oreil.ly/csharp5_IAN

To comment or ask technical questions about this book, send email
    to:
	bookquestions@oreilly.com

For more information about our books, courses, conferences, and
    news, see our website at http://www.oreilly.com.
Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia
Watch us on YouTube: http://www.youtube.com/oreillymedia
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Chapter 1. Introducing C# and the .NET
  Framework



C# is a general-purpose, type-safe, object-oriented programming language. The goal of the
  language is programmer productivity. To this end, the language balances
  simplicity, expressiveness, and performance. The chief architect of the
  language since its first version is Anders Hejlsberg (creator of Turbo Pascal and architect of
  Delphi). The C# language is platform-neutral, but it was written to work
  well with the Microsoft .NET Framework.
Object Orientation



C# is a rich implementation of the object-orientation paradigm, which includes encapsulation,
    inheritance, and
    polymorphism. Encapsulation means
    creating a boundary around an object,
    to separate its external (public) behavior from its internal (private)
    implementation details. The distinctive features of C# from an object-oriented perspective are:
	Unified type system
	The fundamental building block in C# is an encapsulated unit
          of data and functions called a type. C# has a unified type
          system, where all types ultimately share a common base
          type. This means that all types, whether they represent business
          objects or are primitive types such as numbers, share the same basic
          set of functionality. For example, an instance of any type can be
          converted to a string by calling its ToString method.

	Classes and interfaces
	In a traditional object-oriented paradigm, the only kind of
          type is a class. In C#, there are several other kinds of types,
          one of which is an interface.
          An interface is like a class, except that it only
          describes members. The implementation for those
          members comes from types that implement the
          interface. Interfaces are particularly useful in scenarios where
          multiple inheritance is required (unlike languages
          such as C++ and Eiffel, C# does not support multiple inheritance of
          classes).

	Properties, methods, and events
	In the pure object-oriented paradigm, all functions are
          methods (this is
          the case in Smalltalk). In C#, methods are only one kind of
          function member,
          which also includes properties
          and events (there are
          others, too). Properties are function members that encapsulate a
          piece of an object’s state, such as a button’s color or a label’s
          text. Events are function members that simplify acting on object
          state changes.




Type Safety



C# is primarily a type-safe language, meaning that instances of
    types can interact only through protocols they define, thereby ensuring
    each type’s internal consistency. For instance, C# prevents you from
    interacting with a string type as
    though it were an integer
    type.
More specifically, C# supports static typing, meaning
    that the language enforces type safety at compile time. This is in addition to
    type safety being enforced at runtime.
Static typing eliminates a large class of errors before a program is
    even run. It shifts the burden away from runtime unit tests onto the
    compiler to verify that all the types in a program fit together correctly.
    This makes large programs much easier to manage, more predictable, and
    more robust. Furthermore, static typing allows tools such as IntelliSense
    in Visual Studio to help you write a program, since it knows for a given
    variable what type it is, and hence what methods you can call on that
    variable.
Note
C# also allows parts of your code to be dynamically typed via the
      dynamic keyword (introduced in C# 4).
      However, C# remains a predominantly statically typed language.

C# is also called a strongly typed language
    because its type rules (whether enforced statically or at runtime) are
    very strict. For instance, you cannot call a function that’s designed to
    accept an integer with a floating-point number, unless you first
    explicitly convert the floating-point number to an
    integer. This helps prevent mistakes.
Strong typing also plays a role in enabling C# code to run in a
    sandbox—an environment where every aspect of security is
    controlled by the host. In a sandbox, it is important that you cannot
    arbitrarily corrupt the state of an object by bypassing its type
    rules.

Memory Management



C# relies on the runtime to perform automatic memory management. The
    Common Language Runtime has a garbage collector that executes as part of your program,
    reclaiming memory for objects that are no longer referenced. This frees
    programmers from explicitly deallocating the memory for an object,
    eliminating the problem of incorrect pointers encountered in languages such as C++.
C# does not eliminate pointers: it merely makes them unnecessary for
    most programming tasks. For performance-critical hotspots and
    interoperability, pointers may be used, but they are permitted only in
    blocks that are explicitly marked unsafe.

Platform Support



C# is typically used for writing code that runs on Windows
    platforms. Although Microsoft standardized the C# language through ECMA,
    the total amount of resources (both inside and outside of Microsoft)
    dedicated to supporting C# on non-Windows platforms is relatively small.
    This means that languages such as Java are sensible choices when
    multiplatform support is of primary concern. Having said this, C# can be
    used to write cross-platform code in the following scenarios:
	C# code may run on the server and dish up HTML that can run on any platform. This is precisely the
        case for ASP.NET.

	C# code may run on a runtime other than the Microsoft Common
        Language Runtime. The most notable example is the Mono project, which has its own C# compiler and runtime,
        running on Linux, Solaris, Mac OS X, and Windows.

	C# code may run on a host that supports Microsoft Silverlight (supported for Windows and Mac OS
        X). This technology is analogous to Adobe’s Flash Player.




C#’s Relationship with the CLR



C# depends on a runtime equipped with a host of features such as
    automatic memory management and exception handling. The design of C#
    closely maps to the design of Microsoft’s Common Language
    Runtime (CLR), which provides these runtime features (although
    C# is technically independent of the CLR). Furthermore, the C# type system
    maps closely to the CLR type system (e.g., both share the same definitions
    for predefined types).

The CLR and .NET Framework



The .NET Framework consists of the CLR plus a vast set of
    libraries. The libraries consist of core libraries (which this book is
    concerned with) and applied libraries, which depend on the core libraries.
    Figure 1-1
    is a visual overview of those libraries (and also serves as a navigational
    aid to the book).
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Figure 1-1. Topics covered in this book and the chapters in which they are
      found. Topics not covered are shown outside the large circle.

The CLR is the runtime for executing managed code. C# is one
    of several managed languages that get
    compiled into managed code. Managed code is packaged into an assembly, in the form
    of either an executable file (an .exe) or a library (a .dll), along with type information, or
    metadata.
Managed code is represented in Intermediate Language
    or IL. When the CLR loads an
    assembly, it converts the IL into the native code of the machine, such as
    x86. This conversion is done by the CLR’s JIT (Just-In-Time) compiler. An assembly retains almost all
    of the original source language constructs, which makes it easy to inspect
    and even generate code dynamically.
Note
Red Gate’s .NET Reflector application is an invaluable
      tool for examining the contents of an assembly. You can also use it as a
      decompiler.

The CLR performs as a host for numerous runtime services. Examples
    of these services include memory management, the loading of libraries, and
    security services. The CLR is language-neutral, allowing developers to
    build applications in multiple languages (e.g., C#, Visual Basic .NET,
    Managed C++, Delphi.NET, Chrome .NET, and J#).
The .NET Framework contains libraries for writing just about any
    Windows- or web-based application.
    Chapter 5 gives an overview of the .NET
    Framework libraries.

C# and Windows Runtime



C# 5.0 also interoperates with Windows Runtime (WinRT) libraries.
    WinRT is an execution interface and runtime environment for accessing
    libraries in a language-neutral and object-oriented fashion. It ships with
    Windows 8 and is (in part) an enhanced version of Microsoft’s Component Object Model
    or COM (see Chapter 25).
Windows 8 ships with a set of unmanaged WinRT libraries which serve
    as a framework for touch-enabled Metro-style applications delivered through Microsoft’s
    application store. (The term
    WinRT also refers to these libraries.) Being WinRT,
    the libraries can easily be consumed not only from C# and VB, but C++ and
    JavaScript.
Warning
Some WinRT libraries can also be consumed in normal non-tablet
      applications. However, taking a dependency on WinRT gives your
      application a minimum OS requirement of Windows 8.
      (And into the future, taking a dependency on the
      next version of WinRT would give your program a
      minimum OS requirement of Windows 9.)

The WinRT libraries support the new Metro user interface (for
    writing immersive touch-first applications), mobile device-specific
    features (sensors, text messaging and so on), and a range of core
    functionality that overlaps with parts of the .NET Framework. Because of
    this overlap, Visual Studio includes a reference
    profile (a set of .NET reference assemblies) for Metro
    projects that hides the portions of the .NET Framework that overlap with
    WinRT. This profile also hides large portions of the .NET Framework
    considered unnecessary for tablet apps (such as accessing a database).
    Microsoft’s application store, which controls the distribution of software
    to consumer devices, rejects any program that attempts to access a hidden
    type.
Note
A reference assembly exists purely to compile
      against and may have a restricted set of types and members. This allows
      developers to install the full .NET Framework on their machines while
      coding certain projects as though they had only a subset. The actual
      functionality comes at runtime from assemblies in the Global
      Assembly Cache (see Chapter 18) which may
      superset the reference assemblies.

Hiding most of the .NET Framework eases the learning curve for
    developers new to the Microsoft platform, although there are two more
    important goals:
	It sandboxes applications (restricts
        functionality to reduce the impact of malware). For instance,
        arbitrary file access is forbidden, and there the ability to start or
        communicate with other programs on the computer is extremely restricted.

	It allows low-powered Metro-only tablets to ship with a reduced
        .NET Framework (Metro profile), lowering the OS footprint.



What distinguishes WinRT from ordinary COM is that WinRT
    projects its libraries into a multitude of languages,
    namely C#, VB, C++ and JavaScript, so that each language sees WinRT types
    (almost) as though they were written especially for it. For example, WinRT
    will adapt capitalization rules to suit the standards of the target
    language, and will even remap some functions and interfaces. WinRT
    assemblies also ship with rich metadata in .winmd files which have the same format as .NET
    assembly files, allowing transparent consumption without special ritual.
    In fact, you might even be unaware that you’re using WinRT rather than
    .NET types, aside of namespace differences. (Another clue is that WinRT
    types are subject to COM-style restrictions; for instance, they offer
    limited support for inheritance and generics.)
Note
WinRT/Metro does not supersede the full .NET Framework. The latter
      is still recommended (and necessary) for standard desktop and
      server-side development, and has the following advantages:
	Programs are not restricted to running in a sandbox.

	Programs can use the entire .NET Framework and any third-party
          library.

	Application distribution does not rely on the Windows
          Store.

	Applications can target the latest Framework version without
          requiring users to have the latest OS version.





What’s New in C# 5.0



C# 5.0’s big new feature is support for
    asynchronous functions via two new keywords, async and await. Asynchronous
    functions enable asynchronous continuations, which
    make it easier to write responsive and thread-safe rich-client
    applications. They also make it easy to write highly concurrent and
    efficient I/O-bound applications that don’t tie up a thread resource per
    operation.
We cover asynchronous functions in detail in Chapter 14.

What’s New in C# 4.0



The features new to C# 4.0 were:
	Dynamic binding

	Optional parameters and named arguments

	Type variance with generic interfaces and delegates

	COM interoperability improvements



Dynamic binding (Chapters 4 and
    20)
    defers binding—the process of resolving types and
    members—from compile time to runtime and is useful in scenarios that would
    otherwise require complicated reflection code. Dynamic binding is also
    useful when interoperating with dynamic languages and COM
    components.
Optional parameters (Chapter 2) allow functions to specify
    default parameter values so that callers can omit arguments and
    named arguments allow a function caller to identify
    an argument by name rather than position.
Type variance rules were relaxed in C# 4.0
    (Chapters 3 and 4),
    such that type parameters in generic
    interfaces and generic delegates can be marked as
    covariant or contravariant,
    allowing more natural type conversions.
COM interoperability (Chapter 25) was enhanced in C# 4.0
    in three ways. First, arguments can be passed by reference without the
    ref keyword (particularly useful in
    conjunction with optional parameters). Second, assemblies that contain COM
    interop types can be linked rather than
    referenced. Linked interop types support type
    equivalence, avoiding the need for Primary Interop
    Assemblies and putting an end to versioning and deployment
    headaches. Third, functions that return COM-Variant types from linked
    interop types are mapped to dynamic
    rather than object, eliminating the
    need for casting.

What’s New in C# 3.0



The features added to C# 3.0 were mostly centered on Language Integrated Query capabilities or
    LINQ for short. LINQ enables queries
    to be written directly within a C# program and checked
    statically for correctness, and query both local
    collections (such as lists or XML documents) or remote data sources (such
    as a database). The C# 3.0 features added to support LINQ comprised
    implicitly typed local variables, anonymous types, object initializers,
    lambda expressions, extension methods, query expressions and expression
    trees.
Implicitly typed local variables (var keyword, Chapter 2) let you omit the variable
    type in a declaration statement, allowing the compiler to infer it. This
    reduces clutter as well as allowing anonymous types
    (Chapter 4), which are simple classes
    created on the fly that are commonly used in the final output of LINQ
    queries. Arrays can also be implicitly typed (Chapter 2).
Object initializers (Chapter 3) simplify object
    construction by allowing properties to be set inline after the constructor
    call. Object initializers work with both named and anonymous types.
Lambda expressions (Chapter 4) are miniature functions created by
    the compiler on the fly, and are particularly useful in “fluent” LINQ
    queries (Chapter 8).
Extension methods (Chapter 4) extend an existing type with new
    methods (without altering the type’s definition), making static methods
    feel like instance methods. LINQ’s query operators are implemented as
    extension methods.
Query expressions (Chapter 8) provide a higher-level syntax for writing LINQ
    queries that can be substantially simpler when working with multiple
    sequences or range variables.
Expression trees (Chapter 8) are miniature code DOMs (Document Object
    Models) that describe lambda expressions assigned to the special type
    Expression<TDelegate>. Expression
    trees make it possible for LINQ queries to execute remotely (e.g., on a
    database server) because they can be introspected and translated at
    runtime (e.g., into a SQL statement).
C# 3.0 also added automatic properties and partial methods.
Automatic properties (Chapter 3) cut the work in writing
    properties that simply get/set a private backing field by having the
    compiler do that work automatically. Partial methods
    (Chapter 3) let an
    auto-generated partial class provide customizable hooks for manual
    authoring which “melt away” if unused.


Chapter 2. C# Language Basics



In this chapter, we introduce the basics of the C# language.
Note
All programs and code snippets in this and the following two
    chapters are available as interactive samples in LINQPad. Working through these samples in conjunction with
    the book accelerates learning in that you can edit the samples and
    instantly see the results without needing to set up projects and solutions
    in Visual Studio.
To download the samples, click the Samples tab in LINQPad and then
    click “Download more samples.” LINQPad is free—go to http://www.linqpad.net.

A First C# Program



Here is a program that multiplies 12 by 30 and prints the result,
    360, to the screen. The double forward slash indicates that the remainder
    of a line is a comment.
using System;                     // Importing namespace

class Test                        // Class declaration
{
  static void Main()              //   Method declaration
  {
    int x = 12 * 30;              //     Statement 1
    Console.WriteLine (x);        //     Statement 2
  }                               //   End of method
}                                 // End of class
At the heart of this program lie two statements:
    int x = 12 * 30;
    Console.WriteLine (x);
Statements in C# execute sequentially and are terminated by a
    semicolon (or a code block, as we’ll see later). The
    first statement computes the expression 12 * 30 and stores the result in a local variable, named x, which is an integer type. The second
    statement calls the Console class’s
    WriteLine
    method, to print the variable x to a text window on the screen.
A method performs an action in a series
    of statements, called a statement block—a pair of braces
    containing zero or more statements. We defined a single method named
    Main:
  static void Main()
  {
    ...
  }
Writing higher-level functions that call upon lower-level functions
    simplifies a program. We can refactor our program with a reusable
    method that multiplies an integer by 12 as follows:
using System;

class Test
{
  static void Main()
  {
    Console.WriteLine (FeetToInches (30));      // 360
    Console.WriteLine (FeetToInches (100));     // 1200
  }

  static int FeetToInches (int feet)
  {
    int inches = feet * 12;
    return inches;
  }
}
A method can receive input data from the caller
    by specifying parameters and
    output data back to the caller by specifying a
    return type. We defined a method called
    FeetToInches that has a parameter for
    inputting feet, and a return type for outputting inches:
static int FeetToInches (int feet ) {...}
The literals 30 and 100
    are the arguments passed to the FeetToInches method. The Main method in our example has empty parentheses
    because it has no parameters, and is void because it doesn’t return any value to its
    caller:
static void Main()
C# recognizes a method called Main as signaling the default entry point of
    execution. The Main method may
    optionally return an integer (rather than void) in order to return a value to the
    execution environment (where a non-zero value typically indicates an
    error). The Main method can also
    optionally accept an array of strings as a parameter (that will be
    populated with any arguments passed to the executable).
For example:
static int Main (string[] args) {...}
Note
An array (such as string[])
      represents a fixed number of elements of a particular type. Arrays are
      specified by placing square brackets after the element type and are
      described in Arrays.

Methods are one of several kinds of functions in C#. Another kind of
    function we used was the *
    operator, used to perform multiplication. There are
    also constructors, properties,
    events, indexers, and
    finalizers.
In our example, the two methods are grouped into a class. A
    class groups function members and data
    members to form an object-oriented building block. The Console class groups members that handle
    command-line input/output functionality, such as the WriteLine method. Our Test class groups two methods—the Main method and the FeetToInches method. A class is a kind of
    type, which we will examine in Type Basics.
At the outermost level of a program, types are organized into
    namespaces. The using directive was used to make the System namespace available to our application,
    to use the Console class. We could
    define all our classes within the TestPrograms namespace, as follows:
using System;

namespace TestPrograms
{
  class Test  {...}
  class Test2 {...}
}
The .NET Framework is organized into nested namespaces. For example,
    this is the namespace that contains types for handling text:
using System.Text;
The using directive is there for
    convenience; you can also refer to a type by its fully qualified name,
    which is the type name prefixed with its namespace, such as System.Text.StringBuilder.
Compilation



The C# compiler compiles source code, specified as a set
      of files with the .cs extension,
      into an assembly. An assembly is the unit of
      packaging and deployment in .NET. An assembly can be either an
      application or a library. A normal console or Windows
      application has a Main method and is
      an .exe file. A library is a
      .dll and is equivalent to an
      .exe without an entry point. Its
      purpose is to be called upon (referenced) by an application or by
      other libraries. The .NET Framework is a set of libraries.
The name of the C# compiler is csc.exe. You can either use an IDE such as
      Visual Studio to compile, or call csc
      manually from the command line. To compile manually, first save a program to a file
      such as MyFirstProgram.cs, and then
      go to the command line and invoke csc
      (located under %SystemRoot%\Microsoft.NET\Framework\<framework-version>
      where %SystemRoot% is your Windows
      directory) as follows:
csc MyFirstProgram.cs
This produces an application named MyFirstProgram.exe.
To produce a library (.dll),
      do the following:
csc /target:library MyFirstProgram.cs
Note
We explain assemblies in detail in Chapter 18.



Syntax



C# syntax is inspired by C and C++ syntax. In this section,
    we will describe C#’s elements of syntax, using the following
    program:
using System;

class Test
{
  static void Main()
  {
    int x = 12 * 30;
    Console.WriteLine (x);
  }
}
Identifiers and Keywords



Identifiers are names that
      programmers choose for their classes, methods, variables, and so on.
      These are the identifiers in our example program, in the order they
      appear:
System   Test   Main   x   Console   WriteLine
An identifier must be a whole word, essentially made up of Unicode
      characters starting with a letter or underscore. C# identifiers are
      case-sensitive. By convention, parameters, local variables, and private
      fields should be in camel case (e.g., myVariable), and all other identifiers should
      be in Pascal case (e.g., MyMethod).
Keywords are names reserved by the
      compiler that you can’t use as identifiers. These are the keywords in
      our example program:
using   class   static   void   int
Here is the full list of C# keywords:
	abstract
 as
 base
 bool
 break
 byte
 case
 catch
 char
 checked
 class
 const
 continue
 decimal
 default
 delegate
	do
 double
 else
 enum
 event
 explicit
 extern
 false
 finally
 fixed
 float
 for
 foreach
 goto
 if
 implicit
	in
 int
 interface
 internal
 is
 lock
 long
 namespace
 new
 null
 object
 operator
 out
 override
 params
 private
	protected
 public
 readonly
 ref
 return
 sbyte
 sealed
 short
 sizeof
 stackalloc
 static
 string
 struct
 switch
 this
 throw
	true
 try
 typeof
 uint
 ulong
 unchecked
 unsafe
 ushort
 using
 virtual
 void
 volatile
 while



Avoiding conflicts



If you really want to use an identifier that clashes with a
        keyword, you can do so by qualifying it with the @ prefix. For
        instance:
class class  {...}      // Illegal
class @class {...}      // Legal
The @ symbol doesn’t form
        part of the identifier itself. So @myVariable is the same as myVariable.
Note
The @ prefix can be useful
          when consuming libraries written in other .NET languages that have
          different keywords.


Contextual keywords



Some keywords are contextual, meaning
        they can also be used as identifiers—without an @ symbol. These are:
	add
 ascending
 async
 await
 by
 descending
	dynamic
 equals
 from
 get
 global
 group
	in
 into
 join
 let
 on
 orderby
	partial
 remove
 select
 set
 value
 var
	where
 yield



With contextual keywords, ambiguity cannot arise within the
        context in which they are used.


Literals, Punctuators, and Operators



Literals are primitive pieces of data
      lexically embedded into the program. The literals we used in our example
      program are 12 and 30.
Punctuators help demarcate the
      structure of the program. These are the punctuators we used in our
      example program:
{   }   ;
The braces group multiple statements into a statement block.
The semicolon terminates a statement. (Statement blocks, however,
      do not require a semicolon.) Statements can wrap multiple lines:
Console.WriteLine
  (1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10);
An operator transforms and combines
      expressions. Most operators in C# are denoted with a symbol, such as the
      multiplication operator, *. We will
      discuss operators in more detail later in the chapter. These are the
      operators we used in our example program:
.  ()   *   =
A period denotes a member of something (or a decimal point
      with numeric literals). Parentheses are used when declaring or calling a method;
      empty parentheses are used when the method accepts no arguments. An
      equals sign performs assignment. (The double equals sign,
      ==, performs equality comparison, as
      we’ll see later.)

Comments



C# offers two different styles of source-code
      documentation: single-line comments and multiline comments. A single-line
      comment begins with a double forward slash and continues until the end
      of the line. For example:
int x = 3;   // Comment about assigning 3 to x
A multiline comment begins with /* and ends with */. For example:
int x = 3;   /* This is a comment that
                spans two lines */
Comments may embed XML documentation tags, explained in XML Documentation in Chapter 4.


Type Basics



A type defines the blueprint for a value.
    In our example, we used two literals of type int with values 12 and 30. We also declared a
    variable of type int whose name was
    x:
static void Main()
{
  int x = 12 * 30;
  Console.WriteLine (x);
}
A variable denotes a storage location that can
    contain different values over time. In contrast, a constant always represents the same
    value (more on this later):
const int y = 360;
All values in C# are instances of a type. The meaning of a
    value, and the set of possible values a variable can have, is determined
    by its type.
Predefined Type Examples



Predefined types are types that are specially supported by
      the compiler. The int type is a
      predefined type for representing the set of integers that fit into 32
      bits of memory, from −231 to
      231−1. We can perform functions such as
      arithmetic with instances of the int
      type as follows:
int x = 12 * 30;
Another predefined C# type is string. The string type represents a sequence of
      characters, such as “.NET” or “http://oreilly.com”. We can work with strings by calling
      functions on them as follows:
string message = "Hello world";
string upperMessage = message.ToUpper();
Console.WriteLine (upperMessage);               // HELLO WORLD

int x = 2012;
message = message + x.ToString();
Console.WriteLine (message);                    // Hello world2012
The predefined bool type has exactly
      two possible values: true and
      false. The bool type is commonly used to conditionally
      branch execution flow based with an if statement. For example:
bool simpleVar = false;
if (simpleVar)
  Console.WriteLine ("This will not print");

int x = 5000;
bool lessThanAMile = x < 5280;
if (lessThanAMile)
  Console.WriteLine ("This will print");
Note
In C#, predefined types (also referred to as built-in types) are recognized with a C# keyword. The
        System namespace in the .NET
        Framework contains many important types that are not predefined by C#
        (e.g., DateTime).


Custom Type Examples



Just as we can build complex functions from simple
      functions, we can build complex types from primitive types. In this
      example, we will define a custom type named UnitConverter—a class that serves as a
      blueprint for unit conversions:
using System;

public class UnitConverter
{
  int ratio;                                                 // Field
  public UnitConverter (int unitRatio) {ratio = unitRatio; } // Constructor
  public int Convert   (int unit)    {return unit * ratio; } // Method
}

class Test
{
  static void Main()
  {
    UnitConverter feetToInchesConverter = new UnitConverter (12);
    UnitConverter milesToFeetConverter  = new UnitConverter (5280);

    Console.WriteLine (feetToInchesConverter.Convert(30));    // 360
    Console.WriteLine (feetToInchesConverter.Convert(100));   // 1200
    Console.WriteLine (feetToInchesConverter.Convert(
                         milesToFeetConverter.Convert(1)));   // 63360
  }
}
Members of a type



A type contains data members and function members. The data member
        of UnitConverter is the
        field called ratio. The function members of UnitConverter are the Convert method and the UnitConverter’s
        constructor.

Symmetry of predefined types and custom types



A beautiful aspect of C# is that predefined types and custom
        types have few differences. The predefined int type serves as a blueprint for integers.
        It holds data—32 bits—and provides function members that use that
        data, such as ToString. Similarly,
        our custom UnitConverter type acts
        as a blueprint for unit conversions. It holds data—the ratio—and
        provides function members to use that data.

Constructors and instantiation



Data is created by instantiating a
        type. Predefined types can be instantiated simply by using a literal
        such as 12 or "Hello, world". The new operator creates instances of a custom
        type. We created and declared an instance of the UnitConverter type with this
        statement:
UnitConverter feetToInchesConverter = new UnitConverter (12);
Immediately after the new
        operator instantiates an object, the object’s
        constructor is called to perform initialization.
        A constructor is defined like a method, except that the method name
        and return type are reduced to the name of the enclosing type:
public class UnitConverter
{
  ...
  public UnitConverter (int unitRatio) { ratio = unitRatio; }
  ...
}

Instance versus static members



The data members and function members that operate on
        the instance of the type are called
        instance members. The UnitConverter’s Convert method and the int’s ToString method are examples of instance
        members. By default, members are instance members.
Data members and function members that don’t operate on the
        instance of the type, but rather on the type itself, must be marked as
        static. The Test.Main and Console.WriteLine methods are static
        methods. The Console class is
        actually a static class, which means
        all its members are static. You never actually
        create instances of a Console—one
        console is shared across the whole application.
To contrast instance from static members, in the following code
        the instance field Name pertains to
        an instance of a particular Panda,
        whereas Population pertains to the
        set of all Panda instances:
public class Panda
{
  public string Name;             // Instance field
  public static int Population;   // Static field

  public Panda (string n)         // Constructor
  {
    Name = n;                     // Assign the instance field
    Population = Population + 1;  // Increment the static Population field
  }
}
The following code creates two instances of the Panda, prints their names, and then prints
        the total population:
using System;

class Test
{
  static void Main()
  {
    Panda p1 = new Panda ("Pan Dee");
    Panda p2 = new Panda ("Pan Dah");

    Console.WriteLine (p1.Name);      // Pan Dee
    Console.WriteLine (p2.Name);      // Pan Dah

    Console.WriteLine (Panda.Population);   // 2
  }
}

The public keyword



The public keyword
        exposes members to other classes. In this example, if the Name field in Panda was not public, the Test class could not access it. Marking a
        member public is how a type
        communicates: “Here is what I want other types to see—everything else is my own private
        implementation details.” In object-oriented terms, we say that the
        public members encapsulate the private members of
        the class.


Conversions



C# can convert between instances of compatible types. A
      conversion always creates a new value from an existing one. Conversions
      can be either implicit or explicit: implicit conversions happen
      automatically, and explicit conversions require a cast. In the following example, we
      implicitly convert an int to a long type (which has twice the bitwise
      capacity of an int) and
      explicitly cast an int to a short type (which has half the capacity of an
      int):
int x = 12345;       // int is a 32-bit integer
long y = x;          // Implicit conversion to 64-bit integer
short z = (short)x;  // Explicit conversion to 16-bit integer
Implicit conversions are allowed when both of the following are
      true:
	The compiler can guarantee they will always succeed.

	No information is lost in conversion.[1]



Conversely, explicit conversions are required
      when one of the following is true:
	The compiler cannot guarantee they will always succeed.

	Information may be lost during conversion.



(If the compiler can determine that a conversion will
      always fail, both kinds of conversion are
      prohibited. Conversions that involve generics can also fail in certain
      conditions—see Type Parameters and Conversions in
      Chapter 3.)
Note
The numeric conversions that we just
        saw are built into the language. C# also supports reference conversions and
        boxing conversions (see Chapter 3) as well as custom conversions (see Operator Overloading in Chapter 4). The compiler doesn’t enforce
        the aforementioned rules with custom conversions, so it’s possible for
        badly designed types to behave otherwise.


Value Types Versus Reference Types



All C# types fall into the following categories:
	Value types

	Reference types

	Generic type parameters

	Pointer types



Note
In this section, we’ll describe value types and reference types.
        We’ll cover generic type parameters in Generics in
        Chapter 3, and pointer
        types in Unsafe Code and Pointers in Chapter 4.

Value types comprise most built-in
      types (specifically, all numeric types, the char type, and the bool type) as well as custom struct and enum types.
Reference types comprise all class,
      array, delegate, and interface types. (This includes the predefined
      string type.)
The fundamental difference between value types and reference types
      is how they are handled in memory.
Value types



The content of a value type variable or
        constant is simply a value. For example, the content of the built-in
        value type, int, is 32 bits of
        data.
You can define a custom value type with the struct keyword (see
        Figure 2-1):
public struct Point { public int X, Y; }
[image: A value-type instance in memory]

Figure 2-1. A value-type instance in memory


The assignment of a value-type instance always
        copies the instance.
For example:
static void Main()
{
  Point p1 = new Point();
  p1.X = 7;

  Point p2 = p1;             // Assignment causes copy

  Console.WriteLine (p1.X);  // 7
  Console.WriteLine (p2.X);  // 7

  p1.X = 9;                  // Change p1.X

  Console.WriteLine (p1.X);  // 9
  Console.WriteLine (p2.X);  // 7
}
Figure 2-2 shows
        that p1 and p2 have independent storage.
[image: Assignment copies a value-type instance]

Figure 2-2. Assignment copies a value-type instance



Reference types



A reference type is more complex than a value type, having
        two parts: an object and the
        reference to that object. The content of a
        reference-type variable or constant is a reference to an object that
        contains the value. Here is the Point type from our previous example
        rewritten as a class, rather than a struct (shown in Figure 2-3):
public class Point { public int X, Y; }
[image: A reference-type instance in memory]

Figure 2-3. A reference-type instance in memory


Assigning a reference-type variable copies the reference, not
        the object instance. This allows multiple variables to refer to the
        same object—something not ordinarily possible with value types. If we repeat
        the previous example, but with Point now a class, an operation to p1 affects p2:
static void Main()
{
  Point p1 = new Point();
  p1.X = 7;

  Point p2 = p1;             // Copies p1 reference

  Console.WriteLine (p1.X);  // 7
  Console.WriteLine (p2.X);  // 7

  p1.X = 9;                  // Change p1.X

  Console.WriteLine (p1.X);  // 9
  Console.WriteLine (p2.X);  // 9
}
Figure 2-4 shows that
        p1 and p2 are two references that point to the same
        object.
[image: Assignment copies a reference]

Figure 2-4. Assignment copies a reference



Null



A reference can be assigned the literal null, indicating that
        the reference points to no object:
class Point {...}
...

Point p = null;
Console.WriteLine (p == null);   // True

// The following line generates a runtime error
// (a NullReferenceException is thrown):
Console.WriteLine (p.X);
In contrast, a value type cannot ordinarily have a null
        value:
struct Point {...}
...

Point p = null;  // Compile-time error
int x = null;    // Compile-time error
Note
C# also has a construct called nullable
          types for representing value-type nulls (see Nullable Types in Chapter 4).


Storage overhead



Value-type instances occupy precisely the memory
        required to store their fields. In this example, Point takes eight bytes of memory:
struct Point
{
  int x;  // 4 bytes
  int y;  // 4 bytes
}
Note
Technically, the CLR positions fields within the type at an address
          that’s a multiple of the fields’ size (up to a maximum of eight
          bytes). Thus, the following actually consumes 16 bytes of memory
          (with the seven bytes following the first field “wasted”):
struct A { byte b; long l; }

Reference types require separate allocations of memory
        for the reference and object. The object consumes as many bytes as its
        fields, plus additional administrative overhead. The precise overhead
        is intrinsically private to the implementation of the .NET runtime,
        but at minimum the overhead is eight bytes, used to store a key to the
        object’s type, as well as temporary information such as its lock state
        for multithreading and a flag to indicate whether it has been fixed
        from movement by the garbage collector. Each reference to an object
        requires an extra four or eight bytes, depending on whether the .NET
        runtime is running on a 32- or 64-bit platform.


Predefined Type Taxonomy



The predefined types in C# are:
	Value types
		Numeric
	Signed integer (sbyte, short, int, long)

	Unsigned integer (byte, ushort, uint, ulong)

	Real number (float, double, decimal)




	Logical (bool)

	Character (char)




	Reference types
		String (string)

	Object (object)






Predefined types in C# alias Framework types in the System namespace. There is only a syntactic
      difference between these two statements:
int i = 5;
System.Int32 i = 5;
The set of predefined value types excluding
      decimal are known as primitive types in the CLR. Primitive
      types are so called because they are supported directly via instructions
      in compiled code, and this usually translates to direct support on the
      underlying processor. For example:
                   // Underlying hexadecimal representation
int i = 7;         // 0x7
bool b = true;     // 0x1
char c = 'A';      // 0x41
float f = 0.5f;    // uses IEEE floating-point encoding
The System.IntPtr and System.UIntPtr types are also primitive (see
      Chapter 25).


Numeric Types



C# has the predefined numeric types shown in Table 2-1.
Table 2-1. Predefined numeric types in C#
	C# type
	System
            type
	Suffix
	Size
	Range

	Integral—signed

	sbyte
	SByte
	 	8 bits
	−27 to
            27−1

	short
	Int16
	 	16 bits
	−215 to
            215−1

	int
	Int32
	 	32 bits
	−231 to
            231−1

	long
	Int64
	L
	64 bits
	−263 to
            263−1

	Integral—unsigned

	byte
	Byte
	 	8 bits
	0 to
            28−1

	ushort
	UInt16
	 	16 bits
	0 to
            216−1

	uint
	UInt32
	U
	32 bits
	0 to
            232−1

	ulong
	UInt64
	UL
	64 bits
	0 to
            264−1

	Real

	float
	Single
	F
	32 bits
	±
            (~10−45 to
            1038)

	double
	Double
	D
	64 bits
	±
            (~10−324 to
            10308)

	decimal
	Decimal
	M
	128 bits
	±
            (~10−28 to
            1028)




Of the integral types, int and long are first-class
    citizens and are favored by both C# and the runtime. The other integral
    types are typically used for interoperability or when space efficiency is
    paramount.
Of the real number types, float and double are called
    floating-point types[2] and are typically used for scientific calculations. The
    decimal type is typically used for
    financial calculations, where
    base-10–accurate arithmetic and high precision are required.
Numeric Literals



Integral literals can use decimal or
      hexadecimal notation; hexadecimal is denoted with the 0x prefix. For example:
int x = 127;
long y = 0x7F;
Real literals can use decimal and/or
      exponential notation. For example:
double d = 1.5;
double million = 1E06;
Numeric literal type inference



By default, the compiler infers a numeric literal to be
        either double or an integral
        type:
	If the literal contains a decimal point or the exponential
            symbol (E), it is a double.

	Otherwise, the literal’s type is the first type in this list
            that can fit the literal’s value: int, uint, long, and ulong.



For example:
Console.WriteLine (        1.0.GetType());  // Double  (double)
Console.WriteLine (       1E06.GetType());  // Double  (double)
Console.WriteLine (          1.GetType());  // Int32   (int)
Console.WriteLine ( 0xF0000000.GetType());  // UInt32  (uint)

Numeric suffixes



Numeric suffixes explicitly define
        the type of a literal. Suffixes can be either lower- or uppercase, and
        are as follows:
	Category
	C#
                type
	Example

	F
	float
	float f = 1.0F;

	D
	double
	double d = 1D;

	M
	decimal
	decimal d = 1.0M;

	U
	uint
	uint i = 1U;

	L
	long
	long i = 1L;

	UL
	ulong
	ulong i = 1UL;



The suffixes U and L
        are rarely necessary, because the uint, long, and ulong types can nearly always be either
        inferred or implicitly converted from int:
long i = 5;     // Implicit lossless conversion from int literal to long
The D suffix is technically
        redundant, in that all literals with a decimal point are inferred to
        be double. And you can always add a
        decimal point to a numeric literal:
double x = 4.0;
The F and M suffixes are the most useful and should
        always be applied when specifying float or decimal literals. Without the F suffix, the following line would not
        compile, because 4.5 would be inferred to be of type double, which has no implicit conversion to
        float:
float f = 4.5F;
The same principle is true for a decimal literal:
decimal d = −1.23M;     // Will not compile without the M suffix.
We describe the semantics of numeric conversions in detail in
        the following section.


Numeric Conversions



Integral to integral conversions



Integral conversions are implicit
        when the destination type can represent every possible value of the
        source type. Otherwise, an explicit conversion is
        required. For example:
int x = 12345;       // int is a 32-bit integral
long y = x;          // Implicit conversion to 64-bit integral
short z = (short)x;  // Explicit conversion to 16-bit integral

Floating-point to floating-point conversions



A float can be implicitly
        converted to a double, since a
        double can represent every possible
        value of a float. The reverse
        conversion must be explicit.

Floating-point to integral conversions



All integral types may be implicitly converted to all
        floating-point types:
int i = 1;
float f = i;
The reverse conversion must be explicit:
int i2 = (int)f;
Note
When you cast from a floating-point number to an integral, any
          fractional portion is truncated; no rounding is performed. The
          static class System.Convert
          provides methods that round while converting between various numeric
          types (see Chapter 6).

Implicitly converting a large integral type to a floating-point
        type preserves magnitude but may occasionally
        lose precision. This is because floating-point
        types always have more magnitude than integral types, but may have
        less precision. Rewriting our example with a larger number
        demonstrates this:
int i1 = 100000001;
float f = i1;          // Magnitude preserved, precision lost
int i2 = (int)f;       // 100000000

Decimal conversions



All integral types can be implicitly converted to the decimal
        type, since a decimal can represent every possible C# integral value.
        All other numeric conversions to and from a decimal type must be
        explicit.


Arithmetic Operators



The arithmetic operators (+, -, *, /, %) are defined for all
      numeric types except the 8- and 16-bit integral types:
+    Addition
-    Subtraction
*    Multiplication
/    Division
%    Remainder after division

Increment and Decrement Operators



The increment and decrement operators (++, −−) increment and
      decrement numeric types by 1. The operator can either follow or precede
      the variable, depending on whether you want its value
      before or after the
      increment/decrement. For example:
int x = 0, y = 0;
Console.WriteLine (x++);   // Outputs 0; x is now 1
Console.WriteLine (++y);   // Outputs 1; y is now 1

Specialized Integral Operations



Integral division



Division operations on integral types always truncate
        remainders (round towards zero). Dividing by a variable whose value is
        zero generates a runtime error (a DivideByZeroException):
int a = 2 / 3;      // 0

int b = 0;
int c = 5 / b;      // throws DivideByZeroException
Dividing by the literal or
        constant 0 generates a compile-time error.

Integral overflow



At runtime, arithmetic operations on integral types can
        overflow. By default, this happens silently—no exception is thrown and
        the result exhibits “wraparound” behavior, as though the computation was
        done on a larger integer type and the extra significant bits
        discarded. For example, decrementing the minimum possible int value results in the maximum possible
        int value:
int a = int.MinValue;
a--;
Console.WriteLine (a == int.MaxValue); // True

Integral arithmetic overflow check operators



The checked operator
        tells the runtime to generate an OverflowException
        rather than overflowing silently when an integral expression or
        statement exceeds the arithmetic limits of that type. The checked operator affects expressions with
        the ++, −−, +,
        − (binary and unary), *, /, and
        explicit conversion operators between integral types.
Note
The checked operator has no
          effect on the double and float types (which overflow to special
          “infinite” values, as we’ll see soon) and no effect on the decimal type (which is always
          checked).

checked can be used around
        either an expression or a statement block. For example:
int a = 1000000;
int b = 1000000;

int c = checked (a * b);      // Checks just the expression.

checked                       // Checks all expressions
{                             // in statement block.
   ...
   c = a * b;
   ...
}
You can make arithmetic overflow checking the default for all
        expressions in a program by
        compiling with the /checked+
        command-line switch (in Visual Studio, go to Advanced Build Settings).
        If you then need to disable overflow checking just for specific
        expressions or statements, you can do so with the unchecked operator.
        For example, the following code will not throw exceptions—even if
        compiled with /checked+:
int x = int.MaxValue;
int y = unchecked (x + 1);
unchecked { int z = x + 1; }

Overflow checking for constant expressions



Regardless of the /checked compiler switch, expressions
        evaluated at compile time are always overflow-checked—unless you apply
        the unchecked operator:
int x = int.MaxValue + 1;               // Compile-time error
int y = unchecked (int.MaxValue + 1);   // No errors

Bitwise operators



C# supports the following bitwise operators:
	Operator
	Meaning
	Sample
                expression
	Result

	~
	Complement
	~0xfU
	0xfffffff0U

	&
	And
	0xf0 & 0x33
	0x30

	|
	Or
	0xf0 | 0x33
	0xf3

	^
	Exclusive Or
	0xff00 ^ 0x0ff0
	0xf0f0

	<<
	Shift left
	0x20 << 2
	0x80

	>>
	Shift right
	0x20 >> 1
	0x10





8- and 16-Bit Integrals



The 8- and 16-bit integral types are byte, sbyte, short, and ushort. These types
      lack their own arithmetic operators, so C# implicitly converts them to
      larger types as required. This can cause a compile-time error when
      trying to assign the result back to a small integral type:
short x = 1, y = 1;
short z = x + y;          // Compile-time error
In this case, x and y are implicitly converted to int so that the addition can be performed.
      This means the result is also an int,
      which cannot be implicitly cast back to a short (because it could cause loss of data).
      To make this compile, we must add an explicit cast:
short z = (short) (x + y);   // OK

Special Float and Double Values



Unlike integral types, floating-point types have values
      that certain operations treat specially. These special values are
      NaN (Not a Number), +∞, −∞, and −0. The float and
      double classes have constants for
      NaN, +∞, and −∞, as well as other
      values (MaxValue, MinValue, and Epsilon). For
      example:
Console.WriteLine (double.NegativeInfinity);   // -Infinity
The constants that represent special
      values for double and float are as follows:
	Special
              value
	Double
              constant
	Float
              constant

	NaN
	double.NaN
	float.NaN

	+∞
	double.PositiveInfinity
	float.PositiveInfinity

	−∞
	double.NegativeInfinity
	float.NegativeInfinity

	−0
	−0.0
	−0.0f



Dividing a nonzero number by zero results in an infinite
      value. For example:
Console.WriteLine ( 1.0 /  0.0);                  //  Infinity
Console.WriteLine (−1.0 /  0.0);                  // -Infinity
Console.WriteLine ( 1.0 / −0.0);                  // -Infinity
Console.WriteLine (−1.0 / −0.0);                  //  Infinity
Dividing zero by zero, or subtracting infinity from infinity,
      results in a NaN. For example:
Console.WriteLine ( 0.0 /  0.0);                  //  NaN
Console.WriteLine ((1.0 /  0.0) − (1.0 / 0.0));   //  NaN
When using ==, a NaN value is
      never equal to another value, even another NaN value:
Console.WriteLine (0.0 / 0.0 == double.NaN);    // False
To test whether a value is NaN, you must use the float.IsNaN or
      double.IsNaN
      method:
Console.WriteLine (double.IsNaN (0.0 / 0.0));   // True
When using object.Equals,
      however, two NaN values are equal:
Console.WriteLine (object.Equals (0.0 / 0.0, double.NaN));   // True
Note
NaNs are sometimes useful in representing special values. In
        WPF, double.NaN represents a
        measurement whose value is “Automatic”. Another way to represent such
        a value is with a nullable type (Chapter 4); another is with a custom
        struct that wraps a numeric type and adds an additional field (Chapter 3).

float and double follow the specification of the IEEE
      754 format types, supported natively by almost all processors. You can
      find detailed information on the behavior of these types at http://www.ieee.org.

double Versus decimal



double is useful for
      scientific computations (such as computing spatial coordinates).
      decimal is useful for
      financial computations and values that are “man-made” rather than the
      result of real-world measurements. Here’s a summary of the
      differences.
	Category
	Double
	decimal

	Internal
              representation
	Base 2
	Base 10

	Decimal
              precision
	15–16 significant
              figures
	28–29 significant
              figures

	Range
	±(~10−324 to
              ~10308)
	±(~10−28 to
              ~1028)

	Special
              values
	+0, −0, +∞, −∞, and
              NaN
	None

	Speed
	Native to
              processor
	Non-native to processor
              (about 10 times slower than double)




Real Number Rounding Errors



float and double internally represent numbers in base 2.
      For this reason, only numbers expressible in base 2 are represented
      precisely. Practically, this means most literals with a fractional
      component (which are in base 10) will not be represented precisely. For
      example:
float tenth = 0.1f;                       // Not quite 0.1
float one   = 1f;
Console.WriteLine (one - tenth * 10f);    // −1.490116E-08
This is why float and double are bad for financial calculations. In
      contrast, decimal works in base 10
      and so can precisely represent numbers expressible in base 10 (as well
      as its factors, base 2 and base 5). Since real literals are in base 10,
      decimal can precisely represent
      numbers such as 0.1. However, neither double nor decimal can precisely represent a fractional
      number whose base 10 representation is recurring:
decimal m = 1M / 6M;               // 0.1666666666666666666666666667M
double  d = 1.0 / 6.0;             // 0.16666666666666666
This leads to accumulated rounding errors:
decimal notQuiteWholeM = m+m+m+m+m+m;  // 1.0000000000000000000000000002M
double  notQuiteWholeD = d+d+d+d+d+d;  // 0.99999999999999989
which breaks equality and comparison operations:
Console.WriteLine (notQuiteWholeM == 1M);   // False
Console.WriteLine (notQuiteWholeD < 1.0);   // True


Boolean Type and Operators



C#’s bool type (aliasing the
    System.Boolean type) is a logical value
    that can be assigned the literal true
    or false.
Although a Boolean value requires only one bit of storage, the
    runtime will use one byte of memory, since this is the minimum chunk that
    the runtime and processor can efficiently work with. To avoid space
    inefficiency in the case of arrays, the Framework provides a BitArray class in the System.Collections namespace that is designed to
    use just one bit per Boolean value.
Bool Conversions



No conversions can be made from the bool type to numeric types or vice
      versa.

Equality and Comparison Operators



== and != test for equality
      and inequality of any type, but always return a bool value.[3] Value types typically have a very simple notion of
      equality:
int x = 1;
int y = 2;
int z = 1;
Console.WriteLine (x == y);         // False
Console.WriteLine (x == z);         // True
For reference types, equality, by default, is based on
      reference, as opposed to the actual
      value of the underlying object (more on this in
      Chapter 6):
public class Dude
{
  public string Name;
  public Dude (string n) { Name = n; }
}
...
Dude d1 = new Dude ("John");
Dude d2 = new Dude ("John");
Console.WriteLine (d1 == d2);       // False
Dude d3 = d1;
Console.WriteLine (d1 == d3);       // True
The equality and comparison operators, ==, !=,
      <, >, >=, and <=, work for all numeric types, but should
      be used with caution with real numbers (as we saw in Real Number Rounding Errors). The comparison operators also
      work on enum type members, by
      comparing their underlying integral values. We describe this in Enums in Chapter 3.
We explain the equality and comparison operators in greater detail
      in Operator Overloading in Chapter 4, and in Equality Comparison and Order Comparison
      in Chapter 6.

Conditional Operators



The && and
      || operators test for
      and and or conditions. They are frequently
      used in conjunction with the ! operator, which
      expresses not. In this example, the UseUmbrella method returns true if it’s rainy or sunny (to protect us
      from the rain or the sun), as long as it’s not also windy (since
      umbrellas are useless in the wind):
static bool UseUmbrella (bool rainy, bool sunny, bool windy)
{
  return !windy && (rainy || sunny);
}
The && and || operators
      short-circuit evaluation when possible. In the
      preceding example, if it is windy, the expression (rainy || sunny) is not even evaluated.
      Short-circuiting is essential in allowing expressions such as the
      following to run without throwing a NullReferenceException:
if (sb != null && sb.Length > 0) ...
The & and | operators also test for
      and and or conditions:
return !windy & (rainy | sunny);
The difference is that they do not
      short-circuit. For this reason, they are rarely used in place
      of conditional operators.
Note
Unlike in C and C++, the & and | operators perform (non-short-circuiting)
        Boolean comparisons when applied to bool expressions. The & and | operators perform bitwise operations only when
        applied to numbers.

The conditional operator (more commonly
      called the ternary operator, as it’s the only
      operator that takes three operands) has the form q ? a : b, where if condition q is true, a is evaluated, else b is evaluated. For example:
static int Max (int a, int b)
{
  return (a > b) ? a : b;
}
The conditional operator is particularly useful in LINQ queries
      (Chapter 8).


Strings and Characters



C#’s char type (aliasing the
    System.Char type) represents a Unicode
    character and occupies 2 bytes. A char literal is specified
    inside single quotes:
char c = 'A';       // Simple character
Escape sequences express characters
    that cannot be expressed or interpreted literally. An escape sequence is a
    backslash followed by a character with a special meaning.
    For example:
char newLine = '\n';
char backSlash = '\\';
The escape sequence characters are shown in Table 2-2.
Table 2-2. Escape sequence characters
	Char
	Meaning
	Value

	\'
	Single quote
	0x0027

	\"
	Double quote
	0x0022

	\\
	Backslash
	0x005C

	\0
	Null
	0x0000

	\a
	Alert
	0x0007

	\b
	Backspace
	0x0008

	\f
	Form feed
	0x000C

	\n
	New line
	0x000A

	\r
	Carriage return
	0x000D

	\t
	Horizontal tab
	0x0009

	\v
	Vertical tab
	0x000B




The \u (or \x) escape sequence lets you specify any
    Unicode character via its four-digit hexadecimal
    code:
char copyrightSymbol = '\u00A9';
char omegaSymbol     = '\u03A9';
char newLine         = '\u000A';
Char Conversions



An implicit conversion from a char to a numeric type
      works for the numeric types that can accommodate an unsigned short. For other numeric types, an explicit
      conversion is required.

String Type



C#’s string type (aliasing the System.String type, covered in depth in Chapter 6) represents an immutable sequence of
      Unicode characters. A string literal is specified inside double
      quotes:
string a = "Heat";
Note
string is a reference type,
        rather than a value type. Its equality operators, however, follow
        value-type semantics:
string a = "test";
string b = "test";
Console.Write (a == b);  // True

The escape sequences that are valid for char literals also work inside strings:
string a = "Here's a tab:\t";
The cost of this is that whenever you need a literal backslash,
      you must write it twice:
string a1 = "\\\\server\\fileshare\\helloworld.cs";
To avoid this problem, C# allows verbatim string literals. A verbatim
      string literal is prefixed with @ and does not support
      escape sequences.
The following verbatim string is
      identical to the preceding one:
string a2 = @ "\\server\fileshare\helloworld.cs";
A verbatim string literal can also span multiple lines:
string escaped  = "First Line\r\nSecond Line";
string verbatim = @"First Line
Second Line";

// Assuming your IDE uses CR-LF line separators:
Console.WriteLine (escaped == verbatim);  // True
You can include the double-quote character in a verbatim literal
      by writing it twice:
string xml = @"<customer id=""123""></customer>";
String concatenation



The + operator
        concatenates two strings:
string s = "a" + "b";
One of the operands may be a nonstring value, in which case
        ToString is called on that value.
        For example:
string s = "a" + 5;  // a5
Using the + operator
        repeatedly to build up a string is inefficient; a better solution is
        to use the System.Text.StringBuilder type (described in
        Chapter 6).

String comparisons



string does not support
        < and > operators for comparisons. You must use
        the string’s CompareTo method,
        described in Chapter 6.



Arrays



An array represents a fixed number of variables (called
    elements) of a particular type. The elements in an
    array are always stored in a contiguous block of memory, providing highly
    efficient access.
An array is denoted with square brackets after the element
    type. For example:
char[] vowels = new char[5];    // Declare an array of 5 characters
Square brackets also index the array, accessing
    a particular element by position:
vowels[0] = 'a';
vowels[1] = 'e';
vowels[2] = 'i';
vowels[3] = 'o';
vowels[4] = 'u';
Console.WriteLine (vowels[1]);      // e
This prints “e” because array indexes start at 0. We can use a
    for loop statement to iterate through
    each element in the array.
The for
    loop in this example cycles the integer i from 0 to
    4:
for (int i = 0; i < vowels.Length; i++)
  Console.Write (vowels[i]);            // aeiou
The Length property of an array
    returns the number of elements in the array. Once an array has been
    created, its length cannot be changed. The System.Collection namespace and subnamespaces
    provide higher-level data structures, such as dynamically sized arrays and
    dictionaries.
An array initialization expression lets
    you declare and populate an array in a single step:
char[] vowels = new char[] {'a','e','i','o','u'};
or simply:
char[] vowels = {'a','e','i','o','u'};
All arrays inherit from the System.Array class, providing common services
    for all arrays. These members include methods to get and set elements
    regardless of the array type, and are described in The Array Class in Chapter 7.
Default Element Initialization



Creating an array always preinitializes the elements with
      default values. The default value for a type is the result of a bitwise
      zeroing of memory. For example, consider creating an array of integers.
      Since int is a value type, this
      allocates 1,000 integers in one contiguous block of memory. The default
      value for each element will be 0:
int[] a = new int[1000];
Console.Write (a[123]);            // 0
Value types versus reference types



Whether an array element type is a value type or a
        reference type has important performance implications. When the
        element type is a value type, each element value is allocated as part
        of the array. For example:
public struct Point { public int X, Y; }
...

Point[] a = new Point[1000];
int x = a[500].X;                  // 0
Had Point been a class,
        creating the array would have merely allocated 1,000 null
        references:
public class Point { public int X, Y; }

...
Point[] a = new Point[1000];
int x = a[500].X;                  // Runtime error, NullReferenceException
To avoid this error, we must
        explicitly instantiate 1,000 Points
        after instantiating the array:
Point[] a = new Point[1000];
for (int i = 0; i < a.Length; i++) // Iterate i from 0 to 999
   a[i] = new Point();             // Set array element i with new point
An array itself is always a reference type
        object, regardless of the element type. For instance, the following is
        legal:
int[] a = null;


Multidimensional Arrays



Multidimensional arrays come in two varieties:
      rectangular and jagged.
      Rectangular arrays represent an n-dimensional block
      of memory, and jagged arrays are arrays of arrays.
Rectangular arrays



Rectangular arrays are declared using commas to separate
        each dimension. The following declares a rectangular two-dimensional
        array, where the dimensions are 3 by
        3:
int[,] matrix = new int[3,3];
The GetLength method of
        an array returns the length for a given dimension (starting at
        0):
for (int i = 0; i < matrix.GetLength(0); i++)
  for (int j = 0; j < matrix.GetLength(1); j++)
    matrix[i,j] = i * 3 + j;
A rectangular array can be initialized as follows (to create an
        array identical to the previous example):
int[,] matrix = new int[,]
{
  {0,1,2},
  {3,4,5},
  {6,7,8}
};

Jagged arrays



Jagged arrays are declared using successive square
        brackets to represent each dimension. Here is an example of declaring
        a jagged two-dimensional array, where the outermost dimension is
        3:
int[][] matrix = new int[3][];
Note
Interestingly, this is new
          int[3][] and not new
          int[][3]. Eric Lippert has written an excellent article on why
          this is so: see http://albahari.com/jagged.

The inner dimensions aren’t specified in the declaration
        because, unlike a rectangular array, each inner array can be an
        arbitrary length. Each inner array is implicitly initialized to null
        rather than an empty array. Each inner array must be created
        manually:
for (int i = 0; i < matrix.Length; i++)
{
  matrix[i] = new int[3];                    // Create inner array
  for (int j = 0; j < matrix[i].Length; j++)
    matrix[i][j] = i * 3 + j;
}
A jagged array can be initialized as follows (to create an array
        identical to the previous example with an additional element at the
        end):
int[][] matrix = new int[][]
{
  new int[] {0,1,2},
  new int[] {3,4,5},
  new int[] {6,7,8,9}
};


Simplified Array Initialization Expressions



There are two ways to shorten array initialization
      expressions. The first is to omit the new operator and type qualifications:
char[] vowels = {'a','e','i','o','u'};

int[,] rectangularMatrix =
{
  {0,1,2},
  {3,4,5},
  {6,7,8}
};

int[][] jaggedMatrix =
{
  new int[] {0,1,2},
  new int[] {3,4,5},
  new int[] {6,7,8}
};
The second approach is to use the var keyword, which
      tells the compiler to implicitly type a local variable:
var i = 3;           // i is implicitly of type int
var s = "sausage";   // s is implicitly of type string

// Therefore:

var rectMatrix = new int[,]    // rectMatrix is implicitly of type int[,]
{
  {0,1,2},
  {3,4,5},
  {6,7,8}
};

var jaggedMat = new int[][]    // jaggedMat is implicitly of type int[][]
{
  new int[] {0,1,2},
  new int[] {3,4,5},
  new int[] {6,7,8}
};
Implicit typing can be taken one stage further with
      arrays: you can omit the type qualifier after the new keyword and have the compiler
      infer the array type:
var vowels = new[] {'a','e','i','o','u'};   // Compiler infers char[]
For this to work, the elements must all be implicitly convertible
      to a single type (and at least one of the elements must be of that type,
      and there must be exactly one best type). For example:
var x = new[] {1,10000000000};   // all convertible to long

Bounds Checking



All array indexing is bounds-checked by the runtime. An
      IndexOutOfRangeException is thrown if you use
      an invalid index:
int[] arr = new int[3];
arr[3] = 1;               // IndexOutOfRangeException thrown
As with Java, array bounds checking is necessary for type safety and
      simplifies debugging.
Note
Generally, the performance hit from bounds checking is minor,
        and the JIT (Just-in-Time) compiler can perform optimizations, such as
        determining in advance whether all indexes will be safe before
        entering a loop, thus avoiding a check on each iteration. In addition,
        C# provides “unsafe” code that can explicitly bypass bounds checking
        (see Unsafe Code and Pointers in Chapter 4).



Variables and Parameters



A variable represents a storage location that has a
    modifiable value. A variable can be a local variable,
    parameter (value,
    ref, or out),
    field (instance or
    static), or array
    element.
The Stack and the Heap



The stack and the heap are the places where variables and
      constants reside. Each has very different lifetime semantics.
Stack



The stack is a block of memory for storing local
        variables and parameters. The stack logically grows and shrinks as a
        function is entered and exited. Consider the following method (to
        avoid distraction, input argument checking is ignored):
static int Factorial (int x)
{
  if (x == 0) return 1;
  return x * Factorial (x-1);
}
This method is recursive, meaning that it calls itself. Each
        time the method is entered, a new int is allocated on the stack, and each time
        the method exits, the int is
        deallocated.

Heap



The heap is a block of memory in which objects (i.e., reference-type
        instances) reside. Whenever a new object is created, it is allocated
        on the heap, and a reference to that object is returned. During a
        program’s execution, the heap starts filling up as new objects are
        created. The runtime has a garbage collector that periodically
        deallocates objects from the heap, so your computer does not run out
        of memory. An object is eligible for deallocation as soon as it’s not
        referenced by anything that’s itself “alive.”
In the following example, we start by creating a StringBuilder object referenced by the
        variable ref1, and then write out
        its content. That StringBuilder
        object is then immediately eligible for garbage collection, because
        nothing subsequently uses it.
Then, we create another StringBuilder referenced by variable
        ref2, and copy that reference to
        ref3. Even though ref2 is not used after that point, ref3 keeps the same StringBuilder object alive—ensuring that it
        doesn’t become eligible for collection until we’ve finished using
        ref3.
using System;
using System.Text;

class Test
{
  static void Main()
  {
    StringBuilder ref1 = new StringBuilder ("object1");
    Console.WriteLine (ref1);
    // The StringBuilder referenced by ref1 is now eligible for GC.

    StringBuilder ref2 = new StringBuilder ("object2");
    StringBuilder ref3 = ref2;
    // The StringBuilder referenced by ref2 is NOT yet eligible for GC.

    Console.WriteLine (ref3);                   // object2
  }
}
Value-type instances (and object references) live wherever the
        variable was declared. If the instance was declared as a field within
        an object, or as an array element, that instance lives on the
        heap.
Note
You can’t explicitly delete objects in C#, as you can in C++.
          An unreferenced object is eventually collected by the garbage
          collector.

The heap also stores static fields and constants. Unlike objects
        allocated on the heap (which can get garbage-collected), these live
        until the application domain is torn down.


Definite Assignment



C# enforces a definite assignment policy. In practice,
      this means that outside of an unsafe
      context, it’s impossible to access uninitialized memory. Definite
      assignment has three implications:
	Local variables must be assigned a value before they can be
          read.

	Function arguments must be supplied when a method is called
          (unless marked as optional—see Optional parameters).

	All other variables (such as fields and array elements) are
          automatically initialized by the runtime.



For example, the following code results in a compile-time
      error:
static void Main()
{
  int x;
  Console.WriteLine (x);        // Compile-time error
}
Fields and array elements are automatically initialized with the
      default values for their type. The following code outputs 0, because array elements are implicitly
      assigned to their default
      values:
static void Main()
{
  int[] ints = new int[2];
  Console.WriteLine (ints[0]);    // 0
}
The following code outputs 0,
      because fields are implicitly assigned a default value:
class Test
{
  static int x;
  static void Main() { Console.WriteLine (x); }   // 0
}

Default Values



All type instances have a default value. The default value
      for the predefined types is the result of a bitwise zeroing of
      memory:
	Type
	Default
              value

	All reference
              types
	null

	All numeric and enum
              types
	0

	char type
	'\0'

	bool type
	false



You can obtain the default value for any type using the default keyword (in
      practice, this is useful with generics which we’ll cover in Chapter 3):
decimal d = default (decimal);
The default value in a custom value type (i.e., struct) is the same as the default value for
      each field defined by the custom type.

Parameters



A method has a sequence of parameters. Parameters define
      the set of arguments that must be provided for that method. In this
      example, the method Foo has a single
      parameter named p, of type int:
static void Foo (int p)
{
  p = p + 1;                // Increment p by 1
  Console.WriteLine(p);     // Write p to screen
}
static void Main() { Foo (8); }
You can control how parameters are passed with the ref and out
      modifiers:
	Parameter
              modifier
	Passed
              by
	Variable must be
              definitely assigned

	(None)
	Value
	Going
              in

	ref
	Reference
	Going
              in

	out
	Reference
	Going
              out



Passing arguments by value



By default, arguments in C# are passed by
        value, which is by far the most common case. This means a
        copy of the value is created when passed to the method:
class Test
{
  static void Foo (int p)
  {
    p = p + 1;                // Increment p by 1
    Console.WriteLine (p);    // Write p to screen
  }

  static void Main()
  {
    int x = 8;
    Foo (x);                  // Make a copy of x
    Console.WriteLine (x);    // x will still be 8
  }
}
Assigning p a new value does
        not change the contents of x, since
        p and x reside in different memory
        locations.
Passing a reference-type argument by value copies the
        reference, but not the object. In the following
        example, Foo sees the same StringBuilder object that Main instantiated, but has an independent
        reference to it. In other words, sb and fooSB are separate variables that reference
        the same StringBuilder
        object:
class Test
{
  static void Foo (StringBuilder fooSB)
  {
    fooSB.Append ("test");
    fooSB = null;
  }

  static void Main()
  {
    StringBuilder sb = new StringBuilder();
    Foo (sb);
    Console.WriteLine (sb.ToString());    // test
  }
}
Because fooSB is a
        copy of a reference, setting it to null doesn’t make sb null. (If, however, fooSB was declared and called with the
        ref modifier, sb would become
        null.)

The ref modifier



To pass by reference, C# provides the
        ref parameter
        modifier. In the following example, p and x
        refer to the same memory locations:
class Test
{
  static void Foo (ref int p)
  {
    p = p + 1;               // Increment p by 1
    Console.WriteLine (p);   // Write p to screen
  }

  static void Main()
  {
    int x = 8;
    Foo (ref  x);            // Ask Foo to deal directly with x
    Console.WriteLine (x);   // x is now 9
  }
}
Now assigning p a new value
        changes the contents of x. Notice
        how the ref modifier is required
        both when writing and when calling the method.[4] This makes it very clear what’s going on.
The ref modifier is essential
        in implementing a swap method (later, in Generics in
        Chapter 3, we will show how
        to write a swap method that works with any type):
class Test
{
  static void Swap (ref string a, ref string b)
  {
    string temp = a;
    a = b;
    b = temp;
  }

  static void Main()
  {
    string x = "Penn";
    string y = "Teller";
    Swap (ref x, ref y);
    Console.WriteLine (x);   // Teller
    Console.WriteLine (y);   // Penn
  }
}
Note
A parameter can be passed by reference or by value, regardless
          of whether the parameter type is a reference type or a value
          type.


The out modifier



An out argument is like
        a ref argument, except it:
	Need not be assigned before going into the function

	Must be assigned before it comes out of
            the function



The out modifier is most
        commonly used to get multiple return values back from a method. For
        example:
class Test
{
  static void Split (string name, out string firstNames,
                     out string lastName)
  {
     int i = name.LastIndexOf (' ');
     firstNames = name.Substring (0, i);
     lastName   = name.Substring (i + 1);
  }

  static void Main()
  {
    string a, b;
    Split ("Stevie Ray Vaughan", out a, out b);
    Console.WriteLine (a);                      // Stevie Ray
    Console.WriteLine (b);                      // Vaughan
  }
}
Like a ref parameter, an
        out parameter is passed by
        reference.

Implications of passing by reference



When you pass an argument by reference, you alias the storage
        location of an existing variable rather than create a new storage
        location. In the following example, the variables x and y
        represent the same instance:
class Test
{
  static int x;

  static void Main() { Foo (out x); }

  static void Foo (out int y)
  {
    Console.WriteLine (x);                // x is 0
    y = 1;                                // Mutate y
    Console.WriteLine (x);                // x is 1
  }
}

The params modifier



The params parameter
        modifier may be specified on the last parameter of a method so that the method accepts any
        number of parameters of a particular type. The parameter type must be
        declared as an array. For example:
class Test
{
  static int Sum (params int[] ints)
  {
    int sum = 0;
    for (int i = 0; i < ints.Length; i++)
      sum += ints[i];                       // Increase sum by ints[i]
    return sum;
  }

  static void Main()
  {
    int total = Sum (1, 2, 3, 4);
    Console.WriteLine (total);              // 10
  }
}
You can also supply a params
        argument as an ordinary array. The first line in Main is semantically equivalent to
        this:
int total = Sum (new int[] { 1, 2, 3, 4 } );

Optional parameters



From C# 4.0, methods, constructors, and indexers (Chapter 3) can declare optional parameters. A parameter is
        optional if it specifies a default value in its
        declaration:
void Foo (int x = 23) { Console.WriteLine (x); }
Optional parameters may be omitted when calling the
        method:
Foo();     // 23
The default argument of 23 is actually passed
        to the optional parameter x—the
        compiler bakes the value 23 into the compiled code at the
        calling side. The preceding call to Foo is semantically identical to:
Foo (23);
because the compiler simply substitutes the default value of an
        optional parameter wherever it is used.
Warning
Adding an optional parameter to a public method that’s called
          from another assembly requires recompilation of both assemblies—just as though the
          parameter were mandatory.

The default value of an optional parameter must be specified by
        a constant expression, or a parameterless constructor of a value type.
        Optional parameters cannot be marked with ref or out.
Mandatory parameters must occur before
        optional parameters in both the method declaration and the method call
        (the exception is with params
        arguments, which still always come last). In the following example,
        the explicit value of 1 is passed
        to x, and the default value of
        0 is passed to y:
void Foo (int x = 0, int y = 0) { Console.WriteLine (x + ", " + y); }

void Test()
{
  Foo(1);    // 1, 0
}
To do the converse (pass a default value to x and an explicit value to y) you must combine optional parameters with
        named arguments.

Named arguments



Rather than identifying an argument by position, you can
        identify an argument by name. For example:
void Foo (int x, int y) { Console.WriteLine (x + ", " + y); }

void Test()
{
  Foo (x:1, y:2);  // 1, 2
}
Named arguments can occur in any order. The following calls to
        Foo are semantically
        identical:
Foo (x:1, y:2);
Foo (y:2, x:1);
Note
A subtle difference is that argument expressions are evaluated
          in the order in which they appear at the
          calling site. In general, this makes a
          difference only with interdependent side-effecting expressions such
          as the following, which writes 0,
          1:
int a = 0;
Foo (y: ++a, x: --a);  // ++a is evaluated first
Of course, you would almost certainly avoid writing such code
          in practice!

You can mix named and positional parameters:
Foo (1, y:2);
However, there is a restriction: positional parameters must come
        before named arguments. So we
        couldn’t call Foo like this:
Foo (x:1, 2);         // Compile-time error
Named arguments are particularly useful in conjunction with
        optional parameters. For instance, consider the following
        method:
void Bar (int a = 0, int b = 0, int c = 0, int d = 0) { ... }
We can call this supplying only a value for d as follows:
Bar (d:3);
This is particularly useful when calling COM APIs, and is
        discussed in detail in Chapter 25.


var—Implicitly Typed Local Variables



It is often the case that you declare and initialize a variable in
      one step. If the compiler is able to infer the type from the
      initialization expression, you can use the keyword var (introduced in C#
      3.0) in place of the type declaration. For example:
var x = "hello";
var y = new System.Text.StringBuilder();
var z = (float)Math.PI;
This is precisely equivalent to:
string x = "hello";
System.Text.StringBuilder y = new System.Text.StringBuilder();
float z = (float)Math.PI;
Because of this direct equivalence, implicitly typed variables are
      statically typed. For example, the following generates a compile-time
      error:
var x = 5;
x = "hello";    // Compile-time error; x is of type int
Note
var can decrease code
        readability in the case when you can’t deduce the type
        purely by looking at the variable declaration. For
        example:
Random r = new Random();
var x = r.Next();
What type is x?

In Anonymous Types in Chapter 4, we will describe a scenario where
      the use of var is mandatory.


Expressions and Operators



An expression essentially denotes a value.
    The simplest kinds of expressions are constants and variables. Expressions
    can be transformed and combined using operators. An operator takes one or more input
    operands to output a new
    expression.
Here is an example of a constant expression:
12
We can use the * operator to
    combine two operands (the literal expressions 12 and 30),
    as follows:
12 * 30
Complex expressions can be built because an operand may itself be an
    expression, such as the operand (12 *
    30) in the following example:
1 + (12 * 30)
Operators in C# can be classed as unary, binary, or ternary—depending on the number of
    operands they work on (one, two, or three). The binary operators always
    use infix notation, where the operator is placed
    between the two operands.
Primary Expressions



Primary expressions include expressions composed of
      operators that are intrinsic to the basic plumbing of the language. Here
      is an example:
Math.Log (1)
This expression is composed of two primary expressions. The first
      expression performs a member-lookup (with the . operator), and the
      second expression performs a method call (with the () operator).

Void Expressions



A void expression is an expression that has no value. For
      example:
Console.WriteLine (1)
A void expression, since it has no value, cannot be used as an
      operand to build more complex expressions:
1 + Console.WriteLine (1)      // Compile-time error

Assignment Expressions



An assignment expression uses the = operator to assign the result of another
      expression to a variable. For example:
x = x * 5
An assignment expression is not a void expression—it has a value
      of whatever was assigned, and so can be incorporated into another
      expression. In the following example, the expression assigns 2 to
      x and 10 to y:
y = 5 * (x = 2)
This style of expression can be used to initialize multiple
      values:
a = b = c = d = 0
The compound assignment operators are
      syntactic shortcuts that combine assignment with another operator. For
      example:
x *= 2    // equivalent to x = x * 2
x <<= 1   // equivalent to x = x << 1
(A subtle exception to this rule is with
      events, which we describe in Chapter 4: the += and −=
      operators here are treated specially and map to the event’s add and remove accessors.)

Operator Precedence and Associativity



When an expression contains multiple operators, precedence and associativity determine the order of their evaluation.
      Operators with higher precedence execute before operators of lower
      precedence. If the operators have the same precedence, the operator’s
      associativity determines the order of evaluation.
Precedence



The following expression:
1 + 2 * 3
is evaluated as follows because * has a higher precedence than +:
1 + (2 * 3)

Left-associative operators



Binary operators (except for assignment, lambda, and
        null coalescing operators) are left-associative;
        in other words, they are evaluated from left to right. For example,
        the following expression:
8 / 4 / 2
is evaluated as follows due to left associativity:
( 8 / 4 ) / 2    // 1
You can insert parentheses to change the actual order of
        evaluation:
8 / ( 4 / 2 )    // 4

Right-associative operators



The assignment operators, lambda,
        null coalescing, and conditional operator are
        right-associative; in other words, they are
        evaluated from right to left. Right associativity allows multiple
        assignments such as the following to compile:
x = y = 3;
This first assigns 3 to
        y, and then assigns the result of
        that expression (3) to x.


Operator Table



Table 2-3 lists
      C#’s operators in order of precedence. Operators in the same category
      have the same precedence. We explain user-overloadable operators in
      Operator Overloading in Chapter 4.
Table 2-3. C# operators (categories in order of precedence)
	Category
	Operator
              symbol
	Operator
              name
	Example
	User-overloadable

	Primary
	.
	Member
              access
	x.y
	No

	 	-> (unsafe)
	Pointer to
              struct
	x->y
	No

	 	()
	Function
              call
	x()
	No

	 	[]
	Array/index
	a[x]
	Via
              indexer

	 	++
	Post-increment
	x++
	Yes

	 	−−
	Post-decrement
	x−−
	Yes

	 	new
	Create
              instance
	new Foo()
	No

	 	stackalloc
	Unsafe stack
              allocation
	stackalloc(10)
	No

	 	typeof
	Get type from
              identifier
	typeof(int)
	No

	 	checked
	Integral overflow check
              on
	checked(x)
	No

	 	unchecked
	Integral overflow check
              off
	unchecked(x)
	No

	 	default
	Default
              value
	default(char)
	No

	 	await
	Await
	await myTask
	No

	Unary
	sizeof
	Get size of
              struct
	sizeof(int)w
	No

	 	+
	Positive value
              of
	+x
	Yes

	 	−
	Negative value
              of
	−x
	Yes

	 	!
	Not
	!x
	Yes

	 	-
	Bitwise
              complement
	-x
	Yes

	 	++
	Pre-increment
	++x
	Yes

	 	−−
	Pre-decrement
	−−x
	Yes

	 	()
	Cast
	(int)x
	No

	 	* (unsafe)
	Value at
              address
	*x
	No

	 	& (unsafe)
	Address of
              value
	&x
	No

	Multiplicative
	*
	Multiply
	x * y
	Yes

	 	/
	Divide
	x / y
	Yes

	 	%
	Remainder
	x % y
	Yes

	Additive
	+
	Add
	x + y
	Yes

	 	−
	Subtract
	x − y
	Yes

	Shift
	<<
	Shift left
	x >> 1
	Yes

	 	>>
	Shift
              right
	x << 1
	Yes

	Relational
	<
	Less than
	x < y
	Yes

	 	>
	Greater
              than
	x > y
	Yes

	 	<=
	Less than or equal
              to
	x <= y
	Yes

	 	>=
	Greater than or equal
              to
	x >= y
	Yes

	 	is
	Type is or is subclass
              of
	x is y
	No

	 	as
	Type
              conversion
	x as y
	No

	Equality
	==
	Equals
	x == y
	Yes

	 	!=
	Not equals
	x != y
	Yes

	Logical
              And
	&
	And
	x & y
	Yes

	Logical
              Xor
	^
	Exclusive
              Or
	x ^ y
	Yes

	Logical Or
	|
	Or
	x | y
	Yes

	Conditional
              And
	&&
	Conditional
              And
	x && y
	Via &

	Conditional
              Or
	||
	Conditional
              Or
	x || y
	Via |

	Null
              coalescing
	??
	Null
              coalescing
	x ?? y
	No

	Conditional
	?:
	Conditional
	isTrue ? thenThisValue :
              elseThisValue
	No

	Assignment &
              Lambda
	=
	Assign
	x = y
	No

	 	*=
	Multiply self
              by
	x *= 2
	Via *

	 	/=
	Divide self
              by
	x /= 2
	Via /

	 	+=
	Add to
              self
	x += 2
	Via +

	 	−=
	Subtract from
              self
	x −= 2
	Via −

	 	<<=
	Shift self left
              by
	x <<= 2
	Via <<

	 	>>=
	Shift self right
              by
	x >>= 2
	Via >>

	 	&=
	And self
              by
	x &= 2
	Via &

	 	^=
	Exclusive-Or self
              by
	x ^= 2
	Via ^

	 	|=
	Or self by
	x |= 2
	Via |

	 	=>
	Lambda
	x => x + 1
	No






Statements



Functions comprise statements that execute sequentially in the
    textual order in which they appear. A statement block is a series of
    statements appearing between braces (the {} tokens).
Declaration Statements



A declaration statement declares a new variable,
      optionally initializing the variable with an expression. A declaration
      statement ends in a semicolon. You may declare multiple variables of the
      same type in a comma-separated list. For example:
string someWord = "rosebud";
int someNumber = 42;
bool rich = true, famous = false;
A constant declaration is like a variable declaration, except that
      it cannot be changed after it has been declared, and the initialization
      must occur with the declaration (see Constants in
      Chapter 3):
const double c = 2.99792458E08;
c += 10;                        // Compile-time Error
Local variables



The scope of a local variable or local constant extends
        throughout the current block. You cannot declare another local
        variable with the same name in the current block or in any nested
        blocks. For example:
static void Main()
{
  int x;
  {
    int y;
    int x;            // Error - x already defined
  }
  {
    int y;            // OK - y not in scope
  }
  Console.Write (y);  // Error - y is out of scope
}
Note
A variable’s scope extends in both directions
          throughout its code block. This means that if we moved the initial
          declaration of x in this example
          to the bottom of the method, we’d get the same error. This is in
          contrast to C++ and is somewhat peculiar, given that it’s not legal
          to refer to a variable or constant before it’s declared.



Expression Statements



Expression statements are expressions that are also valid
      statements. An expression statement must either change state or call
      something that might change state. Changing state essentially means
      changing a variable. The possible expression statements are:
	Assignment expressions (including increment and
          decrement expressions)

	Method call expressions (both void and nonvoid)

	Object instantiation expressions



Here are some examples:
// Declare variables with declaration statements:
string s;
int x, y;
System.Text.StringBuilder sb;

// Expression statements
x = 1 + 2;                 // Assignment expression
x++;                       // Increment expression
y = Math.Max (x, 5);       // Assignment expression
Console.WriteLine (y);     // Method call expression
sb = new StringBuilder();  // Assignment expression
new StringBuilder();       // Object instantiation expression
When you call a constructor or a method that returns a value,
      you’re not obliged to use the result. However, unless the constructor or
      method changes state, the statement is completely useless:
new StringBuilder();     // Legal, but useless
new string ('c', 3);     // Legal, but useless
x.Equals (y);            // Legal, but useless

Selection Statements



C# has the following mechanisms to conditionally control
      the flow of program execution:
	Selection statements (if,
          switch)

	Conditional operator (?:)

	Loop statements (while,
          do..while, for, foreach)



This section covers the simplest two constructs: the if-else statement and the switch statement.
The if statement



An if statement executes
        a statement if a bool expression is
        true. For example:
if (5 < 2 * 3)
  Console.WriteLine ("true");       // true
The statement can be a code block:
if (5 < 2 * 3)
{
  Console.WriteLine ("true");
  Console.WriteLine ("Let's move on!");
}

The else clause



An if statement can
        optionally feature an else clause:
if (2 + 2 == 5)
  Console.WriteLine ("Does not compute");
else
  Console.WriteLine ("False");        // False
Within an else clause, you
        can nest another if
        statement:
if (2 + 2 == 5)
  Console.WriteLine ("Does not compute");
else
  if (2 + 2 == 4)
    Console.WriteLine ("Computes");    // Computes

Changing the flow of execution with braces



An else clause always
        applies to the immediately preceding if statement in the statement block. For
        example:
if (true)
  if (false)
    Console.WriteLine();
  else
    Console.WriteLine ("executes");
This is semantically identical to:
if (true)
{
  if (false)
    Console.WriteLine();
  else
    Console.WriteLine ("executes");
}
We can change the execution flow by
        moving the braces:
if (true)
{
  if (false)
    Console.WriteLine();
}
else
  Console.WriteLine ("does not execute");
With braces, you explicitly state your intention. This can
        improve the readability of nested if statements—even when not required by the
        compiler. A notable exception is with the following pattern:
static void TellMeWhatICanDo (int age)
{
  if (age >= 35)
    Console.WriteLine ("You can be president!");
  else if (age >= 21)
    Console.WriteLine ("You can drink!");
  else if (age >= 18)
    Console.WriteLine ("You can vote!");
  else
    Console.WriteLine ("You can wait!");
}
Here, we’ve arranged the if
        and else statements to mimic the
        “elsif” construct of other languages (and C#’s
        #elif preprocessor
        directive). Visual Studio’s auto-formatting recognizes this pattern and
        preserves the indentation. Semantically, though, each if statement following an else statement is functionally nested within
        the else clause.

The switch statement



switch statements let
        you branch program execution based on a selection of possible values
        that a variable may have. switch
        statements may result in cleaner code than multiple if statements, since switch statements require an expression to
        be evaluated only once. For instance:
static void ShowCard(int cardNumber)
{
  switch (cardNumber)
  {
    case 13:
      Console.WriteLine ("King");
      break;
    case 12:
      Console.WriteLine ("Queen");
      break;
    case 11:
      Console.WriteLine ("Jack");
      break;
    case −1:                         // Joker is −1
      goto case 12;                  // In this game joker counts as queen
    default:                         // Executes for any other cardNumber
      Console.WriteLine (cardNumber);
      break;
  }
}
You can only switch on an expression of a type that can be
        statically evaluated, which restricts it to the built-in integral
        types, bool, and enum types (and
        nullable versions of these—see Chapter 4), and string type.
At the end of each case clause, you must
        say explicitly where execution is to go next, with some kind of jump
        statement. Here are the options:
	break (jumps to the end
            of the switch statement)

	goto case
            x (jumps to another case clause)

	goto default (jumps to
            the default clause)

	Any other jump statement—namely, return, throw, continue, or goto
            label



When more than one value should execute the same code, you can
        list the common cases
        sequentially:
switch (cardNumber)
{
  case 13:
  case 12:
  case 11:
    Console.WriteLine ("Face card");
    break;
  default:
    Console.WriteLine ("Plain card");
    break;
}
This feature of a switch
        statement can be pivotal in terms of producing cleaner code than
        multiple if-else statements.


Iteration Statements



C# enables a sequence of statements to execute repeatedly
      with the while, do-while, for, and foreach statements.
while and do-while loops



while loops
        repeatedly execute a body of code while a bool expression is true. The expression is
        tested before the body of the loop is executed.
        For example:
int i = 0;
while (i < 3)
{
  Console.WriteLine (i);
  i++;
}

OUTPUT:
0
1
2
do-while loops differ
        in functionality from while loops
        only in that they test the expression after the
        statement block has executed (ensuring that the block is always
        executed at least once). Here’s the preceding example rewritten with a
        do-while loop:
int i = 0;
do
{
  Console.WriteLine (i);
  i++;
}
while (i < 3);

for loops



for loops are like
        while loops with special clauses
        for initialization and
        iteration of a loop variable. A for loop contains three clauses as
        follows:
for (initialization-clause; condition-clause; iteration-clause)
  statement-or-statement-block
	Initialization clause
	Executed before the loop begins; used to initialize one or
              more iteration variables

	Condition clause
	The bool expression
              that, while true, will execute the body

	Iteration clause
	Executed after each iteration of the
              statement block; used typically to update the iteration
              variable



For example, the following prints the numbers 0 through
        2:
for (int i = 0; i < 3; i++)
  Console.WriteLine (i);
The following prints the first 10 Fibonacci numbers (where each
        number is the sum of the previous two):
for (int i = 0, prevFib = 1, curFib = 1; i < 10; i++)
{
  Console.WriteLine (prevFib);
  int newFib = prevFib + curFib;
  prevFib = curFib; curFib = newFib;
}
Any of the three parts of the for statement may be omitted. One can
        implement an infinite loop such as the following (though while(true) may be used instead):
for (;;)
  Console.WriteLine ("interrupt me");

foreach loops



The foreach statement
        iterates over each element in an enumerable object. Most of the types
        in C# and the .NET Framework that represent a set or list of elements
        are enumerable. For example, both an array and a string are
        enumerable.
Here is an example of enumerating over the characters in a
        string, from the first character through to the last:
foreach (char c in "beer")   // c is the iteration variable
  Console.WriteLine (c);

OUTPUT:
b
e
e
r
We define enumerable objects in Enumeration and Iterators in Chapter 4.


Jump Statements



The C# jump statements are break, continue, goto, return, and throw.
Note
Jump statements obey the reliability rules of try statements (see
        try Statements and Exceptions in Chapter 4). This means that:
	A jump out of a try block
            always executes the try’s
            finally block before reaching
            the target of the jump.

	A jump cannot be made from the inside to the outside of a
            finally block (except via
            throw).




The break statement



The break statement
        ends the execution of the body of an iteration or switch statement:
int x = 0;
while (true)
{
  if (x++ > 5)
    break ;      // break from the loop
}
// execution continues here after break
...

The continue statement



The continue
        statement forgoes the remaining statements in a loop and makes an
        early start on the next iteration. The following loop skips even
        numbers:
for (int i = 0; i < 10; i++)
{
  if ((i % 2) == 0)       // If i is even,
    continue;             // continue with next iteration

  Console.Write (i + " ");
}

OUTPUT: 1 3 5 7 9

The goto statement



The goto statement
        transfers execution to another label within a statement block. The
        form is as follows:
goto statement-label;
Or, when used within a switch
        statement:
goto case case-constant;
A label is a placeholder in a code block that precedes a
        statement, denoted with a colon suffix. The following iterates the
        numbers 1 through 5, mimicking a for loop:
int i = 1;
startLoop:
if (i <= 5)
{
  Console.Write (i + " ");
  i++;
  goto startLoop;
}

OUTPUT: 1 2 3 4 5
The goto case
        case-constant transfers execution to
        another case in a switch block (see
        The switch statement).

The return statement



The return statement
        exits the method and must return an expression of the method’s return
        type if the method is nonvoid:
static decimal AsPercentage (decimal d)
{
  decimal p = d * 100m;
  return p;             // Return to the calling method with value
}
A return statement can appear
        anywhere in a method (except in a finally block).

The throw statement



The throw statement
        throws an exception to indicate an error has occurred (see try Statements and Exceptions in Chapter 4):
if (w == null)
  throw new ArgumentNullException (...);


Miscellaneous Statements



The using statement provides an
      elegant syntax for calling Dispose on
      objects that implement IDisposable, within a finally block (see try Statements and Exceptions in Chapter 4 and IDisposable, Dispose, and Close in Chapter 12).
Note
C# overloads the using
        keyword to have independent meanings in different contexts.
        Specifically, the using
        directive is different from the using statement.

The lock statement is a
      shortcut for calling the Enter and
      Exit methods of the Monitor class (see Chapters 14 and
      23).


Namespaces



A namespace is a domain for type names. Types are typically
    organized into hierarchical namespaces, making them easier to find and
    avoiding conflicts. For example, the RSA type that handles public key encryption is
    defined within the following namespace:
System.Security.Cryptography
A namespace forms an integral part of a type’s name. The following
    code calls RSA’s Create method:
System.Security.Cryptography.RSA rsa =
  System.Security.Cryptography.RSA.Create();
Note
Namespaces are independent of assemblies, which are units of
      deployment such as an .exe or
      .dll (described in Chapter 18).
Namespaces also have no impact on member visibility—public, internal, private, and so on.

The namespace keyword defines
    a namespace for types within that block. For example:
namespace Outer.Middle.Inner
{
  class Class1 {}
  class Class2 {}
}
The dots in the namespace indicate a hierarchy of nested namespaces.
    The code that follows is semantically identical to the preceding
    example:
namespace Outer
{
  namespace Middle
  {
    namespace Inner
    {
      class Class1 {}
      class Class2 {}
    }
  }
}
You can refer to a type with its fully qualified name, which includes
    all namespaces from the outermost to the innermost. For example, we could
    refer to Class1 in the preceding
    example as Outer.Middle.Inner.Class1.
Types not defined in any namespace are said to reside in the
    global namespace. The global namespace
    also includes top-level namespaces, such as Outer in our example.
The using Directive



The using directive
      imports a namespace, allowing you to refer to types
      without their fully qualified names. The following imports the previous
      example’s Outer.Middle.Inner
      namespace:
using Outer.Middle.Inner;

class Test
{
  static void Main()
  {
    Class1 c;    // Don't need fully qualified name
  }
}
Note
It’s legal (and often desirable) to define the same type name in
        different namespaces. However, you’d typically do so only if it was
        unlikely for a consumer to want to import both namespaces at once. A
        good example, from the .NET Framework, is the TextBox class which is defined both in
        System.Windows.Controls (WPF) and
        System.Web.UI.WebControls
        (ASP.NET).


Rules Within a Namespace



Name scoping



Names declared in outer namespaces can be used
        unqualified within inner namespaces. In this example, the names
        Middle and Class1 are implicitly imported into Inner:
namespace Outer
{
  namespace Middle
  {
    class Class1 {}

    namespace Inner
    {
      class Class2 : Class1  {}
    }
  }
}
If you want to refer to a type in a different branch of your
        namespace hierarchy, you can use a partially qualified name. In the
        following example, we base SalesReport on Common.ReportBase:
namespace MyTradingCompany
{
  namespace Common
  {
    class ReportBase {}
  }
  namespace ManagementReporting
  {
    class SalesReport : Common.ReportBase  {}
  }
}

Name hiding



If the same type name appears in both an inner and an
        outer namespace, the inner name wins. To refer to the type in the
        outer namespace, you must qualify its name. For example:
namespace Outer
{
  class Foo { }

  namespace Inner
  {
    class Foo { }

    class Test
    {
      Foo f1;         // = Outer.Inner.Foo
      Outer.Foo f2;   // = Outer.Foo
    }
  }
}
Note
All type names are converted to fully qualified names at
          compile time. Intermediate Language (IL) code contains no
          unqualified or partially qualified names.


Repeated namespaces



You can repeat a namespace declaration, as long as the
        type names within the namespaces don’t conflict:
namespace Outer.Middle.Inner
{
  class Class1 {}
}

namespace Outer.Middle.Inner
{
  class Class2 {}
}
We can even break the example into two source files such that we
        could compile each class into a different assembly.
Source file 1:
namespace Outer.Middle.Inner
{
  class Class1 {}
}
Source file 2:
namespace Outer.Middle.Inner
{
  class Class2 {}
}

Nested using directive



You can nest a using
        directive within a namespace. This allows you to scope the using directive within a namespace
        declaration. In the following example, Class1 is visible in one scope, but not in
        another:
namespace N1
{
  class Class1 {}
}

namespace N2
{
  using N1;

  class Class2 : Class1 {}
}

namespace N2
{
  class Class3 : Class1 {}   // Compile-time error
}


Aliasing Types and Namespaces



Importing a namespace can result in type-name collision. Rather than importing the whole
      namespace, you can import just the specific types you need, giving each
      type an alias. For example:
using PropertyInfo2 = System.Reflection.PropertyInfo;
class Program { PropertyInfo2 p; }
An entire namespace can be aliased, as follows:
using R = System.Reflection;
class Program { R.PropertyInfo p; }

Advanced Namespace Features



Extern



Extern aliases allow your program to reference two types
        with the same fully qualified name (i.e., the namespace and type name
        are identical). This is an unusual scenario and can occur only when
        the two types come from different assemblies. Consider the following
        example.
Library 1:
// csc target:library /out:Widgets1.dll widgetsv1.cs

namespace Widgets
{
  public class Widget {}
}
Library 2:
// csc target:library /out:Widgets2.dll widgetsv2.cs

namespace Widgets
{
  public class Widget {}
}
Application:
// csc /r:Widgets1.dll /r:Widgets2.dll application.cs

using Widgets;

class Test
{
  static void Main()
  {
    Widget w = new Widget();
  }
}
The application cannot compile, because Widget is ambiguous. Extern aliases can
        resolve the ambiguity in our application:
// csc /r:W1=Widgets1.dll /r:W2=Widgets2.dll application.cs

extern alias W1;
extern alias W2;

class Test
{
  static void Main()
  {
    W1.Widgets.Widget w1 = new W1.Widgets.Widget();
    W2.Widgets.Widget w2 = new W2.Widgets.Widget();
  }
}

Namespace alias qualifiers



As we mentioned earlier, names in inner namespaces hide names in
        outer namespaces. However, sometimes even the use of a fully qualified
        type name does not resolve the conflict. Consider the following
        example:
namespace N
{
  class A
  {
    public class B {}                    // Nested type
    static void Main() { new A.B(); }    // Instantiate class B
  }
}

namespace A
{
  class B {}
}
The Main method could be
        instantiating either the nested class B, or the class B within the namespace A. The compiler always gives higher
        precedence to identifiers in the current namespace; in this case, the
        nested B class.
To resolve such conflicts, a namespace name can be qualified,
        relative to one of the following:
	The global namespace—the root of all namespaces (identified
            with the contextual keyword global)

	The set of extern aliases



The :: token is used for
        namespace alias qualification. In this example, we qualify using the
        global namespace (this is most commonly seen in auto-generated code to
        avoid name conflicts).
namespace N
{
  class A
  {
    static void Main()
    {
      System.Console.WriteLine (new A.B());
      System.Console.WriteLine (new global::A.B());
    }

    public class B {}
  }
}

namespace A
{
  class B {}
}
Here is an example of qualifying with
        an alias (adapted from the example in Extern):
extern alias W1;
extern alias W2;

class Test
{
  static void Main()
  {
    W1::Widgets.Widget w1 = new W1::Widgets.Widget();
    W2::Widgets.Widget w2 = new W2::Widgets.Widget();
  }
}





[1] A minor caveat is that very large long values lose some precision when
              converted to double.

[2] Technically, decimal is a
        floating-point type too, although it’s not referred to as such in the
        C# language specification.

[3] It’s possible to overload these operators
          (Chapter 4) such that they return
          a non-bool type, but this is
          almost never done in practice.

[4] An exception to this rule is when calling COM methods. We
            discuss this in Chapter 25.



Chapter 3. Creating Types in
  C#



In this chapter, we will delve into types and type members.
Classes



A class is the most common kind of reference type. The
    simplest possible class declaration is as follows:
class YourClassName
{
}
A more complex class optionally has the following:
	Preceding the keyword class
	Attributes and
            class modifiers. The non-nested class
            modifiers are public, internal, abstract, sealed, static, unsafe, and partial

	Following YourClassName
	Generic type
            parameters, a base class, and
            interfaces

	Within the
            braces
	Class
            members (these are methods,
            properties, indexers,
            events, fields,
            constructors, overloaded
            operators, nested types, and a
            finalizer)



This chapter covers all of these constructs except attributes,
    operator functions, and the unsafe
    keyword, which are covered in Chapter 4.
    The following sections enumerate each of the class members.
Fields



A field is a variable that is a member
      of a class or struct. For example:
class Octopus
{
  string name;
  public int Age = 10;
}
Fields allow the following modifiers:
	Static
              modifier
	static

	Access
              modifiers
	public internal private
              protected

	Inheritance
              modifier
	new

	Unsafe code
              modifier
	unsafe

	Read-only
              modifier
	readonly

	Threading
              modifier
	volatile



The readonly modifier



The readonly modifier
        prevents a field from being modified after construction. A read-only
        field can be assigned only in its declaration or within the enclosing
        type’s constructor.

Field initialization



Field initialization is optional. An uninitialized field has a
        default value (0, \0, null,
        false). Field initializers run
        before constructors:
public int Age = 10;

Declaring multiple fields together



For convenience, you may declare multiple fields of the
        same type in a comma-separated list. This is a convenient way for all
        the fields to share the same attributes and field modifiers. For
        example:
static readonly int legs = 8,
                    eyes = 2;


Methods



A method performs an action in a series of statements. A
      method can receive input data from the caller by
      specifying parameters and
      output data back to the caller by specifying a
      return type. A method can specify a
      void return type, indicating that it
      doesn’t return any value to its caller. A method can also output data
      back to the caller via ref/out parameters.
A method’s signature must be unique within the
      type. A method’s signature comprises its name and parameter types (but
      not the parameter names, nor the return type).
      Methods allow the following modifiers:
	Static modifier
	static

	Access modifiers
	public internal private
              protected

	Inheritance modifiers
	new virtual abstract override
              sealed

	Partial method
              modifier
	partial

	Unmanaged code modifiers
	unsafe extern



Overloading methods



A type may overload methods (have multiple methods with
        the same name), as long as the signatures are different. For example,
        the following methods can all coexist in the same type:
void Foo (int x) {...}
void Foo (double x) {...}
void Foo (int x, float y) {...}
void Foo (float x, int y) {...}
However, the following pairs of methods cannot coexist in the
        same type, since the return type and the params modifier are not part of a method’s
        signature:
void  Foo (int x) {...}
float Foo (int x) {...}           // Compile-time error

void  Goo (int[] x) {...}
void  Goo (params int[] x) {...}  // Compile-time error

Pass-by-value versus pass-by-reference



Whether a parameter is pass-by-value or pass-by-reference is also part of the signature. For
        example, Foo(int) can coexist with
        either Foo(ref int) or Foo(out int). However, Foo(ref int) and Foo(out int) cannot coexist:
void Foo (int x) {...}
void Foo (ref int x) {...}     // OK so far
void Foo (out int x) {...}     // Compile-time error


Instance Constructors



Constructors run initialization code on a class or struct.
      A constructor is defined like a method, except that the method name and
      return type are reduced to the name of the enclosing type:
public class Panda
{
  string name;                   // Define field
  public Panda (string n)        // Define constructor
  {
    name = n;                    // Initialization code (set up field)
  }
}
...

Panda p = new Panda ("Petey");   // Call constructor
Instance constructors allow the following modifiers:
	Access
              modifiers
	public internal private
              protected

	Unmanaged code
              modifiers
	unsafe extern



Overloading constructors



A class or struct may overload constructors. To avoid
        code duplication, one constructor may call another, using the
        this keyword:
using System;

public class Wine
{
  public decimal Price;
  public int Year;
  public Wine (decimal price) { Price = price; }
  public Wine (decimal price, int year) : this (price) { Year = year; }
}
When one constructor calls another, the called
        constructor executes first.
You can pass an expression into another constructor
        as follows:
public Wine (decimal price, DateTime year) : this (price, year.Year) { }
The expression itself cannot make use of the this reference, for example, to call an
        instance method. (This is enforced because the object has not been
        initialized by the constructor at this stage, so any methods that you
        call on it are likely to fail.) It can, however, call static methods.

Implicit parameterless constructors



For classes, the C# compiler automatically generates a
        parameterless public constructor if and only if you do not define any
        constructors. However, as soon as you define at least one constructor,
        the parameterless constructor is no longer automatically
        generated.
For structs, a parameterless constructor is intrinsic to the
        struct; therefore, you cannot define your own. The role of a struct’s
        implicit parameterless constructor is to initialize each field with
        default values.

Constructor and field initialization order



We saw previously that fields can be initialized with default
        values in their declaration:
class Player
{
  int shields = 50;   // Initialized first
  int health = 100;   // Initialized second
}
Field initializations occur before the
        constructor is executed, and in the declaration order of the
        fields.

Nonpublic constructors



Constructors do not need to be public. A common reason
        to have a nonpublic constructor is to control instance creation via a
        static method call. The static method could be used to return an
        object from a pool rather than necessarily creating a new object, or
        return various subclasses based on input arguments:
public class Class1
{
  Class1() {}                             // Private constructor
  public static Class1 Create (...)
  {
    // Perform custom logic here to return an instance of Class1
    ...
  }
}


Object Initializers



To simplify object initialization, any accessible fields
      or properties of an object can be set via an object
      initializer directly after construction. For example,
      consider the following class:
public class Bunny
{
  public string Name;
  public bool LikesCarrots;
  public bool LikesHumans;

  public Bunny () {}
  public Bunny (string n) { Name = n; }
}
Using object initializers, you can instantiate Bunny objects as follows:
// Note parameterless constructors can omit empty parentheses
Bunny b1 = new Bunny { Name="Bo", LikesCarrots=true, LikesHumans=false };
Bunny b2 = new Bunny ("Bo")     { LikesCarrots=true, LikesHumans=false };
The code to construct b1 and
      b2 is precisely equivalent to:
Bunny temp1 = new Bunny();    // temp1 is a compiler-generated name
temp1.Name = "Bo";
temp1.LikesCarrots = true;
temp1.LikesHumans = false;
Bunny b1 = temp1;

Bunny temp2 = new Bunny ("Bo");
temp2.LikesCarrots = true;
temp2.LikesHumans = false;
Bunny b2 = temp2;
The temporary variables are to ensure that if an exception is
      thrown during initialization, you can’t end up with a half-initialized
      object.
Object initializers were introduced in C# 3.0.
Object Initializers Versus Optional Parameters
Instead of using object initializers, we could make Bunny’s constructor accept optional parameters:
public Bunny (string name,
              bool likesCarrots = false,
              bool likesHumans = false)
{
  Name = name;
  LikesCarrots = likesCarrots;
  LikesHumans = likesHumans;
}
This would allow us to construct a Bunny as follows:
Bunny b1 = new Bunny (name: "Bo",
                      likesCarrots: true);
An advantage of this approach is that we could make Bunny’s fields (or
        properties, as we’ll explain shortly) read-only
        if we choose. Making fields or properties read-only is good practice
        when there’s no valid reason for them to change throughout the life of
        the object.
The disadvantage in this approach is that each optional
        parameter value is baked into the calling site.
        In other words, C# translates our constructor call into this:
Bunny b1 = new Bunny ("Bo", true, false);
This can be problematic if we instantiate the Bunny class from another assembly, and later
        modify Bunny by adding another
        optional parameter—such as likesCats. Unless the referencing assembly
        is also recompiled, it will continue to call the (now nonexistent)
        constructor with three parameters and fail at runtime. (A subtler
        problem is that if we changed the value of one of the optional
        parameters, callers in other assemblies would continue to use the old
        optional value until they were recompiled.)
Hence, optional parameters are best avoided in public functions
        if you want to offer binary compatibility between assembly
        versions.


The this Reference



The this reference refers
      to the instance itself. In the following example, the Marry method uses this to set the partner’s mate field:
public class Panda
{
  public Panda Mate;

  public void Marry (Panda partner)
  {
    Mate = partner;
    partner.Mate = this;
  }
}
The this reference also
      disambiguates a local variable or parameter from a field. For
      example:
public class Test
{
  string name;
  public Test (string name) { this.name = name; }
}
The this reference is valid
      only within nonstatic members of a class or struct.

Properties



Properties look like fields from the outside, but
      internally they contain logic, like methods do. For example, you can’t
      tell by looking at the following code whether CurrentPrice is a field or a property:
Stock msft = new Stock();
msft.CurrentPrice = 30;
msft.CurrentPrice -= 3;
Console.WriteLine (msft.CurrentPrice);
A property is declared like a field, but with a get/set
      block added. Here’s how to implement CurrentPrice as a property:
public class Stock
{
  decimal currentPrice;           // The private "backing" field

  public decimal CurrentPrice     // The public property
  {
    get { return currentPrice; } set { currentPrice = value; }
  }
}
get and set denote property accessors. The get accessor runs when the property is read.
      It must return a value of the property’s type. The set accessor runs when the property is
      assigned. It has an implicit parameter named value of the property’s type that you
      typically assign to a private field (in this case, currentPrice).
Although properties are accessed in the same way as fields, they
      differ in that they give the implementer complete control over getting
      and setting its value. This control enables the implementer to choose
      whatever internal representation is needed, without exposing the
      internal details to the user of the property. In this example, the
      set method could throw an exception
      if value was outside a valid range of
      values.
Note
Throughout this book, we use public fields extensively to keep
        the examples free of distraction. In a real application, you would
        typically favor public properties over public fields, in order to
        promote encapsulation.

Properties allow the following modifiers:
	Static modifier
	static

	Access modifiers
	public internal private
              protected

	Inheritance modifiers
	new virtual abstract override
              sealed

	Unmanaged code modifiers
	unsafe extern



Read-only and calculated properties



A property is read-only if it specifies only a get accessor, and it is write-only if it
        specifies only a set accessor.
        Write-only properties are rarely used.
A property typically has a dedicated backing field to store the
        underlying data. However, a property can also be computed from other
        data. For example:
decimal currentPrice, sharesOwned;

public decimal Worth
{
  get { return currentPrice * sharesOwned; }
}

Automatic properties



The most common implementation for a property is a
        getter and/or setter that simply reads and writes to a private field
        of the same type as the property. An automatic
        property declaration instructs the compiler to provide this
        implementation. We can redeclare the first example in this section as
        follows:
public class Stock
{
  ...
  public decimal CurrentPrice { get; set; }
}
The compiler automatically generates a private backing field of
        a compiler-generated name that cannot be referred to. The set accessor can be marked private if you want to expose the property
        as read-only to other types. Automatic properties were introduced in
        C# 3.0.

get and set accessibility



The get and set accessors can
        have different access levels. The typical use case for this is to have
        a public property with an
        internal or
        private access
        modifier on the setter:
public class Foo
{
  private decimal x;
  public decimal X
  {
    get         { return x;  }
    private set { x = Math.Round (value, 2); }
  }
}
Notice that you declare the property itself with the more
        permissive access level (public, in
        this case), and add the modifier to the accessor you want to be
        less accessible.

CLR property implementation



C# property accessors internally compile to methods
        called get_XXX and
        set_XXX:
public decimal get_CurrentPrice {...}
public void set_CurrentPrice (decimal value) {...}
Simple nonvirtual property accessors are inlined by the JIT (Just-In-Time) compiler, eliminating any performance
        difference between accessing a property and a field. Inlining is an optimization in which a method call is
        replaced with the body of that method.
With WinRT properties, the compiler assumes the put_XXX naming
        convention rather than set_XXX.


Indexers



Indexers provide a natural syntax for accessing elements
      in a class or struct that encapsulate a list or dictionary of values.
      Indexers are similar to properties, but are accessed via an index
      argument rather than a property name. The string class has an indexer that lets you
      access each of its char values via an
      int index:
string s = "hello";
Console.WriteLine (s[0]); // 'h'
Console.WriteLine (s[3]); // 'l'
The syntax for using indexers is like that for using
      arrays, except that the index argument(s) can be of any type(s).
Note
Indexers have the same modifiers as properties (see Properties).

Implementing an indexer



To write an indexer, define a property called this, specifying the arguments in square
        brackets. For instance:
class Sentence
{
  string[] words = "The quick brown fox".Split();

  public string this [int wordNum]      // indexer
  {
    get { return words [wordNum];  }
    set { words [wordNum] = value; }
  }
}
Here’s how we could use this indexer:
Sentence s = new Sentence();
Console.WriteLine (s[3]);       // fox
s[3] = "kangaroo";
Console.WriteLine (s[3]);       // kangaroo
A type may declare multiple indexers, each with parameters of
        different types. An indexer can also take more than one
        parameter:
public string this [int arg1, string arg2]
{
  get { ... }  set { ... }
}
If you omit the set accessor,
        an indexer becomes read-only.

CLR indexer implementation



Indexers internally compile to methods called get_Item and set_Item, as follows:
public string get_Item (int wordNum) {...}
public void set_Item (int wordNum, string value) {...}


Constants



A constant is a static field whose
      value can never change. A constant is evaluated statically at compile
      time and the compiler literally substitutes its value whenever used
      (rather like a macro in C++). A constant can be any of the built-in
      numeric types, bool, char, string, or an enum type.
A constant is declared with the const keyword and must
      be initialized with a value. For example:
public class Test
{
  public const string Message = "Hello World";
}
A constant is much more restrictive than a static readonly
      field—both in the types you can use and in field initialization
      semantics. A constant also differs from a static readonly field in that the evaluation
      of the constant occurs at compile time. For example:
public static double Circumference (double radius)
{
  return 2 * System.Math.PI * radius;
}
is compiled to:
public static double Circumference (double radius)
{
  return 6.2831853071795862 * radius;
}
It makes sense for PI to be a
      constant, since it can never change. In contrast, a static readonly field can have a different
      value per application.
Note
A static readonly field is
        also advantageous when exposing to other assemblies a value that might
        change in a later version. For instance, suppose assembly X exposes a constant as follows:
public const decimal ProgramVersion = 2.3;
If assembly Y references
        X and uses this constant, the value
        2.3 will be baked into assembly
        Y when compiled. This means that if
        X is later recompiled with the
        constant set to 2.4, Y will still
        use the old value of 2.3 until Y is recompiled. A
        static readonly field avoids this
        problem.
Another way of looking at this is that any value that might
        change in the future is not constant by definition, and so should not
        be represented as one.

Constants can also be declared local to a method. For
      example:
static void Main()
{
  const double twoPI  = 2 * System.Math.PI;
  ...
}
Non-local constants allow the following modifiers:
	Access
              modifiers
	public internal private
              protected

	Inheritance
              modifier
	new




Static Constructors



A static constructor executes once per
      type, rather than once per
      instance. A type can define only one static
      constructor, and it must be parameterless and have the same name as the
      type:
class Test
{
  static Test() { Console.WriteLine ("Type Initialized"); }
}
The runtime automatically invokes a static constructor just prior
      to the type being used. Two things trigger this:
	Instantiating the type

	Accessing a static member in the type



The only modifiers allowed by static constructors are unsafe and extern.
Warning
If a static constructor throws an unhandled exception (Chapter 4), that type becomes
        unusable for the life of the application.

Static constructors and field initialization order



Static field initializers run just before
        the static constructor is called. If a type has no static constructor,
        field initializers will execute just prior to the type being used—or
        anytime earlier at the whim of the runtime. (This
        means that the presence of a static constructor may cause field
        initializers to execute later in the program than they would
        otherwise.)
Static field initializers run in the order in which the fields
        are declared. The following example illustrates this: X is initialized to 0 and Y is initialized to 3.
class Foo
{
  public static int X = Y;    // 0
  public static int Y = 3;    // 3
}
If we swap the two field initializers around, both fields are
        initialized to 3. The next example prints 0 followed by 3 because the
        field initializer that instantiates a Foo executes before X is initialized to 3:
class Program
{
  static void Main() { Console.WriteLine (Foo.X); }   // 3
}

class Foo
{
  public static Foo Instance = new Foo();
  public static int X = 3;

  Foo() { Console.WriteLine (X); }   // 0
}
If we swap the two lines in boldface, the example prints 3
        followed by 3.


Static Classes



A class can be marked static, indicating that it must be composed
      solely of static members and cannot be subclassed. The System.Console and System.Math classes are good examples of
      static classes.

Finalizers



Finalizers are class-only methods that execute before the
      garbage collector reclaims the memory for an unreferenced object. The
      syntax for a finalizer is the name of the class prefixed with the
      ~ symbol:
class Class1
{
  ~Class1()
  {
    ...
  }
}
This is actually C# syntax for overriding Object’s Finalize method, and the compiler expands it
      into the following method declaration:
protected override void Finalize()
{
  ...
  base.Finalize();
}
We discuss garbage collection and finalizers fully in Chapter 12.
Finalizers allow the following modifier:
	Unmanaged code
              modifier
	unsafe




Partial Types and Methods



Partial types allow a type definition to be
      split—typically across multiple files. A common scenario is for a
      partial class to be auto-generated from some other source (such as a
      Visual Studio template or designer), and for that class to be augmented
      with additional hand-authored methods. For example:
// PaymentFormGen.cs - auto-generated
partial class PaymentForm { ... }

// PaymentForm.cs - hand-authored
partial class PaymentForm { ... }
Each participant must have the partial declaration; the following is
      illegal:
partial class PaymentForm {}
class PaymentForm {}
Participants cannot have conflicting members. A constructor with
      the same parameters, for instance, cannot be repeated. Partial types are
      resolved entirely by the compiler, which means that each participant
      must be available at compile time and must reside in the same
      assembly.
There are two ways to specify a base class with partial
      classes:
	Specify the (same) base class on each participant. For
          example:
partial class PaymentForm : ModalForm {}
partial class PaymentForm : ModalForm {}

	Specify the base class on just one participant. For
          example:
partial class PaymentForm : ModalForm {}
partial class PaymentForm {}



In addition, each participant can independently specify interfaces
      to implement. We cover base classes and interfaces in Inheritance and Interfaces.
Partial methods



A partial type may contain partial methods. These let an
        auto-generated partial type provide customizable hooks for manual
        authoring. For example:
partial class PaymentForm    // In auto-generated file
{
  ...
  partial void ValidatePayment (decimal amount);
}

partial class PaymentForm    // In hand-authored file
{
  ...
  partial void ValidatePayment (decimal amount)
  {
    if (amount > 100)
      ...
  }
}
A partial method consists of two parts: a
        definition and an
        implementation. The definition is typically
        written by a code generator, and the implementation is typically
        manually authored. If an implementation is not provided, the
        definition of the partial method is compiled away (as is the code that
        calls it). This allows auto-generated code to be liberal in providing
        hooks, without having to worry about bloat. Partial methods must be
        void and are implicitly private.
Partial methods were introduced in C# 3.0.



Inheritance



A class can inherit
    from another class to extend or customize the original class. Inheriting
    from a class lets you reuse the functionality in that class instead of
    building it from scratch. A class can inherit from only a single class,
    but can itself be inherited by many classes, thus forming a class
    hierarchy. In this example, we start by defining a class called Asset:
public class Asset
{
  public string Name;
}
Next, we define classes called Stock and House, which will inherit from Asset. Stock
    and House get everything an Asset has, plus any additional members that they
    define:
public class Stock : Asset   // inherits from Asset
{
  public long SharesOwned;
}

public class House : Asset   // inherits from Asset
{
  public decimal Mortgage;
}
Here’s how we can use these classes:
Stock msft = new Stock { Name="MSFT",
                         SharesOwned=1000 };

Console.WriteLine (msft.Name);         // MSFT
Console.WriteLine (msft.SharesOwned);  // 1000

House mansion = new House { Name="Mansion",
                            Mortgage=250000 };

Console.WriteLine (mansion.Name);      // Mansion
Console.WriteLine (mansion.Mortgage);  // 250000
The derived classes, Stock and House, inherit the Name property from the base class, Asset.
Note
A derived class is also called a
      subclass.
A base class is also called a
      superclass.

Polymorphism



References are polymorphic. This means a variable of type
      x can refer to an object that subclasses x. For instance, consider
      the following method:
public static void Display (Asset asset)
{
  System.Console.WriteLine (asset.Name);
}
This method can display both a Stock and a House, since they are both Assets:
Stock msft    = new Stock ... ;
House mansion = new House ... ;

Display (msft);
Display (mansion);
Polymorphism works on the basis that subclasses (Stock and House) have all the features of their base
      class (Asset). The converse, however,
      is not true. If Display was modified
      to accept a House, you could not pass
      in an Asset:
static void Main() { Display (new Asset()); }    // Compile-time error

public static void Display (House house)         // Will not accept Asset
{
  System.Console.WriteLine (house.Mortgage);
}

Casting and Reference Conversions



An object reference can be:
	Implicitly upcast to a base class
          reference

	Explicitly downcast to a subclass
          reference



Upcasting and downcasting between compatible reference types
      performs reference conversions: a new reference is
      (logically) created that points to the same object.
      An upcast always succeeds; a downcast succeeds only if the object is
      suitably typed.
Upcasting



An upcast operation creates a base class reference from
        a subclass reference. For example:
Stock msft = new Stock();
Asset a = msft;              // Upcast
After the upcast, variable a
        still references the same Stock
        object as variable msft. The object
        being referenced is not itself altered or converted:
Console.WriteLine (a == msft);        // True
Although a and msft refer to the identical object, a has a more restrictive view on that
        object:
Console.WriteLine (a.Name);           // OK
Console.WriteLine (a.SharesOwned);    // Error: SharesOwned undefined
The last line generates a compile-time error because the
        variable a is of type Asset, even though it refers to an object of
        type Stock. To get to its SharesOwned field, you must
        downcast the Asset to a Stock.

Downcasting



A downcast operation creates a subclass reference from a
        base class reference. For example:
Stock msft = new Stock();
Asset a = msft;                      // Upcast
Stock s = (Stock)a;                  // Downcast
Console.WriteLine (s.SharesOwned);   // <No error>
Console.WriteLine (s == a);          // True
Console.WriteLine (s == msft);       // True
As with an upcast, only references are affected—not the
        underlying object. A downcast requires an explicit cast because it can
        potentially fail at runtime:
House h = new House();
Asset a = h;               // Upcast always succeeds
Stock s = (Stock)a;        // Downcast fails: a is not a Stock
If a downcast fails, an InvalidCastException is thrown. This is an
        example of runtime type checking (we will
        elaborate on this concept in Static and Runtime Type Checking).

The as operator



The as operator
        performs a downcast that evaluates to null (rather than throwing an exception) if
        the downcast fails:
Asset a = new Asset();
Stock s = a as Stock;       // s is null; no exception thrown
This is useful when you’re going to subsequently test whether
        the result is null:
if (s != null) Console.WriteLine (s.SharesOwned);
Note
Without such a test, a cast is advantageous, because if it
          fails, a more helpful exception is thrown. We can illustrate by
          comparing the following two lines of code:
int shares = ((Stock)a).SharesOwned;    // Approach #1
int shares = (a as Stock).SharesOwned;  // Approach #2
If a is not a Stock, the first line throws an InvalidCastException, which is an accurate
          description of what went wrong. The second line throws a NullReferenceException, which is
          ambiguous. Was a not a Stock or was a null?
Another way of looking at it is that with the cast operator,
          you’re saying to the compiler: “I’m certain of
          a value’s type; if I’m wrong, there’s a bug in my code, so throw an
          exception!” Whereas with the as
          operator, you’re uncertain of its type and want to branch according
          to the outcome at runtime.

The as operator cannot
        perform custom conversions (see Operator Overloading in Chapter 4) and it cannot do numeric
        conversions:
long x = 3 as long;    // Compile-time error
Note
The as and cast operators
          will also perform upcasts, although this is not terribly useful
          because an implicit conversion will do the job.


The is operator



The is operator tests
        whether a reference conversion would succeed; in other words, whether
        an object derives from a specified class (or implements an interface).
        It is often used to test before downcasting.
if (a is Stock)
  Console.WriteLine (((Stock)a).SharesOwned);
The is operator does not
        consider custom or numeric conversions, but it does consider
        unboxing conversions (see The object Type).


Virtual Function Members



A function marked as virtual can be overridden
      by subclasses wanting to provide a specialized implementation. Methods,
      properties, indexers, and events can all be declared virtual:
public class Asset
{
  public string Name;
  public virtual decimal Liability { get { return 0; } }
}
A subclass overrides a virtual method by applying the override modifier:
public class Stock : Asset
{
  public long SharesOwned;
}

public class House : Asset
{
  public decimal Mortgage;
  public override decimal Liability { get { return Mortgage; } }
}
By default, the Liability of an
      Asset is 0. A Stock
      does not need to specialize this behavior. However, the House specializes the Liability property to return the value of the
      Mortgage:
House mansion = new House { Name="McMansion", Mortgage=250000 };
Asset a = mansion;
Console.WriteLine (mansion.Liability);  // 250000
Console.WriteLine (a.Liability);        // 250000
The signatures, return types, and accessibility of the virtual and
      overridden methods must be identical. An overridden method can call its
      base class implementation via the base keyword (we will
      cover this in The base Keyword).
Warning
Calling virtual methods from a constructor is potentially
        dangerous because authors of subclasses are unlikely to know, when
        overriding the method, that they are working with a partially
        initialized object. In other words, the overriding method may end up
        accessing methods or properties which rely on fields not yet
        initialized by the constructor.


Abstract Classes and Abstract Members



A class declared as abstract can never be
      instantiated. Instead, only its concrete subclasses
      can be instantiated.
Abstract classes are able to define abstract members. Abstract members
      are like virtual members, except they don’t provide a default
      implementation.
That implementation must be provided by
      the subclass, unless that subclass is also declared abstract:
public abstract class Asset
{
  // Note empty implementation
  public abstract decimal NetValue { get; }
}

public class Stock : Asset
{
  public long SharesOwned;
  public decimal CurrentPrice;

  // Override like a virtual method.
  public override decimal NetValue
  {
    get { return CurrentPrice * SharesOwned; }
  }
}

Hiding Inherited Members



A base class and a subclass may define identical members.
      For example:
public class A      { public int Counter = 1; }
public class B : A  { public int Counter = 2; }
The Counter field in class
      B is said to
      hide the Counter
      field in class A. Usually, this
      happens by accident, when a member is added to the base type
      after an identical member was added to the subtype.
      For this reason, the compiler generates a warning, and then resolves the
      ambiguity as follows:
	References to A (at compile
          time) bind to A.Counter.

	References to B (at compile
          time) bind to B.Counter.



Occasionally, you want to hide a member deliberately, in which
      case you can apply the new modifier
      to the member in the subclass. The new modifier does nothing more than
      suppress the compiler warning that would otherwise
      result:
public class A     { public     int Counter = 1; }
public class B : A { public new int Counter = 2; }
The new modifier communicates
      your intent to the compiler—and other programmers—that the duplicate member is
      not an accident.
Note
C# overloads the new keyword to have
        independent meanings in different contexts. Specifically, the new operator is
        different from the new
        member modifier.

new versus override



Consider the following class hierarchy:
public class BaseClass
{
  public virtual void Foo()  { Console.WriteLine ("BaseClass.Foo"); }
}

public class Overrider : BaseClass
{
  public override void Foo() { Console.WriteLine ("Overrider.Foo"); }
}

public class Hider : BaseClass
{
  public new void Foo()      { Console.WriteLine ("Hider.Foo"); }
}
The differences in behavior between Overrider and Hider are demonstrated in the following
        code:
Overrider over = new Overrider();
BaseClass b1 = over;
over.Foo();                         // Overrider.Foo
b1.Foo();                           // Overrider.Foo

Hider h = new Hider();
BaseClass b2 = h;
h.Foo();                           // Hider.Foo
b2.Foo();                          // BaseClass.Foo


Sealing Functions and Classes



An overridden function member may
      seal its implementation with the sealed keyword to
      prevent it from being overridden by further subclasses. In our earlier
      virtual function member example, we could have sealed House’s implementation of Liability, preventing a class that derives
      from House from overriding Liability, as follows:
public sealed override decimal Liability { get { return Mortgage; } }
You can also seal the class itself, implicitly sealing all the
      virtual functions, by applying the sealed modifier to the class itself. Sealing a
      class is more common than sealing a function member.
Although you can seal against overriding, you can’t seal a member
      against being hidden.

The base Keyword



The base keyword is similar
      to the this keyword. It serves two
      essential purposes:
	Accessing an overridden function member from the
          subclass

	Calling a base-class constructor (see the next section)



In this example, House uses the
      base keyword to access Asset’s implementation of Liability:
public class House : Asset
{
  ...
  public override decimal Liability
  {
    get { return base.Liability + Mortgage; }
  }
}
With the base keyword, we
      access Asset’s Liability property
      nonvirtually. This means we will always access
      Asset’s version of this
      property—regardless of the instance’s actual runtime type.
The same approach works if Liability is hidden
      rather than overridden. (You can also access hidden
      members by casting to the base class before invoking the function.)

Constructors and Inheritance



A subclass must declare its own constructors. The base
      class’s constructors are accessible to the derived
      class, but are never automatically inherited. For
      example, if we define Baseclass and
      Subclass as follows:
public class Baseclass
{
  public int X;
  public Baseclass () { }
  public Baseclass (int x) { this.X = x; }
}

public class Subclass : Baseclass { }
the following is illegal:
Subclass s = new Subclass (123);
Subclass must hence “redefine”
      any constructors it wants to expose. In doing so, however, it can call
      any of the base class’s constructors with the base keyword:
public class Subclass : Baseclass
{
  public Subclass (int x) : base (x) { }
}
The base keyword works rather
      like the this keyword, except that it
      calls a constructor in the base class.
Base-class constructors always execute first; this ensures that
      base initialization occurs before
      specialized initialization.
Implicit calling of the parameterless base-class
        constructor



If a constructor in a subclass omits the base keyword, the base type’s parameterless constructor is
        implicitly called:
public class BaseClass
{
  public int X;
  public BaseClass() { X = 1; }
}

public class Subclass : BaseClass
{
  public Subclass() { Console.WriteLine (X); }  // 1
}
If the base class has no accessible parameterless constructor,
        subclasses are forced to use the base keyword in their constructors.

Constructor and field initialization order



When an object is instantiated, initialization takes place in
        the following order:
	From subclass to base class:
	Fields are initialized.

	Arguments to base-class constructor calls are
                evaluated.




	From base class to subclass:
	Constructor bodies execute.






The following code demonstrates:
public class B
{
  int x = 1;         // Executes 3rd
  public B (int x)
  {
    ...              // Executes 4th
  }
}
public class D : B
{
  int y = 1;         // Executes 1st
  public D (int x)
    : base (x + 1)   // Executes 2nd
  {
     ...             // Executes 5th
  }
}


Overloading and Resolution



Inheritance has an interesting impact on method
      overloading. Consider the following two overloads:
static void Foo (Asset a) { }
static void Foo (House h) { }
When an overload is called, the most specific type has
      precedence:
House h = new House (...);
Foo(h);                      // Calls Foo(House)
The particular overload to call is determined statically (at
      compile time) rather than at runtime.
The following code calls Foo(Asset), even though the runtime type of
      a is House:
Asset a = new House (...);
Foo(a);                      // Calls Foo(Asset)
Note
If you cast Asset to dynamic (Chapter 4), the decision as to which
        overload to call is deferred until runtime, and is then based on the
        object’s actual type:
Asset a = new House (...);
Foo ((dynamic)a);   // Calls Foo(House)



The object Type



object (System.Object) is the ultimate base class for
    all types. Any type can be upcast to object.
To illustrate how this is useful, consider a general-purpose
    stack. A stack is a data structure based on the
    principle of LIFO—“Last-In First-Out.” A stack has two operations:
    push an object on the stack, and
    pop an object off the stack. Here is a simple
    implementation that can hold up to 10 objects:
public class Stack
{
  int position;
  object[] data = new object[10];
  public void Push (object obj)   { data[position++] = obj;  }
  public object Pop()             { return data[--position]; }
}
Because Stack works with the
    object type, we can Push and Pop instances of any type
    to and from the Stack:
Stack stack = new Stack();
stack.Push ("sausage");
string s = (string) stack.Pop();   // Downcast, so explicit cast is needed

Console.WriteLine (s);             // sausage
object is a reference type, by
    virtue of being a class. Despite this, value types, such as int, can also be cast to and from object, and so be added to our stack. This
    feature of C# is called type unification and is demonstrated
    here:
stack.Push (3);
int three = (int) stack.Pop();
When you cast between a value type and object, the CLR must perform some special work
    to bridge the difference in semantics between value and reference types.
    This process is called boxing and
    unboxing.
Note
In Generics, we’ll describe how to improve our
      Stack class to better handle stacks
      with same-typed elements.

Boxing and Unboxing



Boxing is the act of converting a value-type instance to a
      reference-type instance. The reference type may be either the object class or an interface (which we will
      visit later in the chapter).[5] In this example, we box an int into an object:
int x = 9;
object obj = x;           // Box the int
Unboxing reverses the operation, by casting the object
      back to the original value type:
int y = (int)obj;         // Unbox the int
Unboxing requires an explicit cast. The runtime checks that the
      stated value type matches the actual object type, and throws an InvalidCastException if the check fails. For
      instance, the following throws an exception, because long does not exactly match int:
object obj = 9;           // 9 is inferred to be of type int
long x = (long) obj;      // InvalidCastException
The following succeeds, however:
object obj = 9;
long x = (int) obj;
As does this:
object obj = 3.5;              // 3.5 is inferred to be of type double
int x = (int) (double) obj;    // x is now 3
In the last example, (double)
      performs an unboxing and then (int) performs a numeric
      conversion.
Note
Boxing conversions are crucial in providing a unified
        type system. The system is not perfect, however: we’ll see in Generics that variance with arrays and generics supports
        only reference conversions and not
        boxing conversions:
object[] a1 = new string[3];   // Legal
object[] a2 = new int[3];      // Error

Copying semantics of boxing and unboxing



Boxing copies the value-type
        instance into the new object, and unboxing copies
        the contents of the object back into a value-type instance. In the
        following example, changing the value of i doesn’t change its previously boxed
        copy:
int i = 3;
object boxed = i;
i = 5;
Console.WriteLine (boxed);    // 3


Static and Runtime Type Checking



C# programs are type-checked both statically (at compile time) and
      at runtime (by the CLR).
Static type checking enables the compiler to verify the
      correctness of your program without running it. The following code will
      fail because the compiler enforces static typing:
int x = "5";
Runtime type checking is performed by the CLR when you
      downcast via a reference conversion or unboxing. For example:
object y = "5";
int z = (int) y;          // Runtime error, downcast failed
Runtime type checking is possible because each object on the heap
      internally stores a little type token. This token can be retrieved by
      calling the GetType method of
      object.

The GetType Method and typeof Operator



All types in C# are represented at runtime with an instance of
      System.Type. There are two basic ways
      to get a System.Type object:
	Call GetType on the
          instance.

	Use the typeof operator on
          a type name.



GetType is evaluated at
      runtime; typeof is evaluated
      statically at compile time (when generic type parameters are involved,
      it’s resolved by the just-in-time compiler).
System.Type has properties for
      such things as the type’s name, assembly, base type, and so on.
For example:
using System;

public class Point { public int X, Y; }

class Test
{
  static void Main()
  {
    Point p = new Point();
    Console.WriteLine (p.GetType().Name);             // Point
    Console.WriteLine (typeof (Point).Name);          // Point
    Console.WriteLine (p.GetType() == typeof(Point)); // True
    Console.WriteLine (p.X.GetType().Name);           // Int32
    Console.WriteLine (p.Y.GetType().FullName);       // System.Int32
  }
}
System.Type also has methods
      that act as a gateway to the runtime’s reflection model, described in
      Chapter 19.

The ToString Method



The ToString method returns
      the default textual representation of a type instance. This method is
      overridden by all built-in types. Here is an example of using the
      int type’s ToString method:
int x = 1;
string s = x.ToString();     // s is "1"
You can override the ToString
      method on custom types as follows:
public class Panda
{
  public string Name;
  public override string ToString() { return Name; }
}
...

Panda p = new Panda { Name = "Petey" };
Console.WriteLine (p);   // Petey
If you don’t override ToString,
      the method returns the type name.
Note
When you call an overridden object member such as ToString directly on a value type, boxing
        doesn’t occur. Boxing then occurs only if you cast:
int x = 1;
string s1 = x.ToString();    // Calling on nonboxed value
object box = x;
string s2 = box.ToString();  // Calling on boxed value


Object Member Listing



Here are all the members of object:
public class Object
{
  public Object();

  public extern Type GetType();

  public virtual bool Equals (object obj);
  public static bool Equals  (object objA, object objB);
  public static bool ReferenceEquals (object objA, object objB);

  public virtual int GetHashCode();

  public virtual string ToString();

  protected virtual void Finalize();
  protected extern object MemberwiseClone();
}
We describe the Equals,
      ReferenceEquals, and GetHashCode methods in Equality Comparison in Chapter 6.


Structs



A struct is similar to a class, with the
    following key differences:
	A struct is a value type, whereas a class is a reference
        type.

	A struct does not support inheritance (other than implicitly
        deriving from object, or more
        precisely, System.ValueType).



A struct can have all the members a class can, except the
    following:
	A parameterless constructor

	A finalizer

	Virtual members



A struct is used instead of a class when value-type semantics are
    desirable. Good examples of structs are numeric types, where it is more
    natural for assignment to copy a value rather than a reference. Because a
    struct is a value type, each instance does not require instantiation of an
    object on the heap; this incurs a useful savings when creating many
    instances of a type. For instance, creating an array of value type
    requires only a single heap allocation.
Struct Construction Semantics



The construction semantics of a struct are as follows:
	A parameterless constructor that you can’t override implicitly
          exists. This performs a bitwise-zeroing of its fields.

	When you define a struct constructor, you must explicitly
          assign every field.

	You can’t have field initializers in a struct.



Here is an example of declaring and calling struct
      constructors:
public struct Point
{
  int x, y;
  public Point (int x, int y) { this.x = x; this.y = y; }
}

...
Point p1 = new Point ();       // p1.x and p1.y will be 0
Point p2 = new Point (1, 1);   // p1.x and p1.y will be 1
The next example generates three compile-time errors:
public struct Point
{
  int x = 1;                          // Illegal: cannot initialize field
  int y;
  public Point() {}                   // Illegal: cannot have
                                      // parameterless constructor

  public Point (int x) {this.x = x;}  // Illegal: must assign field y
}
Changing struct to class makes this example legal.


Access Modifiers



To promote encapsulation, a type or type member may limit
    its accessibility to other types and other assemblies
    by adding one of five access modifiers to the
    declaration:
	public
	Fully accessible. This is the implicit accessibility for
          members of an enum or interface.

	internal
	Accessible only within containing assembly or friend
          assemblies. This is the default accessibility for non-nested
          types.

	private
	Accessible only within containing type. This is the default
          accessibility for members of a class or struct.

	protected
	Accessible only within containing type or subclasses.

	protected internal
	The union of protected and internal accessibility. Eric Lippert explains it as follows: Everything is as
          private as possible by default, and each modifier makes the thing
          more accessible. So something that is protected internal is made more accessible
          in two ways.



Note
The CLR has the concept of the intersection
      of protected and internal accessibility, but C# does not support
      this.

Examples



Class2 is accessible from
      outside its assembly; Class1 is
      not:
class Class1 {}                  // Class1 is internal (default)
public class Class2 {}
ClassB exposes field x to other types in the same assembly;
      ClassA does not:
class ClassA { int x;          } // x is private (default)
class ClassB { internal int x; }
Functions within Subclass can
      call Bar but not Foo:
class BaseClass
{
  void Foo()           {}        // Foo is private (default)
  protected void Bar() {}
}

class Subclass : BaseClass
{
  void Test1() { Foo(); }       // Error - cannot access Foo
  void Test2() { Bar(); }       // OK
}

Friend Assemblies



In advanced scenarios, you can expose internal members to other
      friend assemblies by adding the System.Runtime.CompilerServices.InternalsVisibleTo
      assembly attribute, specifying the name of the friend assembly as
      follows:
[assembly: InternalsVisibleTo ("Friend")]
If the friend assembly has a strong name (see Chapter 18), you must specify its full
      160-byte public key:
[assembly: InternalsVisibleTo ("StrongFriend, PublicKey=0024f000048c...")]
You can extract the full public key from a strongly named assembly
      with a LINQ query (we explain LINQ in detail in Chapter 8):
string key = string.Join ("",
   Assembly.GetExecutingAssembly().GetName().GetPublicKey()
  .Select (b => b.ToString ("x2"))
  .ToArray());
Note
The companion sample in LINQPad invites you to browse to an
        assembly and then copies the assembly’s full public key to the
        clipboard.


Accessibility Capping



A type caps the accessibility of its declared members. The
      most common example of capping is when you have an internal type with public members. For example:
class C { public void Foo() {} }
C’s (default) internal accessibility caps Foo’s accessibility, effectively making
      Foo internal. A common reason
      Foo would be marked public is to make for easier refactoring, should C later be changed to public.

Restrictions on Access Modifiers



When overriding a base class function, accessibility must be
      identical on the overridden function. For example:
class BaseClass             { protected virtual  void Foo() {} }
class Subclass1 : BaseClass { protected override void Foo() {} }  // OK
class Subclass2 : BaseClass { public    override void Foo() {} }  // Error
(An exception is when overriding a protected
      internal method in another assembly, in which case the
      override must simply be protected.)
The compiler prevents any inconsistent use of access modifiers.
      For example, a subclass itself can be less accessible than a base class,
      but not more:
internal class A {}
public class B : A {}          // Error


Interfaces



An interface is similar to a class, but it provides a
    specification rather than an implementation for its members. An interface
    is special in the following ways:
	Interface members are all implicitly
        abstract. In contrast, a class can provide both abstract
        members and concrete members with implementations.

	A class (or struct) can implement multiple
        interfaces. In contrast, a class can inherit from only a
        single class, and a struct cannot inherit at all
        (aside from deriving from System.ValueType).



An interface declaration is like a class declaration, but it
    provides no implementation for its members, since all its members are
    implicitly abstract. These members will be implemented by the classes and
    structs that implement the interface. An interface can contain only
    methods, properties, events, and indexers, which noncoincidentally are
    precisely the members of a class that can be abstract.
Here is the definition of the IEnumerator interface, defined in System.Collections:
public interface IEnumerator
{
  bool MoveNext();
  object Current { get; }
  void Reset();
}
Interface members are always implicitly public and cannot declare an
    access modifier. Implementing an interface means providing a public implementation for all its
    members:
internal class Countdown : IEnumerator
{
  int count = 11;
  public bool MoveNext () { return count-- > 0 ;               }
  public object Current   { get { return count; }              }
  public void Reset()     { throw new NotSupportedException(); }
}
You can implicitly cast an object to any interface that it
    implements. For example:
IEnumerator e = new Countdown();
while (e.MoveNext())
  Console.Write (e.Current);      // 109876543210
Note
Even though Countdown is an
      internal class, its members that implement IEnumerator can be called publicly by casting
      an instance of Countdown to IEnumerator. For instance, if a public type in
      the same assembly defined a method as follows:
public static class Util
{
  public static object GetCountDown()
  {
    return new CountDown();
  }
}
a caller from another assembly could do this:
IEnumerator e = (IEnumerator) Util.GetCountDown();
e.MoveNext();
If IEnumerator was itself
      defined as internal, this wouldn’t be
      possible.

Extending an Interface



Interfaces may derive from other interfaces. For instance:
public interface IUndoable             { void Undo(); }
public interface IRedoable : IUndoable { void Redo(); }
IRedoable “inherits” all the
      members of IUndoable. In other words,
      types that implement IRedoable must
      also implement the members of IUndoable.

Explicit Interface Implementation



Implementing multiple interfaces can sometimes result in a
      collision between member signatures. You can resolve such collisions by
      explicitly implementing an interface member.
Consider the following example:
interface I1 { void Foo(); }
interface I2 { int Foo(); }

public class Widget : I1, I2
{
  public void Foo ()
  {
    Console.WriteLine ("Widget's implementation of I1.Foo");
  }

  int I2.Foo()
  {
    Console.WriteLine ("Widget's implementation of I2.Foo");
    return 42;
  }
}
Because both I1 and I2 have conflicting Foo signatures, Widget explicitly implements I2’s Foo
      method. This lets the two methods coexist in one class. The only way to
      call an explicitly implemented member is to cast to its
      interface:
Widget w = new Widget();
w.Foo();                      // Widget's implementation of I1.Foo
((I1)w).Foo();                // Widget's implementation of I1.Foo
((I2)w).Foo();                // Widget's implementation of I2.Foo
Another reason to explicitly implement interface members is to
      hide members that are highly specialized and distracting to a type’s
      normal use case. For example, a type that implements ISerializable would typically want to avoid
      flaunting its ISerializable members
      unless explicitly cast to that interface.

Implementing Interface Members Virtually



An implicitly implemented interface member is, by default, sealed.
      It must be marked virtual or abstract in the base class in order to be
      overridden. For example:
public interface IUndoable { void Undo(); }

public class TextBox : IUndoable
{
  public virtual void Undo()
  {
     Console.WriteLine ("TextBox.Undo");
  }
}

public class RichTextBox : TextBox
{
  public override void Undo()
  {
    Console.WriteLine ("RichTextBox.Undo");
  }
}
Calling the interface member through
      either the base class or the interface calls the subclass’s
      implementation:
RichTextBox r = new RichTextBox();
r.Undo();                          // RichTextBox.Undo
((IUndoable)r).Undo();             // RichTextBox.Undo
((TextBox)r).Undo();               // RichTextBox.Undo
An explicitly implemented interface member cannot be marked
      virtual, nor can it be overridden in
      the usual manner. It can, however, be
      reimplemented.

Reimplementing an Interface in a Subclass



A subclass can reimplement any interface member already
      implemented by a base class. Reimplementation hijacks a member
      implementation (when called through the interface) and works whether or
      not the member is virtual in the base
      class. It also works whether a member is implemented implicitly or
      explicitly—although it works best in the latter case, as we will
      demonstrate.
In the following example, TextBox implements IUndoable.Undo explicitly, and so it cannot be
      marked as virtual. In order to
      “override” it, RichTextBox must
      reimplement IUndoable’s Undo method:
public interface IUndoable { void Undo(); }

public class TextBox : IUndoable
{
  void IUndoable.Undo() { Console.WriteLine ("TextBox.Undo"); }
}

public class RichTextBox : TextBox, IUndoable
{
  public new void Undo() { Console.WriteLine ("RichTextBox.Undo"); }
}
Calling the reimplemented member through the interface calls the
      subclass’s implementation:
RichTextBox r = new RichTextBox();
r.Undo();                 // RichTextBox.Undo      Case 1
((IUndoable)r).Undo();    // RichTextBox.Undo      Case 2
Assuming the same RichTextBox definition, suppose that TextBox implemented Undo implicitly:
public class TextBox : IUndoable
{
  public void Undo() { Console.WriteLine ("TextBox.Undo"); }
}
This would give us another way to call Undo, which would “break” the system, as shown
      in Case 3:
RichTextBox r = new RichTextBox();
r.Undo();                 // RichTextBox.Undo      Case 1
((IUndoable)r).Undo();    // RichTextBox.Undo      Case 2
((TextBox)r).Undo();      // TextBox.Undo
          Case 3
Case 3 demonstrates that reimplementation hijacking is effective
      only when a member is called
      through the interface and not through the base class. This is usually
      undesirable as it can mean inconsistent semantics. This makes
      reimplementation most appropriate as a strategy for overriding
      explicitly implemented interface members.
Alternatives to interface reimplementation



Even with explicit member implementation, interface
        reimplementation is problematic for a couple of reasons:
	The subclass has no way to call the base class
            method.

	The base class author may not anticipate that a method be
            reimplemented and may not allow for the potential
            consequences.



Reimplementation can be a good last resort when subclassing
        hasn’t been anticipated. A better option, however, is to design a base
        class such that reimplementation will never be required. There are two
        ways to achieve this:
	When implicitly implementing a member, mark it virtual if appropriate.

	When explicitly implementing a member, use the following
            pattern if you anticipate
            that subclasses might need to override any logic:
public class TextBox : IUndoable
{
  void IUndoable.Undo()         { Undo(); }   // Calls method below
  protected virtual void Undo() { Console.WriteLine ("TextBox.Undo"); }
}

public class RichTextBox : TextBox
{
  protected override void Undo() { Console.WriteLine("RichTextBox.Undo"); }
}



If you don’t anticipate any subclassing, you can mark the class
        as sealed to preempt interface
        reimplementation.


Interfaces and Boxing



Converting a struct to an interface causes boxing. Calling an
      implicitly implemented member on a struct does not cause boxing:
interface  I { void Foo();          }
struct S : I { public void Foo() {} }

...
S s = new S();
s.Foo();         // No boxing.

I i = s;         // Box occurs when casting to interface.
i.Foo();
Writing a Class Versus an Interface
As a guideline:
	Use classes and subclasses for types that naturally share an
            implementation.

	Use interfaces for types that have independent
            implementations.



Consider the following classes:
abstract class Animal {}
abstract class Bird           : Animal {}
abstract class Insect         : Animal {}
abstract class FlyingCreature : Animal {}
abstract class Carnivore      : Animal {}

// Concrete classes:

class Ostrich : Bird {}
class Eagle   : Bird, FlyingCreature, Carnivore {}  // Illegal
class Bee     : Insect, FlyingCreature {}           // Illegal
class Flea    : Insect, Carnivore {}                // Illegal
The Eagle, Bee, and Flea classes do not compile because
        inheriting from multiple classes is prohibited. To resolve this, we
        must convert some of the types to interfaces. The question then
        arises, which types? Following our general rule, we could say that
        insects share an implementation, and birds share an implementation, so
        they remain classes. In contrast, flying creatures have independent
        mechanisms for flying, and carnivores have independent strategies for
        eating animals, so we would convert FlyingCreature and Carnivore to interfaces:
interface IFlyingCreature {}
interface ICarnivore      {}
In a typical scenario, Bird
        and Insect might correspond to a
        Windows control and a web control; FlyingCreature and Carnivore might correspond to IPrintable and IUndoable.



Enums



An enum is a special value type that lets you specify a
    group of named numeric constants. For example:
public enum BorderSide { Left, Right, Top, Bottom }
We can use this enum type as follows:
BorderSide topSide = BorderSide.Top;
bool isTop = (topSide == BorderSide.Top);   // true
Each enum member has an underlying integral value. By
    default:
	Underlying values are of type int.

	The constants 0, 1, 2...
        are automatically assigned, in the declaration order of the enum
        members.



You may specify an alternative integral type, as follows:
public enum BorderSide : byte { Left, Right, Top, Bottom }
You may also specify an explicit underlying value for each enum
    member:
public enum BorderSide : byte { Left=1, Right=2, Top=10, Bottom=11 }
Note
The compiler also lets you explicitly assign
      some of the enum members. The unassigned enum
      members keep incrementing from the last explicit value. The preceding
      example is equivalent to the following:
public enum BorderSide : byte
 { Left=1, Right, Top=10, Bottom }

Enum Conversions



You can convert an enum
      instance to and from its underlying integral value with an explicit
      cast:
int i = (int) BorderSide.Left;
BorderSide side = (BorderSide) i;
bool leftOrRight = (int) side <= 2;
You can also explicitly cast one enum type to another. Suppose
      HorizontalAlignment is defined as
      follows:
public enum HorizontalAlignment
{
  Left = BorderSide.Left,
  Right = BorderSide.Right,
  Center
}
A translation between the enum types
      uses the underlying integral values:
HorizontalAlignment h = (HorizontalAlignment) BorderSide.Right;
// same as:
HorizontalAlignment h = (HorizontalAlignment) (int) BorderSide.Right;
The numeric literal 0 is
      treated specially by the compiler in an enum expression and does not require an
      explicit cast:
BorderSide b = 0;    // No cast required
if (b == 0) ...
There are two reasons for the special treatment of 0:
	The first member of an enum is often used as the “default”
          value.

	For combined enum types, 0 means “no flags.”




Flags Enums



You can combine enum members. To prevent ambiguities,
      members of a combinable enum require explicitly assigned values,
      typically in powers of two. For example:
[Flags]
public enum BorderSides { None=0, Left=1, Right=2, Top=4, Bottom=8 }
To work with combined enum values, you use bitwise operators, such
      as | and &. These operate on the underlying
      integral values:
BorderSides leftRight = BorderSides.Left | BorderSides.Right;

if ((leftRight & BorderSides.Left) != 0)
  Console.WriteLine ("Includes Left");     // Includes Left

string formatted = leftRight.ToString();   // "Left, Right"

BorderSides s = BorderSides.Left;
s |= BorderSides.Right;
Console.WriteLine (s == leftRight);   // True

s ^= BorderSides.Right;               // Toggles BorderSides.Right
Console.WriteLine (s);                // Left
By convention, the Flags
      attribute should always be applied to an enum type when its members are
      combinable. If you declare such an enum without the Flags attribute, you can still combine
      members, but calling ToString on an
      enum instance will emit a number
      rather than a series of names.
By convention, a combinable enum type is given a plural rather
      than singular name.
For convenience, you can include combination members within an
      enum declaration itself:
[Flags]
public enum BorderSides
{
  None=0,
  Left=1, Right=2, Top=4, Bottom=8,
  LeftRight = Left | Right,
  TopBottom = Top  | Bottom,
  All       = LeftRight | TopBottom
}

Enum Operators



The operators that work with enums are:
=   ==   !=   <   >   <=   >=   +   -   ^  &  |   ˜
+=   -=   ++  --   sizeof
The bitwise, arithmetic, and comparison operators return the
      result of processing the underlying integral values. Addition is
      permitted between an enum and an integral type, but not between two
      enums.

Type-Safety Issues



Consider the following enum:
public enum BorderSide { Left, Right, Top, Bottom }
Since an enum can be cast to and from its underlying integral
      type, the actual value it may have may fall outside the bounds of a
      legal enum member. For example:
BorderSide b = (BorderSide) 12345;
Console.WriteLine (b);                // 12345
The bitwise and arithmetic operators can produce similarly invalid
      values:
BorderSide b = BorderSide.Bottom;
b++;                                  // No errors
An invalid BorderSide would
      break the following code:
void Draw (BorderSide side)
{
  if      (side == BorderSide.Left)  {...}
  else if (side == BorderSide.Right) {...}
  else if (side == BorderSide.Top)   {...}
  else                               {...} // Assume BorderSide.Bottom
}
One solution is to add another else clause:
  ...
  else if (side == BorderSide.Bottom) ...
  else throw new ArgumentException ("Invalid BorderSide: " + side, "side");
Another workaround is to explicitly check an enum value for
      validity. The static Enum.IsDefined method
      does this job:
BorderSide side = (BorderSide) 12345;
Console.WriteLine (Enum.IsDefined (typeof (BorderSide), side));   // False
Unfortunately, Enum.IsDefined does not work for flagged
      enums. However, the following helper method (a trick dependent on the
      behavior of Enum.ToString()) returns true if a given flagged enum is
      valid:
static bool IsFlagDefined (Enum e)
{
  decimal d;
  return !decimal.TryParse(e.ToString(), out d);
}

[Flags]
public enum BorderSides { Left=1, Right=2, Top=4, Bottom=8 }

static void Main()
{
  for (int i = 0; i <= 16; i++)
  {
    BorderSides side = (BorderSides)i;
    Console.WriteLine (IsFlagDefined (side) + " " + side);
  }
}


Nested Types



A nested type is declared within the
    scope of another type. For example:
public class TopLevel
{
  public class Nested { }               // Nested class
  public enum Color { Red, Blue, Tan }  // Nested enum
}
A nested type has the following features:
	It can access the enclosing type’s private members and
        everything else the enclosing
        type can access.

	It can be declared with the full range of access modifiers,
        rather than just public and
        internal.

	The default accessibility for a nested type is private rather than internal.

	Accessing a nested type from outside the enclosing type requires
        qualification with the enclosing type’s name (like when accessing
        static members).



For example, to access Color.Red
    from outside our TopLevel class, we’d
    have to do this:
TopLevel.Color color = TopLevel.Color.Red;
All types (classes, structs, interfaces, delegates and enums) can be
    nested inside either a class or a
    struct.
Here is an example of accessing a private member of a type from a
    nested type:
public class TopLevel
{
  static int x;
  class Nested
  {
    static void Foo() { Console.WriteLine (TopLevel.x); }
  }
}
Here is an example of applying the protected access modifier to a nested
    type:
public class TopLevel
{
  protected class Nested { }
}

public class SubTopLevel : TopLevel
{
  static void Foo() { new TopLevel.Nested(); }
}
Here is an example of referring to a
    nested type from outside the enclosing type:
public class TopLevel
{
  public class Nested { }
}

class Test
{
  TopLevel.Nested n;
}
Nested types are used heavily by the compiler itself when it
    generates private classes that capture state for constructs such as
    iterators and anonymous methods.
Note
If the sole reason for using a nested type is to avoid cluttering
      a namespace with too many types, consider using a nested namespace
      instead. A nested type should be used because of its stronger access
      control restrictions, or when the nested class must access private
      members of the containing class.


Generics



C# has two separate mechanisms for writing code that is
    reusable across different types: inheritance and
    generics. Whereas inheritance expresses reusability
    with a base type, generics express reusability with a “template” that
    contains “placeholder” types. Generics, when compared to inheritance, can
    increase type safety and reduce casting and boxing.
Note
C# generics and C++ templates are similar concepts, but they work
      differently. We explain this difference in C# Generics Versus C++ Templates.

Generic Types



A generic type declares type parameters—placeholder types to
      be filled in by the consumer of the generic type, which supplies the
      type arguments. Here is a generic type Stack<T>, designed to stack instances of
      type T. Stack<T> declares a single type
      parameter T:
public class Stack<T>
{
  int position;
  T[] data = new T[100];
  public void Push (T obj)   { data[position++] = obj;  }
  public T Pop()             { return data[--position]; }
}
We can use Stack<T> as
      follows:
Stack<int> stack = new Stack<int>();
stack.Push(5);
stack.Push(10);
int x = stack.Pop();        // x is 10
int y = stack.Pop();        // y is 5
Stack<int> fills in the
      type parameter T with the type
      argument int, implicitly creating a
      type on the fly (the synthesis occurs at runtime). Stack<int> effectively has the following
      definition (substitutions appear in bold, with the class name hashed out
      to avoid confusion):
public class ###
{
  int position;
  int[] data;
  public void Push (int obj)   { data[position++] = obj;  }
  public int Pop()             { return data[--position]; }
}
Technically, we say that Stack<T> is an open type, whereas Stack<int> is a closed type. At runtime, all generic
      type instances are closed—with the placeholder types filled in. This
      means that the following statement is illegal:
var stack = new Stack<T>();   // Illegal: What is T?
unless inside a class or method which itself defines T as a type parameter:
public class Stack<T>
{
  ...
  public Stack<T> Clone()
  {
    Stack<T> clone = new Stack<T>();   // Legal
    ...
  }
}

Why Generics Exist



Generics exist to write code that is reusable across
      different types. Suppose we needed a stack of integers, but we didn’t
      have generic types. One solution would be to hardcode a separate version
      of the class for every required element type (e.g., IntStack, StringStack, etc.). Clearly, this would cause
      considerable code duplication. Another solution would be to write a
      stack that is generalized by using object as the element type:
public class ObjectStack
{
  int position;
  object[] data = new object[10];
  public void Push (object obj) { data[position++] = obj;  }
  public object Pop()           { return data[--position]; }
}
An ObjectStack, however, wouldn’t work as well as
      a hardcoded IntStack for specifically
      stacking integers. Specifically, an ObjectStack would require boxing and
      downcasting that could not be checked at compile time:
// Suppose we just want to store integers here:
ObjectStack stack = new ObjectStack();

stack.Push ("s");          // Wrong type, but no error!
int i = (int)stack.Pop();  // Downcast - runtime error
What we need is both a general implementation of a stack that
      works for all element types, and a way to easily specialize that stack
      to a specific element type for increased type safety and reduced casting
      and boxing. Generics give us precisely this, by allowing us to
      parameterize the element type. Stack<T> has the benefits of both
      ObjectStack and IntStack. Like ObjectStack, Stack<T> is written once to work
      generally across all types. Like IntStack, Stack<T> is
      specialized for a particular type—the beauty is
      that this type is T, which we
      substitute on the fly.
Note
ObjectStack is functionally
        equivalent to Stack<object>.


Generic Methods



A generic method declares type parameters within the
      signature of a method.
With generic methods, many fundamental algorithms can be
      implemented in a general-purpose
      way only. Here is a generic method that swaps the contents of two
      variables of any type T:
static void Swap<T> (ref T a, ref T b)
{
  T temp = a;
  a = b;
  b = temp;
}
Swap<T> can be used as
      follows:
int x = 5;
int y = 10;
Swap (ref x, ref y);
Generally, there is no need to supply type arguments to a generic
      method, because the compiler can implicitly infer the type. If there is
      ambiguity, generic methods can be called with the type arguments as
      follows:
Swap<int> (ref x, ref y);
Within a generic type, a method is not
      classed as generic unless it introduces type
      parameters (with the angle bracket syntax). The Pop method in our generic stack merely uses
      the type’s existing type parameter, T, and is not classed as a generic
      method.
Methods and types are the only constructs that can introduce type
      parameters. Properties, indexers, events, fields, constructors,
      operators, and so on cannot declare type parameters, although they can
      partake in any type parameters already declared by their enclosing type.
      In our generic stack example, for instance, we could write an indexer
      that returns a generic item:
public T this [int index] { get { return data [index]; } }
Similarly, constructors can partake in existing type parameters,
      but not introduce them:
public Stack<T>() { }   // Illegal

Declaring Type Parameters



Type parameters can be introduced in the declaration of
      classes, structs, interfaces, delegates (covered in Chapter 4), and methods. Other constructs,
      such as properties, cannot introduce a type
      parameter, but can use one. For example, the
      property Value uses T:
public struct Nullable<T>
{
  public T Value { get; }
}
A generic type or method can have multiple parameters. For
      example:
class Dictionary<TKey, TValue> {...}
To instantiate:
Dictionary<int,string> myDic = new Dictionary<int,string>();
Or:
var myDic = new Dictionary<int,string>();
Generic type names and method names can be overloaded as long as
      the number of type parameters is different. For example, the following
      two type names do not conflict:
class A<T> {}
class A<T1,T2> {}
Note
By convention, generic types and methods with a
        single type parameter typically name their
        parameter T, as long as the intent
        of the parameter is clear. When using multiple
        type parameters, each parameter is prefixed with T, but has a more descriptive name.


typeof and Unbound Generic Types



Open generic types do not exist at runtime: open generic
      types are closed as part of compilation. However, it is possible for an
      unbound generic type to exist at
      runtime—purely as a Type object. The
      only way to specify an unbound generic type in C# is with the typeof operator:
class A<T> {}
class A<T1,T2> {}
...

Type a1 = typeof (A<>);   // Unbound type (notice no type arguments).
Type a2 = typeof (A<,>);  // Use commas to indicate multiple type args.
Open generic types are used in conjunction with the Reflection API
      (Chapter 19).
You can also use the typeof
      operator to specify a closed type:
Type a3 = typeof (A<int,int>);
or an open type (which is closed at runtime):
class B<T> { void X() { Type t = typeof (T); } }

The default Generic Value



The default keyword can be
      used to get the default value given a generic type parameter. The
      default value for a reference type is null, and the default value for a value type
      is the result of bitwise-zeroing the value type’s fields:
static void Zap<T> (T[] array)
{
  for (int i = 0; i < array.Length; i++)
    array[i] = default(T);
}

Generic Constraints



By default, a type parameter can be substituted with any
      type whatsoever. Constraints can be applied to a
      type parameter to require more specific type arguments.
These are the possible
      constraints:
where T : base-class   // Base-class constraint
where T : interface    // Interface constraint
where T : class        // Reference-type constraint
where T : struct       // Value-type constraint (excludes Nullable types)
where T : new()        // Parameterless constructor constraint
where U : T            // Naked type constraint
In the following example, GenericClass<T,U> requires T to derive from (or be identical to) SomeClass and implement Interface1, and requires U to provide a parameterless
      constructor:
class     SomeClass {}
interface Interface1 {}

class GenericClass<T,U> where T : SomeClass, Interface1
                        where U : new()
{...}
Constraints can be applied wherever type parameters are defined,
      in both methods and type definitions.
A base-class constraint specifies that
      the type parameter must subclass (or match) a particular class; an
      interface constraint specifies that
      the type parameter must implement that interface. These constraints
      allow instances of the type parameter to be implicitly converted to that
      class or interface. For example, suppose we want to write a generic
      Max method, which returns the maximum
      of two values. We can take advantage of the generic interface defined in
      the framework called IComparable<T>:
public interface IComparable<T>   // Simplified version of interface
{
  int CompareTo (T other);
}
CompareTo returns a positive
      number if this is greater than
      other. Using this interface as a
      constraint, we can write a Max method
      as follows (to avoid distraction, null checking is omitted):
static T Max <T> (T a, T b) where T : IComparable<T>
{
  return a.CompareTo (b) > 0 ? a : b;
}
The Max method can accept
      arguments of any type implementing IComparable<T> (which includes most
      built-in types such as int and
      string):
int z = Max (5, 10);               // 10
string last = Max ("ant", "zoo");  // zoo
The class constraint and struct constraint specify that
      T must be a reference type or (non-nullable) value type. A great
      example of the struct constraint is the System.Nullable<T> struct (we will
      discuss this class in depth in Nullable Types in
      Chapter 4):
struct Nullable<T> where T : struct {...}
The parameterless constructor constraint
      requires T to have a public
      parameterless constructor. If this constraint is defined, you can call
      new() on T:
static void Initialize<T> (T[] array) where T : new()
{
  for (int i = 0; i < array.Length; i++)
    array[i] = new T();
}
The naked type constraint requires one
      type parameter to derive from (or match) another type parameter. In this
      example, the method FilteredStack
      returns another Stack, containing
      only the subset of elements where the type parameter U is of the type parameter T:
class Stack<T>
{
  Stack<U> FilteredStack<U>() where U : T {...}
}

Subclassing Generic Types



A generic class can be subclassed just like a nongeneric
      class. The subclass can leave the base class’s type parameters open, as
      in the following example:
class Stack<T>                   {...}
class SpecialStack<T> : Stack<T> {...}
Or the subclass can close the generic type parameters with a
      concrete type:
class IntStack : Stack<int>  {...}
A subtype can also introduce fresh type arguments:
class List<T>                     {...}
class KeyedList<T,TKey> : List<T> {...}
Note
Technically, all type arguments on a
        subtype are fresh: you could say that a subtype closes and then
        reopens the base type arguments. This means that a subclass can give
        new (and potentially more
        meaningful) names to the type arguments it reopens:
class List<T> {...}
class KeyedList<TElement,TKey> : List<TElement> {...}


Self-Referencing Generic Declarations



A type can name itself as the
      concrete type when closing a type argument:
public interface IEquatable<T> { bool Equals (T obj); }

public class Balloon : IEquatable<Balloon>
{
  public string Color { get; set; }
  public int CC { get; set; }

  public bool Equals (Balloon b)
  {
    if (b == null) return false;
    return b.Color == Color && b.CC == CC;
  }
}
The following are also legal:
class Foo<T> where T : IComparable<T> { ... }
class Bar<T> where T : Bar<T> { ... }

Static Data



Static data is unique for each closed type:
class Bob<T> { public static int Count; }

class Test
{
  static void Main()
  {
    Console.WriteLine (++Bob<int>.Count);     // 1
    Console.WriteLine (++Bob<int>.Count);     // 2
    Console.WriteLine (++Bob<string>.Count);  // 1
    Console.WriteLine (++Bob<object>.Count);  // 1
  }
}

Type Parameters and Conversions



C#’s cast operator can perform several kinds of conversion, including:
	Numeric conversion

	Reference conversion

	Boxing/unboxing conversion

	Custom conversion (via operator overloading; see Chapter 4)



The decision as to which kind of conversion will take place
      happens at compile time, based on the known types
      of the operands. This creates an interesting scenario with generic type
      parameters, because the precise operand types are unknown at compile
      time. If this leads to ambiguity, the compiler generates an
      error.
The most common scenario is when you want to perform a reference
      conversion:
StringBuilder Foo<T> (T arg)
{
  if (arg is StringBuilder)
    return (StringBuilder) arg;   // Will not compile
  ...
}
Without knowledge of T’s actual
      type, the compiler is concerned that you might have intended this to be
      a custom conversion. The simplest
      solution is to instead use the as
      operator, which is unambiguous because it cannot perform custom conversions:
StringBuilder Foo<T> (T arg)
{
  StringBuilder sb = arg as StringBuilder;
  if (sb != null) return sb;
  ...
}
A more general solution is to first cast to object. This works because conversions to/from
      object are assumed not to be custom
      conversions, but reference or boxing/unboxing conversions. In this case,
      StringBuilder is a reference type, so
      it has to be a reference conversion:
  return (StringBuilder) (object) arg;
Unboxing conversions can also introduce ambiguities. The following
      could be an unboxing, numeric, or custom conversion:
int Foo<T> (T x) {   return (int) x; }    // Compile-time error
The solution, again, is to first cast to object and then to int (which then unambiguously signals an
      unboxing conversion in this case):
int Foo<T> (T x) {   return (int) (object) x; }

Covariance



Assuming A is
      convertible to B, X is covariant if X<A> is convertible to X<B>.
Note
With C#’s notion of covariance (and contravariance),
        “convertible” means convertible via an implicit reference conversion—such
        as A
        subclassing B,
        or A
        implementing B. Numeric conversions, boxing conversions, and
        custom conversions are not included.

For instance, type IFoo<T> is covariant for T if the following is legal:
IFoo<string> s = ...;
IFoo<object> b = s;
From C# 4.0, generic interfaces permit covariance for (as do
      generic delegates—see Chapter 4), but
      generic classes do not. Arrays also support covariance (A[] can be converted to B[] if A
      has an implicit reference conversion to B), and are discussed here for
      comparison.
Note
Covariance and contravariance (or simply “variance”) are advanced concepts. The motivation behind
        introducing and enhancing variance in C# was to allow generic
        interface and generic types (in particular, those defined in the
        Framework, such as IEnumerable<T>) to work more
        as you’d expect. You can benefit from this without
        understanding the details behind covariance and contravariance.

Classes



Generic classes are not covariant, to ensure static type
        safety. Consider the following:
class Animal {}
class Bear : Animal {}
class Camel : Animal {}

public class Stack<T>   // A simple Stack implementation
{
  int position;
  T[] data = new T[100];
  public void Push (T obj)   { data[position++] = obj;  }
  public T Pop()             { return data[--position]; }
}
The following fails to compile:
Stack<Bear> bears = new Stack<Bear>();
Stack<Animal> animals = bears;            // Compile-time error
That restriction prevents the possibility of runtime failure
        with the following code:
animals.Push (new Camel());      // Trying to add Camel to bears
Lack of covariance, however, can hinder reusability. Suppose,
        for instance, we wanted to write a method to Wash a stack of animals:
public class ZooCleaner
{
  public static void Wash (Stack<Animal> animals) {...}
}
Calling Wash with a stack of
        bears would generate a compile-time error. One workaround is to
        redefine the Wash method with a
        constraint:
class ZooCleaner
{
  public static void Wash<T> (Stack<T> animals) where T : Animal { ... }
}
We can now call Wash as
        follows:
Stack<Bear> bears = new Stack<Bear>();
ZooCleaner.Wash (bears);
Another solution is to have Stack<T> implement a covariant generic
        interface, as we’ll see shortly.

Arrays



For historical reasons, array types are covariant. This
        means that B[] can be cast to
        A[] if B subclasses A (and both are reference types). For
        example:
Bear[] bears = new Bear[3];
Animal[] animals = bears;     // OK
The downside of this reusability is that element assignments can
        fail at runtime:
animals[0] = new Camel();     // Runtime error

Interfaces



As of C# 4.0, generic interfaces support covariance for
        type parameters marked with the out
        modifier. This modifier ensures that, unlike with arrays, covariance
        with interfaces is fully type-safe. To illustrate, suppose that our
        Stack class implements the
        following interface:
public interface IPoppable<out T> { T Pop(); }
The out modifier on
        T indicates that T is used only in output
        positions (e.g., return types for methods). The out modifier flags the interface as
        covariant and allows us to do this:
var bears = new Stack<Bear>();
bears.Push (new Bear());
// Bears implements IPoppable<Bear>. We can convert to IPoppable<Animal>:
IPoppable<Animal> animals = bears;   // Legal
Animal a = animals.Pop();
The cast from bears to
        animals is permitted by the
        compiler—by virtue of the interface being covariant. This is
        type-safe because the case the compiler is trying to avoid—pushing a
        Camel onto the stack—can’t occur as
        there’s no way to feed a Camel
        into an interface where T can appear only in
        output positions.
Note
Covariance (and contravariance) in interfaces is
          something that you typically consume: it’s less
          common that you need to write variant
          interfaces. Curiously, method parameters marked as out are not eligible for covariance, due
          to a limitation in the CLR.

We can leverage the ability to cast covariantly to solve the
        reusability problem described
        earlier:
public class ZooCleaner
{
  public static void Wash (IPoppable<Animal> animals) { ... }
}
Note
The IEnumerator<T>
          and IEnumerable<T>
          interfaces described in Chapter 7 are
          marked as covariant. This allows you to cast IEnumerable<string> to IEnumerable<object>, for
          instance.

The compiler will generate an error if you use a covariant type
        parameter in an input position (e.g., a parameter
        to a method or a writable property).
Note
With both generic types and arrays, covariance (and
          contravariance) is valid only for elements with reference
          conversions—not boxing conversions. So, if you
          wrote a method that accepted a parameter of type IPoppable<object>, you could call it
          with IPoppable<string>, but
          not IPoppable<int>.



Contravariance



We previously saw that, assuming that A allows an implicit reference conversion to
      B, a type X is covariant if X<A> allows a reference conversion to
      X<B>. A type is
      contravariant when you can convert in the reverse
      direction—from X<B> to X<A>. This is supported with generic
      interfaces—when the generic type parameter only appears in
      input positions, designated with the in modifier. Extending
      our previous example, if the Stack<T> class implements the following
      interface:
public interface IPushable<in T> { void Push (T obj); }
we can legally do this:
IPushable<Animal> animals = new Stack<Animal>();
IPushable<Bear> bears = animals;    // Legal
bears.Push (new Bear());
No member in IPushable
      outputs a T, so
      we can’t get into trouble by casting animals to bears (there’s no way to Pop, for instance, through that
      interface).
Note
Our Stack<T> class can
        implement both IPushable<T>
        and IPoppable<T>—despite
        T having opposing variance
        annotations in the two interfaces! This works because you can exercise
        variance only through an interface; therefore, you must commit to the
        lens of either IPoppable or
        IPushable before performing a
        variant conversion. This lens then restricts you to the operations
        that are legal under the appropriate variance rules.
This also illustrates why it would usually make no sense for
        classes (such as Stack<T>) to be variant: concrete
        implementations typically require data to flow in both
        directions.

To give another example, consider the following interface, defined
      as part of the .NET Framework:
public interface IComparer<in T>
{
  // Returns a value indicating the relative ordering of a and b
  int Compare (T a, T b);
}
Because the interface is contravariant, we can use an IComparer<object> to compare two
      strings:
var objectComparer = Comparer<object>.Default;
// objectComparer implements IComparer<object>
IComparer<string> stringComparer = objectComparer;
int result = stringComparer.Compare ("Brett", "Jemaine");
Mirroring covariance, the compiler will report an error if you try
      to use a contravariant parameter in an output position (e.g., as a
      return value, or in a readable property).

C# Generics Versus C++ Templates



C# generics are similar in application to C++ templates,
      but they work very differently. In both cases, a synthesis between the
      producer and consumer must take place, where the placeholder types of
      the producer are filled in by the consumer. However, with C# generics,
      producer types (i.e., open types such as List<T>) can be compiled into a library
      (such as mscorlib.dll). This works
      because the synthesis between the producer and the consumer that
      produces closed types doesn’t actually happen until runtime. With C++
      templates, this synthesis is performed at compile time. This means that
      in C++ you don’t deploy template libraries as .dlls—they exist only as source code. It also
      makes it difficult to dynamically inspect, let alone create,
      parameterized types on the fly.
To dig deeper into why this is the case, consider the Max method in C#, once more:
static T Max <T> (T a, T b) where T : IComparable<T>
{
  return a.CompareTo (b) > 0 ? a : b;
}
Why couldn’t we have implemented it like this?
static T Max <T> (T a, T b)
{
  return a > b ? a : b;             // Compile error
}
The reason is that Max needs to
      be compiled once and work for all possible values of T. Compilation cannot succeed, because there
      is no single meaning for > across
      all values of T—in fact, not every
      T even has a > operator. In contrast, the following code
      shows the same Max method written
      with C++ templates. This code will be compiled separately for each value
      of T, taking on whatever semantics
      > has for a particular T, failing to compile if a particular T does not support the > operator:
template <class T> T Max (T a, T b)
{
  return a > b ? a : b;
}




[5] The reference type may also be System.ValueType or System.Enum (Chapter 6).






End of sample
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