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Preface



Conventions Used in This Book



The following typographical conventions are used in this
    book:
	Italic
	Indicates new terms, URLs, email addresses, filenames, and
          file extensions.

	Constant width
	Used for program listings, as well as within paragraphs to
          refer to program elements such as variable or function names,
          databases, data types, environment variables, statements, and
          keywords.

	Constant width
        bold
	Shows commands or other text that should be typed literally by
          the user.

	Constant width italic
	Shows text that should be replaced with user-supplied values
          or by values determined by context.



Tip
This icon signifies a tip, suggestion, or general note.

Caution
This icon indicates a warning or caution.


Using Code Examples



This book is here to help you get your job done. In general, you may
    use the code in this book in your programs and documentation. You do not
    need to contact us for permission unless you’re reproducing a significant
    portion of the code. For example, writing a program that uses several
    chunks of code from this book does not require permission. Selling or
    distributing a CD-ROM of examples from O’Reilly books does require
    permission. Answering a question by citing this book and quoting example
    code does not require permission. Incorporating a significant amount of
    example code from this book into your product’s documentation does require
    permission.
We appreciate, but do not require, attribution. An attribution
    usually includes the title, author, publisher, and ISBN. For example:
    “Parallel R by Q. Ethan McCallum and Stephen Weston
    (O'Reilly). Copyright 2012 Q. Ethan McCallum and Stephen Weston,
    978-1-449-30992-3.”
If you feel your use of code examples falls outside fair use or the
    permission given above, feel free to contact us at
    permissions@oreilly.com.

Safari® Books Online



Note
Safari Books Online is an on-demand digital library that lets you
      easily search over 7,500 technology and creative reference books and
      videos to find the answers you need quickly.

With a subscription, you can read any page and watch any video from
    our library online. Read books on your cell phone and mobile devices.
    Access new titles before they are available for print, and get exclusive
    access to manuscripts in development and post feedback for the authors.
    Copy and paste code samples, organize your favorites, download chapters,
    bookmark key sections, create notes, print out pages, and benefit from
    tons of other time-saving features.
O’Reilly Media has uploaded this book to the Safari Books Online
    service. To have full digital access to this book and others on similar
    topics from O’Reilly and other publishers, sign up for free at http://my.safaribooksonline.com.

How to Contact Us



Please address comments and questions concerning this book to the
    publisher:
	O’Reilly Media, Inc.
	1005 Gravenstein Highway North
	Sebastopol, CA 95472
	800-998-9938 (in the United States or Canada)
	707-829-0515 (international or local)
	707-829-0104 (fax)

We have a web page for this book, where we list errata, examples,
    and any additional information. You can access this page at:
	http://oreilly.com/catalog/0636920021421

To comment or ask technical questions about this book, send email
    to:
	bookquestions@oreilly.com

For more information about our books, courses, conferences, and
    news, see our website at http://www.oreilly.com.
Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia
Watch us on YouTube: http://www.youtube.com/oreillymedia
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Chapter 1. Getting Started



This chapter sets the pace for the rest of the book. If you’re in a
  hurry, feel free to skip to the chapter you need. (The section In a Hurry? has a quick-ref look at the various strategies and
  where they fit. That should help you pick a starting point.) Just make sure
  you come back here to understand our choice of vocabulary, how we chose what
  to cover, and so on.
Why R?



It’s tough to argue with R. Who could dislike a high-quality,
    cross-platform, open-source statistical software product? It has an
    interactive console for exploratory work. It can run as a scripting
    language to repeat a process you’ve captured. It has a lot of statistical
    calculations built-in so you don’t have to reinvent the wheel. Did we
    mention that R is free?
When the base toolset isn’t enough, R users have access to a rich
    ecosystem of add-on packages and a gaggle of GUIs to make their lives even
    easier. No wonder R has become a favorite in the age of Big Data.
Since R is perfect, then, we can end this book. Right?
Not quite. It’s precisely the Big Data age that has exposed R’s
    blemishes.

Why Not R?



These imperfections stem not from defects in the software itself,
    but from the passage of time: quite simply, R was not built in
    anticipation of the Big Data revolution.
R was born in 1995. Disk space was expensive, RAM even more so, and
    this thing called The Internet was just getting its legs. Notions of
    “large-scale data analysis” and “high-performance computing” were
    reasonably rare. Outside of Wall Street firms and university research
    labs, there just wasn’t that much data to crunch.
Fast-forward to the present day and hardware costs just a fraction
    of what it used to. Computing power is available online for pennies.
    Everyone is suddenly interested in collecting and analyzing data, and the
    necessary resources are well within reach.
This surge in data analysis has brought two of R’s limitations to
    the forefront: it’s single-threaded and
    memory-bound. Allow us to explain:
	It’s single-threaded
	The R language has no explicit constructs for parallelism,
          such as threads or mutexes. An out-of-the-box R install cannot take
          advantage of multiple CPUs.

	It’s memory-bound
	R requires that your entire dataset[1] fit in memory (RAM).[2] Four gigabytes of RAM will not hold eight gigabytes of
          data, no matter how much you smile when you ask.



While these are certainly inconvenient, they’re hardly
    insurmountable.

The Solution: Parallel Execution



People have created a series of workarounds over the years. Doing a
    lot of matrix math? You can build R against a multithreaded basic linear
    algebra subprogram (BLAS). Churning through large datasets? Use a
    relational database or another manual method to retrieve your data in
    smaller, more manageable pieces. And so on, and so forth.
Some big winners involve parallelism. Spreading
    work across multiple CPUs overcomes R’s single-threaded nature. Offloading
    work to multiple machines reaps the multi-process benefit and also
    addresses R’s memory barrier. In this book we’ll cover a few strategies to
    give R that parallel boost, specifically those which take advantage of
    modern multicore hardware and cheap distributed computing.

A Road Map for This Book



Now that we’ve set the tone for why we’re here, let’s take a look at
    what we plan to accomplish in the coming pages (or screens if you’re
    reading this electronically).
What We’ll Cover



Each chapter is a look into one strategy for R parallelism,
      including:
	What it is

	Where to find it

	How to use it

	Where it works well, and where it doesn’t



First up is the snow package,
      followed by a tour of the multicore
      package. We then provide a look at the new parallel package that’s due to arrive in R
      2.14. After that, we’ll take a brief side-tour to explain MapReduce and
      Hadoop. That will serve as a foundation for the remaining chapters:
      R+Hadoop (Hadoop streaming and the Java API), RHIPE, and segue.

Looking Forward…



In Chapter 9, we will briefly mention
      some tools that were too new for us to cover in-depth.
There will likely be other tools we hadn’t heard about (or that
      didn’t exist) at the time of writing.[3] Please let us know about them! You can reach us through
      this book’s website at http://parallelrbook.com/.

What We’ll Assume You Already Know



This is a book about R, yes, but we’ll expect you know the basics
      of how to get around. If you’re new to R or need a refresher course,
      please flip through Paul Teetor’s R
      Cookbook (O’Reilly), Robert Kabacoff’s
      R In
      Action (Manning), or another introductory title. You
      should take particular note of the lapply() function, which plays an important
      role in this book.
Some of the topics require several machines’ worth of
      infrastructure, in which case you’ll need access to a talented sysadmin.
      You’ll also need hardware, which you can buy and maintain yourself, or
      rent from a hosting provider. Cloud services, notably Amazon Web
      Services (AWS), [4] have become a popular choice in this arena. AWS has plenty
      of documentation, and you can also read Programming Amazon
      EC2, by Jurg van Vliet and Flavia Paganelli
      (O’Reilly) as a supplement.
(Please note that using a provider still requires a degree of
      sysadmin knowledge. If you’re not up to the task, you’ll want to find
      and bribe your skilled sysadmin friends.)


In a Hurry?



If you’re in a hurry, you can skip straight to the chapter you need.
    The list below is a quick look at the various strategies.
snow



Overview: Good for use on
      traditional clusters, especially if MPI is available. It supports MPI,
      PVM, nws, and sockets for
      communication, and is quite portable, running on Linux, Mac OS X, and
      Windows.
Solves: Single-threaded,
      memory-bound.
Pros: Mature, popular package;
      leverages MPI’s speed without its complexity.
Cons: Can be difficult to
      configure.

multicore



Overview: Good for big-CPU
      problems when setting up a Hadoop cluster is too much of a hassle. Lets
      you parallelize your R code without ever leaving the R
      interpreter.
Solves: Single-threaded.
Pros: Simple and efficient;
      easy to install; no configuration needed.
Cons: Can only use one machine;
      doesn’t support Windows; no built-in support for parallel random number
      generation (RNG).

parallel



Overview: A merger of snow and multicore that comes built into R as of R
      2.14.0.
Solves: Single-threaded,
      memory-bound.
Pros: No installation
      necessary; has great support for parallel random number generation.
Cons: Can only use one machine
      on Windows; can be difficult to configure on multiple Linux
      machines.

R+Hadoop



Overview: Run your R code on a
      Hadoop cluster.
Solves: Single-threaded,
      memory-bound.
Pros: You get Hadoop’s
      scalability.
Cons: Requires a Hadoop cluster
      (internal or cloud-based); breaks up a single logical process into
      multiple scripts and steps (can be a hassle for exploratory
      work).

RHIPE



Overview: Talk Hadoop without
      ever leaving the R interpreter.
Solves: Single-threaded,
      memory-bound.
Pros: Closer to a native R
      experience than R+Hadoop; use pure R code for your MapReduce
      operations.
Cons: Requires a Hadoop
      cluster; requires extra setup on the cluster; cannot process standard
      SequenceFiles (for binary data).

Segue



Overview: Seamlessly send R
      apply-like calculations to a remote
      Hadoop cluster.
Solves: Single-threaded,
      memory-bound.
Pros: Abstracts you from
      Elastic MapReduce management.
Cons: Cannot use with an
      internal Hadoop cluster (you’re tied to Amazon’s Elastic
      MapReduce).


Summary



Welcome to the beginning of your journey into parallel R. Our first
    stop is a look at the popular snow
    package.



[1] We emphasize “dataset” here, not necessarily
              “algorithms.”

[2] It’s a big problem. Because R will often make multiple
              copies of the same data structure for no apparent reason, you
              often need three times as much memory as the size of your
              dataset. And if you don’t have enough memory, you die a slow
              death as your poor machine swaps and thrashes. Some people turn
              off virtual memory with the swapoff command so they can die
              quickly.

[3] Try as we might, our massive Monte Carlo simulations have
          brought us no closer to predicting the next R parallelism strategy.
          Nor any winning lottery numbers, for that matter.

[4] http://aws.amazon.com/



Chapter 2. snow



snow (“Simple Network of
  Workstations”) is probably the most popular parallel programming package
  available for R. It was written by Luke Tierney, A. J. Rossini, Na Li, and
  H. Sevcikova, and is actively maintained by Luke Tierney. It is a mature
  package, first released on the “Comprehensive R Archive Network” (CRAN) in
  2003.
Quick Look



Motivation: You want to use a
    Linux cluster to run an R script faster. For example, you’re running a
    Monte Carlo simulation on your laptop, but you’re sick of waiting many
    hours or days for it to finish.
Solution: Use snow to run your R code on your company or
    university’s Linux cluster.
Good because: snow fits well into a traditional cluster
    environment, and is able to take advantage of high-speed communication
    networks, such as InfiniBand, using MPI.

How It Works



snow provides support for easily
    executing R functions in parallel. Most of the parallel execution
    functions in snow are variations of the
    standard lapply() function, making
    snow fairly easy to learn. To implement
    these parallel operations, snow uses a
    master/worker architecture, where the master sends tasks to the workers,
    and the workers execute the tasks and return the results to the
    master.
One important feature of snow is
    that it can be used with different transport mechanisms to communicate
    between the master and workers. This allows it to be portable, but still
    take advantage of high-performance communication mechanisms if available.
    snow can be used with socket
    connections, MPI, PVM, or NetWorkSpaces. The socket transport doesn’t
    require any additional packages, and is the most portable. MPI is
    supported via the Rmpi package, PVM via
    rpvm, and NetWorkSpaces via nws. The MPI transport is popular on Linux
    clusters, and the socket transport is popular on multicore computers,
    particularly Windows computers.[5]
snow is primarily intended to run
    on traditional clusters and is particularly useful if MPI is available. It
    is well suited to Monte Carlo simulations, bootstrapping, cross
    validation, ensemble machine learning algorithms, and K-Means
    clustering.
Good support is available for parallel random number generation,
    using the rsprng and rlecuyer packages. This is very important when
    performing simulations, bootstrapping, and machine learning, all of which
    can depend on random number generation.
snow doesn’t provide mechanisms
    for dealing with large data, such as distributing data files to the
    workers. The input arguments must fit into memory when calling a snow function, and all of the task results are
    kept in memory on the master until they are returned to the caller in a
    list. Of course, snow can be used with
    high-performance distributed file systems in order to operate on large
    data files, but it’s up to the user to arrange that.

Setting Up



snow is available on CRAN, so it
    is installed like any other CRAN package. It is pure R code and almost
    never has installation problems. There are binary packages for both
    Windows and Mac OS X.
Although there are various ways to install packages from CRAN, I
    generally use the install.packages()
    function:
install.packages("snow")
It may ask you which CRAN mirror to use, and then it will download
    and install the package.
If you’re using an old version of R, you may get a message saying
    that snow is not available. snow has required R 2.12.1 since version 0.3-5,
    so you might need to download and install snow 0.3-3 from the CRAN package archives. In
    your browser, search for “CRAN snow” and it will probably bring you to
    snow’s download page on CRAN. Click on
    the “snow archive” link, and then you can download snow_0.3-3.tar.gz. Or you can try directly
    downloading it from:
http://cran.r-project.org/src/contrib/Archive/snow/snow_0.3-3.tar.gz
Once you’ve downloaded it, you can install it from the command line
    with:
% R CMD INSTALL snow_0.3-3.tar.gz
You may need to use the -l option
    to specify a different installation directory if you don’t have permission
    to install it in the default directory. For help on this command, use the
    --help option. For more information on
    installing R packages, see the section “Installing packages” in the “R
    Installation and Administration” manual, written by the “R Development
    Core Team”, and available from the R Project website.
Note
As a developer, I always use the most recent version of R. That
      makes it easier to install packages from CRAN, since packages are only
      built for the most recent version of R on CRAN. They keep around older
      binary distributions of packages, but they don’t build new packages or
      new versions of packages for anything but the current version of R. And
      if a new version of a package depends on a newer version of R, as with
      snow, you can’t even build it for
      yourself on an older version of R. However, if you’re using R for
      production use, you need to be much more cautious about upgrading to the
      latest version of R.

To use snow with MPI, you will
    also need to install the Rmpi package.
    Unfortunately, installing Rmpi is a
    frequent cause of problems because it has an external dependency on MPI.
    For more information, see Installing Rmpi.
Fortunately, the socket transport can be used without installing any
    additional packages. For that reason, I suggest that you start by using
    the socket transport if you are new to snow.
Once you’ve installed snow, you
    should verify that you can load it:
library(snow)
If that succeeds, you are ready to start using snow.

Working with It



Creating Clusters with makeCluster



In order to execute any functions in parallel with snow, you must first create a
      cluster object. The cluster object is used to
      interact with the cluster workers, and is passed as the first argument
      to many of the snow functions. You
      can create different types of cluster objects, depending on the
      transport mechanism that you wish to use.
The basic cluster creation function is makeCluster() which can create any type of
      cluster. Let’s use it to create a cluster of four workers on the local
      machine using the socket transport:
cl <- makeCluster(4, type="SOCK")
The first argument is the cluster
      specification, and the second is the cluster
      type. The interpretation of the cluster specification depends
      on the type, but all cluster types allow you to specify a worker
      count.
Socket clusters also allow you to specify the worker machines as a
      character vector. The following will launch four workers on remote
      machines:
spec <- c("n1", "n2", "n3", "n4")
cl <- makeCluster(spec, type="SOCK")
The socket transport launches each of these workers via the
      ssh command[6] unless the name is “localhost”, in which case makeCluster() starts the worker itself. For
      remote execution, you should configure ssh to use password-less login. This can be
      done using public-key authentication and SSH agents, which is covered in
      chapter 6 of SSH, The
      Secure Shell: The Definitive Guide (O’Reilly) and
      many websites.
makeCluster() allows you to
      specify addition arguments as configuration options. This is discussed
      further in snow Configuration.
The type argument can be
      “SOCK”, “MPI”, “PVM” or “NWS”. To create an MPI cluster with four
      workers, execute:
cl <- makeCluster(4, type="MPI")
This will start four MPI workers on the local machine unless you
      make special provisions, as described in the section Executing snow Programs on a Cluster with Rmpi.
You can also use the functions
      makeSOCKcluster(), makeMPIcluster(), makePVMcluster(), and makeNWScluster() to create specific types of
      clusters. In fact, makeCluster() is
      nothing more than a wrapper around these functions.
To shut down any type of cluster, use the stopCluster() function:
stopCluster(cl)
Some cluster types may be automatically stopped when the R session
      exits, but it’s good practice to always call stopCluster() in snow scripts; otherwise, you risk leaking
      cluster workers if the cluster type is changed, for example.
Note
Creating the cluster object can fail for a number of reasons,
        and is therefore a source of problems. See the section Troubleshooting snow Programs for help in solving these problems.


Parallel K-Means



We’re finally ready to use snow
      to do some parallel computing, so let’s look at a real example: parallel
      K-Means. K-Means is a clustering algorithm that partitions rows of a
      dataset into k clusters.[7] It’s an iterative algorithm, since it starts with a guess
      of the location for each of the cluster centers, and gradually improves
      the center locations until it converges on a solution.
R includes a function for performing K-Means clustering in the
      stats package: the kmeans() function. One way of using the
      kmeans() function is to specify the
      number of cluster centers, and kmeans() will pick the starting points for the
      centers by randomly selecting that number of rows from your dataset.
      After it iterates to a solution, it computes a value called the
      total within-cluster sum of squares. It then
      selects another set of rows for the starting points, and repeats this
      process in an attempt to find a solution with a smallest total
      within-cluster sum of squares.
Let’s use kmeans() to generate
      four clusters of the “Boston” dataset, using 100 random sets of
      centers:
library(MASS)
result <- kmeans(Boston, 4, nstart=100)
We’re going to take a simple approach to parallelizing kmeans() that can be used for parallelizing
      many similar functions and doesn’t require changing the source code for
      kmeans(). We simply call the kmeans() function on each of the workers using
      a smaller value of the nstart
      argument. Then we combine the results by picking the result with the
      smallest total within-cluster sum of
      squares.
But before we execute this in parallel, let’s try using this
      technique using the lapply() function
      to make sure it works. Once that is done, it will be fairly easy to
      convert to one of the snow parallel
      execution functions:
library(MASS)
results <- lapply(rep(25, 4), function(nstart) kmeans(Boston, 4, nstart=nstart))
i <- sapply(results, function(result) result$tot.withinss)
result <- results[[which.min(i)]]
We used a vector of four 25s to specify the nstart argument in order to get equivalent
      results to using 100 in a single call to kmeans(). Generally, the length of this vector
      should be equal to the number of workers in your cluster when running in
      parallel.
Now let’s parallelize this algorithm. snow includes a number of functions that we
      could use, including clusterApply(),
      clusterApplyLB(), and parLapply(). For this example, we’ll use
      clusterApply(). You call it exactly
      the same as lapply(), except that it
      takes a snow cluster object as the
      first argument. We also need to load MASS on the workers, rather than on the
      master, since it’s the workers that use the “Boston” dataset.
Assuming that snow is loaded
      and that we have a cluster object named cl, here’s the parallel version:
ignore <- clusterEvalQ(cl, {library(MASS); NULL})
results <- clusterApply(cl, rep(25, 4), function(nstart) kmeans(Boston, 4, 
    nstart=nstart))
i <- sapply(results, function(result) result$tot.withinss)
result <- results[[which.min(i)]]
clusterEvalQ() takes two
      arguments: the cluster object, and an expression that is evaluated on
      each of the workers. It returns the result from each of the workers in a
      list, which we don’t use here. I use a compound expression to load
      MASS and return NULL to avoid sending unnecessary data back to
      the master process. That isn’t a serious issue in this case, but it can
      be, so I often return NULL to be
      safe.
As you can see, the snow
      version isn’t that much different than the lapply() version. Most of the work was done in
      converting it to use lapply().
      Usually the biggest problem in converting from lapply() to one of the parallel operations is
      handling the data properly and efficiently. In this case, the dataset
      was in a package, so all we had to do was load the package on the
      workers.
Note
The kmeans() function uses
        the sample.int() function to choose
        the starting cluster centers, which depend on the random number
        generator. In order to get different solutions, the cluster workers
        need to use different streams of random numbers. Since the workers are
        randomly seeded when they first start generating random
        numbers,[8] this example will work, but it is good practice to use a
        parallel random number generator. See Random Number Generation for more
        information.


Initializing Workers



In the last section we used the clusterEvalQ() function to initialize the
      cluster workers by loading a package on each of them. clusterEvalQ() is very handy, especially for
      interactive use, but it isn’t very general. It’s great for executing a
      simple expression on the cluster workers, but it doesn’t allow you to
      pass any kind of parameters to the expression, for example. Also,
      although you can use it to execute a function, it won’t send that
      function to the worker first,[9] as clusterApply()
      does.
My favorite snow function for
      initializing the cluster workers is clusterCall(). The arguments are pretty
      simple: it takes a snow cluster
      object, a worker function, and any number of arguments to pass to the
      function. It simply calls the function with the specified arguments on
      each of the cluster workers, and returns the results as a list. It’s
      like clusterApply() without the
      x argument, so it executes once for
      each worker, like clusterEvalQ(),
      rather than once for each element in x.
clusterCall() can do anything
      that clusterEvalQ() does and
      more.[10] For example, here’s how we could use clusterCall() to load the MASS package on the cluster workers:
clusterCall(cl, function() { library(MASS); NULL })
This defines a simple function that loads the MASS package and returns NULL.[11] Returning NULL
      guarantees that we don’t accidentally send unnecessary data transfer
      back to the master.[12]
The following will load several packages specified by a character
      vector:
worker.init <- function(packages) {
  for (p in packages) {
    library(p, character.only=TRUE)
  }
  NULL
}
clusterCall(cl, worker.init, c('MASS', 'boot'))
Setting the character.only
      argument to TRUE makes library() interpret the argument as a
      character variable. If we didn’t do that, library() would attempt to load a package
      named p repeatedly.
Although it’s not as commonly used as clusterCall(), the clusterApply() function is also useful for
      initializing the cluster workers since it can send different data to the
      initialization function for each worker. The following creates a global
      variable on each of the cluster workers that can be used as a unique
      worker ID:
clusterApply(cl, seq(along=cl), function(id) WORKER.ID <<- id)

Load Balancing with clusterApplyLB



We introduced the clusterApply() function in the parallel
      K-Means example. The next parallel execution function that I’ll discuss
      is clusterApplyLB(). It’s very
      similar to clusterApply(), but
      instead of scheduling tasks in a round-robin
      fashion, it sends new tasks to the cluster workers as they complete
      their previous task. By round-robin, I mean that clusterApply() distributes the elements of
      x to the cluster workers one at
      a time, in the same way that cards
      are dealt to players in a card game. In a sense, clusterApply() (politely)
      pushes tasks to the workers, while clusterApplyLB() lets the workers pull tasks
      as needed. That can be more efficient if some tasks take longer than
      others, or if some cluster workers are slower.
To demonstrate clusterApplyLB(), we’ll execute Sys.sleep() on the workers, giving us complete control over the task lengths. Since our
      real interest in using clusterApplyLB() is to improve performance,
      we’ll use snow.time() to gather
      timing information about the overall execution.[13] We will also use snow.time()’s plotting capability to visualize
      the task execution on the workers:
set.seed(7777442)
sleeptime <- abs(rnorm(10, 10, 10))
tm <- snow.time(clusterApplyLB(cl, sleeptime, Sys.sleep))
plot(tm)
[image: image with no caption]

Ideally there would be solid horizontal bars for nodes 1 through 4
      in the plot, indicating that the cluster workers were always busy, and
      therefore running efficiently. clusterApplyLB() did pretty well, although
      there was some wasted time at the end.
Now let’s try the same problem with clusterApply():[14]
set.seed(7777442)
sleeptime <- abs(rnorm(10, 10, 10))
tm <- snow.time(clusterApply(cl, sleeptime, Sys.sleep))
plot(tm)
[image: image with no caption]

As you can see, clusterApply()
      is much less efficient than clusterApplyLB() in this example: it took 53.7
      seconds, versus 28.5 seconds for clusterApplyLB(). The plot shows how much time
      was wasted due to the round-robin scheduling.
But don’t give up on clusterApply(): it has its uses. It worked
      fine in the parallel K-Means example because we had the same number of
      tasks as workers. It is also used to implement the very useful parLapply() function, which we will discuss
      next.[15]

Task Chunking with parLapply



Now that we’ve discussed and compared clusterApply() and clusterApplyLB(), let’s consider parLapply(), a third parallel lapply() function that has the same arguments
      and basic behavior as clusterApply()
      and clusterApplyLB(). But there is an
      important difference that makes it perhaps the most generally useful of
      the three.
parLapply() is a
      high-level snow
      function, that is actually a deceptively simple function wrapping an
      invocation of clusterApply():
> parLapply
function (cl, x, fun, ...)
docall(c, clusterApply(cl, splitList(x, length(cl)), lapply, fun, ...))
<environment: namespace:snow>
Basically, parLapply() splits
      up x into a list of subvectors, and
      processes those subvectors on the cluster workers using lapply(). In effect, it is
      prescheduling the work by dividing the tasks into
      as many chunks as there are workers in the cluster. This is functionally
      equivalent to using clusterApply()
      directly, but it can be much more efficient, since there are fewer I/O
      operations between the master and the workers. If the length of x is already equal to the number of workers,
      then parLapply() has no advantage.
      But if you’re parallelizing an R script that already uses lapply(), the length of x is often very large, and at any rate is
      completely unrelated to the number of workers in your cluster. In that
      case, parLapply() is a better
      parallel version of lapply() than
      clusterApply().
One way to think about it is that parLapply() interprets the x argument differently than clusterApply(). clusterApply() is
      low-level, and treats x as a specification of the tasks to execute
      on the cluster workers using fun.
      parLapply() treats x as a source of disjoint input arguments to execute on the cluster workers
      using lapply() and fun. clusterApply() gives you more control over what
      gets sent to who, while parLapply()
      provides a convenient way to efficiently divide the work among the
      cluster workers.
An interesting consequence of parLapply()’s work scheduling is that it is
      much more efficient than clusterApply() if you have many more tasks
      than workers, and one or more large, additional arguments to pass to
      parLapply(). In that case, the
      additional arguments are sent to each worker only once, rather than
      possibly many times. Let’s try doing that, using a slightly altered
      parallel sleep function that takes a matrix as an argument:
bigsleep <- function(sleeptime, mat) Sys.sleep(sleeptime)
bigmatrix <- matrix(0, 2000, 2000)
sleeptime <- rep(1, 100)
I defined the sleeptimes to be small, many, and
      equally sized. This will accentuate the performance differences between
      clusterApply() and parLapply():
tm <- snow.time(clusterApply(cl, sleeptime, bigsleep, bigmatrix))
plot(tm)
[image: image with no caption]

This doesn’t look very efficient: you can see that there are many
      sends and receives between the master and the workers, resulting in
      relatively big gaps between the compute operations on the cluster
      workers. The gaps aren’t due to load imbalance as we saw before: they’re
      due to I/O time. We’re now spending a significant fraction of the
      elapsed time sending data to the workers, so instead of the ideal
      elapsed time of 25 seconds,[16] it’s taking 77.9 seconds.
Now let’s do the same thing using parLapply():
tm <- snow.time(parLapply(cl, sleeptime, bigsleep, bigmatrix))
plot(tm)
[image: image with no caption]

The difference is dramatic, both visually and in elapsed time: it
      took only 27.2 seconds, beating clusterApply() by 50.7 seconds.
Keep in mind that this particular use of clusterApply() is bad: it is needlessly
      sending the matrix to the worker with every task. There are various ways
      to fix that, and using parLapply()
      happens to work well in this case. On the other hand, if you’re sending
      huge objects in x, then there’s not
      much you can do, and parLapply()
      isn’t going to help. My point is that parLapply() schedules work in a useful and
      efficient way, making it probably the single most useful parallel
      execution function in snow. When in
      doubt, use parLapply().

Vectorizing with clusterSplit



In the previous section I showed you how parLapply() uses clusterApply() to implement a parallel
      operation that solves a certain class of parallel program quite nicely.
      Recall that parLapply() executes a
      user-supplied function for each element of x just like clusterApply(). But what if we want the
      function to operate on subvectors of x? That’s similar to what parLapply() does, but is a bit easier to
      implement, since it doesn’t need to use lapply() to call the user’s function.
We could use the splitList()
      function, like parLapply() does, but
      that is a snow internal function.
      Instead, we’ll use the clusterSplit()
      function which is very similar, and slightly more convenient. Let’s try
      splitting the sequence from 1 to 30 for our cluster using clusterSplit():
> clusterSplit(cl, 1:30)
[[1]]
[1] 1 2 3 4 5 6 7 8

[[2]]
[1]  9 10 11 12 13 14 15

[[3]]
[1] 16 17 18 19 20 21 22

[[4]]
[1] 23 24 25 26 27 28 29 30
Since our cluster has four workers, it splits the sequence into a
      list of four nearly equal length vectors, which is just what we
      need.
Now let’s define parVapply() to
      split x using clusterSplit(), execute the user function on
      each of the pieces using clusterApply(), and combine the results using
      do.call() and c():
parVapply <- function(cl, x, fun, ...) {
  do.call("c", clusterApply(cl, clusterSplit(cl, x), fun, ...))
}
Like parLapply(), parVapply() always issues the same number of
      tasks as workers. But unlike parLapply(), the user-supplied function is
      only executed once per worker. Let’s use parVapply() to compute the cube root of
      numbers from 1 to 10 using the ^
      function:
> parVapply(cl, 1:10, "^", 1/3)
 [1] 1.000000 1.259921 1.442250 1.587401 1.709976 1.817121 1.912931 2.000000
 [9] 2.080084 2.154435
This works because the ^
      function takes a vector as its first argument and returns a vector of
      the same length.[17]
Note
This technique can be a useful for executing vector functions in
        parallel. It may also be more efficient than using parLapply(), for example, but for any
        function worth executing in parallel, the difference in efficiency is
        likely to be small. And remember that most, if not all, vector
        functions execute so quickly that it is never worth it to execute them
        in parallel with snow. Such
        fine-grained problems fall much more into the domain of multithreaded
        computing.


Load Balancing Redux



We’ve talked about the advantages of parLapply() over clusterApply() at some length. In particular,
      when there are many more tasks than cluster workers and the task objects
      sent to the workers are large, there can be serious performance problems
      with clusterApply() that are solved
      by parLapply(). But what if the task
      execution has significant variation so that we need load balancing?
      clusterApplyLB() does load balancing,
      but would have the same performance problems as clusterApply(). We would like a load balancing
      equivalent to parLapply(), but there
      isn’t one—so let’s write it.[18]
In order to achieve dynamic load balancing, it helps to have a
      number of tasks that is at least a small integer multiple of the number
      of workers. That way, a long task assigned to one worker can be offset
      by many shorter tasks being done by other workers. If that is not the
      case, then the other workers will sit idle while the one worker
      completes the long task. parLapply()
      creates exactly one task per worker, which is not what we want in this
      case. Instead, we’ll first send the function and the fixed arguments to
      the cluster workers using clusterCall(), which saves them in the global
      environment, and then send the varying argument values using clusterApplyLB(), specifying a function that
      will execute the user-supplied function along with the full collection
      of arguments.
Here are the function definitions for parLapplyLB() and the two functions that it
      executes on the cluster workers:
parLapplyLB <- function(cl, x, fun, ...) {
  clusterCall(cl, LB.init, fun, ...)
  r <- clusterApplyLB(cl, x, LB.worker)
  clusterEvalQ(cl, rm('.LB.fun', '.LB.args', pos=globalenv()))
  r
}
LB.init <- function(fun, ...) {
  assign('.LB.fun', fun, pos=globalenv())
  assign('.LB.args', list(...), pos=globalenv())
  NULL
}
LB.worker <- function(x) {
  do.call('.LB.fun', c(list(x), .LB.args))
}
parLapplyLB() initializes the
      workers using clusterCall(), executes
      the tasks with clusterApplyLB(), cleans up the global
      environment of the cluster workers with clusterEvalQ(), and finally returns the
      task results.
That’s all there is to implementing a simple and efficient load
      balancing parallel execution function. Let’s compare clusterApplyLB() to parLapplyLB() using the same test function
      that we used to compare clusterApply() and parLapply(), starting with clusterApplyLB():
bigsleep <- function(sleeptime, mat) Sys.sleep(sleeptime)
bigmatrix <- matrix(0, 2000, 2000)
sleeptime <- rep(1, 100)
tm <- snow.time(clusterApplyLB(cl, sleeptime, bigsleep, bigmatrix))
plot(tm)
[image: image with no caption]

There are lots of gaps in the execution bars due to high I/O time:
      the master is barely able to supply the workers with tasks. Obviously
      this problem isn’t going to scale to many more workers.
Now let’s try our new parLapplyLB() function:
tm <- snow.time(parLapplyLB(cl, sleeptime, bigsleep, bigmatrix))
plot(tm)
[image: image with no caption]

That took only 28.4 seconds versus 53.2 seconds for clusterApplyLB().
Notice that the first task on each worker has a short execution
      time, but a long task send time, as seen by the
      slope of the first four lines between the master (node 0) and the
      workers (nodes 1-4). Those are the worker initialization tasks executed
      by clusterCall() that send the large
      matrix to the workers. The tasks executed via clusterApplyLB() were more efficient, as seen by
      the vertical communication lines and the solid horizontal bars.
Note
By using short tasks, I was able to demonstrate a pretty
        noticeable difference in performance, but with longer tasks, the
        difference becomes less significant. In other words, we can realize
        decent efficiency whenever the time to compute a task significantly
        exceeds the time needed to send the inputs to and return the outputs
        from the worker evaluating the task.


Functions and Environments



Note
This section discusses a number of rather subtle points. An
        understanding of these is not essential for basic snow use, but could be invaluable when
        trying to debug more complicated usage scenarios. The reader may want
        to skim through this on a first reading, but remember to return to it
        if a seemingly obscure problem crops up.

Most of the parallel execution functions in snow take a function object as an argument,
      which I call the worker function, since it is sent
      to the cluster workers, and subsequently executed by them. In order to
      send it to the workers, the worker function must be serialized into a
      stream of bytes using the serialize()
      function.[19] That stream of bytes is converted into a copy of the
      original object using the unserialize() function.
In addition to a list of formal arguments and a body, the worker
      function includes a pointer to the environment in which it was created.
      This environment becomes the parent of the evaluation environment when
      the worker function is executed, giving the worker function access to
      non-local variables. Obviously, this environment must be serialized
      along with the rest of the worker function in order for the function to
      work properly after being unserialized.
However, environments are serialized in a special way in R. In
      general, the contents are included when an environment is serialized,
      but not always. Name space environments are serialized by
      name, not by value. That is,
      the name of the package is written to the resulting stream of bytes, not
      the symbols and objects contained in the environment. When a name space
      is unserialized, it is reconstructed by finding and loading the
      corresponding package. If the package cannot be loaded, then the stream
      of bytes cannot be unserialized. The global environment is also
      serialized by name, and when it is unserialized, the resulting object is
      simply a reference to the existing, unmodified global
      environment.
So what does this mean to you as a snow programmer? Basically, you must ensure
      that all the variables needed to execute the worker function are
      available after it has been unserialized on the cluster workers. If the
      worker function’s environment is the global environment and the worker
      function needs to access any variables in it, you need to send those
      variables to the workers explicitly. This can be done, for example, by
      using the clusterExport() function.
      But if the worker function was created by another function, its
      environment is the evaluation environment of the creator function when
      the worker function was created. All the variables in this environment
      will be serialized along with the worker function, and accessible to it
      when it is executed by the cluster workers. This can be a handy way of
      making variables available to the worker function, but if you’re not
      careful, you could accidentally serialize large, unneeded objects along
      with the worker function, causing performance to suffer. Also, if you
      want the worker function to use any of the creator function’s arguments,
      you need to evaluate those arguments before calling parLapply() or clusterApplyLB(); otherwise, you may not be
      able to evaluate them successfully on the workers due to R’s lazy
      argument evaluation.
Let’s look at a few examples to illustrate some of these issues.
      We’ll start with a script that multiplies a vector x by a sequence of numbers:
a <- 1:4
x <- rnorm(4)
clusterExport(cl, "x")
mult <- function(s) s * x
parLapply(cl, a, mult)
In this script, the function mult() is defined at the top level, so its
      environment is the global environment.[20] Thus, x isn’t
      serialized along with mult(), so we
      need to send it to the cluster workers using the clusterExport() function. Of course, a more
      natural solution in this case would be to include x as an explicit argument to mult(), and then parLapply() would send it to the workers for
      us. However, using clusterExport()
      could be more efficient if we were going to reuse x by calling mult() many times with parLapply().
Now let’s turn part of this script into a function. Although this
      change may seem trivial, it actually changes the way mult() is serialized in parLapply():
pmult <- function(cl) {
  a <- 1:4
  x <- rnorm(4)
  mult <- function(s) s * x
  parLapply(cl, a, mult)
}
pmult(cl)
Since mult() is created by
      pmult(), all of pmult()’s local variables will be accessible
      when mult() is executed by the
      cluster workers, including x. Thus,
      we no longer call clusterExport().
Pmult() would be more useful if
      the values to be multiplied weren’t hardcoded, so let’s improve it by
      passing a and x in as arguments:
pmult <- function(cl, a, x) {
  x  # force x
  mult <- function(s) s * x
  parLapply(cl, a, mult)
}
scalars <- 1:4
dat <- rnorm(4)
pmult(cl, scalars, dat)
At this point, you may be wondering why x is on a line by itself with the cryptic
      comment “force x”. Although it may look like it does nothing, this
      operation forces x to be evaluated by
      looking up the value of the variable dat (the actual argument corresponding to
      x that is passed to the function when
      pmult() is invoked) in the caller’s
      execution environment. R uses lazy argument evaluation, and since
      x is now an argument, we have to
      force its evaluation before calling parLapply(); otherwise, the workers will
      report that dat wasn’t found, since
      they don’t have access to the environment where dat is defined. Note that they wouldn’t say
      x wasn’t found: they would find
      x, but wouldn’t be able to evaluate
      it because they don’t have access to dat. By evaluating x before calling parLapply(), mult()’s environment will be serialized with
      x set to the value of dat, rather than the symbol dat.
Notice in this last example that, in addition to x, a and
      cl are also serialized along with
      mult(). mult() doesn’t need to access them, but since
      they are defined in pmult’s evaluation environment,
      they will be serialized along with mult(). To prevent that, we can reset the environment of mult() to the global environment and pass
      x to mult() explicitly:
pmult <- function(cl, a, x) {
  mult <- function(s, x) s * x
  environment(mult) <- .GlobalEnv
  parLapply(cl, a, mult, x)
}
scalars <- 1:4
dat <- rnorm(4)
pmult(cl, scalars, dat)
Of course, another way to achieve the same result is to create
      mult() at the top level of the script
      so that mult() is associated with the
      global environment in the first place.
Unfortunately, you run into some tricky issues when sending
      function objects over the network. You may conclude that you don’t want
      to use the worker function’s environment to send data to your cluster
      workers, and that’s a perfectly reasonable position. But hopefully you
      now understand the issues well enough to figure out what methods work
      best for you.

Random Number Generation



As I mentioned previously, snow
      is very useful for performing Monte Carlo simulations, bootstrapping,
      and other operations that depend on the use of random numbers. When
      running such operations in parallel, it’s important that the cluster
      workers generate different random numbers; otherwise, the workers may
      all replicate each other’s results, defeating the purpose of executing
      in parallel. Rather than using ad-hoc schemes for seeding the workers
      differently, it is better to use a parallel random number generator
      package. snow provides support for
      the rlecuyer and rsprng packages, both of which are available
      on CRAN. With one of these packages installed on all the nodes of your
      cluster, you can configure your cluster workers to use it via the
      clusterSetupRNG() function. The
      type argument specifies which
      generator to use. To use rlecuyer,
      set type to
      RNGstream:
clusterSetupRNG(cl, type='RNGstream')
To use rsprng, set type to SPRNG:
clusterSetupRNG(cl, type='SPRNG')
You can specify a seed using the seed argument. rsprng uses a single integer for the seed,
      while rlecuyer uses a vector of six
      integers:
clusterSetupRNG(cl, type='RNGstream', seed=c(1,22,333,444,55,6))
Note
When using rsprng, a random
        seed is used by default, but not with rlecuyer. If you want to use a random seed
        with rlecuyer, you’ll have to
        specify it explicitly using the seed argument.

Now the standard random number functions will use the specified
      parallel random number generator:
> unlist(clusterEvalQ(cl, rnorm(1)))
[1] -1.0452398 -0.3579839 -0.5549331  0.7823642
If you reinitialize the cluster workers using the same seed, you
      will get the same random number from each of the workers.
We can also get reproducible results using clusterApply(), but not with clusterApplyLB() because clusterApply() always uses the same task
      scheduling, while clusterApplyLB()
      does not.[21]

snow Configuration



snow includes a number of
      configuration options for controlling the way the cluster is created.
      These options can be specified as named arguments to the cluster
      creation function (makeCluster(),
      makeSOCKcluster(), makeMPIcluster(), etc.). For example, here is
      the way to specify an alternate hostname for the master:
cl <- makeCluster(3, type="SOCK", master="192.168.1.100")
Note
The default value of master
        is computed as Sys.info()[['nodename']]. However, there’s
        no guarantee that the workers will all be able to resolve that name to
        an IP address. By setting master to
        an appropriate dot-separated IP address, you can often avoid hostname
        resolution problems.

You can also use the setDefaultClusterOptions() function to change
      a default configuration option during an R session. By default, the
      outfile option is set to /dev/null, which causes all worker output to
      be redirected to the null device (the proverbial bit bucket). To prevent
      output from being redirected, you can change the default value of
      outfile to the empty string:
setDefaultClusterOptions(outfile="")
This is a useful debugging technique which we will discuss more in
      Troubleshooting snow Programs.
Here is a summary of all of the snow configuration options:
Table 2-1. snow configuration options
	Name	Type	Description	Default value
	port
	Integer
	Port that the master listens on
	10187

	timeout
	Integer
	Socket timeout in seconds
	31536000 (one year in seconds)

	master
	String
	Master’s hostname that workers connect
              to
	Sys.info()["nodename"]

	homogeneous
	Logical
	Are workers homogeneous?
	TRUE if R_SNOW_LIB set, else FALSE

	type
	String
	Type of cluster makeCluster should
              create
	NULL, which is handled specially

	outfile
	String
	Worker log file
	“/dev/null” “nul:” on Windows

	rhome
	String
	Home of R installation, used to locate R
              executable
	$R_HOME

	user
	String
	User for remote execution
	Sys.info()["user"]

	rshcmd
	String
	Remote execution command
	“ssh”

	rlibs
	String
	Location of R packages
	$R_LIBS

	scriptdir
	String
	Location of snow worker scripts
	snow installation directory

	rprog
	String
	Path of R executable
	$R_HOME/bin/R

	snowlib
	String
	Path of “library” where snow is
              installed
	directory in which snow is installed

	rscript
	String
	Path of Rscript command
	$R_HOME/bin/Rscript
              $R_HOME/bin/Rscript.exe on Windows

	useRscript
	Logical
	Should workers be started using Rscript
              command?
	TRUE if file specified by Rscript
              exists

	manual
	Logical
	Should workers be started manually?
	FALSE




It is possible, although a bit tricky, to configure different
      workers differently. I’ve done this when running a snow program in parallel on an ad-hoc
      collection of workstations. In fact, there are two mechanisms available
      for that with the socket transport. The first approach works for all the
      transports. You set the homogeneous
      option to FALSE, which causes
      snow to use a special startup script
      to launch the workers. This alternate script doesn’t assume that the
      worker nodes are set up the same as the master node, but can look for
      R or Rscript in the user’s PATH, for example. It also supports the use of
      environment variables to configure the workers, such as R_SNOW_RSCRIPT_CMD and R_SNOW_LIB to specify the path of the Rscript command and the snow installation directory. These environment
      variables can be set to appropriate values in the user’s environment on
      each worker machine using the shell’s start up scripts.
The second approach to heterogeneous configuration only works with
      the socket and nws transports. When
      you call makeSOCKcluster(), you
      specify the worker machines as a list of lists. In this case, the
      hostname of the worker is specified by the host element of each sublist. The other
      elements of the sublists are used to override the corresponding option
      for that worker.
Let’s say we want to create a cluster with two workers: n1 and n2,
      but we need to log in as a different user on machine n2:
> workerList <- list(list(host = "n1"), list(host = "n2", user = "steve"))
> cl <- makeSOCKcluster(workerList)
> clusterEvalQ(cl, Sys.info()[["user"]])
[[1]]
[1] "weston"

[[2]]
[1] "steve"

> stopCluster(cl)
It can also be useful to set the outfile option differently to avoid file
      conflicts between workers:
> workerList <- list(list(host = "n1", outfile = "n1.log", user = "weston"), 
+                    list(host = "n2", outfile = "n2-1.log"), 
+                    list(host = "n2", outfile = "n2-2.log"))
> cl <- makeSOCKcluster(workerList, user = "steve")
> clusterEvalQ(cl, Sys.glob("*.log"))
[[1]]
[1] "n1.log"

[[2]]
[1] "n2-1.log" "n2-2.log"

[[3]]
[1] "n2-1.log" "n2-2.log"

> stopCluster(cl)
This also demonstrates that different methods for setting options
      can be used together. The machine-specific option values always take
      precedence.
Note
I prefer to use my ssh config
        file to specify a different user for different hosts, but obviously
        that doesn’t help with setting outfile.


Installing Rmpi



As I mentioned previously, installing Rmpi can be problematic because it depends on
      MPI being previously installed. Also, there are multiple MPI
      distributions, and some of the older distributions have compatibility
      problems with Rmpi. In general, Open
      MPI is the preferred MPI distribution. Fortunately, Open MPI is readily
      available for modern Linux systems. The website for the Open MPI Project
      is http://www.open-mpi.org/.
Another problem is that there isn’t a binary distribution of
      Rmpi available for Windows. Thus,
      even if you have MPI installed on a Windows machine, you will also need
      to install Rmpi from the source
      distribution, which requires additional tools that may also need to be
      installed. For more information on installing Rmpi on Windows, see the documentation in the
      Rmpi package. That’s beyond the scope
      of this book.
Installation of Rmpi on the Mac
      was quite simple on Mac OS X 10.5 and 10.6, both of which came with Open
      MPI, but unfortunately, Apple stopped distributing it in Mac OS X 10.7.
      If you’re using 10.5 or 10.6, you can (hopefully) install Rmpi quite easily:[22]
install.packages("Rmpi")
If you’re using Mac OS X 10.7, you’ll have to install Open MPI
      first, and then you’ll probably have to build Rmpi from the source distribution since the
      binary distribution probably won’t be compatible with your installation
      of Open MPI. I’ll discuss installing Rmpi from the source distribution shortly, but
      not Open MPI.
On Debian/Ubuntu, Rmpi is
      available in the “r-cran-rmpi” Debian package, and can be installed with
      apt-get. That’s the most foolproof
      way to install Rmpi on Ubuntu, for
      example, since apt-get will
      automatically install a compatible version of MPI, if necessary.
For non-Debian based systems, I recommend that you install Open
      MPI with your local packaging tool, and then try to use install.packages() to install Rmpi. This will fail if the configuration
      script can’t find the MPI installation. In that case you will have to
      download the source distribution, and install it using a command such
      as:
% R CMD INSTALL --configure-args="--with-mpi=$MPI_PATH" Rmpi_0.5-9.tar.gz
where the value of MPI_PATH is
      the directory containing the Open MPI lib and include directories.[23] Notice that this example uses the --configure-args argument to pass the --with-mpi argument to Rmpi’s configure script. Another important
      configure argument is --with-Rmpi-type, which may need to be set to
      “OPENMPI”, for example.
As I’ve said, installing Rmpi
      from source can be difficult. If you run into problems and don’t want to
      switch to Debian/Ubuntu, your best bet is to post a question on the R
      project’s “R-sig-hpc” mailing list. You can find it by clicking on the
      “Mailing Lists” link on the R project’s home page.

Executing snow Programs on a Cluster with Rmpi



Throughout this chapter I’ve been using the socket transport
      because it doesn’t require any additional software to install, making it
      the most portable snow transport.
      However, the MPI transport is probably the most popular, at least on
      clusters. Of course, most of what we’ve discussed is independent of the
      transport. The difference is mostly in how the cluster object is created
      and how the snow script is
      executed.
To create an MPI cluster object, set the type argument of makeCluster() to MPI or use
      the makeMPIcluster() function. If
      you’re running interactively, you can create an MPI cluster object with
      four workers as follows:
cl <- makeCluster(4, type="MPI")
This is equivalent to:
cl <- makeMPIcluster(4)
This creates a spawned cluster, since the
      workers are all started by snow for
      you via the mpi.comm.spawn()
      function.
Notice that we don’t specify which machines to use, only the
      number of workers. For that reason, I like to compute the worker count
      using the mpi.universe.size()
      function, which returns the size of the initial runtime
      environment.[24] Since the master process is included in that size, the
      worker count would be computed as mpi.universe.size() - 1.[25]
We shut down an MPI cluster the same as any cluster:
stopCluster(cl)
As you can see, there isn’t much to creating an MPI cluster
      object. You can specify configuration options, just as with a socket
      cluster, but basically it is very simple. However, you should be aware
      that the cluster workers are launched differently depending on how the R
      script was executed. If you’re running interactively, for example, the
      workers will always be started on the local machine. The only way that I
      know of to start the workers on remote machines is to execute the R
      interpreter using a command such as mpirun, mpiexec, or in the case of Open MPI, orterun.
As I noted previously, you can’t specify the machines on which to
      execute the workers with makeMPIcluster(). That is done with a separate
      program that comes with your MPI distribution. Open MPI comes with three
      utilities for executing MPI programs: orterun, mpirun, and mpiexec, but they all work in exactly the same
      way,[26] so I will refer to orterun for the rest of this
      discussion.
orterun doesn’t know anything
      about R or R scripts, so we need to use orterun to execute the R interpreter, which in
      turn executes the R script. Let’s start by creating an R script (Example 2-1), which I’ll call mpi.R.
Example 2-1. mpi.R
library(snow)
library(Rmpi)
cl <- makeMPIcluster(mpi.universe.size() - 1)
r <- clusterEvalQ(cl, R.version.string)
print(unlist(r))
stopCluster(cl)
mpi.quit()


This is very similar to our very first example, except that it
      loads the Rmpi package, calls
      makeMPIcluster() rather than makeSOCKcluster(), and calls mpi.quit() at the end. Loading Rmpi isn’t strictly necessary, since calling
      makeMPIcluster() will automatically
      load Rmpi, but I like to do it
      explicitly. makeMPIcluster() creates
      the MPI cluster object, as discussed in the previous section. mpi.quit() terminates the MPI execution
      environment, detaches the Rmpi
      package, and quits R, so it should always go at the
      end of your script. This is often left out, but I believe it is good
      practice to call it.[27] I’ve gotten very stern warning messages from orterun in some cases when I failed to call
      mpi.quit().
To execute mpi.R using the
      local machine as the master, and n1, n2, n3 and n4 as the workers, we
      can use the command:[28]
% orterun -H localhost,n1,n2,n3,n4 -n 1 R --slave -f mpi.R
The -H option specifies the
      list of machines available for execution. By using -n 1, orterun will only execute the command R --slave -f mpi.R on the first machine in the
      list, which is localhost in this example. This process is the master,
      equivalent to the interactive R session in our previous snow examples. When the master executes
      makeMPIcluster(mpi.universe.size() -
      1), four workers will be spawned. orterun will execute these workers on machines
      n1, n2, n3 and n4, since they are next in line to receive a
      process.
Those are the basics, but there are a few other issues to bear in
      mind. First, the master and the worker processes have their working
      directory set to the working directory of the process executing orterun. That’s no problem for the master in
      our example, since the master runs on the same machine as orterun. But if there isn’t a directory with
      the same path on any of the worker machines, you will get an error. For
      that reason, it is useful to work from a directory that is shared across
      the cluster via a network file system. That isn’t necessary, however. If
      you specify the full path to the R script, you could use the orterun -wdir option to set the working directory to
      /tmp:
% orterun -wdir /tmp -H localhost,n1,n2,n3,n4 -n 1 R --slave -f ~/mpi.R
This example still assumes that R is in your search path on
      localhost. If it isn’t, you can specify the full path of the R
      interpreter on localhost.
That can solve some of the orterun related problems, but snow still makes a number of assumptions about
      where to find things on the workers as well. See snow Configuration for more information.

Executing snow Programs with a Batch Queueing System



Many cluster administrators require that all parallel programs be
      executed via a batch queueing system. There are different ways that this
      can be done, and different batch queueing systems, but I will describe a
      method that has been commonly used for a long time, and is supported by
      many batch queueing systems, such as PBS/TORQUE, SGE and LSF.
Basically you submit a shell script, and the shell script executes
      your R script using orterun as we
      described in the section Executing snow Programs on a Cluster with Rmpi. When you submit the
      shell script, you tell the batch queueing system how many nodes you want
      using the appropriate argument to the submit command. The shell script
      may need to read an environment variable to learn what nodes it can
      execute on, and then pass that information on to the orterun command via an argument such as
      -hostfile or -H.
Of course the details vary depending on the batch queueing system,
      MPI distribution, and cluster configuration. As an example, I’ll
      describe how this can be done using PBS/TORQUE and Open MPI.
It’s actually very simple to use PBS/TORQUE with Open MPI, since
      Open MPI automatically gets the list of hosts using the environment
      variables set by PBS/TORQUE.[29] The code in Example 2-2 simplifies the
      orterun command used in the
      script.
Example 2-2. batchmpi.sh
#!/bin/sh
#PBS -N SNOWMPI
#PBS -j oe
cd $PBS_O_WORKDIR
orterun -n 1 /usr/bin/R --slave -f mpi.R > mpi-$PBS_JOBID.out 2>&1


This script uses PBS directives to specify the name of the job,
      and to merge the job’s standard output and standard error. It then
      cd’s to the directory from which you
      submitted the job, which is helpful for finding the mpi.R script. Finally it uses orterun to execute mpi.R.
We submit batchmpi.sh using the
      PBS/TORQUE qsub command:
% qsub -q devel -l nodes=2:ppn=4 batchmpi.sh
This submits the shell script to the devel queue, requesting two nodes with four
      processors per node. The -l option is
      used to specify the resources needed by the job. The resource
      specifications vary from cluster to cluster, so talk to your cluster
      administrator to find out how you should specify the number of nodes and
      processors.
If you’re using LSF or SGE, you will probably need to specify the
      hosts via the orterun -hostfile or -H option. For LSF, use the
      bsub -n option to specify the number of cores, and
      the LSB_HOSTS environment variable to
      get the allocated hosts. With SGE, use the qsub -pe
      option and the PE_HOSTFILE
      environment variable. The details are different, but the basic idea is
      the same.

Troubleshooting snow Programs



Unfortunately, a lot of things can go wrong when using snow. That’s not really snow’s fault: there’s just a lot of things
      that have to be set up properly, and if the different cluster nodes are
      configured differently, snow may have
      trouble launching the cluster workers. It’s possible to configure
      snow to deal with heterogeneous
      clusters.[30] Fortunately, if your cluster is already used for parallel
      computing, there’s a good chance it is already set up in a clean,
      consistent fashion, and you won’t run into any problems when using
      snow.
Obviously you need to have R and snow installed on all of the machines that
      you’re attempting to use for your cluster object. You also need to have
      ssh servers running on all of the
      cluster workers if using the socket transport, for instance.
There are several techniques available for finding out more
      information about what is going wrong.
When using the socket transport, the single most useful method of
      troubleshooting is manual mode. In manual mode, you
      start the workers yourself, rather than having snow start them for you. That allows you to
      run snow jobs on a cluster that
      doesn’t have ssh servers, for
      example. But there are also a few other advantages to manual mode. For
      one thing, it makes it easier to see error messages. Rather than
      searching for them in log files, they can be displayed right in your
      terminal session.
To enable manual mode, set the manual option to TRUE when creating the socket cluster object.
      I also recommend specifying outfile="", which prevents output from being
      redirected:
cl <- makeCluster(2, type="SOCK", manual=TRUE, outfile="")
makeCluster() will display the
      command to start each of the workers. For each command, I open a new
      terminal window, ssh to the specified
      machine,[31] and cut and paste the specified command into the
      shell.
In many cases, you’ll get an error message as soon as you execute
      one of these commands, and the R session will exit. In that case, you
      need to figure out what caused the error, and solve the problem. That
      may not be simple, but at least you have something better to search for
      than “makeCluster hangs.” But very often, the error is pretty obvious,
      like R or snow isn’t installed. Also,
      snow may not guess the right hostname
      for the workers to use to connect back to the master process. In this
      case, R starts up and snow runs, but
      nothing happens. You can use your terminal window to use various network
      tools (nslookup, ping) to diagnose this problem.
Let’s create a socket cluster using manual mode and examine the
      output:
> cl <- makeCluster(c('n1', 'n2'), type="SOCK", manual=TRUE, outfile="")
Manually start worker on n1 with
     /usr/lib/R/bin/Rscript /usr/lib/R/site-library/snow/RSOCKnode.R
MASTER=beard PORT=10187 OUT= SNOWLIB=/usr/lib/R/site-library
The argument MASTER=beard
      indicates that the value of the master option is “beard.” You can now use the
      ping command from your terminal
      window on n1 to see if the master is
      reachable from n1 by that name.
      Here’s the kind of output that you should see:
n1% ping beard
PING beard (192.168.1.109) 56(84) bytes of data.
64 bytes from beard (192.168.1.109): icmp_req=1 ttl=64 time=0.020 ms
This demonstrates that n1 is
      able to resolve the name “beard,” knows a network route to that IP
      address, can get past any firewall, and is able to get a reply from the
      master machine.[32]
But if ping issues the error
      message “ping: unknown host beard”, then you have a hostname resolution
      problem. Setting the master option to
      a different value when creating the cluster might fix the problem. Other
      errors may indicate a networking problem that can be fixed by your
      sysadmin.
If the value of master seems
      good, you should execute the command displayed by makeCluster() in hopes of getting a useful
      error message. Note that many of these problems could occur using any
      snow transport, so running a simple
      snow test code using the socket
      transport and manual mode can be an effective means to ensure a good
      setup even if you later intend to use a different transport.
The outfile option in itself is
      also useful for troubleshooting. It allows you to redirect debug and
      error messages to a specified file. By default, output is redirected to
      /dev/null. I often use an empty
      string ("") to prevent any
      redirection, as we described previously.
Here are some additional troubleshooting tips:
	Start by running on only one machine to make sure that
          works

	Manually ssh to all of the
          workers from the master machine

	Set the master option to a
          value that all workers can resolve, possibly using a dot-separated
          IP address

	Run your job from a directory that is available on all
          machines

	Check if there are any firewalls that might interfere





When It Works…



snow is a fairly high-level
    package, since it doesn’t focus on low-level communication operations, but
    on execution. It provides a useful variety of functions that support
    embarrassingly parallel computation.

…And When It Doesn’t



Communications difficulties:
    snow doesn’t provide functions for
    explicitly communicating between the master and workers, and in fact, the
    workers never communicate between themselves. In order to communicate
    between workers, you would have to use functions in the underlying
    communication package. Of course, that would make your program less
    portable, and more complicated. A package that needed to do that would
    probably not use snow, but use a
    package like nws or Rmpi directly.

The Wrap-up



In this chapter, you got a crash course on the snow package, including some advanced topics
    such as running snow programs via a
    batch queueing system. snow is a
    powerful package, able to run on clusters with hundreds of nodes. But if
    you’re more interested in running on a quad-core laptop than a
    supercomputer, the next chapter on the multicore package will be of particular
    interest to you.



[5] The multicore package is
        generally preferred on multicore computers, but it isn’t supported on
        Windows. See Chapter 3 for more information on the
        multicore package.

[6] This can be overridden via the rshcmd option, but the specified command
          must be command line-compatible with ssh.

[7] These clusters shouldn’t be confused with cluster objects and
          cluster workers.

[8] All R sessions are randomly seeded when they first generate
            random numbers, unless they were restored from a previous R
            session that generated random numbers. snow
            workers never restore previously saved data, so they are always
            randomly seeded.

[9] How exactly snow sends
          functions to the workers is a bit complex, raising issues of
          execution context and environment. See Functions and Environments for
          more information.

[10] This is guaranteed since clusterEvalQ() is implemented using
          clusterCall().

[11] Defining anonymous functions like this is very useful, but can
          be a source of performance problems due to R’s scoping rules and the
          way it serializes functions. See Functions and Environments for more
          information.

[12] The return value from library() isn’t big, but if the
          initialization function was assigning a large matrix to a variable,
          you could inadvertently send a lot of data back to the master,
          significantly hurting the performance of your program.

[13] snow.time() is available in
          snow as of version 0.3-5.

[14] I’m setting the RNG seed so we get the same value of
          sleeptime as in the previous example.

[15] It’s also possible that the extra overhead in clusterApplyLB() to determine which worker
          is ready for the next task could make clusterApply() more efficient in some
          case, but I’m skeptical.

[16] The ideal elapsed time is sum(sleeptime) / length(cl).

[17] Normally the second argument to ^ can have the same length as the first,
          but it must be length one in this example because parVapply() only splits the first
          argument.

[18] A future release of snow
          could optimize clusterApplyLB()
          by not sending the function and constant arguments to the workers in
          every task. At that point, this example will lose any practical
          value that it may have.

[19] Actually, if you specify the worker function by name, rather
          than by providing the definition of the function, most of the
          parallel execution functions (parLapply() is currently an exception)
          will use that name to look up that function in the worker processes,
          thus avoiding function serialization.

[20] You can verify this with the command environment(mult).

[21] Actually, you can achieve reproducibility with clusterApplyLB() by setting the seed to a
          task specific value. This can be done by adding the operation to the
          beginning of the worker function, or if using a function from a
          library, wrapping that function in a new function that sets the seed
          and then calls the library function.

[22] It’s possible that newer versions of Rmpi won’t be built for the Mac on CRAN
          because it won’t work on Mac OS X 10.7, but it’s still available as
          I’m writing this in September 2011.

[23] I use the command locate
          include/mpi.h to find this directory. On my machine, this
          returns /usr/lib/openmpi/include/mpi.h, so I set
          MPI_PATH to /usr/lib/openmpi.

[24] mpi.universe.size() had a
          bug in older versions of Rmpi, so
          you may need to upgrade to Rmpi 0.5-9.

[25] I don’t use mpi.universe.size() when creating an MPI
          cluster in an interactive session, since in that context, mpi.universe.size() returns 1, which would
          give an illegal worker count of zero.

[26] orterun, mpirun, and mpiexec are in fact the same program in
          Open MPI.

[27] You can use mpi.finalize()
          instead, which doesn’t quit R.

[28] The orterun command in Open
          MPI accepts several different arguments to specify the host list and
          the number of workers. It does this to be compatible with previous
          MPI distributions, so don’t be confused if you’re used to different
          argument names.

[29] Actually, it’s possible to configure Open MPI without support
          for PBS/TORQUE, in which case you’ll have to include the arguments
          -hostfile $PBS_NODEFILE when
          executing orterun.

[30] We discuss heterogeneous configuration in snow Configuration.

[31] If ssh fails at this point,
          you may have found your problem.

[32] Of course, just because ping can get past a firewall doesn’t mean
          that snow can. As you can see
          from the manual mode output, the master process is listening on port
          10187, so you may have to configure your firewall to allow
          connections on that port. You could try the command telnet beard 10187 as a further
          test.






End of sample
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