

 [image: First Edition]

[image: O'Reilly Strata Conference]

Parallel R

Q. Ethan McCallum

Stephen Weston

Published by O’Reilly Media

[image:]
Beijing ⋅ Cambridge ⋅ Farnham ⋅ Köln ⋅ Sebastopol ⋅ Tokyo

SPECIAL OFFER: Upgrade this ebook with O’Reilly

Click here for more information on this offer!
Please note that upgrade offers are not available from sample content.

A Note Regarding Supplemental Files

Supplemental files and examples for this book can be found at http://examples.oreilly.com/0636920021421/. Please use a standard desktop web browser to access these files, as they may not be accessible from all ereader devices.
All code files or examples referenced in the book will be available online. For physical books that ship with an accompanying disc, whenever possible, we’ve posted all CD/DVD content. Note that while we provide as much of the media content as we are able via free download, we are sometimes limited by licensing restrictions. Please direct any questions or concerns to booktech@oreilly.com.

Preface

Conventions Used in This Book

The following typographical conventions are used in this
 book:
	Italic
	Indicates new terms, URLs, email addresses, filenames, and
 file extensions.

	Constant width
	Used for program listings, as well as within paragraphs to
 refer to program elements such as variable or function names,
 databases, data types, environment variables, statements, and
 keywords.

	Constant width
 bold
	Shows commands or other text that should be typed literally by
 the user.

	Constant width italic
	Shows text that should be replaced with user-supplied values
 or by values determined by context.

Tip
This icon signifies a tip, suggestion, or general note.

Caution
This icon indicates a warning or caution.

Using Code Examples

This book is here to help you get your job done. In general, you may
 use the code in this book in your programs and documentation. You do not
 need to contact us for permission unless you’re reproducing a significant
 portion of the code. For example, writing a program that uses several
 chunks of code from this book does not require permission. Selling or
 distributing a CD-ROM of examples from O’Reilly books does require
 permission. Answering a question by citing this book and quoting example
 code does not require permission. Incorporating a significant amount of
 example code from this book into your product’s documentation does require
 permission.
We appreciate, but do not require, attribution. An attribution
 usually includes the title, author, publisher, and ISBN. For example:
 “Parallel R by Q. Ethan McCallum and Stephen Weston
 (O'Reilly). Copyright 2012 Q. Ethan McCallum and Stephen Weston,
 978-1-449-30992-3.”
If you feel your use of code examples falls outside fair use or the
 permission given above, feel free to contact us at
 permissions@oreilly.com.

Safari® Books Online

Note
Safari Books Online is an on-demand digital library that lets you
 easily search over 7,500 technology and creative reference books and
 videos to find the answers you need quickly.

With a subscription, you can read any page and watch any video from
 our library online. Read books on your cell phone and mobile devices.
 Access new titles before they are available for print, and get exclusive
 access to manuscripts in development and post feedback for the authors.
 Copy and paste code samples, organize your favorites, download chapters,
 bookmark key sections, create notes, print out pages, and benefit from
 tons of other time-saving features.
O’Reilly Media has uploaded this book to the Safari Books Online
 service. To have full digital access to this book and others on similar
 topics from O’Reilly and other publishers, sign up for free at http://my.safaribooksonline.com.

How to Contact Us

Please address comments and questions concerning this book to the
 publisher:
	O’Reilly Media, Inc.
	1005 Gravenstein Highway North
	Sebastopol, CA 95472
	800-998-9938 (in the United States or Canada)
	707-829-0515 (international or local)
	707-829-0104 (fax)

We have a web page for this book, where we list errata, examples,
 and any additional information. You can access this page at:
	http://oreilly.com/catalog/0636920021421

To comment or ask technical questions about this book, send email
 to:
	bookquestions@oreilly.com

For more information about our books, courses, conferences, and
 news, see our website at http://www.oreilly.com.
Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia
Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments

There are only two names on the cover, but a host of people made
 this book possible.
We would like to thank the entire O’Reilly team for their efforts.
 They provided such a smooth process that we were able to focus on just the
 writing. A special thanks goes to our editors, Mike Loukides and Meghan
 Blanchette, for their guidance and support.
We would also like to thank our review team. The following people
 generously dedicated their time and energy to read this book in its early
 state, and their feedback helped shape the text into the finished product
 you’re reading now:
	Robert Bjornson
	Nicholas Carriero
	Jonathan Seidman
	Paul Teetor
	Ramesh Venkataramaiah
	Jed Wing

Any errors you find in this book belong to us, the authors.
Most of all we thank you, the reader, for your interest in this
 book. We set out to create the guidebook we wish we’d had when we first
 tried to give R that parallel, distributed boost. R work is research work,
 best done with minimal distractions. We hope these chapters help you get
 up to speed quickly, so you can get R to do what you need with minimal
 detour from the task at hand.
Q. Ethan McCallum

“You like math? Oh, you need to talk to Mike. Let me introduce
 you.” I didn’t realize it at the time, but those words were the start of
 this project. Really. A chance encounter with Mike Loukides led to
 emails and phone calls and, before I knew it, we’d laid the groundwork
 for a new book. So first and foremost, a hearty thanks to Betsy and
 Laurel, who made my connection to Mike.
Conversations with Mike led me to my co-author, Steve Weston. I’m
 pleased and flattered that he agreed to join me on this
 adventure.
Thanks as well to the gang at Cafe les Deux Chats, for providing a
 quiet place to work.

Stephen Weston

This was my first book project, so I’d like to thank my co-author
 and editors for putting up with my freshman confusion and mistakes. They
 were very gracious throughout the project.
I’m very grateful to Nick, Rob, and Jed for taking the time to
 read my chapters and help me not to make a fool of myself. I also want
 to thank my wife Diana and daughter Erica for proofreading material that
 wasn’t on their preferred reading lists.
Finally, I’d like to thank all the authors of the packages that we
 discuss in this book. I had a lot of fun reading the source for all
 three of the packages that I wrote about. In particular, I’ve always
 loved the snow source code, which I studied when
 first learning to program in R.

Chapter 1. Getting Started

This chapter sets the pace for the rest of the book. If you’re in a
 hurry, feel free to skip to the chapter you need. (The section In a Hurry? has a quick-ref look at the various strategies and
 where they fit. That should help you pick a starting point.) Just make sure
 you come back here to understand our choice of vocabulary, how we chose what
 to cover, and so on.
Why R?

It’s tough to argue with R. Who could dislike a high-quality,
 cross-platform, open-source statistical software product? It has an
 interactive console for exploratory work. It can run as a scripting
 language to repeat a process you’ve captured. It has a lot of statistical
 calculations built-in so you don’t have to reinvent the wheel. Did we
 mention that R is free?
When the base toolset isn’t enough, R users have access to a rich
 ecosystem of add-on packages and a gaggle of GUIs to make their lives even
 easier. No wonder R has become a favorite in the age of Big Data.
Since R is perfect, then, we can end this book. Right?
Not quite. It’s precisely the Big Data age that has exposed R’s
 blemishes.

Why Not R?

These imperfections stem not from defects in the software itself,
 but from the passage of time: quite simply, R was not built in
 anticipation of the Big Data revolution.
R was born in 1995. Disk space was expensive, RAM even more so, and
 this thing called The Internet was just getting its legs. Notions of
 “large-scale data analysis” and “high-performance computing” were
 reasonably rare. Outside of Wall Street firms and university research
 labs, there just wasn’t that much data to crunch.
Fast-forward to the present day and hardware costs just a fraction
 of what it used to. Computing power is available online for pennies.
 Everyone is suddenly interested in collecting and analyzing data, and the
 necessary resources are well within reach.
This surge in data analysis has brought two of R’s limitations to
 the forefront: it’s single-threaded and
 memory-bound. Allow us to explain:
	It’s single-threaded
	The R language has no explicit constructs for parallelism,
 such as threads or mutexes. An out-of-the-box R install cannot take
 advantage of multiple CPUs.

	It’s memory-bound
	R requires that your entire dataset[1] fit in memory (RAM).[2] Four gigabytes of RAM will not hold eight gigabytes of
 data, no matter how much you smile when you ask.

While these are certainly inconvenient, they’re hardly
 insurmountable.

The Solution: Parallel Execution

People have created a series of workarounds over the years. Doing a
 lot of matrix math? You can build R against a multithreaded basic linear
 algebra subprogram (BLAS). Churning through large datasets? Use a
 relational database or another manual method to retrieve your data in
 smaller, more manageable pieces. And so on, and so forth.
Some big winners involve parallelism. Spreading
 work across multiple CPUs overcomes R’s single-threaded nature. Offloading
 work to multiple machines reaps the multi-process benefit and also
 addresses R’s memory barrier. In this book we’ll cover a few strategies to
 give R that parallel boost, specifically those which take advantage of
 modern multicore hardware and cheap distributed computing.

A Road Map for This Book

Now that we’ve set the tone for why we’re here, let’s take a look at
 what we plan to accomplish in the coming pages (or screens if you’re
 reading this electronically).
What We’ll Cover

Each chapter is a look into one strategy for R parallelism,
 including:
	What it is

	Where to find it

	How to use it

	Where it works well, and where it doesn’t

First up is the snow package,
 followed by a tour of the multicore
 package. We then provide a look at the new parallel package that’s due to arrive in R
 2.14. After that, we’ll take a brief side-tour to explain MapReduce and
 Hadoop. That will serve as a foundation for the remaining chapters:
 R+Hadoop (Hadoop streaming and the Java API), RHIPE, and segue.

Looking Forward…

In Chapter 9, we will briefly mention
 some tools that were too new for us to cover in-depth.
There will likely be other tools we hadn’t heard about (or that
 didn’t exist) at the time of writing.[3] Please let us know about them! You can reach us through
 this book’s website at http://parallelrbook.com/.

What We’ll Assume You Already Know

This is a book about R, yes, but we’ll expect you know the basics
 of how to get around. If you’re new to R or need a refresher course,
 please flip through Paul Teetor’s R
 Cookbook (O’Reilly), Robert Kabacoff’s
 R In
 Action (Manning), or another introductory title. You
 should take particular note of the lapply() function, which plays an important
 role in this book.
Some of the topics require several machines’ worth of
 infrastructure, in which case you’ll need access to a talented sysadmin.
 You’ll also need hardware, which you can buy and maintain yourself, or
 rent from a hosting provider. Cloud services, notably Amazon Web
 Services (AWS), [4] have become a popular choice in this arena. AWS has plenty
 of documentation, and you can also read Programming Amazon
 EC2, by Jurg van Vliet and Flavia Paganelli
 (O’Reilly) as a supplement.
(Please note that using a provider still requires a degree of
 sysadmin knowledge. If you’re not up to the task, you’ll want to find
 and bribe your skilled sysadmin friends.)

In a Hurry?

If you’re in a hurry, you can skip straight to the chapter you need.
 The list below is a quick look at the various strategies.
snow

Overview: Good for use on
 traditional clusters, especially if MPI is available. It supports MPI,
 PVM, nws, and sockets for
 communication, and is quite portable, running on Linux, Mac OS X, and
 Windows.
Solves: Single-threaded,
 memory-bound.
Pros: Mature, popular package;
 leverages MPI’s speed without its complexity.
Cons: Can be difficult to
 configure.

multicore

Overview: Good for big-CPU
 problems when setting up a Hadoop cluster is too much of a hassle. Lets
 you parallelize your R code without ever leaving the R
 interpreter.
Solves: Single-threaded.
Pros: Simple and efficient;
 easy to install; no configuration needed.
Cons: Can only use one machine;
 doesn’t support Windows; no built-in support for parallel random number
 generation (RNG).

parallel

Overview: A merger of snow and multicore that comes built into R as of R
 2.14.0.
Solves: Single-threaded,
 memory-bound.
Pros: No installation
 necessary; has great support for parallel random number generation.
Cons: Can only use one machine
 on Windows; can be difficult to configure on multiple Linux
 machines.

R+Hadoop

Overview: Run your R code on a
 Hadoop cluster.
Solves: Single-threaded,
 memory-bound.
Pros: You get Hadoop’s
 scalability.
Cons: Requires a Hadoop cluster
 (internal or cloud-based); breaks up a single logical process into
 multiple scripts and steps (can be a hassle for exploratory
 work).

RHIPE

Overview: Talk Hadoop without
 ever leaving the R interpreter.
Solves: Single-threaded,
 memory-bound.
Pros: Closer to a native R
 experience than R+Hadoop; use pure R code for your MapReduce
 operations.
Cons: Requires a Hadoop
 cluster; requires extra setup on the cluster; cannot process standard
 SequenceFiles (for binary data).

Segue

Overview: Seamlessly send R
 apply-like calculations to a remote
 Hadoop cluster.
Solves: Single-threaded,
 memory-bound.
Pros: Abstracts you from
 Elastic MapReduce management.
Cons: Cannot use with an
 internal Hadoop cluster (you’re tied to Amazon’s Elastic
 MapReduce).

Summary

Welcome to the beginning of your journey into parallel R. Our first
 stop is a look at the popular snow
 package.

[1] We emphasize “dataset” here, not necessarily
 “algorithms.”

[2] It’s a big problem. Because R will often make multiple
 copies of the same data structure for no apparent reason, you
 often need three times as much memory as the size of your
 dataset. And if you don’t have enough memory, you die a slow
 death as your poor machine swaps and thrashes. Some people turn
 off virtual memory with the swapoff command so they can die
 quickly.

[3] Try as we might, our massive Monte Carlo simulations have
 brought us no closer to predicting the next R parallelism strategy.
 Nor any winning lottery numbers, for that matter.

[4] http://aws.amazon.com/

Chapter 2. snow

snow (“Simple Network of
 Workstations”) is probably the most popular parallel programming package
 available for R. It was written by Luke Tierney, A. J. Rossini, Na Li, and
 H. Sevcikova, and is actively maintained by Luke Tierney. It is a mature
 package, first released on the “Comprehensive R Archive Network” (CRAN) in
 2003.
Quick Look

Motivation: You want to use a
 Linux cluster to run an R script faster. For example, you’re running a
 Monte Carlo simulation on your laptop, but you’re sick of waiting many
 hours or days for it to finish.
Solution: Use snow to run your R code on your company or
 university’s Linux cluster.
Good because: snow fits well into a traditional cluster
 environment, and is able to take advantage of high-speed communication
 networks, such as InfiniBand, using MPI.

How It Works

snow provides support for easily
 executing R functions in parallel. Most of the parallel execution
 functions in snow are variations of the
 standard lapply() function, making
 snow fairly easy to learn. To implement
 these parallel operations, snow uses a
 master/worker architecture, where the master sends tasks to the workers,
 and the workers execute the tasks and return the results to the
 master.
One important feature of snow is
 that it can be used with different transport mechanisms to communicate
 between the master and workers. This allows it to be portable, but still
 take advantage of high-performance communication mechanisms if available.
 snow can be used with socket
 connections, MPI, PVM, or NetWorkSpaces. The socket transport doesn’t
 require any additional packages, and is the most portable. MPI is
 supported via the Rmpi package, PVM via
 rpvm, and NetWorkSpaces via nws. The MPI transport is popular on Linux
 clusters, and the socket transport is popular on multicore computers,
 particularly Windows computers.[5]
snow is primarily intended to run
 on traditional clusters and is particularly useful if MPI is available. It
 is well suited to Monte Carlo simulations, bootstrapping, cross
 validation, ensemble machine learning algorithms, and K-Means
 clustering.
Good support is available for parallel random number generation,
 using the rsprng and rlecuyer packages. This is very important when
 performing simulations, bootstrapping, and machine learning, all of which
 can depend on random number generation.
snow doesn’t provide mechanisms
 for dealing with large data, such as distributing data files to the
 workers. The input arguments must fit into memory when calling a snow function, and all of the task results are
 kept in memory on the master until they are returned to the caller in a
 list. Of course, snow can be used with
 high-performance distributed file systems in order to operate on large
 data files, but it’s up to the user to arrange that.

Setting Up

snow is available on CRAN, so it
 is installed like any other CRAN package. It is pure R code and almost
 never has installation problems. There are binary packages for both
 Windows and Mac OS X.
Although there are various ways to install packages from CRAN, I
 generally use the install.packages()
 function:
install.packages("snow")
It may ask you which CRAN mirror to use, and then it will download
 and install the package.
If you’re using an old version of R, you may get a message saying
 that snow is not available. snow has required R 2.12.1 since version 0.3-5,
 so you might need to download and install snow 0.3-3 from the CRAN package archives. In
 your browser, search for “CRAN snow” and it will probably bring you to
 snow’s download page on CRAN. Click on
 the “snow archive” link, and then you can download snow_0.3-3.tar.gz. Or you can try directly
 downloading it from:
http://cran.r-project.org/src/contrib/Archive/snow/snow_0.3-3.tar.gz
Once you’ve downloaded it, you can install it from the command line
 with:
% R CMD INSTALL snow_0.3-3.tar.gz
You may need to use the -l option
 to specify a different installation directory if you don’t have permission
 to install it in the default directory. For help on this command, use the
 --help option. For more information on
 installing R packages, see the section “Installing packages” in the “R
 Installation and Administration” manual, written by the “R Development
 Core Team”, and available from the R Project website.
Note
As a developer, I always use the most recent version of R. That
 makes it easier to install packages from CRAN, since packages are only
 built for the most recent version of R on CRAN. They keep around older
 binary distributions of packages, but they don’t build new packages or
 new versions of packages for anything but the current version of R. And
 if a new version of a package depends on a newer version of R, as with
 snow, you can’t even build it for
 yourself on an older version of R. However, if you’re using R for
 production use, you need to be much more cautious about upgrading to the
 latest version of R.

To use snow with MPI, you will
 also need to install the Rmpi package.
 Unfortunately, installing Rmpi is a
 frequent cause of problems because it has an external dependency on MPI.
 For more information, see Installing Rmpi.
Fortunately, the socket transport can be used without installing any
 additional packages. For that reason, I suggest that you start by using
 the socket transport if you are new to snow.
Once you’ve installed snow, you
 should verify that you can load it:
library(snow)
If that succeeds, you are ready to start using snow.

Working with It

Creating Clusters with makeCluster

In order to execute any functions in parallel with snow, you must first create a
 cluster object. The cluster object is used to
 interact with the cluster workers, and is passed as the first argument
 to many of the snow functions. You
 can create different types of cluster objects, depending on the
 transport mechanism that you wish to use.
The basic cluster creation function is makeCluster() which can create any type of
 cluster. Let’s use it to create a cluster of four workers on the local
 machine using the socket transport:
cl <- makeCluster(4, type="SOCK")
The first argument is the cluster
 specification, and the second is the cluster
 type. The interpretation of the cluster specification depends
 on the type, but all cluster types allow you to specify a worker
 count.
Socket clusters also allow you to specify the worker machines as a
 character vector. The following will launch four workers on remote
 machines:
spec <- c("n1", "n2", "n3", "n4")
cl <- makeCluster(spec, type="SOCK")
The socket transport launches each of these workers via the
 ssh command[6] unless the name is “localhost”, in which case makeCluster() starts the worker itself. For
 remote execution, you should configure ssh to use password-less login. This can be
 done using public-key authentication and SSH agents, which is covered in
 chapter 6 of SSH, The
 Secure Shell: The Definitive Guide (O’Reilly) and
 many websites.
makeCluster() allows you to
 specify addition arguments as configuration options. This is discussed
 further in snow Configuration.
The type argument can be
 “SOCK”, “MPI”, “PVM” or “NWS”. To create an MPI cluster with four
 workers, execute:
cl <- makeCluster(4, type="MPI")
This will start four MPI workers on the local machine unless you
 make special provisions, as described in the section Executing snow Programs on a Cluster with Rmpi.
You can also use the functions
 makeSOCKcluster(), makeMPIcluster(), makePVMcluster(), and makeNWScluster() to create specific types of
 clusters. In fact, makeCluster() is
 nothing more than a wrapper around these functions.
To shut down any type of cluster, use the stopCluster() function:
stopCluster(cl)
Some cluster types may be automatically stopped when the R session
 exits, but it’s good practice to always call stopCluster() in snow scripts; otherwise, you risk leaking
 cluster workers if the cluster type is changed, for example.
Note
Creating the cluster object can fail for a number of reasons,
 and is therefore a source of problems. See the section Troubleshooting snow Programs for help in solving these problems.

Parallel K-Means

We’re finally ready to use snow
 to do some parallel computing, so let’s look at a real example: parallel
 K-Means. K-Means is a clustering algorithm that partitions rows of a
 dataset into k clusters.[7] It’s an iterative algorithm, since it starts with a guess
 of the location for each of the cluster centers, and gradually improves
 the center locations until it converges on a solution.
R includes a function for performing K-Means clustering in the
 stats package: the kmeans() function. One way of using the
 kmeans() function is to specify the
 number of cluster centers, and kmeans() will pick the starting points for the
 centers by randomly selecting that number of rows from your dataset.
 After it iterates to a solution, it computes a value called the
 total within-cluster sum of squares. It then
 selects another set of rows for the starting points, and repeats this
 process in an attempt to find a solution with a smallest total
 within-cluster sum of squares.
Let’s use kmeans() to generate
 four clusters of the “Boston” dataset, using 100 random sets of
 centers:
library(MASS)
result <- kmeans(Boston, 4, nstart=100)
We’re going to take a simple approach to parallelizing kmeans() that can be used for parallelizing
 many similar functions and doesn’t require changing the source code for
 kmeans(). We simply call the kmeans() function on each of the workers using
 a smaller value of the nstart
 argument. Then we combine the results by picking the result with the
 smallest total within-cluster sum of
 squares.
But before we execute this in parallel, let’s try using this
 technique using the lapply() function
 to make sure it works. Once that is done, it will be fairly easy to
 convert to one of the snow parallel
 execution functions:
library(MASS)
results <- lapply(rep(25, 4), function(nstart) kmeans(Boston, 4, nstart=nstart))
i <- sapply(results, function(result) result$tot.withinss)
result <- results[[which.min(i)]]
We used a vector of four 25s to specify the nstart argument in order to get equivalent
 results to using 100 in a single call to kmeans(). Generally, the length of this vector
 should be equal to the number of workers in your cluster when running in
 parallel.
Now let’s parallelize this algorithm. snow includes a number of functions that we
 could use, including clusterApply(),
 clusterApplyLB(), and parLapply(). For this example, we’ll use
 clusterApply(). You call it exactly
 the same as lapply(), except that it
 takes a snow cluster object as the
 first argument. We also need to load MASS on the workers, rather than on the
 master, since it’s the workers that use the “Boston” dataset.
Assuming that snow is loaded
 and that we have a cluster object named cl, here’s the parallel version:
ignore <- clusterEvalQ(cl, {library(MASS); NULL})
results <- clusterApply(cl, rep(25, 4), function(nstart) kmeans(Boston, 4,
 nstart=nstart))
i <- sapply(results, function(result) result$tot.withinss)
result <- results[[which.min(i)]]
clusterEvalQ() takes two
 arguments: the cluster object, and an expression that is evaluated on
 each of the workers. It returns the result from each of the workers in a
 list, which we don’t use here. I use a compound expression to load
 MASS and return NULL to avoid sending unnecessary data back to
 the master process. That isn’t a serious issue in this case, but it can
 be, so I often return NULL to be
 safe.
As you can see, the snow
 version isn’t that much different than the lapply() version. Most of the work was done in
 converting it to use lapply().
 Usually the biggest problem in converting from lapply() to one of the parallel operations is
 handling the data properly and efficiently. In this case, the dataset
 was in a package, so all we had to do was load the package on the
 workers.
Note
The kmeans() function uses
 the sample.int() function to choose
 the starting cluster centers, which depend on the random number
 generator. In order to get different solutions, the cluster workers
 need to use different streams of random numbers. Since the workers are
 randomly seeded when they first start generating random
 numbers,[8] this example will work, but it is good practice to use a
 parallel random number generator. See Random Number Generation for more
 information.

Initializing Workers

In the last section we used the clusterEvalQ() function to initialize the
 cluster workers by loading a package on each of them. clusterEvalQ() is very handy, especially for
 interactive use, but it isn’t very general. It’s great for executing a
 simple expression on the cluster workers, but it doesn’t allow you to
 pass any kind of parameters to the expression, for example. Also,
 although you can use it to execute a function, it won’t send that
 function to the worker first,[9] as clusterApply()
 does.
My favorite snow function for
 initializing the cluster workers is clusterCall(). The arguments are pretty
 simple: it takes a snow cluster
 object, a worker function, and any number of arguments to pass to the
 function. It simply calls the function with the specified arguments on
 each of the cluster workers, and returns the results as a list. It’s
 like clusterApply() without the
 x argument, so it executes once for
 each worker, like clusterEvalQ(),
 rather than once for each element in x.
clusterCall() can do anything
 that clusterEvalQ() does and
 more.[10] For example, here’s how we could use clusterCall() to load the MASS package on the cluster workers:
clusterCall(cl, function() { library(MASS); NULL })
This defines a simple function that loads the MASS package and returns NULL.[11] Returning NULL
 guarantees that we don’t accidentally send unnecessary data transfer
 back to the master.[12]
The following will load several packages specified by a character
 vector:
worker.init <- function(packages) {
 for (p in packages) {
 library(p, character.only=TRUE)
 }
 NULL
}
clusterCall(cl, worker.init, c('MASS', 'boot'))
Setting the character.only
 argument to TRUE makes library() interpret the argument as a
 character variable. If we didn’t do that, library() would attempt to load a package
 named p repeatedly.
Although it’s not as commonly used as clusterCall(), the clusterApply() function is also useful for
 initializing the cluster workers since it can send different data to the
 initialization function for each worker. The following creates a global
 variable on each of the cluster workers that can be used as a unique
 worker ID:
clusterApply(cl, seq(along=cl), function(id) WORKER.ID <<- id)

Load Balancing with clusterApplyLB

We introduced the clusterApply() function in the parallel
 K-Means example. The next parallel execution function that I’ll discuss
 is clusterApplyLB(). It’s very
 similar to clusterApply(), but
 instead of scheduling tasks in a round-robin
 fashion, it sends new tasks to the cluster workers as they complete
 their previous task. By round-robin, I mean that clusterApply() distributes the elements of
 x to the cluster workers one at
 a time, in the same way that cards
 are dealt to players in a card game. In a sense, clusterApply() (politely)
 pushes tasks to the workers, while clusterApplyLB() lets the workers pull tasks
 as needed. That can be more efficient if some tasks take longer than
 others, or if some cluster workers are slower.
To demonstrate clusterApplyLB(), we’ll execute Sys.sleep() on the workers, giving us complete control over the task lengths. Since our
 real interest in using clusterApplyLB() is to improve performance,
 we’ll use snow.time() to gather
 timing information about the overall execution.[13] We will also use snow.time()’s plotting capability to visualize
 the task execution on the workers:
set.seed(7777442)
sleeptime <- abs(rnorm(10, 10, 10))
tm <- snow.time(clusterApplyLB(cl, sleeptime, Sys.sleep))
plot(tm)
[image: image with no caption]

Ideally there would be solid horizontal bars for nodes 1 through 4
 in the plot, indicating that the cluster workers were always busy, and
 therefore running efficiently. clusterApplyLB() did pretty well, although
 there was some wasted time at the end.
Now let’s try the same problem with clusterApply():[14]
set.seed(7777442)
sleeptime <- abs(rnorm(10, 10, 10))
tm <- snow.time(clusterApply(cl, sleeptime, Sys.sleep))
plot(tm)
[image: image with no caption]

As you can see, clusterApply()
 is much less efficient than clusterApplyLB() in this example: it took 53.7
 seconds, versus 28.5 seconds for clusterApplyLB(). The plot shows how much time
 was wasted due to the round-robin scheduling.
But don’t give up on clusterApply(): it has its uses. It worked
 fine in the parallel K-Means example because we had the same number of
 tasks as workers. It is also used to implement the very useful parLapply() function, which we will discuss
 next.[15]

Task Chunking with parLapply

Now that we’ve discussed and compared clusterApply() and clusterApplyLB(), let’s consider parLapply(), a third parallel lapply() function that has the same arguments
 and basic behavior as clusterApply()
 and clusterApplyLB(). But there is an
 important difference that makes it perhaps the most generally useful of
 the three.
parLapply() is a
 high-level snow
 function, that is actually a deceptively simple function wrapping an
 invocation of clusterApply():
> parLapply
function (cl, x, fun, ...)
docall(c, clusterApply(cl, splitList(x, length(cl)), lapply, fun, ...))
<environment: namespace:snow>
Basically, parLapply() splits
 up x into a list of subvectors, and
 processes those subvectors on the cluster workers using lapply(). In effect, it is
 prescheduling the work by dividing the tasks into
 as many chunks as there are workers in the cluster. This is functionally
 equivalent to using clusterApply()
 directly, but it can be much more efficient, since there are fewer I/O
 operations between the master and the workers. If the length of x is already equal to the number of workers,
 then parLapply() has no advantage.
 But if you’re parallelizing an R script that already uses lapply(), the length of x is often very large, and at any rate is
 completely unrelated to the number of workers in your cluster. In that
 case, parLapply() is a better
 parallel version of lapply() than
 clusterApply().
One way to think about it is that parLapply() interprets the x argument differently than clusterApply(). clusterApply() is
 low-level, and treats x as a specification of the tasks to execute
 on the cluster workers using fun.
 parLapply() treats x as a source of disjoint input arguments to execute on the cluster workers
 using lapply() and fun. clusterApply() gives you more control over what
 gets sent to who, while parLapply()
 provides a convenient way to efficiently divide the work among the
 cluster workers.
An interesting consequence of parLapply()’s work scheduling is that it is
 much more efficient than clusterApply() if you have many more tasks
 than workers, and one or more large, additional arguments to pass to
 parLapply(). In that case, the
 additional arguments are sent to each worker only once, rather than
 possibly many times. Let’s try doing that, using a slightly altered
 parallel sleep function that takes a matrix as an argument:
bigsleep <- function(sleeptime, mat) Sys.sleep(sleeptime)
bigmatrix <- matrix(0, 2000, 2000)
sleeptime <- rep(1, 100)
I defined the sleeptimes to be small, many, and
 equally sized. This will accentuate the performance differences between
 clusterApply() and parLapply():
tm <- snow.time(clusterApply(cl, sleeptime, bigsleep, bigmatrix))
plot(tm)
[image: image with no caption]

This doesn’t look very efficient: you can see that there are many
 sends and receives between the master and the workers, resulting in
 relatively big gaps between the compute operations on the cluster
 workers. The gaps aren’t due to load imbalance as we saw before: they’re
 due to I/O time. We’re now spending a significant fraction of the
 elapsed time sending data to the workers, so instead of the ideal
 elapsed time of 25 seconds,[16] it’s taking 77.9 seconds.
Now let’s do the same thing using parLapply():
tm <- snow.time(parLapply(cl, sleeptime, bigsleep, bigmatrix))
plot(tm)
[image: image with no caption]

The difference is dramatic, both visually and in elapsed time: it
 took only 27.2 seconds, beating clusterApply() by 50.7 seconds.
Keep in mind that this particular use of clusterApply() is bad: it is needlessly
 sending the matrix to the worker with every task. There are various ways
 to fix that, and using parLapply()
 happens to work well in this case. On the other hand, if you’re sending
 huge objects in x, then there’s not
 much you can do, and parLapply()
 isn’t going to help. My point is that parLapply() schedules work in a useful and
 efficient way, making it probably the single most useful parallel
 execution function in snow. When in
 doubt, use parLapply().

Vectorizing with clusterSplit

In the previous section I showed you how parLapply() uses clusterApply() to implement a parallel
 operation that solves a certain class of parallel program quite nicely.
 Recall that parLapply() executes a
 user-supplied function for each element of x just like clusterApply(). But what if we want the
 function to operate on subvectors of x? That’s similar to what parLapply() does, but is a bit easier to
 implement, since it doesn’t need to use lapply() to call the user’s function.
We could use the splitList()
 function, like parLapply() does, but
 that is a snow internal function.
 Instead, we’ll use the clusterSplit()
 function which is very similar, and slightly more convenient. Let’s try
 splitting the sequence from 1 to 30 for our cluster using clusterSplit():
> clusterSplit(cl, 1:30)
[[1]]
[1] 1 2 3 4 5 6 7 8

[[2]]
[1] 9 10 11 12 13 14 15

[[3]]
[1] 16 17 18 19 20 21 22

[[4]]
[1] 23 24 25 26 27 28 29 30
Since our cluster has four workers, it splits the sequence into a
 list of four nearly equal length vectors, which is just what we
 need.
Now let’s define parVapply() to
 split x using clusterSplit(), execute the user function on
 each of the pieces using clusterApply(), and combine the results using
 do.call() and c():
parVapply <- function(cl, x, fun, ...) {
 do.call("c", clusterApply(cl, clusterSplit(cl, x), fun, ...))
}
Like parLapply(), parVapply() always issues the same number of
 tasks as workers. But unlike parLapply(), the user-supplied function is
 only executed once per worker. Let’s use parVapply() to compute the cube root of
 numbers from 1 to 10 using the ^
 function:
> parVapply(cl, 1:10, "^", 1/3)
 [1] 1.000000 1.259921 1.442250 1.587401 1.709976 1.817121 1.912931 2.000000
 [9] 2.080084 2.154435
This works because the ^
 function takes a vector as its first argument and returns a vector of
 the same length.[17]
Note
This technique can be a useful for executing vector functions in
 parallel. It may also be more efficient than using parLapply(), for example, but for any
 function worth executing in parallel, the difference in efficiency is
 likely to be small. And remember that most, if not all, vector
 functions execute so quickly that it is never worth it to execute them
 in parallel with snow. Such
 fine-grained problems fall much more into the domain of multithreaded
 computing.

Load Balancing Redux

We’ve talked about the advantages of parLapply() over clusterApply() at some length. In particular,
 when there are many more tasks than cluster workers and the task objects
 sent to the workers are large, there can be serious performance problems
 with clusterApply() that are solved
 by parLapply(). But what if the task
 execution has significant variation so that we need load balancing?
 clusterApplyLB() does load balancing,
 but would have the same performance problems as clusterApply(). We would like a load balancing
 equivalent to parLapply(), but there
 isn’t one—so let’s write it.[18]
In order to achieve dynamic load balancing, it helps to have a
 number of tasks that is at least a small integer multiple of the number
 of workers. That way, a long task assigned to one worker can be offset
 by many shorter tasks being done by other workers. If that is not the
 case, then the other workers will sit idle while the one worker
 completes the long task. parLapply()
 creates exactly one task per worker, which is not what we want in this
 case. Instead, we’ll first send the function and the fixed arguments to
 the cluster workers using clusterCall(), which saves them in the global
 environment, and then send the varying argument values using clusterApplyLB(), specifying a function that
 will execute the user-supplied function along with the full collection
 of arguments.
Here are the function definitions for parLapplyLB() and the two functions that it
 executes on the cluster workers:
parLapplyLB <- function(cl, x, fun, ...) {
 clusterCall(cl, LB.init, fun, ...)
 r <- clusterApplyLB(cl, x, LB.worker)
 clusterEvalQ(cl, rm('.LB.fun', '.LB.args', pos=globalenv()))
 r
}
LB.init <- function(fun, ...) {
 assign('.LB.fun', fun, pos=globalenv())
 assign('.LB.args', list(...), pos=globalenv())
 NULL
}
LB.worker <- function(x) {
 do.call('.LB.fun', c(list(x), .LB.args))
}
parLapplyLB() initializes the
 workers using clusterCall(), executes
 the tasks with clusterApplyLB(), cleans up the global
 environment of the cluster workers with clusterEvalQ(), and finally returns the
 task results.
That’s all there is to implementing a simple and efficient load
 balancing parallel execution function. Let’s compare clusterApplyLB() to parLapplyLB() using the same test function
 that we used to compare clusterApply() and parLapply(), starting with clusterApplyLB():
bigsleep <- function(sleeptime, mat) Sys.sleep(sleeptime)
bigmatrix <- matrix(0, 2000, 2000)
sleeptime <- rep(1, 100)
tm <- snow.time(clusterApplyLB(cl, sleeptime, bigsleep, bigmatrix))
plot(tm)
[image: image with no caption]

There are lots of gaps in the execution bars due to high I/O time:
 the master is barely able to supply the workers with tasks. Obviously
 this problem isn’t going to scale to many more workers.
Now let’s try our new parLapplyLB() function:
tm <- snow.time(parLapplyLB(cl, sleeptime, bigsleep, bigmatrix))
plot(tm)
[image: image with no caption]

That took only 28.4 seconds versus 53.2 seconds for clusterApplyLB().
Notice that the first task on each worker has a short execution
 time, but a long task send time, as seen by the
 slope of the first four lines between the master (node 0) and the
 workers (nodes 1-4). Those are the worker initialization tasks executed
 by clusterCall() that send the large
 matrix to the workers. The tasks executed via clusterApplyLB() were more efficient, as seen by
 the vertical communication lines and the solid horizontal bars.
Note
By using short tasks, I was able to demonstrate a pretty
 noticeable difference in performance, but with longer tasks, the
 difference becomes less significant. In other words, we can realize
 decent efficiency whenever the time to compute a task significantly
 exceeds the time needed to send the inputs to and return the outputs
 from the worker evaluating the task.

Functions and Environments

Note
This section discusses a number of rather subtle points. An
 understanding of these is not essential for basic snow use, but could be invaluable when
 trying to debug more complicated usage scenarios. The reader may want
 to skim through this on a first reading, but remember to return to it
 if a seemingly obscure problem crops up.

Most of the parallel execution functions in snow take a function object as an argument,
 which I call the worker function, since it is sent
 to the cluster workers, and subsequently executed by them. In order to
 send it to the workers, the worker function must be serialized into a
 stream of bytes using the serialize()
 function.[19] That stream of bytes is converted into a copy of the
 original object using the unserialize() function.
In addition to a list of formal arguments and a body, the worker
 function includes a pointer to the environment in which it was created.
 This environment becomes the parent of the evaluation environment when
 the worker function is executed, giving the worker function access to
 non-local variables. Obviously, this environment must be serialized
 along with the rest of the worker function in order for the function to
 work properly after being unserialized.
However, environments are serialized in a special way in R. In
 general, the contents are included when an environment is serialized,
 but not always. Name space environments are serialized by
 name, not by value. That is,
 the name of the package is written to the resulting stream of bytes, not
 the symbols and objects contained in the environment. When a name space
 is unserialized, it is reconstructed by finding and loading the
 corresponding package. If the package cannot be loaded, then the stream
 of bytes cannot be unserialized. The global environment is also
 serialized by name, and when it is unserialized, the resulting object is
 simply a reference to the existing, unmodified global
 environment.
So what does this mean to you as a snow programmer? Basically, you must ensure
 that all the variables needed to execute the worker function are
 available after it has been unserialized on the cluster workers. If the
 worker function’s environment is the global environment and the worker
 function needs to access any variables in it, you need to send those
 variables to the workers explicitly. This can be done, for example, by
 using the clusterExport() function.
 But if the worker function was created by another function, its
 environment is the evaluation environment of the creator function when
 the worker function was created. All the variables in this environment
 will be serialized along with the worker function, and accessible to it
 when it is executed by the cluster workers. This can be a handy way of
 making variables available to the worker function, but if you’re not
 careful, you could accidentally serialize large, unneeded objects along
 with the worker function, causing performance to suffer. Also, if you
 want the worker function to use any of the creator function’s arguments,
 you need to evaluate those arguments before calling parLapply() or clusterApplyLB(); otherwise, you may not be
 able to evaluate them successfully on the workers due to R’s lazy
 argument evaluation.
Let’s look at a few examples to illustrate some of these issues.
 We’ll start with a script that multiplies a vector x by a sequence of numbers:
a <- 1:4
x <- rnorm(4)
clusterExport(cl, "x")
mult <- function(s) s * x
parLapply(cl, a, mult)
In this script, the function mult() is defined at the top level, so its
 environment is the global environment.[20] Thus, x isn’t
 serialized along with mult(), so we
 need to send it to the cluster workers using the clusterExport() function. Of course, a more
 natural solution in this case would be to include x as an explicit argument to mult(), and then parLapply() would send it to the workers for
 us. However, using clusterExport()
 could be more efficient if we were going to reuse x by calling mult() many times with parLapply().
Now let’s turn part of this script into a function. Although this
 change may seem trivial, it actually changes the way mult() is serialized in parLapply():
pmult <- function(cl) {
 a <- 1:4
 x <- rnorm(4)
 mult <- function(s) s * x
 parLapply(cl, a, mult)
}
pmult(cl)
Since mult() is created by
 pmult(), all of pmult()’s local variables will be accessible
 when mult() is executed by the
 cluster workers, including x. Thus,
 we no longer call clusterExport().
Pmult() would be more useful if
 the values to be multiplied weren’t hardcoded, so let’s improve it by
 passing a and x in as arguments:
pmult <- function(cl, a, x) {
 x # force x
 mult <- function(s) s * x
 parLapply(cl, a, mult)
}
scalars <- 1:4
dat <- rnorm(4)
pmult(cl, scalars, dat)
At this point, you may be wondering why x is on a line by itself with the cryptic
 comment “force x”. Although it may look like it does nothing, this
 operation forces x to be evaluated by
 looking up the value of the variable dat (the actual argument corresponding to
 x that is passed to the function when
 pmult() is invoked) in the caller’s
 execution environment. R uses lazy argument evaluation, and since
 x is now an argument, we have to
 force its evaluation before calling parLapply(); otherwise, the workers will
 report that dat wasn’t found, since
 they don’t have access to the environment where dat is defined. Note that they wouldn’t say
 x wasn’t found: they would find
 x, but wouldn’t be able to evaluate
 it because they don’t have access to dat. By evaluating x before calling parLapply(), mult()’s environment will be serialized with
 x set to the value of dat, rather than the symbol dat.
Notice in this last example that, in addition to x, a and
 cl are also serialized along with
 mult(). mult() doesn’t need to access them, but since
 they are defined in pmult’s evaluation environment,
 they will be serialized along with mult(). To prevent that, we can reset the environment of mult() to the global environment and pass
 x to mult() explicitly:
pmult <- function(cl, a, x) {
 mult <- function(s, x) s * x
 environment(mult) <- .GlobalEnv
 parLapply(cl, a, mult, x)
}
scalars <- 1:4
dat <- rnorm(4)
pmult(cl, scalars, dat)
Of course, another way to achieve the same result is to create
 mult() at the top level of the script
 so that mult() is associated with the
 global environment in the first place.
Unfortunately, you run into some tricky issues when sending
 function objects over the network. You may conclude that you don’t want
 to use the worker function’s environment to send data to your cluster
 workers, and that’s a perfectly reasonable position. But hopefully you
 now understand the issues well enough to figure out what methods work
 best for you.

Random Number Generation

As I mentioned previously, snow
 is very useful for performing Monte Carlo simulations, bootstrapping,
 and other operations that depend on the use of random numbers. When
 running such operations in parallel, it’s important that the cluster
 workers generate different random numbers; otherwise, the workers may
 all replicate each other’s results, defeating the purpose of executing
 in parallel. Rather than using ad-hoc schemes for seeding the workers
 differently, it is better to use a parallel random number generator
 package. snow provides support for
 the rlecuyer and rsprng packages, both of which are available
 on CRAN. With one of these packages installed on all the nodes of your
 cluster, you can configure your cluster workers to use it via the
 clusterSetupRNG() function. The
 type argument specifies which
 generator to use. To use rlecuyer,
 set type to
 RNGstream:
clusterSetupRNG(cl, type='RNGstream')
To use rsprng, set type to SPRNG:
clusterSetupRNG(cl, type='SPRNG')
You can specify a seed using the seed argument. rsprng uses a single integer for the seed,
 while rlecuyer uses a vector of six
 integers:
clusterSetupRNG(cl, type='RNGstream', seed=c(1,22,333,444,55,6))
Note
When using rsprng, a random
 seed is used by default, but not with rlecuyer. If you want to use a random seed
 with rlecuyer, you’ll have to
 specify it explicitly using the seed argument.

Now the standard random number functions will use the specified
 parallel random number generator:
> unlist(clusterEvalQ(cl, rnorm(1)))
[1] -1.0452398 -0.3579839 -0.5549331 0.7823642
If you reinitialize the cluster workers using the same seed, you
 will get the same random number from each of the workers.
We can also get reproducible results using clusterApply(), but not with clusterApplyLB() because clusterApply() always uses the same task
 scheduling, while clusterApplyLB()
 does not.[21]

snow Configuration

snow includes a number of
 configuration options for controlling the way the cluster is created.
 These options can be specified as named arguments to the cluster
 creation function (makeCluster(),
 makeSOCKcluster(), makeMPIcluster(), etc.). For example, here is
 the way to specify an alternate hostname for the master:
cl <- makeCluster(3, type="SOCK", master="192.168.1.100")
Note
The default value of master
 is computed as Sys.info()[['nodename']]. However, there’s
 no guarantee that the workers will all be able to resolve that name to
 an IP address. By setting master to
 an appropriate dot-separated IP address, you can often avoid hostname
 resolution problems.

You can also use the setDefaultClusterOptions() function to change
 a default configuration option during an R session. By default, the
 outfile option is set to /dev/null, which causes all worker output to
 be redirected to the null device (the proverbial bit bucket). To prevent
 output from being redirected, you can change the default value of
 outfile to the empty string:
setDefaultClusterOptions(outfile="")
This is a useful debugging technique which we will discuss more in
 Troubleshooting snow Programs.
Here is a summary of all of the snow configuration options:
Table 2-1. snow configuration options
	Name	Type	Description	Default value
	port
	Integer
	Port that the master listens on
	10187

	timeout
	Integer
	Socket timeout in seconds
	31536000 (one year in seconds)

	master
	String
	Master’s hostname that workers connect
 to
	Sys.info()["nodename"]

	homogeneous
	Logical
	Are workers homogeneous?
	TRUE if R_SNOW_LIB set, else FALSE

	type
	String
	Type of cluster makeCluster should
 create
	NULL, which is handled specially

	outfile
	String
	Worker log file
	“/dev/null” “nul:” on Windows

	rhome
	String
	Home of R installation, used to locate R
 executable
	$R_HOME

	user
	String
	User for remote execution
	Sys.info()["user"]

	rshcmd
	String
	Remote execution command
	“ssh”

	rlibs
	String
	Location of R packages
	$R_LIBS

	scriptdir
	String
	Location of snow worker scripts
	snow installation directory

	rprog
	String
	Path of R executable
	$R_HOME/bin/R

	snowlib
	String
	Path of “library” where snow is
 installed
	directory in which snow is installed

	rscript
	String
	Path of Rscript command
	$R_HOME/bin/Rscript
 $R_HOME/bin/Rscript.exe on Windows

	useRscript
	Logical
	Should workers be started using Rscript
 command?
	TRUE if file specified by Rscript
 exists

	manual
	Logical
	Should workers be started manually?
	FALSE

It is possible, although a bit tricky, to configure different
 workers differently. I’ve done this when running a snow program in parallel on an ad-hoc
 collection of workstations. In fact, there are two mechanisms available
 for that with the socket transport. The first approach works for all the
 transports. You set the homogeneous
 option to FALSE, which causes
 snow to use a special startup script
 to launch the workers. This alternate script doesn’t assume that the
 worker nodes are set up the same as the master node, but can look for
 R or Rscript in the user’s PATH, for example. It also supports the use of
 environment variables to configure the workers, such as R_SNOW_RSCRIPT_CMD and R_SNOW_LIB to specify the path of the Rscript command and the snow installation directory. These environment
 variables can be set to appropriate values in the user’s environment on
 each worker machine using the shell’s start up scripts.
The second approach to heterogeneous configuration only works with
 the socket and nws transports. When
 you call makeSOCKcluster(), you
 specify the worker machines as a list of lists. In this case, the
 hostname of the worker is specified by the host element of each sublist. The other
 elements of the sublists are used to override the corresponding option
 for that worker.
Let’s say we want to create a cluster with two workers: n1 and n2,
 but we need to log in as a different user on machine n2:
> workerList <- list(list(host = "n1"), list(host = "n2", user = "steve"))
> cl <- makeSOCKcluster(workerList)
> clusterEvalQ(cl, Sys.info()[["user"]])
[[1]]
[1] "weston"

[[2]]
[1] "steve"

> stopCluster(cl)
It can also be useful to set the outfile option differently to avoid file
 conflicts between workers:
> workerList <- list(list(host = "n1", outfile = "n1.log", user = "weston"),
+ list(host = "n2", outfile = "n2-1.log"),
+ list(host = "n2", outfile = "n2-2.log"))
> cl <- makeSOCKcluster(workerList, user = "steve")
> clusterEvalQ(cl, Sys.glob("*.log"))
[[1]]
[1] "n1.log"

[[2]]
[1] "n2-1.log" "n2-2.log"

[[3]]
[1] "n2-1.log" "n2-2.log"

> stopCluster(cl)
This also demonstrates that different methods for setting options
 can be used together. The machine-specific option values always take
 precedence.
Note
I prefer to use my ssh config
 file to specify a different user for different hosts, but obviously
 that doesn’t help with setting outfile.

Installing Rmpi

As I mentioned previously, installing Rmpi can be problematic because it depends on
 MPI being previously installed. Also, there are multiple MPI
 distributions, and some of the older distributions have compatibility
 problems with Rmpi. In general, Open
 MPI is the preferred MPI distribution. Fortunately, Open MPI is readily
 available for modern Linux systems. The website for the Open MPI Project
 is http://www.open-mpi.org/.
Another problem is that there isn’t a binary distribution of
 Rmpi available for Windows. Thus,
 even if you have MPI installed on a Windows machine, you will also need
 to install Rmpi from the source
 distribution, which requires additional tools that may also need to be
 installed. For more information on installing Rmpi on Windows, see the documentation in the
 Rmpi package. That’s beyond the scope
 of this book.
Installation of Rmpi on the Mac
 was quite simple on Mac OS X 10.5 and 10.6, both of which came with Open
 MPI, but unfortunately, Apple stopped distributing it in Mac OS X 10.7.
 If you’re using 10.5 or 10.6, you can (hopefully) install Rmpi quite easily:[22]
install.packages("Rmpi")
If you’re using Mac OS X 10.7, you’ll have to install Open MPI
 first, and then you’ll probably have to build Rmpi from the source distribution since the
 binary distribution probably won’t be compatible with your installation
 of Open MPI. I’ll discuss installing Rmpi from the source distribution shortly, but
 not Open MPI.
On Debian/Ubuntu, Rmpi is
 available in the “r-cran-rmpi” Debian package, and can be installed with
 apt-get. That’s the most foolproof
 way to install Rmpi on Ubuntu, for
 example, since apt-get will
 automatically install a compatible version of MPI, if necessary.
For non-Debian based systems, I recommend that you install Open
 MPI with your local packaging tool, and then try to use install.packages() to install Rmpi. This will fail if the configuration
 script can’t find the MPI installation. In that case you will have to
 download the source distribution, and install it using a command such
 as:
% R CMD INSTALL --configure-args="--with-mpi=$MPI_PATH" Rmpi_0.5-9.tar.gz
where the value of MPI_PATH is
 the directory containing the Open MPI lib and include directories.[23] Notice that this example uses the --configure-args argument to pass the --with-mpi argument to Rmpi’s configure script. Another important
 configure argument is --with-Rmpi-type, which may need to be set to
 “OPENMPI”, for example.
As I’ve said, installing Rmpi
 from source can be difficult. If you run into problems and don’t want to
 switch to Debian/Ubuntu, your best bet is to post a question on the R
 project’s “R-sig-hpc” mailing list. You can find it by clicking on the
 “Mailing Lists” link on the R project’s home page.

Executing snow Programs on a Cluster with Rmpi

Throughout this chapter I’ve been using the socket transport
 because it doesn’t require any additional software to install, making it
 the most portable snow transport.
 However, the MPI transport is probably the most popular, at least on
 clusters. Of course, most of what we’ve discussed is independent of the
 transport. The difference is mostly in how the cluster object is created
 and how the snow script is
 executed.
To create an MPI cluster object, set the type argument of makeCluster() to MPI or use
 the makeMPIcluster() function. If
 you’re running interactively, you can create an MPI cluster object with
 four workers as follows:
cl <- makeCluster(4, type="MPI")
This is equivalent to:
cl <- makeMPIcluster(4)
This creates a spawned cluster, since the
 workers are all started by snow for
 you via the mpi.comm.spawn()
 function.
Notice that we don’t specify which machines to use, only the
 number of workers. For that reason, I like to compute the worker count
 using the mpi.universe.size()
 function, which returns the size of the initial runtime
 environment.[24] Since the master process is included in that size, the
 worker count would be computed as mpi.universe.size() - 1.[25]
We shut down an MPI cluster the same as any cluster:
stopCluster(cl)
As you can see, there isn’t much to creating an MPI cluster
 object. You can specify configuration options, just as with a socket
 cluster, but basically it is very simple. However, you should be aware
 that the cluster workers are launched differently depending on how the R
 script was executed. If you’re running interactively, for example, the
 workers will always be started on the local machine. The only way that I
 know of to start the workers on remote machines is to execute the R
 interpreter using a command such as mpirun, mpiexec, or in the case of Open MPI, orterun.
As I noted previously, you can’t specify the machines on which to
 execute the workers with makeMPIcluster(). That is done with a separate
 program that comes with your MPI distribution. Open MPI comes with three
 utilities for executing MPI programs: orterun, mpirun, and mpiexec, but they all work in exactly the same
 way,[26] so I will refer to orterun for the rest of this
 discussion.
orterun doesn’t know anything
 about R or R scripts, so we need to use orterun to execute the R interpreter, which in
 turn executes the R script. Let’s start by creating an R script (Example 2-1), which I’ll call mpi.R.
Example 2-1. mpi.R
library(snow)
library(Rmpi)
cl <- makeMPIcluster(mpi.universe.size() - 1)
r <- clusterEvalQ(cl, R.version.string)
print(unlist(r))
stopCluster(cl)
mpi.quit()

This is very similar to our very first example, except that it
 loads the Rmpi package, calls
 makeMPIcluster() rather than makeSOCKcluster(), and calls mpi.quit() at the end. Loading Rmpi isn’t strictly necessary, since calling
 makeMPIcluster() will automatically
 load Rmpi, but I like to do it
 explicitly. makeMPIcluster() creates
 the MPI cluster object, as discussed in the previous section. mpi.quit() terminates the MPI execution
 environment, detaches the Rmpi
 package, and quits R, so it should always go at the
 end of your script. This is often left out, but I believe it is good
 practice to call it.[27] I’ve gotten very stern warning messages from orterun in some cases when I failed to call
 mpi.quit().
To execute mpi.R using the
 local machine as the master, and n1, n2, n3 and n4 as the workers, we
 can use the command:[28]
% orterun -H localhost,n1,n2,n3,n4 -n 1 R --slave -f mpi.R
The -H option specifies the
 list of machines available for execution. By using -n 1, orterun will only execute the command R --slave -f mpi.R on the first machine in the
 list, which is localhost in this example. This process is the master,
 equivalent to the interactive R session in our previous snow examples. When the master executes
 makeMPIcluster(mpi.universe.size() -
 1), four workers will be spawned. orterun will execute these workers on machines
 n1, n2, n3 and n4, since they are next in line to receive a
 process.
Those are the basics, but there are a few other issues to bear in
 mind. First, the master and the worker processes have their working
 directory set to the working directory of the process executing orterun. That’s no problem for the master in
 our example, since the master runs on the same machine as orterun. But if there isn’t a directory with
 the same path on any of the worker machines, you will get an error. For
 that reason, it is useful to work from a directory that is shared across
 the cluster via a network file system. That isn’t necessary, however. If
 you specify the full path to the R script, you could use the orterun -wdir option to set the working directory to
 /tmp:
% orterun -wdir /tmp -H localhost,n1,n2,n3,n4 -n 1 R --slave -f ~/mpi.R
This example still assumes that R is in your search path on
 localhost. If it isn’t, you can specify the full path of the R
 interpreter on localhost.
That can solve some of the orterun related problems, but snow still makes a number of assumptions about
 where to find things on the workers as well. See snow Configuration for more information.

Executing snow Programs with a Batch Queueing System

Many cluster administrators require that all parallel programs be
 executed via a batch queueing system. There are different ways that this
 can be done, and different batch queueing systems, but I will describe a
 method that has been commonly used for a long time, and is supported by
 many batch queueing systems, such as PBS/TORQUE, SGE and LSF.
Basically you submit a shell script, and the shell script executes
 your R script using orterun as we
 described in the section Executing snow Programs on a Cluster with Rmpi. When you submit the
 shell script, you tell the batch queueing system how many nodes you want
 using the appropriate argument to the submit command. The shell script
 may need to read an environment variable to learn what nodes it can
 execute on, and then pass that information on to the orterun command via an argument such as
 -hostfile or -H.
Of course the details vary depending on the batch queueing system,
 MPI distribution, and cluster configuration. As an example, I’ll
 describe how this can be done using PBS/TORQUE and Open MPI.
It’s actually very simple to use PBS/TORQUE with Open MPI, since
 Open MPI automatically gets the list of hosts using the environment
 variables set by PBS/TORQUE.[29] The code in Example 2-2 simplifies the
 orterun command used in the
 script.
Example 2-2. batchmpi.sh
#!/bin/sh
#PBS -N SNOWMPI
#PBS -j oe
cd $PBS_O_WORKDIR
orterun -n 1 /usr/bin/R --slave -f mpi.R > mpi-$PBS_JOBID.out 2>&1

This script uses PBS directives to specify the name of the job,
 and to merge the job’s standard output and standard error. It then
 cd’s to the directory from which you
 submitted the job, which is helpful for finding the mpi.R script. Finally it uses orterun to execute mpi.R.
We submit batchmpi.sh using the
 PBS/TORQUE qsub command:
% qsub -q devel -l nodes=2:ppn=4 batchmpi.sh
This submits the shell script to the devel queue, requesting two nodes with four
 processors per node. The -l option is
 used to specify the resources needed by the job. The resource
 specifications vary from cluster to cluster, so talk to your cluster
 administrator to find out how you should specify the number of nodes and
 processors.
If you’re using LSF or SGE, you will probably need to specify the
 hosts via the orterun -hostfile or -H option. For LSF, use the
 bsub -n option to specify the number of cores, and
 the LSB_HOSTS environment variable to
 get the allocated hosts. With SGE, use the qsub -pe
 option and the PE_HOSTFILE
 environment variable. The details are different, but the basic idea is
 the same.

Troubleshooting snow Programs

Unfortunately, a lot of things can go wrong when using snow. That’s not really snow’s fault: there’s just a lot of things
 that have to be set up properly, and if the different cluster nodes are
 configured differently, snow may have
 trouble launching the cluster workers. It’s possible to configure
 snow to deal with heterogeneous
 clusters.[30] Fortunately, if your cluster is already used for parallel
 computing, there’s a good chance it is already set up in a clean,
 consistent fashion, and you won’t run into any problems when using
 snow.
Obviously you need to have R and snow installed on all of the machines that
 you’re attempting to use for your cluster object. You also need to have
 ssh servers running on all of the
 cluster workers if using the socket transport, for instance.
There are several techniques available for finding out more
 information about what is going wrong.
When using the socket transport, the single most useful method of
 troubleshooting is manual mode. In manual mode, you
 start the workers yourself, rather than having snow start them for you. That allows you to
 run snow jobs on a cluster that
 doesn’t have ssh servers, for
 example. But there are also a few other advantages to manual mode. For
 one thing, it makes it easier to see error messages. Rather than
 searching for them in log files, they can be displayed right in your
 terminal session.
To enable manual mode, set the manual option to TRUE when creating the socket cluster object.
 I also recommend specifying outfile="", which prevents output from being
 redirected:
cl <- makeCluster(2, type="SOCK", manual=TRUE, outfile="")
makeCluster() will display the
 command to start each of the workers. For each command, I open a new
 terminal window, ssh to the specified
 machine,[31] and cut and paste the specified command into the
 shell.
In many cases, you’ll get an error message as soon as you execute
 one of these commands, and the R session will exit. In that case, you
 need to figure out what caused the error, and solve the problem. That
 may not be simple, but at least you have something better to search for
 than “makeCluster hangs.” But very often, the error is pretty obvious,
 like R or snow isn’t installed. Also,
 snow may not guess the right hostname
 for the workers to use to connect back to the master process. In this
 case, R starts up and snow runs, but
 nothing happens. You can use your terminal window to use various network
 tools (nslookup, ping) to diagnose this problem.
Let’s create a socket cluster using manual mode and examine the
 output:
> cl <- makeCluster(c('n1', 'n2'), type="SOCK", manual=TRUE, outfile="")
Manually start worker on n1 with
 /usr/lib/R/bin/Rscript /usr/lib/R/site-library/snow/RSOCKnode.R
MASTER=beard PORT=10187 OUT= SNOWLIB=/usr/lib/R/site-library
The argument MASTER=beard
 indicates that the value of the master option is “beard.” You can now use the
 ping command from your terminal
 window on n1 to see if the master is
 reachable from n1 by that name.
 Here’s the kind of output that you should see:
n1% ping beard
PING beard (192.168.1.109) 56(84) bytes of data.
64 bytes from beard (192.168.1.109): icmp_req=1 ttl=64 time=0.020 ms
This demonstrates that n1 is
 able to resolve the name “beard,” knows a network route to that IP
 address, can get past any firewall, and is able to get a reply from the
 master machine.[32]
But if ping issues the error
 message “ping: unknown host beard”, then you have a hostname resolution
 problem. Setting the master option to
 a different value when creating the cluster might fix the problem. Other
 errors may indicate a networking problem that can be fixed by your
 sysadmin.
If the value of master seems
 good, you should execute the command displayed by makeCluster() in hopes of getting a useful
 error message. Note that many of these problems could occur using any
 snow transport, so running a simple
 snow test code using the socket
 transport and manual mode can be an effective means to ensure a good
 setup even if you later intend to use a different transport.
The outfile option in itself is
 also useful for troubleshooting. It allows you to redirect debug and
 error messages to a specified file. By default, output is redirected to
 /dev/null. I often use an empty
 string ("") to prevent any
 redirection, as we described previously.
Here are some additional troubleshooting tips:
	Start by running on only one machine to make sure that
 works

	Manually ssh to all of the
 workers from the master machine

	Set the master option to a
 value that all workers can resolve, possibly using a dot-separated
 IP address

	Run your job from a directory that is available on all
 machines

	Check if there are any firewalls that might interfere

When It Works…

snow is a fairly high-level
 package, since it doesn’t focus on low-level communication operations, but
 on execution. It provides a useful variety of functions that support
 embarrassingly parallel computation.

…And When It Doesn’t

Communications difficulties:
 snow doesn’t provide functions for
 explicitly communicating between the master and workers, and in fact, the
 workers never communicate between themselves. In order to communicate
 between workers, you would have to use functions in the underlying
 communication package. Of course, that would make your program less
 portable, and more complicated. A package that needed to do that would
 probably not use snow, but use a
 package like nws or Rmpi directly.

The Wrap-up

In this chapter, you got a crash course on the snow package, including some advanced topics
 such as running snow programs via a
 batch queueing system. snow is a
 powerful package, able to run on clusters with hundreds of nodes. But if
 you’re more interested in running on a quad-core laptop than a
 supercomputer, the next chapter on the multicore package will be of particular
 interest to you.

[5] The multicore package is
 generally preferred on multicore computers, but it isn’t supported on
 Windows. See Chapter 3 for more information on the
 multicore package.

[6] This can be overridden via the rshcmd option, but the specified command
 must be command line-compatible with ssh.

[7] These clusters shouldn’t be confused with cluster objects and
 cluster workers.

[8] All R sessions are randomly seeded when they first generate
 random numbers, unless they were restored from a previous R
 session that generated random numbers. snow
 workers never restore previously saved data, so they are always
 randomly seeded.

[9] How exactly snow sends
 functions to the workers is a bit complex, raising issues of
 execution context and environment. See Functions and Environments for
 more information.

[10] This is guaranteed since clusterEvalQ() is implemented using
 clusterCall().

[11] Defining anonymous functions like this is very useful, but can
 be a source of performance problems due to R’s scoping rules and the
 way it serializes functions. See Functions and Environments for more
 information.

[12] The return value from library() isn’t big, but if the
 initialization function was assigning a large matrix to a variable,
 you could inadvertently send a lot of data back to the master,
 significantly hurting the performance of your program.

[13] snow.time() is available in
 snow as of version 0.3-5.

[14] I’m setting the RNG seed so we get the same value of
 sleeptime as in the previous example.

[15] It’s also possible that the extra overhead in clusterApplyLB() to determine which worker
 is ready for the next task could make clusterApply() more efficient in some
 case, but I’m skeptical.

[16] The ideal elapsed time is sum(sleeptime) / length(cl).

[17] Normally the second argument to ^ can have the same length as the first,
 but it must be length one in this example because parVapply() only splits the first
 argument.

[18] A future release of snow
 could optimize clusterApplyLB()
 by not sending the function and constant arguments to the workers in
 every task. At that point, this example will lose any practical
 value that it may have.

[19] Actually, if you specify the worker function by name, rather
 than by providing the definition of the function, most of the
 parallel execution functions (parLapply() is currently an exception)
 will use that name to look up that function in the worker processes,
 thus avoiding function serialization.

[20] You can verify this with the command environment(mult).

[21] Actually, you can achieve reproducibility with clusterApplyLB() by setting the seed to a
 task specific value. This can be done by adding the operation to the
 beginning of the worker function, or if using a function from a
 library, wrapping that function in a new function that sets the seed
 and then calls the library function.

[22] It’s possible that newer versions of Rmpi won’t be built for the Mac on CRAN
 because it won’t work on Mac OS X 10.7, but it’s still available as
 I’m writing this in September 2011.

[23] I use the command locate
 include/mpi.h to find this directory. On my machine, this
 returns /usr/lib/openmpi/include/mpi.h, so I set
 MPI_PATH to /usr/lib/openmpi.

[24] mpi.universe.size() had a
 bug in older versions of Rmpi, so
 you may need to upgrade to Rmpi 0.5-9.

[25] I don’t use mpi.universe.size() when creating an MPI
 cluster in an interactive session, since in that context, mpi.universe.size() returns 1, which would
 give an illegal worker count of zero.

[26] orterun, mpirun, and mpiexec are in fact the same program in
 Open MPI.

[27] You can use mpi.finalize()
 instead, which doesn’t quit R.

[28] The orterun command in Open
 MPI accepts several different arguments to specify the host list and
 the number of workers. It does this to be compatible with previous
 MPI distributions, so don’t be confused if you’re used to different
 argument names.

[29] Actually, it’s possible to configure Open MPI without support
 for PBS/TORQUE, in which case you’ll have to include the arguments
 -hostfile $PBS_NODEFILE when
 executing orterun.

[30] We discuss heterogeneous configuration in snow Configuration.

[31] If ssh fails at this point,
 you may have found your problem.

[32] Of course, just because ping can get past a firewall doesn’t mean
 that snow can. As you can see
 from the manual mode output, the master process is listening on port
 10187, so you may have to configure your firewall to allow
 connections on that port. You could try the command telnet beard 10187 as a further
 test.

End of sample

 To search for additional titles please go to

 http://search.overdrive.com.

OEBPS/httpatomoreillycomsourceoreillyimages932097.png
Node

Cluster Usage

Elapsed Time

OEBPS/oreilly_large.png.jpg

OEBPS/ad_files/12502_Strata12_3_ebook_ad_f2.jpg
The people and technology
driving the data revolution.

strataconf.com

OREILLY"

Making Data Work

OREILLY"

CONFERENCE
+

HADOOP

+

- 5 o by
#WoORLD | ook s 20

OREILLY"

CONFERENCE ;
Making Health Data Work %
October 16 - 17, b
CA

OREILLY

Spreading the knowledge of innovators.

OEBPS/httpatomoreillycomsourceoreillyimages932109.png
input map | shuffle | reduce > output

(0, 00670119%0.)
(106, 0043011990..)|
-p| (212, 0043011990, -9
(318, 0043012650.)
(424, 0043012650.)

2 3 4 5 6

(oa9, [11,78]) | | (1049, 11) |

)
P (1050, [0, 22, -a1]) [P (1950, 22)

OEBPS/httpatomoreillycomsourceoreillyimages932103.png
Node

Cluster Usage

T T T T T T
0 5 10 15 20 2

Elapsed Time

OEBPS/callouts/2.png

OEBPS/httpatomoreillycomsourceoreillyimages932105.png
Node

Cluster Usage

-

o

10

20 30

Elapsed Time

40

50

OEBPS/callouts/3.png

OEBPS/callouts/1.png

OEBPS/callouts/6.png

OEBPS/callouts/7.png

OEBPS/callouts/15.png

OEBPS/callouts/4.png

OEBPS/callouts/5.png

OEBPS/callouts/8.png

OEBPS/httpatomoreillycomsourceoreillyimages932099.png
Node

Cluster Usage

P

0 10 20 30 40 50

Elapsed Time

OEBPS/callouts/9.png

OEBPS/callouts/10.png

OEBPS/callouts/12.png

OEBPS/callouts/11.png

OEBPS/callouts/14.png

OEBPS/callouts/13.png

OEBPS/orm_front_cover.jpg
RS
Data Analysis in the Distributed World

Parallel R

O'REILLY® Q. Ethan McCallum & Stephen Weston

OEBPS/httpatomoreillycomsourceoreillyimages932107.png
Node

Cluster Usage

Elapsed Time

OEBPS/httpatomoreillycomsourceoreillyimages932101.png
I II (A
HR
Il | LR

L] I
*
I /JHHMIHM/HI

LA
MH\H

\\\\\\\\\

